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Abstract

Geometry, Analysis, and Optimization in Probability Theory

by

Adam Quinn Jaffe

Doctor of Philosophy in Statistics

University of California, Berkeley

Distinguished Professor Steven N. Evans, Chair

The focus of this thesis is the use of techniques from geometry, analysis, and optimization to
several concrete problems in probability theory, and also to some problems in statistics and
machine learning. Growing interest in the intersections of these fields is motivated by several
recent developments: the recognition of the utility of optimal transport in probability and
statistics, the large number of modern statistical applications where one encounters non-
Euclidean data, and more.

The first part of the thesis studies couplings. Its main results include a form of infinite-
dimensional linear programming duality for a rich class of coupling problems involving
equivalence relations, and consequences of this abstract theory for various coupling prob-
lems encountered in stochastic calculus.

The second part studies the canonical notion of central tendency for probability measures
on metric spaces, the Fréchet mean (also called the barycenter or the center of mass). The
several chapters in this part establish: a limit theory for Fréchet means in a general class
of infinite-dimensional metric spaces; a development of large deviations theory for Fréchet
means in the Bures-Wasserstein space; a statistical optimality result for estimating Fréchet
mean sets in a general metric space; and, an optimal adaptive algorithm for Fréchet mean
set estimation in the space of phylogenetic trees.

The third part studies clustering, and provides asymptotic guarantees for k-means clustering
and variants thereof. In particular, it establishes consistency results for adaptive variants of
k-means (k-means when k is chosen according to the elbow method, k-medoids, and more)
and it proves further limit theorems for the classic k-means problem.
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Chapter 1

Introduction

Let (Ω,F ,P) be a probability space with expectation denoted E, and suppose that Y is
a real-valued random variable with E[|Y |] < ∞ and that G is a sub-σ-algebra of F . A
surprisingly difficult question, inevitably encountered by every student of probability theory,
is: How should one make sense of the conditional expectation E[Y | G]?

This setting gives rise to my favorite theorem: If we further have E[|Y |2] < ∞, then it
turns out that the conditional expectation E[Y | G] is the unique solution to the optimization
problem 

minimize E
[
|X − Y |2

]
over G-measurable X

with E
[
|X|2

]
<∞.

(1.1)

I have come to realize that this theorem exemplifies several mathematical themes that ap-
pear throughout my research: In service of studying a concrete question in probability and
statistics, this result (i) highlights a geometric principle which yields valuable insights and
intuitions, (ii) leverages technical analytic machinery (from functional analysis, point-set
topology, and measure theory) to make it rigorous, and (iii) relates it to an optimization
problem that can actually be computed or approximated in practice. (In another direction,
it also emphasizes that extending probabilistic results from L2 to L1 can be very difficult.)

This thesis surveys the research I have completed throughout my time at Berkeley, with
a focus on the ways that the various projects are connected by the themes (i), (ii), and
(iii). The material is derived from the papers [66, 37, 100, 99, 168, 97, 56, 101] which were
completed with the help of very many collaborators along the way. It is divided into three
parts, which I will now briefly introduce.
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Part I: Coupling

Coupling is one of the fundamental techniques of modern probability theory, and some1 go
as far as to say that coupling is the technique which distinguishes probability from analysis.
Here, for two random variables Y, Y ′, possibly defined on different probability spaces, a
coupling of Y, Y ′ is a pair of random variables X,X ′ defined on the same probability space
in such a way that X and Y have the same distribution, X ′ and Y ′ have the same distribution,
and the joint distribution of X and X ′ has some desirable properties.

Equivalently stated in terms of the distributions, a coupling of probability measures µ1, µ2

on a measurable space (Ω,F) is a probability measure µ̃ on the product space (Ω×Ω,F⊗F)
satisfying µ̃( · × Ω) = µ1 and µ̃(Ω × · ) = µ2 and where µ̃ has some desirable properties.
From this perspective, it is easy to see that there usually exist many couplings of two fixed
probability measures; see Figure 1.1 for an illustration. In fact, a common paradigm is that
many concrete problems in probability can be formulated as a certain optimization problem
over the space of couplings.

This first part of the thesis is focused on a particular class of optimization problems over
couplings which has, in special cases, been studied many times [192, 82, 85, 163, 181, 193,
78, 119]. That is, for random variables Y, Y ′ and an equivalence relation E, we aim to solve:{

minimize 1− P(X and X ′ are E-equivalent)

over couplings X,X ′ of Y, Y ′.
. (1.2)

The importance of (1.2) is that its optimal value is zero if and only if Y, Y ′ can be coupled
to be E-equivalent almost surely and that its optimal value is one if and only Y, Y ′ cannot
be coupled to be E-equivalent with any positive probability at all.

1I recall learning this opinion from Jim Pitman at La Val’s Pizza on Euclid Avenue

μ̃

μ1

μ2

μ̃

μ1

μ2

μ̃

μ1

μ2

Figure 1.1: The space of all couplings of two probability measures on R. Some elements
include the independent coupling (left), the coupling concentrated on the diagonal (middle),
and the independent coupling conditional on the coordinates having different signs (right).
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The most interesting examples of (1.2) occur in the setting where Y and Y ′ take values in
an infinite-dimensional space and where the equivalence relation E has very poor topological
regularity. In fact, the prototypical example is when Y and Y ′ are Markov processes and E
is the equivalence relation of eventual equality on path space; this version of the problem
has many rich connections to Markov chain mixing times, potential theory, and Riemannian
geometry (all due, roughly speaking, to its connection to the tail σ-algebra2), so it has been
an object of much study [117, 125, 116, 42, 16, 115, 118, 25, 46, 41, 178, 134, 92].

This part is based on several works of mine which study coupling problems like those
outlined above. Chapter 2 is based on my work [99] which establishes a general form of
infinite-dimensional linear programming duality for (1.2). Chapter 3 is based on the works
[99, 97, 56] and focuses on applications of these general results to the so-called germ coupling
problem in stochastic calculus.

Part II: Centering

While classical statistical problems concern data or parameters that live in a Euclidean space
(like Rm for some m ∈ N, or an infinite-dimensional Hilbert space H), many modern statist-
cal problems concern data or parameters living in a space with more interesting geometry.
Examples include

• network analysis [81, 121, 70, 149, 71], where data living on a graph can have an
essentially arbitrary geometry, and where data consisting of graphs can inherit many
different geometries depending on the choice of graph metric,

• mathematical imaging [61, 53, 54] and shape analysis [28, 127, 69], where the existing
geometry of various spaces of matrices becomes further complicated by the presence of
some interesting group actions, and

• computational phylogenetics [182, 34, 135, 17, 209, 106, 136], where the space of all
phylogenetic trees can be represented as a union of a collection of orthants, glued
together along sub-orthants of smaller dimension,

Even the most basic statistical questions become complicated in these settings. Indeed,
one typically has to modify existing statistical methods to accomodate the non-Euclidean
structure of the problem; in some cases, one has come up with entirely new methodologies

The difficulties posed by non-Euclidean geometry are already evident in the (surprisingly
interesting) problem of estimating central tendency. In the Euclidean case of a random
variable Y in a Hilbert space (H, ∥ · ∥), this is just estimating the expectation E[Y ] on the
basis of independent, identically distributed (IID) samples. In the non-Euclidean case of

2When I first became interested in (1.2) and related coupling problems, Steve warned me that “the tail
σ-algebra is a notoriously slippery thing”.
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a random variable Y in a metric space (X , d), this is usually formulated as estimating a
solution to the optimization problem{

minimize E
[
d2(x, Y )

]
over x ∈ X

(1.3)

on the basis of IID samples. Solutions to (1.3) are called Fréchet means (also called barycen-
ters or centers of mass) and, if Y1, Y2, . . . are IID samples from the same distribution as Y ,
then one usually estimates this population object from the empirical Fréchet mean

,

{
minimize 1

n

∑n
i=1 d

2(x, Yi)

over x ∈ X . (1.4)

These are indeed canonical generalizations of Euclidean estimation, since, in the Euclidean
setting, the unique solution to (1.3) is x = E[Y ] and the unique solution to (1.4) is x =
1
n

∑n
i=1 Yi. However, we emphasize that, in the non-Euclidean setting when (X , d) is a

general metric space, the problems (1.3) can have no solution, a unique solution, or multiple
solutions.

This second part of the thesis is focused on probabilistic and statistical aspects of Fréchet
means, which has been studied in very many works [213, 186, 31, 32, 95, 94]. The overal goal,
simply stated, is to derive limit theorems establishing the way that empirical Fréchet means
converge to population Fréchet means as n → ∞; See Figure 1.2 for an illustration. There
exists a particularly well-developed theory in the case that X is a Riemannian manifold and
d is the metric induced by its metric tensor [31, 32, 28], but, for many of the application
areas outlined above, we want to be able to say something about the case that (X , d) is
either highly singular or infinite-dimensional.

(X,d)

μ
M(μ)

(X,d)

μn

M(μn )

Figure 1.2: Fréchet means in a general metric space. There are many possible population
Fréchet means (left), while, in this realization, there is a unique empirical Fréchet mean
(right).
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This part is based on several works of mine focused on Fréchet means and related objects.
Chapter 4 is based on my works [66, 98] establishing the fundamental limit theorems under
minimal conditions, and is closely related to concurrent work3 in [180]. Chapter 5 is based
on the project [101] studying large deviations theory for Wasserstein and Bures-Wasserstein
barycenters. Chapters 6 and 7 are based on the work [37] which studies a particular set-
valued Fréchet mean estimation problem and an application in computational phylogenetics.

Part III: Clustering

A fundamental task in unsupervised learning is that of clustering, namely, partitioning a set
of data into a finite number of groups where elements within a group are similar (and, typi-
cally, elements between distinct groups are dissimilar). Among the most common clustering
methods is k-means clustering: For data points Y1, . . . Yn in a (possibly infinite-dimensional)
Hilbert space (H, ∥ · ∥) and any k ∈ N := {1, 2, . . .}, the set of k-means cluster centers is any
solution to the optimization problem

minimize 1
n

∑n
i=1 minx∈S ∥x− Yi∥2

over S ⊆ H
with #S = k.

(1.5)

Intuitively speaking, a set of k-means cluster centers for these data points is a set of points
Sn in H to at least one of which all data are optimally close; the k-means clusters are then
the sets

{Yi : ∥x− Yi∥ ≤ ∥x′ − Yi∥ for all x′ ∈ Sn}
indexed by x ∈ Sn. See Figure 1.3 for an illustration of the k-means clusters for a toy data
set, when k ∈ {2, 3, 4, 5}.

Over several decades, k-means has played an important role in both applied and theo-
retical statistics. On the applied side, it is among the simplest and most powerful clustering
methods, and a chapter dedicated to its study appears in nearly every introductory machine
learning textbook [79, 10, 87]. On the theoretical side, there is a rich body of literature
studying its asymptotic theory [165, 1, 126, 133, 161, 160, 159, 194], computational feasibil-
ity [145, 142, 76, 9], and, more recently, concentration properties [33, 120, 164]. (It has also
been given many different names throughout its history; see [39].)

This final part of the thesis (which consists only of Chapter 8) follows my work in [100]
which studies some novel asymptotic aspects of k-means clustering. Particular attention
is paid to adaptive variants of k-means that are often used in practice, yet for which no
theoretical guarantees were previously known.

3The works [66] and [180] were coincidentally posted to arxiv on the same day (December 23, 2020),
leading me to jokingly refer to Christof as my “nemesis” for several years. When I finally met him in January
2023 and he turned out to be very nice, I decided to drop the nickname.
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Figure 1.3: Applying k-means clustering to some data, for k ∈ {2, 3, 4, 5}. When k = 2,
some true clusters are erroneously grouped together (top left). When k = 3 (top right) or
k = 4 (bottom left), some meaningful clusters are recovered. When k = 5, some single
clusters are erroneously split up (bottom right).

Notation

While all of the required terminology and notation will be outlined at the beginning of
each chapter, a small amount of notation is shared by all parts of the thesis: We write
N = {1, 2, 3, . . .} for the set of natural numbers, which we take to exclude 0. We write
P(S,S) for the space of all probability measures on a measurable space (S,S). If (S, τ) is
a topological space, we write B(S, τ), B(S), or B(τ) for the Borel σ-algebra, whichever is
clearest from context. If (S, τ) is a Polish space, we write P(S) as shorthand for P(S,B(S)).
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Part I

Coupling
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Chapter 2

The Equivalence Coupling Problem

Let (Ω,F) be a measurable space and let E be an equivalence relation on Ω which satisfies
E ∈ F ⊗F . For any probability measures P, P ′ ∈ P(Ω,F), let Π(P, P ′) denote the space of
all couplings of P, P ′, and let us consider the optimization problem{

minimize 1− P̃ (E)

over P̃ ∈ Π(P, P ′),
(2.1)

which we refer to as the E-equivalence coupling problem. Special cases of the problem (2.1)
have appeared in probabilty theory many times, but a general analysis is quite complicated
since for the most interesting applications one needs to consider the case that Ω is infnite-
dimensional and that E has very poor topological regularity.

The goal of this chapter is to show that, in sufficient generality, (2.1) is dual, in the sense
of duality of infinite-dimensional linear programs, to the problem{

maximize |P (A)− P ′(A)|
over A ∈ G, (2.2)

which we refer to as the G-total variation problem. The upshot of this duality is that, from
a probabilist’s point of view, there are many classical tools (zero-one laws, expressions for
Radon-Nikodým derivatives, continuity-singularity dichotomy theorems) that can be used to
analyze (2.2); consequently they can be used to analyze (2.1).

There already exist a few particular instances duality for the equivalence coupling prob-
lem, which we now describe. First, if Ω is Polish space with F is its Borel σ-algebra, and if
∆ = {(x, x) ∈ Ω× Ω : x ∈ Ω} denotes the diagonal in Ω× Ω, we have

max
A∈F
|P (A)− P ′(A)| = min

P̃∈Π(P,P ′)
(1− P̃ (∆)) (2.3)

for all Borel probability measures P, P ′ on Ω. This result has certainly been known for a
long time (at least for countable sets Ω) so its exact source is difficult to track down [139,
Chapter I.7].
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A second known example concerns the space of binary sequences Ω := {0, 1}N with F the
Borel σ-algebra of its product topology. (Actually, {0, 1} can be replaced with any Polish
space here.) If E0 is the equivalence relation of eventual equality and if T is the tail σ-algebra
on Ω, then it was shown in a series of works [163, 75, 192, 85, 82], that one has

max
A∈T
|P (A)− P ′(A)| = 0 if and only if min

P̃∈Π(P,P ′)
(1− P̃ (E0)) = 0, (2.4)

for all Borel probability measures P, P ′ on Ω.
A third example, from ergodic theory, shows that eventual equality and the tail σ-algebra

in (2.4) can be replaced with the analogous objects for the notion of group-invariance. Indeed,
suppose that Ω is a Polish space with F its Borel σ-algebra and that a locally compact Polish
group G acts continuously on Ω. Then, writing EG for its orbit equivalence relation and IG
for its invariant σ-algebra, we have [193]

max
A∈IG

|P (A)− P ′(A)| = 0 if and only if min
P̃∈Π(P,P ′)

(1− P̃ (EG)) = 0, (2.5)

for P, P ′ any two Borel probability measures on Ω. This result is an extension of earlier work
on the (two-sided) shift [8], and subsequent developments have provided many generaliza-
tions, primarily of an algebraic nature [78, 181, 119].

This chapter is based on the work [99] which provides some general results (Theorem 1 and
Theorem 2) guaranteeing the existence of a duality between (2.1) and (2.2). These results can
be seen as a form of Kantorovich duality for a suitable Monge-Kantorovich optimal transport
problem, but the poor topological regularity of the cost function means that standard results
do not apply; our main technical innovation is thus to replace topological approximation
arguments with more delicate measure-theoretic approximation arguments. Together, these
two main results are together powerful enough to recover all the duality statements given
above, and they have some novel consequences of interest; in the next chapter, we will explore
applications of these results to a few problems in stochastic calculus.

2.1 Preliminaries

In order to state our main results, we need to introduce our precise notion of duality for
the equivalence coupling problem. Throughout, we assume that (Ω,F) is a standard Borel
space and that E is a Borel equivalence relation on (Ω,F).

Definition 1. A Borel equivalence relation E on (Ω,F) is called strongly dualizable if we
have

max
A∈E∗

|P (A)− P ′(A)| = min
P̃∈Π(P,P ′)

(1− P̃ (E)) (2.6)

for all P, P ′ ∈ P(Ω,F), where the “max” and “min” assert that the supremum and infimum
are both achieved and where

E∗ := {A ∈ F : for all (x, x′) ∈ E, we have x ∈ A if and only if x′ ∈ A}
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is the E-invariant σ-algebra.

Let us give some remarks on this definition. First, the definition of the E-invariant σ-
algebra generalizes the notion of the invariant σ-algebra for group actions, since, if EG is the
orbit equivalence relation for a group G acting measurably on Ω, then one can easily show
the expected E∗

G = IG. Second, we note that E∗ is a natural choice for a collection of events
appearing on the left side of (2.6): If E∗ is replaced with some other collection G, then, by
taking P = δx and P ′ = δx′ for x, x′ ∈ Ω, we see that every A ∈ G has the property that
x ∈ A is equivalent to x′ ∈ A for all (x, x′) ∈ E. This means G ⊆ E∗, so E∗ is, in some
sense, the maximal G with which E can form a strongly dual pair.

The remainder of this section is spent proving some intermediate results that will be
used in our main theorems. The first result identifies the left side of (2.6) with its convex
relaxation, and shows that a maximizer always exists.

Lemma 1. For any Borel equivalence relation E, we have

max
A∈E∗

|P (A)− P ′(A)| = max
f∈bE∗

0≤f≤1

∣∣∣∣∫
Ω

f dP −
∫
Ω

f dP ′
∣∣∣∣

for all Borel probability measures P, P ′ on (Ω,F),

Proof. We consider the Hilbert space L2(Ω, E∗, 1
2
(P + P ′)), and we define K := {f ∈ bE∗ :

0 ≤ f ≤ 1} which is clearly a convex set. In fact, by the Banach-Alaoglu theorem, K is
compact in the weak topology. Now we claim that ex(K) = {1A : A ∈ E∗}. Indeed, the “⊇”
direction is obvious, and the “⊆” direction is shown as follows: If f /∈ {1A : A ∈ E∗} then
there is some x ∈ Ω with f(x) ∈ (0, 1). This means the event {0 < f < 1} is non-empty,
and, since it can also be written as

{0 < f < 1} =
⋃

0<ε≤ 1
2

{ε ≤ f ≤ 1− ε},

there must exist a sufficiently small ε > 0 such that Aε := {ε ≤ f ≤ 1−ε} is non-empty. We
of course have f = 1

2
(f + ε1Aε + f − ε1Aε) and it follows from f ∈ bE∗ and our construction

that f ± ε1Aε are both in K. This shows that f /∈ ex(K), whence ex(K) = {1A : A ∈ E∗}.
Finally, we note that the map f 7→

∫
Ω
f dP −

∫
Ω
f dP ′ is linear and weakly continuous on

K, so the result follows from Bauer’s maximum principle.

The second result shows that we always have a sort of “weak duality”.

Lemma 2. For any Borel equivalence relation E, we have

max
A∈E∗

|P (A)− P ′(A)| ≤ inf
P̃∈Π(P,P ′)

(1− P̃ (E))

for all Borel probability measures P, P ′ on (Ω,F).
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Proof. For any A ∈ E∗ we have (A×Ω)∩E = (Ω×A)∩E. Thus, for any Borel probability
measures P, P ′ on (Ω,F) and any P̃ ∈ Π(P, P ′), we can bound:

P (A)− P ′(A) = P̃ (A× Ω)− P̃ (Ω× A) = P̃ ((A× Ω) \ E)

− P̃ ((Ω× A) \ E)

≤ P̃ ((A× Ω) \ E).

Now take the supremum over A ∈ E∗, use Ω ∈ E∗ and apply Lemma 1. Finally, take the
infimum over P̃ ∈ Π(P, P ′) to conclude.

Third, we show that if a sub-probability measure has its marginals dominated by given
marginals, then it is always possible to “complete” this to a probability measure.

Lemma 3. Suppose P, P ′ are probability measures on (Ω,F) and that Q̃ is a sub-probability
measure on (Ω,F) satisfying Q̃( · × Ω) ≤ P and Q̃(Ω × · ) ≤ P ′. Then there exists sub-
probability measures M,M ′ on (Ω,F) and a real number 0 ≤ γ ≤ 1 such that P̃ := Q̃ +
γ M ⊗M ′ ∈ Π(P, P ′).

Proof. We define M := P − Q̃( · × Ω) and M ′ := P ′ − Q̃(Ω× · ), which are sub-probability
measures on (Ω,F), and we write α ∈ [0, 1] for their common total mass. More explicitly,
we have

α = M(Ω) = P (Ω)− Q̃(Ω× Ω) = 1− Q̃(Ω× Ω)

and similar for M ′ and P ′. If α = 0 then γ = 0 and M = M ′ = 0 are as desired.
Otherwise α ∈ (0, 1], and we claim that γ = 1/α and M,M ′ are as desired. To see that
P̃ := Q̃ + γ M ⊗M ′ is a probability measure, compute

P̃ (Ω× Ω) = Q̃(Ω× Ω) + γα2 = Q̃(Ω× Ω) + α = 1.

To see that P̃ has the correct marginals, compute

P̃ ( · × Ω) = Q̃( · × Ω) + γαM(Ω) = Q̃( · × Ω) + M = P,

and likewise for P̃ (Ω× · ).
Lastly, we give some information on the requisite notion of “smoothness” that will appear

in our results. A Borel equivalence relation E on (Ω,F) is called smooth if there exists
a standard Borel space (S,S) and a measurable map ϕ : Ω → S such that x, x′ ∈ Ω
have (x, x′) ∈ E if and only if ϕ(x) = ϕ(x′). Our results will require the following novel
characterization of smoothness, which we believe may be of independent interest; while the
equivalence between (i) and (ii) is classical [183, Exercise 5.1.10], the equivalence with (iii)
is novel and essential for our proof of Theorem 1.

Lemma 4. The following are equivalent:

(i) E is smooth.
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(ii) E∗ is countably-generated.

(iii) E ∈ E∗ ⊗ E∗.

Proof. By [183, Exercise 5.1.10], it suffices to prove that (i) and (iii) are equivalent. To
show (i) implies (iii), suppose E is smooth so there exists a standard Borel space (S,S)
and a measurable map ϕ : Ω → S such that x, x′ ∈ Ω have (x, x′) ∈ E if and only if
ϕ(x) = ϕ(x′). It readily follows that ϕ : (Ω, E∗) → (S,S) is measurable, hence also that
f : (Ω × Ω, E∗ ⊗ E∗) → (S × S,S ⊗ S) defined via f(x, x′) := (ϕ(x), ϕ(x′)) is measurable.
Finally, observe that we have ∆ ∈ S⊗S since (S,S) is standard Borel, hence E = f−1(∆) ∈
E∗ ⊗ E∗. Thus, (iii) holds.

It requires a bit more work to show (iii) implies (i), so suppose E ∈ E∗ ⊗ E∗. It is
classical that Σ1 := {B ∈ E∗⊗E∗ : there exist A1, A2, , . . . ∈ E∗×E∗ with B ∈ σ(Am×An :
m,n ∈ N)} is a σ-algebra containing E∗×E∗, hence E∗⊗E∗ ⊆ Σ1. In particuar, there exist
A1, A2, . . . ∈ E∗ × E∗ with E ∈ σ(Am × An : m,n ∈ N).

Next, we aim to show that the equivalence classes [x]E := {x′ ∈ Ω : (x, x′) ∈ E} are in
σ(An : n ∈ N) for all x ∈ Ω. To do this, take arbitrary x ∈ Ω and define Σ2(x) := {B ∈
E∗⊗E∗ : ([x]E× [x]E)∩B ∈ σ(Am×An : m,n ∈ N)}, which is easily seen to be a σ-algebra.
Moreover, observe that for all m,n ∈ N we have

([x]E × [x]E) ∩ (Am × An) =

{
Am × An, if x ∈ Am ∩ An,

∅, if x /∈ Am ∩ An,

since Am, An ∈ E∗. This implies σ(An × Am : m,n ∈ N) ⊆ Σ2(ω), hence E ∈ Σ2(x).
Consequently, [x]E × [x]E = ([x]E × [x]E) ∩ E ∈ σ(Am × An : m,n ∈ N) ⊆ σ(An : n ∈
N)⊗ σ(An : n ∈ N). Now Fubini’s theorem gives [x]E ∈ σ(An : n ∈ N), as claimed.

Moving on, we claim that, for all x, x′ ∈ Ω with (x, x′) /∈ E, there exists n ∈ N such that
we have either [x]E ⊆ An and [x′]E ∩An = ∅ or [x]E ⊆ Ω \An and [x′]E ⊆ An. If this is not
true, then, recalling {An}n∈N ⊆ E∗, there must exist x, x′ ∈ Ω with (x, x′) /∈ E such that
for all n ∈ N we have [x]E, [x

′]E ⊆ An or [x]E, [x
′]E ⊆ Ω \ An. But Σ3(x, x

′) := {A ∈ E∗ :
[x]E, [x

′]E ⊆ A or [x]E, [x
′]E ⊆ Ω \ A} is a σ-algebra, so σ(An : n ∈ N) ⊆ Σ3(x, x

′). This
contradicts the conclusion of the previous paragraph.

Finally, we define the function ϕ : (Ω,F) → (R,B(R)) via the summation ϕ(x) :=∑
n∈N 3−n1An(x) for all x ∈ Ω, which is clearly measurable. Also, the previous paragraph

shows that x, x′ ∈ Ω have (x, x′) ∈ E if and only if ϕ(x) = ϕ(x′). Therefore, E is smooth, so
(i) holds. This finishes the proof.

2.2 Two Duality Theorems

Now we can prove the main results of the chapter. The first result is based on a natu-
ral adaptation of classical proof of duality (2.3) for the total variation norm. Its proof is
accompanied by the illustration in Figure 2.1.
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Figure 2.1: The proof of strong dualizability for smooth equivalence relations (Theorem 1).
First, we coarsen P, P ′ on (Ω,F) to µ, µ′ on (Ω, E∗). Second, we form their minimum
ν = µ ∧ µ′ and lift this to the “diagonal” in (Ω×Ω, E∗ ⊗E∗). Then, we let the coordinates
of the lifted measure be conditionally independent given their equivalence class, which we
denote Q̃. Finally, we complete this to a bona fide coupling of P, P ′.

Theorem 1. Every smooth Borel equivalence relation is strongly dualizable.

