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Reduction in hippocampal and amygdala volume measured via structural magnetic resonance 

imaging is an early marker of Alzheimer’s disease (AD). Whether genetic risk factors for AD 

exert an effect on these subcortical structures independent of clinical status has not been fully 

investigated. We examine whether increased genetic risk for AD influences hippocampal and 

amygdala volumes in case-control and population cohorts at different ages, in 1674 older (aged 

>53 years; 17% AD, 39% mild cognitive impairment [MCI]) and 467 young (16–30 years) adults. 

An AD polygenic risk score combining common risk variants excluding apolipoprotein E (APOE), 

and a single nucleotide polymorphism in TREM2, were both associated with reduced hippocampal 

volume in healthy older adults and those with MCI. APOE ɛ4 was associated with hippocampal 

and amygdala volume in those with AD and MCI but was not associated in healthy older adults. 

No associations were found in young adults. Genetic risk for AD affects the hippocampus before 

the clinical symptoms of AD, reflecting a neurodegenerative effect before clinical manifestations 

in older adults.

Keywords
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1. Introduction

The strongest identified genetic risk factor for Alzheimer’s disease (AD) is the 

apolipoprotein E (APOE) ɛ4 allele (Genin et al., 2011). Large-scale GWASMA (Genome 

Wide Association Study Meta Analyses) have identified an additional 19 common risk loci 

with small effects on AD risk (Lambert et al., 2013). A low-frequency missense variant in 

TREM2 (p.R47H or rs75932628) substantially increases AD risk (Guerreiro et al., 2013). 

Whether these variants exert an effect on disease-related phenotypes (such as brain atrophy) 

in the early stages of AD, or before clinical onset is largely unknown.

The earliest histopathological changes in AD are typically seen within the medial temporal 

lobe, where neurofibrillary tangles and amyloid depositions first form. Beginning in the 

preclinical phase, these lesions lead to changes in regional brain volumes, in particular, the 

hippocampus and amygdala (Yang et al., 2012). Brain volume reduction is evident in other 

disorders (e.g., depression and anxiety) as well as in healthy aging, with the hippocampus 

being especially vulnerable (Small et al., 2011). Determining how AD risk variants affect 

hippocampal and amygdala volume directly, and whether this is detectable before clinical 

manifestations of AD, will provide clues as to how they contribute to disease risk.

An effect of APOE status has been observed on structural brain changes in the elderly. 

Carriers of ɛ4 are generally found to have smaller hippocampal and amygdala volumes than 

homozygous ɛ3 subjects, but this is not consistently observed before the onset of mild 

cognitive impairment (MCI) or AD (Hostage et al., 2013; Khan et al., 2014; Liu et al., 

2010). Effects have also been identified in young people (O’Dwyer et al., 2012), though 

findings have also been inconsistent (Khan et al., 2014). In addition, sex differences have 

been reported, with greater deleterious effect of APOE ɛ4 on hippocampal pathology in 

females (Fleisher et al., 2005).
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Other common AD genetic risk factors identified though GWAS studies have been 

investigated in relation to hippocampal and amygdala volume, through the use of polygenic 

risk scores (PRSs). A PRS allows the identification of phenotypic associations that would 

not be detectable using single variants with low effect size, as well as allowing a reduction in 

the number of statistical tests (Wray et al., 2014). A PRS containing the first AD GWAS 

findings (3 genome-wide associated variants) was found to be associated with clinical 

diagnosis and reduced hippocampal and amygdala volume in the AD case and/or control 

cohort Alzheimer’s Disease Neuroimaging Initiative (ADNI; Biffi et al., 2010). A proxy for 

the rare TREM2 risk variant (rs9394721) was also associated with smaller hippocampal 

volume and increased rate of temporal lobe atrophy in the ADNI cohort (Rajagopalan et al., 

2013).

