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ABSTRACT OF THE THESIS

Efficient DC-DC Switch Regulator: Applied Iterative Learning and

Anti-Windup Control

by

Jack Raley

Master of Science in Engineering Sciences (Mechanical Engineering)

University of California San Diego, 2008

Professor Raymond A. de Callafon, Chair

A system model of a small modern power regulator is developed and tested to

analyze the possibility of increasing power efficiency. The model is constructed using

MATLAB software, and its switch linear performance in the presence of periodic pulse

loads is verified against that of the actual system. Two enhanced control techniques,

Anti-Integral windup and Iterative Learning Control, are individually applied to the

model and used to reduce the deviation of the systems high side voltage response level

when under load. Finally, the combined implementation of the two methods is explored

with results showing that a 12.5% increase in total power efficiency can be achieved along

with a reduction in response settling time. Accuracy of the simulated system suggests

that these improvements can be translated to the real system with the addition of the

two enhanced control techniques tested. A typical DC-DC converter such as the one

modeled after with 80–85% efficiency would benefit by increasing its efficiency up to the

high 80–90% range. Here the improvement is from 80.4% efficiency to 92.9%.
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Chapter 1

Introduction

With soaring energy costs quickly becoming a global concern, the need for

efficient energy usage is on the rise. The once abundant outlook on fossil fuel supply is

waning due to increased demand from a growing population and continued development

of third world countries. Fuel prices for transportation have reached on all time high

bringing stress and hardships to many global economies. Humans are trying now more

than ever to reclaim wasted energy and build more efficient products and vehicles. The

rise in a “green” way of thinking has sparked the publics interest in clean machines

such as hybrid vehicles. These vehicles increase the efficiency of their fossil fuel use by

converting lost energy during braking to electrical power used to keep it in motion. The

recent demand for hybrid vehicles has been driven by the exponential increase in oil

and gasoline prices over the past few years. Awareness of the scarcity of oil has driven

up its price, and has also brought about awareness of dwindling supplies of other fossil

fuels. Coal and natural gas for example are used in many large power plants to provide

energy to cities throughout the world. These fossil fuels are also limited in their supply

and the world may soon face the same increase in usage cost of them as it has with oil.

Optimizing the efficiency of energy usage is critical to sustaining the world as it is today.

With the advent of the digital age comes more opportunity for technology to improve

upon outdated machinery and provide for an increase in power and energy efficiency.

High speed computers and optimizing algorithms are readily available to be implemented

on all types of power systems large and small. Such technological advancements can be

applied in machinery and the power supplies that drive them, thereby becoming the core

components to a more efficient and energy friendly future.

1
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1.1 The SpikeSafe200 Power Supply

The SpikeSafe200 (SS200) shown in Figure 1.1, is a switched DC-DC current

source power regulator manufactured by a small San Diego based electronics company. It

is capable of handling up to 200 volts total with each one of its eight channels delivering

up to 5 amps of current a piece. Vektrex, the manufacturer responsible for the SS200,

Figure 1.1: The Vektrex SpikeSafe200

provides custom power, testing, and measurement solutions to numerous companies in

the Southern Californian region. While the aim of their custom builds is to be as efficient

as possible, there always exists areas of development where further improvements can be

made. This thesis addresses some areas where the SS200 lacks in efficiency and improves

upon the overall performance of the power supply model.

1.2 Problem Statement

Most modern DC-DC regulators exhibit some sort of power loss in their perfor-

mance which puts their range of efficiency anywhere from 80–85% [8]. Often times these

inefficencies stem from inadequate control of the regulator’s supply voltage level when

under sudden on/off loading. An example of this is given by the oscillatory behavior

seen in Figure 1.2. This figure is a screen capture provided by Vektrex of the SS200 per-

formance response under a periodic pulse load. The two areas of concern where energy is
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not being utilized optimally are pointed out in red. The green line in the screen capture

is the power supply’s high side voltage signal y(t), which represents a set amount of volt-

age that is regulated by the power supply. Note that it is oscillating about a constant

reference value, r(t). The yellow line in the figure represents a pulse current demand

Rate Limitation

“OFF” Time
“ON” Time“ON” Time

“OFF” Time

Figure 1.2: Vektrex SpikeSafe200 Performance Scope Shot

d(t), which has been placed on the system. In this particular test case the demand

pulse occurs periodically every 16ms with an “ON” (high) time of 1ms. The system is

stable in regards to the demand signal, but oscillations in the response occur after both

the rising and falling edges of each new demand pulse. These oscillations are actually

a result of the power supply’s feedback control loop. The onboard second order PID

controller C(z), lacks enough freedom to fully and quickly compensate for the periodic

demand during the given “ON” time frame. The “OFF” time portion which comprises

the remainder of the demand period is somewhat governed in length by an additional

constraint embedded in the power supply’s circuitry. The controller returns the system

voltage level to the desired reference value but must do so while under restrictions of its

falling slew rate. Once the reference value has been settled upon, another pulse demand

can be imposed on the system. To improve the efficiency of this power regulator it must

be able to switch on and off as quickly as possible with as little overshoot or undershoot

as possible. This means that the regulator’s supply voltage level needs to be controlled

in a very robust manner.

Advanced control methods capable of tightly regulating the supply voltage level
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are available, but must first be tested in order to demonstrate their ability of enhancing

the system’s performance. These tests must be run on an accurate model representation

of the SS200 so that the performance improvements can be translated clearly. This re-

quires that real experimental data from the SS200 be gathered and used to model the

dynamics of the system. The new control methods can then be implemented to improve

upon the model response by reducing both the transient oscillations that occur and its

settling time. Increasing the actual SS200’s efficiency begins with illustrating the effec-

tiveness of additional advanced control methods.

This includes:

• Modeling the SS200 system dynamics

• Minimizing transient response oscillations

• Reducing response settling time

1.3 Objective

The main objective of this thesis is to demonstrate the increased efficiency that

can be obtained in a DC-DC power regulator with the addition of advanced control

algorithms. The SS200 system dynamics will be modeled from real experimental data

to ensure the accuracy of its characteristics. This will be performed with both open and

closed-loop experiments along with a few key identification techniques. The model will

then be used as a platform to verify and demonstrate the improvements that are possible

from implementing advanced control methods. Iterative learning control will be applied

during the demand “ON” time in order to eliminate the transient oscillations that occur

there. During the “OFF” portion of the reponse an Anti-Integral windup technique will

be utilized to reduce the settling time of the system along with the transients that remain.

The combined effectiveness of these two methods will ultimately be demonstrated as

motivation for their development on the actual SS200 system.

1.4 Outline of Thesis

Modeling of the SS200 begins in Chapter 2. Closed-loop experiments to obtain

real SS200 response data are discussed along with the identification of the system dy-

namics. The SS200 plant dynamics G(z) are computed via open-loop identification and
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curve fitting methods. This plant model is then used with the known PID controller C(z)

to develop a SIMULINK model in MATLAB. Verification of the model is performed by

comparison with the real experimental SS200 response data from Vektrex.

Chapter 3 identifies the issues associated with the “OFF” time transient oscilla-

tions. The characteristics of the problem area are discussed and the use of Anti-Integral

windup control is motivated. Two applications of this control technique show success in

its ability to reduce oscillations in the response as well as shorten the settling time as

intended.

Chapter 4 targets the issue of transients durring the “ON” demand time frame.

Here, ideal feedforward control is first introduced to convey the power behind this type

of approach to the problem. However, the non-ideal nature of the SS200 dynamics give

motivation for a more robust control method such as iterative learning control to be

implemented. The results of applying this method are given after a brief discussion of

its learning function which is the core component of the advanced technique.

Chapter 5 brings together the improvements of both control methods by giving a

procedure for combining the two. The results of their dual implementation are discussed

along with the overall improvement to the response of the system model.

Finally a comparison study is provided in Chapter 6 to discuss the improve-

ments that can be made using the iterative learning control technique versus that of a

simpler feedforward pulse signal. This comparison further demonstrates the power of

the iterative learning control and its ability to completely reject a periodic disturbance

even in the presence of model uncertainty.



Chapter 2

Modeling SS200 Open-Loop

Dynamics

2.1 Introduction

All implementation and testing of the advanced control methods are performed

on a model of the SS200 system. This makes the development of an accurate simulation

of upmost importance. The model is needed in order to illustrate and analyze the

effectiveness of the control solutions proposed. In addition, a model based simulation is

the only valid way of implementing and testing these theories without proper knowledge

of the power regulator’s software programming. The purpose of this chapter is to explain

how the model was created and verified as accurately representing the actual unit. The

system model is built in MATLAB’s simulation and model based design tool SIMULINK

utilizing experimental response data taken from the SS200. The controller equation

for the SS200 is known C(z), however the plant equation G(z) is not. This chapter

begins with how performance data was obtained and used to estimate the mathematical

representation of the plant dynamics. From there the two critical components of the

system are placed in SIMULINK and the simulation model is completed.

2.2 Closed-Loop Experiments and Identification

Accurate representation of the SS200 system dynamics in the model are of

extreme importance for this study. The precision of model characteristics will ensure

6
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that the enhanced control techniques implemented here are not performed in vain. To

provide for the most reliable and up to date information, closed-loop experiments are

performed on the SS200 unit. The data gathered from these experiments is then used

in system identification techniques to best approximate a mathematical representation

of the closed-loop system. From this representation and prior knowledge of the PID

controller C(z) currently in the SS200, the actual plant dynamics can be extracted for

use in the MATLAB model.

