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We investigate the Collins azimuthal asymmetry of hadrons produced inside jets in transversely polarized 
proton–proton collisions. Recently, the quark transversity distributions and the Collins fragmentation 
functions have been extracted within global analyses from data of the processes semi-inclusive deep 
inelastic scattering and electron–positron annihilation. We calculate the Collins azimuthal asymmetry for 
charged pions inside jets using these extractions for RHIC kinematics at center-of-mass energies of 200 
and 500 GeV. We compare our results with recent data from the STAR Collaboration at RHIC and find 
good agreement, which confirms the universality of the Collins fragmentation functions. In addition, we 
further explore the impact of transverse momentum dependent evolution effects.

© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The transverse momentum dependent parton distribution func-
tions and fragmentation functions have recently received an in-
creased interest from both the experimental and theoretical com-
munities [1–3]. Transverse momentum dependent distributions 
(TMDs) provide new information about the nucleon structure, in 
particular for the three-dimensional imaging of the nucleon in mo-
mentum space. At the same time, TMDs open new windows for a 
better understanding of the most fundamental and interesting as-
pects of QCD, such as gauge invariance and universality properties.

One of the widely discussed TMDs is the Collins fragmentation 
function [4]. It describes a transversely polarized quark fragment-
ing into an unpolarized hadron. The hadron’s transverse momen-
tum with respect to the direction of the fragmenting quark cor-
relates with the transverse polarization vector of the quark. The 
Collins fragmentation functions generate azimuthal angular asym-
metries in the production of hadrons in high energy scattering 
processes. For example, in semi-inclusive deep inelastic scattering 
(SIDIS) of leptons on the transversely polarized nucleons, an az-
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SCOAP3.
imuthal single transverse spin asymmetry has been observed by 
several collaborations including the HERMES Collaboration [5,6], 
the COMPASS Collaboration [7], and the JLab HALL A experiment 
[8]. Such an azimuthal correlation is usually referred to as the 
Collins asymmetry. The modulation is proportional to sin(φs + φh), 
where φs and φh are the azimuthal angles of the transverse spin 
of the nucleon and of the final-state hadron’s transverse momen-
tum, respectively. The asymmetry is generated through the quark 
transversity distributions in the nucleon [9–11] coupled with the 
Collins fragmentation functions.

The Collins fragmentation functions can also contribute to an 
azimuthal angular correlation in back-to-back hadron production 
in electron–positron annihilation [12]. In this case, the correlation 
has a cos(2φ) modulation, where φ is the azimuthal angle be-
tween the two hadrons. It is generated through the convolution 
of two Collins fragmentation functions for the observed hadron 
pair. The resulting cos(2φ) azimuthal correlation has now been 
measured at several facilities. The BELLE and BABAR Collaborations 
published data sets taken at the B-factories at a center-of-mass 
(CM) energy of 

√
s � 10.6 GeV [13–15], and the BESIII Collabora-

tion performed measurements at the BEPC facility at a CM energy 
of 

√
s = 3.65 GeV [16]. The combined analyses of the experimen-

tal data on SIDIS and electron–positron annihilation have provided 
important information on both the quark transversity distributions 
and the Collins fragmentation functions [17,18]. Transversity distri-
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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butions give information on the quark contributions to the nucleon 
tensor charge which is a fundamental property of the nucleon.

Another important process to explore the Collins fragmentation 
functions is to study the azimuthal asymmetries of hadron produc-
tion inside highly energetic jets in transversely polarized proton–
proton collisions at RHIC [19,20]: p↑ p → jet(η, pT ) h(zh, j⊥) + X . 
Here, η and pT are the rapidity and the transverse momentum of 
the jet measured in the pp CM frame, respectively. Furthermore, 
zh is the momentum fraction of the fragmenting quark jet carried 
by the hadron, and j⊥ is the hadron transverse momentum with 
respect to the standard jet axis. The j⊥-distribution of hadrons 
produced inside jets in unpolarized pp collisions was studied re-
cently in [21,22]. In the transversely polarized p↑ p scatterings, due 
to the transverse spin transfer in the hard partonic processes [23,
24], the final state quark jet inherits the transverse polarization of 
quarks in the incoming transversely polarized nucleon. Eventually, 
the transverse spin of the fragmenting quark correlates with the 
transverse momentum of the hadron with respect to the jet axis, 
which leads to a nontrivial Collins asymmetry of the azimuthal 
angular distribution of hadrons inside (quark) jets [19,20]. The de-
tailed study of these azimuthal asymmetries of hadrons produced 
inside jets is the main focus of this work. We will focus on two 
main aspects which are the universality and the evolution of the 
Collins TMD fragmentation functions.

