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ABSTRACT 

Fate and exposure modeling has not thus far been explicitly used in the risk profile 

documents prepared to evaluate significant adverse effect of candidate chemicals for either the 

Stockholm Convention or the Convention on Long-Range Transboundary Air Pollution. 

However, we believe models have considerable potential to improve the risk profiles. Fate and 

exposure models are already used routinely in other similar regulatory applications to inform 

decisions, and they have been instrumental in building our current understanding of the fate of 

POP and PBT chemicals in the environment. The goal of this paper is to motivate the use of fate 

and exposure models in preparing risk profiles in the POP assessment procedure by providing 

strategies for incorporating and using models. 

The ways that fate and exposure models can be used to improve and inform the 

development of risk profiles include: 

• Benchmarking the ratio of exposure and emissions of candidate chemicals to the same ratio 

for known POPs, thereby opening the possibility of combining this ratio with the relative 

emissions and relative toxicity to arrive at a measure of relative risk. 

• Directly estimating the exposure of the environment, biota and humans to provide 

information to complement measurements, or where measurements are not available or are 

limited. 

• To identify the key processes and chemical and/or environmental parameters that determine 

the exposure; thereby allowing the effective prioritization of research or measurements to 

improve the risk profile. 

• Predicting future time trends including how quickly exposure levels in remote areas would 

respond to reductions in emissions. 
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Currently there is no standardized consensus model for use in the risk profile context. 

Therefore, to choose the appropriate model the risk profile developer must evaluate how 

appropriate an existing model is for a specific setting and whether the assumptions and input data 

are relevant in the context of the application. 

It is possible to have confidence in the predictions of many of the existing models 

because of their fundamental physical and chemical mechanistic underpinnings and the extensive 

work already done to compare model predictions and empirical observations. 

The working group recommends that modeling tools be applied for benchmarking 

PBT/POPs according to exposure-to-emissions relationships, and that modeling tools be used to 

interpret emissions and monitoring data. The further development of models that couple fate, 

long-range transport, and bioaccumulation should be fostered, especially models that will allow 

time trends to be scientifically addressed in the risk profile. 

 

Key words: POPs, PBT, exposure, modeling, risk assessment 
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INTRODUCTION 

There are currently two international, legally-binding agreements that regulate the 

production, use and release of persistent organic chemicals.  These are, 1) the Stockholm 

Convention on Persistent Organic Pollutants (POPs) (http://chm.pops.int/), and 2) the United 

Nations Economic Commission for Europe (UNECE) Convention on Long Range 

Transboundary Air Pollution (CLRTAP) (http://www.unece.org/env/lrtap/).  Both of these 

agreements have provisions for nominating new substances for international regulation, based on 

"risk profiles" compiled by parties to the agreement.  In Annex D of the Stockholm Convention, 

it is specified that the objective of the risk profile is to provide information to determine whether 

a nominated substance “is likely, as a result of long-range transport, to lead to significant adverse 

effects, such that global action is warranted”. Similarly, paragraph 2 of the CLRTAP POPs 

protocol presents the elements of a technical review which include an evaluation of whether the 

proposed substance “is likely to have adverse human health and/or environmental effects as a 

result of its long-range transboundary atmospheric transport”. The term “adverse effects”, and 

the process to determine how likely they are, are not specifically defined in either protocol. The 

dominant legal interpretation of these statements has been that this assessment necessarily 

involves an analysis of the risks associated with the proposed substance, rather than just 

determining if the proposed substance is present in the environment. In other words, the 

evaluation requires determining whether adverse effects are likely based on measured or 

predicted levels in the environment and knowledge of the toxicity of the chemical at these levels. 

Assessing the risk of adverse effects for humans and the environment is a challenging 

task that must draw upon all available scientific resources. However our review of the existing 

risk profiles for substances proposed for addition to the Stockholm Convention found that the 
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only evidence used in conducting the exposure component of the assessment of likelihood of 

significant adverse effects was measured levels in the environment. Models have thus far not 

played a role in this part of the assessment process. 

The objective of this publication is to motivate the use of models in the evaluation of risk 

of adverse effects under the Stockholm Convention and the UNECE CLRTAP. This is done by 

illustrating the ways that models have already been used to evaluate the fate and exposure of 

POPs, presenting the strategies for incorporating models in the assessment, and providing 

specific guidance. 

THE VALUABLE ROLE OF MODELS IN ENVIRONMENTAL SCIENCES 

In any environmental system that is complex and dynamic, measurements are rarely, if 

ever, sufficient as the sole basis for evaluating the behavior of a chemical substance in the 

system. There is simply not enough time, money, and equipment to collect and analyze a 

sufficient number of samples to accurately capture the complex relationships among emissions, 

the characteristics of the environment, and the exposure of humans and ecosystems. This applies 

to all environmental systems including air basins, lakes, rivers, multimedia systems, ecosystems, 

indoor environments, and organism pharmacokinetics. Models have a long history of helping to 

explain scientific phenomena and of predicting outcomes and behavior in settings where 

empirical observations are limited or not available (NRC, 2007). The use of models has resulted 

in great advances in scientific understanding and improvements in a wide array of endeavors. 

The application of models in environmental science dates back to the late 19th century 

(NRC, 2007). In the area of transport modeling, Arrhenius’s climate model for assessing the 

greenhouse effect (Arrhenius, 1896) provided a remarkable level of sophistication and accuracy 

that illustrated the role of carbon dioxide in trapping heat in the earth’s atmosphere. His model 
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was a seasonal, spatially-disaggregated climate model that relied on a numerical solution to a set 

of differential equations that represent the surface energy balance. In the middle of the 20th 

century the observations needed to confirm his model became available, in particular the 

confirmation of emissions data and the early signals of climate warming. This led to the 

collection of more measurements to confirm or refute the predictions of global warming and 

these measurements led in turn to more detailed and reliable models of the greenhouse effect. 

This is an early and continuing example of the nature and significance of melding models and 

measurements to build confidence in a scientific hypothesis—in this case the climate warming 

properties of carbon dioxide. 

The complementary nature of models and measurements has also been exploited in the 

identification and classification of persistent organic pollutants (POPs). The first evidence for 

long-range transport of these substances came when measurements in animals and the 

environment of the Arctic revealed the presence of POPs that were never produced or used there. 

The lack of reliable emissions data led to a number of modeling efforts to explore hypotheses 

regarding the atmospheric transport and deposition of POPs in the Arctic. For example, Wania 

and Mackay (1995, 1999a) introduced multimedia global distribution models for persistent 

organic chemicals with a focus on transport and deposition to the Arctic. Other modelers 

developed evaluative models to assess global persistence and spatial range as end points in 

screening level assessments, for example Scheringer (1996, 1997). These models and their 

results provided key insight both to international agencies, such as the United Nations, and to 

scientists working independently to make measurements of POP concentrations and how they 

vary with latitude. These new measurements provided important feedback that made it possible 

to develop the next generation of models by merging results from both the first generation of 
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models and the new measurements. In the case of POPs the integration of models and 

measurements offered more insight than either scientific tool used alone. 

The US National Research Council (NRC) in its recent study on the use of models in 

regulation stated that the greatest value of models lies in their ability to synthesize 

understanding, for example of chemical fate processes, and to facilitate a deepening of that 

understanding. Furthermore, models have proven to be valuable in assisting decision making by 

stimulating intuition, illustrating an idea, summarizing data, providing an incentive for 

improving data quality, and formulating hypotheses for subsequent testing. The NRC correctly 

points out that although models have provided these valuable insights, they cannot make 

decisions. Moreover, they note that, while the demand for models has grown, the 

conceptualization of what a model is has shifted in recent years. In contrast to previous years, 

models are now viewed less as “truth-generating machines” and much more as tools designed to 

fulfill specific tasks and purposes (Beck et al. 1997). According to the NRC (2007), as tools, 

“models serve in the decision-making process as (1) succinctly encoded archives of 

contemporary knowledge; (2) interpreters of links between health and environmental harm from 

environmental releases to motivate the making of a regulatory decision or policy; (3) instruments 

of analysis and prediction to support the making of a decision or policy; (4) devices for 

communicating scientific notions to a scientifically lay audience; and (5) exploratory vehicles for 

discovery of our ignorance.” 

By their very nature, all models are simplifications and approximations of the real world 

and have inherent limitations. Similarly, measurements have many limitations in that they are 

always incomplete, sometimes inaccurate, frequently irrelevant to a given hypothesis, and often 

difficult to interpret. Consequently, an optimum strategy for improving the understanding of 
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environmental fate and exposure of substances, including POPs, has been to rely on both models 

and measurements. 