Proof. For arbitrary P, P ′, Lemma 2 gives

max
A∈E∗

|P (A)− P ′(A)| ≤ inf
P̃∈Π(P,P ′)

(1− P̃ (E)),

so it only remains to show that there exists P̃ ∈ Π(P, P ′) satisfying

1− P̃ (E) ≤ max
A∈E∗

|P (A)− P ′(A)|. (2.7)

We perform this construction in several steps.
First, define µ := P |E∗ and µ′ := P ′|E∗ as probability measures on (Ω, E∗), and then set

ν := µ ∧ µ′. Now let A+, A− ∈ E∗ denote the positive part and negative part, respectively,
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of the Hahn-Jordan decomposition of the signed measure µ− µ′. Then we get

ν(Ω) = µ(A−) + µ′(A+) = 1− µ(A+) + µ′(A+) = 1− sup
A∈E∗

|P (A)− P ′(A)|,

which will be useful in our later calculations.
Second, we use the fact that (Ω,F) is standard Borel to get [40, Corollary 10.4.6] a

regular conditional distribution of P with respect to E∗ denoted K : Ω×F → [0, 1] as well
as a regular conditional distribution of P ′ with respect to E∗ denoted K ′ : Ω × F → [0, 1].
From this we define the set-function Q̃ : F × F → [0, 1] via

Q̃(A× A′) :=

∫
Ω

K(y, A)K ′(y, A′) dν(y) (2.8)

for A,A′ ∈ F . We claim that Q̃ extends uniquely to a probability measure on (Ω×Ω,F⊗F),
which (by a slight abuse of notation) we also denote by Q̃. This of course follows from
Carathéodory’s extension theorem [104, Theorem 2.5] if we can show that Q̃ is countably
additive on the semi-ring F × F , so suppose that we have A × A′ =

⋃
n∈N(An × A′

n) for
A,A′, {An}n∈N, and {A′

n}n∈N in F such that {An × A′
n}n∈N are disjoint. This implies 1A ⊗

1A′ =
∑

n∈N(1An ⊗1A′
n
), so for a fixed y ∈ Ω we can take the probability of both sides under

the product measure K(y, · )⊗K ′(y, · ) and we get

K(y, A)K ′(y, A′) =
∑
n∈N

K(y, An)K ′(y, A′
n).

Now integrate both sides with respect to ν, and use monotone convergence to get

Q̃(A× A′) =

∫
Ω

K(y, A)K ′(y, A′) dν(y)

=

∫
Ω

∑
n∈N

K(y, An)K ′(y, A′
n) dν(y)

=
∑
n∈N

∫
Ω

K(y, An)K ′(y, A′
n) dν(y) =

∑
n∈N

Q̃(An × A′
n).

This is as desired, so we have a probability measure Q̃ on (Ω× Ω,F ⊗ F) whose values on
rectangles are defined by (2.8).

Next we claim that the hypotheses of Lemma 3 are satisfied. To do this, observe that for
any A ∈ F we can compute

Q̃(A× Ω) =

∫
Ω

K(y, A)K ′(y,Ω) dν(y)

=

∫
Ω

K(y, A) dν(y)

≤
∫
Ω

K(x,A) dµ(x)

=

∫
Ω

K(x,A) dP (x) = P (A),
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and that an identical calculation shows Q̃(Ω × A) ≤ P ′(A) for all A ∈ F . We can get a
coupling P̃ ∈ Π(P, P ′) with Q̃ ≤ P̃ .

Finally, we will show that P̃ satisfies (2.7). To do this, write f : (Ω, E∗)→ (Ω×Ω, E∗⊗E∗)
for the measurable map f(y) := (y, y), and let us show that we have P̃ (S) = ν(f−1(S)) for
all S ∈ E∗ ⊗ E∗. Indeed, it is straightforward to show that for all A,A′ ∈ E∗ we have

P̃ (A× A′) =

∫
Ω

K(y, A)K ′(y, A′) dν(y)

=

∫
Ω

1A(y)1A′(y) dν(y) = ν(A ∩ A′) = ν(f−1(A× A′)).

In the second equality, we used that K(y, A) = 1A(y) holds P -almost surely hence µ-almost
surely hence ν-almost surely, since ν ≪ µ, and also the analogous result for K ′. This shows
that the probability measures P̃ and ν ◦ f−1 agree on the π-system E∗ × E∗, so it follows
that they agree on E∗⊗E∗. Finally, we use Lemma 4 to get E ∈ E∗⊗E∗, and we compute:

P̃ (E) = ν(f−1(E)) ≥ ν(f−1(∆)) = ν(Ω) = 1− sup
A∈E∗

|P (A)− P ′(A)|,

so rearranging this gives
1− P̃ (E) ≤ sup

A∈E∗
|P (A)− P ′(A)|,

as desired.

One may be tempted to think that Theorem 1 is powerful enough to establish strong
dualizability most examples of interest in probability theory. However, non-smooth Borel
equivalence relations are common, for example the equivalence relation of eventual equality
E0. (The fact that E0 is not smooth is exemplified by the Glimm-Effros dichotomy [111,
Theorem 6.5], but it can also be shown directly via elementary considerations.) Thus, our
goal is to widen our sufficient conditions for strong dualizability. Towards filling this gap,
we establish a closure property for strong dualizability as our second main result. Its proof
is accompanied by the illustration in Figure 2.2.

Theorem 2. A countable increasing union of strongly dualizable Borel equivalence relations
is strongly dualizable.

Proof. Suppose that E1 ⊆ E2 ⊆ · · · are strongly dualizable Borel equivalence relations, and
write E :=

⋃
n∈N En. Since En is measurable for all n ∈ N it follows that E is measurable.

As in the proof of Theorem 1, we begin by noting that for arbitrary P, P ′, Lemma 2 gives

max
A∈E∗

|P (A)− P ′(A)| ≤ inf
P̃∈Π(P,P ′)

(1− P̃ (E)),

so that we only need to construct some P̃ ∈ Π(P, P ′) satisfying

1− P̃ (E) ≤ max
A∈E∗

|P (A)− P ′(A)|. (2.9)
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P̃1

E1

P1

P1
`

E2

P2

P2
`

P̃2

E3

P3

P3
`

P̃2

P1

P1
`

P̃1(  · ∩ E1 ) P̃2(  · ∩ E2 )

P2
`

P2 P3

P3
`

P̃3(  · ∩ E3 )

Figure 2.2: The proof of strong dualizability for countable increasing unions of strongly
dualizable equivalence relations (Theorem 2). First, we set P1 = P and P ′

1 = P ′. Second, we
let P̃1 be an optimal coupling of P1, P

′
1 for the equivalence relation E1. Third, we “set aside”

P̃1( · ∩E1), and we subtract its marginals off of P1, P
′
1, yielding P2 = P1 − P̃1(( · ×Ω)∩E1)

and P2 = P1 − P̃1((Ω × · ) ∩ E1). Then we repeat the process to Pn, P
′
n and En for n ≥ 2.

The optimal coupling is given by completing
∑

n∈N P̃n( · ∩ En) to a bona fide coupling of
P, P ′.

Our construction is iterative and takes several steps.
To begin, set P1 := P and P ′

1 := P ′. Then, inductively for n ∈ N, use the strong
dualizability of En to get P̃n ∈ Π(Pn, P

′
n) satisfying

max
A∈E∗

n

|Pn(A)− P ′
n(A)| = 1−

∑
m<n

P̃m(Em)− P̃n(En) = 1−
∑
m≤n

P̃m(Em), (2.10)

and then set Pn+1 := Pn − P̃n(( · ×Ω)∩En) and P ′
n+1 := P ′

n − P̃n((Ω× · )∩En). To ensure
that this construction is well-defined, we must verify that Pn and P ′

n are, for each n ∈ N,
sub-probability measures with the same total mass, 1 −∑m<n P̃m(Em). This follows by
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induction where the base case n = 1 is trivial and the inductive step follows from combining

Pn+1(Ω) = Pn(Ω)− P̃n((Ω× Ω) ∩ En)

= Pn(Ω)− P̃n(En)

= 1−
∑
m<n

P̃m(Em)− P̃n(En) = 1−
∑

m<n+1

P̃m(Em)

with the analogous calculation for P ′
n+1(Ω).

Next, fix n ∈ N, and recall that by construction we have Pn = P−∑m<n P̃m(( · ×Ω)∩Em)

and P ′
n = P ′−∑m<n P̃m((Ω× · )∩Em). Thus, combining (2.10) with the triangle inequality,

we get

1−
∑
m≤n

P̃m(Em)

= sup
A∈E∗

n

|Pn(A)− P ′
n(A)|

≤ sup
A∈E∗

n

|P (A)− P ′(A)|

+
∑
m<n

sup
A∈E∗

n

|P̃m((A× Ω) ∩ Em)− P̃m((Ω× A) ∩ Em)|.

We claim that the sum in the last line above is equal to zero. In fact, we claim that all
summands are equal to zero, in that for all m < n we have

sup
A∈E∗

n

|P̃m((A× Ω) ∩ Em)− P̃m((Ω× A) ∩ Em)| = 0. (2.11)

It follows by normalizing that this holds if and only if we have

sup
A∈E∗

n

|P̃m(A× Ω |Em)− P̃m(Ω× A |Em)| = 0. (2.12)

By the strong dualizability of En we know that (2.12) holds if and only if there exists a
coupling P̃ ∈ Π(P̃m( · × Ω |Em), P̃m(Ω × · |Em)) satisfying P̃ (En) = 1. Of course, the
coupling P̃m(· |Em) is exactly what is needed, since Em ⊆ En+1 implies P̃m(En+1 |Em) = 1.
Thus, we have shown

1−
∑
m≤n

P̃m(Em) ≤ sup
A∈E∗

n+1

|P (A)− P ′(A)| (2.13)

for all n ∈ N.
Now let us get for each n ∈ N some An ∈ E∗

n with

|P (An)− P ′(An)| ≥ sup
A∈E∗

n

|P (A)− P ′(A)| − 1

2n
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Now consider the Hilbert space L2(Ω,F 1
2
(P +P ′)), in which {1An}n∈N form a norm-bounded

sequence. By the Banach-Alaoglu theorem, there exists a subsequence {nj}j∈N and some
f ∈ L2(Ω,F , 1

2
(P + P ′)) with 1Anj

→ f weakly. Since L2(Ω, E∗
n,

1
2
(P + P ′)) is a strongly

closed subspace of L2(Ω,F , 1
2
(P + P ′)), it follows that it is also weakly closed. This implies

that f ∈ L2(Ω, E∗
n,

1
2
(P + P ′)) for all n ∈ N, hence f ∈ L2(Ω, E∗, 1

2
(P + P ′)). Also, we have

0 ≤ lim
j→∞

∫
Ω

1Anj
1{f≤0} d

(
P + P ′

2

)
=

∫
Ω

f1{f≤0} d

(
P + P ′

2

)
≤ 0

which shows that f ≥ 0 holds P - and P ′-almost surely; a similar argument shows that f ≤ 1
holds P - and P ′-almost surely. Putting this all together, we conclude that there exists a
function g : Ω→ R which is E∗-measurable and satisfies 0 ≤ g ≤ 1 such that f = g both P -
and P ′-almost surely. Consequently, Lemma 1 gives:

lim inf
n→∞

sup
A∈E∗

n

|P (A)− P ′(A)| ≤ lim
j→∞
|P (Anj

)− P ′(Anj
)|

=

∣∣∣∣∫
Ω

f dP −
∫
Ω

f dP ′
∣∣∣∣

=

∣∣∣∣∫
Ω

g dP −
∫
Ω

g dP ′
∣∣∣∣

≤ sup
A∈E∗

|P (A)− P ′(A)|.

Therefore, we conclude

1−
∑
n∈N

P̃n(En) ≤ sup
A∈E∗

|P (A)− P ′(A)|. (2.14)

by taking n→∞ in (2.13).
Now we have all of the ingredients to construct our coupling. First, set

Q̃ :=
∑
n∈N

P̃n(· ∩ En),

which is evidently a sub-probability measure on (Ω × Ω,F ⊗ F). Next we claim that the
hypotheses of Lemma 3 are satisfied. Indeed, for any A ∈ F and n ∈ N we have∑

m≤n

P̃m((A× Ω) ∩ Em) =
∑
m≤n

(Pm+1(A)− Pm+1(A))

= P (A)− Pn+1(A)

≤ P (A),

so taking n→∞ we get

Q̃(A× Ω) =
∑
n∈N

Q̃n((A× Ω) ∩ En) ≤ P (A).
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We also get Q̃(Ω × A) ≤ P ′(A) by the same calculation. Therefore, Lemma 3 gives us
P̃ ∈ Π(P, P ′) with Q̃ ≤ P̃ .

To finish the proof, we note that for all n ∈ N we have

P̃ (En) ≥ Q̃(En) ≥
∑
m≤n

P̃m(Em ∩ En) =
∑
m≤n

P̃m(Em),

so taking n→∞ gives

P̃ (E) ≥
∑
n∈N

P̃n(En).

Finally, by applying (2.14), we find

1− P̃ (E) ≤ 1−
∑
n∈N

P̃n(En) ≤ sup
A∈E∗

|P (A)− P ′(A)|,

and the result is proved.

It appears that Theorem 1 and Theorem 2 are together powerful enough to establish
strong dualizability for most concrete applications appearing in probability. However, we
believe that an interesting question of independent interest is whether all Borel equivalence
relations are strongly dualizable.
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Chapter 3

Applications in Stochastic Calculus

Consider two Borel probability measures P, P ′ on D := D0([0,∞);R), the Polish space
of càdlàg (“right-continuous, left-limits”) paths from [0,∞) to R vanishing at 0. Writing
E0+ :=

⋃
t>0{(x, x′) ∈ D × D : xs = x′

s for all 0 ≤ s < t} for the equivalence relation of
agreeing for some initial segment of time, we are interested in the E0+-coupling problem:{

minimize 1− P̃ (E0+)

over P̃ ∈ Π(P, P ′).
(3.1)

Stated another way, can two different càdlàg stochastic processes started from the same point
be coupled to travel alongside each other for some initial segment of time?

This question has been recently studied in [65, 204], with motivations in sequential test-
ing, Markov chain Monte Carlo (MCMC), and more. Their results include some bounds on
solutions to (3.1) and some explicit calculations for the special case of Brownian motions
with drift, but their methods can only go so far. The goal of this chapter is to show that
the duality theory of Chapter 2 provides a robust set of tools for studying (3.1) and related
problems.

An important precedent for this analysis is the following closely related problem: Writing
E+∞ :=

⋃
t>0{(x, x′) ∈ D×D : xs = x′

s for all s ≥ t} for the equivalence relation of eventual
agreement, one may be interested in the E+∞-coupling problem:{

minimize 1− P̃ (E+∞)

over P̃ ∈ Π(P, P ′).
(3.2)

That is, can two different càdlàg stochastic processes be coupled to eventually agree?
The problem (3.2) has received a great deal of attention over many decades. Following

the development of a sufficiently general theory [85, 163, 82], many authors have developed
precise results about (3.2) for certain classes of processes of interest: diffusions [16, 25],
integral functionals of Brownian motions and diffusions [115, 118], Brownian motion on
Riemannian manifolds [116, 125], Brownian motion in Banach spaces [46], Lévy processes
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[41, 178, 117], Lévy diffusions [134], and more. There are also subtle measurability issues in
(3.2), and these have become an interesting question in their own right [92, 42].

We refer to the problems (3.1) and (3.2) as the germ coupling problem and the tail
coupling problem, respectively. Since it is known that (3.2) is closely related to the tail σ-
algebra on D, one expects that (3.1) should be closely related to the germ σ-algebra on D.
This is indeed the case, and it can be made precise via the duality theory of Chapter 2. In
particular, we can hope to develop precise results about (3.1) for certain classes of processes
of interest, in the same way that has already been done for (3.2).

This chapter is based on the works [99, 97, 56] in which we study several aspects of the
germ coupling problem (3.1). The first part characterizes when (3.1) has its optimal value
equal to zero, for classes of processes including diffusions (Theorem 3) and Lévy processes
(Theorem 5). The second part aims to explicitly construct solutions to (3.1) for Brownian
motions with drift (Theorem 6) and pure-jump Lévy proceses (Theorem 7). These results
rely, in some way or another, on the sufficiently powerful duality theory for the equivalence
coupling problem developed in Chapter 2.

3.1 Germ Couplings

We begin by establishing some notation. We write D := D0([0,∞);R) for the space of
càdlàg (“right-continuous, left-limits”) paths from [0,∞) to R, vanishing at 0, endowed
with Skorokhod’s J1 topology which makes this into a Polish space. For any pair of paths
x, x′ ∈ D, we define their fragmentation time as the first time that they disagree, or

τfrag(x, x
′) := inf{t ≥ 0 : xt ̸= x′

t}.

Notice that τfrag : D ×D → R is a Borel measurable map. This leads us to the following:

Definition 2. A pair P, P ′ ∈ P(D) is said to have the germ coupling property (GCP) if
there exists a probability space (Ω,F ,P) supporting càdlàg stochastic processes X,X ′ with
laws P, P ′, respectively, such that we have P(τfrag(X,X ′) > 0) = 1. In this case, we say that
(Ω,F ,P, X,X ′) witnesses germ coupling of P, P ′ or that X,X ′ are germ coupled under P.

Of course, for any (Ω,F ,P, X,X ′) witnessing germ coupling of P, P ′, it is possible to
take Ω = D × D and to let X,X ′ denote the canonical coordinate processes in Ω. This is
useful to keep in mind, but we will usually think of (Ω,F ,P) as an abstract probability space
throughout this chapter. Also, by a slight abuse of terminology, we will say that a pairs of
stochastic processes has the GCP when the pair of their laws has the GCP.

In words, a pair of stochastic processes has the GCP if they can be coupled to almost
surely travel together for some positive amount of time. This notion of small-time similarity
appears rather strong, and, apart from trivialities, it is not at all obvious how to construct
pairs of stochastic processes with the GCP. Thus, we were greatly intrigued by the results
of [65], which show that Brownian motions with any two drifts always the Brownian GCP.
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One application of the duality results of the previous chapter is that we can develop a robust
method of proof for this result, which has applications to many other classes of Markov
processes.

To state this, we need some further notation. That is, for t > 0, we write Dt for the space
of càdlàg functions [0, t) → R and we write Dt := σ(xs : 0 ≤ s < t) for the σ-algebra of all
information up to time t. (Note that we do not take the completion of these σ-algebras, so
{Dt}t≥0 is not right-continuous.) Then we define the germ σ-algebra via

D0+ :=
⋂
t>0

Dt.

This leads us to the following fundamental result, which also explains our choice of termi-
nology:

Proposition 1. A pair of càdlàg stochsatic processes P, P ′ ∈ P(D) has the GCP if and only
if we have P (A) = P ′(A) for all A ∈ D0+.

Proof. For t > 0 we define the equivalence relation

Et := {(x, x′) : xs = x′
s for all 0 ≤ s < t},

which is smooth since Et = ϕ−1
t (∆), where ϕt : D → Dt is the natural truncation map. Also

we define E0+ =
⋃

n∈N E2−n , and we note that {E2−n}n∈N is non-decreasing. Therefore, by
Theorem 1 and Theorem 2, we see that E0+ is strongly dualizable. We can also check

E∗
0+ =

(⋃
n∈N

E2−n

)∗

=
⋂
n∈N

E∗
2−n =

⋂
n∈N

Dt = D0+.

So, by the definition of strong duality, it only remains to show that P, P ′ ∈ P(D) has the GCP
if and only if there exists P̃ ∈ Π(P, P ′) with P̃ (E0+) = 1. For one direction, observe that,
if (Ω,F ,P, X,X ′) witnesses P, P ′ satisfying the GCP, then the joint law P̃ := P ◦ (X,X ′)−1

is exactly a coupling P̃ ∈ Π(P, P ′) with P̃ (E0+) = 1. For the other direction, suppose that
P̃ ∈ Π(P, P ′) is some coupling with P̃ (E0+) = 1. Then the canonical coordinate processes
X,X ′ on (D×D,B(D)⊗B(D),P) are germ coupled under P. Thus, the result holds by the
definition of strong duality.

On the one hand, this provides an authoritative answer to the question of which pairs of
stochastic processes have the GCP. On the other hand, it remains to show that this equivalent
condition is easy to verify in some concrete cases. In fact, the value of Proposition 1 is that
the classical tools of stochastic calculus have very much to say about the germ σ-algebra
D0+, and thus many soft arguments suddently become available to us. The next goal of this
section is to give two examples of this.

The first example concerns time-homogeneous one-dimensional diffusions within realm
of classical conditions ensuring the existence of strong solutions to a given SDE [172, Chap-
ter IX, Theorem 2.1]. Since the GCP is spatially translation-invariant and temporally local,
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we lose no generality in restricting our attention to diffusions started at the origin and viewed
on a finite time interval. That is, for Lipschitz functions µ : R→ R and σ : R→ [0,∞), we
write P µ,σ ∈ P(D1) for the law of the strong solution X = {Xt}0≤t<1 of the SDE{

dXt = µ(Xt) dt + σ(Xt) dBt for 0 ≤ t < 1

X0 = 0.
(3.3)

We also write W ∈ P(D) for the usual Wiener measure, that is, the law of a standard
Brownian motion. Then we have the following:

Theorem 3. If µ : R → R and σ : R → [0,∞) are Lipschitz continuous, then P µ,σ,W has
the GCP if and only if σ ≡ 1 on some neighborhood of 0.

Proof. For one direction, let (Ω,F ,P, X,X ′) witness the GCP for P µ,σ,W . Then consider
the event A ∈ B(D) defined via

A :=
⋃
n∈N

{x ∈ D : ⟨x, x⟩t = t for all 0 ≤ t ≤ 2−n}

where ⟨x, x⟩ denotes the Itô quadratic variation of x. Since A ∈ D0+ and P(X ′ ∈ A) =
W (A) = 1, Proposition 1 implies that we must have P(X ∈ A) = 1. Now note that the
quadratic variation of X is given by ⟨X,X⟩t =

∫ t

0
(σ(Xs))

2 ds, so we conclude that P-almost
surely there exists some N ∈ N with σ(Xs) = 1 for all 0 ≤ s ≤ 2−N . In particular, we
conclude σ(0) = 1.

Next we define the random times τ− := inf{t > 0 : Xt < 0} and τ+ := inf{t > 0 : Xt > 0}
on (Ω,F ,P), which are stopping times with respect to the natural filtration of X. We
recall that the standard small-time approximation for diffusions with Lipschitz coefficients
guarantees that Xt/

√
t converges in distribution as t → 0 to a Gaussian random variable

with mean 0 and variance σ(0) = 1, hence

P(τ− = 0) = lim
t→0

P(Xs < 0 for some 0 ≤ s ≤ t)

≥ lim inf
t→∞

P(Xt < 0)

= lim inf
t→∞

P
(
Xt√
t
< 0

)
=

1

2
> 0.

By Blumenthal’s zero-one law applied to the strong Markov process X, we see that P(τ− =
0) > 0 implies P(τ− = 0) = 1. The same argument applies to show P(τ+ = 0) = 1.

Finally, we put all the pieces together. By the almost sure continuity of X and the fact
that P(τ− = 0) = P(τ+ = 0) = 1, we conclude that {Xs : 0 ≤ s ≤ T} contains an open
neighborhood of 0 for any random variable T which is almost surely strictly positive. But
we already know that there exists an N-valued random variable N with σ(Xs) = 1 for all
0 ≤ s ≤ 2−N , so we conclude that we have σ ≡ 1 on some neighborhood of 0.
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For the other direction, suppose that σ ≡ 1 on some neighborhood U of 0. Then get
reals a, b ∈ R with a < b and 0 ∈ (a, b) ⊆ [a, b] ⊆ U . Since (3.3) admits strong solutions, we
can construct X = {Xt}t≥0 on the probability space (D,B(D),W ) with its natural filtration
{Dt}t≥0. We write E for the expectation on this space.

To begin, we claim that the exit time τXa,b := inf{t > 0 : Xt /∈ [a, b]} has finite exponential
moments of all orders. To see this, define m := max−a≤x≤b µ(x), which is finite by the
continuity of µ on [a, b]. Since we have µ(Xt) ≤ m for all 0 ≤ t ≤ τXa,b almost surely, it
follows that one can construct Bm = {Bm

t }t≥0 a Brownian motion with drift m on the same
probability space in such a way that we have Xt ≤ Bm

t for all 0 ≤ t ≤ τXa almost surely.
Then define the stopping time τB

m

a := inf{t > 0 : Bm
t ≤ a}, and note that we have τXa,b ≤ τB

m

a

almost surely. It is known that τB
m

a has finite exponential moments of all orders, so the same
must be true of τXa,b.

In particular, we have shown

E

[
exp

(
1

2

∫ τXa,b

0

(µ(Xs))
2 ds

)]
≤ E

[
exp

(
m2

2
τXa,b

)]
<∞.

This stopping-time version of Novikov’s condition implies a stopping-time version of Gir-
sanov’s theorem which states that P µ,σ is mutually absolutely continuous with respect to
P0,σ when restricted to the stopped σ-algebra Dτa,b ⊆ B(D), for τa,b := inf{t > 0 : xt /∈ [a, b]}.
Importantly, note that we have D0+ ⊆ Dτa,b holding both P µ,σ- and P 0,σ-almost surely by
the continuity of sample paths. Since Blumenthal’s zero-one law implies that all events in
D0+ have probability in {0, 1} under both P µ,σ and P 0,σ we conclude P µ,σ(A) = P 0,σ(A) for
all A ∈ D0+.

Finally observe that σ ≡ 1 on U implies that P 0,σ(A) = W (A) for all A ∈ DτU , where
τU := inf{t > 0 : xt /∈ U}. Again applying the almost surely continuity of sample paths
under both P 0,σ and W , we have D0+ ⊆ DτU almost surely, hence P 0,σ(A) = W (A) for all
A ∈ D0+. Putting this all together yields P µ,σ(A) = W (A) for all A ∈ D0+, so Proposition 1
implies that the pair P µ,σ,W has the GCP.

As a consequence, we get the following result for Brownian motions with possibly different
drift and diffusion parameters. To state it, let us write W a,σ for the law of a Brownian motion
with drift a and with diffusion σ.

Corollary 1. Brownian motions W a,σ,W a′,σ′
have the GCP if and only if

(i) σ = σ′, and

(ii) if σ = σ′ = 0, then a = a′.

Proof. Suppose both properties (i) and (ii) are satisfied. If σ = σ′ = 0, then W 0,a and
W 0,a are both equal to the point mass on the path {at}t≥0, so they can be germ coupled
deterministically. If σ = σ′ > 0 then by changing time and applying Brownian scaling, we
can assume σ′ = 1; in this case, the result follows from Proposition 1. Conversely, suppose
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that W a,σ,W a′,σ′
have the GCP. If σ = σ′ = 0, then W 0,a and W 0,a are respectively equal

to the point masses on the paths {at}t≥0 and {a′t}t≥0; thus, the existence of germ coupling
implies a = a′, hence (ii). Otherwise, at least one of σ, σ′ is nonzero; assume without loss
of generality that σ′ = 1. By changing time and applying Brownian scaling, we can again
assume σ′ = 1. Then Proposition 1 implies σ = 1, which is (i).

The second example is a simple characterization of the GCP for pairs of real-valued Lévy
processes in terms of their characteristic triplets. However, we begin with the case of pure-
jump Lévy processes. For some notation, let us write Lν ∈ P(D) for the law of a Lévy
processes with Lévy measure ν. We also introduce the Hellinger distance between Lévy
measures ν, ν ′ as

H2(ν, ν ′) :=
1

2

∫
R

(√
dν

dλ
−
√

dν ′

dλ

)2

dλ

where λ is any σ-finite measure dominating both ν and ν ′, and where the value of H2(ν, ν ′)
does not depend on the choice of λ. (Thus, one can take, for example, λ = ν + ν ′.) Then we
get:

Theorem 4. A pair of pure-jump Lévy processes Lν , Lν′ has the GCP if and only if we have
H2(ν, ν ′) <∞.

Proof. For t > 0 we write

H2
Dt

(Lν , Lν′) := H2(Lν |Dt , Lν′ |Dt)

for the Hellinger distance between their natural restrictions of Lν , Lν′ to the space P(Dt).
We claim that the following properties are equivalent:

(a) Lν(A) = Lν′(A) for all A ∈ D0+.

