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Meta-analysis and multidisciplinary consensus statement:
exome sequencing is a first-tier clinical diagnostic test for

individuals with neurodevelopmental disorders
Siddharth Srivastava, MD1, Jamie A. Love-Nichols, MS, MPH 1, Kira A. Dies, ScM1,
David H. Ledbetter, PhD 2, Christa L. Martin, PhD2, Wendy K. Chung, MD, PhD3,4,

Helen V. Firth, DM, FRCP5,6, Thomas Frazier, PhD7, Robin L. Hansen, MD8, Lisa Prock, MD, MPH1,9,
Han Brunner, MD10,11,12, Ny Hoang, MS13,14,15, Stephen W. Scherer, PhD 14,15,16,17,

Mustafa Sahin, MD PhD 1, David T. Miller, MD PhD 18

and the NDD Exome Scoping Review Work Group

Purpose: For neurodevelopmental disorders (NDDs), etiological
evaluation can be a diagnostic odyssey involving numerous genetic
tests, underscoring the need to develop a streamlined algorithm
maximizing molecular diagnostic yield for this clinical indication.
Our objective was to compare the yield of exome sequencing (ES)
with that of chromosomal microarray (CMA), the current first-tier
test for NDDs.

Methods: We performed a PubMed scoping review and meta-
analysis investigating the diagnostic yield of ES for NDDs as the
basis of a consensus development conference. We defined NDD as
global developmental delay, intellectual disability, and/or autism
spectrum disorder. The consensus development conference
included input from genetics professionals, pediatric neurologists,
and developmental behavioral pediatricians.

Results: After applying strict inclusion/exclusion criteria, we
identified 30 articles with data on molecular diagnostic yield in

individuals with isolated NDD, or NDD plus associated conditions
(such as Rett-like features). Yield of ES was 36% overall, 31% for
isolated NDD, and 53% for the NDD plus associated conditions. ES
yield for NDDs is markedly greater than previous studies of CMA
(15–20%).

Conclusion: Our review demonstrates that ES consistently
outperforms CMA for evaluation of unexplained NDDs. We
propose a diagnostic algorithm placing ES at the beginning of the
evaluation of unexplained NDDs.

Genetics inMedicine (2019) 21:2413–2421; https://doi.org/10.1038/s41436-
019-0554-6

Keywords: autism; consensus development conference; diagnos-
tic yield; genetic testing; intellectual disability

INTRODUCTION
Neurodevelopmental disorders (NDDs) are a heterogeneous
group of conditions that impact brain development and affect
various aspects of daily functioning. At least 30% of NDDs are
thought to have a genetic basis.1 Among these disorders,
global developmental delay (GDD)—a precursor diagnosis to
intellectual disability (ID)—and autism spectrum disorder
(ASD) are two entities for which there are guidelines for
genetic testing.2,3 The 2010 guideline from the American

College of Medical Genetics and Genomics (ACMG) suggests
that chromosomal microarray (CMA) and fragile X (FXS)
testing should be first-tier tests for individuals with
unexplained GDD/ID and/or ASD (except for females with
ASD and normal cognition, for which FXS testing is not
recommended).3 There are also considerations for single-gene
testing of MECP2 and PTEN under certain circumstances,2

although gene panels are now typically preferred over single-
gene testing. These recommendations and practices exist
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because of the complex genetic heterogeneity underlying
NDDs that sometimes makes diagnostic determinations
difficult based on history/examination alone.4 Even when
following these guidelines, establishing a diagnosis can require
iterative genetic testing. Previous expert guidance on genetic
testing for NDDs has advanced testing as standard of care for
individuals with NDDs.2,5 Such guidelines also predate the
rapid uptake of clinical exome sequencing (ES) and therefore
ES is not addressed.
Due to the genetic heterogeneity of NDDs, and the current