A recent study assessed the effect of 20 AD risk variants combined in a PRS with various 

magnetic resonance imaging (MRI) markers of brain aging (intracranial volume, total brain 

volume, hippocampal volume, white matter hyperintensities, and brain infarcts) in non-

demented older community persons (Chauhan et al., 2015). The PRS was applied to meta-

analysis summary estimates from 10 population-based studies (total N = 11,500). An 

association was observed with smaller hippocampal volume only, which remained 

significant after excluding APOE. Here, we extend on this previous work by investigating 

the effect of AD genetic risk variants on hippocampal volume, and also investigate amygdala 

volume in our large sample (N > 2000). By accessing the raw genotyping data, as opposed to 

meta-analysis summary estimates, we are able to test for an effect in distinct diagnostic 

groups, including AD, MCI, and healthy elderly to examine at which clinical stage effects 

can be seen. We also tested for any early effects of AD risk factors on hippocampal and 

amygdala volume in healthy young adults before substantial age-related atrophy. Age and 

sex interaction effects were also investigated. We used the most recent GWAS findings 

identified by the International Genomics of Alzheimer’s Project (IGAP) GWASMA which 

included 74,046 individuals (Lambert et al., 2013) to select the 19 genome-wide significant 

AD risk variants to include in the PRS. We also examine the effect of several additional PRS 

adding increasing numbers of single nucleotide polymorphisms (SNPs) at different p value 

thresholds of association. Inclusion of SNPs that do not pass the threshold for genome-wide 

significance, but include a proportion of truly associated variants will give increased power 

to detect an association up to an optimal p value cutoff (Wray et al., 2014).

2. Methods

2.1. Participants

Five cohorts, including two case-control and 3 population based, were used (Table 1). ADNI 

(Mueller et al., 2005; Alzheimer’s Disease Neuroimaging Initiative, www.adni-info.org) and 

AddNeuroMed (Westman et al., 2011, Innovative Medicines (InnoMed) in Europe) are 

comprised of AD cases, MCI, and aged-matched controls (Table 1). All AD cases met 

criteria for either probable or definite AD with inclusion criteria as previously described 

(Simmons et al., 2011 and www.adni-info.org). MCI was assessed as having an abnormal 

memory complaint but with general cognition and functional performance sufficiently 
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preserved such that a diagnosis of AD cannot be made. Elderly controls were screened for 

dementia.

The population cohorts were the Older Australian Twins Study (OATS; Sachdev et al., 

2011), the Sydney Memory and Ageing Study (MAS; Brodaty et al., 2012), and the 

Queensland Twin Imaging (QTIM) cohort, of which the latter consists of young adults 

(Hibar et al., 2013). For Sydney MAS and OATS, diagnosis of MCI and AD were made with 

the most recent consensus criteria (Winblad et al., 2004). For all those participants whose 

neuropsychological or functional profiles indicated the possibility of dementia, a diagnosis 

was made at a consensus meeting (for a detailed description of Sydney MAS and OATS 

methodologies see Sachdev et al., 2009, 2012). Both Sydney MAS and OATS are 

longitudinal studies; here, we used the MRI data and diagnosis of MCI or AD at baseline 

(i.e., on admission).

All cohorts are independent of the IGAP GWASMA except for ADNI, which contributed 

1.6% of the AD cases and 0.5% of the controls (Lambert et al., 2013). In this study, we 

formed an all-older group, aged 53–91 years, from 4 cohorts (ADNI, AddNeuroMed, OATS, 

and Sydney MAS), and stratified into AD, MCI, and healthy older groups. The QTIM cohort 

(aged 16–30 years) formed a separate young adult group (Table 1). As OATS and QTIM 

cohorts contain twins, we omitted related individuals at random.

2.2. Hippocampal and amygdala volumes

Subcortical volumes for the hippocampus and amygdala, and intracranial volume (ICV) 

were extracted from anatomical T1-weighted magnetic resonance images (image acquisition 

is described in Supplementary Methods 1 and Supplementary Table 1), using validated 

automated segmentation programs following the Enhancing Neuro Imaging Genetics 

through Meta-Analysis Consortium protocols (Stein et al., 2012).