Concerning the universality aspect, it has been shown in [19]
that the Collins fragmentation functions are universal in the sense 
that they are the same for hadrons inside jets as for SIDIS and 
electron–positron annihilation. This assessment is expected to be 
true even when the soft factor is included in order to obtain the 
full TMD factorization formalism [22]. Therefore, it is possible to 
predict the Collins azimuthal asymmetries for hadron production 
inside jets at RHIC by using the quark transversity distributions 
and Collins fragmentation functions determined from SIDIS and 
electron–positron annihilation. The comparison of our results with 
the experimental data from RHIC [25–28] then provides an impor-
tant test of the universality of the Collins fragmentation functions 
for these different processes.

The second important aspect of the Collins fragmentation func-
tion is its TMD evolution, i.e. the appropriate QCD evolution of 
TMD sensitive observables [29]. It is crucial to take into account 
TMD evolution of the Collins fragmentation functions for phe-
nomenological studies since the experimental measurements are 
usually performed at different scales. The hard momentum scale 
Q 2 ranges between a couple of GeV2 up to several hundred GeV2. 
In a recent study, the evolution effects have been implemented 
in a global analysis of the Collins azimuthal asymmetries in SIDIS 
and electron–positron annihilation [17]. It has been demonstrated 
in [22] that the same TMD evolution applies to the relevant TMD 
fragmentation functions encountered in the transverse momentum 
distribution of hadrons inside jets. In this work, we assess the im-
pact of TMD evolution for the azimuthal asymmetries for hadrons 
inside jets by comparing to the available data from RHIC.

The hadron distribution inside fully reconstructed jets has re-
ceived broad interest from the high energy nuclear and the particle 
physics communities in the past years [30–33]. In particular, the 
transverse momentum distribution of hadrons relative to a prede-
termined jet axis may provide important new information about 
the hadronization of particles at current collider experiments. In 
[21,22] the standard jet axis was discussed, whereas in [34] a 
recoil-free axis, e.g. the winner-take-all axis, was considered. In-
terestingly, the choice of the axis probes different physics of the 
hadronization process. In this work, we consider the standard jet 
axis which allows for a direct relation to standard TMDs extracted 
from other processes. Needless to say that many studies have 
been carried out where the longitudinal momentum distribution 
of different hadrons and even photons inside jets were considered 
[35–43]. Studying the correlations of hadrons inside jets consti-
tutes a new opportunity to study TMDs besides the traditional 
observables. In addition, it may shed new light on other interest-
ing topics such as the effect of non-global logarithms as advocated 
in [44,45].

The azimuthal distributions of hadrons inside a jet were also 
considered in the framework of the so-called Generalized Parton 
Model (GPM) in Refs. [20,46]. In the GPM, one naively uses TMDs 
for both parton distribution functions and fragmentation functions, 
and at the same time assumes that all functions are universal. 
Both statements lack full justification in QCD, and therefore, the 
GPM cannot include QCD evolution for these functions properly. 
On the other hand, the factorization formula used in the current 
paper involves a mixture of collinear and TMD factorization, fol-
lowing [19,22]. In this formula, the production of the jet involves 
only a collinear factorization, in which collinear parton distribution 
functions are used. At the same time, the internal structure of the 
jet, i.e., the hadron j⊥ distribution inside the jet is given by the 
TMD factorization, where the proper evolution of the Collins frag-
mentation function can be studied. This approach is applicable in 
the narrow jet approximation, i.e. up to corrections that are power 
suppressed by O(R2). See the next section for a more detailed dis-
cussion.

The remainder of this paper is organized as follows. In Sec. 2, 
we review the leading order calculation of the Collins azimuthal 
asymmetry for hadron production inside jets in pp collisions. In 
addition, we outline how the TMD evolution effects are imple-
mented. We also present the parton model results where no TMD 
evolution is taken into account. Numerical results are presented in 
Sec. 3, by making use of the recent global extractions of the quark 
transversity distributions and the Collins fragmentation functions. 
We calculate the Collins azimuthal asymmetry for charged pion 
production inside jets in proton–proton collisions for both CM en-
ergies 200 and 500 GeV. We compare our results with the experi-
mental data from the STAR Collaboration at RHIC and we conclude 
our paper in Sec. 4.

2. Theoretical framework

We consider the hadron azimuthal distribution inside jets in 
transversely polarized p↑ p collisions,

p↑(P A, ST , φS) + p(P B) → jet(η, pT )h(zh, j⊥, φH ) + X .

The momentum of the incoming transversely polarized proton is 
denoted by P A (moving in the “+z” direction) and its transverse 
polarization vector is ST . The reaction plane is defined by the two 
incoming protons and the axis of the observed jet in the final state. 
We denote the azimuthal angle of the transverse polarization vec-
tor ST with respect to the reaction plane by φS . The unpolarized 
proton (moving in the “−z” direction) has momentum P B . More-
over, η and pT are the rapidity and transverse momentum of the 
final state jet. The observed hadron inside that jet is characterized 
by the following variables: the longitudinal momentum fraction of 
the jet carried by the hadron is denoted by zh and its transverse 
momentum with respect to the (standard) jet axis is given by j⊥ . 
The hadron transverse momentum vector j⊥ forms an angle φH
with the reaction plane. See Fig. 1 for an illustration of the setup 
of this process and the definition of all the relevant kinematic vari-
ables.