(b) supA∈Dt
|Lν(A)− Lν′(A)| → 0 as t→ 0.

(c) H2
Dt

(Lν , Lν′)→ 0 as t→ 0.

(d) H2(ν, ν ′) <∞.

Indeed, (a) is equivalent to (b) because of the relationship

lim
t→0

sup
A∈Dt

|Lν(A)− Lν′(A)| = sup
A∈D0+

|Lν(A)− Lν′(A)|

which can be proven in the same way as our proof of (2.14). Then, (b) is equivalent to (c)
because of the usual estimate relating total variation distance and Hellinger distance,

H2
Dt

(Lν , Lν′) ≤ sup
A∈Dt

|Lν(A)− Lν′(A)| ≤
√

2H2
Dt

(Lν , Lν′),
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for any t > 0. And, (c) is equivalent to (d) because of the classical result of Newman [152]
which states that we have

H2
Dt

(Lν , Lν′) = 1− exp
(
−tH2(ν, ν ′)

)
for all t > 0. Since (a) is equivalent to the GCP by Proposition 1, the result is proved.

Now we get our result for general Lévy processes. To state it, we write La,σ,ν , La′,σ′,ν′ ∈
P(D) for the laws of Lévy processes with characteristic triplets (a, σ, ν) and (a′, σ′, ν ′), re-
spectively.

Theorem 5. A pair of Lévy processes La,σ,ν , La′,σ′,ν′ has the GCP if and only if

(i) σ = σ′,

(ii) if σ = σ′ = 0, then a = a′, and

(iii) H2(ν, ν ′) <∞.

Proof. For one direction, suppose that La,σ,ν , La′,σ′,ν′ has the GCP, and let (Ω,F ,P, X,X ′)
witness the germ coupling of La,σ,ν , La′,σ′,ν′ . By the Lévy-Itô decomposition, we can write
X = Xc + Xj where both Xc and Xj are adapted to the natural filtration of X, and similar
for X ′. Then X,X ′ being germ coupled under P implies Xc, X

′
c are germ coupled under P

and Xj, X
′
j are germ coupled under P. Since Xc, X

′
c have laws W a,σ,W a′,σ′

, we conclude (i)
and (ii) from Corollary 1. Since Xj, X

′
j have laws Lν , Lν′ , we conclude (iii) from Theorem 4.

For the other direction, suppose that (i), (ii), and (iii) hold. By Corollary 1 and (i)
and (ii), we can construct a probability space (Ωc,Fc,Pc, Xc, X

′
c) witnessing the germ cou-

pling of Wa,σ,Wa′,σ′ , and, by Theorem 4 and (iii), we can construct a probability space
(Ωj,Fj,Pj, Xj, X

′
j) witnessing the germ coupling of Lν , Lν . Now let Ω := Ωc×Ωj,F := Fc⊗

Fj, and P := Pc⊗Pj, and let X(ωc, ωj) := Xc(ωc)+Xj(ωj) and X ′(ωc, ωj) := X ′
c(ωc)+X ′

j(ωj).
It follows that (Ω,F ,P, X,X ′) witnesses the germ coupling of La,σ,ν , La′,σ′,ν′ , as needed.

In this last part of the section, we give an application where germ coupling is used in the
proof of a statement that is of independent interest. To state it, recall that a càdlàg process
Y = {Yt}t≥0 is called self-similar with index α > 0 if {ε−αYεt}t≥0 and {Yt}t≥0 have the same
distribution, for all ε > 0. We say that a stochastic process Y satisfies Blumenthal’s zero-one
law if its law P satisfies P (A) ∈ {0, 1} for all A ∈ D0+. Then we get the following result
which generalizes the statement of [59, Lemma 4.3] where Y is a Brownian motion:

Corollary 2. Let Y be a càdlàg process which is self-similar with index α > 0 and which
satisfies Blumenthal’s zero-one law. If Y ′ is any càdlàg process whose law is absolutely
continuous with respect to the law of Y , then{

ε−αY ′
εt

}
t≥0
→ Y

in distribution in D as ε→ 0.
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Proof. Write P, P ′ for the distributions of Y, Y ′, respectively, so that P ′ ≪ P . Now use
absolutely continuity to see that P (A) ∈ {0, 1} for all A ∈ D0+ implies P (A) = P ′(A)
for all A ∈ D0+. Thus, Proposition 1 implies that P, P ′ have the GCP, and we can let
(Ω,F ,P, X,X ′) witness the germ coupling of P, P ′.

Now fix t > 0. Notice that the processes Xε := {ε−αXεs}s≥0 and (X ′)ε := {ε−αX ′
εs}s≥0

satisfy
{Xε

s}0≤s≤t = {(X ′)εs}0≤s≤t .

whenever εt < τfrag(X,X ′), so we have

P({{Xε
s}0≤s≤t ∈ A} ∩ {εt < τfrag(X,X ′)})

= P({{(X ′)εs}0≤s≤t ∈ A} ∩ {εt < τfrag(X,X ′)}) (3.4)

for all A ∈ Dt. Now note that P(εt < τfrag(X,X ′)) → 1 as ε → 0, and also P((X ′)ε ∈ A) =
P ′(A) for all ε > 0 by self-similarity. Thus, we have

P({(X ′)ε ∈ A} ∩ {εt < τfrag(X,X ′)})→ P ′(A)

as ε→ 0. Now it follows from (3.4) we have

lim
ε→0

P ({Y ε
s }0≤s≤t ∈ A) = lim

ε→0
P({Xε

s}0≤s≤t ∈ A) = P ′({Y ′
s}0≤s≤t ∈ A).

for all A ∈ Dt.
Now we put the pieces together. Note that if U ⊆ D is open, then it can be written as

U =
⋃

t>0 Ut where Ut := {x ∈ D : {xs}0≤s≤t ∈ Vt} for some {Vt}t>0 such that Vt ⊆ Dt is
open for each t > 0. Also, we can assume {Ut}t≥0 is non-decreasing. Then for t > 0 we have

lim inf
ε→0

P (Y ε ∈ U) ≥ lim inf
ε→0

P (Y ε ∈ Ut)

= lim inf
ε→0

P ({Y ε
s }0≤s≤t ∈ Vt)

= P ′({Y ′
s}0≤s≤t ∈ Vt)

= P ′(Y ′
s ∈ Ut).

As t > 0 was arbitrary, we have shown

lim inf
ε→0

P (Y ε ∈ U) ≥ P ′(Y ′ ∈ U),

and this finishes the proof.

3.2 Maximal Germ Couplings

If P, P ′ ∈ P(D) are laws of two stochastic processes and (Ω,F ,P, X,X ′) witnesses their
germ coupling, then by weak duality (Lemma 2) applied to the equivalence relation Et :=
{(x, x′) ∈ D ×D : xs = x′

s for all 0 ≤ s < t} for each t > 0, we have

1− P(τfrag(X,X ′) ≥ t) ≥ max
A∈Dt

|P (A)− P ′(A)|.
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Notice that this looks a bit like a form of stochastic domination, except that neither side
needs to be a distribution function. (The right side need not be right-continuous, since
{Dt}t≥0 is not right-continuous.) However, by taking s ↓ t for each t ≥ 0, we conclude

P(τfrag(X,X ′) ≤ t) ≥ FP,P ′(t)

for all t ≥ 0, where

FP,P ′(t) := lim
s↓t

max
A∈Ds

|P (A)− P ′(A)| = max
A∈Dt+

|P (A)− P ′(A)|.

In other words, every probability measure in the set

{P(τfrag(X,X ′) ∈ · ) : (Ω,F ,P, X,X ′) witnesses germ coupling of P, P ′}

is stochastically dominated by FP,P ′ : [0,∞] → [0, 1]. (Note that {τfrag(X,X ′) = ∞} =
{X = X ′} can occur with positive probability.) This leads us to the main notion of this
section.

Definition 3. We say that (Ω,F ,P, X,X ′) witness maximal germ coupling of P, P ′ if
(Ω,F ,P, X,X ′) witnesses germ coupling of P, P ′ and P(τfrag(X,X ′) ≤ t) = FP,P ′(t) for
all t ≥ 0. Equivalently, we say that X,X ′ are maximally germ coupled under P.

A remarkable result of [65] is that, if P, P ′ have the GCP, then there exists (Ω,F ,P, X,X ′)
witnessing their maximal germ coupling. However, the proof in [65] is essentially non-
constructive. Thus, an interesting question is to understand for which classes of process
P, P ′ can one construct maximal germ couplings in a probabilistically meaningful way. The
goal of this section is to show that this is indeed possible.

First we consider the case of Brownian motions with drift, for which is useful to restrict
our path space D to the path space C := C([0,∞);R) In this case we can provide a com-
pletely elementary construction of the desired coupling. The construction is based on the
following reflection operation:

Definition 4. For θ ∈ R, let Hθ : C → C denote the map defined via

(Hθ(x))t :=

{
xt, if t ≤ sup{s ≥ 0 : xs = 1

2
θs},

θt− xt, else.

Theorem 6. For any θ ∈ R and t ≥ 0, we have

FW,W θ(t) = 2Φ

(√
t

2θ

)
− 1,

where Φ is the Gaussian distribution function. Moreover, if (Ω,F ,P) is a probability space
on which is defined a process B with distribution W , then, (Ω,F ,P, B,Hθ(B)) witnesses
maximal germ coupling of W,W θ.
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Proof. For some notation, let us write Wθ for the distribution of a Brownian motion started
at θ ∈ R and with drift 0 and let us write W θ for the distribution of a Brownian motion
started at 0 and with drift θ ∈ R.

For the proof, we first fix t ≥ 0, and we lower bound FW,W θ(t). To do this, recall that we
have Dt = Dt+ holding both W - and W θ-almost surely by Blumenthal’s zero-one law. Then
we get

FW,W θ(t) = sup
A∈Dt

|W (A)−W θ(A)|

≥ W

(
xt ≤

θ

2

√
t

)
−W θ

(
xt ≤

θ

2

√
t

)
= Φ

(
θ

2

√
t

)
− Φ

(
−θ

2

√
t

)
= 2Φ

(
θ

2

√
t

)
− 1

simply by inspecting the path at its endpoint.
Now we set up the coupling. Let us write I : C → C for the time-inversion map defined

via (I(x))t := tx1/t for x ∈ C, and note that we have

inf

{
s ≥ 0 : (I(B))s =

1

2
θ

}
=

1

sup
{
s ≥ 0 : Bs = 1

2
θs
}

almost surely. Using these two representations, we see that

(I(Hθ(B)))t = t(Hθ(B))1/t

=

{
tB1/t, if 1

t
≤ sup{s ≥ 0 : Bs = 1

2
θs},

t(θ · 1
t
−B1/t), else.

=

{
(I(B))t, if t ≥ inf

{
s ≥ 0 : (I(B))s = 1

2
θ
}
,

θ − (I(B))t, else.

By the usual time-inversion symmetry, the process I(B) also has law W . Moreover, by
translation symmetry, reflection symmetry, and the strong Markov property, it follows that
the process Bθ := I(Hθ(B)) has the law Wθ. Therefore, since time-inversion interchanges
drift and starting position, we see that that Bθ := Hθ(B) has law W θ. This proves the first
part of the theorem.

Next, we claim that τfrag(B,Bθ) = sup{s ≥ 0 : Bs = 1
2
θs}. To do this we define the

coalescence time of two paths x, x′ ∈ D to be

τcoal(x, x
′) := inf{t ≥ 0 : xs = x′

s for all s ≥ t},
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which is of course a Borel measurable map. Then observe that we have

τcoal(I(B0), I(Hθ(B0))) = inf

{
s ≥ 0 : (I(B0))s =

1

2
θ

}
=

1

sup{s ≥ 0 : B0
s = 1

2
θs}

hence

τfrag(B
0, Bθ) = sup

{
s ≥ 0 : B0

s =
1

2
θs

}
as claimed.

Finally, we show that this coupling is a maximal germ coupling. To do this, we combine
the previous conclusions with the reflection principle to get

P(τfrag(B,Bθ) > t) = P
(

sup

{
s ≥ 0 : Bs =

1

2
θs

}
> t

)
= P

(
inf

{
s ≥ 0 : Bs =

1

2
θ

}
<

1

t

)
= P

(
sup

0≤s≤ 1
t

Bs >
1

2
θ

)

= P
(∣∣B1/t

∣∣ > 1

2
θ

)
= P

(
|B0| >

1

2
θ
√
t

)
= 2Φ

(
θ

2

√
t

)
− 1,

for all t ≥ 0. This shows that B,Bθ are maximally germ coupled under P, as desired.

Next we consider maximal germ couplings of pure-jump Lévy processes. It turns out that
this problem is harder than the study of germ couplings of Lévy processes that we undertook
in Theorem 4, so we need a slightly stronger condition: We require that the Lévy measures
ν, ν ′ satisfy ∥ν − ν ′∥TV < ∞ instead of merely H2(ν, ν ′) < ∞. We also have only a partial
result which allows us to construct “nearly-maximal” germ couplings, in the sense that our
results are only maximal in the small-time limit as t→ 0.

To describe our construction, suppose that Lévy measures ν, ν ′ satisfy ∥ν − ν ′∥TV <∞.
Then ν− (ν ∧ ν ′), ν ′− (ν ∧ ν ′) are themselves Lévy measures, and they both have finite total
activity, since

|∥ν − (ν ∧ ν ′)∥TV − ∥ν ′ − (ν ∧ ν ′)∥TV| ≤ ∥ν − ν ′∥TV <∞.

Now we construct a probability space (Ω,F ,P) supporting the following independent pro-
cesses: First, Y is a compound Poisson process with Lévy measure ν − (ν ∧ ν ′). Second, Y ′
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B

ℓθ

Hθ(B)

sup{t ≥ 0 : B(t) = θ
2
t}

Figure 3.1: A maximal germ coupling of a Brownian motion with drift 0 and a Brownian
motion with drift θ > 0. First, we let B denote a Brownian motion with drift 0. Then, we
let Hθ(B) be equal to the reflection of B across the line ℓθ := {(t, 1

2
θt) : t ≥ 0} after the

time of its last intersection with ℓθ, and equal to B before this time (Definition 4).

is a compound Poisson process with Lévy measure ν ′ − (ν ∧ ν ′). Third, Z is a Lévy process
with Lévy measure ν ∧ ν ′. Finally, set X = Y + Z and X ′ = Y ′ + Z.

Theorem 7. If ν, ν ′ are Lévy measures with ∥ν − ν ′∥TV <∞, then

FLν ,Lν′
(t) ∼ t∥ν − ν ′∥TV

as t→ 0. Moreover, (Ω,F ,P, X,X ′) described above witnesses nearly-maximal germ coupling
of Lν , Lν′ in that

P(τfrag(X,X ′) ≤ t) ∼ t∥ν − ν ′∥TV

as t→ 0.

Proof. First we provide a lower bound on FLν ,Lν′
(t) for fixed t ≥ 0. As above, we have

Dt = Dt+ holding both Lν- and Lν′-almost surely, by Blumenthal’s zero-one law. Now by
the definition of total variation, we can get a set B ∈ B(R) with ν(B)− ν ′(B) = ∥ν− ν ′∥TV.
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Then we bound:

FLν ,Lν′
(t) = sup

A∈Dt

|Lν(A)− Lν′(A)|

≥ |Lν(a jump of size B occurs in [0, t))

− Lν′(a jump of size B occurs in [0, t))|
= |1− e−tν(B) − (1− e−tν′(B))|
= e−tν(B) − e−tν′(B)

= e−tν(B)(1− e−t∥ν−ν′∥TV).

Dividing by t∥ν − ν ′∥TV and taking t→ 0, we have

lim inf
t→0

FLν ,Lν′
(t)

t∥ν − ν ′∥TV

≥ lim inf
t→0

e−tν(B)1− e−t∥ν−ν′∥TV

t∥ν − ν ′∥TV

= 1

as claimed.
Now we provide the matching upper bound. Importantly, we have τfrag(X,X ′) = τfrag(Y, Y

′)
almost surely by construction. Also, the jump distributions of Y and Y ′ are mutually sin-
gular, so τfrag(Y, Y

′) is exactly equal to the first time of a jump of either of Y or Y ′. By
construction, the first time either of Y or Y ′ jumps is an exponential random variable with
rate ∥ν − (ν ∧ ν ′)∥TV + ∥ν ′ − (ν ∧ ν ′)∥TV = ∥ν − ν ′∥TV. Therefore, we have

lim sup
t→0

P(τfrag(X,X ′) ≤ t)

t∥ν − ν ′∥TV

≤ lim sup
t→0

1− e−t∥ν−ν′∥TV

t∥ν − ν ′∥TV

= 1.

Combining this with the first inequality finishes the proof.

An interesting question in light of the results of this chapter is whether two processes
P, P ′ ∈ P(D) admit a Markovian germ coupling, that is, a germ coupling which is a Markov
process with respect to its natural joint filtration. In the case of Brownian motions with
drift, our construction of a maximal germ coupling is certainly not Markovian (due to time-
inversion), and it is in fact known [65] that two diffusions can never admit any Markovian
germ coupling. In the case of Lévy processes, we saw that there is actually Markovian
nearly-maximal germ coupling, but it is not clear whether this will be possible in the case
of H2(ν, ν ′) < ∞ and ∥ν − ν ′∥TV = ∞. Because of these observations, we conjecture that
the condition

lim sup
t→0

FP,P ′(t)

t
<∞.

may be equivalent to existence of Markovian germ coupling of P, P ′.
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Part II

Centering
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Chapter 4

Fréchet Means in Infinite Dimensions

Let (Ω,F ,P) be a probability space supporting an IID sequence Y1, Y2, . . . of random variables
taking values in a metric space (X , d). Recall that by their empirical Fréchet mean we mean
any solution to the optimization problem{

minimize 1
n

∑n
i=1 d

2(x, Yi)

over x ∈ X . (4.1)

As Fréchet means purport to be a sort of average, a natural question is whether they satisfy
generalizations of the limit theorems that hold for for averages of real-valued random vari-
ables. Results of this form are indeed known in many cases [213, 186, 180, 94, 31, 32], and
they form the basis for nearly all statistical procedures used in non-Euclidean statistics.

The most well-developed setting for probabilistic results about Fréchet means is the case
where X is a Riemannian manifold and d is the metric induced by its Riemannian metric
tensor [31, 32]; indeed, in this case, one has a law of large numbers, a central limit theorem,
and more. The differentiable structure on (X , d) is extremely valuable here, since one can
easily develop first-order conditions on (4.1) which give a priori information about Fréchet
means. However, many authors have moved away from the Riemannian manifold setting,
since several important application areas necessitate the analysis of Fréchet means in metric
spaces which have singularities.

Yet, almost all results still rely on a “finite-dimensionality” assumption that simplifies
the analysis greatly. Here, the “finite-dimensionality” of (X , d) usually means that (X , d) is
a Heine-Borel space in the sense that the closed balls B̄r(x) := {y ∈ X : d(x, y) ≤ r} are
compact for all x ∈ X and r ≥ 0. This compactness is useful for showing that Fréchet means
exist and for proving, for example, the law of large numbers.

Interestingly, it is implicit in some examples that such finite-dimensionality conditions
are not at all necessary. For one example, it is straightforward to show that empirical
averages of IID random variables in an infinite-dimensional Hilbert space converge strongly
to their Bochner expectation. For another example, it has been shown [128, 130, 48] that the
empirical Fréchet means of IID random variables in the Wasserstein space P2(Rm) converge
in the Wasserstein metric W2 to their population Fréchet mean.
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The primary goal of this chapter is to understand what geometric condition on an abstract
metric space (X , d) ensures that the strong law of large numbers (SLLN) holds for Fréchet
means. We know that Heine-Borel spaces, Hilbert spaces, and the Wasserstein space must
all be included.

A secondary goal of this chapter is to understand what moment conditions are required
for the SLLN to hold. Most results for Fréchet means require finite 2nd moment, but again
this cannot be necessary: For X = R with its usual metric, we know from the Khinchine
SLLN that finite 1st moment is sufficient.

This chapter is based on the work [98] which is an extension of earlier work [66]. We
answer the motivating questions by introducing the notion of weak-like topology (Definition 8)
and proving a fundamental continuity result (Theorem 8). This yields the SLLN under the
minimal moment condition (Theorem 9) and has other probabilistic consequences of interest.
The results herein will also be used in Chapters 5, 6, and 7 where we answer some finer
questions about Fréchet means.

4.1 Preliminaries

To begin, let (X , d) denote a metric space. Unless otherwise stated, all metric and topological
notions refer to the topology generated by the metric d. We write B◦

r (x) := {y ∈ X :
d(x, y) < r} and B̄r(x) := {y ∈ X : d(x, y) < r} for the open and closed balls of radius r > 0
around x ∈ X . (Note, however that B̄r(x) need not be the closure of B◦

r (x) and that B◦
r (x)

need not be the interior of B̄r(x).)
We write P(X ) for the set of Borel probability measures on X , where the Borel σ-algebra

is generated by the topology generated by d. We write τw for the topology on P(X ) such
that {Pn}n∈N and P in P(X ) have Pn → P in τw if and only

∫
X f dPn →

∫
X f dP for all

bounded, continuous f : (X , d)→ R, called the weak topology on P(X ).
Now we introduce two fundamental inequalities. The first is that for all r ≥ 0 the

constant cr := max{1, 2r−1} satisfies

dr(x, x′′) ≤ cr(d
r(x, x′) + dr(x′, x′′)) (4.2)

for all x, x′, x′′ ∈ X . Indeed, this can be easily proven by combining the triangle inequality
for d with either the subadditivity or the convexity of the map t 7→ tr, corresponding to
0 ≤ r ≤ 1 and r ≥ 1, respectively. The second is that for all p ≥ 1 we have

|dp(x, x′′)− dp(x′, x′′)| ≤ pd(x, x′)(dp−1(x, x′′) + dp−1(x′, x′′)) (4.3)

all x, x′, x′′ ∈ X . Indeed, this can be easily proven by combining the triangle inequality for
d with the elementary inequality |ap − bp| ≤ p|a− b|(ap−1 + bp−1) for all a, b ≥ 0.

For any r > 0, we let Pr(X ) denote the set of all P ∈ P(X ) satisfying
∫
X dr(x, y) dP (y) <

∞ for some x ∈ X ; by (4.2), this is equivalent to P ∈ P(X ) satisfying
∫
X dr(x, y) dP (y) <∞

for all x ∈ X . In particular, we regard Pr(X ) as the space of all distributions of an X -valued
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random variable which has finite rth moment. We adopt the convention 00 = 1 in this
chapter, so that in particular we can consistently define P0(X ) = P(X ).

Now fix p ≥ 1. We define the function Wp : Pp−1(X )×X 2 → R via

Wp(P, x, x
′) :=

∫
X

(dp(x, y)− dp(x′, y)) dP (y),

which makes sense because of (4.3). By a slight abuse of notation, we use the same symbol
Wp to represent the function Wp : Pp(X )×X → R defined via

Wp(P, x) :=

∫
X
dp(x, y) dP (y).

Note that these functions satisfy the some simple identities. For P ∈ Pp−1(X ) and x, x′, x′′ ∈
X , we have Wp(P, x, x

′) = −Wp(P, x
′, x) and Wp(P, x, x

′′) = Wp(P, x, x
′)+Wp(P, x

′, x′′). For
P ∈ Pp(X ) and x, x′ ∈ X , we additionally have Wp(P, x, x

′) = Wp(P, x) −Wp(P, x
′), but

note that this does not make sense when P ∈ Pp−1(X ) \ Pp(X ). We refer to Wp (in both of
its forms above) as the Fréchet functional.

From these considerations we can define the main object of interest.

Definition 5. For any metric space (X , d), any p ≥ 1, and any P ∈ Pp−1(X ), we let

Mp(P ) := {x ∈ X : Wp(P, x, x
′) ≤ 0 for all x′ ∈ X} ,

called the Fréchet p-mean set of P .

This definition may seem a bit odd at first, since it looks quite different than the definition
of Fréchet means given in the introduction where we focused on p = 2. The connection is
made clear by the following alternative characterizations:

Lemma 5. For any metric space (X , d), any p ≥ 1, and any P ∈ Pp−1(X ), the Fréchet
p-mean set is the solution to the optimization problem{

minimize Wp(P, x, o)

over x ∈ X , (4.4)

where o ∈ X is arbitrary. For any metric space (X , d), any p ≥ 1, and any P ∈ Pp(X ), the
Fréchet p-mean set is the solution to the optimization problem{

minimize Wp(P, x)

over x ∈ X . (4.5)

Proof. First let us show that Mp(P ) is equal to the solution set of (4.4) for arbitrary o ∈ X .
For one direction, take x ∈ Mp(P ), and note that for any x′ ∈ X we have Wp(P, x, o) =
Wp(P, x, x

′) + Wp(P, x
′, o) ≤ Wp(P, x

′, o). For the other direction, suppose that x ∈ X is
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a solution to (4.4), and note that for any x′ ∈ X we have Wp(P, x, x
′) = Wp(P, x, o) −

Wp(P, x
′, o) ≤ 0. To see that the solution set of (4.5) is equal to the solution set of (4.4)

when P ∈ Pp(X ), we simply note Wp(P, x, o) = Wp(P, x) −Wp(P, o) and that the second
term does not depend on x ∈ X .

It is also useful to give a name to the following quantities:

Definition 6. For any metric space (X , d), any p ≥ 1, any P ∈ Pp(X ), we set

Vp(P ) := inf
x∈X

Wp(P, x),

called the Fréchet p-variance of P , and for any P ∈ Pp(X ) and o ∈ X we set

Vp(P, o) := inf
x∈X

Wp(P, x, o),

called the surrogate Fréchet p-variance of P .

The connection between these notions is of course that the surrogate Fréchet p-variance
Vp(P, o) is the minimum value of the Fréchet functional Wp(P, · , o) and that the Fréchet
p-mean Mp(P ) is its level set. We emphasize that Vp(P, o) depends on o ∈ X , while Mp(P )
does not.

Next we give some continuity results. To do this, we define some finer topologies on
P(X ). For r > 0, we write τ rw for the topology on Pr(X ) such that {Pn}n∈N and P in P(X )
have Pn → P in τ rw if and only Pn → P in τw and Wr(Pn, x) → Wr(P, x) for all x ∈ X .
Following the usual convention we also set τ 0w = τw.

Our continuity results will use a common set of tricks. First, we use Skorokhod’s represen-
tation theorem [104, Theorem 4.30] to represent convergence in τw as almost sure convergence
on a suitable probability space. Second, we use the fact [104, Lemma 5.11] that random vari-
ables converging almost surely have converging expectations if and only if they are uniformly
integrable. Lastly, we use the inequalities (4.2) and (4.3) to provide some dominations which
allow us to transfer uniform integrability across different points of (X , d).

Lemma 6. Suppose (X , d) is a separable metric space and p ≥ 1. Then, the function
Wp : Pp−1(X )×X 2 → R is continuous.