For the ADNI, AddNeuroMed, and QTIM samples, bilateral amygdala and hippocampus 

volume segmentation was performed using the Freesurfer image analysis suite, previously 

reported in depth (Fischl et al., 2002). Briefly, the T1 structural MRI scan is corrected for 

intensity bias, skull stripped, and transformed to Talairach space. Each voxel within the MRI 

volume is then assigned a neuroanatomic label (including left and right hippocampus and 

amygdala) based on probabilistic information estimated from a manually labeled training 

set. ICV was estimated based on the determinant of the transformation matrix used when 

transforming the MR volume to Talairach space.

FSL FIRST was used to segment subcortical structures for the Sydney MAS and OATS 

datasets as previously reported (Patenaude et al., 2011). Input images were registered to 

MNI space through 2-stage linear transformation. Deformable mesh models, based on shape 

and intensity information from a manually segmented training set, were then used to 

segment bilateral hippocampus and amygdala volumes. ICV was calculated as the inverse of 

the determinant of the affine transformation matrix, multiplied by the size of the MNI 

template.
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We calculated the mean of left and right hippocampal volume and amygdala volume. All 

subcortical volumes and ICV outliers were winsorized to 4 standard deviations from the 

mean.

2.3. Genetic data

A PRS was constructed from genome-wide SNP array data using 19 genome-wide 

significant AD risk variants (from IGAP, PRS p < 5 × 10−8; Lambert et al., 2013). Scores 

were calculated by summing the number of risk alleles weighted by the effect size (log odds 

ratio [OR]; Supplementary Table 2).

Threshold PRS was calculated with stage 1 summary data from IGAP using the method 

previously described (Purcell et al., 2009; see Supplementary Methods 3 for details of the 

IGAP discovery sample). SNPs within 500 kb either side of the APOE locus were excluded 

to ensure all APOE-associated signal was removed. LD-based clumping was carried out on 

all SNPs in the summary data, providing the most significantly associated SNP in each 

region of LD (using PLINK clumping command with a pairwise r2 threshold of 0.2 and a 

physical distance threshold of 300 kb). SNPs were checked for flip strands between the 

summary data and each cohort. We calculated the total score for each individual as the 

number of score alleles weighted by the log of the OR from the discovery SNPs from the 

IGAP sample (using PLINK score function). The risk score calculation was repeated for p-

value thresholds of p < 1 × 10−6, p < 1 × 10−4, p < 1 × 10−3, p < 0.01, p < 0.05, p < 0.1, p < 

0.5, and p < 1 (all SNPs). The number of SNPs included in each risk score is shown in 

Supplementary Table 3.

The PRS method assumes a polygenic disease model and is suitable for common variants 

with the assumptions of an additive effect and independent contribution to risk (Wray et al., 

2014). Both APOE and TREM2 don’t meet these assumptions and were assessed separately 

from the PRS. APOE ɛ4 allele is a diplotype acting under a codominant genetic model, and 

with a much larger effect size than the other common AD risk variants (Genin et al., 2011). 

For the rare TREM2 variant (p.R47H/rs75932628), we used rs9394721, the closest available 

imputed proxy (r2 = 0.492; Rajagopalan et al., 2013). APOE genotyping was carried out as 

previously described (Jorm et al., 2007). Haplotype ɛ2/ɛ4 carriers were excluded from the 

analysis due to the potential for counteracting effects of these alleles (1.7% of individuals).

2.4. Statistical analyses

To assess how well the PRS predicted AD risk, we first tested for an association of each PRS 

with clinical status (excluding MCI) in the AddNeuroMed cohort which is independent from 

the IGAP discovery sample, using logistic regression (STATA version 11), controlling for 

age, sex, and 4 ancestry principal components. Discriminative improvement of each PRS 

was assessed using receiver operating characteristic curves. The equality of each area under 

the curve for the receiver operating characteristic curves were testing using STAT “roccomp” 

taking into account the implicit correlation between curves (as the test is applied to the same 

sample). A covariance matrix is estimated using the method of structural components, and 

the resulting test statistic has an asymptotically χ2 distribution (DeLong et al., 1988). We 
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also tested the association between both the APOE ɛ4 genotype and the TREM2 SNP and 

AD risk.

