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Amplified warming of droughts in southern United
States in observations and model simulations
Felicia Chiang1*, Omid Mazdiyasni1, Amir AghaKouchak1,2

During droughts, low surface moisture may translate surface heating into warming, since excess energy will be
converted into sensible heat instead of evaporating as latent heat. Recent concurrent occurrences of droughts
and heatwaves have caused compounding ecosystem and societal stresses, which prompted our investigation
of whether there has been a shift in temperatures under meteorological drought conditions in the United
States. Using historical observations, we detect that droughts have been warming faster than the average cli-
mate in the southern and northeastern United States. Climate model projections also show a pronounced
warming shift in southern states between the late 20th and 21st centuries. We argue that concurrent changes
in vapor pressure deficit and relative humidity influence the amplified warming, modifying interactions be-
tween the land surface and the atmosphere. We anticipate that the magnified shift in temperatures will bring
more concurrent extremes in the future, exacerbating individual impacts from high temperatures and droughts.
INTRODUCTION
The concurrence of drought and heatwave events has caused severe
ecosystem and societal stresses, as witnessed during 2014 in California
and 2003 in Europe (1, 2). Land surface and atmosphere interactions
have been identified as a major driver in the occurrence of these con-
current extremes. During dry soil moisture conditions, we expect to see
associated surface warming, as the available energy will be expressed as
sensible heat instead of being evaporated as latent heat, causing the con-
currence of these conditions (3–5). For example, in the European heat-
wave event, precipitation deficits in the Mediterranean region were
noted to precede major heatwaves in neighboring regions (6).

These short-term temperature changes are dependent on the nega-
tive and positive feedbacks between the local land surface condition and
the atmosphere above (7–11). In addition to temperature changes, low
soil moisture in mid-continental areas can alter planetary boundary
layer dynamics that influence precipitation (12). In contrast, coastal
areas experience a thermal difference between the land and the sea,
which is magnified during periods of dry soil, resulting in an increased
transport ofmoist air from the oceans (12). Throughmany studies, land
surface and atmosphere interactions have been established as major cli-
mate drivers (3–5). However, the feedbacks and interactions between
components of the land surface and the atmosphere have not been fully
understood and quantified.Moreover, we still do not completely under-
stand the full spectrum of changes that will accompany the simple in-
crease in greenhouse gases, such as compounding extreme events (13).

Here, we examine long-term shifts in temperatures occurring during
dry months to further explore feedbacks between surface moisture and
temperature conditions (fig. S1). Drawing from established interactions
between drying and warming conditions, we study whether tempera-
tures during droughts have experienced changes in the 20th century
and whether shifts in dry temperatures will occur under projected cli-
mate change conditions. We also evaluate changes in uncertainty that
have occurred under observed and projected meteorological drought
conditions in comparison to average climate conditions. Because of pro-
jections showing droughts and high temperatures intensifying over the
next century, the goal of the study is to understand whether tempera-
tures are projected to experience different rates of intensification when
coupled with dry conditions. We hope to evaluate whether conditional
temperature shifts under droughts are occurring while acknowledging
the possible drivers of land surface–atmosphere interactions and feed-
backs under climate change. We also examine changes in atmospheric
moisture to evaluate concurrent shifts in the climate system.

For this study, we evaluate temperatures during different drought
severities in two observed periods (1902–1951 and 1965–2014) and
two modeled periods (1951–2000 and 2050–2099) in the contiguous
United States. For the observations, we compare the late 20th century
to the early 20th century to quantify temperature changes that have al-
ready occurred. For the model ensemble, we compare the late 21st and
late 20th century periods to investigate future conditions relative to the
recent historical past. We defined drought severities on the basis of the
U.S. Drought Monitor: with theD0 threshold equivalent to a standard-
ized precipitation index (SPI) of −0.5 or lower and the D1 threshold
equivalent to an SPI of −0.8 or lower (see Materials and Methods for
further explanation). To evaluate coincident changes under atmospheric
moisture conditions, we used relative humidity and vapor pressure
deficit (VPD) as quantitative measures of available moisture.
RESULTS
Between the early and late 20th century observations from the Climatic
Research Unit (CRU), the southern and northeastern United States
experienced greater temperature shifts under dry conditions than the
average climate (Fig. 1A). The southern states experienced a similar pat-
tern of change in thedownscaledCoupledModel IntercomparisonProject
Phase 5 (CMIP5)multimodel ensemble (Fig. 1B). In the observations, the
regions associated with amplified temperature change under the D0 and
D1 thresholds contrasted with the warming regions highlighted in the
average temperature change panel, indicating that the observed pattern
was not temperature-driven. The accelerated warming under dry
conditions also does not correspond with regions commonly identified
as semiarid or arid. For example, the southernUnited States experiences
a dry climate in the west and a humid climate in the east; however, all
southern states experience similar accelerations in warming under dry
conditions.