C(z) =
15z2 − 29.73z + 14.74
z2 − 1.942z + 0.942

(2.1)

2.2.1 Data Collection

In order to collect data from our SS200 unit and also mimic the types of demand

signals seen by the power supply, step input signal’s were tested. The block diagram

seen in Figure 2.1 illustrates the basic setup of these experiments. The closed-loop SS200

Yout Feedback Signal

error

r (t) y (t)

Step
Input Negative

Feedback
Measured 

Step Response

y

Discrete Time
Plant

numGz (z)

denGz (z)

Discrete Time
PID Controller

numCz(z)

denCz(z)

Figure 2.1: Data Collection Configuration

system to be identified is represented by the discrete time transfer function T (z).

T (z) =
G(z)C(z)

1 +G(z)C(z)
(2.2)

This equation represents the negative-feedback series connection of the known controller

C(z) and the unknown plant G(z) which is to be estimated. It is well known that a

DC-DC switch power supply can be modeled by a negative-feedback loop [14] [4]. The

periodic step inputs rj(t) are configured to represent a known load configuration often

placed on the system.

rj(t) =

1.2, 0 ≤ t ≤ 0.005s,

0, 0.005 < t ≤ 0.015s
(2.3)

with j the 15ms period index.
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This step input mimics the effects of a 3A 20 diode configuration, and is used

to excite and extract the full response profile from the systems output signal y(t). Note

that the Vektrex power supply is intended for the use of testing long strings of LEDs in

a similar pulsed fashion. The data collected from the experimental tests is analzyed and

one portion of the step response is singled out in particular. This singled out portion

is defined as s(t) and represents a duration of time where the input to the system is

pulse like in structure and fully excites a linear repsonse from the system. Figure 2.2

below displays the system response data measured with the 3A 20 diode configuration,

the singled out step portion s(t) is highlighted in red.
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Figure 2.2: SS200 Measured Step Response

2.2.2 Closed and Open-Loop Identification

Due to the inherent switched nature of the regulator system and the experiments

performed, our data consists of step responses. The data set s(t) consists of 524 samples.

The step realization algorithm of Callafon et al. 2003 [5] is used to formulate the closed-

loop system model T (z) directly on the basis of the measured step response data. This

method is a generalization of the conventional Hankel matrix based realization algorithm

[6]. For more details on the identification method used here one is referred to [5].

To begin, we will determine the frequency response of the SS200 closed-loop
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system by first identifying it as a linear discrete time state space realization

x(t+ 1) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
(2.4)

which can be rewritten in the form [6]

y(t) = Du(t) +
∞∑

j=1

G(j)u(t− j), G(j) := CAj−1B (2.5)

with Markov parameters G(j), 4T normalized to 1, and time t measured in discrete

samples k for k = 0, 1, . . . , N. This gives a discrete time input-ouput relationship that,

following [6], can be rewritten in the Hankel based representation

Y = HU + E (2.6)

where H is the N1 x N2 Hankel matrix of step coefficients, U is a square non-singular

N2 x N2 Toeplitz matrix storing the input data, and E is a N1 x N2 matrix containing

the effects of past input signals r(t) multiplied by the Markov coefficients g(k). Recall

from above that N = 524, and N1 + N2 ≤ N with N1 = N2 = 262. This relation can

then be rewritten as

Y − E = HU

where we can define R to be the input/output matrix R := Y − E. From the singular

value decomposition (SVD)

R = UΣV T = [Un Us]

Σn 0

0 Σs

V T
n

V T
s

 (2.7)

we can approximate R by the rank n matrix Rn given by

Rn = R1R2

where

R1 = UnΣ1/2
n

R2 = Σ1/2
n V T

n

with rank determined from SVD analysis as n = 12. The shift property of the Hankel

matrix extends to the defined R matrix such that the shifted matrix R̄ holds the similar

relation
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R̄ = R1AR2

From here it can be shown that the state space realization is given by

D̂ = s(0), Ĉ = R1(1, :), B̂ = R2(:, 1), and Â = R†1R̄R
†
2 (2.8)

of order 12 with the left inverse of R1 and the right inverse of R2 given by

R†1 = Σ−1/2UT
n

R†2 = VnΣ−1/2
n

respectively. The state-space model of the closed-loop system is simulated with a step

input to compare and verify its response with the measured experimental step response

data. Figure 2.3 shows this comparison and is a clear verification that the identified
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Figure 2.3: 12th Order Modeled CL Response vs. Measured CL Response

state-space model accurately characterizes the dynamics of the SS200 closed-loop sys-

tem. The step response of the model fits nearly perfectly over the experimental step

response data obtained at Vektrex. The frequency response of this model T (ejω∆t) is

captured in Figure 2.4. Data from this frequency response is used with knowledge of

the controller1 C(ejω∆t), to extract the plant frequency response data, G(ejω∆t). This

is perfomed via cancellation of the controller dynamics from the identified closed-loop

dynamics seen in Figure 2.4. Calculations done in this order allows one to curve fit a low
1The one-sided z-transform of the signal {x(k)}∞k=0 is X(z) =

∑∞
k=0 x(k)z−1, with the z-

transformation of a system being obtained by replacing q with z. The frequency response of a z-domain
system is given by replacing z with eiθ for θ ∈ [π,−π],[3]
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Figure 2.4: 12th Order Closed Loop Model Bode Response

order, linear, discrete time model to the plant frequency response data. This technique

is explained in [7]. The resulting open-loop frequency response of the plant is displayed

in Figure 2.5. A Least Squares (LS) curve fitting optimization is performed with a theo-
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Figure 2.5: Frequency Domain Open Loop Plant Bode Response

retical order magnitude of 6. The reader is referred to Chapter 4 and [2] for more details

on LS curve fitting. The frequency response of the fitted plant model G(z) is then com-

pared with the computed frequency domain representation in Figure 2.6 to ensure its

accuracy. Verification of the fitted plant model is given with the two responses lining up
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Figure 2.6: Frequency Domain Open Loop Plant Bode Response

on top of each other. This indicates that the plant identified G(z), represents the real

plant accurately. The fitted LS equation for G(z) is given in (2.9) with corresponding

coefficients in Table 2.1.

G(z) =
b0z

6 + b1z
5 + b2z

4 + b3z
3 + b4z

2 + b5z + b6
a0z6 + a1z5 + a2z4 + a3z3 + a4z2 + a5z + a6

(2.9)

The step response of the closed-loop negative-feedback system T (z) comprised of C(z)

Table 2.1: Estimated 6th Order Plant Coefficients
Numerator Denominator
b0 = -0.0003431 a0 = 1
b1 = 0.001395 a1 = -5.761
b2 = -0.001631 a2 = 13.85
b3 = -0.000632 a3 = -17.79
b4 = 0.002894 a4 = 12.88
b5 = -0.00228 a5 = -4.983
b6 = 0.0005984 a6 = 0.8047

and G(z) is then compared with the step response of the 12th order state-space realization

(2.8) in Figure 2.7. The estimated system response tracks the 12th order system response

almost perfectly. There are some slight differences in oscillation but overall the two curves

have a tight fit. A second comparison is analyzed between the bode response plots of the

two systems, Figure 2.8. Here again the two curves are lined up showing only a slight

deviation in their phases at lower frequencies. These comparisons show that the model

obtained for the SS200 plant are valid and accurate.
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2.3 Model Structure and Verification

The SIMULINK block model begins with a standard unity negative-feedback

loop and the discrete time controller (2.1) and plant (2.9). The high-side voltage per-

formance response y(t) of the SS200 is the result of a periodic pulse demand dk(t) being

placed on the system. The power supply maintains a set voltage level which becomes

disrupted when the demand signal enters the system. Similarly in the block model, the

system is set to maintain a constant reference voltage r(t) = 0, and becomes disrupted by

a periodic demand disturbance. The periodic pulse disturbance in the model is injected

into the system at the plants output. This orientation produces a simulated response

which is very similar to that of the SS200’s response during the “ON” period. The period

duration and “ON” time of the disturbance pulse is the same as that of the demand pulse

observed in the data collection experiments, 15ms and 5ms respectively. The response

of the system with the arrangement as described is given in Figure 2.10. Comparison to

the actual system response shows that the “OFF” time portion of the model response is

lacking in form. The “OFF” time characteristics of the SS200 are non-linear and exhibit

a dampening slow oscillation as compared with the “ON” time. The non-linear effects

that slow this oscillation are caused by a rate limitation on the system. Designed in

the power supply’s circuitry is a resistor that bleeds off excess energy at a limited rate.

This rate limitation inhibits the system’s response and causes the elongated settling
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Figure 2.9: First Stage SIMULINK Model

time. The rate limitation only occurs during the pulse “OFF” time making the SS200

a switch linear/non-linear system. A priori knowledge of this rate limitation leads to

the addition of a rate limiter in the SIMULINK model. The switch in the SIMULINK

model is placed at the plant output after the rate limiter to mimic this behavior. It is

triggered by the pulse disturbance to allow either a normal or rate limited signal through

the system. Figure 2.11 shows the SIMULINK model with the additional rate limiter.

The response comparison in Figure 2.12 clearly demonstrates similar characteristics of

the modeled system dynamics to those of the actual system. At the rising edge of the

periodic disturbance there is an initial dip in the system output followed by dampening

oscillations. At the falling edge of the disturbance there is a slight spike followed by

dampening slow oscillations. The rate limitation placed on the SIMULINK model has

been set from rate calculations observed in the example Vektrex response plot. This fi-
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Figure 2.10: Purely Linear SIMULINK Model Response
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Figure 2.11: Negative Feedback Control Loop with Switched Rate Limitation

nal comparsion marks the completion of the modeling and verification procedure. It has

been shown that the SS200 system dynamics can be modeled by the negative-feedback

connection of an identified linear 6th order plant model in series with the known PID

controller, along with a saturating element which models the effect of output saturation

embedded in the units circuitry.