Next, in each of the 5 cohorts, we tested for an effect of PRS, the number of TREM2 
rs9394721 and APOE ɛ4 alleles on mean hippocampal and amygdala volumes, using linear 

regression. Covariates included ICV, age, sex, and 4 ancestry principal components. Age2, 

age × sex, age2 × sex interactions were also included as covariates if they showed evidence 

of an association (p < 0.05).

We then combined all cohorts in a mega-analysis to test for associations in the all-older 

group (a combined dataset incorporating the AD, MCI, and healthy older groups shown in 

Table 1), controlling for study and clinical status as well as stratifying by clinical status (AD, 

MCI, and healthy older). Where there was a significant association, we repeated the analyses 

testing for interaction effects of both sex and age, by including an interaction term for both 

sex and age with the independent variable (either number of APOE ɛ4 alleles, TREM2 
rs9394721 alleles, and PRS) in the regression equation. Nonsignificant product terms were 

removed and the regression repeated. Interactions were identified by a significant product 

term and the nature of the interaction was investigated by testing the association in separate 

age and gender groups.

For all regression analysis, the variance explained (R2) was calculated by taking the R2 value 

of the full model (covariates and genotype/PRS) and subtracting the R2 of the reduced model 

(covariates only). We also assessed the total variance explained by all the investigated AD 

risk variants by including PRS p < 1 × 10−4, APOE ɛ4, and TREM2 together within a single 

multiple regression and again subtracting the R2 of the reduced model (covariates only) from 

the total R2.

Owing to ascertainment and measurement differences between cohorts, we also carried out a 

meta-analysis (STATA METAN specifying a random effects model) and tested for study 

heterogeneity. Meta-analyses tested for an association between the number of APOE ɛ4 

alleles, the PRS p < 0.001 and TREM2 rs9394721, with hippocampal volume and amygdala 

in the combined all-older group (controlling for disease status), AD, MCI, and healthy older 

groups.

3. Results

3.1. AD risk

The AD PRS was associated with AD risk in the AddNeuroMed cohort. The most 

significantly associated threshold was p < 1 × 10−3 (OR = 1.51; p = 0.011), though this had 

no more discriminative accuracy than a model with only age and sex covariates. However, 

APOE ɛ4 genotype was highly associated with AD risk (OR = 2.41 p = 1.64 × 10−5) with 

significant improvement in discriminative accuracy over the covariates. In contrast, TREM2 
rs9394721 was not associated with AD risk in this small sample (Table 2).
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3.2. Hippocampal and amygdala volume

The effects of PRS, TREM2, and APOE on hippocampal and amygdala volume in the mega-

analysis are shown in Tables 3 and 4 and Fig. 1, with Table 3 showing results for the 

combined all-older and the young adults, and Table 4 stratifying the older group by clinical 

group (AD, MCI, and healthy older). Results from each of the 4 older cohorts when 

analyzed separately are presented in Supplementary Table 4.

APOE ɛ4 status was strongly associated with lower hippocampal and amygdala volumes in 

the all-older group. However, when stratified by clinical status, APOE ɛ4 associated with 

lower volumes in the AD and MCI groups, but not in the healthy older group. In the AD 

group, this constitutes each APOE ɛ4 allele resulting in an average of 143 mm3 (4.8%) 

reduction in mean hippocampal volume and 47 mm3 in mean amygdala volume (3.8%). For 

MCI, this was a 132 mm3 reduction in hippocampal volume (4.0%), and 37 mm3 in 

amygdala volume (2.8%). No associations were found in the young adults.