Proof. Suppose that {(Pn, xn, x
′
n)}n∈N and (P, x, x′) in Pp−1(X )×X 2 satisfy (Pn, xn, x

′
n)→

(P, x, x′) in τ p−1
w × d2. Then, use Skorokhod’s representation theorem to construct a proba-

bility space (Ω,F ,P), with expectation E, supporting random variables {Yn}n∈N and Y with
distributions {Pn}n∈N and P , respectively, such that we have Yn → Y almost surely. Note
that we have

Wp(Pn, xn, x
′
n) = E[dp(xn, Yn)− dp(x′

n, Yn)]

and

Wp(P, x, x
′) = E[dp(x, Y )− dp(x′, Y )]
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and also that
dp(xn, Yn)− dp(x′

n, Yn)→ dp(x, Y )− dp(x′, Y )

almost surely. Thus, the result is proved if we show that {dp(xn, Yn) − dp(x′
n, Yn)}n∈N is

uniformly integrable. To do this, use (4.3) then (4.2) to bound

|dp(xn, Yn)− dp(x′
n, Yn)| ≤ pd(xn, x

′
n)(dp−1(xn, Yn) + dp−1(x′

n, Yn))

≤ pcp−1d(xn, x
′
n)(dp−1(xn, x) + dp−1(x′

n, x
′)

+ dp−1(x, Yn) + dp−1(x′, Yn)).

Observe that Pn → P in τ p−1
w implies that {dp−1(x, Yn)}n∈N and {dp−1(x′, Yn)}n∈N are uni-

formly integrable, so the result is proved.

Lemma 7. Suppose (X , d) is a separable metric space, that r ≥ 0, and that {Pn}n∈N and P
in Pr(X ) satisfy Pn → P in τw. Then, the following are equivalent:

(i) Wr(Pn, x)→ Wr(P, x) for some x ∈ X .

(ii) Wr(Pn, x)→ Wr(P, x) for all x ∈ X .

Proof. It suffices to show that (i) implies (ii), so suppose that Wr(Pn, x) → Wr(P, x) holds
for x ∈ X , and let x′ ∈ X be arbitrary. Use Skorokhod’s representation theorem to construct
a probability space (Ω,F ,P), with expectation E, supporting random variables {Yn}n∈N and
Y with distributions {Pn}n∈N and P , respectively, such that we have Yn → Y almost surely.
This implies dr(Yn, x

′) → dr(Y, x′) almost surely, so it suffices to show that {dr(Yn, x
′)}n∈N

is uniformly integrable. To do this, simply note

dr(Yn, x
′) ≤ cr(d

r(Yn, x) + dr(x, x′))

almost surely, by (4.2). Since E[dr(Yn, x)] = Wr(Pn, x) → Wr(P, x) = E[dr(Y, x)] implies
that {dr(Yn, x)}n∈N is uniformly integrable, the proof is complete.

Lemma 8. If (X , d) is a metric space and {Pn}n∈N and P in P(X ) have Pn → P in τw,
then we have

lim
M→∞

lim sup
n→∞

Pn(X \BM(o))→ 0

for all o ∈ X .

Proof. Fix o ∈ X , and, for M > 0, define

fM(x) :=


0, if d(x, o) ≤M − 1,

1− (M − d(x, o)), if M − 1 ≤ d(x, o) ≤M,

1, if d(x, o) ≥M.
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Observe that each fM is a continuous function satisfying 0 ≤ fM ≤ 1 everywhere, as well as
fM ≡ 0 on B̄M−1(o) and fM ≡ 1 on X \B◦

M(o). (Alternatively, one can use Urysohn’s lemma
to abtractly guarantee the existence of such a function.) Now the definition of τw gives:

lim sup
n→∞

Pn(X \B◦
M(o)) = lim sup

n→∞

∫
X\B◦

M (o)

1 dPn

≤ lim sup
n→∞

∫
X
fM dPn

= lim
n→∞

∫
X
fM dPn

=

∫
X
fM dP

≤
∫
X\B◦

M−1(o)

1 dP

= P (X \B◦
M−1(o)).

Lastly, we use B◦
M−1(o) ↑ X as M →∞ and the downward continuity of P to conclude the

desired result.

Lemma 9. If (X , d) is a separable metric space and r ≥ 0, and if {Pn}n∈N and P in Pr(X )
have Pn → P in τ rw, then we have

lim
M→∞

lim sup
n→∞

∫
X\B◦

M (o)

dr(o, y) dPn(y) = 0

for all o ∈ X .

Proof. As in the preceding proof, fix o ∈ X , and define the function fM : X → R for each
M > 0. Now use Skohorkhod’s representation theorem to construct a probability space
(Ω,F ,P) on which are defined X -valued random variables {Yn}n∈N and Y with distribu-
tions {Pn}n∈N and P , respectively, such that we have Yn → Y holding almost surely; we
let E denote the expectation operator on (Ω,F ,P). By construction and the assumption
that Pn → P in τ rw we have that {dr(o, Yn)}n∈N is uniformly integrable. Now observe that
dr(o, Yn)fM(Yn) ≤ dr(o, Yn) almost surely for all n ∈ N, so {dr(o, Yn)fM(Yn)}n∈N is uni-
formly integrable. Since dr(o, Yn)fM(Yn) → dr(o, Y )fM(Y ) holds almost surely as n → ∞,
we conclude E[dr(o, Yn)fM(Yn)] → E[dr(o, Y )fM(Y )]. Putting all the pieces together, we
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have:

lim sup
n→∞

∫
X\B◦

M (o)

dr(o, y) dPn(y) ≤ lim sup
n→∞

∫
X
dr(o, y)fM(y) dPn

= lim
n→∞

E[dr(o, Yn)fM(Yn)]

= E[dr(o, Y )fM(Y )]

=

∫
X
dr(o, y)fM(y) dP (y)

≤
∫
X\B◦

M−1(o)

dr(o, y) dP (y).

Lastly, we use P ∈ Pr(X ) and the dominated convergence theorem to get

lim
n→∞

∫
X\B◦

M−1(o)

dr(o, y) dP (y) = 0,

and this proves the result.

Combining these preliminaries, we prove the following which shows that the Fréchet mean
sets are uniformly bounded.

Proposition 2. Consider any separable metric space (X , d) and any p ≥ 1. If {Pn}n∈N and
P in Pp−1(X ) have Pn → P in τ p−1

w , then there exists a d-bounded set B ⊆ X satisfying
Mp(Pn) ⊆ B for all n ∈ N.

Proof. Fix an arbitrary o ∈ X , and let us derive some initial estimates. First note by
Lemma 6 that we have

lim sup
n→∞

Vp(Pn, o) ≤ inf
x∈X

lim sup
n→∞

Wp(Pn, x, o)

= inf
x∈X

Wp(P, x, o) = Vp(P, o) <∞.

Second, combine this with Lemma 8 and Lemma 9 to choose M sufficiently large so that we
have

M > max

{(
sup
n∈N

Vp(Pn, o)

)1/p

,
1

16

}
(4.6)

as well as ∫
X\B◦

M (o)

dp−1(o, y)dPn(y) ≤ 1

p22p+2
(4.7)

and

Pn(X \B◦
M(o)) ≤ 1

p22p
≤ 1

2
(4.8)
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for all n ∈ N.
Now we derive some lower bounds on the integrand in the Fréchet functional. First, use

the elementary inequality (4.2) to get

dp(x, y)− dp(o, y) ≥ c−1
p dp(x, o)− 2dp(o, y)

≥ dp(x, o)

2p−1
− 2dp(o, y)

(4.9)

for all x, y ∈ X and n ∈ N. Second, use (4.3) then (4.2) to get

|dp(x, y)− dp(o, y)|
≤ pd(x, o)(dp−1(x, y) + dp−1(o, y))

≤ pd(x, o)(cp−1(d
p−1(x, o) + dp−1(o, y)) + dp−1(o, y))

= pcp−1d
p(x, o) + p(1 + cp−1)d(x, o)dp−1(o, y)

≤ p2p−1dp(x, o) + p2pd(x, o)dp−1(o, y)

for all x, y ∈ X . In particular, this implies

dp(x, y)− dp(o, y) ≥ −p2p−1dp(x, o)− p2pd(x, o)dp−1(o, y) (4.10)

for all x, y,∈ X .
Now we put these pieces together and claim that, for any {xn}n∈N with xn ∈ Mp(Pn)

for all n ∈ N, we have supn∈N d(xn, o) < 17M . Indeed, assume towards a contradiction that
there exists some N ∈ N with d(xN , o) > 17M . On the one hand, this means we can use
(4.9) and (4.8) to get ∫

B◦
M (o)

(dp(xN , y)− dp(o, y)) dPN(y)

≥
(
dp(xN , o)

2p−1
− 2Mp

)
PN(BM(o))

≥
(
dp(xN , o)

2p−1
− 2Mp

)
1

2

=
dp(xN , o)

2p
−Mp,

where in the first inequality we used d(xN , o) ≥ 16M ≥ 2M to see that the integrand is



CHAPTER 4. FRÉCHET MEANS IN INFINITE DIMENSIONS 42

non-negative. On the other hand, we can use (4.10) and (4.7) to get∫
X\B◦

M (o)

(dp(xN , y)− dp(o, y)) dPN(y)

≥ −p2p−1dp(xN , o)PN(X \BM(o))

− p2pd(xN , o)

∫
X\BM (o)

dp−1(o, y) dPN(y)

≥ −dp(xN , o)

2p+1
− d(xN , o)

2p+2

≥ −dp(xN , o)

2p+1
− dp(xN , o)

2p+2
,

where in the final inequality we used M ≥ 1/16 to see that d(xN , o) ≥ 16M implies d(xN , o) ≤
dp(xN , o). Combining the previous two displays, we have shown

Wp(PN , xN , o) =

∫
B◦

M (o)

(dp(xN , y)− dp(o, y)) dPN(y)

+

∫
X\B◦

M (o)

(dp(xN , y)− dp(o, y)) dPN(y)

≥ dp(xN , o)

2p
−Mp − dp(xN , o)

2p+1
− dp(xN , o)

2p+2

=
dp(xN , o)

2p+2
−Mp

=

(
16p

2p+2
− 1

)
Mp

= (23p−2 − 1)Mp ≥Mp > sup
n∈N

Vp(P, o),

which contradicts the assumption that xN ∈Mp(PN). Therefore, we must have supn∈N d(xn, o) <
17M , so the result follows by taking B := B̄18M(o).

Corollary 3. For any separable metric space (X , d), any p ≥ 1, and any P ∈ Pp−1(X), the
set Mp(P ) ⊆ X is closed and bounded.

Proof. By definition we have

Mp(P ) =
⋂
x′∈X

{x ∈ X : Wp(P, x, x
′) ≤ 0}.

From Lemma 6 we see that {x ∈ X : Wp(P, x, x
′) ≤ 0} is closed for each x′ ∈ X , so it follows

that Mp(P ), being an intersection of closed sets, is closed. Also, from Proposition 2 we see
that Mp(P ) is bounded.
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In many existing works [66, 180, 94, 31, 32], the next step is to assume that (X , d) has
the Heine-Borel property so that one can deduce that the Fréchet mean sets are compact.
As we will see in the next section, this is not necessary. Instead, we provide a much weaker
condition under which the Fréchet mean sets are compact, and under which we can provide
our limit theorems of interest.

4.2 Weak-Like Topologies

In the previous section, the metric space (X , d) was always endowed with the topology
generated by the metric d. In this section we will also consider X to be endowed with a
topology weaker than the one generated by d; this serves as an analog of weak topologies that
are commonly encountered in functional analysis. More precisely, we introduce the following
notion:

Definition 7. For a metric space (X , d), a Hausdorff topology τ on X is called a weak-like
topology for (X , d) if it satisfies the following conditions:

(W1) If {xn}n∈N and y in X satisfy supn∈N d(xn, y) < ∞, then there exists a subsequence
{nk}k∈N and a point x ∈ X satisfying xnk

→ x in τ .

(W2) If {xn}n∈N and x in X satisfy xn → x in τ , then for all y ∈ X we have d(x, y) ≤
lim infn∈N d(xn, y).

(W3) If {xn}n∈N and x in X satisfy xn → x in τ and satisfy d(xn, y) → d(x, y) for some
y ∈ X , then we have xn → x in d.

Note that τ is neither required to be metrizable nor second-countable. We say that (X , d)
admits a weak-like topology if there exists a weak-like topology τ for (X , d).

First, we provide some interpretation for the three conditions set forth above. The first
condition (W1) is to be read as “d-bounded sets are relatively (sequentially) τ -compact”.
The second condition (W2) is to be read as “d is (sequentially) τ -lower-semicontinuous”. The
third condition (W3) is somewhat difficult to translate into a concise statement using stan-
dard terminology of point-set topology, but an attempt is “d is (sequentially) τ -continuous
only when it is d-continuous”.

Second, we note that the term “weak-like” is meant to be suggestive of the fact that
there exist many examples of weak-like topologies connected to the usual notions of weak
topology in functional analysis and in probability. In fact, the reader should keep in mind
the following examples:

• If (X , d) is any metric space, then the topology generated by d is weak-like if and only
if (X , d) has the Heine-Borel property.
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• If (X , d) is the metric space arising from a Banach space (X , ∥ · ∥), then (W1) is
equivalent to (X , ∥ · ∥) being reflexive [148, Theorem 1.13.5], (W2) is always true
[148, p. 2.5.21], and (W3) is a special property called the Radon-Riesz property, the
Kadec-Klee property, or property (H). In particular (X , d) admits a weak-like topology
if (X , ∥ · ∥) is finite-dimensional or uniformly convex. (See [148, Proposition 5.2.15],
[148, Theorem 5.2.15] and [148, Theorem 5.2.18].)

• As we show below, if X is the Wasserstein space P2(Rm) and d is the Wasserstein metric
W2, then the topology of weak convergence τw is a weak-like topology for (P2(Rm),W2).

For the remainder of this chapter, we will treat (X , d) as an abstract metric space, imposing
assumptions along the way as needed.

Let us also clarify a point of possible confusion in the notation. Since in this section
there will often be two topologies at play, we will always adopt the convention that if no
topology on X is explicitly mentioned then it will be understood to be endowed with the
topology generated by d. For example, P(X ) represents the space of probability measures
on (X ,B(d)), not on (X ,B(τ)).

Now we can prove the main result of this chapter. Note that the conclusion of this
theorem does not reference the weak-like topology τ . In this sense, the existence of a weak-
like topology is a geometric property of the metric space (X , d) which guarantees that Fréchet
means therein are well-behaved.

Theorem 8. Consider any separable metric space (X , d) admitting a weak-like topology and
any p ≥ 1, and suppose that {Pn}n∈N and P in Pp−1(X ) have Pn → P in τ p−1

w . Then, for any
{xn}n∈N in X with xn ∈ Mp(Pn) for all n ∈ N, there exists some {nk}k∈N and x ∈ Mp(P )
with xnk

→ x in d.

Proof. Let {xn}n∈N be any sequence in X with xn ∈ Mp(Pn) for all n ∈ N. Then, use
Proposition 2 to get that {xn}n∈N is bounded. Now let τ denote a weak-like topology on
(X , d), and use (W1) to get that there exists a subsequence {nk}k∈N and a point x ∈ X with
xnk
→ x in τ . It only remains to show that x ∈Mp(P ) and that we have xnk

→ x in d.
First let us show x ∈ Mp(P ), and we begin by fixing an arbitrary o ∈ X . Observe that

by (4.3) and (4.2), we can bound, for all y ∈ X and k ∈ N:

dp(xnk
, y)− dp(o, y)

≥ −pd(xnk
, o)(dp−1(xnk

, y) + dp−1(o, y))

≥ −pd(xnk
, o)(cp−1(d

p−1(xnk
, o) + dp−1(o, y)) + dp−1(o, y))

≥ −pcp−1d
p(xnk

, o)− p(cp−1 + 1)dp−1(o, y).

Since {xn}n∈N is bounded and P ∈ Pp−1(X ), this implies that the functions y 7→ dp(xnk
, y)−

dp(o, y) posess a P -integrable lower bound, uniformly in k ∈ N. This means we can apply
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(W2), Fatou’s lemma, and Lemma 6, to get, for arbitrary x′ ∈ X :

Wp(P, x, o) =

∫
X

(dp(x, y)− dp(o, y)) dP (y)

≤
∫
X

lim inf
k→∞

(dp(xnk
, y)− dp(o, y)) dP (y)

≤ lim inf
k→∞

∫
X

(dp(xnk
, y)− dp(o, y)) dP (y)

= lim inf
k→∞

Wp(P, xnk
, o)

= lim inf
k→∞

Wp(Pnk
, xnk

, o)

≤ lim inf
k→∞

Wp(Pnk
, x′, o)

= Wp(P, x
′, o).

(4.11)

In particular, by taking the infimum over all x′ ∈ X , we find x ∈Mp(P ).
Towards showing xnk

→ x in d, we now make a short digression. For each subsequence
K = {kj}j∈N, we consider the set

AK :=

{
y ∈ X : lim inf

j→∞
d(xnkj

, y) = d(x, y)

}
.

It is straightforward to see that each AK is a d-closed subset of X : If {yℓ}ℓ∈N in AK have
yℓ → y in d for some y ∈ X , then by the triangle inequality, we have∣∣∣∣lim inf

j→∞
d(xnkj

, y)− d(x, y)

∣∣∣∣
=

∣∣∣∣lim inf
j→∞

d(xnkj
, y)− lim inf

j→∞
d(xnkj

, yℓ) + d(x, yℓ)− d(x, y)

∣∣∣∣
≤ lim sup

j→∞

∣∣∣d(xnkj
, y)− d(xnkj

, yℓ)
∣∣∣+ |d(x, yℓ)− d(x, y)|

≤ 2d(yℓ, y).

Taking ℓ → ∞, we get y ∈ AK as needed. Moreover, we claim that each AK satisfies
P (AK) = 1. To show this, we use an argument identical to (4.11) above to get

Wp(P, x, o) =

∫
X

(dp(x, y)− dp(o, y)) dP (y)

≤
∫
X

lim inf
j→∞

(dp(xnkj
, y)− dp(o, y)) dP (y) ≤ Vp(P, o).

Since Vp(P, o) is defined as a minimum, this implies that the inequalities in the preceding
display are actually equalities. In particular, we have∫

X
(dp(x, y)− dp(o, y)) dP (y) =

∫
X

lim inf
j→∞

(dp(xkj , y)− dp(o, y)) dP (y).



CHAPTER 4. FRÉCHET MEANS IN INFINITE DIMENSIONS 46

Combining this with (W2) shows

dp(x, y)− dp(o, y) = lim inf
j→∞

(dp(xkj , y)− dp(o, y))

for P -almost all y ∈ X, so rearranging gives P (AK) = 1.
Returning to the main proof, we observe that P is a Borel measure on a second-countable

topological space and that {AK}K is an (arbitrary) intersection of closed sets of full P -
measure. Consequently, the set A :=

⋂
K AK satisfies P (A) = 1. Since P (A) = 1 implies

that A is non-empty, we can select an arbitrary y ∈ A and we can then select a subsequence
{kj}j∈N such that

lim sup
k→∞

d(xnk
, y) = lim

j→∞
d(xnkj

, y).

Finally, use y ∈ A and (W2) to get:

lim sup
k→∞

d(xnk
, y) = lim

j→∞
d(xnkj

, y)

= lim inf
j→∞

d(xnkj
, y)

= d(x, y)

≤ lim inf
k→∞

d(xnk
, y).

In other words, we have shown d(xnk
, y) → d(x, y) as k → ∞. Therefore, (W3) implies

xnk
→ x in d. This completes the proof.

Observe that (W3) was only used in the very last step of the proof of Theorem 8. Con-
sequently the following conclusion holds if (X , d) is a separable metric space admitting a
topology τ satisfying (W1) and (W2): If Pn → P in τ p−1

w and xn ∈ Mp(Pn) for all n ∈ N,
then there exists some {nk}k∈N and x ∈ Mp(P ) with xnk

→ x in τ . We believe that weaker
result may still be useful in some applications.

The form of the statement of Theorem 8 is sometimes referred to as Γ-convergence, and it
appears to be the preferred form of continity-type results proved by several previous authors
[128, 194]. However, some readers may be more familiar with other forms of consistency,
stability, or approximation results. We thus observe that the main result has the following
immediate consequences:

Corollary 4. Consider any separable metric space (X , d) admitting a weak-like topology,
and any p ≥ 1. For any P ∈ Pp−1(X ), the set Mp(P ) is non-empty and compact.

Proof. Let {xn}n∈N be an arbitrary sequence in Mp(P ). By taking Pn := P , we can trivially
apply Theorem 8 to get some {nk}k∈N and x ∈ Mp(P ) with xnk

→ x in d. This proves that
Mp(P ) is sequentially compact, whence compact as a subset of a metric space.

Corollary 5. Consider any separable metric space (X , d) admitting a weak-like topology,
and any p ≥ 1. If {Pn}n∈N and P in Pp−1(X ) have Pn → P in τ p−1

w , then

max
xn∈Mp(Pn)

min
x∈Mp(P )

d(xn, x)→ 0.



CHAPTER 4. FRÉCHET MEANS IN INFINITE DIMENSIONS 47

Proof. In order to show that
max

xn∈Mp(Pn)
min

x∈Mp(P )
d(xn, x)

converges to 0, it suffices to show that every subsequence admits a further subsequence
converging to 0. So, we let {nk}k∈N be arbitrary, and we use the compactness of Corollary 4
and the continuity of d to get, for each k ∈ N, a point xk ∈Mp(Pnk

) with

min
x∈Mp(P )

d(xk, x) = max
xnk

∈Mp(Pnk
)

min
x∈Mp(P )

d(xnk
, x).

Now we use Theorem 8 to get a subsequence {kj}j∈N and a point x′ ∈Mp(P ) with xkj → x′

in d. By construction we have

max
xnk

∈Mp(Pnk
)

min
x∈Mp(P )

d(xnk
, x) = min

x∈Mp(P )
d(xk, x) ≤ d(xkj , x

′)→ 0,

which proves the claim.

To close this section, let us prove that the Wasserstein space admits a weak-like topology.
To set this up, let us fix m ∈ N and define, for µ, µ′ ∈ P2(Rm)

W2(µ, µ
′) := inf

µ̃∈Π(µ,µ′)

(∫
Rm×Rm

∥x− x′∥22 dµ̃(x, x′)

)1/2

.

Our interest is in the metric space (X , d) := (P2(Rm),W2) about which have the following
result:

Lemma 10. The topology τw is a weak-like topology for (P2(Rm),W2).

Proof. To prove (W1), suppose that {µn}n∈N form a bounded sequence in (P2(Rm),W2).
Then get a sequence K1 ⊆ K2 ⊆ · · · of compact subsets of Rm satisfying

⋃
ℓ∈N Kℓ = Rm,

and assume 0 ∈ K1. Now use the triangle inequality to get supn∈NW2(µn, δ0) <∞. Because
Π(µ, δ0) = {µ⊗ δ0}, we have

C := sup
n∈N

∫
Rm

∥x∥22 dµn(x) <∞.

At the same time, note that for each ℓ ∈ N we have

1Rm\Kℓ
(x) ≤ ∥x∥2

infx/∈Kℓ
∥x∥2

,

so squaring and integrating with respect to µn gives

µn(Rm \Kℓ) ≤
C

(infx/∈Kℓ
∥x∥22

.
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Clearly, we have infx/∈Kℓ
∥x∥22 → ∞ as ℓ → ∞ and the right side above does not depend

on n ∈ N, so it follows that the family {µn}n∈N is tight. By Prokhorov’s theorem [104,
Theorem 16.3], this implies that there exists a subsequence {nk}k∈N and some µ ∈ P(Rm)
with µnk

→ µ in τw. Moreover, we have∫
Rm

∥x∥22 dµ(x) ≤ lim inf
k→∞

∫
Rm

∥x∥22 dµnk
(x) ≤ C

so it follows that µ ∈ P2(Rm). This proves (W1).
To prove (W2), suppose that {µn}n∈N and µ in P2(Rm) have µn → µ in τw, and let

µ′ ∈ P2(Rm) be arbitrary. By [166, Theorem 1] (also, see [166, Corollary 2] and the discussion
thereafter), it is possible to construct a probability space (Ω,F ,P) supporting Rm-valued
random variables {Xn}n∈N, X, and X ′, such that (X,X ′) is an optimal coupling of (µ, µ′),
such that (Xn, X

′) is an optimal coupling of (µn, µ
′) for all n ∈ N, and such that Xn → X

holds µ-almost surely. Writing E for the expectation on (Ω,F ,P), we have

W2(µ, µ
′) = E

[
|X −X ′|2

]
≤ lim inf

n→∞
E
[
|Xn −X ′|2

]
= lim inf

n→∞
W2(µn, µ

′)

by Fatou’s lemma, which gives (W2).
Finally, let us prove (W3). To do this, suppose that {µn}n∈N and µ in P2(Rm) have

µn → µ in τw, and suppose that µ′ ∈ P2(Rm) satisfies W2(µn, µ
′)→ W2(µ, µ

′). Let (Ω,F ,P)
denote a probability space supporting Rm-valued random variables {Xn}n∈N, X, and X ′

as above. We know that ∥Xn∥22 → ∥X∥22 holds P-almost surely. We also have ∥Xn∥22 ≤
2(∥Xn −X ′∥22 + ∥X ′∥22) for all n ∈ N; since E[∥Xn −X ′∥22] = W2(µn, µ

′) → W2(µ, µ
′) < ∞

and E[∥X ′∥22] < ∞, this shows that the family {∥Xn∥22}n∈N is uniformly integrable. In
particular, we have∫

Rm

∥x∥22 dµn(x) = E[∥Xn∥22]→ E[∥X∥22] =

∫
Rm

∥x∥22 dµ(x).

This shows µn → µ in W2, which proves (W3).

Note that Theorem 8 and Lemma 10 together recover the main result of [128].

4.3 Probabilistic Consequences

In this section we apply the “continuity” results of the previous section to deduce some
probabilistic consequences. That is, we prove a general form of some limit theorems of inter-
est. Throughout this section, we assume that (X , d) is a separable metric space admitting a
weak-like topology.

First we consider the stong law of large numbers (SLLN) which concerns independent,
identically-distributed (IID) sequences of X -valued random variables. The following results
connects our measure-valued theory to some probabilistic results.
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Theorem 9 (Strong Law of Large Numbers). If p ≥ 1 and (Ω,F ,P) is a probability space
supporting an IID sequence Y1, Y2, . . . of X -valued random variables with common distribution
P ∈ Pp−1(X ), then

max
x̄n∈Mp(P̄n)

min
x∈Mp(P )

d(x̄n, x)→ 0

holds P-almost surely.

Proof. By Theorem 8, it suffices to show P(P̄n → P in τ p−1
w ) = 1. To do this, recall that

there exists a sequence {ϕℓ}ℓ∈N of bounded continuous functions from (X , d) to R such that
{Pn}n∈N and P in P(X ) satisfy Pn → P in τw if and only if

∫
X ϕℓ dPn →

∫
X ϕℓ dP for all

ℓ ∈ N. (See [201, Theorem 3.1] and its proof.) Consequently, the event A = {P̄n → P in τw}
can be equivalently written as A :=

⋂
ℓ∈N Aℓ, where we have defined

Aℓ :=

{∫
X
ϕℓ dP̄n →

∫
X
ϕℓ dP

}
.

for all ℓ ∈ N. Now fix o ∈ X , and write Bx := {Wr(P̄n, x) → Wr(P, x)} for x ∈ X . Using
Lemma 7, we have

{P̄n → P in τ pw} = A ∩
⋂
x∈X

Bx = A ∩Bo =

(⋂
ℓ∈N

Aℓ

)
∩Bo.

By the usual SLLN, we have P(Aℓ) = 1 for all ℓ ∈ N and P(Bo) = 1, hence the result is
proved.

