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Organ aging signatures in the plasma 
proteome track health and disease

Hamilton Se-Hwee Oh1,2,3,22, Jarod Rutledge2,3,4,22, Daniel Nachun5, Róbert Pálovics2,3,6, 
Olamide Abiose3,6, Patricia Moran-Losada2,3,6, Divya Channappa2,3,6, Deniz Yagmur Urey2,7, 
Kate Kim2,3,6, Yun Ju Sung8,9, Lihua Wang8,9, Jigyasha Timsina8,9, Dan Western8,9,10, 
Menghan Liu8,9, Pat Kohlfeld8,9, John Budde8,9, Edward N. Wilson3,6, Yann Guen6,11, 
Taylor M. Maurer5, Michael Haney2,3,6, Andrew C. Yang12,13,14, Zihuai He6, Michael D. Greicius6, 
Katrin I. Andreasson3,6,15, Sanish Sathyan16, Erica F. Weiss17, Sofiya Milman16, Nir Barzilai16, 
Carlos Cruchaga8,9, Anthony D. Wagner3,18, Elizabeth Mormino6, Benoit Lehallier6, 
Victor W. Henderson3,6,19, Frank M. Longo3,6, Stephen B. Montgomery5,20,21 & 
Tony Wyss-Coray2,3,6 ✉

Animal studies show aging varies between individuals as well as between organs 
within an individual1–4, but whether this is true in humans and its effect on age-related 
diseases is unknown. We utilized levels of human blood plasma proteins originating 
from specific organs to measure organ-specific aging differences in living individuals. 
Using machine learning models, we analysed aging in 11 major organs and estimated 
organ age reproducibly in five independent cohorts encompassing 5,676 adults across 
the human lifespan. We discovered nearly 20% of the population show strongly 
accelerated age in one organ and 1.7% are multi-organ agers. Accelerated organ aging 
confers 20–50% higher mortality risk, and organ-specific diseases relate to faster 
aging of those organs. We find individuals with accelerated heart aging have a 250% 
increased heart failure risk and accelerated brain and vascular aging predict 
Alzheimer’s disease (AD) progression independently from and as strongly as plasma 
pTau-181 (ref. 5), the current best blood-based biomarker for AD. Our models link 
vascular calcification, extracellular matrix alterations and synaptic protein shedding 
to early cognitive decline. We introduce a simple and interpretable method to study 
organ aging using plasma proteomics data, predicting diseases and aging effects.

Aging results in organism-wide deterioration of tissue structure and 
function that drastically increases the risk of most chronic diseases. 
Comprehensive studies of the molecular changes that occur with aging 
across multiple organs in mice have identified unique molecular aging 
trajectories and timings1–4, and susceptibility and resilience to diseases 
of aging in specific organs such as the brain, heart and kidney varies 
substantially across the population6. However, little is known about how 
human organs change molecularly with age. A molecular understanding 
of human organ aging is of critical importance to address the massive 
global disease burden of aging and could revolutionize patient care, 
preventative medicine and drug development7. In particular, preclini-
cal studies have demonstrated that rejuvenating interventions affect 
organs differently3,8. To translate these studies into transformative 

medicines, we must be able to accurately measure aging across the 
body and understand the diversity of human aging not only across 
but also within individuals.

While many methods to measure molecular aging in humans have 
been developed9–11, most of them provide just a single measure of aging 
for the whole body. This is difficult to interpret given the complexity 
of human aging trajectories. Some recent methods have used clinical 
chemistry markers which include some markers of organ function12–15. 
However, many of these markers have low organ specificity, making 
them difficult to interpret for organ-specific aging. Methods to measure 
brain aging have used MRI-based brain volume and functional con-
nectivity measurements, which are costly and do not provide molecu-
lar insights16, or have required tissue samples, which prevents their 
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application in living persons17. Building off the wealth of literature and 
clinical practice that uses certain organ-specific plasma proteins to non-
invasively assess aspects of organ health, such as alanine transaminase 
for liver damage, we hypothesized that comprehensive quantification 
of organ-specific proteins in plasma could enable minimally invasive 
assessment and tracking of human aging for any organ.

Plasma proteins can model organ aging
To test this, we measured 4,979 proteins in a total of 5,676 subjects 
across five independent cohorts (Supplementary Table 1) and mapped 
the putative organ-specific plasma proteome, which we used to train 
models of organ aging (Fig. 1a). We mapped the organ-specific plasma 
proteome using human organ bulk RNA sequencing (RNA-seq) data 
from the Genotype-Tissue Expression (GTEx) project18. We classified 
genes as ‘organ enriched’ if they were expressed at least four times 
higher in one organ compared to any other organ, according to the 
definition proposed in the Human Protein Atlas19 (Extended Data Fig. 1, 
Supplementary Tables 2 and 3, and Methods). We annotated the 4,979 
human proteins measured by the SomaScan assay with this informa-
tion and found 893 (18%) proteins met this definition, with the highest 
number from the brain. We performed additional quality control to 
remove proteins with a high coefficient of variation or a low correla-
tion between the two different versions of the SomaScan assay present 
across our cohorts, leaving us with 4,778 proteins (856 organ enriched, 
17.9%) which were used for downstream analysis (Supplementary Fig. 1 
and Supplementary Tables 4 and 5).

We and others have previously shown that plasma proteins can be 
used to train machine learning models to estimate chronological age 
in independent cohorts20,21. For each individual, an aging model pro-
duces an ‘age gap’, a measure of that individual’s biological age relative 
to other same-aged peers based on their molecular profile9 (Fig. 1a). 
Several studies have shown associations between age gaps and mortal-
ity risk or other age-related phenotypes9, supporting the hypothesis 
that the age gap contains information about relative biological aging.

Based on this concept, we trained a bagged ensemble of least abso-
lute shrinkage and selection operator (LASSO) aging models for 11 
major organs using the mutually exclusive organ-enriched proteins we 
identified as inputs (Fig. 1a, Extended Data Fig. 2a,b, Supplementary 
Fig. 3 and Supplementary Tables 6–8). We chose to restrict our analy-
ses to adipose tissue, artery, brain, heart, immune tissue, intestine, 
kidney, liver, lung, muscle and pancreas because of their relatively 
well-understood contributions to diseases of aging and the availability 
of relevant age-related phenotype data in the tested cohorts. We also 
trained an ‘organismal’ aging model using the 3,907 organ-nonspecific 
plasma proteins as inputs to compare the contribution of specific 
organs to an organ-shared aging signature, and a ‘conventional’ prot-
eomic aging model using all 4,778 proteins to compare the organ aging 
models to a global plasma proteomic aging signature as previously 
reported20,21. We trained our models in 1,398 healthy participants from 
the Knight Alzheimer’s Disease Research Center (Knight-ADRC) cohort 
(mean age = 75, age range = 27–104) and then tested these models in 
four fully independent cohorts and in held-out test participants with 
dementia in the Knight-ADRC. (Fig. 1a, Extended Data Figs. 2 and 3, and 
Supplementary Fig. 2). All 11 organ aging models and the organismal 
model significantly estimated age in all five cohorts after multiple test 
correction (Supplementary Fig. 3b). Organ-specific proteins selected 
by our approach were highly enriched for organ-specific functions 
(Supplementary Information).

We observed across all cohorts that individuals with the same conven-
tional age gap had diverse organ aging profiles (Fig. 1b). At the popula-
tion level, this resulted in a low-to-moderate correlation between the 
age gaps of different organs (mean pairwise Pearson r = 0.29, Fig. 1c). 
While organ aging is correlated, the majority of variance in one organ 
age gap is not explained by others, with the exception of the organismal 

and conventional age gaps which were highly correlated. Further, we 
observed that some individuals had extreme aging in one or more 
organs relative to the general population (Fig. 1d). We scored individu-
als across all cohorts as outliers for a given organ age gap using a two 
standard deviation cutoff and clustered individuals into extreme aging 
types (e-ageotypes) (Fig. 1e and Extended Data Fig. 4a–c). Although it 
might be expected that extreme aging in one organ would co-occur 
with extreme aging in other organs, we instead observed segregation 
into distinct organ e-ageotypes. We found that approximately 18.4% 
of individuals had a highly organ-specific e-ageotype that was domi-
nated by the aging of only one organ. Only approximately 1.7% of indi-
viduals showed extreme aging in multiple organs; the only multi-organ 
e-ageotype discovered through unbiased clustering was defined by 
extreme adipose, brain, conventional, heart, immune, liver and organ-
ismal age gaps. These observations suggest that organ age gaps may 
capture unique aging information, which may have implications for 
organ-specific biological aging and diseases of aging.

Organ age predicts health and disease
To assess the relationship between organ age and biological aging, 
we tested whether organ e-ageotypes were associated with nine 
age-related disease states for which we had sufficient data in at least 
two independent cohorts; AD, atrial fibrillation, cerebrovascular dis-
ease, diabetes, heart attack, hypercholesterolaemia, hypertension, 
obesity and gait impairment. Organ e-ageotypes were associated with 
specific disease states with known high impact on their respective 
organs (23 of 117, 20%, associations significant in a meta-analysis after 
multiple testing correction, Extended Data Fig. 4d and Supplementary 
Table 9). The kidney ageotype was the most significantly associated 
with metabolic diseases (diabetes, obesity, hypercholesterolaemia 
and hypertension), the heart ageotype was the most significantly 
associated with heart diseases (atrial fibrillation and heart attack), 
the muscle ageotype was the most significantly associated with gait 
impairment, the brain ageotype was the most significantly associated 
with cerebrovascular disease and the organismal ageotype was the 
most significantly associated with AD. At the whole population level, 
the relationships between organ age gaps and disease showed the same 
trends as ageotypes, but more diseases were significantly associated 
with age gaps due to higher statistical power (65 of 117, 56%, statisti-
cally significant after multiple test correction, Extended Data Fig. 4e 
and Supplementary Table 10).