We also found an association of PRS containing common AD risk variants of small effect 

with reduced hippocampal volume in the all-older group. The strongest effect was for the 

PRS containing SNPs less than the p < 10−4 threshold (p = 0.004). This association was 

suggestive in the stratified MCI (N = 645 PRS p < 1 × 10−4 and p = 0.057) and healthy older 

(N = 723, PRS, p < 1 × 10−3 and p = 0.075) subgroups but not apparent in the smaller AD 

group. In the young adults, there was no effect of the PRS on hippocampal volume, and no 

effect of PRS was identified for amygdala volume in any group.

TREM2 rs9394721 was associated with lower hippocampal volume in the all-older group. It 

showed suggestive association in the MCI and healthy older groups (significant when not 

corrected for multiple testing), but not in the smaller AD group or young adults. No 

association was found between TREM2 and amygdala volume.

The variance explained (R2) by APOE ɛ4, PRS, and TREM2 rs9394721 on hippocampal and 

amygdala volume are shown for each regression in Tables 3 and 4, and for hippocampal 

volume in Fig. 1. When we assessed the variance explained by all the genetic risk factors 

combined (by including APOE ɛ4, PRS P<1e04 and TREM2 rs9394721 within a single 

multiple regression) on hippocampal volume, we found that they accounted for an R2 of 

1.6% in the all-older group, 3% in the AD group, 3.2% in the MCI group, and 0.3% in the 

healthy older group.

Age and sex interactions were identified and are shown as footnotes in Tables 3 and 4. The 

APOE effect was stronger in females (in the all-older group N = 817, β = −0.15, p = 3.4 × 

10−8), with an interaction found between APOE ɛ4 and sex in both AD and MCI groups. 

There was also an interaction between PRS (testing threshold, p < 1 × 10−3) and sex, where 

the effect was again driven by the females (in the all-older group: N = 848, β = −0.08, p = 
0.001). For TREM2, we identified an age × rs9394721 interaction in the all-older group, 

with an association found for those ≤75 years (N = 791, β = −0.10, p = 3.4 × 10−4) but not 

>75 years, and no frequency difference between the 2 age groups. When stratified by clinical 

status the age effect was only evident in the MCI group (≤75 years: N = 292, β = −0.19, p = 
0.003).
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The results for the meta-analysis are shown in Supplementary Table 5 and Supplementary 

Figs 1–3. The association of APOE ɛ4 genotype and hippocampal volume in MCI and AD 

was confirmed but the association between APOE ɛ4 and amygdala volume was not 

significant in the meta-analysis, likely due to heterogeneity across studies in the 

measurement of this structure. The association of TREM2 rs9394721 was confirmed in the 

all-older group but was not significant in any of the clinical groups. Similarly, the 

association between PRS and hippocampal volume was not significant, reflecting the small 

effect and loss of power due to the meta-analysis.

4. Discussion

Chauhan et al. (2015) recently showed that an AD PRS constructed from 20 AD risk loci 

associated with reduced hippocampal volume in a large population-based meta-analysis. 

Here, we confirm these findings using raw genotype level data using a smaller sample size, 

but including a larger number of variants in the PRS identified in the largest GWASMA 

available [IGAP discovery sample: 17,008 cases, 37,154 controls (Lambert et al., 2013)]. We 

also investigate a variant in TREM2. Through stratification into AD, MCI, and healthy older 

groups, we show at which disease stage associations can be identified.

In our cross-study mega-analyses, we confirm the association between APOE and 

hippocampal volume in adults with AD and MCI (ɛ4 carriers having smaller volumes 

compared to noncarriers), but show no association in healthy older adults or in young adults. 

The same pattern of association, although to a lesser degree, was found for amygdala 

volume. In addition, AD PRS (excluding APOE) and the rare variant TREM2 were also 

found to be associated with hippocampal volume in older adults (i.e., all-older group). The 

AD PRS association was driven by females, whereas the TREM2 association was limited to 

those aged 75 years and under, and both appear associated with volume loss during healthy 

aging and in cases of MCI. Notably, the PRS explain substantially less of the variance in 

hippocampal volume than APOE genotype. Nevertheless, in the AD and MCI cohorts, the 

combined effects of APOE ɛ4, the AD risk score, and TREM2 accounted for more variance 

in hippocampal volume than APOE ɛ4 alone (Fig. 1). Combining the effects of the AD 

genetic risk variants (i.e., APOE, AD PRS, and TREM2), increases the total variance in 

hippocampal volume that can be explained in AD (to 3%) and in those with MCI (to 3.2%). 