This result strengthens the existing SLLNs given in [31, 32, 66, 180, 213, 186], but its
true utility comes from the simplicity of the proof: We simply descended the convergence
of empirical measures to convergence of the Fréchet means by virtue of the “continuity”
provided by Theorem 8. This approach has two significant advantages. The first is that the
structure of IID samples is unimportant; we can actually descend any almost sure convergence
of empirical measures to an almost sure convergence of the Fréchet means. The second is
that the structure of almost sure convergence is unimportant; we can actually descend any
limit theorem for empirical measures to an analogous limit theorem for the Fréchet means.
To close this chapter, we discuss some illustrations of this.

Regarding the structure of the samples, we note that we can easily prove a version of a
convergence theorem for Fréchet means of suitable Markov chains:

Theorem 10 (Markov Chain Convergence Theorem). If p ≥ 1 and (Ω,F ,P) is a probability
space supporting a Harris-recurrent Markov chain Y1, Y2, . . . of X -valued random variables
with stationary distribution P ∈ Pp−1(X ), then

max
x̄n∈Mp(P̄n)

min
x∈Mp(P )

d(x̄n, x)→ 0

holds P-almost surely.
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Proof. The proof is identical to the proof of Theorem 9, upon replacing all appeals to the
SLLN with appeals to the classical Markov chain convergence theorem.

Regarding other types of limit theorems, we note that one can easily prove the following
large deviations upper bound, which we investigate in great detail in the next chapter:

Theorem 11 (Large Deviations Upper Bound). If (X , d) is Polish, p ≥ 1, and (Ω,F ,P) is
a probability space supporting an IID sequence Y1, Y2, . . . of X -valued random variables with
common distribution P ∈ P(X ) satisfying

∫
X exp(λdp−1(x, y)) dP (y) <∞ for all λ ≥ 0 and

x ∈ X , then for all ε > 0 we have

lim sup
n→∞

1

n
logP

(
max

x̄n∈Mp(P̄n)
min

x∈Mp(P )
d(x̄n, x) ≥ ε

)
≤ −cP,p(ε)

for some cP,p(ε) > 0.

Proof. Consider the event

A :=

{
P ′ ∈ Pp−1(X) : max

x′∈Mp(P ′)
min

x∈Mp(P )
d(x′, x) ≥ ε

}
and let us show that A is τ p−1

w -closed. Indeed, suppose {P ′
n}n∈N in A and P ′ ∈ Pp−1(X) have

P ′
n → P ′ in τ p−1

w . Then:

max
x′
n∈Mp(P ′

n)
min

x∈Mp(P ′)
d(x′

n, x) + max
x′∈Mp(P ′)

min
x∈Mp(P )

d(x′, x) ≥ max
x′
n∈Mp(P ′

n)
min

x∈Mp(P )
d(x′

n, x) ≥ ε.

Note that the first term vanishes as n→∞ by Theorem 8, so P ′ ∈ A, as claimed.
Next, note that P is a Borel probability measure on a Polish metric space with all

exponential moments finite, so we conclude via [205, Theorem 1.1] that {P̄n}n∈N satisfy a
large deviations principle in (Pp−1(X), τ p−1

w ) with good rate function given by the relative
entropy from P , denoted H( · |P ) : Pp−1(X) → [0,∞]. In particular, the large deviations
upper bound implies

lim sup
n→∞

1

n
logP

(
max

x̄n∈Mp(Pn)
min

x∈Mp(P )
d(x̄b, x) ≥ ε

)
= lim sup

n→∞

1

n
logP(P̄n ∈ A)

≤ − inf{H(P ′|P ) : P ′ ∈ A} := cP,p(ε).

Finally, assume towards a contradiction that cP,p(ε) = 0, so that there exist {Qn}n∈N in A
with H(Qn|P ) → 0. As a consequence of the Donsker-Varadhan variational principle one
can show that H(Qn|P ) → 0 and

∫
X exp(λdp−1(x, y)) dP (y) < ∞ for all λ ≥ 0 and x ∈ X

together imply Qn → P in τ p−1
w . Then Theorem 8 implies

max
zn∈Mp(Qn)

min
x∈Mp(P )

d(zn, x)→ 0

which contradicts Qn ∈ A for all n ∈ N. Therefore, we must have cP,p(ε) > 0.
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Chapter 5

Applications in the
Bures-Wasserstein Space

Let m ∈ N denote a fixed dimension, and write K := K(m) for the space of all m×m real,
symmetric, positive semi-definite matrices. For Σ,Σ′ ∈ K, we write

Π(Σ,Σ′) :=
√

tr(Σ) + tr(Σ′)− 2tr ((Σ1/2Σ′Σ1/2)1/2), (5.1)

which makes (K,Π) into a metric space called the Bures-Wasserstein space. The Bures-
Wasserstein space has a rich geometric structure: It is a “stratified space” meaning it is a
collection of Riemannian manifolds glued together along Riemannian submanifolds of smaller
dimension, it has “positive curvature” in the sense of metric geometry, and it a “uniquely
geodesic space” meaning all points are connected by a unique continuous path whose arc
length equals the distance between them.

The Bures-Wasserstein space and its geometry arise in several different disciplines. In
quantum information theory, one restricts attention to the subset of Σ ∈ K with tr(Σ) = 1, in
which case Π determines a natural distance on pure states of a quantum system. In optimal
transport, one can identify each Σ ∈ K with the centered Gaussian distribution N(0,Σ), and
it turns out that Π is the distance induced by the Wasserstein metric W2. Because of these
applications and more, much recent literature has studied the Bures-Wasserstein space and
probabilistic and statistical aspects therein [5, 208, 128, 130, 211, 157].

In this chapter we are interested in Fréchet means in (K,Π), which are usually called
barycenters. That is, suppose that (Ω,F ,P) is a probability space on which we have an IID
sequence Σ1,Σ2, . . . of K-valued random variables with common distribution P ∈ P2(K),
and write {P̄n}n∈N for their empirical measures, as usual. Under some mild conditions
guaranteeing uniqueness (to be discussed below), we write M∗ := M2(P ) and M∗

n := M2(P̄n)
for the population and empirical Bures-Wasserstein barycenters, respectively. We know
from the general theory of Theorem 9 that M∗

n → M∗ holds almost surely, but for several
applications we require finer understanding of the speed of this convergence.
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Specifically, we are interested in results of the form

P(Π(M∗
n,M

∗) ≥ t) ≈ e−ncP (t) (5.2)

for all t ≥ 0, where cP : [0,∞)→ [0,∞) is some function depending only on the distribution
P . We know from the general theory of Theorem 11 that such a function cP does exist,
although, in order for (5.2) to be useful, we need to be able to evaluate cP . At the same time,
there are known finite-sample bounds for the concentration properties of Bures-Wasserstein
barycenters [123], but it is not known whether these exponents are sharp. The goal of this
chapter is to prove a precise large deviations principle for Bures-Wasserstein barycenters,
thereby establishing (5.2) in a sharp (albeit asymptotic) manner.

This chapter is based on [101] which develops these ideas in detail. Our main results
include the large deviation principle (Theorem 12), a careful study of the properties of the
rate function (Proposition 3), and various geometric interpretations of these objects. We
conclude the chapter by giving several examples where we can use our theory to analyze
(both analytically and numerically) the exponential rate of decay of some rare of events
of interest. Our method of proof for most of these results is identifying a novel notion of
exponential tilting in the tangent bundle of the Bures-Wasserstein space.

5.1 Preliminaries

Let m ∈ N denote a fixed dimension. We write K for the space of covariances on Rm

(equivalently, the set of real, symmetric, positive semi-definite m × m matrices), and we
write K+ ⊆ K for the subspace of strictly positive covariances on Rm (equivalently, the set
of real, symmetric, strictly positive definite m ×m matrices). For A,A′ ∈ Rm×m, we write
A ⪯ A′ for A′−A ∈ K and we write A ≺ A′ for A′−A ∈ K+. Lastly, S denotes the space of
self-adjoint operators on Rm (equivalently, the set of real symmetric m×m matrices). The
Bures-Wasserstein metric is denoted Π : K×K→ [0,∞); we note that, in addition to (5.1)
given above, there are many equivalent formulations of the Bures-Wasserstein distance: as
the Procrustes metric on the space of covariance operators [147], as the metric induced by
the Wasserstein metric on the space of centered Gaussian distributions [155, 58], and more.

For P ∈ P2(K,Π), we say that M ∈ K is a Bures-Wasserstein barycenter of P if M ∈
M2(P ). In the statistical setting we assume that P ∈ P(K,Π) is fixed and that (Ω,F ,P) is a
probability space on which is defined an IID sequence Σ1,Σ2, . . . of K-valued random variables
with common distribution P . In this case we say that M∗ is a population Bures-Wasserstein
barycenter if M∗ ∈M2(P ), and we say that M∗

n is an empirical Bures-Wasserstein barycenter
if it M∗

n ∈ M2(P̄n). (In particular, Bures-Wasserstein barycenters are just Fréchet means in
the space (K,Π).)

Throughout the remainder of the paper, we assume that P ∈ P(K,Π) is a fixed pop-
ulation distribution, and that (Ω,F ,P) is a probability space supporting an independent,
identically-distributed (IID) sequence Σ1,Σ2, . . . of random variables with common distribu-
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tion P . All “almost surely” statements are understood to refer to the probability measure
P. We also assume the following conditions throughout:

(i) P{Σ ∈ K : Σ ≻ 0} = 1.

(ii) For all λ > 0 and M ∈ K, we have
∫
K exp(λΠ(Σ,M)) dP (Σ) <∞.

Let us briefly comment on these conditions and how they are related to analogous conditions
in related literature.

The positivity condition (i) simply states that we can restrict our attention from K to
K+. This assumption is weaker than the assumptions appearing in [55, Theorem 1] and [177,
Assumption B(2)], but stronger than those appearing in [177, Assumption A(2)] and [123,
Assumption 1] where it is only assumed that p := P{Σ ∈ K : Σ ≻ 0} satisfies p > 0. As we
will discuss further below, we also note that condition (i) implies that the barycenter of P
exists and is unique, that is is characterized by a certain fixed-point equation, and that the
same results are true for P̄n almost surely.

The integrability condition (ii) simply states that P has finite exponential moments of
all orders. This is easily seen to be stronger than first-moment [177, Assumption A(1)]
and second-moment conditions, but weaker than sub-Gaussianity [123, Assumption 2] and
boundedness [55, Theorem 1] conditions. In fact, we will later see that sub-Gaussianity
assumptions lead to quantitative bounds on the large deviations behavior.

Next we recall the important Riemannian structure of (K+,Π). For each M ∈ K+, we
define the following: Tan(M) is the Hilbert space whose underlying set is S and whose
inner product is given ⟨A,B⟩Tan(M) := tr(AMB) for A,B ∈ Tan(M); the exponential map
expM : Tan(M)→ K is given by

expM(A) := (A + I)M(A + I)

for A ∈ Tan(M); the logarithm map logM : K → Tan(M) is the inverse of the exponential
map, and can be written exactly in either of two equivalent forms:

logM(Σ) := Σ1/2(Σ1/2MΣ1/2)−1/2Σ1/2 − I

:= M−1/2(M1/2ΣM1/2)1/2M−1/2 − I
(5.3)

for Σ ∈ K+. (All of these notions can still be defined when M ∈ K \ K+, although some
partial degeneracy requires Tan(M) to be defined as a suitable quotient of S.)

The Riemannian logarithm map has an important interpretation through the lens of
optimal transport. That is, for all M ∈ K+ and Σ ∈ K, the matrix tΣM := logM(Σ) + I
represents the optimal transport map from the centered Gaussian with covariance matrix
M to the centered Gaussian with covariance Σ; more precisely, one can easily see from (5.3)
that tΣMMtΣM = Σ. Thus, the logarithm map can be written (and should be regarded) as
logM(Σ) = tΣM − I, whenever M,Σ are sufficiently regular.
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Next we introduce the fundamental fixed-point equation. It is known [123, Theorem 2.1]
that M ∈ K+ is a Bures-Wasserstein barycenter of P if and only if∫

K
(M1/2ΣM1/2)1/2 dP (Σ) = M. (5.4)

Note that we can equivalently write (5.4) as∫
K

logM(Σ) dP (Σ) = 0, (5.5)

which has a clear interpretation from a Riemannian point of view: The Bures-Wasserstein
barycenter is the unique point M∗ in K such that, if we push forward the distribution P
from (K+,Π) to (Tan(M∗), ⟨ · , · ⟩Tan(M∗)), the resulting lifted distribution is centered. It is
known that this is a necessary condition for Fréchet means in general Riemannian manifolds,
but it is remarkable that in the Bures-Wasserstein space it is also sufficient. See Figure 5.1
for an illustration.

Next we provide some intermediate results that will be used in our main theorems. For
example, it is useful to note that for any M ∈ K we have Π(M, 0) = tr(M1/2) = ∥M1/2∥2 and
that for any M,Σ ∈ K+ we have Π(M,Σ) = ∥(tΣM − I)M1/2∥2. We also need the following
estimates:

Lemma 11. For any M,Σ ∈ K, we have

tr
(
(M1/2ΣM1/2)1/2

)
≤ Π(M, 0)Π(Σ, 0).

Proof. Using the definition of matrix square root, we have

tr
(
(M1/2ΣM1/2)1/2

)
=

m∑
i=1

λi

(
(M1/2ΣM1/2)1/2

)
=

m∑
i=1

√
λi (M1/2ΣM1/2).

K

P

K

M

Tan(M)

K

M∗

Tan(M∗)

Figure 5.1: The fixed point equation for the Bures-Wasserstein barycenter of a probability
measure P on (K,Π) (left). For each covariance M ∈ K+, we can push forward P by logM( · )
to a probability measure on Tan(M). This pushforward is centered in Tan(M) if and only
if M is a Bures-Wasserstein barycenter of P (middle, right).
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Now note that, for all i ∈ {1, . . . ,m}, we have

λi

(
M1/2ΣM1/2

)
≤ λi

(
M1/2Σ

)
λ1

(
M1/2

)
≤ λi (Σ)

(
λ1

(
M1/2

))2
hence

λi

(
M1/2ΣM1/2

)
≤ λi (Σ)

(
tr
(
M1/2

))2
.

Combining these displays and using again the definition of matrix square root, we get

tr
(
(M1/2ΣM1/2)1/2

)
=

m∑
i=1

√
λi (M1/2ΣM1/2)

≤
m∑
i=1

√
λi (Σ)tr

(
M1/2

)
≤

m∑
i=1

λi

(
Σ1/2

)
tr
(
M1/2

)
= tr

(
M1/2

)
tr
(
Σ1/2

)
= Π(M, 0)Π(Σ, 0)

as claimed.

Lemma 12. For any M,Σ ∈ K+ and A ∈ S, we have

|tr(AM(tΣM − I))| ≤ ∥A∥2Π(M, 0)Π(M,Σ).

Proof. Use Cauchy-Schwarz and the submultiplicativity of the matrix norm ∥ · ∥2 to get

tr(AM(tΣM − I)) ≤ ∥AM1/2∥2∥(tΣM − I)M1/2∥2
= ∥A∥2∥M1/2∥2∥(tΣM − I)M1/2∥2
= ∥A∥2Π(M, 0)Π(M,Σ),

as claimed.

Lastly, we give the following result, which we expect to be well-known to those familiar
with large deviations theory but for which we could not find an appropriate reference. Here,
H( · | · ) : (P(X ))2 → [0,∞] denotes the relative entropy.

Lemma 13. Let H be a Hilbert space with norm ∥ · ∥ and inner product ⟨ · , · ⟩, and let p be
a probability measure on H satisfying

∫
H eλ∥h∥ dp(h) < ∞ for all λ > 0 and h ∈ H. Then,

for all h ∈ H, the value Λp(h) := log(
∫
H exp(⟨h, h′⟩) dp(h′)) is well-defined, the optimization

problems 
minimize H(q | p)

over q ∈ P1(H)

subject to
∫
H h′ dq(h′) = h
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and {
maximize ⟨h′′, h⟩ − Λp(h

′′)

over h′′ ∈ H,
have the same value, and both problems are achieved.

Proof. To see that Λp is well-defined, simply use Cauchy-Schwarz to get∫
H
e⟨h,h

′⟩ dp(h′) ≤
∫
H
e∥h∥ ∥h

′∥ dp(h′) <∞

for all h ∈ H. Next, let us show that the value of the first optimization problem is bounded
below by the value of the second. For arbitrary h′′ ∈ H and r > 0, define the bounded,
continuous function ϕh′′,r : H → R via

ϕh′′,r(h
′) =


r if ⟨h′′, h′⟩ > r

⟨h′′, h′⟩ if − r ≤ ⟨h′′, h′⟩ ≤ r

−r if ⟨h′′, h′⟩ < −r.

Note that ϕh′′,r(h
′) → ⟨h′′, h′⟩ as r → ∞ for all h′ ∈ H. Moreover, we have |ϕh′′,r(h

′)| ≤
∥h′′∥ ∥h′∥ by Cauchy-Schwarz, so we can apply dominated to convergence for any q ∈ P1(H)
to get ∫

H
ϕh′′,r(h

′) dq(h′)→
∫
H
⟨h′′, h′⟩ dq(h′)

as r → ∞. Similarly, we have eϕh′′,r(h
′) ≤ e∥h

′′∥ ∥h′∥ by Cauchy-Schwarz, so we can use the
integrability condition on p to apply dominated convergence and get∫

H
eϕh′′,r(h

′) dp(h′)→
∫
H
e⟨h

′′,h′⟩ dp(h′)

as r →∞. Therefore, the Donsker-Varadhan variational formula (see Lemma 6.2.13 of [60])
yields

H(q | p) ≥
∫
H
ϕh′′,r(h

′) dq(h′)− log

(∫
H
eϕh′′,r(h

′), dp(h′)

)
→
∫
H
⟨h′′, h′⟩ dq(h′)− log

(∫
H
e⟨h

′′,h′⟩ dp(h′)

)
= ⟨h′′, h⟩ − Λp(h).

As this holds for all h′′ ∈ H, we can take the maximum and the first direction is proved.
Lastly, let us show that the value of the first optimization problem is bounded above by the
value of the second. To do this, consider the probability measure p̃ on H defined via its
Radon-Nikodym derivative

dp̃

dp
(h′) := e⟨h

′,h⟩−Λp(h).
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We can directly compute

H(p̃ | p) =

∫
H

log

(
dp̃

dp
(h′)

)
dp̃(h′)

=

∫
H

(⟨h′, h⟩ − Λp(h)) dp̃(h′)

=

〈∫
H
h′ dp̃(h′), h

〉
− Λp(h)

and this proves the claim.

5.2 Large Deviations Theory

In this section we prove the large deviations principle for Bures-Wasserstein barycenters. We
begin, in the standard fashion of large deviations theory, by defining the rate function and
proving some useful properties.

Proposition 3. The function IP : K+ → [0,∞] defined via

IP (M) = sup
A∈S

(
tr(AM)− log

∫
K

exp tr
(
AMΣ1/2(Σ1/2MΣ1/2)−1/2Σ1/2

)
dP (Σ)

)
(5.6)

for M ∈ K+ enjoys the following properties:

(a) IP is lower semi-continuous.

(b) IP is coercive and satisfies the lower bound

IP (M) ≥ Π(M, 0)− log

∫
exp Π(Σ, 0) dP (Σ) (5.7)

for all M ∈ K+.

(c) IP (M∗) = 0.

(d) For each M ∈ K+, a matrix A ∈ S achieves the supremum in the definition of IP (M)
if and only if the exponentially tilted measure PM→A ∈ P2(K,Π) defined via

dPM→A

dP
(Σ) ∝ exp tr(AMΣ1/2(Σ1/2MΣ1/2)−1/2Σ1/2). (5.8)

has Bures-Wasserstein barycenter M .
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Proof. To prove (a), it suffices to show that the function

M 7→
∫
K

exp tr
(
AM(tΣM − I)

)
dP (Σ)

is continuous for each fixed A ∈ S. It is clear that the function

f(A,Σ,M) := exp tr
(
AM(tΣM − I)

)
is continuous as a function of M ∈ K+, for fixed A ∈ S and Σ ∈ K+, so it suffices to show
that we can apply dominated convergence. To do this, suppose that {Mn}n∈N and M in K+

have Π(Mn,M)→ 0 as n→∞. Then use Lemma 12 and the triangle inequality to get

tr(AMn(tΣMn
− I)) ≤ ∥A∥2Π(Mn, 0)Π(Mn,Σ)

≤ ∥A∥2Π(Mn, 0)(Π(Mn,M) + Π(M,Σ))

for all Σ ∈ K+. Now {Mn}n∈N converging implies that it is bounded, hence

γ := max

{
sup
n∈N

Π(Mn, 0), sup
n∈N

Π(Mn,M)

}
<∞.

Therefore, we have the uniform upper bound:

sup
n∈N

exp tr(AMn(tΣMn
− I)) ≤ exp

(
γ2∥A∥2

)
exp (γ∥A∥2Π(M,Σ)) .

Condition (ii) guarantees that the right side is P -integrable over Σ ∈ K+, so dominated
convergence applies, and this proves (a).

Next we prove the coercivity statement (b). To do this, note that for arbitrary M ∈ K+

we can take A := I/Π(M, 0) and compute:

IP (M) ≥ − log

∫
exp

(
tr(M(tΣM − I))

Π(M, 0)

)
dP (Σ)

= Π(M, 0)− log

∫
exp

(
tr
(
(M1/2ΣM1/2)1/2

)
Π(M, 0)

)
dP (Σ),

where we used tr(M)/Π(M, 0) = Π(M, 0) and tr(MtΣM) = tr((M1/2ΣM1/2)1/2). Now Lemma 11
yields ∫

exp

(
tr
(
(M1/2ΣM1/2)1/2

)
Π(M, 0)

)
dP (Σ) ≤

∫
exp Π(Σ, 0) dP (Σ),

and the right side is finite by assumption (ii). We therefore have

IP (M) ≥ Π(M, 0)− log

∫
exp Π(Σ, 0) dP (Σ),
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and this shows that IP (M)→∞ as M →∞.
For (c), we simply use Jensen’s inequality and the fixed point equation for M∗ to get:

IP (M∗) = sup
A∈S
− log

∫
K

exp tr
(
AM(tΣM − I)

)
dP (Σ)

≤ sup
A∈S
−
∫
K

tr
(
AM(tΣM − I)

)
dP (Σ)

= sup
A∈S
−tr

(
AM

∫
K

(tΣM − I) dP (Σ)

)
= 0,

as claimed.
Lastly, we prove (d). To do this, notice that the optimization problem{

maximize − log
∫
K exp tr

(
AM(tΣM − I)

)
dP (Σ)

over A ∈ S

is strictly concave and hence has at most one solution. To characterize this solution through
its first-order conditions, we will simply take the gradient of the objective with respect to A.
Of course, we already have

∇Af(A,Σ,M)(H) = tr(HM(tΣM − I))f(A,Σ,M),

but we now want to differentiate under the integral. To do this, note that we have∣∣∣∣f(A + δH,Σ,M)− f(A,Σ,M)

δ
− tr(HM(tΣM − I))f(A,Σ,M)

∣∣∣∣
= exp tr

(
AM(tΣM − I)

) ∣∣∣∣exp(δtr(HM(tΣM − I)))− 1− δtr(HM(tΣM − I))

δ

∣∣∣∣
≤ exp tr

(
AM(tΣM − I)

) δ
2
|tr(HM(tΣM − I))|2 exp(δ|tr(HM(tΣM − I))|),

using the Taylor series remainder bound |etδ − 1− tδ| ≤ 1
2
t2δ2 exp(|t|δ) for all t, δ ∈ R. Now

for 0 < δ < 1 we use the generous bound t2 ≤ e2|t| along with Lemma 12 to further this as

sup
0<δ<1

∣∣∣∣f(A + δH,Σ,M)− f(A,Σ,M)

δ
− tr(HM(tΣM − I))f(A,Σ,M)

∣∣∣∣
≤ 1

2
exp

(
|tr
(
AM(tΣM − I)

)
|+ 3|tr(HM(tΣM − I))|

)
≤ 1

2
exp ((∥A∥2 + 3∥H∥2)Π(M, 0)Π(M,Σ)) .

By the integrability condition (ii), the right side is integrable with respect to P when Σ
ranges over K+. Therefore, we can apply dominated convergence to differentiate under the
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integral, yielding:

∇A log

∫
K

exp tr
(
AM(tΣM − I)

)
dP (Σ) =

∫
K M(tΣM − I) exp tr

(
AM(tΣM − I)

)
dP (Σ)∫

K exp tr (AM(tΣM − I)) dP (Σ)

= M

∫
K

(tΣM − I) dPM→A(Σ).

Since M ∈ K+ is invertible, this shows that A is a stationary point only if∫
K

(tΣM − I) dPM→A(Σ) = 0. (5.9)

But this is exactly the fixed-point equation which states that M is the the Bures-Wasserstein
barycenter of PM→A.

From this result we can determine a geometric interpretation of the rate function: Fix a
point M ∈ K+. Then notice that IP can equivalently be written as

IP (M) = sup
A∈Tan(M)

− log

∫
K

exp⟨A, logM(Σ)⟩Tan(M) dP (Σ).

That is, IP (M) is equal to the Fenchel-Legendre transform (ΛM
P )∗(0), where ΛM

P : Tan(M)→
R is

ΛM
P (A) := log

∫
K

exp⟨A, logM(Σ)⟩Tan(M) dP (Σ)

for A ∈ Tan(M). In fact, ΛM
P is nothing more than the cumulant generating function for the

pushforward measure (logM)∗P ∈ P(Tan(M), ⟨ · , · ⟩Tan(M)). Thus, the large deviations rate
function IP (M) is very similar to the usual Euclidean large deviations rate function, after
lifting P to the tangent space at M To illustrate this construction, we refer the reader to
Figure 5.2.

Our main result can now be stated as follows.

Theorem 12 (LDP for BW barycenters). For all Borel measurable S ⊆ K+, we have

− inf {IP (M) : M ∈ S◦} ≤ lim inf
n→∞

1

n
logP(M∗

n ∈ S)

≤ lim sup
n→∞

1

n
logP(M∗

n ∈ S) ≤ − inf
{
IP (M) : M ∈ S̄

}
,

where S◦ and S̄ denote the interior and closure of S with respect to Π.

Proof. By [206, Theorem 1], the moment condition on P implies that the empirical measures
{P̄n}n∈N satisfies a LDP in P1(K) with good rate function H( · |P ) : K→ [0,∞], when P1(K)
is endowed with the topology of the 1-Wasserstein metric. Now use [123, Theorem 2.1] to
see that the map M2 : P1(K+) → K+ is well-defined and Theorem 8 to see that it is
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K

P

M

logM
expM

Tan(M) Euclidean
exponential

tilting

Figure 5.2: The rate function of the large deviations principle arises from exponential tilting
in the tangent bundle of the Bures-Wasserstein space. For a probability measure P on (K,Π)
and a point M ∈ K (top left), the value IP (M) is equal to the minimal cost of changing
measure from P to a distribution whose Bures-Wasserstein barycenter is M (top right).
To do this, we lift P from (K,Π) to Tan(M) (bottom left) and we change measure via
exponential tilting in the direction of A so that the tilted lifted measure is centered (bottom
right).

continuous. Since M∗ = M2(P ) and M∗
n = M2(P̄n) for all n ∈ N, the contraction principle

[60, Theorem 4.2.1] implies that {M∗
n}n∈N satisfies a LDP in (K+,Π) with good rate function

JP given by the relative entropy projection over the space of probability measures which have
a fixed barycenter, that is

JP (M) := inf{H(Q |P ) : Q ∈ P1(K+),M2(Q) = M}.

for all M ∈ K+. In other words, JP (M) is exactly the value of the optimization problem
minimize H(Q |P )

over Q ∈ P1(K+)

subject to M2(Q) = M.