2.1. QCD formalism

The differential cross section of the hadron azimuthal distribu-
tion inside jets can be written as [19]
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Fig. 1. Illustration of the relevant kinematic variables for the azimuthal angular 
distribution of hadrons inside jets in transversely polarized p↑ p collisions. The in-
cident polarized proton has momentum P A and its transverse polarization vector is 
denoted by ST . The unpolarized proton has momentum P B . The transverse momen-
tum of the hadron inside the jet relative to the (standard) jet axis is denoted by j⊥ . 
The azimuthal angles of ST and j⊥ are defined with respect to the reaction plane 
and are denoted by φS and φH , respectively.

dσ

dηd2 pT dzhd2 j⊥
= FU U + sin(φS − φH )F sin(φS−φH )

U T , (1)

where FU U and F sin(φS −φH )
U T are the spin-averaged and spin-

dependent structure functions, respectively. The so-called Collins 
azimuthal spin asymmetry Asin(φS −φH )

U T is given by the ratio

Asin(φS−φH )
U T (zh, j⊥;η, pT ) = F sin(φS−φH )

U T

FU U
. (2)

The structure functions FU U and F sin(φS −φH )
U T depend on η, pT , zh , 

and j⊥ . In the following we will suppress the arguments η and pT

and keep only the zh and j⊥ dependence for simplicity.
Using QCD factorization at leading order (LO), the structure 

functions FU U and F sin(φS −φH )
U T can be written as [19,22]1

FU U (zh, j⊥) = α2
s

s

∑
a,b,c

1∫
x1 min

dx1

x1
fa/A(x1,μ)

×
1∫

x2 min

dx2

x2
fb/B(x2,μ)Dh/c(zh, j2⊥; Q )

× HU
ab→c(ŝ, t̂, û)δ(ŝ + t̂ + û) , (3)

F sin(φS−φH )
U T (zh, j⊥) = α2

s

s

∑
a,b,c

1∫
x1 min

dx1

x1
ha

1(x1,μ)

×
1∫

x2 min

dx2

x2
fb/B(x2,μ)

j⊥
zh Mh

× H⊥
1 h/c(zh, j2⊥; Q )

× HCollins
ab→c (ŝ, t̂, û)δ(ŝ + t̂ + û) , (4)

where we sum over all relevant partonic channels ab → c. The CM 
energy squared is given by s = (P A + P B)2, and Mh is the mass of 
the observed hadron inside the jet. Furthermore, αs is the strong 
coupling constant and ŝ, t̂, û are the standard partonic Mandel-
stam variables. The unpolarized collinear parton distribution func-
tions (PDFs) are denoted by fa/A(x1, μ) and fb/B(x2, μ), whereas 
ha

1(x1, μ) are the collinear quark transversity distributions in a 
transversely polarized proton. The evolution of the collinear PDFs 

1 The next-to-leading order (NLO) formalism for FU U was derived in [22]. Since 
there is no corresponding NLO calculations available for F sin(φS −φH )

U T , we use the LO 
hard factors for both FU U and F sin(φS −φH )

U T in our study.
with the factorization scale μ follows the usual DGLAP equations 
and similarly for the quark transversity distributions ha

1(x1, μ)

[47–49]. The lower integration limits x1 min and x2 min are given 
by

x1 min = xT eη

2 − xT e−η
, x2 min = x1xT e−η

2x1 − xT eη
, (5)

where xT = 2pT /
√

s. Moreover, Dh/c(zh, j2⊥; Q ) are the unpolar-
ized TMD fragmentation functions, and H⊥

1 h/c(zh, j2⊥; Q ) are the 
Collins fragmentation functions in the so-called Trento conven-
tion [50]. Note that at LO, the hadron transverse momentum with 
respect to the fragmenting parent quark is equal to j⊥ , i.e. the 
hadron transverse momentum with respect to the jet axis. Go-
ing beyond LO, they are no longer equal to each other due to 
the effect of soft gluon radiation but they are still closely related, 
see [22] for more details. The momentum scale Q represents the 
appropriate factorization scale for both the unpolarized TMD frag-
mentation functions and the Collins fragmentation functions [29]. 
The Q -dependence of these TMD functions is generally referred to 
as TMD evolution. Here, we use Q to emphasize that the TMD evo-
lution is different from the DGLAP evolution of the collinear PDFs 
associated with the scale μ. We will discuss this aspect in more 
detail below, which has been studied extensively in the literature 
[17,51–57]. The hard functions HU

ab→c for the unpolarized structure 
function are well-known, and are available for example in Ref. [58]. 
The corresponding hard functions HCollins

ab→c for the spin-dependent 
structure function are also available in the literature [19]. They are 
exactly the same as those calculated for the transverse spin trans-
fer in the hard partonic processes [23,24].