At the population level, the two most significant associations 
between disease and age gap were between the kidney age gap and 
metabolic disease traits. Individuals with hypertension had kidneys 
that were approximately one year older than their same-aged peers, 
while individuals with diabetes had kidneys approximately 1.3 years 
older (Fig. 2a,b and Supplementary Tables 8 and 10). The third and 
fourth top associations were between the heart age gap and the heart 
aging traits atrial fibrillation (2.8 years older) and heart attack (2.6 years 
older) (Fig. 2c,d). Overall, we found that certain diseases, such as heart 
attack and AD, were associated with accelerated aging in virtually all 
organs, while others had impacts on a particular organ or subset of 
organs (Extended Data Fig. 4e and Supplementary Table 10).

Kidney aging proteins were highly expressed by kidney cell types 
(Fig. 2e,f) and had known roles in kidney biology and disease. Using 
feature importance plots, the model identified renin (REN), a kidney 
enzyme known to regulate blood pressure via the renin-angiotensin 
pathway22, as an important protein in kidney aging. It also identified 
the putative longevity factor klotho (KL)23, as well as multiple proteins 
with unknown functions including uromodulin (UMOD) and kidney 
associated antigen 1 (KAAG1), as important kidney aging proteins. 
UMOD has been genetically linked to chronic kidney disease, where it 
is observed to have age-dependent effects24, and rare mutations are the 
major cause of autosomal dominant tubulointerstitial kidney disease25.
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Heart aging proteins were expressed primarily by cardiomyocytes 
(Fig. 2g,h) and had known roles in heart biology and disease. Pro-brain 
natriuretic peptide (NPPB), a negative regulator of blood pressure 

that increases in response to heart damage, and troponin T (TNNT2), 
a heart muscle protein involved in contraction, had the strongest 
weights in the heart aging model (Fig. 2g). They are both established 
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Fig. 1 | Plasma proteins can model organ aging. a, Study design to estimate 
organ-specific biological age. A gene was called organ-specific if its expression 
was four-fold higher in one organ compared to any other organ in GTEX bulk 
organ RNA-seq. This annotation was then mapped to the plasma proteome. 
Mutually exclusive organ-specific protein sets were used to train bagged LASSO 
chronological age predictors with data from 1,398 healthy individuals in the 
Knight-ADRC cohort. An ‘organismal’ model, which used the nonorgan-specific 
(organ shared) proteins, and a ‘conventional’ model, which used all proteins 
regardless of specificity, were also trained. Models were tested in four 
independent cohorts: Covance (n = 1,029), LonGenity (n = 962), SAMS (n = 192) 
and Stanford-ADRC (n = 420); models were also tested in the AD patients in  
the Knight-ADRC cohort (n = 1,677). To test the validity of organ aging models, 
the age gap was associated with multiple measures of health and disease. An 
example age prediction (predicted versus chronological age) and an example 

age gap versus phenotype association (age gap versus phenotype, standard 
boxplot) are shown. b, Individuals (ID) with the same conventional age gap can 
have different organ age gap profiles. Three example participants are shown. 
Bar represents mean age gap across n = 13 age gaps. c, Pairwise correlation of 
organ age gaps from n = 3,774 healthy participants across all cohorts. Distribution 
of all pairwise correlations is shown in inset histogram, with dotted line median 
correlation. The control age gap was highly correlated with the organismal age 
gap (r = 0.98), the sole outlier in the inset distribution plot. d, Identification of 
extreme agers, defined by a two standard deviation increase or decrease in at 
least one age gap. A representative kidney ager, heart ager and multi-organ ager 
are shown. e, All extreme agers were identified (23% of all n = 5,676 individuals) 
and clustered after setting age gaps below an absolute z-score of 2 to 0. The 
mean age gaps for all organs in the kidney agers, heart agers and multi-organ 
agers clusters are shown.
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clinical markers of acute heart failure26, and NPPB has been previously 
associated with heart attack risk27. This suggests the possibility of a 
link between subclinical heart disease and the ‘normal’ heart aging 
process, which should be investigated further with more detailed heart 
imaging and electrophysiology. Less well-characterized heart proteins 
include cardiac myosin light chain (MYL7), peroxidasin like (PXDNL) 
and bone morphogenetic protein 10 (BMP10). MYL7 is expressed by 
atrial cardiomyocytes and has recently become a promising target 
for hypertrophic cardiomyopathy28, suggesting that this could be a 
repurposing target for heart aging more generally.

Given the strong associations between heart aging traits and the heart 
age gap, we used longitudinal follow-up among healthy participants  
in the LonGenity cohort to test if organ age was significantly associ-
ated with future heart failure risk (Fig. 2i and Supplementary Table 11).  

We found that among people with no active disease or clinically abnor-
mal biomarkers at baseline, every 4.1 years of additional heart age  
(one standard deviation) conferred an almost 2.5-fold increased risk 
of heart failure over a 15-year follow-up (23% increased risk per year of 
heart aging, Fig. 2i). Age gaps from multiple other tissues, but not the 
conventional aging model, also trended towards significance.

We next tested the associations between organ age gaps and all-cause 
mortality. We found that the age gaps from 10 out of 11 organs, the 
organismal model and the conventional model were significantly 
associated with future risk of all-cause mortality after multiple test 
correction in the LonGenity cohort over 15 years of follow-up (Fig. 2j 
and Supplementary Table 12). A standard deviation increase (approxi-
mately four years of extra organ aging, Supplementary Table 8) in heart, 
adipose, liver, pancreas, brain, lung, immune or muscle age gap each 
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Fig. 2 | Organ age predicts health and disease. a, A cross-cohort meta- 
analysis of the association (linear regression) between the kidney age gap and 
hypertension (with hypertension n = 1,566, without n = 1,561). False discovery 
rate (FDR) P valuemeta = 4.05 × 10−40, effect sizemeta = 0.486. (Supplementary 
Table 10). b, As in a, kidney age gap versus diabetes (with diabetes n = 335, 
without n = 2,839). FDR P valuemeta = 1.15 × 10−24, effect sizemeta = 0.604. c, As in  
a, heart age gap versus atrial fibrillation or pacemaker (with atrial fibrillation 
n = 239, without n = 2,936). FDR P valuemeta = 5.32 × 10−21, effect sizemeta = 0.657.  
d, As in a, but for heart age gap versus heart attack (with heart attack history 
n = 280, without n = 2,904). FDR P valuemeta = 1.77 × 10−20, effect sizemeta = 0.615. 
e, All kidney aging model coefficients. x axis shows % of model instances in the 
bagged ensemble that include the protein. Size of bubbles is scaled by the 
absolute value of the mean model weight across model instances (absolute 

value of y axis) (Supplementary Table 7). f, Single-cell RNA expression of kidney51 
aging model proteins. Mean normalized expression values shown. g, As in  
e, but for the heart aging model. h, Human heart single-cell RNA expression of 
heart52. Mean normalized expression values shown. i, Cox proportional hazard 
regression analysis of the relationship between organ age gap and future 
congestive heart failure risk over 15 years of follow-up in the LonGenity cohort for 
those without heart failure history at baseline (n = 26 events in 812 individuals). 
FDR P valueHeart = 7.07 × 10−7, hazard ratioHeart = 2.37. (Supplementary Table 11).  
j, Cox proportional hazard regression analysis of the relationship between organ 
age gap and future mortality risk, over 15 years of follow-up in the LonGenity 
cohort (n = 173 events in 864 individuals). FDR P valueConventional = 2.27 × 10−10, 
hazard ratioConventional = 1.54. (Supplementary Table 12). All error bars represent 
95% confidence intervals.
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conferred between 15–50% increased all-cause mortality risk. These 
hazard ratios are a similar size to methylation-based mortality predic-
tors in independent aging cohorts over similar follow-up times, despite 
the fact that organ aging models are trained to predict chronological 
age instead of mortality directly (DNAm GrimAge hazard ratio = 1.3, 14 
year mortality follow-up29). Further, we found that for some organs, 
there was a nonlinear relationship between the age gap and mor-
tality risk (Supplementary Information, Supplementary Fig. 4 and  
Supplementary Table 13).

Finally, to better understand the relationship between organ age 
and additional markers of health and disease, we tested the associa-
tions between organ age gaps and 43 clinical biochemistry and cell 
count markers in the test cohort Covance (Extended Data Fig. 5 and 
Supplementary Fig. 5, see Supplement Information for additional  
discussion). We also used these markers to calculate Phenotypic age14 
(PhenoAge), a clinical biochemistry-based aging clock which predicts 
mortality and morbidity risk, for all participants in Covance (Extended 
Data Fig. 5a). We found that the PhenoAge age gap was significantly 
correlated with multiple organ age gaps, but only a small portion of 
the variance in any model was explained by another (Extended Data  
Fig. 5b).

We found 226 out of 559 (40%) associations between organ age gaps 
and clinical biochemistry markers were significant after multiple test-
ing correction (Extended Data Fig. 5c and Supplementary Table 14). The 
strongest associations included associations between liver age gap and 
blood AST:ALT ratio, a clinical marker of liver health and function that 
is known to change with age (adjusted Pearson r = 0.25, q = 6.13 × 10−17), 
and between kidney age gap and serum creatinine, the standard clinical 
marker of kidney function (adjusted Pearson r = 0.23, q = 1.65 × 10−16). 
While these results are highly significant, they only partially explain 
the relationship between organ age gaps and disease phenotypes. 
Even after correcting for estimated glomerular filtration rate (eGFR), 
the kidney age gap is still significantly associated with hypertension 
and diabetes (Supplementary Fig. 6).

Collectively, organ age gap associations with disease and blood bio-
chemistry demonstrate that aging models derived from organ-specific 
plasma proteins capture disease-relevant heterogeneity of aging within 
and across individuals, which is not captured by other aging clocks or 
clinical markers.

