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Catalyst-like role of impurities in speeding layer-by-layer growth

Tien M. Phan1, Stephen Whitelam2,*, Jeremy D. Schmit1,†

1Department of Physics, Kansas State University, Manhattan, KS 66506, USA

2Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 
94720, USA

Abstract

Molecular self-assembly is usually done at low supersaturation, leading to low rates of growth, in 

order to allow time for binding mistakes to anneal. However, such conditions can lead to 

prohibitively long assembly times where growth proceeds by the slow nucleation of successive 

layers. Here we use a lattice model of molecular self-assembly to show that growth in this regime 

can be sped up by impurities, which lower the free-energy cost of layer nucleation. Under certain 

conditions impurities behave almost as a catalyst in that they are present at high concentration at 

the surface of the assembling structure, but at low concentration in the bulk of the assembled 

structure. Extrapolation of our numerics using simple analytic arguments suggests that this 

mechanism can reduce growth times by orders of magnitude in parameter regimes applicable to 

molecular systems.

Introduction –

The difficulty of achieving reliable self-assembly is one of controlling timescales [1–5]. 

While it is relatively easy to design a system in which the desired product is the 

thermodynamic ground state, it is more difficult to ensure that relaxation to equilibrium 

happens on observable timescales. If a structure grows more rapidly than its component 

pieces can sample their positional and conformational degrees of freedom then these 

components become trapped in non-optimal states. This is the case for simple components, 

such as colloids, and complex components, such as biomolecules [6–9]. It is useful to 

arrange for the free-energy difference between the desired structure and the starting solution 

to be small, so that structures grow slowly enough that their constituent particles have time 

to relax to their preferred configurations [10–17]. A small free-energy difference can be 

achieved under conditions of small supercooling or low supersaturation. However, while 

such conditions help to avoid trapped states composed of improperly bound molecules, they 

exacerbate another kinetic trap, the long induction time associated with nucleation [18–21]. 

This kinetic trap can also impair growth when growth occurs in a layer-by-layer fashion, 

because nucleation is the rate-determining step for each stage of growth.

In this paper we use computer simulations of growing three-dimensional (3D) lattice-based 

structures to show that impurity particles can dramatically speed up layer-by-layer growth at 
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low supersaturation, with little effect on the purity of the grown structure. Impurities are 

generally regarded as problematic, because they have the potential to arrest growth by 

“poisoning” the growth front [22, 23]. However, we find that impurities can speed nucleation 

in the layer-by-layer growth regime, by lowering the free-energy cost of 2D layer nuclei and 

providing extra nucleation sites [24, 25]. Impurities appear in the final 3D structure in low 

concentration, and in this respect behave almost as a catalyst.

Simple scaling results explain this catalyst-like mechanism, and suggest that it should be 

relevant to a wide range of molecular and nanoscale systems. Let Δϵ be the energy 

difference between a particle-particle bond and a particle-impurity bond, and let zb and zs ≈ 
zb/2 be the bulk- and surface coordination numbers of the structure. If the time intervals 

between successive nucleation events are long, then a fraction fs ≈ exp(−βzsΔϵ) of surface 

particles will be impurities [here β ≡ 1/(kBT)]. Impurities can be numerous enough to lower 

the barrier to 2D nucleation, and therefore substantially increase the layer-by-layer growth 

rate, which scales as the exponential of this barrier. Impurities near the growth front can 

exchange with solution before the front moves away, leading to a bulk impurity fraction fb ≈ 
exp(−βzbΔϵ) < fs. For large βΔϵ this effect is akin to that of a catalyst, in that impurities can 

be abundant at the growth front, substantially increase the growth rate, and yet reside in the 

final structure in much smaller number. This speed-up of growth is reminiscent of the 

nucleation enhancement of colloidal clusters by liquid-vapor critical fluctuations [26], in the 

sense that impurities serve as a source of fluctuations that promote a desired ordering 

process.

Model –

We demonstrate this effect using a lattice model of two-component growth introduced 

previously [27, 28]. Lattice sites can be vacant (white), or occupied by blue or red particles; 

these represent crystal and impurity particles, respectively. We refer to a blue structure as a 

crystal. Contacts between nearest-neighbor blue particles contribute a favorable binding 

energy −ϵb < 0, while blue-red and red-red contacts contribute a less favorable energy −ϵr < 

0 (ϵb > ϵr)White sites carry an energy penalty of μ. The quantity Δμ ≡ 3ϵb – μ, which we call 

the supersaturation, is the bulk free-energy difference between an all-white state and an all-

blue state; when Δμ > 0 there exists a thermodynamic driving force to grow a crystal from 

solution. We carried out Monte Carlo simulations of this model on a 3D cubic lattice of 

12×12 sites in the xy plane. Periodic boundary conditions were applied in this plane, and the 

crystal was seeded with 3 blue layers. The other direction, z, is the growth direction.