STRATEGIES FOR USING MODELS WHEN EVALUATING PBTs AND POPs 

The goal of an exposure assessment for identifying Persistent, Bioaccumulative and 

Toxic chemicals (PBTs) is to establish the link between chemical emissions to the environment 

and exposure in organisms of concern and/or humans. To accomplish this goal, two models are 

generally needed. First, an environmental fate model is required to describe the fate of the 

chemical in the physical environment and to predict the concentrations in physical media such as 

air and water from the emissions. Second, a bioaccumulation model is needed to predict the 

resulting exposure (i.e., internal concentration in the organism) arising from these concentrations 

in the physical media (Fig. 1). These two models can either be separate or linked within a 

modeling package. 

In the specific context of preparing a risk profile for a candidate POP, an additional goal 

is to predict chemical exposure in a remote region as a result of long-range transport. In this case, 

the model for estimating the long-range transport may be integrated into the physical 

environmental fate model or it may be a separate model calculation (Fig. 1). Although recently a 

combination of a global long-range transport model with a human food chain bioaccumulation 

model was used to identify chemical partitioning properties that result in high exposure/emission 

ratios in the remote Arctic (Czub et al., 2008), we are currently unaware of any widely available 

modeling tools which include long-range transport, environmental fate, and bioaccumulation in 

one modeling system. In the absence of a model to predict the amount of the chemical 

transported to the remote region of interest, the fraction of emissions transferred to the remote 

area (e.g., the Arctic) can be estimated using one of the metrics available in the literature 
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(Scheringer et al., 2000, Wania, 2003, 2006, MacLeod and Mackay, 2004). Once this estimate of 

the emissions to the remote region is obtained, a fate and bioaccumulation simulation can then be 

conducted for this region. 

Irrespective of the specific models or goals of the modeling approach, we suggest that there 

are a variety of strategies for the use of exposure models in the evaluation of POPs, and indeed 

environmental contaminants in general. These strategies are complementary, but they can be 

applied individually, sequentially, or iteratively: 

• Strategy #1:  Groundtruthing:  Model-based exposure predictions can be compared to 

existing monitoring data to 1) establish whether these monitoring data and the model’s 

exposure predictions are reasonable, representative and consistent and 2) build confidence in 

the appropriateness of the model for the chemical under consideration, or discover areas 

where ignorance about important processes make the model inadequate. 

• Strategy #2:  Confronting Uncertainty:  Sensitivity and uncertainty analysis can bound 

estimates of exposure, and identify the key information requirements for improving the 

model's ability to predict both POP-like characteristics and POP exposures. 

• Strategy #3:  Benchmarking:  In the absence of quantitative emission information, a 

chemical’s predicted exposure normalized to a standard emission rate can be compared with 

that of other substances, including known POPs. 

• Strategy #4:  Predicting:  Models can be used to explicitly predict the exposure of target 

populations of organisms, including humans, which would be expected based on the known 

usage of the chemical.  However, this is only advisable using a model for which confidence 

has been built by "Groundtruthing". 
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• Strategy #5:  Forecasting:  Models can be used to provide insight into the implications of 

existing time trend observations by predicting future trends in concentrations in remote 

regions.  

• Strategy #6:  Scenario Testing:  In comparing risk management options, models can be 

invaluable in assessing the potential effectiveness of different measures. 

 Below, we provide information indicating how each of the strategies can be used to 

assess exposure to POPs, and contribute to the development of risk profiles. 

 Strategy #1:  Groundtruthing by Comparing Model Results and Monitoring Data 

Model results can be used to complement and expand the usefulness of monitoring data and 

other information used within the context of the risk profile. For example, model results can lend 

credibility: 

• To monitoring data by addressing questions such as: Based on our understanding of chemical 

fate and bioaccumulation, is it reasonable that a chemical would be present in such quantities 

in such compartments/organisms? 

• To physical chemical properties by addressing questions such as: Based on the observed 

concentrations in water and sediment, is it reasonable that the chemical is as persistent in 

sediment as reported? 

• To emissions estimates by addressing questions such as: Based on the observed 

concentrations of the chemical in the major environmental reservoirs and our understanding 

of the chemical’s environmental persistence, is it reasonable that the emissions are as high 

(or low) as has been estimated? 

An important byproduct of comparing model results with monitoring data is the enhancement 

of model confidence. Since exposure models are only an approximation of the complex reality of 
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the environment, it is essential to have confidence in their ability to predict exposure for the 

chemical of concern. This confidence is imparted by the physical and chemical principles on 

which the mechanistic underpinnings of the model are built, by the accumulated evidence from 

comparing model algorithms for specific processes with empirical observations, and by past 

experience in applying the models to other similar chemicals (see the case study below and the 

Appendix).  

A fundamental problem that confronts models of open environmental systems is that the 

model may not fully capture all of the essential details of “reality” needed to accurately predict 

exposure for a specific scenario. For instance, it may not be possible to include in the fate model 

all of the vectors of environmental exposure to the endpoint due to limited knowledge or 

information. Comparing the model to monitoring data can help to discover deficiencies in the 

model, just as it can help to discover deficiencies in the monitoring data, physical chemical 

properties, and emissions estimates. 

Strategy #2:  Confronting Uncertainty  

One of the advantages of using exposure models to quantitatively describe the emission 

source to body burden (i.e., exposure) relationship is that uncertainty and sensitivity analysis of 

the models can be conducted to identify the processes and parameters that contribute most to 

uncertainty in the assessment. The results of the uncertainty and/or sensitivity analysis can be 

especially valuable for improving the quality of the exposure prediction and the risk profile. For 

example, it can direct the efforts of the assessor to improving the estimates of these key 

processes and parameters. Furthermore, this information can enable the writing and reviewing of 

the risk profile to be focused on the most important processes and uncertainties affecting the 

exposure estimates. 
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Sensitivity analysis and uncertainty analysis, although closely related, provide different 

insights into the assessment. Sensitivity normally refers to the percentage change in an output 

parameter of interest for a small percentage change in a selected input parameter. Highly 

sensitive parameters are highly influential in determining the value of the output. Uncertainty 

refers to the range of possible values of a calculated output parameter that result from the range 

of possible values of inputs. Thus uncertainty provides information about the degree of 

confidence that can be placed in a given model result and sensitivity analysis identifies key input 

parameters that should be well characterized in order to reduce uncertainty in the assessment. 

There are several possible methods that can be applied to assess uncertainty in model 

predictions. The most common method is Monte Carlo uncertainty analysis in which input 

parameters are assigned distributions of possible values that are randomly sampled to assemble a 

corresponding distribution of outputs. Information about sensitivity of the outputs to each input 

parameter can be obtained by rank correlation analysis of outputs against inputs for a large 

number of Monte Carlo realizations. An example application of these techniques is given in the 

case study. 

Strategy #3:  Benchmarking of Candidate POPs against Existing POPs 

While the quantitative prediction of exposure (see Strategy #4 below) may be the 

ultimate goal of model-based fate and exposure assessments, in practice there are frequently 

serious obstacles to reaching this goal. A commonly encountered obstacle is the large 

uncertainties associated with estimates of historic and current emissions. These uncertainties are 

– as a rule – linearly translated by the model into uncertainty in the final exposure estimate.  

One way to address the problem of uncertainty in emissions is to calculate an exposure 

metric that is normalized to emissions. An example of such a metric is the quantity of the 
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chemical in an Inuit woman divided by the global emission of the chemical, i.e., the fraction of a 

unit emission of the chemical that accumulates in a single Inuit woman (Czub et al., 2008). Such 

an exposure metric provides a pseudo-intrinsic measure of exposure hazard that, for a given 

receptor, environment, and emission pattern and location, is solely governed by a chemical’s 

properties and thus is independent of the magnitude of chemical emissions (Mackay et al. 2001). 

The use of hypothetical unit emission rates also offers a transparent method to compare 

candidate POPs against existing POPs, in a process called benchmarking. If the environmental 

fate, transport and bioaccumulation properties of both the candidate POPs and reference POPs 

are captured in the model in a similar manner, benchmarking also overcomes the problem of 

inadequate accuracy in the predicted exposure. Although the model may not be able to accurately 

predict the exposure of the candidate POP, it can nevertheless give a reliable estimate of the fate 

and exposure of the candidate POP relative to other already identified POP chemicals. Exposure 

models are frequently very good at predicting the relative behavior of chemicals with similar 

properties. This can be exploited in chemical exposure assessment for POPs. 