standard of genome-wide CMA as the first-tier test, we
focused on ES in comparison with CMA because it also
provides a genome-wide assessment. The advent of ES has
elucidated monogenic forms of GDD/ID and/or ASD not
detectable by CMA, FXS testing, or single-gene sequencing of
MECP2 or PTEN.4,6 For individuals with GDD/ID, ASD, and/
or multiple congenital anomalies (MCAs), the molecular
diagnostic yield of CMA is up to 15–20% (ref. 5), including
more recent cohorts.7–9 CMA typically detects only chromo-
somal copy-number variants (CNVs) and regions of homo-
zygosity, not single-gene disorders10 (Table 1). Several ES
studies have focused on individuals with varying presenta-
tions of NDDs and have identified genetic causes in as many
as 61% of cases.1,11,12

Much like CMA, ES is useful for patients with atypical
presentations of a genetic disorder, early presentations of a
disease for which the classic findings have not appeared,
genetic disorders with relatively nonspecific presentations,
and multiple genetic conditions. One of the main historical
limitations of ES was lack of detection of CNVs (Table 1),
though advances in depth-of-sequence coverage analysis and
of apparent Mendelian segregation errors can afford detection
of CNVs from ES.13 With these advances, some clinical
laboratories have started to incorporate CNV analysis into
their ES platforms.
The value of elucidating a molecular diagnosis is that it can

change clinical management in a number of important ways
for individuals and families affected by a NDD. Several
studies have examined the impact of a diagnostic CMA
finding, showing that it leads to direct changes in patient care
for up to 55% of individuals with a positive result.14–17

Similarly, a diagnosis via ES can impact patient care by
initiation of surveillance for disease-related conditions,
discontinuation of repeated rounds of investigation and
irrelevant surveillance, and referrals for further evaluation of
associated medical conditions.18 Despite the clear benefit of
ES from a diagnostic and management standpoint, there are
no accepted guidelines for the use of ES in the evaluation
of NDDs.
Therefore, our primary objective was to conduct an

evidence-based consensus conference to provide recommen-
dations for the use of ES in the diagnostic evaluation of
individuals with NDDs.

MATERIALS AND METHODS
We conducted a scoping review (no registered review
protocol) as the basis for a consensus development conference
to summarize the molecular diagnostic yield of ES for NDDs,
specifically compared with CMA. For the conference, in
addition to the core group of experts who authored this paper,
we also invited outside experts on CNV analysis from ES data.

Scoping review
For this scoping review, we addressed the following question:
Among individuals with NDDs tested by ES, what is the
molecular diagnostic yield compared with CMA? We selected
articles from PubMed focusing on ES and NDDs. We
included studies that involved sequencing of protein-coding
regions of Mendelian genes, and excluded studies that were
gene panels subsampled from exome data. We defined NDD
as GDD, ID, and/or ASD. We searched PubMed with a
combination of Medical Subject Headings (MeSH) terms and
keywords pertaining to NDDs (i.e., GDD, ID, and/or ASD)
and ES, with dates from 1 January 2014 to 29 June 2018
(Table S1). Scoping reviews differ from systematic reviews in
that their focus is on more broadly defined research questions,
charting of themes, and development of inclusion/exclusion
criteria at the study selection stage.19

Article selection occurred in two stages. During the first
stage, 12 expert reviewers (representing a diverse range of
fields including laboratory genetics, clinical genetics, genetic

Table 1 Types of genetic variants detected and missed by
CMA and ES

Test Types of variants detected Types of variants missed

CMA Chromosomal copy-number

variants (deletions and

duplications) at the level of

intragenic exons or larger

Balanced chromosomal

rearrangements

Low-level mosaicism

Trinucleotide repeat expansion

disorders (e.g., fragile X

syndrome)

Single-gene sequence-level

variants found by ES

ES Single-gene variants Chromosomal copy-number

variants (except when

specifically included in analysis

pipeline)