We evolved the model using the discrete-time Monte Carlo dynamics considered previously 

[27, 28] (reproduced for completeness in Appendix). To allow access to long timescales we 

carried out an additional set of simulations in which we imposed a solid-on-solid (SOS) 

restriction [29, 30]: for sites with given values of (x, y) we proposed Monte Carlo moves 

only at two sites, the occupied site with the largest value of z and its neighboring unoccupied 

site. This restriction reduces the number of moves required to observe growth by a factor of 

order the length of the system [Fig. 4(a)]. It also artificially prevents vacancies within the 

solid, leading to a restricted equilibrium in which bulk vacancies do not exist [40]. However, 

in the regime studied here the equilibrium vacancy concentration is very small [31] and, as a 
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result, the differences between our results in the presence and absence of the SOS constraint 

are negligible [Fig. 4(b)]. Here we present results obtained with the constraint.

Impurities speed growth –

In Fig. 1 we show the mean time to grow one layer of the crystal, and the impurity fraction 

in the bulk, for various values of the impurity interaction ϵr (the impurity-free case 

corresponds to the limit ϵr → −∞). Simulations were stopped when 20 layers were 

deposited (we define a layer as an (x, y) plane in which at least half the sites are occupied by 

colored particles). The growth time is defined as the average number of Monte Carlo moves 

required to complete a layer. The impurity fraction is defined as the number of red particles 

divided by the number of colored particles. We see that the growth time (eventually) 

decreases as the impurity binding energy increases, and the grown structure contains an 

increasing number of impurities. As we shall show, by varying conditions it is possible to 

have the growth time decrease more rapidly than the impurity fraction increases.

To estimate the growth time of the crystal we focus our discussion on the layer-by-layer 

growth regime at low temperature, where growth is limited by the nucleation of new layers 

on the crystal surface. When the time for 2D nucleation is much longer than the time for the 

resulting postcritical cluster to grow to completion, the layer growth time τ scales as

τ exp Gmax , (1)

where Gmax is the free energy of the critical 2D cluster (here and subsequently we work in 

units such that kBT = 1). Eq. (1) is valid when the layer completion time is short compared 

to the nucleation time, the regime on which we focus (more generally, see [29]). To estimate 

Gmax we consider a k × k cluster on a flat blue surface [41]. Each particle incurs a chemical 

potential cost μ, so the chemical potential cost of the cluster is k2μ = 3ϵbk2 − k2Δμ. Each of 

the k2 particles in the cluster makes one bond with the layer below it, and there are 2k(k − 1) 

in-plane bonds. Thus the total bonding energy is (−ϵb) × (3k2 − 2k). Adding to this the 

chemical potential cost gives the energy cost for making a k × k square:

G(k) = 2kϵb − k2Δμ . (2)

For nonzero supersaturation this function has a maximum at k★ = ϵb/Δμ. The critical cluster 

therefore contains k⋆
2 = ϵb/Δμ 2 particles, and the corresponding energy barrier is 

G k⋆ = ϵb
2/Δμ.

To understand how this result changes in the presence of impurities (red particles), consider 

the following simple argument. Let a lattice site be surrounded by z blue particles and 6 − z 
white particles, and let p be the probability that an isolated particle is a crystalline one as 

opposed to being an impurity (in simulations we model an equimolar mixture of crystal- and 

impurity particles, and so set p = 1/2). At that lattice site, in a mean-field approximation, the 

thermal weight of a blue particle is (1 − p)ezϵr; the thermal weight of a red particle is pezϵb; 

and the thermal weight of a vacancy is eμ. Thus the equilibrium fraction of colored particles 

is
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f1 = (1 − p)ezϵr + pezϵb

(1 − p)ezϵr + pezϵb + eμ
= Gpezϵb

Gpezϵb + eμ
, (3)

where G ≡ 1 + p−1 − 1 e−zΔϵ and Δϵ ≡ ϵb − ϵr. The corresponding expression in the absence 

of impurities is

f2 = pezϵb

pezϵb + eμ
. (4)