Brain aging in cognitive decline and AD
Although the largest risk factor for neurodegenerative diseases is age, 
little is known about the contribution of molecular brain aging to dis-
ease. The brain age gap correlated significantly with AD in held-out 
participants in the Knight-ADRC, but did not replicate in the Stanford 
Alzheimer’s Disease Research Center (Stanford-ADRC) (Supplemen-
tary Table 10). Therefore, to better understand how underlying pro-
teins contributed to the brain aging model’s predictive abilities for 
brain aging phenotypes, we developed the feature importance for 
biological aging (FIBA) algorithm, which uses feature permutation to 
generate a per-protein importance score for both chronological and 
biological age, as defined by a particular age-related trait (Extended 
Data Fig. 6a and Methods). We applied FIBA to the brain age model 
using the trait global clinical dementia rating (CDRGLOB) in the 
Knight-ADRC cohort to understand how brain proteins contributed 
to the association between the age gap and cognitive decline. We 
observed that some proteins, such as complexins, increased both 
the model age prediction accuracy and the age gap association with 
dementia severity (FIBA+), while others decreased the age gap asso-
ciation with dementia severity (FIBA−) (Fig. 3a and Supplementary  
Table 15).

We used this information to train a second-generation brain aging 
model, which we term the CognitionBrain aging model, by only using 
CDRGLOB FIBA+ brain-specific proteins (Fig. 3b and Supplementary 

Tables 16–19). This method is similar to second-generation methylation 
aging clocks which are trained jointly on chronological age and aging 
phenotypes14. We found that the CognitionBrain age gap had a stronger 
association with AD than the first-generation brain age gap and the con-
ventional age gap in the Knight-ADRC cohort (Extended Data Fig. 6b). 
This result replicated in the independent test cohort Stanford-ADRC. 
In a meta-analysis, individuals with AD had approximately two years of 
additional CognitionBrain aging (P valuemeta = 9.23 × 10−36) compared 
to individuals without AD (Fig. 3c and Supplementary Table 20). The 
CognitionBrain age gap was also significantly associated with risk of 
future dementia progression in both ADRC cohorts. A standard devia-
tion increase in the CognitionBrain age gap conferred a 34% increased 
risk (P valuemeta = 1.03 × 10−15) of a clinically relevant two-point increase 
in the Clinical Dementia Rating Sum-of-Boxes score (CDR-SB) within five 
years (Supplementary Table 21). We also tested associations between 
CognitionBrain age gap and changes in brain volume using matched 
volumetric MRI in the Stanford-ADRC and Stanford Aging and Memory 
Study (SAMS) cohorts (Extended Data Fig. 6c, Supplementary Table 22, 
Supplementary Fig. 7 and Supplementary Information), and found 
CognitionBrain age gap significantly predicted brain volume in multiple 
AD-sensitive regions.

Given its associations with AD status, cognitive decline risk and brain 
volume, we asked whether the CognitionBrain aging model could be 
used in combination with other biomarkers of AD and predictors of cog-
nitive decline, including plasma pTau-181 (ref. 5) and an AD polygenic 
risk score30, to better stratify AD patients for future clinical outcomes. 
We tested a multivariate dementia progression cox proportional hazard 
model with baseline CDRGLOB, age, CognitionBrain age gap, plasma 
pTau-181 and an AD polygenic risk score (Fig. 3d) in the Stanford-ADRC. 
We found that the CognitionBrain age gap had the highest adjusted haz-
ard ratio (hazard ratio = 1.57; P = 8.95 × 10−3) of the AD biomarkers, and 
that both plasma pTau-181 and CognitionBrain age gap were additive 
for risk prediction (estimated combined hazard ratio = 2.08, Fig. 3e). 
Individuals with fluid biomarker levels two standard deviations above 
average had a 75% probability of dementia progression, while individu-
als with levels two standard deviations below average had under a 10% 
probability of dementia progression within five years. Pairwise cor-
relation between all biomarkers also showed that the CognitionBrain 
age gap was largely independent from other biomarkers (Extended 
Data Fig. 6d). Taken together, these data suggest CognitionBrain age 
gap provides molecular information about brain aging not captured 
by other approaches.

Given the significant associations between the CognitionBrain 
age model and several brain aging metrics, we sought to uncover 
new insights into brain aging mechanisms by examining the proteins 
that make up the model. A total of 47 of the 49 model proteins were 
detectable in human brain single-cell RNA sequencing (scRNA-seq) 
data and most could be mapped to neurons and glia with high speci-
ficity (Fig. 3f). Proteins with the largest positive weights in the model 
(Fig. 3c) included the synaptic proteins complexin 1 (CPLX1), com-
plexin 2 (CPLX2) and neurexin 3 (NRXN3)—which all have genetic links 
to cognition and AD31–33—and stathmin 2 (STMN2) and olfactomedin 1  
(OLFM1)—which are involved in neurite outgrowth and axon growth 
cone collapse34,35. Proteins with large negative weights in the model 
such as Aldolase Fructose-Bisphosphate C (ALDOC), neuronal pen-
traxin receptor (NPTXR), carnosine dipeptidase 1 (CNDP1) and Lanc Like 
Glutathione S-Transferase 1 (LANCL1). ALDOC, NPTXR and CNDP1 are 
expressed in astrocytes, neurons and oligodendrocytes, respectively 
(Fig. 3f) and have been proposed as CSF biomarkers for AD36,37. LANCL1, 
which is primarily expressed in oligodendrocytes (Fig. 3f), has been 
shown to be crucial for neuronal health in mouse models38. The model 
also implicated alterations in the glycosylated extracellular matrix 
through the proteins tenascin R (TNR), neurocan (NCAN) and heparan 
sulfate-glucosamine 3-sulfotransferase 4 (HS3ST4), underlining the 
role of the extracellular matrix in brain aging.
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We assessed the highest weighted CognitionBrain proteins for their 
changes with age and AD in the Knight-ADRC and Stanford-ADRC 
cohorts, as well as their changes with AD in brain tissue at the protein39, 
bulk RNA39 and single-cell RNA levels from publicly available datasets 
(Fig. 3g). We observed a consistent pattern of decreases in AD brain 
tissue and increases in the blood with age and AD. This suggests that 
the increase of synapse and neurite growth related protein levels in 
the blood could reflect a loss or alteration in protein processing and 
subsequent shedding of these crucial factors in the brain. A similar 
inverse relationship between fluid and brain protein levels is seen with 
amyloid beta, whereby lower CSF AB42 is correlated with increased AB 
plaques in the brain40.

Organ aging in cognitive decline and AD
We next sought to apply the FIBA optimization framework to other 
organ aging models to understand how the aging of other organs 
contributes to brain aging phenotypes (Fig. 4a). As with the brain 
aging model, we applied CDRGLOB FIBA to all aging models using 
the Knight-ADRC (Extended Data Figs. 7 and 8). The CognitionAr-
tery, CognitionBrain, CognitionOrganismal and CognitionPancreas 
age gap associations with AD replicated in both ADRCs (Fig. 4b and 
Extended Data Fig. 8c,d), so we focused on these four aging models 
to understand peripheral versus central contributions to cognitive  
decline.
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Fig. 3 | Brain aging in cognitive decline and AD. a, FIBA was used to test the 
contributions of brain aging proteins to associations between brain age gap 
and global clinical dementia rating (CDRGLOB) ( y axis) or chronological age 
prediction accuracy (x axis). Permutation of some proteins reduced the brain 
age gap association with CDRGLOB (FIBA+), while permutation of others 
strengthened it (FIBA−). FIBA+ brain aging proteins were used to train a 
cognition-optimized brain aging model (CognitionBrain) from cognitively 
unimpaired individuals in Knight-ADRC. (Supplementary Table 15). FI, feature 
importance. b, CognitionBrain aging model. Age estimation in all cohorts (ii) 
and bootstrap aging model coefficients (ii). Size of bubbles is scaled by the 
absolute value of the mean model weight. (Supplementary Table 15). c, A cross- 
cohort meta-analysis of the association (linear regression) between the 
CognitionBrain age gap and AD diagnosis (with AD n = 1,441, without n = 2,052). 
P valuemeta = 9.23 × 10−36, effect sizemeta = 0.448. (Supplementary Table 15).  
d, A multivariate cox proportional hazard model of future dementia 

progression risk over five years in Stanford-ADRC (n = 48 events in 325 
individuals). P valueCognitionBrain = 8.95 × 10−3, hazard ratioCongitionBrain = 1.57. e, Kaplan– 
Meier curve for the CPH model in f. Risk of dementia progression for different 
levels of CognitionBrain AgeGap and PlasmaPTau181 while all other covariates 
are held constant. Displayed hazard ratio is a first-order estimate of the combined 
hazard ratio. f, Human brain single-cell RNA expression53 of CognitionBrain 
aging proteins. Mean normalized expression values shown. Top model proteins 
and proteins in the GO:CC synapse pathway are highlighted. g, Changes with 
age and AD of top CognitionBrain proteins across tissues (plasma and brain) 
and molecular layers (protein, bulk RNAand single-cell RNA). Changes in plasma 
were assessed using linear models from the Stanford- and Knight- ADRC cohorts 
(n = 3,226 individuals). Statistics for brain tissue were pulled from refs. 39,53. 
Proteins with significant changes across tissues shown. Asterisks represent 
FDR-adjusted P value thresholds: *q < 0.05; **q < 0.01; ***q < 0.001. All error bars 
represent 95% confidence intervals. NS, not significant.
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To understand the full temporal sequence of cognitive decline, we 
tested if age gaps were associated with cognition in cognitively nor-
mal individuals using a composite score of overall cognition in the 
LonGenity cohort. The decreased cognitive function was significantly 
associated with all four age gaps (Fig. 4c, Extended Data Fig. 9a and Sup-
plementary Table 23). We replicated these associations in the healthy 
SAMS cohort, where we observed that individuals with worse memory 
recall had higher CognitionOrganismal and CognitionBrain age gaps 
(Extended Data Fig. 9b and Supplementary Table 23).