A benchmarking procedure was recommended by the OECD expert group charged with 

developing an approach for assessing whether candidate POPs fulfill the criteria of overall 

persistence and long-range transport potential (Klasmeier et al., 2006). They recommend that the 

pseudo-intrinsic chemical properties of overall persistence (Pov) and long-range transport 

potential (LRTP) for candidate POPs be compared with the Pov and LRTP values for a group of 

established POPs to determine whether the candidates are similar to established POPs. Using an 

analogous approach, one could assess whether the exposure to a candidate POP would be similar 

to the exposure to known POPs, given similar emission rates. 
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The benchmarking approach can and should also be applied in a risk assessment context. 

Since contaminant exposure is generally linear with respect to the chemical emissions (i.e., a 10-

fold increase in emissions corresponds to a 10-fold increase in exposure), the exposure of a 

candidate POP relative to existing POPs can be estimated by multiplying the ratio of the pseudo-

intrinsic exposure metric by the likely ratio of the emissions of the candidate POP to the known 

POP. If this is then multiplied by the relative toxicity (hazard) of the candidate POP and the 

known POP, one obtains an estimate of the relative risk. 

Relative Risk = Xcand/Xknown × Ecand/Eknown × Tcand/Tknown (1) 

where X is the exposure metric (e.g., concentration in mother’s milk per unit global emissions), 

E is global emissions, and T is the toxicity metric. This is a simple and transparent methodology 

to characterize the relative risk posed by a candidate POP at the screening level. 

Strategy #4:  Predicting Chemical Exposures from Emissions 

By fully quantifying the source-receptor relationship, exposure models that combine 

chemical fate calculations in the physical environment with computations of food chain 

bioaccumulation can be used to estimate chemical exposure. In its most sophisticated form, such 

an assessment relies on well characterized information about emission rates, environmental 

characteristics, exposure pathways and receptor populations to predict time-variant exposure in a 

realistic manner. The ultimate goal is to estimate the actual concentrations of the chemical in the 

environment and in the ecological and human receptors. Whereas this ambition has been largely 

fulfilled for some well-studied contaminants, such as the polychlorinated biphenyls (Czub and 

McLachlan, 2004a), the risk profile will in most cases have to be developed using incomplete 

and limited information about emissions, inventories in the environment, exposure pathways and 

characteristics of the receptor population. 
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Strategy #5:  Forecasting Exposure in the Future 

Models can be especially useful to extrapolate emissions information, physical chemical 

property information, and monitoring data to forecast future exposure. For example, observations 

of increasing concentrations over time in remote regions may be of particular concern for the 

candidate chemical. Models can be used to forecast how much longer these concentrations would 

be expected to rise in response to various future emissions scenarios (Gouin and Wania, 2007) 

and thus help to prioritize management options. 

One of the key motivations for regulating POPs is the concern that if a key aspect in the 

hazard assessment is overlooked, then because of the persistence, LRTP, and bioaccumulation 

properties of the chemical it will take an unacceptably long time to rectify any resulting 

problems. Simply put, the concentration in target organisms in remote regions will respond too 

slowly to a reduction in the emissions of the chemical, and damage could persist over very long 

periods. Given the salient importance of this question in the POP context, non-steady state 

modeling tools may be required as a component of the risk profile process to predict recovery 

times of contaminant levels in target organisms. A benchmarking procedure using a 

characteristic response time for contaminant levels in sentinel organisms in remote regions 

similar to that proposed for exposure could be a useful framework for classifying chemicals 

according to this fundamental POP characteristic. 

Strategy #6:  Scenario Testing of Alternative Risk Management Options 

Although not of direct relevance to assembling the risk profile, we note that models can 

be very useful in the risk management stage of the POP evaluation procedure. The efficacy of 

different management strategies at reducing the exposure levels in human populations and 

environmental receptors can be evaluated by running exposure models with different scenarios, 
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i.e., different levels of future emissions, or modified exposure pathways. Models can supply 

information on not only the magnitude of anticipated changes in exposure but also on the 

rapidity with which the changes will occur. Examples of scenario testing of different 

management strategies are provided by Thompson et al. (1999) for Lake Ontario, Canada, and by 

Davis and co-workers for the San Francisco Bay, USA (Davis, 2004, Conner et al. 2007). 

CASE STUDY FOR THE 2006 AND 2007 CANDIDATE POPs 

As an illustration of the application of models to calculate human exposure in support of 

the POP risk profiling process, a case study incorporating the first three of the strategies 

discussed above is provided here. In the case study, we consider compounds that have been 

nominated for addition to the Stockholm Convention in 2006 and 2007. First, we apply models 

to benchmark these candidate POPs against a selection of acknowledged POPs and non-POPs. 

Then, for one of the candidates, commercial pentabromodiphenyl ether, we present a more 

detailed analysis that includes emission estimates and comparisons of modeled data against 

concentrations measured in environmental and exposure media. For this purpose, we have 

selected one component of the commercial mixture, 2,2’,4,4’,5-BDE (PBDE-99) to represent the 

mixture. In these case studies we use the OECD Pov and LRTP Screening Tool (The Tool) 

(Wegmann et al. 2007) to model long-range atmospheric transport, and the Risk Assessment 

IDentification And Ranking (RAIDAR) model (Arnot et al. 2006, Arnot and Mackay 2008) to 

assess regional-scale fate, partitioning, degradation, food web bioaccumulation, far-field 

exposure, and resulting body burdens in humans. 

Our case study considers two fate and exposure scenarios. The first scenario describes 

emissions to air and calculates the body burden in a representative human living in the source 

region. This scenario is a useful complement to PBT hazard assessments aimed at identifying 
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substances that are of concern due to local or regional scale exposure of humans living in the 

source region. The second scenario describes emissions to air in a source region followed by 

long-range atmospheric transport to a remote region, and exposure of a representative human 

living in the remote region. This type of assessment provides information about the levels of 

exposure due to long-range transport, and is most relevant for assessing the need for international 

regulatory action, especially under the Stockholm Convention. The exposure information derived 

from either scenario can be combined with information about effect levels to provide a screening 

level risk assessment. 

As discussed above, models can be applied to benchmark candidate substances against 

acknowledged POPs and non-POP substances. For our case study, we have selected a set of 

reference chemicals recommended by the OECD expert group on Pov and LRTP assessment that 

includes acknowledged POPs and non-POPs (Klasmeier et al. 2006). It is important to recognize 

that the role of the benchmark substances is to provide a comparative context for understanding 

the model results for the candidate substances. The model results for the benchmark substances 

should not be interpreted as defining "bright line” boundaries between POP-like and non-POP-

like substances. 

We collected physical-chemical property data and estimates of degradation half-lives in 

environmental compartments for the candidate POPs from the risk profile documents prepared 

for the Persistent Organic Pollutant Review Committee (POPRC 2006), from reports on 

persistence and long-range transport modeling of the substances (Scheringer et al. 2006, 

Wegmann et al. 2007), and from data compilations and QSPR models (Mackay et al. 2006, U.S. 

EPA 2007, Schenker et al. 2005, Arnot et al. 2005) (Table 1). In addition, we have included 

screening level biotransformation half-life estimates for fish, birds and mammals for all 
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substances.  Biotransformation in food webs and in humans has not been explicitly modeled in 

far-field exposure assessments until very recently. Therefore, for both scenarios considered here 

we present two sets of results. The first case assumes negligible biotransformation in fish, birds 

and mammals in the food chain (half-life; HLN = 30,000 d), and the second case includes 

biotransformation half-lives as specified in Table 1. Details for the selection of degradation half-

life estimates are provided in the Appendix at the end of the paper. 

Benchmarking the POP Candidates against Acknowledged POPs and Non-POP Substances 

This benchmarking exercise is based on results from two models. First, RAIDAR Ver. 

2.0 (Arnot and Mackay 2008) is used to estimate the body burden of contaminant in a 

representative individual in an evaluative regional environment for a steady-state unit emission 

rate of 1 kg/h. The calculated body burden is an estimate for humans living in the source region 

receiving emissions to air. Second, the OECD Tool (Wegmann et al. 2007) is used to calculate 

the characteristic travel distance (CTD, km) of each substance in air. The CTD is an estimate of 

the distance at which the concentration of a chemical in a moving parcel of air that interacts with 

the surface falls to (1/e) or 37% of its initial value (Bennett et al. 1998). The potential for human 

exposure in a remote region is assessed using the CTD to estimate an effective emission rate into 

the remote region as a result of long-range transport in air from a source region 2500 km away. 