Comparison of f1 and f2 indicates that G functions as an effective degeneracy for blue 

particles. Alternatively, we can consider that the effective blue-particle interaction energy in 

the presence of impurities is larger than in their absence, i.e. ezϵeff = Gezϵb, giving

ϵeff = ϵb + 1
z ln 1 + p−1 − 1 e−zΔϵ . (5)

The argument leading to (2) can now be modified, by replacement of ϵb with ϵeff in the 

bond-energy reward term, to estimate the energy cost Geff(k) = G(k)+ΔG(k) required to 

make a k × k cluster in a solution of particles and impurities:

ΔG(k) = k(2 − 3k)
z ln 1 + p−1 − 1 e−zΔϵ . (6)

To estimate the mean coordination number z as a function of k, note that in a k × k cluster 

we have (k − 2)2 particles with 4 in-plane bonds, 4(k − 2) particles with 3 in-plane bonds, 

and 4 corner particles with 2 in-plane bonds. Each particle makes one extra bond with the 

substrate. Thus the average coordination number is z(k) = 5 − 4/k. Inserting z(k) into (6) 

gives

ΔG(k) = − k2(3k − 2)
5k − 4 ln 1 + p−1 − 1 e−Δϵ(5 − 4/k) . (7)

The right-hand side of (7) describes the impurity-induced reduction in the energy cost of a k 
× k cluster (we recover the no-impurity case in the limit Δϵ → ∞). For small Δμ the 

function Geff(k) will take its maximum at a value of k ≫ 1. In this regime we can expand (7) 

to get Geff(k) ≈ 2kϵb – k2μeff, which has the same form as the impurity-free expression (2) 

but with effective supersaturation

Δμeff = Δμ + 3
5ln 1 + p−1 − 1 e−5Δϵ . (8)

The free-energy barrier to layer nucleation in the presence of impurities can then be 

estimated as
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Gmax ≈
ϵb

2

Δμeff
. (9)

Note that the reduction to the nucleus free energy enters through the bulk term, not the 

surface term as is typical in models of heterogeneous nucleation at a surface.

We next consider the fraction of impurities involved during growth (in the parameter regime 

in which this fraction is small). For a lattice site surrounded by z blue particles, the 

equilibrium fraction of red particles is

ϕ(z) = (1 − p)ezϵr

(1 − p)ezϵr + pezϵb
= 1 − p

1 − p + pezΔϵ . (10)

This fraction is smaller in the interior of the crystal, where the impurity makes zb = 6 blue 

contacts, than at the surface.

As the completed layer becomes covered by new particles, it will evolve toward the bulk 

defect concentration. The timescale for this relaxation, τr, is the timescale for a fivefold-

coordinated particle at the surface to unbind, and so we estimate τr ∝ e5ϵr. Provided the layer 

addition time τ is longer than this, we estimate the impurity fraction in a newly completed 

layer as

ϕr ≈ ϕ(5)e−τ /τr + ϕ(6) . (11)

This annealing process is illustrated in Fig. 2. The snapshots (a–c) and time-trace (d) show 

that impurity particles are present at higher concentration at the growth front than in the bulk 

of the structure. The relaxation of the impurity fraction from the surface- to the bulk 

equilibrium concentration occurs in a manner consistent with (11); see panel (d).

Identifying the parameter regime in which impurities are of most benefit –

The preceding analysis confirms that impurities speed layer nucleation, via (1), (8), and (9), 

and make the equilibrium solid less pure, via (10). Impurities are most beneficial when the 

former effect is as large as possible, and the latter effect as small as possible. To make the 

bulk equilibrium impurity concentration (10) small we want Δϵ large; we then want Δμ 
small, so that the second term in (8) remains significant.

In Fig. 3 we show that these predictions are consistent with our simulations: a crystal of a 

certain impurity fraction grows more rapidly than its impurity-free counterpart, and this 

effect is much enhanced as supersaturation is reduced. Our predictions also suggest that 

impurities can be orders of magnitude more effective in parameter regimes that are 

inaccessible to our simulations but which describe molecular systems.
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Conclusions –