We next tested associations between age gaps and risk of transi-
tion from cognitively normal to mild cognitive impairment (MCI) 

(CDR-Global Score 0 to greater than or equal to 0.5) using 15 years 
of clinical cognitive assessment in the Knight-ADRC (Fig. 4d and 
Supplementary Table 24). We found that the CognitionOrganismal 
(hazard ratio = 1.17, P = 0.02) and CognitionArtery (hazard ratio = 1.15, 
P = 0.04) age gaps significantly predicted conversion to MCI, while 
the CognitionBrain (hazard ratio = 1.11, P = 0.14) trended towards 
significance (Fig. 4d). The prediction of future conversion to MCI 
over 15 years is unlikely to be explained by undiagnosed cognitive 
impairment, placing changes detected by these aging models early 
in the causal chain of cognitive decline and neurodegenerative  
disease.
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Fig. 4 | Organ aging in cognitive decline and AD. a, CDRGLOB FIBA was applied 
to all organ aging models using the Knight-ADRC (K-ADRC) to understand 
body-wide contributions to brain aging phenotypes (Supplementary Table 15). 
b, Associations (linear regression) between AD and the CognitionArtery  
(P valuemeta = 6.02 × 10−16), CognitionBrain (P valuemeta = 9.23 × 10−36), 
CognitionOrganismal (P valuemeta = 2.03 × 10−28) and CognitionPancreas  
(P valuemeta = 1.11 × 10−21), age gaps replicated in the Stanford-ADRC (S-ADRC) 
(Supplementary Table 20). c, Associations (linear regression) between organ 
age gaps and a composite score of overall cognition in the LonGenity cohort 
(n = 888). P valueCognitionOrganismal = 9.58 × 10−8, P valueCognitionBrain = 4.24 × 10−7,  
P valueCognitionArtery = 2.46 × 10−3 and P valueCognitionPancreas = 4.8 × 10−3 (Supplementary 
Table 23). d, Cox proportional hazard regression analysis, organ age gap and risk 
of conversion from cognitively normal to cognitive impairment (CDR-Global 
0 → > = 0.5) over 15 years follow-up in the Knight-ADRC (n = 226 events  
in 940 individuals). P valueCognitionOrganismal = 0.02, P valueCognitionArtery = 0.04,  
P valueCognitionBrain = 0.14 and P valueCognitionPancreas = 0.26 (Supplementary Table 24). 
e, Aging trajectories of top ten weighted model proteins in healthy individuals 

(n = 3,774) across the four study cohorts. Top CognitionOrganismal proteins 
change with age earliest and at the highest rate. f, Changes with age of top 
cognition-optimized aging model proteins in healthy individuals (n = 3,774) 
across the four study cohorts. Age effect and negative log10 FDR-corrected  
P values from a linear model are shown. Size of bubbles is scaled by the absolute 
value of the average model weight (Supplementary Table 25). g, Left, human 
brain vasculature single-cell RNA expression42 of top five CognitionOrganismal 
aging proteins. Mean normalized expression values and fraction of cells 
expressing the genes are shown. Right, pericytes, smooth muscle cells (SMC) 
and fibroblasts are lost in AD. Asterisks represent P value thresholds from a two- 
tailed t-test: *P < 0.05; **P < 0.01. h, Model of age-related cellular degradation  
of the human brain vasculature reflected in the plasma proteome. i, StringDB 
protein–protein interaction network of CognitionArtery and interacting 
proteins (score ≥ 0.4), and related pathway enrichments (percent overlap 
between proteins and pathway gene sets). j, Model of age-related vascular 
calcification and extracellular matrix alterations reflected in the plasma 
proteome. All error bars represent 95% confidence intervals.
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To understand the biological processes and proteins involved in 
early cognitive decline, we plotted the aging trajectory of all model 
proteins and found that highly weighted CognitionOrganismal and  
CognitionArtery proteins changed with age earlier and at a faster rate 
than CognitionBrain and CognitionPancreas proteins (Fig. 4e). The 
earliest changes occurred in a highly correlated cluster of Cognition-
Organismal proteins: pleiotrophin (PTN), transgelin (TAGLN), WNT1 
Inducible Signalling Pathway Protein 2 (WISP2), CUB Domain Contain-
ing Protein 1 (CDCP1) and chordin like 1 (CHRDL1; Fig. 4f). Though not 
organ-specific, these genes were all highly expressed in the arteries 
and brain (Extended Data Fig. 10a). Single-cell expression of these 
genes in human vasculature41,42, indicated these genes are expressed 
primarily by smooth muscle cells, pericytes and fibroblasts (Fig. 4g 
and Extended Data Fig. 10b). Loss of brain pericytes, smooth muscle 
cells and perivascular fibroblasts is associated with age and AD42,43 
(Fig. 4g), and pericyte-specific deletion of PTN renders neurons prone 
to ischaemic and excitotoxic injury44. This early changing signature 
in the CognitionOrganismal model may thus represent degenerative 
changes to the cellular integrity of the brain vasculature and the loss 
of its neuroprotective functions with aging (Fig. 4h).

The five proteins composing the CognitionArtery model, TNF recep-
tor superfamily member 11b (TNFRSF11B), sclerostin (SOST), melano-
cortin 2 receptor accessory protein (MRAP2), frizzled related protein 
(FRZB) and matrix gla protein (MGP) were also primarily expressed in 
vascular smooth muscle cells, pericytes and fibroblasts41 (Extended 
Data Fig. 10c) and are all strongly implicated in vascular calcification. 
TNFRSF11B/APOE double knockout mice show increased calcium depo-
sition by vascular smooth muscle cells45, MGP deficiency-causing muta-
tions in humans leads to Keutel syndrome, a disease characterized by 
soft tissue calcification46, and SOST and FRZB are negative regulators of 
WNT signalling that drive calcification and are increased in the plasma 
of people with vascular calcification47,48. We found that CognitionArtery 
proteins and the vascular signature in the CognitionOrganismal pro-
teins form an interaction network using StringDB (Fig. 4i). Additional 
model proteins in this interaction network included integrin binding 
sialoprotein (IBSP), osteoglycin (OGN), collagen type III alpha 1 chain 
(COL3A1), proline rich and gla domain 1 (PRRG1) and growth arrest spe-
cific 6 (GAS6). In total, this protein network is involved in extracellular 
matrix, cartilage development and osteoblast signalling pathways, and 
implicates vascular calcification and extracellular matrix alterations as 
a major component of aging that underlies the early phases of cognitive 
decline and neurodegenerative disease (Fig. 4i,j).

Discussion
Our study introduces a framework for modelling organ health and 
biological aging using plasma proteomics. The resulting organ aging 
models can predict mortality, organ-specific functional decline, disease 
risk and progression and aging heterogeneity between tissues. This 
approach is minimally invasive, requiring only a small blood sample, 
and could be easily applied to understand the effects of health interven-
tions, such as lifestyle modifications and drug therapies, at the organ 
level. We provide a large and comprehensive resource of organ aging 
information in nearly 6,000 individuals spanning the adult lifespan 
and multiple age-related disease states, and we have developed an 
easy-to-use python package called organage to calculate the organ ages 
of any plasma proteomics sample from the SomaScan assay.

There are many future directions for this work. While we have 
shown that plasma proteomic organ aging models are distinct from 
previous proteomics models, clinical chemistry-based models and 
imaging-based models, future studies should assess how proteomic 
organ aging relates to other molecular measures of aging and disease 
such as methylation aging clocks and disease-specific prediction 
models. Although we were unable to perform direct comparisons, 
our models predict mortality with comparable effect sizes to models 

trained specifically to predict mortality and heart disease in independ-
ent cohorts49,50. We demonstrated that our approach added increased 
value to established biomarkers of AD, and we expect that multimodal 
aging and disease prediction models may have similar impacts in other 
diseases.

We present one of the largest studies of plasma proteome aging to 
date, but as larger plasma proteomics resources emerge, the power 
of this approach will further increase. Our current models rely on 
approximately 5,000 proteins measured with the SomaScan assay, 
but the approach is platform agnostic, and we expect that even more 
biological information could be gained with additional proteomic 
coverage, including cell and organ-specific splice isoforms and post-
translational modifications. The rapidly growing number of human 
gene expression maps at single-cell resolution41 will help further 
refine organ and cell-type specific aging models and allow for a com-
prehensive understanding of organismal physiology based on the  
plasma proteome.

Another question for future studies is which organ-specific aging 
proteins are causal drivers of aging, given that multiple plasma proteins 
have been shown to directly modulate aging phenotypes8. Of note, 
many of the proteins with large weights in the models, such as KLOTHO, 
UMOD, MYL7, CPLX1, CPLX2 and NRXN3, have genetic associations 
with diseases of their respective organs or are validated therapeutic 
targets, suggesting a potential causal role of these proteins in organ 
aging. Future genomic studies should further investigate the genetic 
architecture of organ aging clocks and their relationships to disease 
using GWAS and post-GWAS methods such as colocalization and Men-
delian randomization.

This study has multiple limitations. First, we have limited the study 
to a subset of organs to avoid over-interpretation of models for which 
we lacked convincing organ-relevant aging phenotypes. It remains 
unclear if this approach will generalize to all organs in the body, such 
as reproductive organs, and future studies should address this ques-
tion. Second, we observe many instances of nonlinear dynamics in 
the plasma proteome and in aging phenotypes. While our current 
models serve as a proof of principle for this approach, since they are 
trained and evaluated largely on older adults, caution should be used 
when applying them to young people. More sophisticated nonlinear 
machine learning methods such as neural networks or random forests 
may further improve the accuracy and generalizability of this approach 
in the future. Lastly, the models were trained and tested on American 
and Caucasian-skewed cohorts, and future studies should assess the 
generalizability of the findings in more ethnically and geographically 
diverse populations.