In this illustrative case study only atmospheric transport to the remote region is considered and 

not transport in oceans or river water. The estimated body burden in RAIDAR is directly 

proportional to the assumed emission rate, thus the body burden in the remote region is 

calculated by scaling the body burden in the source region by the fraction of the chemical that is 

transported to the remote region. For this illustrative example we use identical generic 
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environmental conditions (e.g., temperature, surface coverage of water, soil and vegetation) and 

exposure pathways (e.g., dietary selection) to describe both the source and remote regions. 

Figure 2 shows the calculated human body burden in the region of emission for a unit 

release rate of each of the candidate POP substances compared to benchmark substances 

representing acknowledged POPs and non-POPs. It is apparent from inspection of Figure 2 that 

the results for the non-POP benchmark chemicals are strongly dependent on whether or not 

biotransformation in the food web is considered in the model assessment. For example, when 

biotransformation in the food web is neglected, the modeled body burden of atrazine is 

comparable to body burdens for some of the POP benchmark substances; however, the atrazine 

body burden is considerably lower when biotransformation is considered. The estimated body 

burdens for p-cresol and biphenyl are also sensitive to the inclusion or exclusion of 

biotransformation in the food web. It is thus apparent that assessments neglecting 

biotransformation may be overly conservative for certain substances, and will reduce the 

effectiveness of model assessments used to identify those substances that have the greatest 

potential to cause high exposures in the human population. 

The results when biotransformation is considered show a marked difference in calculated 

body burdens between the acknowledged POP and non-POP benchmark substances. All of the 

POP candidate substances lie within the range of calculated body burdens defined by the POP 

benchmark substances indicating that the POP candidates have similar human exposure potential 

in the source region as the acknowledged POP benchmark substances.  

In such a benchmarking exercise it is important to remember that the benchmark 

substances do not define “bright-line” criteria, but are only useful for providing a context to 

interpret model results. In this particular case, the candidate POPs have been nominated for 
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addition to the Stockholm Convention because of concern about their potential to have 

significant adverse effects on humans and the environment due to long-range transport to remote 

regions. Therefore the assessment of potential for exposure in the source region does not fully 

address concerns that motivated the nominations of these substances as POP candidates. 

Potential for long-range transport and exposure in a remote region is addressed in the following 

paragraphs. 

Figure 3 shows the modeled fraction of emissions to air that reach a remote region 2500 

km away, calculated from the CTD for emissions to air from The OECD Tool. This is a metric of 

the atmospheric LRTP of the substances. All of the acknowledged POP benchmark substances 

have high LRTP, and the effective emissions to air in the remote region are estimated to be less 

than a factor of 10 lower than in the source region. The same is true for all of the candidate POP 

substances except chlordecone, for which the effective emission rate to the remote region is 3% 

of the emission rate in the source region. Among the non-POP benchmarks, carbon tetrachloride 

has a very high LRTP as it is volatile and resistant to degradation in the atmosphere, and 

biphenyl is predicted to have potential for transport to the remote region that is comparable to the 

candidate POPs and the POP benchmark substances. 

Figure 4 shows the calculated human body burdens in a remote region based on a unit 

emission in the source region. The data in Figure 4 are calculated as the product of the body 

burdens in the region of emission shown in Figure 2 and the efficiency of atmospheric transport 

to the remote region shown in Figure 3. The benchmarking exercise demonstrates that the 

majority of the candidate POP substances have calculated body burdens in the remote region that 

are comparable to those of the acknowledged POP benchmark substances, and these values are 

several orders of magnitude higher than any of the non-POP benchmarks. Thus our analysis 
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supports the case that the candidate POPs may have potential to cause adverse effects in human 

populations as a result of long-range transport. 

Among the candidate POPs, chlordecone has the lowest calculated body burden in the 

remote region. This is a consequence of relatively low efficiency of long-range atmospheric 

transport from the source region compared with other candidate POPs and the POP benchmark 

substances. 

Among the non-POP benchmarks two factors can limit the body burden in the remote 

environment. Atrazine has a calculated body burden in the source region that is comparable to 

many of the POP benchmarks when biotransformation estimates are not included, but it has very 

low LRTP in air and exposures to higher trophic level organisms are mitigated by 

biotransformation in food webs. Thus the body burdens calculated in the remote region are low, 

particularly when biotransformation is included in the assessment. In contrast, carbon 

tetrachloride is very efficiently transported to the remote region; however, it has low potential for 

accumulation in aquatic and terrestrial food chains and has low calculated body burdens in both 

the region of emission and the remote region. Insights such as these into the important processes 

that control environmental and human exposure for each substance illustrate the potential added 

value of applying exposure assessment models as a complement to PBT and POPs assessment. 

Combining Modeling with Monitoring Data 

In this section PBDE-99 is used to illustrate how model results can be combined with 

monitoring data in PBT and POPs assessment. Models can play an important role by establishing 

that the monitoring data are reasonable, representative and consistent; by providing a means to 

extrapolate a data set to fill gaps in the measurements; and, by identifying which data gaps 

require the greatest attention. In turn, assessments that combine modeling with monitoring data 
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can help to identify shortcomings in the modeling approach for the particular case under 

consideration and thus provide guidance for model improvement. In this illustrative case study 

we rely primarily on information that is summarized in the risk profile for commercial 

pentabromodiphenyl ethers adopted by the Persistent Organic Pollutant Review Committee 

(POPRC, 2006).   

A practical obstacle when making direct comparisons between model estimates and 

monitoring data is making a representative estimate of the actual emission rate into the 

environment (Breivik et al. 2006). Emissions of PBDE-99 are dominated by volatilization from 

in-use products (POPRC, 2006).  Palm et al. (2002) estimated a “worst case” emission rate of 

about 4.7 mg PBDE-99/(capita year) in industrialized countries.  However emission estimates 

made in subsequent studies imply higher emissions than the estimate by Palm et al.  Jones-Otazo 

et al. (2005) estimated emissions of 20 – 80 mg/(capita year) for PBDE-47 and PBDE-99 in 

Toronto, Canada.  Denier van der Gon et al. (2007) estimated approximately 110 mg/(capita 

year) of commercial pentabromodiphenyl ether emission in Europe in the year 2000.  The 

Persistent Organic Pollutant Review Committee (POPRC, 2006) estimated a median value of 

820 tonnes/year for global emissions of commercial pentabromodiphenyl ether, which 

corresponds to 124 mg/(capita year) for a global population of 6.6 billion (ca. 2000).  In a 

controlled experiment, Wilford et al. (2003) determined that 17% of the mass of commercial 

pentabromodiphenyl ether mixture that volatilized from treated foam was PBDE-99.  Applying 

this factor to the emission estimates for commercial pentabromodiphenyl ether made by Denier 

van der Gon et al. and POPRC implies emissions of 18.7 and 21.1 mg PBDE-99/(capita year) 

respectively, where the first estimate applies to Europe, and the second to the entire global 

population.  Assuming that 20% of the emissions estimated by Jones-Otazo et al. are PBDE-99 
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implies emissions of 4 – 16 mg PBDE-99/(capita year) in Toronto, Canada.  Based on this 

information, we selected an emission rate of 15 mg PBDE-99/(capita year) as input to our 

modeling study. The RAIDAR evaluative model describes a regional environment of 100,000 

km2 with an assumed population of approximately 8,000,000 people. Thus, the estimated 

emission rate to the model region is 120 kg PBDE-99/year, or 13.7 g PBDE-99/hour. 

A second complicating factor in comparing modeling and monitoring data is interpreting 

the model results in a way that allows meaningful comparison with monitoring data that may 

represent a different spatial and temporal scale (Armitage et al. 2007). The primary source of 

PBDE-99 monitoring data used in this comparison is from the United Kingdom over the period 

2000 – 2004; however, other monitoring data from different regions are also included, 

particularly for fish, wildlife and humans. 

Figure 5 compares modeled concentrations with monitoring data for abiotic 

environmental media. The modeled concentrations in these compartments are within the ranges 

of values detected in the environment from different global regions (Hites 2004, POPRC 2006, 

SFEI 2008, Lorber 2008). The modeled concentrations in air are in very good agreement with the 

median estimate from monitoring data. The monitoring data for water are limited and the lower 

modeled estimate may be attributable to our assumption that all emissions are to air, when it is 

likely there are some releases to water and land. Further, the monitoring data do not reflect the 

occurrence of non-detects that may lower the range of values depicted in the figure, and this may 

be of particular relevance for soils and sediments. Another possible explanation for the 

underestimation of soil concentrations by the model is underestimation of the biodegradation 

half-life of PBDE-99 in soils used as input to the model.  
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Figure 6 compares modeled concentrations of PBDE-99 in ecological receptors, 

agricultural products, and humans with monitoring data from various global regions (Huwe et al. 