16

0 0.005 0.01 0.015
−1.5

−1

−0.5

0

0.5

1

1.5

time [sec]

V
ol

ta
ge

 [V
]

Closed−loop System Response of Second Stage SIMULINK Model

 

 
SS200 Response
Model Response
Current Demand

Figure 2.12: SS200 Response vs. Modeled Response



Chapter 3

Eliminating Transient Oscillation

with Anti-Windup Control

3.1 Introduction

The SS200 system exhibits two distinct problem areas with response charac-

teristics slightly differening in each. The switch linear/non-linear behavior that occurs

in these respective regimes will be dealt with using two separate enhanced control tech-

niques. The first of these two areas occurs during the pulse “OFF” time where the falling

slew rate limitation on the system causes slow oscillations and a longer settling time.

The controller itself is not aware of the performance limits of the system and continually

increases its efforts as a result of the prolonged error signal it recieves from the feedback

loop. Soon after the controllers response becomes saturated and the non-linear behavior

that is observed during the disturbance “OFF” time begins. It is the integrator portion

of the PID controller that increases in value despite exceeding the point of its relative

usefullness. This phenomenon is better known as integral windup [17].

Integral windup refers to the value of the integral portion of a PI or PID con-

troller reaching its maximum or minimum effective value and then continuing beyond

that value. When the control efforts have finally restored the system output to the

desired reference point the integrator cannot react instantaneously to stop providing a

control signal. The integrator must first unwind from its over exerted value which causes

a delay in the response of the system. This delayed response from unwinding produces

longer and more pronounced oscillations [16], which is exactly the observation that can

17
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be made in Figure 1.2. The saturation of the modeled response leads to integral windup

that in turn causes further oscillations and a longer settling time of the system.

3.2 Anti-Windup Theory

To combat against integral windup one can effectively force the integrator to be

aware of its limitations by applying Anti-Windup logic to it. This logic is applied to the

error signal before it passes to the integrator to evaluate whether or not the integrators

control efforts are necessary. Anti-Windup logic allows the integral control effort uKI
(t)

to function normally within a given set of bounds (Umax,Umin), and limits this effort

when the system’s error drives the control signal to exceed these bounds [13].

Umax if uKI
(t) ≥ Umax

uKI
(t) if Umin < uKI

(t) < Umax

Umin if uKI
(t) ≤ Umin

Essentially, it provides the integrator with knowledge of its saturation constraints and

its current state relative to those constraints. By “shutting off” the error signal to the

integrator when it has reached its maximum or minimum value the Anti-Windup logic

prevents the controller from marching beyond a useful magnitude. This is also known

as conditional integration or integrator clamping [17]. The controller can then react

more quickly to the system response returning to or surpassing the reference value in the

opposite direction. A formal explanation of this concept is provided below.

Let the system’s output error be defined as ż(t) = r(t)− y(t), such that z(t) is

the integral of the output error signal over some time period [0, t]. The desired control

signal of the PID controller becomes

udes(t) = KP ż(t) +KIz(t) +KDz̈(t)

But in order to apply the Anti-Windup logic to the integrator it must first be dis-

tinguished from its proportional and derivative counterparts. Pulling out the integral

portion of the PID controller yields

uKI
(t) = KIz(t)

Anti-Windup bounds are initially set to some Umax and Umin. Prior knowledge of the

amount of control effort available from the controller will help to provide insight on where
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to first set these bound limits. Without such knowledge, it is up to the control designer

to set a generous limit in the Anti-Windup logic and observe the simulated response.

The bounds can be decreased iteratively until a desired performance from the system is

achieved. In this application the continued decrease in bound limits eventually resulted

in an adverse response of the simulation. A severely strict limit on the integral control

effort will prevent the system response from ever returning to the reference level [17].

Applying Anti-Windup logic to the integrator takes the following form [13]:

if uKI
(t) ≥ Umax and r(t) ≥ y(t) ⇒ z(t) = 0

elseif uKI
(t) ≥ Umax and r(t) ≤ y(t) ⇒ z(t) =

∫ t

0
[r(t)− y(t)]dt

if uKI
(t) ≤ Umin and r(t) ≤ y(t) ⇒ z(t) = 0

elseif uKI
(t) ≤ Umin and r(t) ≥ y(t) ⇒ z(t) =

∫ t

0
[r(t)− y(t))]dt

else uKI
(t) = KIz(t)

(3.1)

Where uKI
(t) again is the integral control output, r(t) is the reference signal, and y(t)

is the system’s output signal. The logic output z(t) = 0 sends an error signal of zero to

the integrator preventing it from increasing in magnitude.

3.3 Implementation

Implementing the Anti-Windup scheme in the SIMULINK model first requires

that some slight modifications to its configuration be made. The second order PID

controller must first be decomposed into its three distinctive parts: Proportional action,

Integral action, and Derivative action. This is accomplished by performing a partial

fraction expansion on the controllers discrete time transfer function equation [9]. The

resulting individual components from this procedure are given below.

Proportional:

KP (z) = 15 (3.2)

Integral:

KI(z) =
0.2179
z − 1

(3.3)

Derivative:

KD(z) =
−0.8172
z − 0.9420

(3.4)
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Now that the three components are separated and available for individual manipulation

they are put in place of the discrete time control block as seen in Figure 3.1. The

error signal from the feedback loop is directed into to each component individually and

their combined outputs are added together before passing on to the plant. Application
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Figure 3.1: SIMULINK Model with Addition of Anti-Windup

of the Anti-Windup logic on the integrator term (3.3) is performed with an embedded

function block placed in the SIMULINK model. The function block takes in the reference

signal, system output signal, and integrator output signals which are called for in (3.1).

With this information it can then calculate the appropriate input signal to send to the

integrator. Since the rate limitation in this model only occurs during the “OFF” portion

of the pulse disturbance a switch is placed after the embedded function to determine

when the Anti-Windup logic is applied. The switch allows for an unmodified error signal

to pass into the integrator when the pulse is “ON” and a modified error signal to pass

into the integrator when the pulse is “OFF”.

3.4 Results

Performance results with the applied Anti-Windup scheme can vary as men-

tioned previously depending on the Umax and Umin values which are specified in the

function block. Tuning these values can be done on a trial and error basis depending

on the given system characteristics. Generally speaking, stricter bounds will result in

less overshoot (or undershoot), fewer oscillations, and a shorter settling time. A conse-

quence to stricter bounds maybe a longer rise time which results from the lower amount

of control effort applied to the system. Conversely, more generous bounds will provide

for a faster rise time with more overshoot and resulting oscillations. The goal of tuning
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the Anti-Windup limits is to find the values that work best for the particular system

the logic is being applied to. If the desire is for no over/undershoot with less weighting

on settling time then a stricter bounds is preferred, whereas if the desire is for a quicker

settling time with little weighting on output oscillations a less stringent bound is used.

To illustrate this point, two different bounds are applied to the modeled system and

discussed here.

In order to anaylyze the improvements that can be gained with Anti-Windup

control they must be measured against the baseline values of the model response with

only PID control. The criterion for this comparison consists of the time the system

response takes to settle within a 2% voltage range of the reference value, and also more

importantly the increase in power efficiency. The regulators energy use over time is

calculated with the equation for power given here:

P = 1
T

∫ T
0

V 2

R dt

For these tests the voltage reference value is set at 5 volts with a demand disturbance of

2.5 amps. The “OFF” time length T is 10ms, sampling time dt is 5e−6s, and resistance

R is 2 Ohms. The total period time is set to 15ms. Figure 3.2 displays the baseline

system response of the model with this configuration. Note that the demand signal has

been shifted up for ease of reference in the plot. The 2% settling time of the response
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Figure 3.2: Model Response with 5 Volt Reference Signal without Anti-Windup Control

is 6.1ms. Given a perfect regulator with no energy losses the power rate of the system

would be 12.5 watts. However, the computed power rate for the modeled system comes

out to be 16.49 watts during the “OFF” time frame. This means that the SS200 model
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operates nearly 4 watts higher than what is demanded. The efficiency equation for power

[15] gives the model an efficiency rating of 75.81% during this operation time.

Power efficiency = η = Output power
Input power

The system takes in power at 16.49 watts in order to output power at 12.5 watts.

While the Anti-Windup limits can be set up as high as infinity or as low as

negative infinity, this would do the system no help in regulating the control energy put

into the system. Conversely, if the limits are set too strictly then the system will be

inhibited and fail to return to its set reference value. Inspection of the control signals

produced by the SIMULINK model reveal that the control efforts of the integrator reach

an upper limit no greater than 70 volts and a lower limit no less than −55 volts. This

information is used to begin testing Anti-Windup bounds within the specified range. It

should be noted that the system is only subject to constraints in its falling slew rate

such that there is no needed bound limit for Umax.

3.4.1 Anti-Windup Limit: −20 V

Applying a Umin = −20 volt limit bounds with the Anti-Windup logic is a good

start considering the −55 volt control effort observed from the integrator. At first glance

of Figure 3.3 it may not appear as if the Anti-Windup logic has had a significant effect,

but further analysis of the performance criterion proves otherwise. The system’s settling

time is reduced to 5.5ms, and there is a slight difference in the transient oscillations that

occur. The reduction in the undershoot dip value and oscillations that follow result in a

power rating of 15.03 watts, which translates to an increase in efficiency to 83.31%. This

is a 7.51% improvement from the baseline rating. This improvement in efficiency of the

response really exemplifies the negative impact that the integral windup was having on

the system model.