Altogether, we show that large-scale plasma proteomics and machine 
learning can be leveraged to noninvasively measure organ health and 
aging in living people. We show that biologically motivated model-
ling, in which we use sets of organ-specific proteins and the FIBA algo-
rithm to further subset to physiological age-related proteins, enables 
deconvolution of the different rates of aging within an individual and 
measurement of aging at organ-level resolution.
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Methods

Human cohorts
Covance. Details of the Covance study have been previously pub-
lished54. Briefly, Covance is a multi-site cross-sectional study of health 
across the lifespan collected at five hospital sites in the United States in 
2008. A total of 1,028 subjects were included in analyses for this study. 
Cohort demographic characteristics are summarized in Supplementary 
Table 1. Exclusion criteria for the study included uncontrolled hyperten-
sion, self-reported treatment for a malignancy other than squamous 
cell or basal cell carcinoma of the skin in the last two years, self-reported 
pregnancy, self-reported chronic infection, autoimmune condition or 
other inflammatory condition, self-reported chronic kidney or liver 
disease, chronic heart failure or diagnosed with myocardial infarction 
in the last three months, self-reported diabetes (HbA1c > 8% if known), 
self-reported acute bacterial or viral infection in the past 24 h or a tem-
perature greater than 38 °C within 24 h of enrolment, self-reported 
participation in any therapeutic study within 14 days before blood 
sampling and taking more than 20 mg of prednisone or related drugs.

Clinical blood chemistry was performed on the same samples, includ-
ing a complete blood count and comprehensive metabolic panel, lipid 
panel and liver function tests. Basic physical workup (blood pressure, 
pulse and respirations) was also collected. Lifestyle information was 
also collected from all participants using a survey which asked about 
smoking, alcohol, exercise, habits and frequency of consumption of 
different meats and vegetables.

LonGenity. Details of the LonGenity cohort have been previously pub-
lished55,56. Briefly, LonGenity is an ongoing longitudinal study initiated 
in 2008 and designed to identify biological factors that contribute to 
healthy aging. The LonGenity study enrols older adults of Ashkenazi 
Jewish descent with an age range of 65–94 years at a baseline. Approxi-
mately half of the cohort consists of offspring of parents with excep-
tional longevity, defined as having at least one parent who survived 
to 95 years of age. The other half of the cohort includes offspring of 
parents with usual survival, defined as not having a parental history of 
exceptional longevity. A total of 962 subjects were included in analyses 
for this study. The cohort characteristics are summarized in Supple-
mentary Table 1. LonGenity participants are thoroughly characterized 
demographically and phenotypically at annual visits that include col-
lection of medical history and physical and detailed neurocognitive 
assessments (described in detail below). The LonGenity study was 
approved by the institutional review board (IRB) at the Albert Einstein 
College of Medicine.

Subjects in the LonGenity cohort underwent extensive cognitive 
examination. The Overall Cognition Composite score was determined 
by the relative performance of the subject in the Free and Cued Selec-
tive Reminding Test, WMS-R Logical Memory I, RBANS Figure Copy, 
RBANS Figure Recall, WAIS-III Digit Span, WAIS-III Digit Symbol Cod-
ing, Phonemic Fluency (FAS), Categorical Fluency, Trail Making Test 
A and Trail Making Test B. For each task a standardized score (z) was 
calculated based on the population. The z-score for each task was then 
combined to create the overall cognition composite.

Stanford Alzheimer’s Disease Research Center. Samples were  
acquired through the National Institute on Aging (NIA)-funded  
Stanford Alzheimer’s Disease Research Center (Stanford-ADRC). The 
Stanford-ADRC cohort is a longitudinal observational study of clini-
cal dementia subjects and age-sex-matched nondemented subjects. 
The collection of plasma was approved by the Institutional Review 
Board of Stanford University and written consent was obtained from 
all subjects. Blood collection and processing were done according to a 
rigorous standardized protocol to minimize variation associated with 
blood draw and blood processing. Briefly, about 10 cc of whole blood 
was collected in a vacutainer ethylenediaminetetraacetic acid (EDTA) 

tube (Becton Dickinson vacutainer EDTA tube) and spun at 3,000 RPM 
for 10 mins to separate out plasma, leaving 1 cm of plasma above the 
buffy coat and taking care not to disturb the buffy coat to circumvent 
cell contamination. Plasma processing times averaged approximately 
one hour from the time of the blood draw to the time of freezing and 
storage. All blood draws were done in the morning to minimize the 
impact of circadian rhythm on protein concentrations. Plasma pTau-
181 levels were measured using the fully automated Lumipulse G 1200 
platform (Fujirebio US, Inc, Malvern, PA) by experimenters blind to 
diagnostic information, as previously described57.

All healthy control participants were deemed cognitively unimpaired 
during a clinical consensus conference that included board-certified 
neurologists and neuropsychologists. Cognitively impaired subjects 
underwent Clinical Dementia Rating and standardized neurological and 
neuropsychological assessments to determine cognitive and diagnostic 
status, including procedures of the National Alzheimer’s Coordinating 
Center (https://naccdata.org/). Cognitive status was determined in a 
clinical consensus conference that included neurologists and neuropsy-
chologists. All participants were free from acute infectious diseases 
and in good physical condition. A total of 409 subjects were included 
in analyses for this study. Cohort demographics and clinical diagnostic 
categories are summarized in Supplementary Table 1.

Stanford Aging Memory Study. SAMS is an ongoing longitudinal study 
of healthy aging. Blood collection and processing were done by the 
same team and using the same protocol as in Stanford-ADRC. Neurologi-
cal and neuropsychological assessments were performed by the same 
team and using the same protocol as in Stanford-ADRC. All SAMS partici-
pants had CDR = 0 and a neuropsychological test score within the nor-
mal range; all SAMS participants were deemed cognitively unimpaired 
during a clinical consensus conference that included neurologists and 
neuropsychologists. A total of 192 cognitively SAMS participants were 
included in the present study. The collection of plasma was approved 
by the Institutional Review Board of Stanford University and written 
consent was obtained from all subjects. Cohort demographics and 
clinical diagnostic categories are summarized in Supplementary Table 1.

Knight Alzheimer’s Disease Research Center. The Knight-ADRC 
cohort is an NIA-funded longitudinal observational study of clinical 
dementia subjects and age-matched controls. Research participants at 
the Knight-ADRC undergo longitudinal cognitive, neuropsychologic, 
imaging and biomarker assessments including Clinical Dementia Rating 
(CDR). Among individuals with CSF and plasma data, AD cases corre-
sponded to those with a diagnosis of dementia of the Alzheimer’s type 
(DAT) using criteria equivalent to the National Institute of Neurological 
and Communication Disorders and Stroke-Alzheimer’s Disease and 
Related Disorders Association for probable AD58, and AD severity was 
determined using the Clinical Dementia Rating (CDR)59 at the time of 
lumbar puncture (for CSF samples) or blood draw (for plasma sam-
ples). Controls received the same assessment as the cases but were 
nondemented (CDR = 0). Blood samples were collected in EDTA tubes 
(Becton Dickinson vacutainer purple top) at the visit time, immediately 
centrifuged at 1,500g for 10 min, aliquoted on two-dimensional bar-
coded Micronic tubes (200 ul per aliquot) and stored at −80 °C. The 
plasma was stored in monitored −80 °C freezer until it was pulled and 
sent to Somalogic for data generation. The Institutional Review Board 
of Washington University School of Medicine in St. Louis approved the 
study and research was performed in accordance with the approved 
protocols. A total of 3,075 participants were included in the present 
study. Cohort demographics and clinical diagnostic categories are 
summarized in Supplementary Table 1.

Proteomics data acquisition and quality control
SomaScan assay. We used the SomaLogic SomaScan assay, which 
uses slow off-rate modified DNA aptamers (SOMAmers) to bind target 

https://naccdata.org/
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proteins with high specificity, to quantify the relative concentration 
of thousands of human proteins in plasma. The assay has been used in 
hundreds of studies and described in detail previously54,60. Two versions 
of the SomaScan assay were used in this study. The v.4 assay (4,979 
protein targets) was applied to the Covance and LonGenity cohorts, 
and the v.4.1 assay (7,288 protein targets) was applied to the SAMS, 
Stanford-ADRC and Knight-ADRC cohorts. All v.4 targets are included 
in the v.4.1 assay based on SeqId, and only the v.4 targets were analysed 
for this study.

Somalogic normalization and quality control. Standard Somalogic 
normalization, calibration and quality control were performed on all 
samples54,61–63. Briefly, pooled reference standards and buffer standards 
are included on each plate to control for batch effects during assay 
quantification. Samples are normalized within and across plates using 
median signal intensities in reference standards to control for both 
within-plate and across-plate technical variation. Samples are further 
normalized to a pooled reference using an adaptive maximum likeli-
hood procedure. Samples are additionally flagged by SomaLogic if sig-
nal intensities deviated significantly from the expected range and these 
samples were excluded from analysis. The resulting expression values 
are the provided data from Somalogic and are considered ‘raw’ data.

The v.4 → v.4.1 multiplication scaling factors provided by Somalogic 
were applied to the raw v.4 assay expression values to allow for direct 
comparisons across two v.4 and three v.4.1 cohorts. We discarded pro-
teins for which the correlation was low between assay versions v.4 and 
v.4.1 and low estimated replicate coefficient of variation64 (Supplemen-
tary Fig. 1). This resulted in 4,778 proteins for downstream analysis. 
The raw data were log10 transformed before analysis, as the assay has 
an expected log-normal distribution.