However, in the healthy elderly TREM2 is a better predictor alone (accounting for 0.3% of 

variance in hippocampal volume). Longitudinal studies exploring healthy aging and 

transition to MCI and AD will provide further clarity regarding these genetic profiles.

In contrast to the mega-analysis findings, meta-analyses only confirmed the strong 

association between APOE and hippocampal volume, and the TREM2 rs9394721 in the 

larger combined all-older group. The reduction in significance in the groups with small 

sample sizes likely reflects heterogeneity across studies, and highlights the additional 

insights to be gained from mega-analyses.

The differing effects of AD risk variants at different disease stages may give insight into the 

mechanisms of how they contribute to AD risk. Shared mechanisms may drive brain aging 

and AD, with clinical onset resulting when brain aging surpasses a threshold (Swerdlow, 
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2011). Support for this hypothesis comes from gene expression studies that identify 

substantial overlap between expression changes with age, and in AD (Avramopoulos et al., 

2011). An opposing view is that volume differences associated with AD risk may be 

identifiable before clinical diagnosis because they are prodromal changes. Amyloid 

deposition and the specific pattern and acceleration of atrophy in AD compared to normal 

aging suggest that early AD is different from normal aging (Fjell et al., 2014). Recent 

findings suggest that AD-related hippocampal atrophy can be detected 4.2 years before onset 

of clinical manifestations of dementia (Villemagne et al., 2013). Testing the effect of these 

variants in middle age is the important next step in ascertaining how early the AD risk 

variant effect on degeneration can be identified. We found no association in young 

adulthood, although in a sub-sample of the same cohort previous work has found an 

association between the CLU genotype and white matter microstructure (Braskie et al., 

2011), suggesting other MRI measures may be more sensitive to early differences. This 

could include examination of the hippocampal microstructure, such as CA1 and subiculum 

regions, as patterns in volume reductions in subfields of the hippocampus together with 

entorhinal cortex may differentiate between AD and healthy aging (Wisse et al., 2014). We 

show that AD variants lower than genome-wide significance contribute to the variance in 

hippocampal volume. The PRS containing SNPs lower than the p < 10−4 threshold was the 

most highly associated with AD disease status and with hippocampal volume in older adults. 

The threshold that maximizes the variance explained in the target sample depends on the 

size of the GWASMA discovery sample and the underlying genetic architecture (Wray et al., 

2014). Notably, in preliminary analyses, we did not identify any association with PRS and 

hippocampal volume when using data from an earlier AD GWASMA with a smaller sample 

size [GERAD discovery sample: 3941 cases, 7848 controls (Harold et al., 2009); data not 

shown]. Large-scale studies also using the GERAD discovery sample have found no 

association of AD PRS without APOE with memory or cognitive ability in people without 

dementia (Harris et al., 2014; Verhaaren et al., 2013). In light of our results, these should 

now be tested using the latest IGAP GWASMA.

Our finding that PRS has a stronger effect on hippocampal volume in females adds to the 

literature showing the importance of taking sex into account in genetic association analysis 

in AD. The stratification of AD GWASMA by sex would be useful, allowing the generation 

of sex-specific PRS (Altmann et al., 2014; Azad et al., 2007). All cohorts in the discovery 

sample had excess females (58%–68%) (Lambert et al., 2013), so the PRS may be biased 

toward female genetic risk factors.