2002, Ohta et al. 2002, Hites 2004, FSAI 2004, POPRC 2006, Darnerud et al. 2006, SFEI 2008, 

Binelli et al. 2008, Lorber 2008). The modeled concentrations are generally within a factor of 

three to five of the median measured values, with the notable exception of certain root vegetables 

(e.g., potatoes, carrots). 

In light of the assumptions used in this case study we view the agreement between the 

model estimates and the monitoring data as exceptionally good. Other studies that have 

compared modeling results with monitoring data have not generally resulted in such close 

agreement (see the Appendix for details). 

Sensitivity and Uncertainty Analysis 

Sensitivity and uncertainty analysis of the model can provide guidance for identifying 

process descriptions and input parameters that dictate the overall uncertainty in modeled 

exposure. We have conducted a sensitivity and uncertainty analysis of the modeled relationship 

between emissions to air and human body burden of PBDE-99. The sensitivity and contribution 

to uncertainty of model inputs describing the chemical (partitioning and half-live values listed in 

Table 1) on model output (total human body burden) are illustrated for PBDE-99 in Figure 7. We 

have characterized uncertainties in all chemical property input parameters by assuming possible 

values are log-normally distributed and using confidence factors (Cf) to quantify the degree of 

uncertainty, where 95% of possible values are expected to lie between the median value divided 

by Cf and the median value multiplied by Cf (MacLeod et al. 2002a). Higher Cf values thus 

reflect greater uncertainty and variability in the parameter. The partitioning properties were 
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assigned Cfs of 3.2 and primary transformation half-lives in air, fish, and birds/mammals were 

assigned Cfs of 5.6 and the half-lives in water, soil and sediment were assigned Cfs of 10.  

The biotransformation half-lives in fish and birds/mammals are the most sensitive 

selected chemical property parameters and are most influential in determining the modeled 

human body burden. The human body burden estimates are expected to be sensitive to 

biotransformation rate estimates since other chemical elimination processes are very low for 

hydrophobic non-ionic chemicals and biotransformation rates thus largely influence the 

biological residence time. This analysis suggests that improving knowledge for these chemical 

parameters may reduce uncertainty in modeled human body burden of PBDE-99, recognizing 

that biotransformation rates are expected to be highly variable in a range of species. 

The present uncertainty analysis did not include the uncertainty in model parameters 

describing the environment and the food webs and uncertainty in the estimated emission rate. 

Uncertainty in the emission rate is often a dominant source of uncertainty in exposure 

assessments based on models. For example, it is reasonable to assign a Cf of 10 to the estimated 

emission rate implying 95% confidence that the actual emission rate of PBDE-99 to the 

atmosphere is between 12 and 1,200 kg/y in the regional environment. Under this assumption, 

the uncertainty analysis indicates that the estimated emission rate is the most sensitive parameter 

(S = 1), and has the greatest contribution to variance in calculated human body burden (65% of 

the total). Thus it is clear that accurate estimation of emission rates is a prerequisite to obtaining 

accurate estimates of exposures and risks in a model-based assessment. 

Findings from the Case Study 

In summary, this simple case study illustrated several of the contributions that modeling can 

make to the development of a risk profile in the POP review process: 
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a) The benchmarking exercise provided clear evidence that PBDE-99 and the other POP 

candidate substances are – from an exposure perspective – similar to acknowledged 

POPs. The ratios of emissions: tissue levels in humans are comparable to that of known 

POPs, providing evidence that the POP candidates fulfill the persistence, long-range 

transport, and bioaccumulation POP criteria. 

b) The comparison of monitoring data and model predictions showed very good agreement 

for most of the matrices, including – most importantly for the risk profile – humans and 

top predators. This builds confidence in the ability of the model to predict the behavior of 

PBDE-99 and lends further credibility to the results of the benchmarking exercise. 

c) The comparison of monitoring data and modeling predictions revealed an inconsistency 

between calculated concentration in soils and observations of levels in the environment.  

This inconsistency may be due to overestimation of the rate at which PBDE-99 is 

degraded in soils.  This provides important information to the review process, as it 

indicates that the residence time of PBDE-99 in the environment may be much longer 

than otherwise would have been expected. This may lengthen the recovery time of the 

environment to reductions in emissions, adding to the “POP concern” for this chemical. 

d) The sensitivity/uncertainty analysis revealed that the biotransformation half lives were 

the largest source of chemical property uncertainty in the estimation of human exposure 

in the source regions, thus directing the team preparing / evaluating the risk profile to 

return to and critically review the evidence for these parameters. 

This simple case study has incorporated the first three of the strategies for employing models 

proposed above. The good agreement between the monitoring data and the model predictions 

indicates that Strategy #4 could also be pursued for this chemical, for example by employing the 
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model to directly predict human tissue levels in the context of a risk assessment. At the risk 

management stage of the POP review process, this risk assessment could be repeated for 

different emissions scenarios to evaluate e.g., if there are some uses of PBDE-99 that can be 

permitted (Strategy #6). Although the Strategy #5, predicting exposure in the future, was not 

utilized in this example analysis, the identification of the possible inconsistency in the 

biodegradation rate constants in soil and sediment already provides important information for 

future extension of this evaluation. In summary, the case study clearly illustrates that models are 

available that allow quantitative tracking of the emissions-to-exposure relationship for humans 

and ecological receptors and that they can contribute to the development of a risk profile in many 

ways. 

GUIDANCE ON CHOOSING AND USING MODELING TOOLS WHEN EVALUATING 

POPs 

As the previous discussion and the case study have illustrated, using fate and exposure 

models in developing the risk profile for PBTs and POPs would be very beneficial. A model 

selection decision is required because there is no “universal” model that is appropriate for 

assessing all aspects of chemical behavior in the environment. Depending on the properties of 

the chemical, the properties of the environment, and the question that needs to be addressed, 

different models with different levels of complexity may be appropriate. The model selection 

decision must have a logical basis and adequate documentation, particularly with regard to those 

reviewing the assessment. 

The complexity of the environment makes simplification imperative in exposure 

assessment models. As features and capabilities are added to a model, making it more complex, 

the cumulative effect on model performance needs to be evaluated carefully. Increasing the 
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complexity of models without adequate consideration of the impact of this complexity can 

decrease the potential for a model to be transparent and accessible to users and reviewers. It is 

often preferable to omit complexities that do not improve model performance substantially. Even 

more problematic are models that accrue substantial uncertainties because they contain more 

parameters than can be estimated or calibrated with available observations. Thus, the best model 

is the simplest model which nevertheless captures the key processes that have a major influence 

on exposure. 

Two characteristics of POPs are their high degree of persistence and their susceptibility 

to long-range transport. These properties both contribute to a leveling of spatial gradients in the 

environment. While chemicals which are rapidly degraded in the environment or which do not 

move from their point of emission tend to show strong spatial gradients around the emissions 

sources, this propensity is reduced for POPs. As a consequence, box models, which assume 

uniform concentrations of the chemical in a given environmental medium in a given region, are 

often appropriate for modeling POPs (Wania and Mackay, 1999b). Secondly, within a given 

environmental medium (e.g., water, air), it is appropriate to assume equilibrium partitioning. 

Given that POPs are also by definition bioaccumulative and hence have low rates of metabolism, 

equilibrium can also be assumed within organisms. Hence, in selecting modeling tools for POP 

exposure assessment, one should have few qualms about choosing models that make these 

simplifications. Indeed, most POP models are based on these assumptions (Wania and Mackay, 

1999b). 

Criteria to Consider in Choosing Models 

When choosing a model or models for the fate and exposure assessment, a primary 

criterion to consider should be the similarity of the chemical to be evaluated to those that were 
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used to develop empirical relationships coded into the model. Most exposure assessment models 

incorporate empirical relationships to express certain chemical fate processes. Examples are 

regressions that relate laboratory- or QSPR-derived physical-chemical properties (such as KOW) 

to distribution coefficients between environmentally relevant phases (such as KOC) or to kinetic 

terms (such as those related to uptake/excretion in biota). A consequence of the use of such 

expressions in models is that they are strictly only applicable to substances for which these 

relationships hold. Very rarely are such relationships applicable to all chemicals of interest. They 

are most likely to be valid for substances that are similar to those that were used in their 

derivation. For example, because the relationships between KOC and KOW were derived using 

neutral organic chemicals, they may not be particularly effective at describing the sorption 

behavior of charged chemical species. Similarly, relationships to describe bioaccumulation based 

on hydrophobicity (e.g., KOW) will not apply to PFOA and PFOS, which bioaccumulate 

according to different mechanisms. 