Balanced chromosomal

rearrangements

Trinucleotide repeat expansion

disorders

Intronic/noncoding variants

Exon-level deletions/

duplications

Exonic variants not captured or

covered well by sequencing

platform
CMA chromosomal microarray, ES exome sequencing.
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counseling, developmental behavioral pediatrics, and medical
students) were divided into dyads for determination of
possible inclusion. Articles included at this stage were primary
research studies (e.g., cohort studies, case series with ≥10
participants, review articles, or other articles of interest such
as expert opinion). Exclusion criteria were as follows: the
article did not (1) include the clinical population of interest,
(2) discuss ES, (3) include human data (e.g., an animal or
in vitro study only), (4) discuss molecular diagnostic yield, or
(5) include ≥10 participants. Each dyad of reviewers was
blinded to the other’s choices and independently assigned
inclusion/exclusion criteria for each article. When a dis-
crepancy occurred, an independent reviewer assessed whether
the article should advance to full article review.
During the second stage, a dyad read the full text of each

remaining article for possible inclusion to clarify inclusion
eligibility. Reasons for exclusion at this stage were tiered by
the following criteria: (1) basic science study, (2) study
population not exclusively NDD, (3) <10 participants, (4) did
not discuss ES, (5) no mention of molecular diagnostic yield,
(6) methods or review paper, or (7) not otherwise defined
(book chapter or not in English). We established strict
phenotypic NDD guidelines to limit the heterogeneity of
included articles. Specifically, when describing the population
of interest, the article must have used the phrases “global
developmental delay,” “intellectual disability,” and/or “autism
spectrum disorder” (or its equivalent). The term “develop-
mental delay” lacked enough specificity unless there were
additional context clues to suggest it was referring to GDD/
ID. We classified included articles as belonging to one of two
categories: (1) isolated NDD: the study population pertained
to NDD; or (2) NDD plus associated conditions: the study
population pertained to NDD plus a specific clinical finding
(defined as any additional neurological, systemic, syndromic,
or other clinical characteristic, e.g., microcephaly, neutrope-
nia, or Coffin–Siris syndrome).
We conducted two iterative changes outside of the original

scoping review. First, during the conference, members
nominated nine additional articles for consideration. Select
consensus conference members reviewed the articles’ full text
and identified one additional article for inclusion that was not
ascertained through the MeSH and keyword search terms.
Second, although our manual review included “global
developmental delay,” we modified our MeSH and keyword
search terms to include “global developmental delay” and to
use “exome sequencing” or “whole exome sequencing”
(instead of just “whole exome sequencing”). The same select
consensus conference members reviewed all the abstracts of
the articles not previously captured by the initial MeSH and
keyword search terms, and read a subset of the full-text
articles, ultimately identifying one more article for inclusion.

Consensus development conference
This effort began as an initiative of the Translational
Neuroscience Center (TNC) at Boston Children’s Hospital
(BCH), following multiple discussions with experts in the

field. The idea of investigating whether there was evidence to
support use of clinical ES for patients with NDDs was
presented to a TNC donor who provided a modest
noncommercial unrestricted donation to support travel
expenses of working group members to hold an in-person
meeting. The core author group from BCH then convened an
interdisciplinary group of experts in clinical genetics,
laboratory genetics, genetic counseling, child neurology,
neurodevelopmental disabilities, and developmental beha-
vioral pediatrics to determine the need for a scoping review
on ES in NDDs. We conducted this project outside the scope
of professional organizations for two specific reasons: (1) we
wanted the group of experts to represent different countries
and disciplines, to create diverse perspectives that would
minimize bias; and (2) we considered the question of selecting
the genetic test with highest diagnostic yield for NDDs to be
an urgent issue, and that our approach would be expedient
without compromising the validity of conclusions.
This consensus group developed the framework and

selected separate experts to conduct the review. Members of
the consensus group provided conflicts of interest disclosure
in a standard format. Following the scoping review, the
consensus group reconvened to review the evidence curated
by the expert review group. We assembled this interdisci-
plinary team based on practice/geographic diversity and
assessments of conflicts of interest, and we used a consensus
development conference approach.20 This approach is one of
the three main approaches to develop consensus and was
chosen for its unique strength of allowing committee
members a forum to discuss issues.21 The committee reviewed
the evidence table, discussed talks on relevant topics presented
by a variety of members and two external experts from clinical
laboratories performing ES, voted on the use of ES as a first-
tier test for NDDs, and developed a consensus algorithm for
genetic testing, including ES, in NDDs.