3.4.2 Anti-Windup Limit: −1 V

For an even tighter system performance, a stricter bounds limit is placed on the

system’s controller. Here with the bounds lowered to Umin = −1 volts, the “OFF” time

dip is decreased further and the settling time is improved to only 3.8ms. The smaller

oscillations that result mean that even less energy is being bleed off from the system. The

improved power rating for the “OFF” time duration is 14.14 watts. The Anti-Windup
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Figure 3.3: System Response with −20 V Anti-Integral Windup Limit
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Figure 3.4: System Response with −1 V Anti-Integral Windup Limit

logic’s further restraint on the itegrator output has increased the efficiency of the system

by an astonishing 12.58% to 88.38%.

These tests results demonstrate that the Anti-Windup scheme performs as in-

tended with significant improvements made to the response performance of the system

model. The efficiency of the system is increased along with shortening of the response

settling time. Through the use of conditional integration some of the system’s poor

performance due to a nonlinear saturation is able to be remedied.



Chapter 4

Iterative Learning Control

4.1 Introduction

The second of the two problems areas addressed occurs during the pulse “ON”

time.

Rate Limitation

“OFF” Time
“ON” Time“ON” Time

“OFF” Time

Figure 4.1: Vektrex SpikeSafe200 Performance Scope Shot

The oscillations observed here are due to a lack of freedom in the second order PID con-

troller. The controller attempts to compensate for the pulse disturbance that suddenly

enters the system, but it is not powerful enough to fully correct for the disturbance and

bring the system back to the reference value in such a short time frame. These oscil-

lations represent an area of inefficiency in the power supply’s performance that can be
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improved upon. A few important details that are known to the operator during this

“ON” period are that the system is stable and that it behaves in a linear fashion. Addi-

tionally, the period and magnitude of the disturbance are known along with the length

of its “ON” time. Insightful knowledge such as this, which is not often available, can be

used in favor of the control system designer to implement additional feedforward control.

4.2 Ideal Feedforward Control

Feedforward control requires a priori or measured knowledge of the disturbance

signal before it enters into the system. Knowledge of this disturbance is used to determine

the impact it will have on the system and to calculate the control action needed to

counteract that impact. In the ideal case, the user also has perfect knowledge of the

controller and plant dynamics which allows for ideal feedforward control. To demonstrate

the effectiveness of an ideal case a standard linear negative feedback loop is set up with

the addition of a feedforward injection block. The ideal system described is illustrated

in Figure 4.2 using the discrete time controller C(z) and plant model G(z) of the SS200

along with the known periodic demand signal dk(t); note that this system is stable under

feedback control and does not contain rate limitations.
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Figure 4.2: Negative Feedback loop with FeedForward signal Injection

The optimal ideal feedforward control requires perfect knowledge of the plant dynamics

G(z) as well as the controller dynamics C(z), which is the case in this situation. If

the disturbance signal is also known a priori then the ideal feedforward signal can be

calculated before the system is ever put into motion. By performing these calculations

on the periodic disturbance signal in the frequency domain using the fourier transform

a non-causal feedforward signal is produced; this enhances the overall control of the
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system for future iterations. One very important detail to note is that the conditions

of the system for which the feedforward signal has been calculated must remain the

same for it to perform as intended. Analysis of the relationship between the disturbance

input and feedforward input points in Figure 4.2 leads to the ideal feedforward signal

calculation that follows. The calculations for the ideal feedforward signal are described

in the time domain, which can also be performed in a non-causal manner given that the

disturbance signal is known and does not change.

Creating a feedforward signal that is opposite in sign of the known disturbance

signal through the inverse of the plant and controller dynamics can be accomplished in a

non-causal manner by processing the disturbance data in both the forward and reverse

directions. The filter required in this case is given below:

F (q) =
1

G(q)C(q)
(4.1)

The resulting signal has zero phase distortion and will pass through the system from

the entry point in Figure 4.2 and effectively cancel out with the plant and controller

dynamics as it passes through. The remainder of this signal which is the opposite in sign

equivalent of the disturbance signal will add together with the actual disturbance signal

at its point of entry and equate to the reference value (zero).

It should be noted that the length of the feedforward signal is equivalent to the

periodic length of the disturbance signal, and that a continuous looped repitition of both

signals will yield a system output response with zero error. This can be seen in Figure 4.3

where the calculated ideal feedforward signal is displayed with a period length of 15ms.

Note that due to the linear nature of this system the feedforward signal characteristics are

the same, and only differ in the direction of their magnitudes depending on the demand

pulse edge rising or falling. The simulated ideal system response before implementation

of the ideal feedforward signal is seen in Figure 4.5; the blue line is the normal response

of the system due to the known periodic disturbance under feedback control only. Notice

how the system remains stable throughout the “ON” demand time and settles to the zero

reference value during the pulse “OFF” time. Applying the ideal feedforward control

signal (4.1) to the system in addition to its feedback control results in the near complete

elimination of the output error. These results are seen in Figure 4.5 with the blue line

holding a steady reference value of 5 volts. Again, this is an ideal situation in which all

aspects of the system are known perfectly. In real world applications however, this is

never the case. Often times the dynamics of a system may not be entirely accurate, and
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Figure 4.3: Repeating Ideal FeedForward Signal

many systems of interest cannot be completely characterized as purely linear. Systems

such as these may in fact contain non-linear characteristics as well as linear ones. The

SS200 in particular exhibits these switch system dynamics where both linear and non-

linear behavior is observed. For improved control in this non-ideal case one can shift

from an ideal feedforward solution to an advanced Iterative Learning solution.

4.3 Iterative Learning Control

Iterative learning control (ILC) is a notion that most humans have been familiar

with their entire lives. The concept is one of generating open loop control from repetition

and learning [3]. A prime example of this behavior takes the shape of a basketball player

repeatedly shooting a basketball from the same spot over and over. As he improves

his shot from the last repetition to the next he will learn and retain the memory of his

successful shooting form [3]. This engrained memory will allow for more successful shots

in the future, (i.e. less error). Similarly with ILC, a system under the same repeated

task can learn from previous error measurements and correct itself to improve upon its

future output performance. More specifically, this system generates a feedforward signal

that will either improve upon the accuracy of a repeated desired reference signal, or

improve its ability to reject a repeated disturbance signal. The power behind ILC comes
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Figure 4.4: Ideal Linear System Response to Periodic Pulse Disturbance

in its ability to progressively learn and improve upon its performance even in the face of

model uncertainties. In this instance we are using ILC as “an approach for improving

the transient performance of [a] system(s) that operates repetitively over a fixed time

interval.” [1]

There are two conditions however, that a complete system must satisfy in order

for ILC to be applied. These conditions are as follows [1]:

1. A tracked reference signal or rejected disturbance signal must have a uniform pe-

riodic behavior.

2. Initial Conditions of said system will remain approximately the same at the onset

of each of these periods.

Slight deviations from these conditions can be tolerated under some ILC techniques but

the resulting performance will degrade as the lack of adherence to them increases.

Introduction to ILC can best be done with a simple block diagram depicting

the basic idea of what the controller is doing. The iterative learning controller requires

measurements of the control signal to the plant uj , the output of the plant yj , and the

desired output of the system yd. The control input is then updated for the next iteration

by filtering the systems error signal through some learning function L, and adding it

to the previous control signal sent to the plant. With each iteration the control signal

uj+1 is updated until finally no error is left and the future control signals converge.
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Figure 4.6: Block Diagram of ILC Concept [1]

Mathematically this looks like,

uj+1 = uj + Lej

where the systems error signal is defined as ej = yd−yj with j the period iteration index.

4.4 ILC Theory

The theory behind iterative learning control revolves around its ability to pro-

duce asymptotic stability in the controlled system [3]. While the SS200 system is already

stabilized by its onboard feedback controller, the desire is to increase its efficiency with

the addition of feedforward control. In this case, a reduction in the system response

error correlates to less excess energy delivered and an increase in power efficiency. The
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SS200 feedback system with the addition of a parallel type ILC structure is presented

mathematically below (4.2), and its accompaning block diagram representation is shown

in Figure 4.7 [3].

yj(t) =
G(q)

1 +G(q)C(q)
uj(t) +

1
1 +G(q)C(q)

d(t) (4.2)

Here t is the time index, j is the period iteration index, q is the forward time shift

operator qx(t) ≡ (t + 1), yj is the system output, uj is the control input to the plant,

d(t) is an exogenous signal that repeats with each period iteration, C(q) is the feedback

controller, and G(q) is the plant posed as a proper rational function of q with relative

degree, m (assumed to be 1) [3]. The learning controller algorithm uj+1 with Q-filter,

Figure 4.7: SS200 Feedback Model with Parallel ILC Addition

Q(q), and learning function, L(q), takes the form,

uj+1(t) = Q(q)[uj(t) + L(q)ej(t+ 1)] (4.3)

L(q) is the critcal component in (4.3) for improving the system’s performance. Varia-

tions of the learning function can extend anywhere from linear functions to non-linear

functions, time varying functions, H∞ methods, and even quadratically optimal designed

functions [3] [1]. For the ILC case presented in this thesis an “inverted plant” learning

function has been chosen for implementation. The Q-filter can be used if desired to

emphasize certain frequencies in the learning process. Here, the Q-filter is set as unity

but remains incorporated throughout the theory for clarity and completeness.