Another related criterion that should be considered in the choice of model is whether the 

fate processes included in the model are applicable to the chemical of interest. Models only tend 

to include processes that are relevant for the chemicals for which they were designed. For 

example, a model developed for the assessment of exposure to persistent hydrophobic chemicals 

may ignore exposure pathways that are of no concern for such chemicals, such as inhalation 

exposure or exposure through drinking water, and models designed for persistent chemicals may 

ignore metabolic elimination. However these processes may be important for the chemical of 

interest. 

One should also assess whether the model is valid for the region of interest. For example, 

a model that has been developed for a sub-tropical region may not be appropriate for a polar 
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region. The model should capture both the central features of the physical environment (e.g., 

ratio of land to water, climate) and the biological environment (e.g., food web structure, 

exposure endpoints) in an appropriate manner. Some of the available models can be re-

parameterized to better reflect the study area of interest. 

A further concern can be whether the model has as output the kind of exposure endpoint 

desired. Some models calculate external exposure, while other models can predict internal 

exposure metrics such as tissue concentrations or body burden. The choice can depend on the 

information available for and/or desires for the significant adverse effects assessment. 

Similarly, the ability of the model to handle the mode and timing of emission of a 

chemical may, in some cases, influence model selection. If, for instance, the emissions are highly 

seasonal and there is evidence that this strongly influences the fate (e.g., due to seasonality in 

climatic conditions), it may be appropriate to choose a model which allows this aspect of the 

emissions to be included. 

Some models calculate chemical fate and exposure assuming that the chemical is at 

steady state, while others are non-steady state models. This can be an important criterion when 

the objective of the assessment includes comparing model predictions with monitoring data for 

POPs. Steady state models assume that all properties in the environment including emissions are 

constant over time, while non-steady state models allow variability in chemical emissions and, 

frequently, environmental parameters as well. Steady state models are simpler, and they are 

generally easier to use, two factors which speak for their selection. However, due to their high 

persistence in the environment, POPs are seldom close to steady state. Under conditions of 

constant emissions it can take decades or centuries until the concentrations in the major storage 

reservoirs in the environment stabilize. Steady state models would therefore greatly over-predict 
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the concentrations in these reservoirs for a candidate POP which has been in use for a much 

shorter period. Furthermore, in reality emissions of candidate POPs have seldom been constant 

over long periods of time, and hence the fundamental assumption behind a steady state model is 

violated. As a consequence, non-steady state models should be preferred when comparing model 

predictions with monitoring data for POPs. 

Depending on the focus and objectives of the assessment, another consideration in 

choosing a model may be the inability of most existing exposure assessment models to directly 

assess exposure to products of degradation reactions in the environment or metabolic 

conversions within an organism. Only recently have multimedia models been developed and 

used that directly quantify exposure to secondary pollutants (Schenker et al. 2008a, b; Cahill et 

al. 2003). 

The model selection criteria mentioned above can all be subsumed under the umbrella of 

maximizing confidence in the model. This should be the primary guiding principle in model 

selection. Confidence is grounded first on the validity of the underlying theoretical concepts; 

aspects of this were addressed above. Model confidence can be further heightened, as mentioned 

previously, by conducting evaluation exercises where the results of the model are compared with 

reality. Consequently, one criterion for model selection is that the model should have been 

applied successfully to similar chemicals before. There are many studies in the literature in 

which model results have been compared against monitored concentrations. Some of these 

confidence building studies are referenced in the annex. 

Using multiple models has the advantage of providing insights into how sensitive results 

are to different modeling choices and levels of complexity. When multiple models are run and 

compared to appropriate monitoring data, the assessor also gains information about how much 
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trust can be put in results from any one model. However, this approach involves substantially 

more effort and time than selecting one model at the beginning of the assessment process. 

In practical terms, when choosing a model or models there is unlikely to be an ideal model; 

therefore, trade-offs must be considered including (adopted from NRC 2007): 

• The need to get the correct answer – This refers to the need to choose a model capable of 

generating accurate as well as consistent and reproducible predictions of current or future 

fate and exposure. 

• The need to get the correct answer for the correct reason – This refers to the need to 

choose a model that reproduces the spatial and temporal detail of the system’s workings. 

For example, simple process and empirical models can be “trained” to mimic a system of 

interest based on an initial set of observations; however, if the model fails to capture all 

the important system processes, the model could fail to behave correctly for an 

observation outside the limited range of “training” observations. 

• Transparency – This refers to the need to choose a model based on the transparency of 

the essential workings of the model that can be understood by peer reviewers as well as 

informed but scientifically lay stakeholders and members of the public. This need will 

tend to drive models toward less detail. Transparency can also be enhanced by ensuring 

that reviewers, stakeholders and the public comprehend the procedures followed in 

developing, evaluating, and applying a model, even if they do not fully understand the 

basic science behind the models. 

Specific characteristics to evaluate these three trade-offs are given in Table 4.1 of NRC (2007). 
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Practical Considerations in Using Models 

Exposure assessment models require information on a chemical’s partitioning properties, 

transformation kinetics, and emissions to the environment. That information may not be 

available at all, or, more likely, may only be available in part but with considerable uncertainty. 

This may often constitute the major obstacle to the use of exposure assessment models in the 

preparation of risk profiles. Some chemical properties, such as partitioning properties, 

environmental degradation half lives and even metabolism rate constants, may be estimated from 

molecular structure using a variety of QSPRs or by analogy with related substances, but again 

such information may be highly uncertain. 

Sensitivity analyses, as discussed above, may indicate whether such uncertainty can be 

tolerated or has a major impact on the results of the exposure assessment. For example, Czub and 

McLachlan (2004b) noted that within fairly large ranges of the chemical partitioning space, the 

Environmental Bioaccumulation Potential (EBAP) of various organisms including humans is 

relatively insensitive to the magnitude of the chemical’s partitioning properties, which suggests 

that even very approximate knowledge of those properties may be acceptable. On the other hand, 

metabolism rate constants are often the decisive factor controlling levels in higher organisms and 

thus would need to be known with reasonable accuracy for a credible exposure assessment. 

If emission information is missing, some limited assessment is still possible. In particular, 

as discussed above, the properties of a substance can be compared with those of benchmark 

chemicals. In other words, even though it is not possible to make statements on the risk 

associated with the use of a substance in the absence of quantitative emission information, it 

should still be possible to establish whether a compound has POP-like characteristics. 
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CONCLUSIONS AND RECOMMENDATIONS  

Models have proven very useful in understanding the fate of many chemicals including 

PBT and POPs chemicals. Thus, not surprisingly, they can be used in a variety of ways to make 

valuable contributions to the development of risk profiles. An assessor can have confidence in 

using existing models to inform and improve the risk profiles that are currently developed for the 

Stockholm and LRTAP protocols. The choice of the model to use and the confidence in the 

predictions made can be informed by the given criteria and by appropriate documentation of how 

the model or models chosen meet these criteria. 

To foster the use of models in this regulatory context, we propose the development of a 

model benchmarking tool for human and wildlife exposure in remote regions along the lines of 

the assessment done in this paper. This tool would be analogous to the benchmarking tool for 

persistence and LRT developed for stage 1 of the POP review process. Such a tool would allow a 

non-expert to do a model-based exposure assessment with confidence, and would contribute to 

lowering the barriers to exploiting the potential of models. 

Furthermore, we suggest the development of a second model benchmarking tool for the 

recovery time of remote environments following the cessation of chemical emissions. Such a tool 

would provide transparent, readily comprehensible information that addresses a key motivation 

for our concern about POPs, namely that if we misclassify a chemical as safe due to oversight or 

insufficient understanding and it becomes a risk, then will it be possible to reduce that risk in a 

reasonable period of time. 

Finally, we would like to emphasize the importance of the further development of 

existing models and the exploration of new modeling concepts to address the identified 

weaknesses and limitations of existing models. This should be coupled with concerted model 
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evaluation exercises to further build model confidence and identify as yet unknown weaknesses 

in the models. Only in this way will it be possible to expand the range of applicability of the 

models such that they can be applied to the diverse chemicals now coming under scrutiny as 

potential POPs or PBT chemicals. 