It might be instructive to comment on the factorization for-
mula given in Eqs. (3) and (4), which was first written down in 
[19] at LO, and then in [22] at NLO. As we have emphasized al-
ready in the Introduction, such a factorized form is a mixture of 
collinear and TMD factorization, involving two steps: the first step 
is a collinear factorization for the production of the jet, involv-
ing collinear PDFs; while the second step is a TMD factorization 
for the hadron j⊥-distribution inside the jet. The factorization ar-
guments were provided in [22] within the standard soft-collinear 
effective theory (SCET) [59–63]. In other words, the issue of the 
spectator interactions found by Collins and Qiu [64] (represented 
by “Glauber modes” in SCET) is not considered, and it deserves a 
further investigation along the lines of [65].

In the remainder of this section, we are going to discuss the 
details of the unpolarized TMD fragmentation functions and the 
Collins fragmentation functions. In the next section, we first pro-
vide the results for these TMDs including the full TMD evolution. 
For comparison, we also present parton model results where no 
TMD evolution is taken into account. In this case, we choose a 
simple Gaussian form for the transverse momentum dependence 
of both TMDs.

2.2. Results with TMD evolution

It has been shown that the Collins fragmentation function 
H⊥

1 h/c is universal in different processes [19,66–69], including 
SIDIS, e+e− annihilation, and the process studied in this paper. The 
key observation in these studies is that the eikonal propagators do 
not generate the phases necessary for a non-zero Collins asymme-
tries in these processes. This has been demonstrated explicitly at 
the two-gluon exchange order for hadron distribution inside the 
jet [70]. We expect the same conclusion holds at even higher or-
ders. Because of this property, we can apply the Ward identity to 
sum all initial- and final-state interaction effects into the gauge 
link associated with the TMD fragmentation function. This is very 
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different from that for the TMD parton distributions, where the 
eikonal propagators contribute to a non-zero phase and lead to 
the non-universality of the so-called Sivers functions among differ-
ent processes. In particular, much more complicated results have 
been found for the single spin asymmetries in the hadronic dijet 
correlations where a normal TMD factorization breaks down [64,
71–73]. The reason is precisely that the eikonal propagators from 
the initial- and final-state interactions in dijet correlation process 
do contribute to the poles in the cross section [73]. Because of this, 
the Ward identity is not applicable, and the standard TMD factor-
ization breaks down.

The modern and proper definition of TMDs usually includes the 
soft factor for the specific process, which captures the contribution 
from soft gluon radiation, see Ref. [29] for more details. Within the 
standard SCET framework, it was further demonstrated in [22] that 
when the soft factor is included, the combination of the TMD frag-
mentation function and the soft function as probed inside jets in 
pp collisions is the same as in SIDIS and electron–positron anni-
hilation. Of course, it would be desirable to revisit this conclusion 
when including the Glauber modes in SCET, as mentioned in last 
section. At the same time, investigating the initial- and final-state 
interactions beyond the two-gluon exchange could also be very 
useful. For the rest of this section, we will use the same TMD evo-
lution for calculating the distribution of hadrons inside jets.

In fact it was demonstrated [22] that the relevant scale Q for 
the TMD fragmentation functions for the hadron distribution inside 
jets is given by the natural scale set by the jet dynamics which is 
pT R , where R is the jet size parameter. With this choice, one may 
further perform an additional evolution from the scale pT R to pT

in order to resum single logarithms in the jet size parameter to 
all orders in the strong coupling constant αn

s lnn R . For our cur-
rent study, we only work to LO in QCD which is independent of 
the jet size parameter R . We will thus use Q = pT for the TMDs 
in Eqs. (3) and (4), i.e. Dh/c(zh, j2⊥; Q = pT ) and H⊥

1 h/c(zh, j2⊥;
Q = pT ), respectively. For completeness, we note that we also use 
μ = pT for the collinear PDFs and the quark transversity distribu-
tions in Eqs. (3) and (4).

A global fit of both the quark transversity distributions and the 
Collins fragmentation functions from SIDIS and electron–positron 
annihilation data was performed recently in [17], where the effects 
of TMD evolution were studied in detail. Using these extracted 
functions, we can then calculate the Collins azimuthal asymme-
tries for the hadron distribution inside jets in p↑ p collisions, and 
compare with the recent experimental measurements from RHIC. 
We now provide a short review of the TMD evolution as it is 
used in this work where we closely follow the results presented 
in Ref. [17]. The two TMD fragmentation functions can be written 
as

Dh/q(zh, j2⊥; Q ) = 1

z2
h

∞∫
0

db b

(2π)
J0( j⊥b/zh)

× Ĉ D1
i←q ⊗ Dh/i(zh,μb)

× e− 1
2 Spert(Q ,b∗)−S

D1
NP (Q ,b) , (6a)

j⊥
zh Mh

H⊥
1 h/q(zh, j2⊥; Q ) = 1

z2
h

∞∫
0

db b2

(2π)
J1( j⊥b/zh)

× δĈcollins
i←q ⊗ Ĥ⊥(1)

1 h/i (zh,μb)

× e− 1
2 Spert(Q ,b∗)−Scollins

NP (Q ,b) . (6b)

Here, we denote b = |b|, where b is the 2-dimensional coordinate 
variable conjugate to the transverse momentum component j⊥ . In 
addition, we have μb = c0/b with c0 = 2e−γE , and ⊗ represents a 
convolution in the momentum fraction zh , e.g.