Somalogic probe validation. Somalogic has analysed close to 1 million 
samples with their technology at the time of this publication, result-
ing in some 700 publications (https://somalogic.com/publications/). 
There is minimal replicate sample variability64,65 (coefficient of varia-
tion, CV). The majority of SomaScan protein measurements are stable 
and a subset of proteins have been validated as laboratory-developed 
tests (LDTs), and have been delivered out of Somalogic’s CLIA-certified 
laboratory to physicians and patients in the context of medical  
management66.
1. All 7,524 probes on the assay undergo rigorous primary validation 

of binding and sensitivity to the target protein.
a. Determination of equilibrium binding affinity dissociation constant 

(KD).
b. Pull down assay of cognate protein from buffer.
c. Demonstration of dose-responsive in the SomaScan Assay.
d. Estimation of endogenous cognate protein signals in human plasma 

above limit of detection.
2. A total of 70% of their probes have at least one orthogonal source of 

validation (Supplementary Fig. 1b) from: 
a. Mass spectrometry: approximately 900 probes which measure 

mostly high and mid abundance proteins (due to sensitivity limita-
tions of mass spectrometry), have been confirmed with either data 
dependent acquisition (DDA) or multiple reaction monitoring (MRM) 
mass spectrometry.

b. Antibody: approximately 390 probe measurements correlate with 
antibody based measurements.

c. Cis-protein quantitative trait loci (pQTL): approximately 2,860 probe 
measurements are associated with genetic variation in the cognate 
protein-encoding gene.

d. Absence of binding with nearest neighbour: approximately 1,150 
probes do not detect signal from the protein that is most closely 
related in sequence to the cognate protein.

e. Correlation with RNA: approximately 1,460 probe measurements 
correlate with mRNA levels in cell lines.

Identification of organ-enriched plasma proteins
We used the Gene Tissue Expression Atlas (GTEx) human tissue bulk 
RNA-seq database18 to identify organ-enriched genes and plasma pro-
teins (Extended Data Fig. 1). Tissue gene expression data were normal-
ized using the DESeq2 (ref. 67) R package. We define organ-enriched 
genes in accordance with the definition proposed by the Human Protein 
Atlas19: a gene is enriched if it is expressed at least four times higher in 
a single organ compared to any other organ. Within GTEx, we grouped 
tissues of the same organ together, such that a gene’s expression level 
for a given organ was the maximum gene expression value among 
its subtissues. For example, all GTEx brain regions were considered 
subtissues of the brain organ. We define the immune organ, which is 
not a GTEx tissue, as expression in the blood and the spleen tissues. 
Organ-enriched genes were mapped to the 4,979 plasma proteins 
quantified in the v.4 SomaScan assay.

Bootstrap aggregated LASSO aging models
To estimate biological age using the plasma proteome, we built LASSO 
regression-based chronological age predictors (Extended Data Figs. 2–3 
and Supplementary Fig. 3) using the scikit-learn68 python package. 
We employed bootstrap aggregation for model training. Briefly, we 
resampled with replacement to generate 500 bootstrap samples of our 
training data (Knight-ADRC: 1,398 healthy individuals). Each bootstrap 
sample was the same size as the training data, 1,398. For each bootstrap 
sample, we trained a model on z-scored log10 normalized protein expres-
sion values with sex (F = 1, M = 0) as a covariate to predict chronological 
age. For model training, we performed hyperparameter tuning of the 
L1 regularization parameter, λ, with five-fold cross validation using the 
GridSearchCV function from scikit-learn. To reduce model complexity 
and avoid overfitting, we selected the highest λ value that retained 95% 
performance relative to the best model. The mean predicted age from 
all 500 bootstrap models was used.

We trained our models in 1,398 cognitively unimpaired partici-
pants from the Knight-ADRC cohort. We evaluated their perfor-
mance in the Covance (n = 1,029), LonGenity (n = 962), SAMS (n = 192), 
Stanford-ADRC (n = 409) cohorts and Knight-ADRC cognitively 
impaired subjects (n = 1,677). Models that included sex as a covariate 
and models trained separately on males and females showed similar 
age prediction performance on both sexes, so we controlled for sex 
to extend the generality of the findings and reduce analytic complex-
ity (Supplementary Fig. 3a–c). There was a correlation between age 
estimation accuracy and the number of proteins used as input to each 
model (Supplementary Fig. 3c,d). However, several models with few 
protein inputs, such as the adipose (five proteins) and heart models 
(ten proteins), predicted chronological age better than models with 
more protein inputs (Extended Data Fig. 3).

Age gap calculation and independent validation
To calculate each individual sample age gap for each aging model, 
we performed the following steps for each aging model. We fit a local 
regression between predicted and chronological age using the low-
ess function from the statsmodels69 python package with fraction 
parameter set to 2/3 to estimate the true population mean (Supple-
mentary Fig. 3e). A local regression is used in place of a simple linear 
regression because of extensive evidence that the plasma proteome 
changes nonlinearly with age1, which we see replicated in all five 
cohorts (Supplementary Fig. 8). Individual sample age gaps were then 
calculated as the difference between predicted age and the lowess 
regression estimate of the population mean. Age gaps were calculated 
separately per cohort to account for cohort differences (Supplemen-
tary Fig. 3e). Age gaps were z-scored per aging model to account for 
the differences in model variability (Supplementary Fig. 3f). This 
allowed for direct comparison between organ age gaps in downstream  
analyses.

https://somalogic.com/publications/


Phenotypic age calculation
We used the published coefficients14 to calculate the phenotypic age of 
participants in the Covance cohort using albumin, creatinine, glucose, 
c-reactive protein, % lymphocyte, mean cell volume, red cell distribu-
tion width, alkaline phosphatase, white blood cell count and age.

Statistical methods to associate organ age gaps with age-related 
phenotypes
Study design. A flowchart of the study design is provided in Supplemen-
tary Fig. 2. Each box in the flowchart was treated as a separate analysis for 
the purpose of multiple testing correction. Multiple testing correction 
was done using the Benjamani–Hochberg method and the significance 
threshold was a 5% false discovery rate. To summarize the flowchart, the 
age gaps from all 11 organ aging models, the organismal model and the 
conventional model were used in the following analyses: prediction of 
future mortality in the LonGenity cohort with a cox proportional hazards 
model (CPH) (12 of 13 tests significant after FDR), prediction of future 
heart disease in the LonGenity cohort with a CPH (12 of 13 tests signifi-
cant after FDR), association with nine diseases of aging in a cross-cohort 
meta-analysis (66 of 17 tests significant after FDR) and association with 
42 clinical biochemistry markers in the Covance cohort (237 of 588 
tests significant after FDR, PhenoAge gap also tested for 14 × 42 tests).

The 12 cognition-optimized models (11 organs + organismal model) 
were tested on additional brain aging phenotypes. The CognitionBrain 
age gap only was tested for association with 65 MRI brain volumes and 
an MRI-based brain age gap (40 of 66 tests significant after FDR). The 
CognitionBrain age gap only was included in a multivariate CPH model 
of dementia progression in AD (1 of 1 tests significant, no FDR). The 
12 cognition-optimized model age gaps were tested for association 
with AD status in the Knight-ADRC (12 of 12 tests significant after FDR), 
then a replication analysis was performed in Stanford-ADRC (4 of 12 
tests significant at P < 0.05, no FDR). The four models which replicated 
CognitionBrain, CognitionOrganismal, CognitionArtery and Cogni-
tionPancreas were then tested for associations with overall cognition 
in healthy elderly people (LonGenity, 4 of 4 tests significant and no 
FDR), memory function in the Stanford-ADRC (2 of 4 tests significant, 
no FDR) and 15-year prediction of conversion from normal cognition 
to mild cognitive impairment in the Knight-ADRC with a CPH model  
(2 of 4 tests significant, no FDR).

Linear modelling. Estimation of chronological age is not sufficient in 
determining whether an organ aging model measures the age-related 
physiological dysfunction of an organ. To determine whether estimat-
ed organ age contains physiologically relevant information, we associ-
ated organ age gaps with various age-related phenotypes across Covance, 
LonGenity, SAMS, Stanford-ADRC and Knight-ADRC cohorts. Most organ  
age gap versus trait associations in this study (Figs. 2a–d and 3c and  
Extended Data Figs. 4d,e,  5c,  6b,c, 7, 8c,d and 9) were assessed using  
linear models controlled for age and sex as follows: age gap ≈ trait + 
age + sex and adjusted for multiple testing burden using the Benjamini– 
Hochberg method when appropriate. To describe disease associations 
in relation to years of additional aging in the main text, we took the  
coefficient for the trait variable—which provides an estimate of the mean 
difference in z-scored age gaps between disease and control—and con-
verted that to an estimate of mean difference in raw age gaps, using the 
standard deviation of raw age gaps provided in Supplementary Table 8.

Meta-analyses. Meta-analyses to compare and aggregate effect sizes 
and confidence intervals from multiple cohorts were performed in R 
using the metafor70 package with an inverse variance weighted fixed 
effects model.

Cox proportional hazard modelling. Cox proportional hazards models  
were used to assess the association between organ age gaps and 

future risk of mortality, congestive heart failure and increase in clini-
cal dementia rating using the following model: event risk ≈ organ age 
gap + age + sex. Models were tested using the lifelines71 python package. 
Kaplan Meyer curves were generated at population-average covariate 
values in the relevant subject populations.