Around the globe, increasing aridity has been attributed to more
rapid increases in evaporative demand relative to precipitation supply
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(14–16). This increase in aridity has been expressed in decreasing rela-
tive humidity and increasing VPD shown in Fig. 2 (A and B) (15–17).
Under the D0 and D1 thresholds, we observe concurrent increases and
decreases in temperature, relative humidity, andVPD across theUnited
States (Figs. 1A and 2, A and B). In regions where temperature shifts
under droughts have outpaced temperature changes in the average cli-
mate, relative humidity has decreased and VPD has increased. For ex-
ample, in the northeastern region in Figs. 1A and 2 (A and B), we see
positive temperature shifts corresponding with decreases in relative hu-
midity and increases in VPD.

We also observe corresponding increases in moisture in regions
where temperature shifts under the average climate have outpaced shifts
under drought. For instance, in the upper Midwestern region, we see
negative temperature shifts relating to increases in relative humidity
and decreases in VPD (Figs. 1A and 2, A and B). McHugh et al. (18)
recently established that nonrainfall water sources—such as atmospheric
moisture—can act as a significant source of moisture in drylands during
periods when the relative humidity in the soil is lower than that of the air
above. This finding explains the mechanism behind stagnant or cooling
temperature shifts under drought conditions with respect to average
Chiang et al., Sci. Adv. 2018;4 : eaat2380 1 August 2018
temperatures. The effect of water vapor on soil moisture (and by proxy,
land surface warming) highlights the importance of the general dryness
or wetness of the area, which cannot be attributed to a single variable. In
all regions, we hypothesize that, during periods of drought, the concur-
rent shift in atmospheric moisture contributes to the amplification of
temperature changes relative to the average climate. Note that, when
considering all months, wet or dry, this concurrence does not occur be-
tween the variables (see first column in Figs. 1A and 2, A and B). This
highlights the importance of meteorological drought in strengthening
the correlation between changes in atmospheric moisture and tem-
perature (19).

We argue that the decreasing availability of regional moisture rela-
tive to evaporative demandmay be the driving force shaping the spatial
pattern of temperature, relative humidity, and VPD changes. Changes
in relative humidity andVPDare the physicalmanifestations of the limits
on land evaporation (16). The limit on land evaporation will increase the
amount of local sensible heat, subsequently leading to a relative warming
of the land surface. As we observe in our results, this is amplified during
periods of drought. Although observed increases in temperature have
increased the upper limit of saturation vapor pressure, the relative lack
Fig. 1. Temperature shift associated with each dryness condition. Average temperature shift relating to each condition (including all wet and dry conditions, at or
under the D0 threshold, and at or under the D1 threshold). (A) We compare the period of 1965–2014 relative to a baseline period of 1902–1951 with the observed CRU
data. (B) We compare the future period of 2050–2099 relative to the historical baseline period of 1951–2000 with the CMIP5 model average ensemble.
Fig. 2. Moisture shift associated with each dryness condition. Average shift between the period 1965–2014 relative to the baseline period of 1902–1951 associated
with each dryness condition used in Fig. 1. (A) Observed average shift in relative humidity associated with each condition. (B) Observed average shift in VPD associated
with each condition.
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of available moisture, especially during droughts, limits actual vapor
pressure (16, 17).