(5.10)

It only remains to show that JP = IP , so let us fix M ∈ K+. Since logM : K+ → Tan(M)
is a well-defined bijection, we can reparameterize (5.10) in the following ways: first, we use
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the fixed point equation (5.5) to see that for every Q ∈ P1(K+), the constraint M2(Q) = M
is equivalent to

∫
Tan(M)

A d((logM)#Q)(A) = 0; second we use Lemma 12 to see that the

integrability constraint (logM)#Q ∈ P1(Tan(M)) is equivalent to Q ∈ P1(K+); third, we
have H(logM)#Q | (logM)#P ) = H(Q |P ) for all P,Q ∈ P(K+). Thus, if we change variables
to Q̃ := (logM)#Q ∈ P1(Tan(M)), then we have shown that the value of (5.10) is equal to
the value of 

minimize H(Q̃ | (logM)#P )

over Q̃ ∈ P1(Tan(M))

subject to
∫
Tan(M)

A dQ̃(A) = 0.

(5.11)

Now we apply Lemma 13 in the Hilbert space (Tan(M), ⟨ · , · ⟩Tan(M)) to conclude.

As an immediate application of Theorem 12, we get the following: If K ⊆ K+ is a
compact set equal to the closure of its interior and satisfying M∗ /∈ K, then

1

n
logP(M∗

n ∈ K)→ −min {IP (M) : M ∈ K} =: −IP (K),

and IP (K) > 0. Roughly speaking, this means we have

P(M∗
n ∈ K) ≈ exp (−nIP (K))

for large n, ignoring sub-exponential factors. In other words, the minimization of IP over
K exactly characterizes the exponential rate of decay of the probability of the rare event
{M∗

n ∈ K}. In the next section we give some applications of Theorem 12 using this form.

5.3 Two Examples

To demonstrate the utility of Theorem 12, we give two extended applications of the result:
one analytical for which we can derive simple upper bounds, and one numerical for which
we can implement an algorithm to approximately compute the large deviations behavior.

Approximations of the Fixed-Point Equation

As always, let us assume that P satisfies conditions (i) and (ii), and let us define the map
LP : K+ → [0,∞) via

LP (M) =

∥∥∥∥∫
K

(tΣM − I) dP (Σ)

∥∥∥∥
Tan(M)

.

Recall that condition (i) implies that LP (M) = 0 if and only if M = M∗. Thus, LP (M) is a
particular way to quantify the degree to which M fails to satisfy the fixed-point equation for
the barycenter of P . By straightforward continuity arguments, one can show LP (M∗

n) → 0
almost surely as n → ∞, but it is also important to develop large deviations estimates for
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this convergence. For example, in a testing problem in which the null hypothesis is that an
unknown population distribution P has some fixed Bures-Wasserstein barycenter M0 ∈ K+,
one can use the large deviations principle to analyze the asymptotic relative efficiency of a
test based on the empirical Bures-Wasserstein barycenter. In this setting we can give the
following result:

Theorem 13. If r > 0 satisfies P{Σ ∈ K : Π(M∗,Σ) ≤ r} = 1, then for all t ≥ 0 we have

lim sup
n→∞

1

n
logP(LP (M∗

n) ≥ t) ≤ − t2

8r2
.

.

Proof. First, we claim that the effective domain of IP (that is, the set of all points at
which its value is finite) satisfies dom(IP ) ⊆ B2r(M

∗). To see this, suppose M ∈ K+

satisfies IP (M) < ∞ and assume for the sake of contradiction that Π(M,M∗) > 2r. By
Proposition 3(d), there exists A ∈ S such that M is the Bures-Wasserstein barycenter of
PM→A, and we of course have supp(P ) = supp(PM→A). Then we have∫

K
Π2(M,Σ) dPM→A(Σ) ≥

∫
K

(Π(M,M∗)− Π(M∗,Σ))2 dPM→A(Σ)

>

∫
K

(2r − r)2 dPM→A(Σ)

= r2

and ∫
K

Π2(M∗,Σ) dPM→A(Σ) ≤ r2,

which implies M is not the Bures-Wasserstein barycenter of PM→A. Since this is a contra-
diction, we conclude Π(M,M∗) ≤ 2r.

Second, we fix t > 0 and M ∈ dom(IP ), and we consider arbitrary U ∈ Tan(M) with
∥U∥Tan(M) = 1 and λ ≥ 0. Then for any Σ ∈ K we use Cauchy-Schwarz and dom(IP ) ⊆
B2r(M

∗) to get:

|tr(UM(tΣM − I)| ≤ ∥(tΣM − I)M1/2∥2 = Π(M,Σ) ≤ 2r.

In particular, the real-valued random variable tr(UM(tΣM − I) lies in [−2r, 2r] almost surely.
Therefore, we can apply Hoeffding’s lemma to get:

− log

∫
K

exp(λtr(UM(tΣM − I))) dP (Σ) ≥ −
(
λtr

(
UM

∫
K

(tΣM − I) dP (Σ)

)
+ 2λ2r2

)
for all λ ∈ R. In particular, by taking the supremum over λ ∈ R and doing some calculus,
we get

sup
λ∈R
− log

∫
K

exp(λtr(UM(tΣM − I))) dP (Σ) ≥ 1

8r2

(
tr

(
UM

∫
K

(tΣM − I) dP (Σ)

))2

.
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Now we consider taking the supremum over all U ∈ S with ∥UM1/2∥2 = 1. By Cauchy-
Schwarz we have exactly:

sup
U∈Tan(M)

∥U∥Tan(M)=1

tr

(
UM

∫
K

(tΣM − I) dP (Σ)

)
=

∥∥∥∥∫
K

(tΣM − I) dP (Σ)

∥∥∥∥
Tan(M)

= LP (M)

hence

IP (M) = sup
A∈Tan(M)

− log

∫
K

exp(λtr(UM(tΣM − I))) dP (Σ)

= sup
U∈Tan(M)

∥U∥Tan(M)=1

sup
λ∈R
− log

∫
K

exp(λtr(UM(tΣM − I))) dP (Σ)

≥ sup
U∈Tan(M)

∥U∥Tan(M)=1

1

8r2

(
tr

(
UM

∫
K

(tΣM − I) dP (Σ)

))2

=
(LP (M))2

8r2
,

by monotonicity.
Finally, for any t ≥ 0, we can bound

inf{IP (M) : LP (M) ≥ t} = inf{IP (M) : M ∈ dom(IP ), LP (M) ≥ t} ≥ t2

8r2

so Theorem 12 gives the result.

We regard this as a Hoeffding-type concentration inequality, since it guarantees sub-
Gaussian like concentration of a statistic of interest for bounded distributions P . However,
we emphasize that LP (M∗

n) is a very complicated function of Σ1, . . . ,Σn, so we are not aware
of any way to prove it via elementary considerations.

Excess Trace in a Generative Model

Fix M∗ ∈ K+ and suppose that (Ω,F ,P) is a probability space supporting an IID sequence
T1, T2, . . . of random matrices coming from a Wishart distribution with scale matrix I and
shape k, normalized by k. (So, we have E[Ti] = (kI)/k = I for all i ∈ N.) Then define
Σi := TM∗T for all i ∈ N, and write P for their common distribution and P̄n for their
empirical measure. It follows from the fixed-point equation (5.4) that M∗ is the Bures-
Wasserstein barycenter of the population distribution P , and we refer to this as a generative
model around M∗. We also note that the parameter k ≥ 0 controls the concentration of M̄∗

n

around M∗, since larger values of k lead to more concentration of T around I.
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Now fix t > 0 and let us focus on the trace upper tail event given by

F+
t := {tr(M∗

n) ≥ tr(M∗)(1 + t)},

Observe that F+
t = {M∗

n ∈ S+
t }, where S+

t = {M ∈ K+ : tr(M) ≥ tr(M∗)(1 + t)}, and that
S+
t is equal to the closure of its interior since it is convex. Therefore, by Theorem 12 we

have

lim
n→∞

1

n
logP(tr(M∗

n) ≥ tr(M∗)(1 + t)) = − inf {IP (M) : tr(M) ≥ tr(M∗)(1 + t)} .

In fact, we can numerically approximate the right side above via a form of projected Rieman-
nian gradient descent. That is, we initialize M0 ∈ S+

t arbitrarily, and, for a given stepsize
η > 0, we iterate

Mi+1 := projΠ(expMi
(Mi − η∇Mi

IP );S+
t ).

for i ∈ N, where the projection operation is given by

projΠ(Q;S+
t ) = Qmax

{
tr(M∗)

tr(Q)
(1 + t), 1

}
.

Thus, it only remains to determine the gradient of the rate function.
We give a heuristic argument for how to evaluate this gradient. Since P is fully-supported,

Proposition 3(d) shows that there exists a well-defined function AP : K+ → S such that M
is the Bures-Wasserstein barycenter of PM→AP (M) for all M ∈ K+; in fact, one can use the
implicit function theorem to show that AP is continuously differentiable. In particular, for
all M ∈ K+, we can write

IP (M) = − log

∫
K+

exp tr(AP (M)M(tΣM − I)) dP (Σ),

and it follows that the gradient of IP at M is the linear operator which, when evaluated at
H, yields

(∇MIP )(H) =

∫
K+

tr((∇MAP )(H)M(tΣM − I)) dPM→AP (M)(Σ)

+

∫
K+

tr(AP (M)H(tΣM − I)) dPM→AP (M)(Σ)

+

∫
K+

tr(AP (M)M(∇MTΣ)(H)) dPM→AP (M)(Σ).

Since
∫
K+

(tΣM − I) dPM→AP (M)(Σ) = 0, the first two terms above vanish, and it follows that

(∇MIP )(H) = tr

(
AP (M)M

∫
K+

∇MTΣ(H)) dPM→AP (M)(Σ)

)
.
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Algorithm 1 Some procedures for numerically evaluating the rate function IP and its
gradient. Here, we use capital letters to denote matrices in Rm×m and calligraphic letters
(that is, mathcal letters) to denote linear maps Rm×m → Rm×m. We write {Eij}i,j=1,...,m for
the standard basis of Rm×m, so that Eij equals 1 in the ij entry and equals 0 in all other
entries.
1: procedure Transport
2: input: covariances M ∈ K+ and Σ ∈ K
3: output: optimal transport map tΣM ∈ Rm×m

4: return Σ1/2(Σ−1/2MΣ1/2)−1/2Σ1/2

5: procedure TransportJac
6: input: covariances M ∈ K+ and Σ ∈ K
7: output: linear operator ∇TΣ

M : Rm×m → Rm×m

8: D,U ← SpectralDecompositon(Σ
1
2MΣ

1
2 ) ▷ So, UTDU = Σ

1
2MΣ

1
2

9: for i, j = 1, . . . ,m do
10: ∆← UΣ

1
2EijΣ

1
2UT

11: for k, ℓ = 1, . . . ,m do
12: ∆̄kℓ ← ∆kℓ/(

√
Dkk +

√
Dℓℓ)

13: G ·,ij ← −Σ
1
2UTD− 1

2 ∆̄D− 1
2UΣ

1
2

14: return G
15: procedure RateFunctionGradientP

16: input: covariance M ∈ K+

17: output: linear functional ∇IP (M) : Rm×m → R
18: (A,Λ)← minimize log

∫
K exp tr(AM(Transport(M,Σ)− I)) dP (Σ)

19: over A ∈ S
20: L ←

∫
K TransportJac(M,Σ) exp(tr(AM(Transport(M,Σ)− I))− Λ) dP (Σ)

21: for i, j = 1, . . . ,m do
22: Gij ← tr(AML(Eij))

23: return G



CHAPTER 5. APPLICATIONS IN THE BURES-WASSERSTEIN SPACE 67

Figure 5.3: The largest deviations behavior for the excess trace in the generative model,
across various values of the excess t and the scale k. We observe that the dependence on t
is roughly quadratic, and that the quadratic coefficient depends on k.

In fact, the Jacobian ∇MTΣ has been computed in closed-form in [123, Lemma A.2]. Thus,
we can write down Algorithm 1, which computes ∇MIP .

Putting this all together, we can compute the large deviations exponent for a range of
k and t values. We direct the reader to Figure 5.3 for a plot of the results, which show
approximately quadratic dependence on the excess t, with a coefficient depending on the
scale k.
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Chapter 6

Fréchet Mean Set Estimation

In Theorem 9 in Chapter 4 we showed that, if (X , d) is a nice enough metric space and
(Ω,F ,P) is a probability space supporting an IID sequence Y1, Y2, . . . of X -valued random
variables with common distribition P ∈ Pp−1(X ) for p ≥ 1, then we have

max
x̄n∈Mp(P̄n)

min
x∈Mp(P )

d(x̄n, x)→ 0 (6.1)

holding P-almost surely, where P̄n is (as always) the empirical distribution of the first n ∈ N
samples, P̄n := 1

n

∑n
i=1 δYi

. From a statistical point of view, we regard (6.1) as an asymptotic
guarantee of “no false positives” since it shows that each x̄n ∈ Mp(P̄n) is close to some
x ∈Mp(P ). It is thus natural to wonder whether we additionally have

max
x∈Mp(P )

min
x̄n∈Mp(P̄n)

d(x̄n, x)→ 0 (6.2)

holding P-almost surely; we regard (6.2) as an asymptotic guarantee of “no false negatives”
since it shows that each x ∈Mp(P ) is close to some x̄n ∈Mp(P̄n).

It turns out that (6.1) and (6.2) together are equivalent to convergence in the so-called
Hausdorff metric. To define this, let us write K(X ) for the collection of all non-empty
compact subsets of X , and for K,K ′ ∈ K(X ), we write

dH(K,K ′) := max

{
max
x∈K

min
x′∈K′

d(x, x′), max
x′∈K′

min
x∈K

d(x, x′)

}
.

Equivalently, dH(K,K ′) is the smallest r ≥ 0 such that the r-thickening of K contains K ′

and such that the r-thickening of K ′ contains K. Thus, we are interested in consistency
results of the form

dH(Mp(P ),Mp(P̄n))→ 0 (6.3)

holding P-almost surely, which we refer to as dH-consistency.
Several previous authors ([94, p. 1118], [180, Remark 2.5], and [198, p. 60]) have sought

dH-consistency results for Fréchet means, but this turns out to be a rather delicate property.
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For example, it was previously unknown whether empirical Fréchet means are dH-consistent
or whether it was possible to construct any estimator satisfying dH-consistency.

This chapter is based on the works [66, 37] and provides an authoritative answer to these
questions. We begin with a negative result which shows that the empirical Fréchet mean is
not a dH-consistent estimator, and hence is asymptotically inadmissible for any loss function
based on dH (Theorem 14). We then construct the class of relaxed empirical Fréchet mean set
estimators and we give results controlling their weak (Theorem 15) and strong (Theorem 16)
error probabilities; these results are based on some functional limit theorems, including a
functional central limit theorem and a functional law of the iterated logarithm. Moreover,
in Chapter 7 we give a concrete application of these results to a problem in computational
phylogenetics.

6.1 Preliminaries

Throughout this section (in fact, throughout the entire chapter), we assume that p ≥ 1
and that (Ω,F ,P) is a probability space supporting an IID sequence Y1, Y2, . . . of X -valued
random variables with common distribution P ∈ P(X ). We write E,Var, and Cov for the
expectation, variance, and covariance on this space; we add subscripts of P when necessary
in order to emphasize that the distribution of Yi is P for all i ∈ N. Moreover, we will impose
further geometric conditions on (X , d) and integrability conditions on P when we need them.

First we discuss geometric conditions on (X , d). As in all theory for Fréchet means, our
results require certain properties of this underlying metric space (X , d). As we discussed in
Chapter 4, a common assumption is for (X , d) to be a Heine-Borel space, meaning its closed
balls are all compact. While we saw that this condition is not necessary for the no false
positives property (6.1), it turns out that in order to achieve dH-consistency (6.3) we need
to assume this and slightly more. Thus, we introduce the following notion:

Definition 8. For a metric space (X , d) and ε ≥ 0, we write N(X ,d)(ε) or simply NX (ε) for
the smallest number of d-balls of radius ε ≥ 0 needed to cover X . A metric space (X , d) is
called a Dudley space if it is compact and∫ ∞

0

√
logN(X ,d)(ε)dε <∞.

A metric space is called a Heine-Borel-Dudley space if all of its closed balls are Dudley with
respect to the inherited metric.

Evidently, every Heine-Borel-Dudley space is a Heine-Borel space so it admits a weak-
like topology. In particular, the asymptotic results of Chapter 4 all hold when (X , d) is a
Heine-Borel-Dudley space. As we will soon see, the sort of finite-dimensionality afforded by
the Heine-Borel-Dudley property is primarily used to ensure that Gaussian distributions on
C(X ), the space of continuous functions from (X , d) to R, are sufficiently well-behaved.
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Second we discuss integrability conditions on P . More precisely, we define, for each i ∈ N,
the random function Zi : X 2 → R via

Zi(x, x
′) := dp(x, Yi)− dp(x′, Yi)−Wp(P, x, x

′)

for x, x′ ∈ X ; of course, we need P ∈ Pp−1(X ) in order for the third term to be well-
defined, in which case each Zi is a random centered function. It turns out, as the following
technical result shows, that this integrability also implies several useful continuity estimates
for {Zi}i∈N. Here, we write diam(S) := supx,x′∈S d(x, x′) for the diameter of an arbitrary
subset S ⊆ X .

Lemma 14. If P ∈ Pp−1(X ), then for all i ∈ N and all compacts K ⊆ X , the function Zi :
K2 → R is P-almost surely locally Lipschitz with respect to the metric D((x1, x

′
1), (x2, x

′
2)) =

d(x1, x
′
1) + d(x2, x

′
2) and its local Lipschitz constant Mi,K satisfies

Mi,K ≤ 2pcp−1 min
o∈K

(
dp−1(o, Yi) + Wp−1(P, o) + 2(diam(K))p−1

)
P-almost surely, where cp−1 is the constant appearing in (4.2).

Proof. We simply use (4.3) twice to get

|Zi(x1, x
′
1)− Zi(x2, x

′
2)| ≤ pd(x1, x2)

(
dp−1(x1, Yi) + dp−1(x2, Yi)

)
+ pd(x′

1, x
′
2)
(
dp−1(x′

1, Yi) + dp−1(x′
2, Yi)

)
+ pd(x1, x2) (Wp−1(P, x1) + Wp−1(P, x2))

+ pd(x′
1, x

′
2) (Wp−1(P, x

′
1) + Wp−1(P, x

′
2)) .

Now for any o ∈ K we use (4.2) to further this bound as

|Zi(x1, x
′
1)− Zi(x2, x

′
2)|

≤ 2pcp−1D((x1, x2), (x
′
1, x

′
2))
(
dp−1(o, Yi) + Wp−1(P, o) + 2(diam(K))p−1

)
.

This finishes the proof.

Because we will also need to study the interactions between the functions {Zi}i∈N, we
require further integrability of P so that certain covariances are well-defined. More precisely,
our next object of study is the function RP : X 4 → R defined via

RP (x, x′, x′′, x′′′) := Cov(Zi(x, x
′), Zi(x

′′, x′′′))

for x, x′, x′′, x′′′ ∈ X and any i ∈ N. For simplicity, and by a slight abuse of notation, we also
write

RP (x, x′) := RP (x, x′, x, x′) = Var(Zi(x, x
′))

for x, x′ ∈ X and any i ∈ N. As before, we need P ∈ P2p−2(X ) in order for RP to make
sense, but it turns out that this condition also yields the following continuity estimates:
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Lemma 15. If P ∈ P2p−2(X ), then for all compacts K ⊆ X , the function RP : K4 → R is
locally Lipschitz with respect to the metric D((x1, x

′
1, x

′′
1, x

′′′
1 ), (x2, x

′
2, x

′′
2, x

′′′
2 )) = d(x1, x2) +

d(x′
1, x

′
2) + d(x′′

1, x
′′
2) + d(x′′′

1 , x
′′′
2 ), and its local Lipschitz constant MP,K satisfies

MP,K ≤ 48p2c2p−1diam(K)

(
min
o∈K

W2p−2(P, o) + (diam(K))2p−2

)
where cp−1 is the constant appearing in (4.2).

Proof. For any x1, x
′
1, x

′′
1, x

′′′
1 , x2, x

′
2, x

′′
2, x

′′′
2 ∈ K and any i ∈ N, use Lemma 14 twice to get:

|Zi(x1, x
′
1)Z1(x

′′
1, x

′′′
1 )− Zi(x2, x

′
2)Z1(x

′′
2, x

′′′
2 )|

≤ |Zi(x1, x
′
1)| · |Zi(x

′′
1, x

′′′
1 )− Zi(x

′′
2, x

′′′
2 )|+ |Zi(x

′′
2, x

′′′
2 )| · |Zi(x1, x

′
1)− Zi(x2, x

′
2)|

≤M2
i,K

(
d(x1, x

′
1)D((x′′

1, x
′′′
1 ), (x′′

2, x
′′′
2 )) + d(x′′

2, x
′′′
2 )D((x1, x

′
1), (x2, x

′
2))

)
≤ D((x1, x

′
1, x

′′
1, x

′′′
1 ), (x2, x

′
2, x

′′
2, x

′′′
2 ))diam(K)M2

i,K .

Since Zi is centered, we can take the expectation above and deduce that RP : K4 → R is
locally Lipschitz with Lipschitz constant MP,K satisfying MP,K ≤ diam(K)EP [M2

i,K ]. Then
we can bound:

EP [M2
i,K ] ≤ 12p2c2p−1 min

o∈K

(
W2p−2(P, o) + (Wp−1(P, o))2 + 4(diam(K))2p−2

)
≤ 24p2c2p−1 min

o∈K

(
EP [d2p−2(x0, Y )] + 2(diam(K))2p−2

)
≤ 48p2c2p−1 min

o∈K

(
EP [d2p−2(x0, Y )] + (diam(K))2p−2

)
,

where we used Cauchy-Schwarz to get (Wp−1(P, o))2 ≤ W2p−2(P, o) for all o ∈ K.

An important consequence of these estimates is that RP depends continuously on P :

Lemma 16. If {Pn}n∈N and P in P2p−2(X ) have Pn → P in τ 2p−2
w , then RPn → RP

uniformly on compact sets.

Proof. Fix K ⊆ X 4 compact. By Lemma 6, we have

lim sup
n∈N

min
o∈K

W2p−2(Pn, o) ≤ min
o∈K

lim sup
n∈N

W2p−2(Pn, o) = min
o∈K

W2p−2(P, o) <∞.

In particular, Lemma 15 shows that {RPn}n∈N are uniformly Lipschitz on K, so the Arzela-
Ascoli theorem guarantees that they have a subsequential limit, in the topology of uniform
convergence on K. But we already have RPn → RP pointwise by Lemma 6, so we in fact
have RPn → RP uniformly on K.
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Now we combine these geometric considerations and integrability considerations. Our
ultimate goal will be to establish limit theorems for the random continuous functions Gn :
X 2 → R defined as

Gn =
n∑

i=1

Zi,

for n ∈ N. Of course, classical limit theorems allow us to analyze the convergence of the
sequence {Gn(x, x′)}n∈N for any fixed x, x′ ∈ X. However, for our later purposes, this will
not be enough; we need sufficiently powerful functional limit theorems which allow us to
analyze the convergence of the sequence {Gn}n∈N across the whole domain X2 (or compact
subests thereof) simultaneously.

We begin with the functional central limit theorem, which takes place in the space C(X 2)
of continuous functions X 2 to R. Because of the integrability assumption P ∈ P2p−2(X ),
we see that the function RP is a positive semi-definite kernel on the space X 2. Thus, there
exists a unique centered Gaussian measure on C(X 2) whose covariance structure is given by
RP ; we denote this Gaussian measure by GP . We get the following:

Proposition 4. If (X , d) is a Heine-Borel-Dudley space, p ≥ 1, and P ∈ P2p−2(X ), then the
random functions {n−1/2Gn}n∈N converge in distribution to GP with respect to the topology
of uniform convergence on compact sets.

Proof. Fix a compact K ⊆ X and note that (X , d) being a Dudley space implies that (K2, D)
is a Dudley space, where D is the metric on X 2 defined via D((x1, x

′
1), (x2, x

′
2)) = d(x1, x

′
1)+

d(x2, x
′
2). Then use Lemma 14 to see that each random function Zi : K2 → R for i ∈ N is

Mi,K-Lipschitz, where E[M2
i,K ] <∞. In particular, this implies supx,x′∈X Var(Zi(x, x

′)) <∞.
Therefore, the desired convergence follows from [103, Theorem 1].

Next we study the functional law of the iterated logarithm, which requires some notation.
For each compact subset K ⊆ X and P ∈ P2p−2(X ), we write RK,P and GK,n for the
restrictions RK,P := RP |K×K and GK,n := Gn|K×K , respectively, and we let HK,P ⊆ C(K ×
K) denote the reproducing kernel Hilbert space (RKHS) with kernel RK,P ; we write ∥ · ∥K,P

and ⟨·, ·⟩K,P for the norm and inner product of HK,P , and write BK,P := {f ∈ HK,P :
∥f∥K,P ≤ 1} ⊆ C(K ×K) for the unit ball of HK,P . Then we have the following:

Proposition 5. If (X , d) is a Heine-Borel-Dudley space, p ≥ 1, and P ∈ P2p−2(X ), then, for
each compact set K ⊆ X , the random functions {(2n log log n)−1/2GK,n}n∈N form a relatively
compact set with closure BK,P , with respect to the topology of uniform convergence on K.

Proof. The result follows from [131, Corollary 1.3] and the calculations appearing in the
proof of Proposition 4.

Lastly, we introduce a fundamental quantity that will appear in both of our main results.
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X

Wp(P, · , o)

Mp(P )
Wp(P̄n, · , o)

Figure 6.1: The fluctuation variation measures, up to constants, the maximum possible
fluctuation of the difference between the values of the Fréchet functional on distinct points
in the Fréchet mean set.

Definition 9. For P ∈ P2p−2(X ), we write

σp(P ) :=
√

2 sup
x,x′∈Mp(P )

√
VarP (dp(x, Y1)− dp(x′, Y1)), (6.4)

called the fluctuation variation of P on Mp(P ).

Some basic remarks about the fluctuation variation are in order. First of all, using the
notation of this section, we can equivalently write σ2

p(P ) := supx,x′∈Mp(P ) RP (x, x′). Now
suppose that (X , d) is Heine-Borel-Dudley (or even just Heine-Borel). In this case, Mp(P )
is compact by Lemma 4 and RP is continuous by Lemma 15, so the supremum is achieved
and can be replaced with a maximum; in particular, σp(P ) <∞. Moreover, observe that if
Mp(P ) is a singleton then we have σp(P ) = 0, but that the converse fails; rather, we have
σp(P ) = 0 if and only if dp(x, · ) = dp(x′, · ) holds P -almost everywhere for all x, x′ ∈Mp(P ).
Lastly, let us mention that our results will be sharp for the case of 0 < σp(P ) <∞, and the
analysis seems to be much more complicated when σp(P ) = 0.