Impurities are often considered to be problematic when attempting to grow crystals, but we 

have shown that layer-by-layer growth can be dramatically sped up by impurities with little 

impact on the quality of the final structure. Our computer simulations and simple scaling 

arguments suggest that this effect will be most pronounced under conditions of low 

supersaturation and low temperature. Such conditions are often required for the 

crystallization of highly anisotropic molecules, for which the probability of crystalline (or 

productive) binding is small. For example, proteins must sample an ensemble of ≃ 104 − 105 

states in order to find the crystallographic state [32–34]. Given many ways of misbinding, 

growth must be slow (and so supersaturation must be low) in order to allow time for error 

correction. Furthermore, a large binding energy is needed to offset the entropic advantage of 

the disordered ensemble [35]. This combination of large binding energies and low 

supersaturation leads to high surface tension and long nucleation times, precisely the region 

in which impurities are expected to be beneficial [Fig. 3(b)]. Indeed, this mechanism may 

provide an explanation for the utility of non-specific binding enhancers in protein 

crystallization [36–38], such as depletants, in the layer-by-layer growth regime.
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Appendix:: Lattice model Monte Carlo dynamics

The unrestricted Monte Carlo protocol proceeds as follows. At each step of the simulation a 

site was chosen at random. If the chosen site was white then we proposed with probability p 
(resp. 1 − p) to make it blue (resp. red). If the chosen site was red or blue then we proposed 

to make it white. No red-blue interchange was allowed. These proposals were accepted with 

probabilities

R W:min(1, (1 − p)exp( − ΔE));
W R:min 1, (1 − p)−1exp( − ΔE) ;
B W:min(1, pexp( − ΔE));
W B:min 1, p−1exp( − ΔE) ,

(12)

where ΔE is the energy change resulting from the proposed move. This change was 

calculated from the lattice energy function

E = ∑
i, j

ϵC(i)C(j) + ∑
i

μC(i) . (13)

The first sum runs over all distinct nearest-neighbor interactions. The second sum runs over 

all sites. The index C(i) describes the color of site i and is W (white), B (blue), or R (red); 

ϵC(i)C(j) is the interaction energy between colors C(i) and C(j) (this is zero if either site is 

white); and the chemical potential μC(i) is μ, ln p and ln(1 − p) for W, B, and R, respectively. 
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In the main text we set p = 1/2 in order to model an equimolar mixture of crystal- and 

impurity particles.

In the main text we describe a solid-on-solid (SOS) restricted protocol in which Monte Carlo 

moves are performed only at the growth front. This protocol, which does not allow vacancies 

to become incorporated into the 3D structure, results in a different equilibrium than the 

unrestricted protocol. However, in the parameter regime we probe the difference is slight, 

because few vacancies appear in the unrestricted protocol (Fig. 4), and the presence or 

absence of the restriction does not qualitatively affect our conclusions.
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FIG. 1: 
(a) Layer addition time and representative snapshots and (b) impurity fraction for ϵb = 2.55, 

Δμ = 0.25. The dashed line in (a) is the prediction of Eq. (1), and the dashed lines in (b) and 

(c) are the predictions of Eq. (10) (red) and Eq. (11) (green). For impurity binding energies 

ϵr < 1.9 (ϕr < 10−2) impurity relaxation is sufficiently fast that the solid composition can be 

approximated by the equilibrium result (red), whereas for large binding energies additional 

impurities become trapped by the advancing growth front (green). (c) Parametric plot of the 

data in panels (a) and (b) showing the layer addition time as a function of impurity fraction.
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FIG. 2: 
Impurities are incorporated in each layer and gradually anneal to a more ordered structure. 

Snapshots of the annealing of a representative layer (in that layer only, blue particles are 

colored light blue, and red particles are colored yellow) (a) shortly after nucleation, (b) upon 

completion of the layer, and (c) after the growth front has moved away. Subsequent layers 

have been omitted for clarity. (d) Time progression of the impurity content in a layer 

(averaged over 10 simulations). The decay of the impurity fraction after reaching a peak 

value (at t = tmax) approaches the estimate Eq. (11) (dashed line).
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FIG. 3: 
Ratio of the growth time τ in the presence of impurities to that in the impurity-free case, τ∞, 

as a function of (a) supersaturation and (b) binding energy. The beneficial effect of 

impurities is most pronounced in the presence of small supersaturation and large binding 

energies. In both panels, parameters are chosen so that the bulk equilibrium impurity 

fraction is always 1%. The dashed lines are the predictions of Eq. (1).
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FIG. 4: 
The growth time (a) and average fraction of vacancies (b) in the bulk as a function of 

impurity binding energy. In (a), the SOS restriction (red) reduces the the number of moves 

required to observe growth (by a factor of order the length of the system) compared with the 

unrestricted Metropolis Monte Carlo simulation (blue). (b) shows the fraction of vacancies 

in the bulk, averaged over 100 simulations, in the absence of the SOS restriction. These 

small vacancy fractions show that the effect of imposing the SOS restriction (which 

eliminates vacancies) is slight.
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