The “inverted plant” of the ILC scheme differs from that previously discussed

in the ideal feedforward example. ILC calculations only require the error of the systems

response and not the actual disturbance signal itself. Consequently, a new relation equa-

tion for the “inverted plant” learning function is also necessary. Analysis of Figure 4.7



31

leads to an effective system relation between the measured error signal and the input of

the new control signal as (in the frequency domain1),

G(z)S(z) =
G(z)

1 +G(z)C(z)
(4.4)

where S(z) is the system’s Sensitivity Function defining the relation between the dis-

turbance input and the error signal, and the plant transfer function G(z) defining the

relation between the ILC control input and the disturbance input.

S(z) =
1

1 +G(z)C(z)
(4.5)

Therefore, the “inverted plant” in this case actually refers to the inverse of (4.4), or

the inverse of the plant times the sensitivity function. Note that all calculations for

the feedforward signal are performed in the frequency domain. The frequency domain

representations of the closed loop system (4.2) and the learning algorithm (4.3) are

provided below.

Yj(z) =
G(z)

1 +G(z)C(z)
Uj(z) +

1
1 +G(z)C(z)

D(z) (4.6)

Uj+1(z) = Q(z)[Uj(z) + zL(z)Ej(z)] (4.7)

where Ej(z) = Yd(z)− Yj(z)

4.4.1 Convergence

With the control signal update (4.3), the system is stable according to [3] with

converging control if there exists ū ∈ < such that |uj(t)| ≤ ū for all t = {0, . . . , N − 1}
and j = {0, 1, . . . , }, and, for all t ∈ {0, . . . , N − 1}

limj→∞ uj(t) exists.

Where here, convergence control is defined as u∞(t) = limj→∞uj(t). This optimized

control signal u∞(t) brings the system output yj(t) as close to the reference value yd(t)

as possible on the given interval.
1The one-sided z-transform of the signal {x(k)}∞k=0 is X(z) =

∑∞
k=0 x(k)z−1, with the z-

transformation of a system being obtained by replacing q with z. The frequency response of a z-domain
system is given by replacing z with eiθ for θ ∈ [π,−π],[3]
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Analysis of this stability condition performed on the frequency domain rep-

resentations of the SS200, (4.6) and (4.7), can be seen below. Substituting Ej(z) =

Yd(z)− Yj(z) with (4.6) into (4.7) yields the iteration domain dynamics equation,

Uj+1(z) = Q(z)[1− zL(z)G(z)S(z)]Uj(z) + zQ(z)L(z)[Yd − S(z)D(z)] (4.8)

A sufficient condition for convergence of this system is obtained with the following re-

quirement.

Theorem 4.1 [3][11]

If

‖ Q(z)[1− zL(z)G(z)S(z)] ‖∞ < 1, (4.9)

then the ILC system with N = ∞ is asymtoptically stable (AS).

With Theorem 4.1 satisfied the learning control uj(t) converges to its optimal value

u∞(t). A more generalized definition of this theorem can be found in [11]. Equation

(4.9) is the convergence criterion that must be satisfied by the learning function L to

guarantee that the system’s response error converges to zero. Here the learning function

L is re-defined as F̂−1 to represent the inverted estimation of the closed loop relation

noted by (4.4), and is defined below in its frequency domain representation.

F̂ (z) =
Ĝ(z)

1 + Ĝ(z)C(z)
(4.10)

If F̂ (z) is an exact representation of G(z)S(z) then the evaluation of F̂−1(z)G(z)S(z)

will be unity for all frequencies of interest, thus (4.9) will equate to zero and satisfy

the convergence criterion. Such an estimate will provide for error convergence to zero

within one iteration of feedforward control as guaranteed by the convergence criterion.

Proof of this is demonstrated in the following section on performance and furthermore

in [11]. F̂ (z) estimations close to (4.4) that also satisfy the criterion but do not evaluate

identically to zero will require further iterations before yielding full error convergence.

As the learning iterations which estimate F̂ (z) converge so will the resulting system

output signal [11].

limj→∞ yj(t) = yd(t)
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4.4.2 Performance

The actual effectiveness of ILC is determined from analysis of the resulting

asymptotic error. This can be done qualitatively from system response observations or

quantitatively in comparison of the root mean square (RMS) of the error. If the system

under consideration satisfies the conditions for AS as noted in the convergence section,

then the asymptotic error is [3] [11],

e∞(t) = lim
j→∞

ej(t)

= lim
j→∞

(yd(t)− yj(t))

= lim
j→∞

(yd(t)−G(q)S(q)uj(k)− S(q)d(t))

= yd(t)−G(q)S(q)u∞(t)− S(q)d(t)).

(4.11)

After substituting u∞(t) into the equation above and solving for e∞(t) the frequency

domain error function translates to,

E∞(z) =
1−Q(z)

1−Q(z)[1− zF̂−1(z)G(z)S(z)]
[Yd(z)− S(z)D(z)] (4.12)

with the necessary and sufficient condition for convergence to zero error as follows.

Theorem 4.2 [3]

Suppose G, C, and F are not identically zero. Then, for the ILC system, e∞(t) = 0 for

all k and for all yd and d, if and only if the system is AS and Q(q) = 1.

Iteration error of the system with the addition of the parallel ILC structure is given by

(4.13).

ej(t) = −G(q)S(q)uj(t)− S(q)d(t) (4.13)

Verification of this error convergence is described by (4.14) for the ‘next iteration’ error

that follows,

ej+1(t) = [1− F̂−1(q)G(q)S(q)]ej(t) (4.14)

Notice that this equation evaluates to

ej+1(t) = ej(t)− F̂−1(q)G(q)S(q)ej(t)

where if

F̂−1(q)G(q)S(q) = 1
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then we are left with

ej+1(t) = ej(t)− ej(t)

so that the next iterations error becomes zero.

ej+1(t) = 0

Any estimates of the learning function F̂ that satisfy (4.9) over the frequency

range of interest will produce a next iteration error value that will continually degrade

until it has converged to zero. Notice from the evaluation following (4.14) that if

F̂−1(q)G(q)S(q) is less than unity then some error will remain in the next iteration.

Conversely, if the criterion is not satisfied and the evaluation is greater than one, the

error in the system will begin to grow. The successfully updated ILC control signal works

in addition to the feedback control signal to further improve on the systems transient

and steady state responses. In the next section, the procedure used to estimate the ILC

learning function F̂ is discussed.

4.5 Learning Function Estimation

Plant dynamics are often not completely known to the control designer. In these

cases identification techniques can be used to provide an accurate approximation of what

the system characteristics are. For the ILC system described in the previous section,

estimation of F̂ (q) is a critical step in building a successful learning controller. If the

characteristics of the learning function are not robust enough to satisfy the convergence

criterion then no error convergence will take place. In fact, if the convergence criterion

is not satisfied then the addition of ILC will result in a growth of system output error

towards infinity. The system model used for simulation has been setup in such a way

that the structure of the “plant inversion” type learning function involves much more

than just the plant. The relation between the measured error signal, disturbance signal

input, and feedforward signal input calls for an “inverted plant” that is the inverse of

(4.4). In order to utilize this inverted plant expression it must first be identified. This

section takes a slight step away from ILC theory to discuss the method used to estimate

this expression and the varying results that were obtained.
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4.5.1 Linear Regression Method

In order to identify any type of system one will need some measurements of

both the input signal to the system as well as the output response of the system. The

identification procedure followed here begins with a measured step input signal injected

into the system as pictured in Figure 4.8 along with measurements of the system’s output

response. The two signals are then used in an Auto-Regressive eXogeneous (ARX) system
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Figure 4.8: SIMULINK Model for Step Response Data Collection

identification technique to given an estimate of the closed-loop system.

The SISO relation from the measured signals is arranged in difference equation

form as seen below; this is also referred to as an ARX model [10].

y(t) + a1y(t− 1) + . . .+ anay(t− na)

= b1u(t− 1) + . . .+ bnb
u(t− nb) + e(t)

(4.15)

With θ defined as a vector of the unknown system parameter coefficients each of order

na and nb respectively [10] [11],

θ = [a1 a2 . . . ana b1 . . . bnb
]T (4.16)

A(q) and B(q) can be defined as

A(q) = 1 + a1q
−1 + . . .+ anaq

−na

B(q) = b1q
−1 + . . .+ bnb

q−nb

the transfer function form of the estimate including error becomes (4.17) and is given

here along with an illustrative

G(q, θ) =
B(q)
A(q)

, H(q, θ) =
1

A(q)
(4.17)
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Figure 4.9: ARX Model Structure [10]

block diagram, Figure 4.9.

With the error term considered to be insignificant the input u(t), ouput y(t), B(q), and

A(q) vectors can be put into the prediction equation form below

ŷ(t|θ) = B(q)u(t) + [1−A(q)]y(t) (4.18)

By introducing the regression vector defined as

ψ(t) = [−y(t− 1) . . . − y(t− na) u(t− 1) . . . u(t− nb)]T (4.19)

the prediction equation takes on a form which is linear in θ [10].

ŷ(t|θ) = θTψ(t) = ψT (t)θ (4.20)

The prediction equation utilizes a least-squares estimate to determine the best

fitting combination of parameter coefficients to match the input/output data provided

and system order specified. This process is followed to determine the system estimate F̂

which best approixmates the inverse of GS. In this fashion F̂−1 becomes the solution of

the problem,

min ‖ 1− F̂−1GS ‖

which directly determines the next iterations error as given in (4.14) [11]. The system or-

der can be varied in experiments to determine the range of functions that will accurately

model the system characteristics. A brief overview of the least-squares criterion used is

provided in the appendix. The reader is referred to [10] and [2] for further insight.
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Fortunately in our situation one can compare the learning function estimations

with the actual expression using knowledge of the plant and controller equations. The

PID controller used here is represented by a 2nd order function, and the plant approxi-

mation is a 6th order function, thus (4.4) when evaluated becomes an 8th order function.