To close this section, we detail a further connection between the fluctuation variation
and the RKHS of interest. It states that the fluctuation variation σp(P ) is equal to the
the largest possible (bivariate) point evaluation of functions in the unit ball of RP on any
compact thickening of the set Mp(P )

Lemma 17. If (X , d) is a Heine-Borel space, p ≥ 1, and P ∈ P2p−2(X ), then for any
compact K ⊆ X with Mp(P ) ⊆ K, we have

σp(P ) =
√

2 · max
f∈BK,P

max
x,x′∈Mp(P )

f(x, x′).
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Proof. For one inequality, f ∈ BK,P and x, x′ ∈ Mp(P ). By the reproducing property and
Cauchy-Schwarz, we have

f(x, x′) = ⟨f,RK,P (x, x′, · , · )⟩K,P ≤ ∥f∥K,P∥RK,P (x, x′, · , · )∥K,P

≤
√

RK,P (x, x′, x, x′) ≤ σp(P )√
2

.

Thus, √
2 · sup

f∈BK,P

sup
x,x′∈Mp(P )

f(x, x′) ≤ σp(P ).

For the other inequality, take arbitrary x, x′ ∈Mp(P ), and set

fx,x′ =
RK,P (x, x′, ·, ·)

∥RK,P (x, x′, · , · )∥K,P

.

By construction, we have fx,x′ ∈ BK,P and

fx,x′(x, x′) = ⟨fx,x′ , RK,P (x, x′, · , · )⟩K,P =
√
RK,P (x, x′, x, x′),

hence √
2 · sup

f∈BK,µ

sup
x,x′∈Mp(P )

f(x, x′) ≥ σp(P ).

So, the result is proved.

We also have the following asymptotic version of this statement:

Lemma 18. Suppose (X , d) is a Heine-Borel space, p ≥ 1, and P ∈ P2p−2(X ), and that
{Kδ}0<δ≤1 is a collection of compact subsets of X satisfying

⋂
0<δ≤1Kδ = Mp(P ). Then

√
2 · sup

f∈BK1,P

max
x∈Mp(P )

max
x′∈Kδ

f(x, x′)→ σp(P )

as δ → 0.

Proof. It is well-known that the unit ball of a RKHS on a compact metric space is compact
in the topology of uniform convergence. In particular, there exists a sequence {δn}n∈N with
δn → 0, some (f, x, x′) ∈ BK1,P ×Mp(P )×K1, and some (fn, xn, x

′
n) ∈ BK1,P ×Mp(P )×Kδn

for each n ∈ N such that we have fn → f uniformly, xn → x and x′
n → x′ in d, and

lim sup
δ→0

sup
f∈BK1,P

max
x∈Mp(P )

max
x′∈Kδ

f(x, x′) = lim
n→∞

fn(xn, x
′
n).

Of course, we have fn(xn, x
′
n) → f(x, x′) as n → ∞, and the assumption of

⋂
0<δ≤1Kδ =

Mp(P ) implies x, x′ ∈Mp(P ). Therefore, using Lemma 17 we have shown

√
2 · lim sup

δ→0
sup

f∈BK1,P

max
x∈Mp(P )

max
x′∈Kδ

f(x, x′) ≤
√

2 · sup
f∈BK1,P

max
x,x′∈Mp(P )

f(x, x′) = σp(P ).
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Conversely, for any 0 < δ ≤ 1 we use Lemma 17 and Kδ ⊇Mp(P ) to immediately get

√
2 · sup

f∈BK1,P

max
x∈Mp(P )

max
x′∈Kδ

f(x, x′) ≥
√

2 · sup
f∈BK1,P

max
x,x′∈Mp(P )

f(x, x′) = σp(P ).

Therefore, taking the lim inf as δ → 0 completes the proof.

6.2 Consistency Results

In this section we will prove the main results on dH-consistency, so let us assume the following:
(X , d) is a Heine-Borel-Dudley space, p ≥ 1, and (Ω,F ,P) is a probability space supporting
an IID sequence Y1, Y2, . . . of X -valued random variables with common distribition P ∈
P2p−2(X ); all “in probability” and “almost surely” statements refer to P.

Our goal is to find an estimator M̂p : X n → K(X ) which satisfies the desired consistency

properties. For convenience, and in the usual fashion, let us write M̂n
p := M̂p(Y1, . . . , Yn).

We say an estimator M̂n
p is weakly dH-consistent if

dH(Mp(P ), M̂p)→ 0 (6.5)

holds in probability, and that it is strongly dH-consistent if (6.5) holds almost surely.
We begin with a negative result for the natural estimator, the empirical Fréchet mean

Mp(P̄n). While it is easy to come up with examples which show that Mp(P̄n) can fail to be
even weakly dH-consistent, the following result shows that inconsistency is more general:

Theorem 14. If (X , d) is a finite metric space, then Mp(P̄n) is a strongly dH-consistent
estimator of Mp(P ) if and only if σp(P ) = 0.

Proof. By Theorem 9 we have

max
x̄n∈Mp(P̄n)

min
x∈Mp(P )

d(x̄n, x)→ 0

almost surely, so it suffices to show that σp(P ) = 0 if and only if

max
x∈Mp(P )

min
x̄n∈Mp(P̄n)

d(x, x̄n)→ 0 (6.6)

almost surely.
For the first direction, suppose that σp(P ) = 0 and let us show that (6.6) holds almost

surely. To do this, we first observe that σp(P ) = 0 implies that we have Wp(P̄n, x, o) =
Wp(P̄n, x

′, o) almost surely for all x, x′ ∈ Mp(P ) and o ∈ X , and hence that Mp(P ) ∩
Mp(P̄n) ̸= ∅ implies Mp(P ) ⊆ Mp(P̄n) almost surely. Next, we observe that since (X , d)
is a finite metric space, (6.6) holding almost surely is equivalent to Mp(P ) ⊆ Mp(P̄n) for
sufficiently large n ∈ N almost surely. Thus, it suffices to show that we have Mp(P ) ∩
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Mp(P̄n) ̸= ∅ for sufficiently large n ∈ N almost surely. To do this, we will show that the
event

E := {Mp(P ) ∩Mp(P̄n) = ∅ for infinitely many n ∈ N}
has P(E) = 0. Indeed, observe that the following holds on E ∩ {P̄n → P in τ p−1

w }: There
exists a subsequence {nk}k∈N such that Mp(P ) ∩Mp(P̄nk

) = ∅ for all k ∈ N, so choosing
x̄k ∈ Mp(P̄nk

) arbitrarily for each k ∈ N, we use Theorem 8 to get some x ∈ Mp(P ) and a
further subsequence {kj}j∈N such that x̄kj → x as j → ∞. But (X , d) being finite implies
x̄kj = x for sufficiently large j ∈ N, so x ∈Mp(P )∩Mp(P̄nkj

) is a contradiction. We therefore

have
E ∩ {P̄n → P in τ p−1

w } = ∅

hence P(E) ≤ P(Ω \ {P̄n → P in τ p−1
w }) = 0.

For the second direction, suppose that (6.6) holds almost surely, and let us show that
σp(P ) = 0. To do this, take arbitrary x, x′ ∈Mp(P ) and note that we have Wp(P, x, x

′) = 0.
Now we see that the IID random variables {Zi}i∈N defined via Zi := dp(x, Yi) − dp(x′, Yi)
are integrable and centered, so we can define the random walk {Sn}n∈N via Sn :=

∑n
i=1 Zi.

Importantly, observe that x, x′ ∈ Mp(P̄n) if and only if Sn = 0. Thus (6.6) holding almost
surely implies that {Sn}n∈N is eventually equal to zero, and this can only happen if P(Zi =
0) = 1 for all i ∈ N. This is equivalent to σp(P ) = 0 and concludes the proof.

This result allows us to easily generate negative examples, that is examples where the
empirical Fréchet mean is not a strongly consistent estimator of the population Fréchet mean.
The simplest is X = {1, 2, . . . ,m} for m ≥ 2 where d is the discrete metric and P is the
uniform measure; since every point is indistinguishable under both d and P , we certainly
have σp(P ) = 0.

In order to cook up some other estimator which is dH-consistent, we introduce the notion
of relaxed Fréchet means.

Definition 10. For any metric space (X , d), any p ≥ 1, and any P ∈ Pp−1(X ) and ε ≥ 0,
we let

Mp(P, ε) := {x ∈ X : Wp(P, x, x
′) ≤ ε for all x′ ∈ X} ,

called the ε-relaxed Fréchet p-mean set of P .

Observe that Mp(P, 0) = Mp(P ) for P ∈ Pp−1(X ), so the relaxation parameter ε ≥ 0
controls which level sets of the Fréchet functional are included in this approximate Fréchet
mean set. We note that we will only use the definition given in this form, but that one
can also give equivalent definitions of relaxed Fréchet means, similar to what we saw for
unrelaxed Fréchet means in Lemma 5.

Our proposed estimator will be of the form Mp(P̄n, εn) for some carefully-chosen relax-
ation scale εn. A sequence of relaxation scales {εn}n∈N applied to form the empirical relaxed
Fréchet mean sets {Mp(P̄n, εn)}n∈N will be referred to as a relaxation rate, and we often
simply write εn in place of {εn}n∈N. By a random relaxation rate we mean a relaxation rate
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εn in which εn is a random variable for each n ∈ N; these can of course be deterministic or
independent of Y1, Y2, . . ., but the most interesting and important examples are adaptive, in
the sense that εn is σ(Y1, . . . , Yn)-measurable for all n ∈ N.

This interest in relaxed Fréchet mean sets is not new. Indeed, in [180, Corollary 5.1
and Corollary 5.2] it is shown that if a relaxation rate satisfies εn → 0, then Mp(P̄n, εn)
satisfies the no false positives property (6.1) almost surely. Interestingly, it was observed
[180, Appendix A.3] in the simple example of X = {0, 1}, p = 2, and P = 1

2
δ0 + 1

2
δ1, that

choosing the relaxation rate as εn := n−1/4 implies that M2(P̄n, εn) also satisfies the no false
negatives property (6.2) almost surely. In words, applying a vanishing relaxation rate does
not disturb (6.1), and applying a sufficiently slowly vanishing relaxation rate allows obtaining
(6.2). Of course, in order to be as efficient as possible, one wants to choose the relaxation rate
which is the fastest possible among all sufficiently slow relaxation rates. Thus our goal is to
understand the fastest possibly sufficiently slow relaxation rate for dH-consistent estimation.

In light of the central limit theorem, a natural guess for a useful relaxation rate is some-
thing proportional to n−1/2. As the next result shows, this is not slow enough to get even
weak dH-consistency, but we can obtain a Gaussian-like bound on its error probability:

Theorem 15. Let (X , d) be a Heine-Borel-Dudley space, p ≥ 1, and P ∈ P2p−2(X ). Then,
there exists a constant µp(P ) < ∞ such that for any c ≥ µp(P ), the relaxation rate εn =
cn−1/2 satisfies

sup
δ>0

lim sup
n→∞

P(dH(Mp(P̄n, εn),Mp(P )) ≥ δ) ≤ exp

(
−(c− µp(P ))2

σ2
p(P )

)
,

with the convention the right side is 0 if σ2
p(P ) = 0.

Proof. Fix δ > 0 and denote Kδ := (Mp(P ))δ the δ-thickening of Mp(P ). Since (X , d) is a
Heine-Borel space and Mp(P ) is compact by Corollary 4, it follows that Kδ is compact. By
Proposition 4, the sequence {n−1/2GKδ,n}n∈N converges in distribution to the Gaussian pro-
cess GKδ := {GKδ(x, x′)}x,x′∈Kδ with distribution GP . Because GKδ takes values in C(Kδ ×
Kδ), it almost surely bounded. Now let us define σ2

p(P ; δ) := 2 · supx,x′∈Kδ E[(GKδ(x, x′))2] =
2 · supx,x′∈Kδ RP (x, x′) which is finite since Lemma 15 shows that R is continuous. By the
Borell-TIS inequality, the quantity µp(P ; δ) := E[∥GKδ∥∞] is finite, and for all c ≥ µp(P ; δ),
we have

P(∥GKδ∥∞ ≥ c) ≤ exp

(
−(c− µp(P ; δ))2

σ2
p(P ; δ)

)
,

and also, by convergence in distribution, we have

lim sup
n→∞

P(∥n−1/2GKδ,n∥∞ ≥ c) ≤ exp

(
−(c− µp(P ; δ))2

σ2
p(P ; δ)

)
.
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Now observe that

{Mp(P̄n, εn) ⊆ Kδ} ∩ {∥n−1/2GKδ,n∥∞ < c}
⊆ {∀x ∈Mp(P ),∀x′ ∈Mp(P̄n, εn), GKδ,n(x, x′) ≤ c

√
n}

⊆ {∀x ∈Mp(P ),∀x′ ∈Mp(P̄n, εn),Wp(P̄n, x, x
′) ≤ cn−1/2}

⊆ {Mp(P ) ⊆Mp(P̄n, εn)}.

Therefore, these bounds combined with Theorem 9 yield:

lim sup
n→∞

P(Mp(P ) ̸⊆Mp(P̄n, εn))

≤ lim sup
n→∞

(
P(Mp(P̄n, εn) ̸⊆ Kδ) + P(∥n−1/2GKδ,n∥∞ ≥ c)

)

≤ exp

(
−(c− µp(P ; δ))2

σ2
p(P ; δ)

)
.

Since we of course have

P(dH(Mp(P̄n, εn),Mp(P )) ≥ δ) ≤ P(Mp(P ) ̸⊆Mp(P̄n, εn)),

it suffices to simply take the limit as δ → 0. We already have σp(P ; δ)→ σp(P ) as δ → 0 by
the continuity of RP . So, we just need to show that µp(P ; δ)→ µp(P ) := E[∥GMp(P )∥∞] <∞.
Indeed, this follows easily from the sample path continuity of GP and dominated convergence.

Because of the previous result, strong dH-consistency requires a relaxation rate which is
slightly slower than n−1/2 or any constant multiple thereof. As we see in the following, a
logarithmic correction is what is needed:

Theorem 16. Let (X , d) be a Heine-Borel-Dudley space, p ≥ 1, and P ∈ P2p−2(X ). Then,
the relaxation rate εn := cn−1/2(log log n)1/2 satisfies the following:

(i) If c > σp(P ), then Mp(P̄n, εn) is a strongly dH-consistent estimator of Mp(P ), and
P(Mp(P ) ⊆Mp(P̄n, εn) for sufficiently large n ∈ N) = 1.

(ii) If c < σp(P ), then Mp(P̄n, εn) is not a strongly dH-consistent estimator of Mp(P ). In
fact, it is strongly dH-inconsistent, in that P(dH(Mp(P ),Mp(P̄n, εn))→ 0) = 0.

Proof. The key observation in both cases is that our choice of relaxation parameter, along
with some simple arithmetic, shows that we have

{Wp(P̄n, x, x
′) ≤ εn} =

{
Gn(x, x′)√
n log log n

≤
√

n

log log n
(εn −Wp(P, x, x

′))

}
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for all x, x′ ∈ X and n ∈ N. In particular, if x′ ∈Mp(P ), then{
(n log log n)−1/2Gn(x, x′) > c

}
⊆ {Wp(P̄n, x, x

′) > εn} (6.7)

for all x ∈ X . Conversely, if x ∈Mp(P ), then{
(n log log n)−1/2Gn(x, x′) ≤ c

}
⊆ {Wp(P̄n, x, x

′) ≤ εn} (6.8)

for all x′ ∈ X . Now we proceed to the main proof, writing Kδ := (Mp(P ))δ for the δ-
thickening of Mp(P ) for all δ > 0; these sets are compact by the Heine-Borel property of X
and because Mp(P ) is compact.

For (i), we use Theorem 9 to get

max
x̄n∈Mp(P̄n)

min
x∈Mp(P )

d(x̄n, x)→ 0 (6.9)

almost surely, so it suffices to show

max
x∈Mp(P )

min
x̄n∈Mp(P̄n)

d(x, x̄n)→ 0 (6.10)

almost surely; let us write E for the event that (6.9) occurs. Towards showing that (6.10)
occurs almost surely, use Lemma 18 to get

√
2 · max

f∈BK1,P

max
x∈Mp(P )

max
x′∈Ks

f(x, x′)→ σp(P )

as s→ 0, hence there exists 0 < s < 1 such that
√

2 · max
f∈BK1,P

max
x∈Mp(P )

max
x′∈Ks

f(x, x′) < c.

By Proposition 5, there is an event F with P(F ) = 1 on which {(2n log log n)−1/2GK1,n} is
relatively compact and its set of limits is exactly BK1,P . Since Mp(P ) and Ks are compact,
there exists f ∈ BK1,P such that

lim sup
n→∞

max
x∈Mp(P )

max
x′∈Ks

Gn(x, x′)√
n log log n

=
√

2 · max
x∈Mp(P )

max
x′∈Ks

f(x, x′)

≤
√

2 · max
f∈BK1,P

max
x∈Mp(P )

max
x′∈Ks

f(x, x′) < c.

Hence, on E ∩ F , for sufficiently large n ∈ N we have

max
x∈Mp(P )

max
x′∈Ks

Gn(x, x′)√
n log log n

< c.

Lastly observe that on E we have Mp(P̄n) ⊆ Ks for sufficiently large n ∈ N, so combining
the previous display with (6.8) yields

E ∩ F ⊆ E ∩ {Mp(P ) ⊆Mp(P̄n, εn) for sufficiently large n ∈ N} (6.11)
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as claimed.
For (ii), we use Lemma 17 to get f ∈ BK1,P , and x, x′ ∈Mp(P ) such that

√
2 · f(x, x′) =

σp(P ). Now let η satisfy 0 < η < σp(P ) − c. Because f is continuous, there exists 0 <
r < 1 such that we have

√
2 · f(z, x′) > σp(P ) − η for all z ∈ B̄r(x). Note that we

selected r < 1 so that B̄r(x) ⊆ K1. Now by Proposition 5, there exists an event E with
P(E) = 1, on which the following is true: There is a subsequence {nk}k∈N such that we have
(2nk log log nk)−1/2GK1,nk

→ f in the topology of uniform convergence on K1. Also recall
that GK1,n is just the restriction of Gn to K1 ×K1. Therefore,

lim sup
n→∞

min
z∈B̄r(x)

(n log log n)−1/2Gn(z, x′) ≥ lim inf
k→∞

min
z∈B̄r(x)

(nk log log nk)−1/2Gnk
(z, x′)

≥ min
z∈B̄r(x)

√
2 · f(z, x′)

≥ σp(P )− η

> c.

We combine this with (6.7) to see that on E and for fixed x′ ∈ Mp(P ), there are infinitely
many n ∈ N satisfying minz∈B̄r(x) Wp(P̄n, z, x

′) > εn. Also, observe{
min

z∈B̄r(x)
Wp(P̄n, z, x

′) > εn

}
⊆ {B̄r(x) ∩Mp(P̄n, εn) = ∅}

⊆ {dH(Mp(P̄n, εn),Mp(P )) ≥ r}.

Therefore, on E we have lim supn→∞ dH(Mp(P̄n, εn),Mp(P )) ≥ r. In particular, we have
shown P(dH(Mp(P ),Mp(P̄n, εn))→ 0) = 0 as claimed.

Let us now summarize and compare the results thus far. In light of Theorem 15, it is
natural to consider the weak asymptotic error probability for each population distribution
P ∈ P2p−2(X ) and each relaxation rate εn defined via

WEP (εn) = sup
δ>0

lim sup
n→∞

P(dH(Mp(P̄n, εn),Mp(P )) ≥ δ).

Similarly, in light of Theorem 16, it is natural to consider the strong asymptotic error prob-
ability for each P ∈ P2p−2(X ) and each εn defined via

SEP (εn) = 1− P
(
dH(Mp(P̄n, εn),Mp(P ))→ 0

)
.

(Note that WEP (εn) and SEP (εn) are shorthand for WEP ({εn}n∈N) and SEP ({εn}n∈N), re-
spectively.) Figure 6.2 summarizes the results of Theorem 15 and Theorem 16 in terms of
these weak and strong error quantities.

In words, we have shown the strong dH-consistency for relaxed empirical Fréchet mean set
estimators experiences a sharp transition at the relaxation rate εn = σp(P )n−1/2(log log n)1/2.
The “critical” relaxation rate of εn = σp(P )n−1/2(log log n)1/2 appears to be more compli-
cated, and we do not know what behavior to expect in this case.
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Figure 6.2: The dH-consistency properties of relaxed empirical Frećhet mean set estimators,
for a population distribution P ∈ P2p−2(X ). As a function of the pre-factor c ≥ 0, the weak
error of the cn−1/2-relaxed empirical Fréchet mean set estimators decays in a Gaussian-like
way (left), and the the strong error of the cn−1/2(log log)1/2-relaxed empirical Fréchet mean
set estimators experiences a phase transition (right).



82

Chapter 7

Applications in Phylogenetics

For N ∈ N, a labeled tree on N leaves can be identified with its distance matrix; since
metric trees are known to satisfy an ultrametricity property, we define an equidistant N-
leaf tree to be a distance matrix w on the set [N ] := {1, 2, . . . , N} satisfying w(i, k) ≤
max(w(i, j), w(j, k)) for all i, j, k ∈ [N ]. In particular, the space UN of all equidistant N -leaf
trees can be naturally embedded into the Euclidean space

R(N
2 ).

Geometrically speaking, it is known [34, Section 2] that UN is a union of (2N − 3)!! =
(2N−3)(2N−5) · · · 3·1 orthants each of dimension N−2, and that each orthant corresponds
to a unique binary tree topology.

The space of UN inherits a natural geometry from the ambient Euclidean space by defining
the distance between two points to be the smallest possible Euclidean arc length of a path
in UN connecting them. This idea was developed in detail in one of the seminar works
of non-Euclidean statistics [34], so this metric is often called the Billera-Holmes-Vogtmann
(BHV) metric and is denoted dBHV. The work [34] pioneered the use of geometric methods
in computational phylogenetics, as they showed that various statistical problems of interest
could be formulated and studied using this geometric perspective, and they proved that the
resulting BHV treespace (UN , dBHV) has many nice properties (Fréchet means are unique,
geodesics have an explicit form, geometric quantities of interest are interpretable, etc.).
However, later developments emphasized that it is notoriously difficult to do even the most
basic computations in the BHV treespace.

Because of this difficulty, other authors have proposed alternative geometries on the space
of phylogenetic trees which overcome these computational difficulties; primary among them
is the so-called tropical (that is, max-plus) projective treespace [17, 209, 106, 136], which
we now introduce. For k ∈ N, we write Rk/R1 for the Euclidean space Rk quotiented
by the action of R1, where we define c1 · (x1, . . . , xk) := (x1 + c, . . . , xk + c) for c ∈ R
and (x1, . . . , xk) ∈ Rk; in other words, Rk/R1 represents Euclidean space, modulo diagonal
translations. For x = (x1, . . . , xk) and x′ = (x′

1, . . . , x
′
k) in Rk we define

dtr(x, x
′) := max{xi − x′

i : 1 ≤ i ≤ k} −min{xi − x′
i : 1 ≤ i ≤ k}.
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It is easy to see that dtr is invariant under the action of R1 on Rk; in fact, dtr descends to
a metric on Rk/R1. By a slight abuse of notation, we also write dtr for the induced metric
on Rk/R1, called the tropical projective metric. We refer to (Rk/R1, dtr) as the tropical
projective space. Now, for N ∈ N, the space of equidistant trees UN naturally embeds into
the tropical projective space (

R(N
2 )/R1, dtr

)
,

so UN can inherit the induced metric. We refer to (UN , dtr) as the tropical projective treespace.
For N ∈ N, the authors of [135, 106] argue that (UN , dtr) is a natural metric space for

phylogenetic inference. Contrary to the BHV treespace, they show that most quantities
of interest in (UN , dtr) can be computed directly with the help of standard methods from
convex optimization and polyhedral geometry. However, they also point out that the natural
notion of central tendency—the Fréchet 1-mean M1, often called the set of Fermat-Weber
points—is typically non-unique. Thus, even the basic problem of mean estimation becomes
very complicated.

In this chapter we assume that N ∈ N is fixed and that (Ω,F ,P) is a proability space
supporting an IID sequence Y1, Y2, . . . of UN -valued random variables with common distri-
bution P ∈ P(UN). (Note that we do not make any integrability assumption.) Our goal is
to use the results of Chapter 6 to show that one can estimate the set M1(P ) from the data,
in the Hausdorff metric.

This work is based on [37] and contains a few results. We construct a procedure (Algo-
rithm 2) which implements an adaptively-relaxed Frećhet mean set estimator, where, prov-
ably, we adaptively find the fastest possible relaxation rate for strongly dH-consistent esti-
mation (Theorem 18). Along the way, we also develop some novel results about tropical
projective treespace which may be of independent interest. Lastly, we give several numeri-
cal experiments to demonstrate the convergence of our procedure in practice; these involve
simulated data as well as real data from influenza genome sequences.

7.1 Preliminaries

In this section we show that one can specialize the general results of Chapter 6 to the case
of tropical projective space and tropical projective treespace, and we also prove some novel
results on tropical projective space that may be of independent interest. To begin, we show
that the tropical projective space satisfies the desired regularity:

Lemma 19. The space (Rk/R1, dtr) is a Heine-Borel-Dudley space.

Proof. For simplicity, we identify Rk/R1 to Rk−1 by setting the first coordinate to 0. For
any x, y ∈ Rk−1, we then have

∥x− y∥∞ ≤ dtr(x, y) ≤ 2∥x− y∥∞.

Since (Rk−1, ∥ · ∥∞) is Heine-Borel-Dudley, the space (Rk−1, dtr) is Heine-Borel-Dudley.
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Next we turn to the consistency results. The primary difficulty in applying them to this
setting is the computation of the fluctuation variation σ1(P ), and how to estimate it from
samples. These concerns will be resolved based on the following insight:

Lemma 20. For P ∈ P(Rk/R1) and z ∈ supp(P ), the map dtr( · , z) : M1(P )→ R is affine.

Proof. It suffices to show that dtr(· , z) : [x, x′] → R is affine for all x, x′ ∈ M1(P ), where
[x, x′] := {(1− t)x + tx′ : 0 ≤ t ≤ 1} denotes the line segment connecting x and x′. To show
this, take an arbitrary x, x′ ∈ M1(P ) and 0 ≤ t ≤ 1, and set x∗ = (1− t)x + tx′. Then take
arbitrary r > 0, and use z ∈ supp(P ) to get P (B◦

r (z)) > 0. Observe by construction that
dtr(· , u) : M1(P )→ R is convex for any u ∈ Rk/R1, hence that we have

0 ≤ (1− t)(dtr(x, u)− dtr(x
∗, u)) + t(dtr(x

′, u)− dtr(x
∗, u)). (7.1)

Now integrate (7.1) over (Rk/R1) \B◦
r (z) with respect to P to get

0 ≤ (1− t)

∫
(Rk/R1)\B◦

r (z)

(dtr(x, u)− dtr(x
∗, u)) dP (u)

+ t

∫
(Rk/R1)\B◦

r (z)

(dtr(x
′, u)− dtr(x

∗, u)) dP (u).