Ĉ D1
i←q ⊗ Dh/i(zh,μb) =

∑
i

1∫
zh

dz′
h

z′
h

Ĉ D1
i←q

(
zh

z′
h

,μb

)
Dh/i(z′

h,μb) ,

(7)

where Dh/i(zh, μb) are the usual collinear fragmentation func-

tions. The collinear twist-3 functions Ĥ⊥(1)

1 h/i (zh, μb) are equal to the 
first moment of the Collins fragmentation functions. The functional 
form of Ĥ⊥(1)

1 h/i (zh, μ) was determined by means of a global analysis 
of the Collins asymmetry in SIDIS and electron–positron annihila-
tion, see Ref. [17] for details. The coefficient functions for the un-
polarized and polarized case are denoted by Ĉ D1

i←q and δĈcollins
i←q , re-

spectively. Their expressions up to the next-to-leading order (NLO) 
are given by [17]

Ĉq′←q(zh,μb) =δq′q

[
δ(1 − zh)

+ αs

π

( C F

2
(1 − zh) + Pq←q(zh) ln zh

)]
, (8)

Ĉ g←q(zh,μb) =αs

π

(
C F

2
zh + P g←q(zh) ln zh

)
, (9)

δĈcollins
q′←q (zh,μb) =δq′q

[
δ(1 − zh) + αs

π
P̂ c

q←q(zh) ln zh

]
, (10)

with the relevant splitting functions given by

Pq←q(zh) = C F

[
1 + z2

h

(1 − zh)+
+ 3

2
δ(1 − zh)

]
, (11)

P g←q(zh) = C F
1 + (1 − zh)

2

zh
, (12)

P̂ c
q←q(zh) = C F

[
2zh

(1 − zh)+
+ 3

2
δ(1 − zh)

]
. (13)

Note that the coefficient functions for the unpolarized TMD func-
tions are available up to the next-to-next-to leading order [74].

The perturbative Sudakov factor in Eq. (7) can be written as

Spert(Q ,b) =
Q∫

μb

dμ′

μ′

[
A ln

(
Q 2

μ′ 2

)
+ B

]
, (14)

where the coefficients A and B can be calculated perturbatively 
as A = ∑

n=1 A(n)(αs/π)n and B = ∑
n=1 B(n)(αs/π)n . For our phe-

nomenological results, we work at NLL accuracy, and we thus take 
into account the coefficients A(1), A(2), B(1) . For completeness, we 
list the relevant results here [57,51,55,75–77]

A(1) = C F , (15)

A(2) = C F

2

[
C A

(
67

18
− π2

6

)
− 10

9
T F n f

]
, (16)

B(1) = −3

2
C F . (17)

It is well-known that the TMD evolution contains a non-perturba-
tive piece in the region where 1/b � 	QCD. This is why one has 
to introduce a prescription to extrapolate between the perturba-
tive small-b region and the non-perturbative large-b region. In this 
work, we choose to adopt the standard b∗-prescription [75]. Alter-
native approaches can be found in [78–82]. One defines b∗ as
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b∗ = b√
1 + b2/b2

max

, (18)

such that b∗ → bmax for large b. Here, bmax is a parameter of 
the prescription, which was chosen as bmax = 1.5 GeV−1 in the 
global analysis of [17]. After introducing b∗ in the Sudakov factor, 
the total Sudakov factor includes a non-perturbative contribution, 
besides the perturbative piece Spert(Q , b∗). The non-perturbative 
Sudakov factors SNP(Q , b) for both the unpolarized TMD fragmen-
tation functions and the Collins fragmentation functions are given 
by

S D1
NP(Q ,b) = g2

2
ln

(
b

b∗

)
ln

(
Q

Q 0

)
+ gh

z2
h

b2 , (19)

Scollins
NP (Q ,b) = g2

2
ln

(
b

b∗

)
ln

(
Q

Q 0

)
+ gh − gc

z2
h

b2 . (20)

We adopt the values Q 2
0 = 2.4 GeV2, g2 = 0.84, and gh =

0.042 GeV2 from the analysis of the spin-averaged cross section 
[83]. In addition, we use gc = 0.0236 ± 0.0007 GeV2 following 
the analysis of the Collins asymmetry [17], as mentioned above. 
Note that in our parametrization of the non-perturbative Sudakov 
function is ln(b/b∗) ∝ ln(1 + b2/b2

max) which is crucial for accom-
modating low-Q 2 data in the analysis [17]. This parametrization 
is consistent at small b with the standard b2 parametrization that 
was used in high-Q 2 extractions, for instance that of Ref. [84].