Experimental estimations of (4.4) range from as low as a 2nd order function to that of

an 8th order for analysis purposes. The ultimate goal of this experimentation is to iden-

tify the lowest order model estimate that will satisfy the convergence criterion and still

provide for a relatively quick convergence of system error. The actual 8th order closed

loop system in discrete form is presented here for reference.

GS =
b0z

8 + b1z
7 + b2z

6 + b3z
5 + b4z

4 + b5z
3 + b6z

2 + b7z + b8
a0z8 + a1z7 + a2z6 + a3z5 + a4z4 + a5z3 + a6z2 + a7z + a8

(4.21)

Table 4.1: Discrete Time Closed Loop ILC Relation Coefficients
Numerator Denominator
b0 = 15 a0 = 1
b1 = -116.1 a1 = -7.713
b2 = 393.8 a2 = 26.05
b3 = -763.6 a3 = -50.34
b4 = 926.3 a4 = 60.87
b5 = -719.9 a5 = -47.17
b6 = 350.1 a6 = 22.87
b7 = -97.38 a7 = -6.347
b8 = 11.86 a8 = 0.7718

Response Comparisons

The magnitude response plot of G(z)S(z) (dashed black line) is compared with

various order estimates obtained from the ARX identification procedure in Figure 4.10.

The order estimates displayed were all evaluated in (4.9) and proved to satisfy the crite-

rion over the entire frequency range of interest, (0–100kHz). Those lower order estimates

not satisfying the criterion are ommitted here. The magnitude responses of the conver-

gent order estimates show adherence to the general form of the magnitude repsonse of

G(z)S(z). For reference, the individual transfer function equations of these estimates

can be found in the appendix. Convergence criterion analysis is detailed in the following

section.
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Figure 4.10: Magnitude Response Comparison of Convergent Estimates

Convergence Evaluations

It should be noted that any preliminary testing of these identification and con-

trol techniques should be performed in a simulation software package such as MATLAB.

Therefore, some knowledge and accuracy of the plant and overall system dynamics will

be known beforehand. In this case, the controller of the system was known but plant

dynamics had to be identified. The plant model G(z) used for the baseline comparison

here was computed in Chapter 2 and verified as an accurate representation of the SS200

plant.

Results of the convergence criterion analysis (4.9) using the ARX estimated

systems are displayed in Figure 4.11. The 5th, 6th, 7th, and 8th order systems are color

coded for easy observance of their respective behaviors. Notice how each order estimate

remains nicely under the threshold value of 1 over the entire frequency range considered.

The results of these experiments prove that a successful closed-loop estimate forG(z)S(z)

is required to be at least a 5th order function, while an 8th order estimate is nominal.

The 8th order estimate is considered nominal due to prior knowledge of the order of

G(z)S(z), its magnitude response similarity to that of G(z)S(z), and its quick drop off

observed in its convergence criterion analysis.
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Figure 4.11: Convergence Criterion Analysis of Convergent Estimates

4.6 ILC Implementation

An ideal implementation of the ILC scheme would involve on online learning

system in which the new control signal would be updated while the power supply is

running. The SS200 however, does not currently have the capacity to perform online

floating point calculations in the relatively short time between demand periods. Due to

these limitations the learning controller is instead calculated offline and done so here for

one constant demand signal chosen for demonstration.

To begin, the modeled SIMULINK system is allowed to run for ten periods

and then stopped. In this particular case each period is 15ms long for a total duration

of 150ms. The purpose of the ten period iteration is to allow any initial conditions in

the system to die out and to obtain the cleanest measurement data possible. MATLAB

round-off calculation error leads to some minor problems in fulfulling the repeated initial

condition requirement of ILC theory. Performing new control calculations and imple-

mentations every tenth period in the simulation reduces interference caused by these

round-off errors. The last periods error is captured and used to calculate the new feed-

forward control signal to be injected into the system. In the frequency domain, the error

signal is run through the inverse of the estimated system dynamics F (z), and the inverse

fourier transform of that signal is then modified slightly before entering into the system

and adding to the existing control signal. Modification of the calculated feedforward

signal is done to ensure minimal interference from this signal during the disturbance
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“OFF” time. Non-linear behavior in the SS200 during this time frame conflicts with the

linear ILC theory that is being implemented on it. For this reason, the ILC signal is

only applied to the system during the “ON” time and also during a slight time frame

before that. Activation of the ILC signal slightly before the pulse “ON” time allows

the feedforward nature of the signal to preemptively react to the disturbance. See Fig-

ure 4.12 for an illustrative example. This modification involves redefing the feedforward
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Figure 4.12: FeedForward ILC Signal vs. Modified FeedForward ILC Signal

signal’s values during the “OFF” time frame as being equal to its sample value at 500

samples from the end of the signal; or about half the “ON“ time from the end. For

the 15ms disturbance period with 5ms “ON” time and sampling frequency of 200kHz

this equates to setting the feedforward samples 1001–2500 equal to the value of sample

2500. By doing this, the effects of the ILC during the “OFF” time are minimal as well as

the slight disturbance caused from calculation round-off error during its re-introduction.

The modeled system is run again, but this time the duration is for 20 periods with the

previously calculated feedforward signal injected into the system at the beginning of the

11th period. Observation and numerical analysis of the resulting system error can be

used in order to determine whether or not further ILC iterations are necessary. If so,

then the 20th periods’ error is used to calculate an additional feedforward signal in the

same manner as before. This new signal will be added to the system at the beginning of

the 21st period. It should be noted that for this particular application once these signals

are injected into the system they are expected to repeat periodically until the system
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is shut off. If further error reduction is needed, the process will continue in the same

manner with the system stopped every consecutive 10th period until the attenuation of

error is satisfactory.

4.7 ILC Results

Immediate results of the ILC’s performance varies with the magnitude order of

the learning function estimate. The 2nd, 3rd, and 4th order estimates all failed to satisfy

the convergence criterion and therefore their results will not be shown here. Successful

error attenuations from the higher order 8th and 5th learning function estimates are

provided here. Each performance result plot displays the effects of the implemented ILC

control for one iteration of calculations. The SIMULINK model is set up for a reference

level of 5 volts, a demand signal of 2.5 amps for 5ms, and a total period length of

15ms. The criterion for comparison of the results is similar to that in the Anti-Windup

section, however here the increase in power efficiency is the only major concern and not

the system settling time. The regulators energy use over time is calculated with the

equation:

P = 1
T

∫ T
0

V 2

R dt

wherere T = 5ms, dt = 5e−6s, and R = 2 Ohms. The baseline power rate calculated for

the “ON” time duration is 13.68 watts equating to 1.18 watts of excess power provided

for each demand pulse. This represents an efficiency of 91.37%, which is significantly

higher than the “OFF” time performance. The system response with the addition of one

iteration of the 8th order ILC estimate is shown in Figure 4.13. Notice that the tran-

sient oscillations during the demand “ON” time have been virtually eliminated (green

line). The calculated power rate for the “ON” time frame is 12.522 watts, which is an

outstanding improvement of the power rate to a near nominal performance. With the

addition of the 8th order ILC the “ON” time efficiency is now 99.82%. This resulting

performance demonstrates the power of the ILC control method when the learning func-

tion is estimated correctly. In just one iteration from the iterative learning controller the

systems performance has been improved to nearly 100% efficiency. The first iteration

systems error with the 5th order estimate in (Figure 4.14) improves from the original,

but its response still shows some oscillating behavior. The error remaining calculates

to a power rate of 13.13 watts which is an improvement from the baseline yielding an
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Figure 4.13: System Response from additional 8th Order Estimated Learning Function

increase in efficiency to 95.22%. This lower improvement in performance was expected

due to the lower order used in estimating the learning function. Further iterations not

shown here result in the 5th order estimate improving system performance to near 100%

efficiency after four iterations.

The reduction in system error during the “ON” portion of the pulse disturbance

demonstrates the theoretical effectiveness of the ILC. For the case of this SS200 system

model, an estimated system of at least the 5th order is needed to satisfy the convergence

criterion. Results of this section clearly show that the system error during the demand

pulse can be eliminated completely and that an 8th order ILC estimate can increase the

“ON” time efficiency up to 99.82%.
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Figure 4.14: System Response from additional 5th Order Estimated Learning Function



Chapter 5

Combined Control Solution

5.1 Enhanced Control Package

Due to the switched linear and non-linear effects that the power supply exhibits

the two problem areas addressed in this thesis were done so in a separate fashion. This

approach resulted in two different solutions which were also implemented seperately.

The goal of this chapter is to convey how the two methods tested can be applied in such

a way that each can function simultaneously with one another to enhance the overall

systems performance. The SIMULINK model is modified to accommodate both ILC

and Anti-Windup additions as shown below. The ILC portion is highlighted in blue

while the Anti-Windup portion is highlighted in red. The following sections lay out the
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Figure 5.1: SIMULINK Model with ILC and Anti-Windup Modifications
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procedures for applying ILC and Anti-Windup logic together along with the results of

their combined application.