APPENDIX: DO THE MODELS WORK? EXAMPLES OF MODEL EVALUATIONS 

An essential prerequisite for using models is confidence in their ability to approximate 

the reality that the model is intended to simulate. In the context of multimedia fate and 

bioaccumulation modeling of organic contaminants, this confidence is garnered from a variety of 

sources. 

One source of confidence is the validity of the fundamental physical and chemical 

principles that form the basis for the model algorithms. Thus, models that are largely constructed 

of mechanistically based descriptions of the fate and bioaccumulation processes are generally 

considered to be more robust and more reliable than models that employ largely non-mechanistic 

process descriptions, e.g., correlations. 

A second source of confidence is the agreement between the predictions of the model and 

empirical observations for specific processes. Most often the algorithms used to describe a 

process in a multimedia fate model or a bioaccumulation model have been derived from a large 

set of empirical observations for that particular process. The model’s description of this process 

is thus associated with a high degree of confidence as long as the model is applied in a manner 

that does not depart far from the conditions under which the empirical data were created or the 

range of validity of the fundamental physical and chemical processes. 

Perhaps the most convincing source of confidence is the agreement between the 

predictions of the entire model (e.g., from emissions to endpoint) versus monitoring data. Such 
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evaluations are more complex as they involve several process descriptions (although it is 

important to note that typically only a small sub-set of the process descriptions in a model is 

tested in any given simulation, namely those that have the dominant influence on the fate and 

bioaccumulation of the given chemical in the given situation). Full model evaluations are also 

typically more difficult to conduct as the empirical data are seldom consistent with regards to 

space and time, the choice of model parameterization is difficult, and key input data such as 

emissions are often lacking. As a result, evaluation exercises of this kind are seldom conducted. 

Note that, paradoxically, although a full emissions-to-endpoint simulation may seem to be the 

most important form of confidence building for models, the uncertainty in the model predictions, 

and hence in any conclusions about good agreement with empirical observations, is typically 

greatest in this kind of model evaluation due to the difficulties mentioned above. Note that the 

opposite is also true: for an uncertain model evaluation, poor agreement between model 

predictions and empirical observations may not allow any conclusions to be drawn about deficits 

in either the model or the empirical observations. The uncertainties are frequently greatest in the 

predicted concentrations, as these are directly linked to many uncertain factors such as the 

emission rates. It can be more instructive to evaluate models by comparing other metrics such as 

the ratios of concentrations in connected environmental media (e.g., air and water), time trends in 

concentrations, or spatial gradients in concentrations (Bakker et al. 2003, Lee et al. 2004, 

Armitage et al. 2007, Daly et al. 2007). 

In the context of employing models for assembling the risk profile, it is essential that the 

models are already furnished with a high degree of confidence. While this confidence should, if 

possible, be heightened while assembling the risk profile by comparing model predictions with 

empirical data for the chemical of interest (as outlined in the paper), it should already be high in 



38 

 

the models chosen. Due to the multitude of theoretical considerations and process descriptions in 

the model, it is not feasible to summarize the confidence building evidence at the theoretical or 

process levels. Suffice it to say that the evidence is considerable, and that most of the models use 

similar algorithms for the process descriptions as a broad consensus has been reached on their 

validity. In the following we will restrict ourselves to summarizing model evaluation exercises in 

which “multiple process” modeling outputs were compared with monitoring data. Examples for 

modeling chemical fate at the global scale, chemical fate at the regional scale, and 

bioaccumulation are given. All of the examples address identified or candidate POPs. 

Chemical Fate at the Global Scale 

A global model with 10 different climate zones has been used to simulate the fate of α-

HCH (Wania et al., 1999). On the basis of historical global emissions estimates covering the 

years 1947-1997 and the physical chemical properties of the chemical, the concentrations in the 

atmosphere and seawater over time and space were calculated. The predictions were within an 

order of magnitude of measured concentrations of this chemical, correctly reproducing the 

spatial trends in the world’s oceans as well as the temporal trends observed in both the 

atmosphere and in seawater. Of particular note was the models ability to correctly simulate the 

consequences of the strong reduction in usage during the 1980s, namely the rapid decline of the 

concentrations in the atmosphere and in seawater with the exception of the Arctic Ocean, where 

both the model and monitoring data indicated that the concentrations in seawater remained high. 

The performance of a similar zonally averaged global model to reproduce the global 

distribution of dichlorodiphenyltrichloroethane (DDT), and its degradation products 

dichlorodiphenyldichloroethylene (DDE), and dichlorodiphenyldichloroethane (DDD) based on 

a realistic DDT emission scenario covering the period from 1940 to 2005 was evaluated by 
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Schenker et al. (2008a). A qualitative and quantitative comparison of model-predicted 

concentrations in air and soil with measurements suggested good agreement, in particular with 

respect to time trends. 

The evaluation of BETR-Global, a model which offers a much higher spatial resolution 

(288 multimedia regions on a 15° grid) than the two models discussed in the preceding 

paragraphs and which relies on real climate data, focused on the ability to reproduce 479 

individual observations of atmospheric PCB concentrations at 11 long-term monitoring stations 

in the Northern Hemisphere (MacLeod et al., 2005). Using historical emission estimates for 

seven individual PCB congeners over a 70 year period it was found that the variability in 

measured air concentrations that was not explained by the model is less than 1 order of 

magnitude for 96 % of the data. 

Chemical Fate at the Regional Scale 

Models that have been evaluated in terms of their capability to predict environmental fate 

of POP-like contaminants on a continental to regional scale range from fairly complex, 

continental scale models (Macleod et al., 2002b) to dynamic regional models with moderate 

spatial and temporal resolution (Breivik and Wania, 2002, MacLeod et al., 2007) to very simple 

steady-state box models with no spatial resolution (Macleod and Mackay, 1999, Kawamoto et 

al., 2001, Wiberg et al., 2007). 

Breivik and Wania (2002) evaluated the ability of a non-steady-state mass balance model 

of the Baltic Sea environment for its ability to simulate the fate of α- and γ-

hexachlorocyclohexane isomers from 1970 to 2000. Agreement was found with respect to 

absolute concentration levels in a variety of environmental media, and with respect to 

geographical and temporal trends. Levels in air, seawater, marine sediments, and needles were 



40 

 

predicted well within an order of magnitude, often even within a factor of 2. Model and 

observations indicated relatively uniform seawater concentrations of both HCH isomers across 

the Baltic Sea, as well as similar declining time trends of α-HCH in air, seawater, freshwater 

fish, and marine fish. 

Faced with a lack of reliable emission data, Lee et al. (2004) evaluated the ability of the 

spatially unresolved, dynamic multimedia fate model POPsME to describe the environmental 

behavior of 12 polycyclic aromatic hydrocarbons in the region of Seoul, Korea, by comparing 

ratios of concentrations (using soil as the reference medium) rather than absolute concentration 

values. Predictions were found to generally agree within an order of magnitude with monitoring 

data for aerosol, water, sediment and foliage. The performance of the relatively simple, steady-

state CalTOX model to predict concentrations of six tetra- through octa-chlorinated dioxin and 

furan congeners in media relevant for human exposure (meat, milk, fish, egg) was evaluated by 

Wiberg et al. (2007). Also not able to rely on actual emission estimates, this study used generic 

scenarios, in which emission rates were tuned to yield agreement between calculated air and soil 

concentrations with average levels measured at background sites in southern Sweden.  Modeled 

concentrations of chlorinated dioxin and furan congeners in soil, vegetation, surface water, eggs, 

dairy products and meat were generally found to be within a factor of 4 of observed values.  

Modeled concentrations in fish were underestimated by the default model algorithms that only 

consider bioconcentration, but were brought into agreement by estimating bioaccumulation 

through the food web.  

Bioaccumulation 

A model for hydrophobic organic chemical bioaccumulation in aquatic food webs was 

evaluated on the basis of 1,019 measured data points (35 species, 64 chemicals) from three 
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different freshwater ecosystems (Arnot and Gobas, 2004). The model predicts chemical 

concentrations, and bioconcentration and bioaccumulation factors (BAFs) on the basis of 

information on chemical properties, chemical concentrations in water and sediment, and the 

characteristics of the organisms in the foodweb. The model evaluation showed that 60% and 

95% of the model predicted bioaccumulation factors (BAFs) for aquatic invertebrates were 

within a factor of 2 and 10 of the observed BAFs, respectively. For fish, 60% and 98% of the 

model predicted BAFs were within a factor of 2 and 10 of the observed BAFs, respectively. 