Statistical analysis
We assessed fixed-effects and random-effects models for
model fit. We performed a random-effects meta-regression to
determine molecular diagnostic yield of full sample, and
stratified by category (isolated NDD, NDD plus associated
conditions). Category, year of study, number of participants
with a NDD, and number of family members included per
proband were evaluated as covariates. For number of family
members included, we created three categories: (1) proband-
only (all cases proband-only), (2) combination (all cases at
least proband), and (3) trio (all cases at least trios). Of note,
we included two studies in the combination category in which
parental samples were obtained post hoc for variant
classification.
Meta-regression was performed using a logistic regression

model. Between-study heterogeneity was assessed using
between-study variance (τ2), I-2 statistic, and Cochran’s Q-
test. Akaike information criterion and Bayesian information
criterion were assessed to evaluate model fit. A forest plot was
used to summarize our findings.
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RESULTS
For the scoping review staged selection process, we initially
identified 584 unique articles. We eliminated 464 articles after
abstract review, and another 92 after full-text review, leaving
28 articles for inclusion. During the iterative review, we
identified 389 unique articles, eliminated 378 after abstract
review, and another 9 after full-text review, leaving 2 for
inclusion. In total, 30 articles were included, which we divided
into two categories: those focused on just NDDs or those
focused on NDDs plus associated conditions. Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) flowchart is shown in Fig. 1.
The 30 articles (Table S2) were diverse in their patient

representations. These articles originated from centers around
the world, including the United States, Europe, Middle East,
and Asia. Among the articles focused on NDD plus associated
conditions, the features included features of a clinically
defined syndrome (e.g., Coffin–Siris syndrome, DOOR
syndrome, Nicolaides–Baraitser syndromes, Rett syndrome,
Smith–Magenis syndrome); systemic findings (unexplained
metabolic phenotype); associated medical problems (neutro-
penia); and neurological features (microcephaly, macroce-
phaly). The types of specialists evaluating the phenotypes of
participants represented a diverse variety including clinical
geneticists, pediatric neurologists, and developmental
pediatricians.
A random-effects meta-analysis of the 30 articles revealed a

molecular diagnostic yield of ES of 36% (confidence interval
[CI]: 30–43%) weighted by the number of cases in the study
(Fig. 2). In the isolated NDD category (n= 21 articles), the

yield was 31% (CI: 25–38%), and in the NDD plus associated
conditions category (n= 9 articles), the yield was 53% (CI:
41–64%).
Within both the isolated NDD category and the NDD plus

associated conditions category, patterns emerged pertaining
to molecular diagnostic yield. Among the articles pertaining
to the isolated NDD category, there were n= 5 articles
including individuals with primarily ASD (molecular diag-
nostic yield 16%, CI: 11–24%), n= 10 articles that included
individuals with primarily ID (yield 39%, CI: 29–50%), n= 6
articles that included individuals with a more heterogeneous
mix of ID and/or ASD (yield: 39% (CI: 29%–50%)), and n= 4
articles focused on mostly consanguineous populations (yield:
29%, CI: 23–35%). Meta-regression revealed that year of
study, number of family members sequenced, and isolated
NDD versus NDD plus associated conditions category did not
significantly predict molecular diagnostic yield.
Several studies (n= 6) showed that a presumptive diagnosis

by ES could change clinical management (Table S2). Among
those with a diagnosis by ES, changes in medical/medication
management occurred in 30% (range: 2–46%; n= 6 studies).
Four studies discussed impact on reproductive planning and
found that 80% (range: 42–100%) of diagnoses were
informative for reproductive planning. For those for whom
the diagnosis was not informative for reproductive planning,
the reasons were not entirely clear. Of note, these numbers on
clinical management impact are not necessarily specific to
individuals with NDD, since for some studies, we used a
subset of the study population to calculate molecular
diagnostic yield for NDDs.