5.1.1 Procedure

Initially the SIMULINK model should be set up to run for a length of time

representing 10 period iterations of the disturbance signal. The Anti-Windup logic should

be turned off and no additional feedforward signals should be acting on the system during

this time. With the system’s parameters loaded into MATLAB one can then follow the

ILC procedure as described in section 4.6. The ILC iteration is followed until the updated

feedforward signals which satisfy the users’ criterion for “ON” time error attenuation

have been calculated and stored. The system will then need to be stopped again so that

the calculated feedforward signals can be setup for their appropriate delayed injection

time into the system. Finally, also at this time, the Anti-Windup code can be activated

to filter the integrators error feed signal with a generous initial bound limit.

Following the initial limits of the Anti-Windup logic from Chapter 3, a set

value of Umin = −20 volts is used first with the 8th order estimation for F̂ . In such cases

as a lower order estimation is used other than that of the actual system order, one is

cautioned to first initialize the Anti-Windup limits to a slightly higher value. The system

is then run for a duration of at least 10 more periods beyond the instance where the last

feedforward signal injection occured. Observing the response during this time will allow

the user to tune the limits of the Anti-Windup logic to a value yielding the best results.

An overly tight bound limit may lead to adverse reactions when applied with the ILC

feedforward signal. In experimentation and testing, such a tight constraint prevented

the system from ever fully returning to the reference value desired. Initializing the Anti-

Windup limits to a larger value and then progressively reducing that value based upon

observance of the systems performance is a simple and effective task.

5.2 Combined Results

In order to further demonstrate the effectiveness of combining Anti-Windup

logic with iterative learning control an example trial is worked through next. This

example should help to clarify the procedure required to combine and apply the two

methods on the simulated system. The test case makes use of the nomimal 8th order

system estimate as previously determined.
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Following the identification procedure in section 4.5 an 8th order system esti-

mate F̂ with a single delay is given by

F̂ (z) =
b0z

7 + b1z
6 + b2z

5 + b3z
4 + b4z

3 + b5z
2 + b6z

1 + b7
a0z8 + a1z7 + a2z6 + a3z5 + a4z4 + a5z3 + a6z2 + a7z + a8

(5.1)

The SIMULINK model in Figure 5.1 is run 150ms or 10 periods of the disturbance signal.

Table 5.1: Discrete Time Estimated Closed Loop Relation Coefficients
Numerator Denominator
b0 = -0.0006563 a0 = 1
b1 = 0.004751 a1 = -7.713
b2 = -0.01479 a2 = 26.05
b3 = -0.02676 a3 = -50.34
b4 = 0.01679 a4 = 60.87
b5 = -0.005866 a5 = -47.17
b6 = 350.1 a6 = 22.87
b7 = 0.0008799 a7 = -6.347
b8 = 0 a8 = 0.7718

The last period’s error signal is collected and displayed below. Using this error signal
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Figure 5.2: System Error for 8th Order Estimate

and the F̂ estimate above the first iteration modified learning control signal is calculated,

Figure 5.3. The control signal is tested in the modified SIMULINK model Figure 5.1 for a

total of 20 periods (300ms). Observation of these results, Figure 4.13, show satisfactory

attenuation of “ON” time error such that further testing with the addition of Anti-

Windup logic can begin. The system is now restarted with the feedforward signal set to

inject at the appropriate time, and the Anti-Windup logic activated with the Umin limit

set at −20 volts. Results of this combined run are seen in Figure 5.4, and have been
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zoomed in to show the last period of the combined 20 period test duration. It is clear
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Figure 5.4: 8th Order F̂ , 1st Iteration plus AW Bound −20 V Combined Results

from the green line in Figure 5.4 that both the iterative learning control signal and Anti-

Winup logic are functioning together successfully to attenuate the systems error signal.

The iterative learning controller has eliminated the error during the “ON” time as seen in

chapter 4, and the “OFF” portion has been improved upon by the Anti-Windup control

as seen in chapter 3. With the combined improvements from both additional control

schemes the new power rate calculated for the overall system response is 14.02 watts.

The efficiency of the system over the entire demand period is now 89.15% as opposed

to the efficiency of the baseline model which is 80.4%. 2% settling time has also been

reduced to 5.3 ms from the original 6.1 ms. Some amount of undershoot still occurs in

the output response but has been fairly attenuated. Further improvement on the system
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can be obtained with a stricter bound limit. Next, the Umin limit will be set at −1

V to yield a better output performance with the combined control system. Figure 5.5
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Figure 5.5: 8th Order F̂ , 1st Iteration plus AW Bound −1 V Combined Results

is clearly a better improvement over Figure 5.4 with the undershoot of the response

reduced even further. Here, the settling time shrinks to 3.64ms, and the power rate of

the new response is calculated as 13.45 watts. This represents an efficiency of 92.9%,

which is a 12.5% overall increase in the efficiency of the system. A great improvement

by any standards.

The combined addition of ILC and Anti-Windup logic to the modeled system

successfully improves the areas of performance that were targeted. While some slight

modifications to the ILC control signal were required it has been shown that the two

methods can function in a combined effort. With the ILC eliminating the “ON” time

error and the Anti-Windup logic attenuating the “OFF” time error the efficiency of the

modeled system is increased by 12.5%. This increase puts the model in the low 90%

range of efficiency which is significantly better than most modern DC-DC regulators.



Chapter 6

Simplification of Ideal

Feedforward via Pulse Signals

6.1 Introduction

Unfortunately, the mathematical sophistication of the ILC technique requires

a greater amount of computing power than is readily available on the current SS200

system. Therefore, in order to further motivate the development and implementation of

the demonstrated ILC technique an experimental comparison test with a simpler design

is performed and analyzed. This test compares the benefits of using the more robust

ILC scheme versus a simpler feedforward pulse design. The choice of a structured pulse

signal is due to the ease in which it can be applied to the current SS200 system and its

similar characteristics to the disturbance and resulting ILC signals. This chapter gives

an overview of the test experiment performed, explanation of the feedforward pulse

structure, and brief discussion of the concluding results. A criterion is also established

in order to weigh the two methods against each other and give insight to the potential

increase in efficiency that each is capable of providing.

6.2 Test Setup

All experimental testing is performed on the same SS200 model as described

in Chapter 2 with the addition of a feedforward input block between the controller and

plant, see Figure 6.1. The input block allows for either the ILC or structured pulse

49
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feedforward signal to be injected into the system. The time frame of interest for these
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Figure 6.1: Block Diagram of Comparison Test Setup

tests is narrowed down to include only the range in which the disturbance demand signal

is “ON”. Recall that this time frame is the same as that in which the ILC signal has

been programmed to act on the system. The length of the pulse disturbance period

along with the demand “ON” time remains the same as previously set, 15ms and 5ms

respectively. The sampling time for data recording is kept at 200kHz.

The feedforward pulse structure has three main areas of interest; feedforward

time, extended time, and voltage magnitude. The feedforward time represents the in-

stance in time before the disturbance signal begins when the pulse signal is injected into

the system. This same amount of time is used before the low side of the disturbance

signal begins to apply the feedforward signal to the system in the opposite direction.

The addition of this energy into the system is meant to counteract the sudden increase

in demand that is placed on the system. The extended time refers to the extension of the

first feedforward pulse into the “ON” demand time frame. Note that the feedforward

and extended times are limited in their possible combinations by the duration of the

“ON” time. The third and final area is the voltage magnitude of the feedforward pulse.

This value remains the same in both the positive and negative directions but is varied

from test to test. The various combinations of these three factors are tested to determine

how well this signal can compensate for the periodic demand disturbance. An illustra-

tive diagram of this description is provided in Figure 6.2 to help clarify the structure

of the feedforward pulse signal. The first criterion used to compare and determine the

strengths of the two solution methods consist of analyzing the excess energy provided

by the system response over the demand “ON” time duration. The second is a measure-

ment of the system’s deviation from the reference level at the onset of the disturbance

demand. The excess power is determined in the same fashion as in Chapter 4, mainly:
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P = 1
T

∫ T
0

(ref−V )2

R dt

with T = 5ms, dt = 5e−6s, and R = 2 Ohms. The system’s deviation or “initial dip

value” is calculated by subtracting the response voltage at the onset of the demand dis-

turbance from the reference value. Note also that the average voltage level is documented

for convenience but is not a major factor in the comparison.
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6.3 Baseline and Results

The desired values in these experiments are given in Table 6.1 and represent a

constant 5 volt reference level with no deviation caused from the periodic pulse demands.

While the nominal values in Table 6.1 are desired, it is the baseline values exhibited by

Table 6.1: Nominal System Measurements
Power Rate: 12.5 watts
Dip Value: 0 V
Vavg: 5 V
Vmax: 5 V

the current system with only PID control that the test results are compared against. This

comparsion demonstrates the potential improvement to the system’s performance that

can be made with the addition of a feedforward control scheme. These baseline values

have been recorded and are given in Table 6.2 along with a depiction of the systems

response. Notice that the baseline dip value produced is fairly distinctive and that a

Table 6.2: Baseline System Measurements
Power Rate: 13.6789 watts
Dip Value: 2.5496 V
Vavg: 4.9647 V
Vmax: 5.4740 V

return to the reference value of 5 volts is never really settled upon in the ”ON“ time

duration.

6.3.1 FeedForward Pulse

The feedforward pulse experiments are performed with variations in feedforward

time, extended time, and voltage magnitude value. Analysis of the complete range of

these tests proves that a certain combination of times and magnitude perform better than

others. The most favorable of these experimental results are consistently observed with

a feedforward time of 0.2ms and an extended time of 0.8ms. The biggest reduction in

the excess power rate comes with this time configuration and a pulse voltage magnitude

of 9 volts. Experimental results show that increasing the magnitude of the feedforward

pulse beyond this point does not lead to further improved system performance.