Czub and McLachlan (2004a) tested the ability of a model of human food chain 

accumulation from air, water, and soil via marine and agricultural food chains, to reproduce 

polychlorinated biphenyl (PCB) concentrations in fish, milk, beef, and human tissue measured in 

southern Sweden. Using historical scenarios of concentrations in air, water, and soil, and 

dynamic and mechanistic descriptions of all relevant processes, the resulting model predictions 

agreed well with the measurements. 
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 1 
 2 
Table A-1. Selected values and various source estimates for primary degradation half-life (HL; days) in water. Half-life values in soil 3 
were assumed to be 1.5x the water estimate, and values in sediment were assumed to be 6x the water estimate. 4 
 5 

CASRN Chemical name HL in water (d) Source 1 Source 2 Source 3 

118741 Hexachlorobenzene (HCB) 1000 365 676 2292 

25569806 PCB 28 300 360 72 229 

32598100 PCB 101 1200 1200 246 2292 

35065271 PCB 180 2200 2200 873 2292 

92524 Biphenyl 15 15 14 7 

106445 p-cresol 5 1 14 1 

1912249 Atrazine 50 40 143 N/A 

56235 Carbon tetrachloride 150 250 118 71 

319846 α-hexachlorocyclohexane 440 360 237 708 

58899 γ-hexachlorocyclohexane 400 25 237 708 

319857 β-hexachlorocyclohexane 900 1825 237 708 

608935 Pentachlorobenzene 500 365 355 708 

N/A Short chain chlorinated paraffins (SCCP)1 400 365 745 N/A 

32536520 Octabromodiphenyl ethers 1800 600 4235 N/A 

32534819 2,2',4,4',5-pentabromodiphenyl ether (PBDE 99) 850 850 472 N/A 
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CASRN Chemical name HL in water (d) Source 1 Source 2 Source 3 

36355018 Hexabromobiphenyl congeners 1800 600 847 N/A 

143500 Chlordecone 900 730 219491 N/A 
1SMILES notation used for SCCP: ClC(C(Cl)C(Cl)C(Cl)C(Cl)CC(C)Cl)C(C)Cl 

Source 1: POPRC, 2006, Scheringer et al., 2006, Wegmann et al., 2007 

Source 2: U.S. EPA 2007 EPI suite estimates calibrated to empirical estimates as described in Arnot et al., 2005 

Source 3: Mackay et al., 2006 

 1 
 2 
 3 
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Table A-2. Selected values and various source estimates for primary degradation half-life (HL; days) in air.  1 
 2 

CASRN Chemical name HL in air (d) Source 1 Source 2 Source 3 

118741 Hexachlorobenzene (HCB) 650 N/A 650 708.3 

25569806 PCB 28 6 N/A 4 7.1 

32598100 PCB 101 20 N/A 14 70.8 

35065271 PCB 180 80 N/A 65 229.2 

92524 Biphenyl 3 3 2 2.3 

106445 p-cresol 0.3 0.3 0.3 0.2 

1912249 Atrazine 0.4 0.4 0.4 0.2 

56235 Carbon tetrachloride 900 20000 1000 708.3 

319846 α-hexachlorocyclohexane 50 115 20 N/A 

58899 γ-hexachlorocyclohexane 50 96 20 7.1 

319857 β-hexachlorocyclohexane 50 10 20 N/A 

608935 Pentachlorobenzene 230 275 200 229.2 

N/A Short chain chlorinated paraffins (SCCP)1 5 4 6 N/A 

32536520 Octabromodiphenyl ethers 80 76 95 N/A 

32534819 2,2',4,4',5-pentabromodiphenyl ether (PBDE 99) 20 N/A 20 N/A 

36355018 Hexabromobiphenyl congeners 40 N/A 40 N/A 
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CASRN Chemical name HL in air (d) Source 1 Source 2 Source 3 

143500 Chlordecone 900 N/A 1000 N/A 
1SMILES notation used for SCCP: ClC(C(Cl)C(Cl)C(Cl)C(Cl)CC(C)Cl)C(C)Cl 

Source 1: POPRC, 2006, Scheringer et al., 2006, Wegmann et al., 2007 

Source 2: U.S. EPA 2007 

Source 3: Mackay et al., 2006 

  1 
 2 
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LIST OF FIGURES 

Fig. 1 Modeling steps involved in the exposure assessment of P and B substances and POPs. 

Fig. 2 Modeled human body burden (mmol/kg wet weight) per unit emission to air (1 kg/hr) in 

the source region for benchmark POPs and non-POPs, and candidate POP substances assuming 

(A) no biotransformation in the food web, and (B) biotransformation as indicated in Table 1. 

Fig. 3 Modeled fraction of emissions to air that reach a remote region 2500 km away by long-

range atmospheric transport for benchmark POPs and non-POPs, and candidate POP substances.  

Fig. 4 Modeled human body burden (mmol/kg wet weight) per unit emission to air in a remote 

region 2500 km from the source region for benchmark POPs and non-POPs, and candidate POP 

substances assuming (A) no biotransformation in the food web, and (B) biotransformation as 

indicated in Table 1. 

Fig. 5 Comparison of model estimates (×) with monitoring data (O) for concentrations of 

PBDE-99 in bulk physical environmental compartments. Point estimates are median values and 

error bars approximate the range of detectable values. 

Fig. 6 A comparison of model estimates (×) with monitoring data (O) for PBDE-99 

concentrations in various biological compartments and humans. Point estimates are median 

values and error bars approximate the range of detectable values. wwt: wet weight, lwt: lipid 

weight. 

Fig. 7 Sensitivity (S; blue) and contribution to variance (CV; red) of model input parameters (Ij; 

Table 1) on modeled source region human body burden (HBB) of PBDE-99 where 
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biotransformation half-life; t1/2 deg – primary degradation half-life; KOW – octanol-water partition 

coefficient; KAW – air-water partition coefficient; 
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Table 1: Physical chemical properties of candidate POPs and benchmark chemicals at 25°C. Biotransformation half-lives (HLN) in 

biota are listed normalized to 1 kg body size and scaled to mass (Mi; kg) specific values (HLi) for different species in the model as HLi 

= HLN x (Mi/1)-0.25. Unless otherwise noted estimates for fish are from a database (Arnot et al., 2008) or a model (Arnot 2008) and HL 

values for higher order vertebrates are assumed ~1/3 of fish HL values. 

Primary transformation half-life (d) in: 
Status Substance name 

log 

KOW 

log 

KAW 

log 

KOA Air Water Soil Sediment Fish Avian / Mammals 

POP Hexachlorobenzene (HCB) 5.50 -1.52 7.02 650 1000 1500 9000 860 290 

POP PCB 28 5.66 -1.91 7.57 6 300 450 2700 190 8.3a 

POP PCB 101 6.33 -2.01 8.34 20 1200 1800 10800 370 44 a 

POP PCB 180 7.16 -2.48 9.64 80 2200 3300 19800 1100 29000 a 

NonPOP Biphenyl 4.06 -1.96 6.02 3 15 22.5 135 5.2 0.2 a 

NonPOP p-cresol 1.97 -4.26 6.23 0.3 5 7.5 45 0.35 0.2 

NonPOP Atrazine 2.73 -6.84 9.57 0.4 50 75 450 0.3 0.2 

NonPOP Carbon tetrachloride 2.83 0.19 2.64 900 150 225 1350 0.2 0.2 

Candidate α-hexachlorocyclohexane 3.94 -3.53 7.47 50 440 660 3960 55 20 

Candidate γ-hexachlorocyclohexane 3.72 -4.05 7.77 50 400 600 3600 120 40 

Candidate β-hexachlorocyclohexane 3.78 -4.33 8.11 50 900 1350 8100 90 30 
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Primary transformation half-life (d) in: 
Status Substance name 

log 

KOW 

log 

KAW 

log 

KOA Air Water Soil Sediment Fish Avian / Mammals 

Candidate Pentachlorobenzene 5.00 -1.47 6.47 230 500 750 4500 240 80 

Candidate Short chain chlorinated paraffins 6.20 -2.40 8.60 5 400 600 3600 55 b 20 

Candidate Octabromodiphenyl ethers 7.90 -4.50 13.61 80 1800 2700 16200 730 120 c 

Candidate PentaBDE 99 6.76 -3.67 11.26 20 850 1275 7650 285 95 

Candidate Hexabromobiphenyl congeners 6.90 -4.62 11.52 40 1800 2700 16200 1440 480 

Candidate Chlordecone 5.00 -6.69 11.69 900 900 1350 8100 42 20 

a Brown, 1994, b Fisk et al., 2000, c Thuresson et al., 2006. 
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Fig. 1 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 
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Fig. 6 
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Fig. 7 
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