TREM2 is a receptor expressed on microglia that stimulates phagocytosis of cell debris and 

suppresses inflammatory reactivity. Over expression in the brains of AD transgenic mice 

ameliorates Aβ deposition, neuroinflammation, and neuronal loss (Jiang et al., 2014b). Thus, 

in humans, mutation carriers may have an inflammatory phenotype with impaired tissue 

debris clearance resulting in increased gray matter atrophy during aging. We build on the 

previous finding of an association of rs9394721, a R47H proxy with hippocampal volume in 

ADNI (Rajagopalan et al., 2013), and show that the association is independent of clinical 

status and evidence of an association is detectable before onset of MCI. Indeed, we found 

associations to be limited to the healthy older adult and MCI groups, and the effect to be 

stronger in those aged ≤75 years. Previously, the R47H genotype has been associated with 
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lower cognitive function in those without AD and has been shown to confer increased risk 

for Parkinson’s disease, frontotemporal dementia, and amyotrophic lateral sclerosis (Jonsson 

et al., 2013; Yaghmoor et al., 2014). As rs9394721 is a relatively poor proxy for the disease 

causing variant (r2 = 0.492) (Rajagopalan et al., 2013), it is likely that a stronger association 

would be identified if direct genotyping results were available.

We did not find any association of PRS, or TREM2 on amygdala volume, contrary to the 

association of PRS and amygdala volume reported in the ADNI case-control cohort (Biffi et 

al., 2010). Amygdala volume is significantly reduced in AD in a similar magnitude to the 

hippocampus (Klein-Koerkamp et al., 2014). However, we have previously shown that 

amygdala atrophy is not identified over a 2 year follow-up period in elderly population 

samples, which contrasts with significant atrophy in the hippocampus (Jiang et al., 2014a). 

Less age-related atrophy in the amygdala and potential unreliably of segmentation of this 

small structure may reduce power to detect an effect.

APOE ɛ4 was associated with lower hippocampal and amygdala volumes in the combined 

all-older group, with a large effect in those with AD and MCI (≥4% average difference in 

hippocampus and ≥2.8% in amygdala per APOE ɛ4 allele). The association is stronger in 

females, as previously shown in those with MCI (Fleisher et al., 2005). An increasing body 

of work shows an interaction between APOE and sex in AD risk which may be explained by 

the influence of estrogen levels acting in concert with APOE (Altmann et al., 2014; Stone et 

al., 1997). APOE ɛ4 was not associated with hippocampal volume in healthy older 

conflicting with some previous reports (Biffi et al., 2010; Lind et al., 2006; Reiman et al., 

1998; Wishart et al., 2006) but in agreement with recent findings from other large-scale 

studies, including both measures of volume and atrophy (Ferencz et al., 2013; Manning et 

al., 2014). Population studies of older people are likely to have a proportion of individuals 

with MCI, which may be the source of identified APOE association in conflicting reports. 

Even so, an effect in the healthy elderly may be detectable in a larger sample, especially as 

there is a reduced frequency of APOE ɛ4 alleles compared to AD and MCI groups. In 

cognitively healthy adults, a large-scale meta-analysis showed that APOE ɛ4 carriers 

performed worse on measures of episodic memory, and global cognitive ability, with effect 

sizes increasing as age increases (Wisdom et al., 2011). There are also conflicting reports on 

the effect of APOE on hippocampal volume in young people (Khan et al., 2014; O’Dwyer et 

al., 2012). In agreement with our result, a large study (N = 1400) of 14 year olds also found 

no association (Khan et al., 2014). Recent evidence of neurodevelopmental effects of APOE 
have been identified as affecting gray matter volumes in infants and neonates, suggesting 

that associations may be transient and could be clearer at a very young age (Dean et al., 

2014; Knickmeyer et al., 2014).