With all these ingredients at hand, we can then use Eq. (6)
in combination with Eqs. (3) and (4) to compute the Collins az-
imuthal asymmetry Asin(φS −φH )

U T for the hadron distribution inside 
jets in p↑ p collisions including TMD evolution.

2.3. Results without TMD evolution

The quark transversity distributions and the Collins fragmenta-
tion functions have also been extracted within a global analysis 
in the parton model framework in Ref. [18], i.e. without TMD 
evolution. In this study a Gaussian form of the transverse momen-
tum dependence of the TMD fragmentation functions was adopted. 
Hence, the unpolarized TMD fragmentation functions and Collins 
fragmentation functions are written as

Dh/q(zh, j2⊥; Q ) = Dh/q(zh, Q ) g( j⊥) , (21)

j⊥
zh Mh

H⊥
1 h/q(zh, j2⊥; Q ) = N C

q (zh)h( j⊥) Dh/q(zh, j2⊥; Q ) . (22)

Here, Dh/q(zh, Q ) are the standard unpolarized collinear fragmen-
tation functions. The respective j⊥-dependent parts are given by

g( j⊥) = 1

π〈 j2⊥〉e− j2⊥/〈 j2⊥〉 , h( j⊥) = √
2e

j⊥
MC

e− j2⊥/M2
C , (23)

with 〈 j2⊥〉 = 0.12 GeV2 which was obtained from an analysis of 
SIDIS hadron multiplicity data [85]. The collinear functions N C

q (zh)

are parametrized for the so-called favored and disfavored Collins 
fragmentation functions as

N C
fav(zh) = NC

fav zγ
h (1 − zh)

δ (γ + δ)γ +δ

γ γ δδ
, N C

dis(zh) = NC
dis .

(24)

The parameters MC in Eq. (23), and (NC
fav, NC

dis, γ , δ) in Eq. (24)
were determined within a global analysis of the Collins asymmetry 
in SIDIS and electron–positron annihilation.

It is instructive to note that within the parton model frame-
work, the Q -dependence is only contained in the collinear func-
tions Dh/q(zh, Q ), which follow the usual DGLAP evolution equa-
tions. In other words, no TMD evolution is considered here. Note 
that here the Collins fragmentation functions H⊥
1 h/q(zh, j2⊥; Q ) in 

Eq. (22) are written in terms of the unpolarized TMD fragmenta-
tion functions Dh/q(zh, j2⊥; Q ). Due to the factorization of the zh
and the j⊥ dependence in Eqs. (21) and (22), the shape of the 
j⊥-dependence of the asymmetry Asin(φS −φH )

U T is directly given by 
the function h( j⊥).

3. Phenomenology at RHIC

In this section, we present numerical results for the Collins az-
imuthal asymmetries for hadron production within jets p↑ p →
(jet h) + X , and compare to the experimental measurements by 
the STAR Collaboration at RHIC. As pointed out in the Introduc-
tion and the previous section, the comparison to this data using 
previously extracted TMDs provides a unique opportunity to test 
the universality of the involved TMDs and to assess the impact of 
TMD evolution.

The STAR Collaboration at RHIC has performed measurements 
of the Collins azimuthal asymmetries Asin(φS −φH )

U T for pion produc-
tion inside jets in transversely polarized proton–proton collisions 
p↑ p → (

jetπ±) + X [25–28]. The jets are reconstructed using the 
anti-kT algorithm [86] with a jet size parameter of R = 0.6 [26]. 
The measurements were performed separately for charged pions 
π+ and π− , and for both CM energies 

√
s = 200 and 500 GeV. We 

use the global extractions of the quark transversity distributions 
and the Collins fragmentation functions of Refs. [17,18] to perform 
our numerical calculations. It might be instructive to point out that 
despite of the wealth of SIDIS data, the kinematic reach of existing 
SIDIS experiments is still limited to the relatively small Bjorken-x
region with x � 0.3. The current and future STAR measurements of 
jets produced in the forward rapidity region probe the transversity 
distributions for relatively large values of x > 0.3. Together with fu-
ture measurements from Jefferson Lab at 12 GeV, they will provide 
further constraints [87] on the large-x behavior of the transversity 
distributions.

Before we present the comparison of our numerical results with 
the experimental data, we comment on the potential impact of 
the relevant gluon TMD fragmentation functions. Since there is 
no gluon transversity distribution nor a gluon Collins fragmenta-
tion function, only the respective quark contributions are relevant 
for the calculation of F sin(φS −φH )

U T . However, the unpolarized gluon 
TMD fragmentation function does contribute to FU U . The current 
STAR experimental data was measured for relatively large jet trans-
verse momenta at forward rapidities and for large values of zh for 
charged pions. In this kinematic region, the quark TMD fragmen-
tation functions are expected to dominate. Therefore, we do not 
include the gluon TMD fragmentation function in our numerical 
studies.