Extreme agers
Extreme agers were defined as individuals who had an age gap value 
two standard deviations above or below the mean (z-scored age gap 
greater than 2 or z-scored age gap less than −2) for at least one aging 
model. A total of 23% of the population across all cohorts were extreme 
agers. All extreme agers showed accelerated aging; no individuals dis-
played extreme youth signatures without extreme aging signature in 
a different organ (Extended Data Fig. 4a). To identify different groups 
of extreme agers with similar aging profiles, we performed k-means 
clustering (n = 13) of the extreme agers. Z-scored age gap values above 
2 or below −2 were set to zero before clustering. The clusters showed 
distinct organ agers (Fig. 1e and Extended Data Fig. 4b). A multi-organ 
ager cluster was also identified. Individuals who were extreme agers 
in at least five different organs were manually set to multi-organ 
agers. Extreme ageotypes (clusters) were associated with major 
age-related diseases using logistic regression (trait ≈ e-ageotype) in a 
cross-cohort meta-analysis (Extended Data Fig. 4d and Supplementary  
Table 9)

Feature importance for biological aging
FIBA is an adaptation of permutation feature importance (PFI)72 
(Extended Data Fig. 6a). PFI is traditionally used in machine learning 
to assess how much a model depends on a given feature for predic-
tion accuracy of the target variable. The PFI score is defined as the 
decrease in a model’s performance when values from a single feature 
are randomized. In our case, for chronological age predictors, the PFI 
score would be calculated as the difference between the model’s origi-
nal prediction accuracy (Pearson correlation between predicted and 
chronological age) and the model’s prediction accuracy after rand-
omization of a single feature. The final PFI score is the mean PFI score 
from five randomizations.

FIBA builds on the concept of PFI and applies it to the field of 
aging to assess the importance of a feature in measuring biological 
age, instead of the target variable, chronological age. We assume 
that information about biological age lies in the model age gap and 
its association with an age-related trait. Thus, randomization of an 
important feature would reduce the association between the model 
age gap and the trait (in the expected direction). The FIBA score for 
a protein is calculated based on this logic and is defined as the dif-
ference between the model age gap’s original association with a trait 
and the association with that trait after randomization of a single  
feature.

We applied FIBA to understand aging model protein contribu-
tions to associations with cognition using the CDR-Global score. The 
mean FIBA score after five permutations was calculated for all 500 
bootstraps for all organ aging models (Supplementary Table 15).  
A protein was defined as significant (FIBA+) if less than 5% (empirical 
single-tailed P < 0.05) of its FIBA scores across bootstraps was negative. 
Only proteins with nonzero coefficients in at least 100/500 bootstraps 
were considered. FIBA+ organ-specific proteins were used to train 
new cognition-optimized aging models from cognitively unimpaired 
individuals in the Knight-ADRC cohort.

Biological pathway enrichment and protein–protein interaction 
analysis
Biological pathway enrichment analyses were performed using 
g:Profiler73 with the all human genes set as the background distribu-
tion. Protein–protein interaction networks were generated using the 
STRING database74.
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Single-cell RNA sequencing analysis
Preprocessed human heart52 and kidney51 scRNA-seq data were accessed 
from studies in the Human Cell Atlas. Preprocessed brain scRNA-seq 
data were accessed from ref. 53. Preprocessed human brain vascula-
ture scRNA-seq data were accessed from ref. 42. Preprocessed human 
vasculature scRNA-seq data were accessed from Tabula Sapiens41. Gene 
expression counts data were log(CPM + 1) transformed and z-scored 
for visualization.

Brain tissue bulk proteomics and RNA sequencing
Differential expression statistics of proteins and RNA from AD versus 
control brains were accessed from ref. 39.

Brain MRI data from Stanford-ADRC and SAMS cohorts
MRI acquisition. Whole-brain MRI scans were collected from all sub-
jects in the Stanford-ADRC and SAMS cohorts. All MRI data was col-
lected at the Stanford Richard M. Lucas Center for Imaging. A total 
of 271 subjects underwent MRI scanning on a 3 T MRI scanner (GE 
Discovery MR750). T1-weighted SPGR scans were collected (TR/TE/
TI = 8.2/3.2/900 ms, flip angle = 9, 1 × 1 × 1 mm) and used to define grey 
matter volumes. A total of 134 subjects underwent MRI scanning on a 
hybrid PET/MRI scanner (Signa 3 tesla, GE Healthcare). T1-weighted 
SPGR scan were collected (TR/TE/TI = 7.7/3.1/400 ms, flip angle = 11, 
1.2 × 1.1 × 1.1 mm) and used to define grey matter volumes.

Structural MRI processing. Region of interest (ROI) labelling was 
implemented using the FreeSurfer75 software package v.7 (http://surf-
er.nmr.mgh.harvard.edu). In brief, structural images were bias field 
corrected, intensity normalized and skull stripped using a watershed 
algorithm. These images underwent a white matter-based segmenta-
tion, grey/white matter and pial surfaces were defined, and topology 
correction was applied to these reconstructed surfaces. Subcortical and 
cortical ROIs spanning the entire brain were defined in each subject’s 
native space, using the aparc+aseg atlas in FreeSurfer.

MRI brainageR algorithm. Using matched brain MRI and plasma pro-
teomic data from n = 541 samples in SAMS and Stanford-ADRC, we 
compared our plasma proteomic organ clocks with established brain 
MRI-based clocks, brainageR16 and BARACUS Brain-Age76.

We used a pretrained machine learning algorithm (https://github.
com/james-cole/brainageR) and raw T1-weighted MRI scans to estimate 
brain age. This software uses SPM12 (https://www.fil.ion.ucl.ac.uk/spm/
software/spm12/) to perform tissue segmentation and normalization 
of individual scans to Montreal Neurological Institute (MNI) template 
space. The software relies on a model that used Gaussian process regres-
sion to predict brain age on 3,777 participants from seven publicly 
available datasets (mean age = 40.1, range = 18–90 years). It applies the 
results of this training to predict brain age in any new T1-w data, utiliz-
ing the RNifti (v.1.4.5) and kernlab (v.0.9-32) packages within R v.4.2.

We also used another pretrained algorithm, BARACUS (https://
github.com/bids-apps/baracus, ref. 76) to estimate brain age from 
FreeSurfer v.5.3 processed T1-w scans. The vertex-wise cortical thick-
ness and surface area values (transformed from subject space to fsaver-
age4 standard space), along with the subcortical volumetric statistics, 
were used as input to BARACUS’s linear support vector machine model. 
This model was trained on 1,166 participants with no objective cogni-
tive impairment (566 female, mean age = 59.1, range = 20–80 years). 
It returns a ‘stacked-anatomy’ prediction among its results, which we 
used as the estimate of brain age for this method.

MRI regions of interest analysis. The volume of the AD signature re-
gion was calculated as the sum of the volumes of the parahippocampal 
gyrus, entorhinal cortex, inferior parietal lobules, hippocampus and 
precuneus. Following best practice, ROIs were linearly adjusted for 

estimated total intracranial volume to account for the differences in 
human size that is unrelated to cognitive function and neurodegenera-
tion. Associations between organ age gaps and adjusted brain ROIs were 
tested using a linear model controlled for age and sex. Associations 
were performed for all ROIs in the aparc+aseg atlas.

Alzheimer’s disease polygenic risk score in the Stanford-ADRC 
cohort
AD polygenic risk scores (PRS) were calculated in the Stanford-ADRC 
cohort to compare to the CognitionBrain age gap. PRSs were deter-
mined from whole-genome sequencing. The Genome Analysis Toolkit 
workflow Germline short variant discovery was used to map genome 
sequencing data to the reference genome (GRCh38) and to produce 
high-confidence variant calls using joint-calling77. Six individuals were 
excluded from further whole-genome sequencing analysis due to dis-
cordance between their reported sex and genetic sex. APOE genotype 
(ε2/ ε3/ ε4) was determined using allelic combinations of single nucleo-
tide variants rs7412 and rs429358. The independent loci identified in 
the largest AD GWAS to date were used to compute AD PRS. Namely, the 
84 variants and their effect size available from Tables 1 and 2 in ref. 30 
were used, in addition to rs7412 (odds ratio = 0.6) and rs429358 (odds 
ratio = 3.7). Plink1.9 (ref. 78) with the ‘—score’ flag was used to formally 
compute the PRS, while providing the individual genotypes and the 
list of variants with their effect size as input. Three individuals with 
pathogenic mutations PSEN1 or GBA were removed from this analysis.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Stanford-ADRC data are available upon reasonable request to the 
Stanford-ADRC data release committee, https://web.stanford.edu/
group/adrc/cgi-bin/web-proj/datareq.php. All Stanford-ADRC data 
will be made publicly available after an embargo period at https://
twc-stanford.shinyapps.io/adrc/. SAMS data are available to qualified 
investigators upon request to principal investigators Beth Mormino 
(bmormino@stanford.edu) or Anthony Wagner (awagner@stanford.
edu). Knight-ADRC data were generated by the laboratory of principal 
investigator Carlos Cruchaga (cruchagac@wustl.edu) and are avail-
able upon reasonable request to the The National Institute on Aging 
Genetics of Alzheimer’s Disease Data Storage Site (NIAGADS) (Study 
ID: ng00130), https://www.niagads.org/knight-adrc-collection. Data 
from the Covance and LonGenity cohorts can be accessed according 
to the policies described in the initial study publications54–56. Preproc-
essed human heart52 and kidney51 scRNA-seq data were accessed from 
studies in the Human Cell Atlas. Preprocessed brain scRNA-seq data 
were accessed from ref. 53. Preprocessed human brain vasculature 
scRNA-seq data were accessed from Yang et. al. 2022 (ref. 42). Preproc-
essed human vasculature scRNA-seq data were accessed from Tabula 
Sapiens41. Differential expression statistics of proteins and RNA from 
Alzheimer’s disease versus control brains were accessed from ref. 39. 
Change with age information of approximately 5,000 SomaScan v.4 
plasma proteins across all five cohorts (Supplementary Fig. 8 and 
Supplementary Table 25) are available in a public shiny app (https://
twc-stanford.shinyapps.io/aging_plasma_proteome_v2/).