The resulting power rate from the optimal feedforward combination is calcu-
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lated at 13.3389 watts which represents an efficiency of 93.71% during the “ON” time

response. This demonstrates that at most, a simple feedforward pulse signal can increase

this portion of the system’s response efficiency by 2.33%. Additionally, the initial dip

value observed in the response has been reduced by approximately 0.654 volts.

6.3.2 ILC

Iterative Learning Control for one iteration is also implemented on the exper-

imental setup for a direct comparison. The procedure for ILC is followed as previously

documented with the results of its test run given in Table 6.4.

In Figure 6.7 one can see how the initial dip value of 0.0095 volts in has been

virtually eliminated and that the response is closely held to the reference value through-

out the demand time. The measurements in Table 6.4 clearly demonstrate the ILC’s

effectiveness in this application. The power rate in the system is near the nominal value

of 12.5221 watts, which translates to an efficiency of 99.82%. This is an 8.45% increase

over the baseline value and an improvement to almost 100% efficiency during the “ON”

time duration. The average voltage value held is 4.9959 volts with a maximum value

of no more than 5.0027 volts. The ILC FeedForward signal overcomes the oscillations

that the simple feedforward pulse still produces by providing and canceling voltage lev-

els where need be. It is the intelligent computations of the ILC system that ensure a

minimal and practically non-existent deviation from the desired reference value.
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6.4 Test Conclusions

Both additional control schemes yielded positive results as far as their ability to

increase the efficiency of the SS200 modeled system. The simpler pulse feedfoward sig-

nal displayed a surprisingly impressive reduction in system’s excess power output which

is promising, but still not the most effective solution. The ILC solution on the other

hand can practically guarantee a close to 100% power efficiency without the numerous

combination trials required of the less robust solution. Both schemes must still be im-

plemented and tested on the actual SS200 system itself before the true results can be

revealed. Fortunately the feedforward pulse structure is simple enough that it can be

implemented immediately and may prove to be a good short term solution to increasing

efficiency. This experiment however clearly demonstrates that that ILC solution is by

far the superior method and will potentially lead to the maximum increase in efficiency

possible.

6.5 Practical Considerations

Despite the outstanding performance of the ILC feedfoward signal in our ap-

plication there does exist one drawback. Figure 6.8 depicts the calculated feedfoward

signal required to compensate for the periodic disturbance on our system. Notice that

the voltage magnitude extends from 2, 100 volts to −2, 100 volts. This voltage level
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Figure 6.6: Optimal FeedForward Pulse System Response

is quite large and one not acheivable with the SS200. The large magnitude peaks of

this signal are due to the pulse disturbances’ sharp and near instantaneous transitions,

which makes the signal difficult to compensate for. In order to reduce the magnitude of

the calculated feedfoward signal one can shape the pulse disturbance to incorporate a

smoother transition at its edges. Here, the edges refer to the transitioning period from

low to high and vice versa. This technique is similar to that of input shaping except for

in this case it is the disturbance signal which is being modified and not the actual ref-

erence signal. Figure 6.9 displays the newly calculated feedfoward signal which exhibits

a range of voltage requiring a range of only −340 volts 200 volts. While these are still

large voltage values, they are significantly lower than the previous value range and thus

more managable.
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Table 6.3: Optimal FF Pulse Measurements
Power Rate: 13.3389 watts
Dip Value: 1.8956 V
Vavg: 4.9544 V
Vmax: 5.5960 V

Table 6.4: ILC Measurements
Power Rate: 12.5221 watts
Dip Value: 0.0095 V
Vavg: 4.9959 V
Vmax: 5.0027 V
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Chapter 7

Conclusion

A valid model representation of a real world switched power regultor is pro-

duced using advanced identification techniques and actual system response data. This

model is uitilized to test combinations of further sophisticated control schemes on the

system and to analyze the effectiveness of possible improvements. Two particular ar-

eas of the given power supply’s performance are used as the basis for implementing

enhanced control techniques, these are demand “ON” and “OFF” times. Both control

schemes independently succeeded in accomplishing the tasks outlined for them. Oscil-

lations occuring during the power supply’s “ON” time frame were virtually eliminated

by the applied iterative learning control technique, which confirmed the theoretical re-

sults that were anticipated. The addition of the ILC increased the model’s “ON” time

efficiency 99.82%. The “OFF” time improvements sought after with the Anti-Windup

scheme were also demonstrated with a 3.6ms reduction in settling time, and an increase

in “OFF” time efficiency from 75.81% to 88.38%.

The main results of this thesis show that it is possible to model an actual

power regulator in a system such as MATLAB, and that the tandem addition of both

Anti-Windup logic and Iterative Learning Control can provide improvements in that

models performance. Their combined implementation is successfully observed on the

simulated model derived in this thesis. Overall regulator performance is improved upon

as described above with the enhanced control methodologies added into the system. The

overall increase in efficiency of the modeled system increases from 80.4% to 92.9%.
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7.1 Future Work

The use of advanced algorithms and controllers is soon to be the wave of the

future as energy stores and availability quickly become a global concern. Theoretical

results from these simulated tests have laid the ground work for implementation and real

world application. The true effectiveness of these techniques can then be analyzed and

hopefully implemented on various other similar types of systems. Futher advancement

for this work includes generating a simulation that will enable online calculations for the

iterative learning conroller as well as dynamically updating the bounds imposed by the

Anti-Windup logic. The dual control scheme would then need to be adapted onto an

actual power supply capable of performing the necessary calculations required for field

test.



Appendix A

Estimating Coefficients

A.1 Least-Squares Criterion

The prediction error from the prediction equation in Chapter 4 is given by

ε(t, θ) = y(t)− ψT (t)θ (A.1)

yielding the least-squares criterion to be minimized as

VN (θ, ZN ) =
1
N

N∑
t=1

1
2
[y(t)− ψT (t)θ]2 (A.2)

The quadratic criterion above along with its linear parameterization allows for analytical

minimization of θ. The least-squares estimate (LSE) for θ follows below; note that the

order number which specifies the length of θ and ψ is a variable provided by the user.

θ̂LS
N = arg min VN (θ, ZN ) =

1
N

N∑
t=1

[ψ(t)ψT (t)]−1 1
N

N∑
t=1

ψ(t)y(t) (A.3)

Minimized return of the θ vector produces the best fit difference equation representing

the relation between the input and output signals provided.
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Appendix B

Learning Function Estimations

B.1 Convergent Orders

8th Order Estimation

F̂ (z) =
b0z

7 + b1z
6 + b2z

5 + b3z
4 + b4z

3 + b5z
2 + b6z

1 + b7
a0z8 + a1z7 + a2z6 + a3z5 + a4z4 + a5z3 + a6z2 + a7z + a8

(B.1)

b0 = -0.0006563 a0 = 1
b1 = 0.004751 a1 = -7.713
b2 = -0.01479 a2 = 26.05
b3 = -0.02676 a3 = -50.34
b4 = 0.01679 a4 = 60.87
b5 = -0.005866 a5 = -47.17
b6 = 350.1 a6 = 22.87
b7 = 0.0008799 a7 = -6.347
b8 = 0 a8 = 0.7718

7th Order Estimation

F̂ (z) =
b0z

6 + b1z
5 + b2z

4 + b3z
3 + b4z

2 + b5z + b6
a0z7 + a1z6 + a2z5 + a3z4 + a4z3 + a5z2 + a6z + a7

(B.2)
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b0 = -0.0006563 a0 = 1
b1 = 0.004095 a1 = -6.713
b2 = -0.01069 a2 = 19.34
b3 = 0.01495 a3 = -31
b4 = -0.01181 a4 = 29.87
b5 = 0.004986 a5 = -17.3
b6 = -0.0008799 a6 = 5.576
b7 = 0 a7 = -0.7718

6th Order Estimation

F̂ (z) =
b0z

5 + b1z
4 + b2z

3 + b3z
2 + b4z + b5

a0z6 + a1z5 + a2z4 + a3z3 + a4z2 + a5z1 + z + a6
(B.3)

b0 = -0.0006563 a0 = 1
b1 = 0.003442 a1 = -5.718
b2 = -0.007269 a2 = 13.65
b3 = 0.007721 a3 = -17.42
b4 = -0.004122 a4 = 12.54
b5 = 0.000884 a5 = -4.823
b6 = 0 a6 = 0.7754

5th Order Estimation

F̂ (z) =
b0z

4 + b1z
3 + b2z

2 + b3z + b4
a0z5 + a1z4 + a2z3 + a3z2 + a4z1 + a5

(B.4)

b0 = -0.0006563 a0 = 1
b1 = 0.002834 a1 = -4.791
b2 = -0.004642 a2 = 9.211
b3 = 0.003418 a3 = -8.883
b4 = -0.000953 a4 = 4.299
b5 = 0 a5 = -0.8354



Appendix C

Input Shaping

C.1 Modified Half Gudermann Function

The Half Gudermann Function is obtained with the equation below:

y =
2
π

arctan(exp[a(x−off)]) (C.1)

where the variables a = 12, off = 0.6, and x is set at a range:

x =

0 : π/50 : 2π; , from 1 to 101,

2π : −π/50 : 0; , from 102 to 202,
(C.2)

Some further defining of the range of x is required to produce the appropriate

pulse disturbance length. This configuration however does provide for a smooth transi-

tion from “OFF” to “ON” and vice versa in approximately 0.51ms. The transition from

“OFF” to “ON” is given as an example in Figure C.1 to illustrate the now smoothed

edges of the pulse disturbance profile. The reader is referred to [12] for details of the

Modified Half Gudermann Function.
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