Records identified through
database searching

(n = 584)

Records identified through
iterative review (n = 389)a

Expert review (n = 1)
Expanded search terms (n = 388)

Records screened
(n initial scoping = 584)

(n iterative review = 389)

Full-text articles assessed for eligibility
(n initial scoping = 120)
(n iterative review = 11)

Studies included
(n initial scoping = 28)
(n iterative review = 2)

NDD
(n = 21)

NDD + associated
conditions

(n = 9)

Records excluded
(n = 842)

Full-text articles excluded
(n = 101)

Basic science (n = 2)
Population not NDD (n = 22)

<10 probands in cohort (n = 7)
not ES (n = 13)

Does not discuss diagnostic
yield (n = 41)

Methods or review paper (n = 13)
Chapter in book (n = 2)
Not in English (n = 1)

Fig. 1 Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flowchart of scoping review article inclusion. aRecords
identified through iterative review were reviewed by one reviewer at the screening stage. ES exome sequencing, NDD neurodevelopmental disorder.
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DISCUSSION
Our scoping review revealed that, among patients with NDDs,
ES outperforms the currently accepted first-tier test for NDDs
by 10–28%, assuming a range of 30–43% for ES and 15–20%
for CMA. Both of these tests are advantageous as unbiased
approaches with genetically heterogeneous conditions like
NDDs. However, based on this significantly higher molecular
diagnostic yield combined with the fact that a diagnosis often
impacts clinical management, we recommend ES (including
both parents, when feasible and with multiple affected family
member analysis, when indicated) as a first-tier test for
individuals with unexplained NDDs (Fig. 3). In fact, ES has
advantages, such as detection of individuals with multiple
monogenic disorders, facilitating characterization of blended
phenotypes.22 Multiple prior studies have shown that results
from ES impact clinical management for NDDs and other
conditions,18,23 which our results support.
If ES is nondiagnostic, we suggest that the next step in the

evaluation is CMA (if not already performed, either
standalone or as part of ES analysis). If CMA is nondiagnos-
tic, then the clinician can consider further evaluations/tests,
including, but not limited to, referral to a clinical geneticist for
expert evaluation; periodic (every 1–3 years) reanalysis of ES
data, given evidence that doing so may enhance molecular
diagnostic yield by 10–16% (refs. 24–26); FXS testing; metabolic
testing and/or mitochondrial DNA (mtDNA) sequencing
based on clinical presentation (though some laboratories

perform mtDNA analysis with ES); and karyotyping to assess
for balanced chromosomal rearrangements.
Our algorithm places ES before, or concurrent with, CMA,

as the molecular diagnostic yield of ES for NDDs exceeds that
of CMA. Estimates for the molecular diagnostic yield of CMA
are 15–20%, but this number includes individuals with MCAs,
which we did not include in our inclusion criteria unless there
was also the presence of GDD/ID and/or ASD. There are
certain additional points that will allow this algorithm to
remain meaningful as sequencing technology and bioinfor-
matic analyses continue to improve. First, CNV analysis is
typically not a standard application of ES across all labs. As a
result, the diagnostic yield of CMA and ES for NDDs is
approximately the sum of each respective diagnostic yield (i.e.,
15–20% for CMA based on prior literature plus 30–43% for
ES in our study). Nonetheless, there is increasing movement
toward incorporating CNV calling algorithms into ES analysis
pipelines.27 For example, within the articles included in our
scoping review, three studies called CNVs from exome:1,28,29

two reported CNV yields for NDDs of 16.7% (ref. 28) and
6.4% (ref. 29), and the latter identified two pathogenic CNVs
that were not detected on CMA due to poor coverage.29