In summary, in addition to the APOE4 genotype, a PRS comprised common AD risk 

variants of small effect, and TREM2 associate with hippocampal volume independently of 

clinical status in the elderly. TREM2 is associated in healthy older and MCI individuals, 

with the AD PRS showing a trend nearing significance. This correlation with early MRI 

markers of AD shows evidence for a genetic modulation of neurodegeneration, and the 

potential for a combination of PRS and brain biomarkers to aid in the prediction of future 

cognitive decline and the development of AD.
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A limitation of this study is in the combining of results across several cohorts with 

participant ascertainment and diagnostic adjudication as well as the use of multiple scanner 

platforms adding variability in the volumetric measures used. This is reflected as significant 

between study heterogeneity when the analysis is performed as a meta-analysis 

(Supplementary Table 5). Replication in independent samples is required to confirm these 

findings, and testing the effect of these variants in middle age is the important next step to 

ascertain how early the prodromal AD risk variant effects on degeneration can be identified.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Variance explained (R2) by the effect of APOE ɛ4, PRS, and TREM2 rs9394721 on 

hippocampal volume in the combined all older, and in separate clinical groups. The 

combined variance explained (R2) by APOE ɛ4, PRS p < 1e04, and TREM2 rs9394721 

within a single multiple regression (representing all the variance explained by the AD risk 

variants investigated) totaled 0.016 in the all-older group. For the separate clinical groups R2 

= 0.030 in the AD group, 0.032 in the MCI group and 0.003 in the healthy older group. Ns 

represent the total N of the slightly differing sample sizes for each variant/score (each 

individual sample size is shown in Tables 3 and 4). *p < 0.05 and **p < 0.001 represent 

significant p values for the association of the variant/score with hippocampal volume (not 

corrected for multiple testing). Abbreviations: AD, Alzheimer’s disease; APOE, 

apolipoprotein E; MCI, mild cognitive impairment; R2, the variance explained by the 

genotype.
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es
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ea
lth

y 
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nt
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m

 A
D
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I 

an
d 

A
dd

N
eu
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M

ed
, a
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e 

w
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 n
o 
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s 
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C

I 
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en
tia
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m
 S
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ne

y 
M

A
S 

an
d 

O
A

T
S.

 p
 v

al
ue

s 
ar

e 
no

t c
or

re
ct

 f
or

 m
ul
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le

 te
st

in
g.

 A
ss

oc
ia

tio
ns

 w
ith

 p
 <

 0
.0

5 
ar

e 
sh

ow
n 

in
 b

ol
d.

K
ey

: A
D

, A
lz

he
im

er
’s

 d
is

ea
se

; A
D

N
I,

 A
lz

he
im

er
’s

 D
is

ea
se

 N
eu

ro
im

ag
in

g 
In

iti
at

iv
e;

 A
PO

E
, a
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ro
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; M
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I,

 m
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tiv

e 
im
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t; 
O

A
T
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R
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 p
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en
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 r
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k 
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; Q

T
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en
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an
d 
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m

ag
in

g;
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e 
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an
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 e
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 b
y 

th
e 
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E

, s
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d 
er
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 S
yd
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M
A

S,
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ne

y 
M
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y 
an
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A
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in

g 
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ud
y.

a St
ro

ng
er

 a
ss

oc
ia

tio
n 

in
 f

em
al

es
 (

N
 =

 1
30

, β
 =

 −
0.

27
, p

 =
 7

.3
 ×

 1
0−

5 )
 c

om
pa

re
d 

to
 m

al
es

 (
N

 =
 1

37
, β

 =
 0

.1
1,

 p
 =

 0
.0

68
).

b St
ro

ng
er

 a
ss

oc
ia

tio
n 

in
 f

em
al

es
 (

N
 =

 2
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, β
 =

 −
0.

21
, p

 =
 1

.7
 ×

 1
0−

4 )
 c

om
pa

re
d 

to
 m

al
es

 (
N

 =
 8

16
, β

 =
 −

0.
01

, p
 =

 0
.6

26
).

c A
ss
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tio
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fo
un

d 
in

 th
os

e 
75

 y
ea

rs
 o

f 
ag

e 
or

 y
ou

ng
er
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≤7

5 
ye

ar
s;

 N
 =

 2
92

, β
 =

 −
0.

19
, p

 =
 0

.0
03

 a
nd

 N
 =

 3
53

, β
 =

 0
.0

15
, p

 =
 0

.6
99

).
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