We start by presenting our numerical results where TMD evo-
lution effects are fully incorporated. For our numerical evaluations, 
we choose all relevant non-perturbative PDFs and fragmentation 
functions as in Ref. [17]. In Fig. 2, we present our results for the 
Collins azimuthal asymmetry Asin(φS −φH )

U T with TMD evolution as 
a function of zh . We show the comparison with the data from 
STAR both at 

√
s = 200 GeV and 

√
s = 500 GeV. The jet rapidity 

is integrated over 0 < η < 1. The solid red curves are for 
√

s =
500 GeV, whereas the dashed black curves are for 

√
s = 200 GeV. 

The presented error bands for our calculations are based on the 
uncertainties from the quark transversity distributions and the 
Collins fragmentation functions following Ref. [17]. The solid cir-
cles (squares) show the experimental data for π+ production at √

s = 200 (500) GeV. The open circles (squares) show the avail-
able data for π− production at 

√
s = 200 (500) GeV. The averaged 

jet transverse momentum is given by 〈pT 〉 = 12.9 (31.0) GeV for 
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Fig. 2. The Collins azimuthal spin asymmetry Asin(φS −φH )
U T for pions produced in-

side jets pp → (jetπ±) + X with TMD evolution using the extracted TMDs of [17]. 
We show our results as a function of zh compared to the preliminary STAR data 
of [26–28] at √s = 200 GeV (dashed black lines, solid black circles for π+ , open 
black circles for π−) and √s = 500 GeV [25] (solid red lines, solid red squares for 
π+ , open red squares for π−). We have 〈pT 〉 = 12.9 (31.0) GeV for the average jet 
transverse momentum at √s = 200 (500) GeV. The averaged hadron transverse mo-
mentum with respect to the (standard) jet axis is given by 〈 j⊥〉 = 1.3 GeV and the 
jet rapidity is integrated over the range 0 < η < 1. The error bands are computed 
using results of Ref. [17]. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.)

√
s = 200 (500) GeV. The values for 〈pT 〉 were chosen by the ex-

perimental collaboration such that for both beam energies roughly 
the same parton momentum fraction x of the quark transversity 
distributions is probed. For the experimental data points, the re-
ported averaged hadron transverse momentum with respect to the 
(standard) jet axis is given by 〈 j⊥〉 = 1.3 GeV.

It is evident from Fig. 2 that our calculations using the quark 
transversity distributions and the Collins fragmentation functions 
as extracted from SIDIS and electron–positron annihilation yield a 
good qualitative description of the experimental data from STAR. 
The observed agreement within the experimental uncertainties 
confirms for the first time the universality of the Collins fragmen-
tation functions for the three different processes. Concerning TMD 
evolution effects, we find that our calculations give slightly smaller 
Collins azimuthal asymmetries Asin(φS −φH )

U T for the larger jet trans-
verse momentum value 〈pT 〉 = 31.0 GeV compared to the result 
for 〈pT 〉 = 12.9 GeV. This is consistent with the effect of TMD 
evolution which typically dilutes the spin asymmetry at a larger 
momentum scale, as observed for SIDIS in [17]. This can be under-
stood as follows. When increasing the momentum scale Q = pT , 
the j⊥ dependence of the TMDs typically becomes broader, i.e. it is 
spread out to relatively large values of j⊥ . As a result, for fixed j⊥ , 
the relevant TMDs become smaller. Of course, the actual situation 
is more intricate, as the experimental data for the asymmetry is a 
ratio of convolutions of TMDs.

In Fig. 3, we present the comparison of our results without TMD 
evolution with the same experimental data for Asin(φS −φH )

U T . In this 
case, we use the quark transversity distributions, the unpolarized 
TMD fragmentation functions and the Collins fragmentation func-
tions of [18] based on the parton model framework which does 
not include the effects of TMD evolution. Again, we obtain a good 
description of the data within the uncertainties. The presented er-
ror bands of our results are again based on the uncertainties of 
the quark transversity distributions and the Collins fragmentation 
functions according to Ref. [18]. The obtained Collins azimuthal 
asymmetries Asin(φS −φH ) are very similar for both 

√
s = 200 GeV 
U T
Fig. 3. Same as Fig. 2, but here our results are presented without TMD evolution 
using the TMDs of Ref. [18] as input.

and 500 GeV. This is due to the absence of TMD evolution effects 
and one samples the same x and j⊥ values for both CM energies 
even though the average jet transverse momenta 〈pT 〉 are quite 
different. This result is to be expected since the dependence on 
the momentum scale Q only enters via the corresponding collinear 
fragmentation functions as discussed in Sec. 2.3. The evolution is 
relatively mild as it follows the usual DGLAP evolution equations 
and, hence, the impact on the asymmetry Asin(φS −φH )