Second, genome sequencing (GS), by definition, captures
more comprehensively all classes of genetic variants in testing
(Table 1). We anticipate that GS will eventually supersede ES
and CMA in clinical testing algorithms over time, as cost
decreases.
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Fig. 2 Forest plot of meta-analysis subcategorized as neurodevelopmental disorder (NDD) and NDD plus associated conditions. CI confidence
interval.
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It is worthwhile to note comparisons between ES and panel
testing. Sensitivity for detection of mosaicism can be lower on
ES compared with panel testing, for which read depth and
sequence coverage is often greater.30 ES has lower sensitivity
to detect single exon–level deletions/duplications, which may
be better detected by panels when targeted deletion/duplica-
tion analysis is included. However, gene panels require
continual curation of a well-defined/comprehensive gene set
for phenotypes for which many genes are yet to be
discovered.31 Moreover, panels are fixed in the number of
genes originally assessed, while ES allows for reanalysis of the
data set.
It is also important to note that a diagnosis from ES should

not end with laboratory classification of a variant. For
instance, the classification of a variant of unknown significance
(VUS) from a laboratory should be further evaluated in the
clinical setting. With increased knowledge over time of
phenotypes related to different genetic disorders, exome
reanalysis may change the clinical interpretation of a VUS.
Furthermore, a likely pathogenic variant has approximately a
90% true positive rate, so there is approximately a 10% false
positive rate as the cause of an individual’s presentation;
therefore, clinical judgment is important in establishing a
diagnosis.32 Even pathogenic variants may be incompletely
penetrant or only partly explain presenting features. Ulti-
mately, final variant interpretation of the ES test result requires
review by expert clinicians who can reassess the patient’s
phenotype in light of the suggested molecular diagnosis.
Our results demonstrate that the presence of additional

clinical features, year of study, and number of family
members included in exome analysis did not correlate with
molecular diagnostic yield in our meta-regression. Factors
such as number of studies pertaining to each of the variables
may have contributed to this result, and therefore it still may
be the case that the presence of multiple additional
phenotypic features may enrich molecular diagnostic yield
(as evidenced by the fact there was a higher diagnostic yield in
the NDD plus associated conditions category versus the
isolated NDD category, though not statistically significant).
Additionally, while our findings did not demonstrate higher
yield when including more family members, many of the
studies were a mixture of proband-only and trio ES, limiting
our ability to detect differences in molecular diagnostic yield.

Because of this, we expect that the additional yield of trio ES
seen in other studies remains true.1,33 Our analysis did not
account for history of consanguinity in the meta-regression,
though this additional factor may enrich molecular diagnostic
yield, based on increased probability of autosomal recessive
conditions. Additionally, we were not able to determine
whether increased ID severity increased molecular diagnostic
yield in our regression, but this factor may be another
consideration. In sum, ES demonstrates a higher diagnostic
yield, relative to CMA, for individuals with NDDs, with/
without additional features. This is attributable to the ability
of ES to detect the most prevalent types of pathogenic variants
affecting this population (single-nucleotide variants [SNVs]),
and that those SNVs represent many loci. This is not
surprising because the phenotypic category of NDDs features
a high degree of locus heterogeneity and phenotypic
variability.
It is worthwhile to consider who would order ES as a first-

line test for NDDs. We suggest that test ordering should not
be limited to a particular specialty; rather, it is contingent on
the ordering provider’s ability to provide informed consent
about variant interpretation and secondary findings, and the
ability to interpret/report results. Providers should inform
patients on possible results, both primary and secondary.34

We have not included assessments of cost-effectiveness and
insurance approval for ES in our evaluation.
Laboratory interpretation standards, case review boards,

and reanalysis protocols might also affect yield from exome
sequencing.24,26,35 We compared diagnostic yield of ES to
CMA, and note that CMA results can also be affected in the
same ways.36 A recent prospective study examined the use of
ES for establishing molecular diagnoses in fetal structural
anomalies, involving multidisciplinary input that is important
when the phenotype is complex.37

