UC San Diego UC San Diego Previously Published Works

Title

Liquefied Gas Electrolytes for All-Temperature Lithium Metal Batteries

Permalink https://escholarship.org/uc/item/25z5j14z

Journal ECS Meeting Abstracts, MA2020-01(2)

ISSN 2151-2043

Authors

Yang, Yangyuchen Yin, Yijie Davies, Daniel M <u>et al.</u>

Publication Date

2020-05-01

DOI

10.1149/ma2020-012373mtgabs

Peer reviewed

Liquefied Gas Electrolytes for All-Temperature Lithium Metal Batteries

Yangyuchen Yang¹, Yijie Yin¹, Daniel M Davies¹, Oleg Borodin², Jungwoo Z. Lee³, Cyrus S. Rustomji³ and Ying Shirley Meng⁴

Abstract

Among the several challenges to enable next-generation batteries is the development of an electrolyte which compatible with both lithium (Li) metal anode and high-voltage cathode at wide temperature range. Liquefied gas electrolytes with a new cosolvent and higher salt concentration show improved ionic conductivity of > 4 mS/cm at wide temperature range from -80 to +70 °C. With a new solvation structure, the liquefied gas electrolytes demonstrated high-temperature operation of Li-metal batteries at 55°C, which is the operation above the electrolytes' critical point for the first time. The electrolytes enable improved Li metal stability and coulombic efficiency at aggressive current and capacity of 3 mA·cm⁻² and 3 mAh·cm⁻² with average coulombic efficiency of 99%. The use of liquefied gas electrolytes presents stable cycling of Li/NMC (4.4 V) cell at all-temperature range between -60 and 55°C. This study opens up a promising avenue toward the applications of all-temperature high energy density Li-metal batteries.