U T is small.
In Fig. 4, we present the comparison of our calculations of 

Asin(φS −φH )
U T as a function of the pion momentum j⊥ and the exper-

imental data at 
√

s = 500 GeV [25] for 〈zh〉 = 0.13 (left panel) and 
〈zh〉 = 0.37 (right panel). One can observe that calculations done 
without TMD evolution (dashed lines) have a characteristic behav-
ior: the asymmetry diminishes quickly and become very small at 
j⊥ > 1 GeV. It happens due to the underlying gaussian behavior 
of TMD functions with an energy independent width. Calculations 
made with TMD evolution using as input functions from Ref. [17]
become broader due to soft gluon radiation, see Eqs. (20), such 
that even at larger values of j⊥ the asymmetry is not diminish-
ing quickly. As expected the calculations with TMD evolution show 
suppression of the maximum and broadening of the asymmetry 
with respect to calculations without TMD evolution.

We observe that the calculated Collins azimuthal asymmetries 
with and without TMD evolution both give a good description of 
the experimental data. In other words, the current experimental 
data cannot resolve the effects of TMD evolution due to their large 
uncertainties.

For completeness in Fig. 5 we also present our calculations 
of unpolarized pp → (jetπ+) + X cross-section, see Eq. (1), at √

s = 500 GeV as a function of the pion momentum j⊥ for 〈zh〉 =
0.37. As expected, calculations without TMD evolution follow sim-
ple gaussian shape that is much narrower compared to calculation 
with TMD evolution. One can see from Fig. 5 that effects of evo-
lution are much more dramatic in unpolarized distributions com-
pared to asymmetries. An experimental study of the cross-section 
as function of j⊥ will be very helpful in order to study evolution 
effects.

Upon completion of this work we became aware of a com-
plementary study of the Collins azimuthal asymmetries for pion 
production inside jets in the framework of the Generalized Par-
ton Model in Ref. [88]. The results presented in Ref. [88] are in 
agreement with our numerical results without TMD evolution and 
further corroborate our conclusions.
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Fig. 4. The Collins azimuthal spin asymmetry Asin(φS −φH )
U T at √s = 500 GeV [25] for pions produced inside jets pp → (jetπ±) + X as a function of the pion momentum j⊥

for 〈zh〉 = 0.13 (left panel) and 〈zh〉 = 0.37 (right panel). Solid lines correspond to calculations that take into account TMD evolution using the extracted TMDs of Ref. [17]
and the dashed lines correspond to extraction of TMDs without TMD evolution of Ref. [18]. We have 〈pT 〉 = 31 GeV for the average jet transverse momentum and the jet 
rapidity is integrated over the range 0 < η < 1. The error bands are computed using results of Refs. [17,18].
Fig. 5. Unpolarized pp → (jetπ+) + X cross-section at √s = 500 GeV as a function 
of the pion momentum j⊥ for 〈zh〉 = 0.37. Solid lines correspond to calculations 
that take into account TMD evolution using the extracted TMDs of Ref. [17] and the 
dashed lines correspond to extraction of TMDs without TMD evolution of Ref. [18]. 
We have 〈pT 〉 = 31 GeV for the average jet transverse momentum and the jet ra-
pidity is integrated over the range 0 < η < 1.

4. Conclusion

In this work, we investigated the Collins azimuthal asymme-
try for hadron production inside jets in transversely polarized p↑ p
collisions. We argued that this process is a unique opportunity to 
access the quark transversity distributions in the relatively large-x
region, and to probe the Collins fragmentation functions. In partic-
ular, the Collins fragmentation functions and the associated TMD 
evolution for this process are the same as those probed in the 
standard semi-inclusive deep inelastic scattering (SIDIS) and back-
to-back di-hadron production in electron–positron annihilation. 
The extractions of both the quark transversity distributions and 
the Collins fragmentation functions from global analyses of SIDIS 
and electron–positron data are available in the literature with and 
without including TMD evolution effects. By using the extracted 
TMDs from these processes, we calculated the Collins azimuthal 
asymmetries for both positively and negatively charged pions pro-
duced inside jets p↑ p → (

jetπ±) + X , and we compared to recent 
preliminary data from the STAR Collaboration at RHIC. The ob-
tained Collins azimuthal asymmetries agree reasonably well with 
the experimental measurements for both CM energies 

√
s = 200

and 500 GeV. This agreement confirms the universality of Collins 
fragmentation functions for the three different processes. We fur-
ther explored the effects of TMD evolution, and found that the 
current experimental data cannot resolve the difference between 
our results with and without TMD evolution. We encourage the 
experimentalists at RHIC improve the precision of their measure-
ments in the future, which would greatly help to assess the impact 
of TMD evolution effects.
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