Our analysis had limitations. The scoping review focused on
ID and/or ASD, since these are the two NDDs for which there
are recommendations already in place for genetic testing. We
recognize that our search strategy may have led to exclusion
of some articles where phenotype was less specific, such as use
of “developmental delay” instead of GDD. For reasons of
consistency, we were stricter in our search strategy. Second,
we made inferences about the study population in n=
9 studies (e.g., presuming “ID/DD” is ID/GDD). Several

ID and/or
ASD

w/ or w/out
syndromic

presentation

ES ±
CNVa

No/
incomplete

dx

CMA if no
CNV

analysis

Further
evaluation

/testing

Dx
STOP

Dx
STOP

Dx
STOP

Dx
STOP

ES reanalysis
After 1-3 years

No/
incomplete

dx

No/
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Fig. 3 Diagnostic algorithm incorporating exome sequencing (ES) in the clinical evaluation of individuals with unexplained neurodevelop-
mental disorders (NDDs) (global developmental delay/intellectual disability [GDD/ID] and/or autism spectrum disorder [ASD]). An incomplete
diagnosis represents a diagnosis that explains only part of an individual’s phenotype. Factors such as the turnaround time of test, availability of tests, and
availability of genetic counseling may be considerations in application of this algorithm in clinical use. aOr technology that supersedes ES such as genome
sequencing. CMA chromosomal microarray, CNV copy-number variant.
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studies did not formally define the basis for ASD or ID/GDD.
Even in studies belonging to the isolated NDD group, the
study population was heterogeneous (e.g., ID plus variable
other features though not necessarily plus another specific
phenotype). Moreover, although our scoping review had
selected articles focusing on GDD, it had not been included in
our initial MeSH terms, so we repeated our PubMed search
with this change. Further, we excluded certain studies with
heterogeneous cohorts for which we could not ascertain the
number of individuals with NDD. One such study focused on
ID and/or epileptic encephalopathies,38 while another such
study focused on NDDs (but broadly defined NDD to include
a heterogeneous array of neurological symptoms without clear
delineation of subset with GDD/ID and/or ASD).39 Though it
may seem surprising that there were more papers on isolated
NDD than NDD plus associated conditions, the reason for
this is that we only included an article in the NDD plus
associated conditions category if all participants in that article
had NDDs on top of the additional feature(s). In addition, not
all studies used the ACMG variant classification guidelines. In
part, this was due to the time period of study inclusion, which
began in 2014; the ACMG did not release variant classifica-
tion guidelines until 2015.40 Another limitation is that we did
not include mtDNA sequencing in our analysis. We also
recognize that the data were drawn from a variety of both
clinical and research settings, and that specific analysis
approaches may differ in terms of variant filtering and
technical platform (e.g, trio-based ES versus proband-only
ES). It is expected that by looking at meta-analysis we account
for some of this variability. The second to last limitation is
that we acknowledge additional cost analyses associated with
the genetic testing technologies will also be important, though
these were not part of the original purpose of our study, which
focused on molecular diagnostic yield. Finally, while there
may be publication bias favoring positive results, this effect is
diminished by the large cohorts in our analysis and multiple
studies involving consecutively ascertained cases. Publication
bias should apply equally to studies on yield of CMA and ES.
Our work establishes that, among patients with NDD, ES

produces a higher molecular diagnostic yield than CMA, so by
this criterion and as outlined in our algorithm (Fig. 3), it
should become a first-tier test. As our recommended
algorithm is adopted, we anticipate numerous additional
health and economic impact studies about changes in patient-
related outcomes enabled by genome sequence–based diag-
nosis. While step-wise testing has historically had a role in
identifying a genetic diagnosis, simplicity is ideal, and a
diagnosis can now be accomplished for many patients in a
single test with an already impressively high molecular
diagnostic yield. Such clinical diagnostic yields will increase
with reannotation of the existing data compared with new
data sets and with new computational tools.32 This report will
guide geneticists, neurologists, developmental pediatricians,
child psychiatrists, and other clinicians in incorporating
clinical exome or genome sequencing into the management of
individuals with NDDs.
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