We hypothesize that increases in drought frequencies due to the
behavior of the Pacific Decadal Oscillation and the SouthernOscillation
Index may have shaped the southern and eastern patterns in the ob-
served shift (20). Changes in atmospheric circulation patterns and
vertical transport of moisture due to climate change may have con-
tributed to the spatial patterns in the shift (21). In addition, regional
man-made changes in land cover may have resulted in changes in soil
moisture and temperature (22). Dampened summer temperature highs
have been associated with intensifying irrigation in the upper
Midwestern region (23). These agriculturally influenced climate trends
relate directly to the Midwestern cooling signal shown in Fig. 1A. In
contrast, since the 1960s, annual snow cover extent has shrunken by
10% (24). The occurrence of snow cover significantly influences local
temperatures due to albedo and emissivity properties of snow (25).
Snowmelt also acts as a latent heat sink, increasing soil moisture levels
and regulating local temperatures (25). Thus, a decrease in snow cover
extent could be associated with an increase in surface temperature,
corresponding with the amplified temperature shifts along the East
Coast in Fig. 1A.

As shown in Fig. 1B, the spatial pattern of temperature change does
not coincide with the north-to-south gradient of latitudinal heating pre-
dicted under the representative concentration pathway (RCP) 8.5
scenario. Instead of the north experiencing greater shifts in comparison
to the south, our results display the opposite pattern. The spatial
patterns where amplified shifts in temperature are projected to occur
can also be seen in the patterns in relative humidity and VPD. CMIP5
ensembles have predicted changes in water vapor concentrations and
changes throughout the hydrologic cycle due to projected climate
change, causing shifts in the distributions of precipitation and evapora-
tion around the globe (26). Significant decreases in the difference be-
tween precipitation and surface evaporation are projected to occur in
the southern regions across all seasons (27), corresponding to the tem-
perature conditions displayed in Fig. 1B.
Chiang et al., Sci. Adv. 2018;4 : eaat2380 1 August 2018
Regional delineations in Figs. 3 and 4 highlight the differences be-
tween the historical observations and model projections. Historically,
the northeastern region of the United States shows the amplified
drought-associated temperature shift, while CMIP5 models predict a
smaller, more muted future shift in temperature with respect to the av-
erage climate in the entire upper half of the United States, including the
northeast. CRU observations show that the median dry temperature
shifts 0.81° higher than the average climate whenwe isolate regionswith
amplified temperature shifts. In the CMIP5 projections, themedian dry
temperature shifts 0.30° higher than the average climate in the regions
with amplified temperature change. The shifts quantified in the obser-
vations andmodels show the influence of dry periods on the increasing
intensity of climate conditions in the southern United States. These
changes occurred for VPD and relative humidity as well.

We also note that the range of temperature uncertainty is dependent
on the climate condition. In the CRU observations, temperature shifts
in the average climate condition exhibit minimal variability in com-
parison to the shifts under the D0 and D1 threshold conditions (Fig. 3).
In addition, the more severe D1 condition exhibits larger ranges of
temperature variability relative to the milderD0 condition, as seen in all
regions in the United States. This implies that drier temperature con-
ditions generally experience larger ranges of uncertainty over each
region.

We also plotted cumulative distribution functions of the tempera-
ture shifts under different dryness conditions to illustrate distributional
changes between the periods. Figure 5A shows that observed tempera-
tures in the southeastern United States shift to the right under D0

drought conditions. A shift to the right representsmore severe tempera-
ture conditions. Figure 5B also shows the modeled temperature
distribution under theD0 condition, increasing the emphasis on warm-
ermonths in comparison to the average climate. Distributional plots for
the remaining regions reflect the results from the boxplot figures (figs.
S2 and S3).

The Kolmogorov-Smirnov (K-S) and Student’s t tests revealed sta-
tistically significant differences between the shifts seen from average
Fig. 3. Regional boxplots for observations. (A to G) Regional boxplots displaying the temperature shifts corresponding to each dryness condition for the CRU
observations (1965–2014 relative to 1902–1951).
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temperatures and those seen under the D0 threshold in the two obser-
vational periods in all regions. The K-S test also showed statistically sig-
nificant differences between the average temperature and D0 threshold
shifts in comparing the future projections relative to themodeled past.
T testing showed that all regions, except the northwest, show statistically
significant differences between the dry and average temperature shifts.
The statistical tests highlight that all amplified temperature shifts
occurring under drought conditions in the observations and models are
significantly different from temperature shifts occurring under average
climate conditions.
Chiang et al., Sci. Adv. 2018;4 : eaat2380 1 August 2018
DISCUSSION
The observed andprojected amplifications in temperature change in the
southern United States will have severe ramifications in environmental
and social sectors. Droughts alone have had severe urban, agricultural,
and ecological impacts in recent years, directly and indirectly reducing
water availability (28). Warm periods have also affected many of the
same sectors by stressing vulnerable populations, food resources,
energy, and transportation systems (28, 29).We expect the concurrence
of droughts and warm events to physically manifest in more frequent
wildfires, reduced air quality, and stressed agricultural crops and
livestock (29).