Code availability
All analyses have been carried out using freely available software pack-
ages in python and R. All aging models are available and easily acces-
sible using the organage package in Python and the associated github 
repository (https://github.com/hamiltonoh/organage). The package 
requires v.4 or higher SomaScan data, age and sex as inputs, and outputs 
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estimated organ ages and age gaps. The aging models are available to 
download from the package, and the model coefficients are available 
in Supplementary Tables 6 and 17. Code for the FIBA algorithm are in 
the package’s GitHub repository.
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Extended Data Fig. 1 | Identification of organ-enriched plasma proteins.  
a, Plasma proteins for which the gene encoding the protein was expressed at 
least four-fold higher in one organ compared to any other organ were called 
“organ-enriched” in line with the definition proposed by the Human Protein 
Atlas. To calculate organ-level gene expression, the maximum expression of 
sub-tissues in the Gene Tissue Expression Atlas (GTEx) bulk RNA-seq database 
was used. An example of this tissue expression aggregation into organ 
expression CPLX1. (See ST2). b, Organ-wide expression for CPLX1. CPLX1 is 

expressed over four-fold higher in the brain compared to any other organ and is 
therefore defined as organ-enriched. c, Organ-level fold-change distribution of 
SomaScan plasma protein encoding genes. (See ST3). d, Organ-level expression 
of 843 organ-enriched plasma protein encoding genes. These 843 genes 
correspond to 893 plasma protein epitopes measured on the SomaScan assay. 
Some plasma proteins on the assay are quantified multiple times by different 
aptamers, which target different epitopes of the same protein. e, Top significantly 
enrichment biological pathways of brain-enriched plasma proteins.



Extended Data Fig. 2 | Aging model training and testing. a, A bagged 
ensemble of least absolute shrinkage and selection operator (LASSO) aging 
models was trained for each of 11 major organs using the mutually exclusive 
organ-enriched proteins identified as inputs. An “organismal” aging model 
using the 3907 organ-nonspecific proteins and a “conventional” aging model 
using all 4778 QC’ed proteins on the SomaScan assay were also trained. Models 
were trained from the 1,398 healthy individuals in the Knight-ADRC cohort.  

To reduce overfitting, the LASSO regularization parameter α was determined 
with bootstrap resampling by selecting sparser model α that provided 95% of 
maximum training set performance. An individual’s predicted age was defined 
as the average predicted age across all bootstrapped models. The entire model 
training scheme for a single example aging model is shown. b, Models were 
tested in four independent cohorts (Covance, LonGenity, Stanford-ADRC, SAMS). 
Age predictions from a single example aging model across test cohorts is shown.
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Extended Data Fig. 3 | Aging model prediction and coefficients. a-m, Aging model age prediction (i), average coefficients across bootstraps (ii) and top 15 
coefficients (iii) are shown for all aging models in alphabetical order. (See ST7).



Extended Data Fig. 4 | Extreme organ agers are widespread in the population. 
a, Extreme agers were defined as individuals with a 2-standard deviation 
increase or decrease in at least one age gap. 23% of the individuals (n = 5,676) 
across the four cohorts were identified as extreme agers. To visualize all extreme 
agers, age gaps were denoised by setting values below absolute z-score of 2 to 
zero. Denoised age gaps are shown in the heatmap. b, Extreme ageotypes were 
defined based on kmeans clustering of individuals based on their denoised age 
gaps. The mean z-scored age gap per ageotype is shown. c, The percentage of 
extreme agers is shown across all cohorts. d, A cross-cohort meta-analysis of 
associations (logistic regression) between extreme ageotypes versus diagnosis 

of 9 major age-related diseases annotated in at least 2 independent cohorts. 
Log odds ratios and significance are shown. P-values were Benjamini-Hochberg 
FDR-corrected. The strongest associations per disease are highlighted with 
black borders. (See ST9). e, A cross-cohort meta-analysis of associations (linear 
regression) between organ age gaps versus diagnosis of 9 major age-related 
diseases annotated in at least 2 independent cohorts. Disease covariate effects 
and significance are shown. P-values were Benjamini Hochberg FDR-corrected. 
The strongest associations per disease are highlighted with black borders.  
(See ST10). Asterisks represent q-value thresholds: *q  <  0.05; **q  <  0.01; 
***q <  0.001.
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Extended Data Fig. 5 | Plasma proteomic organ aging models versus 
established clinical markers of aging, health, and disease. a, Phenotypic 
Age (PhenoAge, Levine et al. 2018) was calculated based on 10 clinical markers 
in the Covance cohort (n = 1,026). PhenoAge-based age prediction is shown.  
b, The PhenoAge age gap was calculated and correlated with plasma proteomic 
organ aging model age gaps. Pairwise correlations are shown. c, Organ age 

gaps and the PhenoAge age gap were associated with 43 individual clinical 
markers of health and disease. Phenotype covariate effect sizes and significance 
based on Benjamini Hochberg FDR corrected p-values for all associations are 
shown. Asterisks represent q-value thresholds: *q  <  0.05; **q  <  0.01; ***q < 0.001. 
(See ST14).



Extended Data Fig. 6 | Feature Importance for Biological Aging (FIBA) to 
derive a cognition-associated brain aging model. a, Schematic for FIBA 
algorithm, (see methods) an algorithm to assess brain aging model protein 
contributions to the brain age gap association with cognition and chronological 
age prediction accuracy. FIBA+ brain aging model proteins were used to train a 
new cognition-optimized brain aging model (CognitionBrain) from healthy 
individuals in the Knight-ADRC cohort. b, A cross-cohort meta-analysis of  
the association (linear regression) between the CognitionBrain, Brain,  
and Conventional age gaps versus Alzheimer’s disease (with AD n = 1,441, 

without n = 2,052). CognitionBrain age gap p-valuemeta = 9.23 × 10−36, effect 
sizemeta = 0.448; Brain age gap p-valuemeta = 5.67 × 10−10, effect sizemeta = 0.221; 
Conventional age gap p-valuemeta = 1.33 × 10−13, effect sizemeta = 0.270. (See ST10, 
ST20). c, CognitionBrain age gaps were associated with brain MRI volume in the 
Stanford-ADRC and SAMS cohorts (n = 469). CognitionBrain associations with 
individual brain region volumes shown. Bubbles are sized by FDR corrected 
p-value. (See ST22). d, Pairwise-correlations between the CognitionBrain age 
gap, plasma pTau-181, and AD polygenic risk score. All error bars represent 95% 
confidence intervals.
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Extended Data Fig. 7 | Feature Importance for Biological Aging (FIBA) plots 
for all aging models in relation to cognition. a, FIBA was applied to all aging 
models to assess peripheral versus central contributions to brain aging and 
cognitive decline (CDR-Global dementia rating). For each aging model, 
proteins were assessed for their contributions to the age gap association with 
cognition (CDR-Global, y-axis) and chronological age prediction accuracy 

(x-axis). Proteins for which permutation reduces the age gap association  
with cognition were termed FIBA+ , while proteins for which permutation 
strengthens the age gap association with dementia were termed FIBA-. FIBA+ 
proteins were used to train new cognition-optimized aging models from 
healthy individuals in the Knight-ADRC cohort. FIBA results for all aging models 
are shown in alphabetical order. (See ST15).



Extended Data Fig. 8 | Cognition-optimized aging model associations with 
age and AD. a, FIBA+ proteins from each aging model were used to train new 
cognition-optimized aging models from healthy individuals in the Knight-ADRC 
cohort. Correlations between predicted vs chronological age in healthy 
individuals in the training (Knight-ADRC) and test (Covance, LonGenity, 
Stanford-ADRC, SAMS) cohorts for all aging models are shown. All aging models 
significantly estimated age across five independent cohorts. Cognition- 
optimized aging models predicted chronological age slightly worse than their 
non-optimized counterparts as expected, given the subsetting of proteins. 

(See ST19). b, Pairwise correlation of all model age gaps in all cohorts. Cognition- 
optimized aging models predicted similar age gap estimates with their 
non-optimized models. c, Model age gap associations (linear regression) with 
Alzheimer’s disease (with AD n = 1,393, control n = 1,680) in the Knight-ADRC 
cohort. Effect sizes, 95% confidence intervals, and p-values for the Alzheimer’s 
covariate are shown. Despite decreased associations with chronological age, 
cognition-optimized models showed substantially stronger associations with 
Alzheimer’s disease. (See ST20). d, As in c, but in the Stanford-ADRC cohort 
(with AD n = 48, control n = 372). (See ST20).
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Extended Data Fig. 9 | Cognition-optimized aging model associations with 
cognitive function in non-cognitively impaired individuals. a, Associations 
(linear regression) between organ age gaps and a composite score of overall 
cognition in the LonGenity cohort (n = 888) shown. pCognitionOrganismal = 9.58 × 10−8, 

pCognitionBrain = 4.24 × 10−7, pCognitionArtery = 2.46 × 10−3, pCognitionPancreas = 4.8 × 10−3.  
(See ST23). b, Associations (linear regression) between organ age gaps and a 
memory test score in the SAMS cohort (n = 160) shown. pCognitionOrganismal = 9.85 × 10−3, 
pCognitionBrain = 2.44 × 10−2, pCognitionArtery = 0.53, pCognitionPancreas = 0.29. (See ST23).



Extended Data Fig. 10 | Mapping CognitionOrganismal and CognitionArtery 
proteins to human organs and cell types. a, The organ sources of highly 
weighted CognitionOrganismal proteins were investigated by analyzing their 
expression levels in the Gene Tissue Expression Atlas (GTEx) bulk RNA-seq 
database. Organ-level expression of pleiotrophin (PTN), transgelin (TAGLN), 
WNT1 inducible signalling pathway protein 2 (WISP2), and chordin like 1 
(CHRDL1) are shown. Though not organ-specific, these genes were highly 

expressed in the arteries and brain. b, Single-cell RNA expression (Tabula Sapiens) 
of highly weighted CognitionOrganismal proteins in human vasculature. Mean 
normalized expression values and fraction of cells expressing the genes are 
shown. c, Single-cell RNA expression (Tabula Sapiens) of highly weighted 
CognitionArtery and StringDB-based “interacting” proteins in human 
vasculature. Mean normalized expression values and fraction of cells expressing 
the genes are shown.
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