Under our future projections of amplified drought-conditioned
temperature shifts in the southern United States, the occurrence of
concurrent extremes will likely increase and exacerbate the impacts
anticipated from individual extremes. This is exceedingly important as
dry lands are becoming more widespread under climate change, which
will widen the documented temperature impact (30, 31). In addition,
these conditional temperature shifts will compound on the increased
probability of more extreme, warm events in projected pathways of cli-
mate warming (32). We anticipate severe socioeconomic consequences
to accompany these drought-conditioned temperature shifts. The
consequencesmay include disruptions of local and global food systems,
damages to public health and quality of life, and the expansion of areas
vulnerable to concurrent extremes (33). Society can respond to these
observed and projected concurrent events by studying the effects of
these natural threats and improving the resilience of our systems to
these threats. Future studies should focus on the ramifications of these
temperature shifts to quantify projected risks onpopulation health, food
supply, and infrastructure. From these studies, we can propose changes
in urban development and settlement patterns to reduce population ex-
posure to extremes, improve agricultural cultivation and trade, and
adapt building infrastructure to the changing climate—all responses
that can alleviate the negative impacts of these intensifying extremes (33).

The accuracy of our observations and model projections limits our
interpretations of the findings. In some areas, the CMIP5 models may
have inconsistent physical interpretations since representations of land
Fig. 5. Distributional shift associated with southeastern United States. Distri-
butional plots comparing the shifts between the D0 condition and the average
climate for the southeastern region of the United States. (A) We compare the
period of 1965–2014 relative to a baseline period of 1902–1951 with the observed
CRU data. cdf, cumulative distribution function. (B) We compare the future period
of 2050–2099 relative to the historical baseline of 1951–2000 with the CMIP5
model average ensemble.
Fig. 4. Regional boxplots for model ensemble. (A to G) Regional boxplots displaying the temperature shifts corresponding to each dryness condition for the CMIP5
model ensemble (2050–2099 relative to 1951–2000).
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surface and atmospheric interactions vary across models. Although the
models capture large-scale temperature patterns, extreme precipitation
events are still not adequately represented (21, 27). The capture of ex-
treme precipitation events has the potential to affect the timing of dry
andwet periods in themodels. Projections of ElNiño–SouthernOscilla-
tion timing and variability also suffer from model biases (21). The
CMIP5 projections also have trouble with warm and cool sea surface
temperature biases in the Pacific and Atlantic Oceans (21). Donat et al.
(34) also highlights that high temperature extremes have been increasing
faster than mean temperatures but show CMIP5 model inconsistencies
with observations over much of the globe. The known errors in the
CMIP5 output prevent us from drawing concrete conclusions from the
differences between the observations and the projections.

Observations show that amplified temperature shifts have been
occurring under drought conditions relative to temperature changes
occurring under average climate conditions in the southern and north-
eastern regions of the United States. The spatial pattern of the drought-
conditioned temperature shift can largely be associated with observed
shifts in atmospheric moisture content such as relative humidity and
VPD. Although we cannot define which variable is the driver at this
temporal scale, both temperature and moisture shifts are interacting
and amplifying under drought conditions. Projections show that
droughts will be significantly warmer than average conditions across
the southern region of the United States and are also associated with
modeled shifts in relative humidity and VPD. This study highlights
the importance of atmospheric moisture in the absence of precipitation
in driving changes in the energy and hydrologic cycles.
MATERIALS AND METHODS
Experimental design
For our observations, we used monthly temperature, precipitation, and
vapor pressure data available from the CRU TS3.23, which is a gridded
time series climate dataset (35). The data coverage included all areas of
the contiguousUnited States at a 0.5° resolution. Estimates for saturated
vapor pressure (es) were derived using the 2008 World Meteorological
Organization Commission for Instruments and Methods of Observa-
tion Guide conversion equation

es ¼ 6:112� exp
22:46t

272:62þ t

� �
ð1Þ

where t is the temperature at a given grid point at a given time.
Relative humidity (RH) was derived with the standard equation

from saturated and actual vapor pressure (ea)

RH ¼ ea
es
� 100% ð2Þ

For the model projections, we used the bias-corrected spatially dis-
aggregated (BCSD) downscaled CMIP5 multimodel ensemble under
RCP 8.5 at a 0.125° resolution available from theU.S. Bureau of Reclama-
tion website (36). The BCSDmethod is a statistical downscaling method
that uses the probability density functions of model output mapped onto
observations and then spatially aggregates the results to the desired scale
(37). We took an average of the models listed in the Supplementary
Materials to form the model ensemble. The CMIP5 models are the most
recent internationally coordinated collection of climate models used to
Chiang et al., Sci. Adv. 2018;4 : eaat2380 1 August 2018
estimate historical observations and project how the climate will change
in the future (21). We chose to use the CMIP5 multimodel ensemble
under RCP 8.5 to evaluate average projected future temperature con-
ditions under a “business as usual” emission scenario.

We used the SPI as a measure of the relative meteorological dryness
of each pixel in the spatial area of interest. For our study, we used a non-
parametric implementation of the SPI to retain the spatial and temporal
consistency of the original data while describing precipitation in the
context of the local climatology (19). We used the empirical Gringorten
plotting position

pðxiÞ ¼ i� 0:44
nþ 0:12

ð3Þ

where n is the sample size, i is the rank of nonzero precipitation data
from smallest to largest, and p(xi) is the empirical probability for each
data point (19). We standardized the probabilities, p, from Eq. 3 using
the standard normal distribution function, f (19)

SI ¼ f�1ðpÞ ð4Þ

Although drought can be characterized by many timescales, we
chose to use a 6-month timescale to capture intra-annual seasons with-
out including overly brief wet or dry periods.

We first calculated the average temperature shift associated with
each dryness threshold for each pixel. To find the temperature shift be-
tween periods, we calculated the difference between the temperature
averages associated with the two periods. We used the U.S. Drought
Monitor classification scheme (D0, D1, D2, etc.) to define the drought
severity thresholds. D0 began with an SPI of −0.5, D1 began with an
SPI of −0.8, and D2 began with an SPI of −1.3. For instance, for the
D0 threshold, we isolatedmonths that had an SPI value of −0.5 or lower
and found the corresponding temperature average.We then summarized
the temperature shifts within seven climatically consistent regions in the
contiguousUnited States. For average shifts of relative humidity andVPD
between time periods, we used the same dryness thresholds for all pixels.

Statistical analysis
We used the two-sample K-S nonparametric test

D* ¼ max
x

ðjF̂ 1ðxÞ � F̂ 2ðxÞjÞ ð5Þ

where F̂ 1ðxÞ is the proportion of values in the first distribution less
than or equal to x, and F̂ 2ðxÞ is the proportion of values in the
second distribution less than or equal to x (38), and Student’s
two-sample t test

t ¼ �x � �yffiffiffiffiffiffiffiffiffiffiffiffi
s2x
n þ

s2y
m

q ð6Þ

where �x and �y are the sample means, sx and sy are the sample SDs,
and n and m are the sample sizes for the two data samples (39), to
determine whether regional shifts under the drier conditions were
significant in comparison to the average temperature change ex-
perienced in the area (a = 0.05). To conduct the statistical tests,
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we used values from each pixel in each region from both average
temperature conditions and dry temperature conditions. The two-
sample K-S test determined whether data from average temperatures
and data from dry temperature conditions originated from the same
continuous distribution. The two-sample t test determined whether
data from average temperatures and data from dry temperature
conditions originated from populations with equal means or popula-
tions with statistically different means.
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/4/8/eaat2380/DC1
Fig. S1. Flowchart describing the research methodology.
Fig. S2. Distributional shifts for observed United States.
Fig. S3. Distributional shifts for projected United States.
Table S1. CMIP5 climate models used.
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