(7.2)

Next add

P (B◦
r (z))

(
(1− t)(dtr(x, z)− dtr(x

∗, z)) + t(dtr(x
′, z)− dtr(x

∗, z))

)
(7.3)

to both sides of (7.2), use x, x′ ∈M1(P ), rearrange, and use the triangle inequality to get

P (B◦
r (z))

(
(1− t)(dtr(x, z)− dtr(x

∗, z)) + t(dtr(x
′, z)− dtr(x

∗, z))

)
≤ (1− t)W1(P, x, x

∗) + tW1(P, x
′, x∗)

+ (1− t)

∫
B◦

r (z)

((dtr(x, z)− dtr(x
∗, z))− (dtr(x, u)− dtr(x

∗, u))) dP (u)

+ t

∫
B◦

r (z)

((dtr(x
′, z)− dtr(x

∗, z))− (dtr(x
′, u)− dtr(x

∗, u))) dP (u)

≤ (1− t)

∫
B◦

r (z)

(r − (−r)) dP (u)

+ t

∫
B◦

r (z)

(r − (−r)) dP (u)

≤ 2P (B◦
r (z)) · r.
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Dividing the above by P (B◦
r (z)) > 0 implies

(1− t)(dtr(x, z)− dtr(x
∗, z)) + t(dtr(x

′, z)− dtr(x
∗, z) ≤ 2r. (7.4)

Finally, by taking r → 0 in (7.4) and combining with (7.1) for u = z, we get

dtr(x
∗, z) = (1− t)dtr(x, z) + tdtr(x

′, z). (7.5)

This proves the result.

As a consequence, it leads to the following:

Lemma 21. If P ∈ P(Rk/R1), then the function VarP (dtr(· , Y1) − dtr(· , Y1)) : M1(P ) ×
M1(P )→ [0,∞) is convex, hence σ1(P ) is equal to the value of the optimization problem{

maximize
√

2 ·
√

VarP (dtr(x, Y1)− dtr(x′, Y1))

over x, x′ ∈ ex(M1(P )).
(7.6)

Proof. Since Rk/R1 is a separable metric space, one has P (supp(P )) = 1. Also, for x, x′ ∈
M1(P ), we have W1(P, x, x

′) = W1(P, x
′, x) = 0. Thus:

VarP (dtr(x, Y1)− dtr(x
′, Y1))

=

∫
Rk/R1

(dtr(x, u)− dtr(x
′, u))2 dP (u)−

(∫
Rk/R1

(dtr(x, u)− dtr(x
′, u)) dP (u)

)2

=

∫
supp(P )

(dtr(x, u)− dtr(x
′, u))2 dP (u).

By Lemma 3.2, for any u ∈ supp(P ), the function (x, x′) 7→ dtr(x, u)− dtr(x
′, u) is affine on

M1(P )×M1(P ), hence its square is convex. This shows that the map (x, x′) 7→ VarP (dtr(x, Y1)−
dtr(x

′, Y1)) is a convex combination of convex functions, hence convex.

In statistical applications, the fluctuation variation σ1(P ) is typically not known, so one
needs to estimate it in order to determine the optimal pre-factor for a relaxed Fermat-Weber
set estimator. One idea is simply to consider the plug-in estimator σ1(P̄n), but it can be
shown in simple examples that the convergence σ1(P̄n) → σ1(P ) can plainly fail. Instead,
we require the following notion:

Definition 11. For P ∈ P(UN) and a compact convex set A ⊆ Rk/R1, we write

σ̂1(P,A) :=
√

2 sup
x,x′∈A

√
EP [(dtr(x, Y1)− dtr(x′, Y1))2], (7.7)

called the approximate fluctuation variation of P on A.
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The key observation will be that for any consistent but sub-optimal relaxation rate εn, we
can consistently estimate the fluctuation variation of P on M1(P ) through the approximate
fluctuation variation of P̄n on M1(P̄n, εn). In particular, it suffices to take εn := n−1/2 log log n
for the desired conclusion.

Unfortunately, the convexity of the variance functional that we used in Lemma 21 does
not extend to the relaxed Fermat-Weber set, so computing the approximate fluctuation
variation may be difficult. To get around this, we need to introduce some notation: For each
z ∈ Rk/R1, there exists a covering of Rk/R1 by finitely many polyhedra Pz = {Az,ℓ : ℓ ∈ Lz}
such that dtr(· , z) : Rk/R1 → R is linear on each Az,ℓ; for a set S ⊆ Rk/R1, we write
PS := {AS,ℓ : ℓ ∈ LS} for the coarsest common refinement of {Pz}z∈S.

Proposition 6. Suppose that A ⊆ Rk/R1 is a compact convex set with extreme points
{vi : i ∈ I} := ex(A) and that P ∈ P(Rk/R1), and write {vA,j : j ∈ IA} := A ∩⋃

ℓ∈Lsupp(P )
ex(Asupp(P ),ℓ) for the set of extreme points of the polyhedra in Psupp(P ) which

fall in A. Then, σ̂1(P,A) is equal to the value of the optimization problem{
maximize

√
2 ·
√

EP [|dtr(x, Y1)− dtr(x′, Y1)|2]
over x, x′ ∈ {vi : i ∈ I} ∪ {vA,j : j ∈ J}. (7.8)

Proof. By the same argument as in the proof of Lemma 21, the function (x, x′) 7→ E[(dtr(x, z)−
dtr(x

′, z))2] is convex on Asupp(P ),ℓ × Asupp(P ),ℓ′ for all ℓ, ℓ′ ∈ Lsupp(P ), so its maximum must
be achieved on ex(Asupp(P )ℓ × Asupp(P ),ℓ′) = ex(Asupp(P ),ℓ) × ex(Asupp(P ),ℓ′). Because of the
intersection with A, the result follows.

Next, we recall [136] which shows that M1(P̄n) is a compact convex set, and the ex-
treme points of the polyhedra in P{Y1,...,Yn} can be found as the projection onto the first k
coordinates of the extreme points of the following polyhedron{

(v, c) ∈ Rk × Rn : cl ≥ vi − vj − (Yl)i + (Yl)j, l ∈ [n], i, j ∈ [k]
}
.

As a result, for any ε ≥ 0, we can find the extreme points of M1(P, ε) and the extreme
points of the partition P{Y1,...,Yn} falling in M1(P, ε) by taking the projection onto the first
k coordinates of the extreme points of the polyhedron(v, c) ∈ Rk × Rn :

1

n

∑
l∈[n]

cl ≤ V1(P̄n) + ε, cl ≥ vi − vj − (Yl)i + (Yl)j,∀l ∈ [n], i, j ∈ [k]

 .

Thus Proposition 6 and some standard subroutines from polyhedral geometry allow us to
exactly compute σ̂1(P,M1(P, ε)).

Lastly, let us mention that, for a probability measure P ∈ P(UN), it is possible to think
of the Fermat-Weber set M1 as being computed in either of

(R(N
2 )/R1, dtr) or (UN , dtr).
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In general, Fréchet means do not behave well with respect to subspace restriction, but in
this case it turns out that the two problems are closely related. To state a precise result, let
us write MS

1 (P, ε) for the ε-relaxed Fermat-Weber set, computed in the space (S, dtr), where
S is an arbitrary closed subset of the tropical projective space. Then we have the following:

Theorem 17. For N ∈ N and P ∈ P(R(N
2 )/R1) with P (UN) = 1, and for any ε ≥ 0, we

have

MUN
1 (P, ε) = M

R(N
2 )/R1

1 (P, ε) ∩ UN .
Proof. It suffices to show M1(P ) ∩ UN ̸= ∅, since then the Fréchet functional attains the
same minimum on both the space of equidistant phylogenetic trees UN and the ambient
tropical projective space. To do this, we write E = {{i, j} : 1 ≤ i < j ≤ N} for the set of
all pairs of leaves. Then we consider the optimization problem{

minimize
∑

e∈E(ue − u{1,2})

over u ∈M1(P ).
(7.9)

(Note that the objective is invariant under the action of R1, as it must be.) Recall that
M1(P ) is compact (Corollary 4) and the objective is continuous, so there exists a minimizer
u∗ of (7.9).

We claim u∗ ∈ UN . Assume for the sake of contradiction that this is not the case, so that
there exist distinct i, j, k ∈ [N ] with u∗

{i,k} > max(u∗
{i,j}, u

∗
{j,k}). Now define u∗∗ ∈ RE via

u∗∗
e :=

{
ue if e ̸= {i, k},
max(u∗

{i,j}, u
∗
{j,k}) if e = {i, k}.

Observe that, for any w ∈ UN , we have

u∗
{i,k} − w{i,k} > max(u∗

{i,j}, u
∗
{j,k})−max(w{i,j}, w{j,k})

≥ min(u∗
{i,j} − w{i,j}, u

∗
{j,k} − w{j,k}).

This means that, for both u ∈ {u∗, u∗∗}, the map e 7→ ue − we is minimized at a coordinate
different than e = {i, k}. Since u∗∗

{i,k} < u∗
{i,k} and since u∗ and u∗∗ coincide on all coordinates

other than e = {i, k}, we conclude

dtr(u
∗, w) = max

e∈E
(u∗

e − we)−min
e∈E

(u∗
e − we)

≥ max
e∈E

(u∗∗
e − we)−min

e∈E
(u∗∗

e − we) = dtr(u
∗∗, w)

for all w ∈ UN . Now note that, for all u ∈ UN :

W1(P, u
∗∗, u) =

∫
UN

(dtr(u
∗∗, w)− dtr(u,w)) dP (w)

=

∫
UN

(dtr(u
∗, w)− dtr(u,w)) dP (w) = W1(P, u

∗, u) ≤ 0.
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This implies u∗∗ ∈M1(P ). However, we have∑
e∈E

(u∗
e − u∗

{1,2}) >
∑
e∈E

u∗∗
e − u∗∗

{1,2},

which contradicts the optimality of u∗ for the optimization problem (7.9). This shows u∗ ∈
M1(P ) ∩ UN , which ends the proof of the result.

7.2 The Estimation Procedure

In this section we construct a procedure which estimates the Fermat-Weber set of an unknown
population distribution on the basis of IID samples.

To motivate this, let us recall that in Theorem 16 we saw that cn−1/2(log log n)1/2-
relaxed Fermat-Weber set estimators are dH-consistent estimators of M1(P ), provided that
c > σ1(P ). Also, we saw that we can consistently estimate σ1(P ) via σ̂1(P,M1(P, εn))
where εn is a consistent but sub-optimal relaxation rate. This motivates a certain sort of
“two-step estimator”: first, compute the relaxed Fermat-Weber set for the relaxation rate
ε1,n := n−1/2 log log n, and use this to compute the approximate fluctuation variation cn :=
σ̂1(P,M1(P, ε1,n)); second, use the adaptively-chosen relaxation rate cnn

−1/2(log log n)1/2 to
compute a better estimate. These considerations lead us to Algorithm 2, where the multi-
step procedure AdaptRelaxFermatWeberSet can be seen as a natural extension of the
two-step procedure described above.

Theorem 18. For any P ∈ P(Rk/R1), AdaptRelaxFermatWeberSet(Y1, . . . , Yn) is
a strongly dH-consistent estimator of M1(P ). Moreover, the terminal relaxation rate εs∗,n,δ
is asymptotically optimal in that it satisfies

lim
δ→0

lim
n→∞

εs∗,n,δ

√
n

log log n
= σ1(P )

almost surely.

Proof. We write s∗ ∈ N for the last index appearing in the repeat loop of line 22.
We begin by deriving some lower bounds on εs∗,n,δ. For 0 < η < δ, write εn,η :=

(1 + η)1/2σ1(P )n−1/2(log log n)1/2. Also, for ε ≥ 0 let us define

σ1(P, ε) :=
√

2 sup
x,x′∈M1(P,ε)

√
VarP (dtr(x, Y1)− dtr(x′, Y1)). (7.10)

Using the same argument as in the proof of Theorem 16 leading to (6.11), we see that, for
0 < η < δ, the event

Eη := {M1(P ) ⊆M1(P̄n, εn,η) for sufficiently large n ∈ N}
∩
{

lim inf
n→∞

σ1(P̄n, εn,η) ≥ σ1(P )
}
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Algorithm 2 In the tropical projective space (Rk/R1, dtr), we define a procedure Adap-
tRelaxFermatWeberSet which (by Theorem 18) adaptively finds the optimal relaxation
rate for strongly dH-consistent estimation.

1: procedure FermatWeberValue
2: input: data Y1, . . . , Yn ∈ Rk

3: output: optimal objective V1(P̄n) ≥ 0
4: Vn ←minimize 1

n

∑n
l=1 cl

5: over (v, c) ∈ Rk×n

6: with cl ≥ vi − vj − (Yl)i + (Yl)j for all l ∈ [n], i, j ∈ [k]
7: return Vn

8: procedure FermatWeberSet
9: input: data Y1, . . . , Yn ∈ Rk and relaxation scale εn ≥ 0
10: output: extreme point set {vj : j ∈ In} of M1(P̄n, εn)
11: Vn ← FermatWeberValue(Y1, . . . , Yn)
12: S ← {(v, c) ∈ Rk × Rn : 1

n

∑n
l=1 cl ≤ Vn + εn, and

13: cl ≥ vi − vj − (Yl)i + (Yl)j for all l ∈ [n], i, j ∈ [k]}
14: {(vj, cj) ∈ Rk × Rn : j ∈ In} ← ExtremePoints(S)
15: return {vj : j ∈ In}
16: procedure AdaptRelaxFermatWeberSet
17: input: data Y1, . . . , Yn ∈ Rk and small constant δ > 0
18: output: subset M∗

n ⊆ Rk

19: Vn ← FermatWeberValue(Y1, . . . , Yn)
20: ε1,n,δ ← Vnn

−1/2 log log n
21: s← 0
22: repeat
23: s← s + 1
24: {vs,j : j ∈ Is,n} ← FermatWeberSet(Y1, . . . , Yn, εs,n,δ)
25: cs,n ← maximize ( 1

n

∑n
i=1 |dtr(vs,j, Yi)− dtr(vs,j′ , Yi)|2)1/2

26: over j, j′ ∈ Is,n
27: εs+1,n,δ ← (2 + δ)1/2cs,nn

−1/2(log log n)1/2

28: until εs+1,n,δ ≥ εs,n,δ
29: return ConvexHull({vs,j : j ∈ Is,n})

has full probability. Now we claim that, on Eη, we have εs,n,δ ≥ εn,η for sufficiently large
n ∈ N. We prove this by induction, for which the base case s = 1 follows immediately from
ε1,n,δ = ω(n−1/2(log log n)1/2). For the inductive step assume that the result holds for s ∈ N.
Then we can lower bound the constant cs,n appearing in the maximize/over statement in
lines 25–26 by using Proposition 6, the inductive hypothesis, Jensen’s inequality, and the
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two events comprising Eη:

cs,n = σ̂1(P̄n, εs,n,δ)

=

√√√√ max
x,x′∈M1(P̄n,εs,n,δ)

1

n

n∑
i=1

(dtr(x, Yi)− dtr(x′, Yi))2

≥

√√√√ max
x,x′∈M1(P̄n,εn,η)

1

n

n∑
i=1

(dtr(x, Yi)− dtr(x′, Yi))2

≥ σ1(P̄n, εn,η)√
2

≥
√

1 + η

2 + δ
σ1(P ),

for sufficiently large n ∈ N. As a result, we obtain

εs+1,n,δ = cs,n

√
(2 + δ) log log n

n
≥ σ1(P )

√
(1 + η) log log n

n
= εn,η,

for sufficiently large n ∈ N, and the induction is complete. In particular, the claim holds for
the terminal index s∗, hence

Eη ⊆ {εs∗,n,δ ≥ εn,η for sufficiently large n ∈ N} .

Consequently, on Eη, we have M1(P ) ⊆ M1(P̄n, εn,η) ⊆ M1(P̄n, εs∗,n,δ) for sufficiently large
n ∈ N, as well as

lim inf
n→∞

εs∗,n,δ

√
n

log log n
≥ lim inf

n→∞
εn,η

√
n

log log n
=

√
2 + η

2
σ1(P ).

Now define the event E :=
⋂

η∈(0,δ)∩QEη which has full probability. For any δ > 0, we have

and M1(P ) ⊆M1(P̄n, εs∗,n,δ) for sufficiently large n ∈ N, as well as

lim inf
n→∞

εs∗,n,δ

√
n

log log n
≥
√

2 + δ

2
σ1(P ), (7.11)

on E.
For an upper bound on εs∗,n,δ, we use Theorem 16 to see that the event

F =

{
lim sup
n→∞

σ1(P̄n, ε1,n,δ) ≤ σ1(P )

}
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has full probability. Next, recall by construction of the relaxed Fréchet mean set that the
Fréchet functional takes values in [V1(P̄n), V1(P̄n) + ε1,n,δ] for any x, x′ ∈ M1(P̄n, ε1,n,δ) and
consequently

c1,n =

√√√√ max
x,x′∈M1(P̄n,ε1,n,δ)

1

n

n∑
i=1

(dtr(x, Yi)− dtr(x′, Yi))2 ≤
√

σ1(P̄n, ε1,n,δ)2

2
+ (ε1,n,δ)2

by Proposition 6. In particular, on F , we obtain

lim sup
n→∞

ε2,n,δ

√
n

log log n
≤
√

2 + δ

2
lim sup
n→∞

σ1(P̄n, ε1,n,δ) ≤
√

2 + δ

2
σ1(P ).

Now note that we always have εs∗,n,δ ≤ ε2,n,δ, so we obtain

lim sup
n→∞

εs∗,n,δ

√
n

log log n
≤
√

2 + δ

2
σ1(P ) (7.12)

on F .
Now we put the pieces together. By combining (7.11) and (7.12), we get

lim
n→∞

εs∗,n,δ

√
n

log log n
=

√
2 + δ

2
σ1(P )

on E ∩ F . In particular, we have

lim
δ→0

lim
n→∞

εs∗,n,δ

√
n

log log n
= σ1(P )

almost surely, as claimed. Additionally, from (7.11) and part (i) of Theorem 16, we conclude
dH(M1(P ),M1(P̄n, εs∗,n,δ))→ 0 almost surely, as claimed.

It is also useful to mention some heuristic modifications which can be applied to Algo-
rithm 2; while these modifications render our optimality and consistency proofs invalid, we
find that they make no difference in practice. One modification concerns line 15: Instead of
returning the set {vj : j ∈ In}, one can instead returnExtremePoints(ConvexHull({vj :
j ∈ In})). This shrinks the resulting set of vertices, which significantly improves the speed
of the maximize/over optimization problem in lines 25–26. Another modification concerns
line 27: We find that one can simply take δ = 0.

7.3 Experiments

In this section we perform some experiments to test the dH-consistency results we have just
proved about AdaptRelaxFermatWeberSet. The experiments are based on simulated
data and real data, contained in the next two subsections.
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Figure 7.1: A toy model for Fermat-Weber set estimation in tropical projective space.

Simulated data

We consider the tropical projective space R3/R1. Because of the quotient, every point R3/R1
can be represented by a point in R2, if we simply set the first coordinate to be equal to zero.
Hence, in what follows, we identify R3/R1 with R2.

Now we consider the example given in [136, Example 7], where the population distribution
is

P =
1

3
δ(0,0,0) +

1

3
δ(0,3,1) +

1

3
δ(0,2,5),

and for which the Fermat-Weber set is the triangle with vertices (0, 1, 1), (0, 2, 1), and (0, 2, 2).
As before, we let Y1, Y2, . . . denote IID samples from P , and we consider the question of
estimating M1(P ) from the data Y1, . . . , Yn alone.

In Figure 7.1, we consider 3 possible estimators, computed on simulated data for number
of samples equal to n ∈ {50, 100, 200, 500, 1000, 2000}. The first is the unrelaxed Fermat-
Weber set. The second is the relaxed Fréchet mean set estimator with optimal relaxation
rate 2·3−1/2 ·n−1/2(log log n)1/2; note that we can exactly compute the critical pre-factor to be
σ1(P ) = 2 · 3−1/2 since in this case we know the population distribution, but that in general
we do not have access to this. The third is the estimator AdaptRelaxFermatWeber-
Set from Algorithm 2 which, by Theorem 18, adaptively finds the asymptotically optimal
relaxation rate.

We make the following observations about this example. First, the empirical unrelaxed
Fermat-Weber set is typically a single point: It jumps around the vertices of the population
Fermat-Weber set, but it does not, for a fixed value of n, appear to give a reasonable esti-
mator. Second, we note that the empirical adaptively-relaxed Fermat-Weber set converges
somewhat slowly to its population counterpart, when compared to the empirical optimally-
relaxed Fermat-Weber set. We found this behavior to be extremely stable across multiple
trials of the same experiment.
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Influenza data

In this subsection, we consider estimating the Fermat-Weber set of an unknown population
distribution of evolutionary trees of hemagglutinin genome sequences. We take the data
set from [106], which processes the publicly-available GI-SAID EpiFluTM data from 1995 in
New York state. We refer the reader to [106, Section 6.3] for details of the pre-processing
used to construct the data set. For our purposes, the data consists of tens of thousands of
phylogenetic trees, each of which has 4 or 5 leaves.

Estimation in tropical projective space

First we consider estimating the Fermat-Weber set of our tree data in (R(N
2 )/R1, dtr), the

ambient tropical projective space. For this part, we consider the 4-leaf data set, i.e., N = 4,
so the data naturally lies in dimension

(
4
2

)
= 6; by setting a specified coordinate to 0, we

can identify R6/R1 with R5.
We compute the output of both the unrelaxed Fermat-Weber set and the procedure

AdaptRelaxFermatWeberSet for a number of data points n ∈ {5, 10, 20, 30, 40, 50},
and the results are shown in Figure 7.3. In order to visualize these estimators, we plot the
projection of the resulting 5-dimensional polytopes onto 2-dimensional subspaces chosen uni-
formly at random. The results for 3 random subspaces are shown in Figure 7.3. We observe
that the output of AdaptRelaxFermatWeberSet seems to provide a quite conserva-
tive outer estimate of M1(P ) compared to the small (but somewhat unstable) unrelaxed
Fermat-Weber set.

Estimation in equidistant tree space

Next we consider estimating the Fermat-Weber set of our tree data in (UN , dtr), the space of
equidistant trees. For this part, we consider the 5-leaf data set. This means that N = 5, so
we can think of our data as lying in a union of (2 · 5− 3)!! = 105 orthants each of dimension
5− 2 = 3.

We compute the output of both the unrelaxed Fermat-Weber set and the procedure
AdaptRelaxFermatWeberSet for n = 12 data points. For the unrelaxed Fermat-Weber
set, we find that it contains a single equidistant tree. For AdaptRelaxFermatWeber-
Set, we find that the output only intersects 3 orthants of U5, which means that only 3
different tree topologies are represented in the estimated set; in order to visualize this, we
sample an extreme point uniformly at random from each polytope that results from intersect-
ing the estimated set with each non-trivial topology. The results can be seen in Figure 7.3.
While the estimator from AdaptRelaxFermatWeberSet can be more difficult to inter-
pret, it robustly identifies a few notable qualitative features: 4 and 5 share the most recent
common ancestor, 1 and 2 share the most distant common ancestor, and 3 lies somewhere
in between.
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Figure 7.2: Estimating the Fermat-Weber set M1(P ) of the 4-leaf inluenza data, in the
ambient tropical projective space R6/R1, using the empirical Fermat-Weber mean set (top
row) and the output of AdaptRelaxFermatWeberSet (bottom row). To visualize the
set estimators, we plot random projections onto 2-dimensional subspaces chosen uniformly
at random (one projection per column).

Discussion

In this example of tropical projective space, we have seen that the abstract optimality result
of Theorem 16 can be implemented as AdaptRelaxFermatWeberSet in Algorithm 2 in
order to estimate an unknown population Fermat-Weber set. On simulated and real data,
we have seen that this estimator provides a different view of the estimand compared to the
unrelaxed empirical Fermat-Weber set.

Let us make some basic remarks. On the positive side, we see that relaxation methods
provide increased stability for the estimation problem. This is contrasted with the unre-
laxed empirical Fermat-Weber set, which can be highly sensitive to even a single data point.
On the negative side, it seems that even the asymptotically optimal procedure AdaptRe-
laxFermatWeberSet provides a very conservative outer estimate. In this way, relaxation
methods can be seen as a complement to, rather than a replacement of, unrelaxed estimators.

We also make some comments about computation. For one, the main bottleneck of
Algorithm 2 is the combinatorial optimization problem in line 25–26; its time complexity
is quadratic in the number of extreme points of the previous Fermat-Weber set estima-
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Figure 7.3: Estimating the Fermat-Weber set M1(P ) of the 5-leaf inluenza data, in tropical
projective treespace U5. We find that the empirical Fermat-Weber set is a singleton (left)
while the output of AdaptRelaxFermatWeberSet intersects 3 different tree topologies
(right); for the latter, we plot one extremal tree (sampled uniformly at random) from each
represented topology.

tor, and this number of extreme points appears to grow exponentially with the dimension
of the problem. For example, the computation of AdaptRelaxFermatWeberSet in
Part 7.3 above already has roughly 3,400 extreme points. Another comment is that, in many
settings one needs n to be very large in order for the asymptotically adaptively optimal
rate in Θ(n−1/2(log log n)1/2) to become smaller than the asymptotically sub-optimal rate of
V1(P̄n)n−1/2 log log n. For these reasons, we believe that a useful heuristic in practice is just to
compute the relaxed empirical Fermat-Weber set for the relaxation rate V1(P̄n)n−1/2 log log n.
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Part III

Clustering
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Chapter 8

Limit Theorems for
Adaptive Clustering

The asymptotic theory of k-means clustering was initiated by the work of Pollard [165] and
Abaya and Wise [1], and has seen many developments in recent years. However, existing
results are lacking in a key way: They do not provide any guarantees for “adaptive” variants
of clustering that are used in practice by most applied statisticians and data scientists. To
explain these procedures further, let H denote a (possibly infinite-dimensional) Hilbert space
with inner product ⟨ · , · ⟩ and norm ∥ · ∥, and let Y1, Y2, . . . be a sequence of points in H.

The first of these procedures is a slight generalization of k-means.

R-restricted k-means. Fix k ∈ N and R ⊆ H. Then consider
minimize 1

n

∑n
i=1 minx∈S ∥x− Yi∥2

over S ⊆ R

with 1 ≤ #S ≤ k.

(8.1)

When R = H, this is exactly k-means clustering, but the set R provides a uniform way
to restrict the feasible set of cluster centers. Such considerations might arise, for example,
in scientific settings where a priori domain knowledge dictates that cluster centers must lie
in a “meaningful region”, or in engineering settings where physical constraints dictate that
cluster centers must lie in an “attainable region”.

Although the setting of R-restricted k-means is slightly different from the class of pro-
cedures considered by Pollard in [165], the methods therein can be easily modified to show
strong consistency under the analogous technical hypotheses; the limit of any sequence of
solutions turns out to be, as expected, a solution to the analogous population problem. In
the setting above we call k the number of clusters and R the domain of the cluster centers.

By an adaptive clustering procedure we mean one where at least one of the number of
clusters k or the domain of the cluster centers R is not fixed but rather is taken to be a
measurable function of the data. The most important adaptive clustering procedures, from
the point of view of applications in machine learning, are as follows:
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k-medoids. Fix k ∈ N, and consider
minimize 1

n

∑n
i=1 minx∈S ∥x− Yi∥2

over S ⊆ {Y1, . . . Yn}
with 1 ≤ #S ≤ k.

(8.2)

By constraining the domain of the clusters centers in this way, we force the cluster centers
to be bona fide data points rather than abstract points H; such procedures are particularly
important in interpretable machine learning where it is sometimes desirable that each cluster
center be an actual datum which serves as a prototype for the whole cluster.

Elbow-method k-means. For each k ∈ N, set

Vk := inf
S⊆H

1≤#S≤k

1

n

n∑
i=1

min
x∈S
∥x− Yi∥2,

which is the minimal objective achievable by any set of cluster centers. Then define the
discrete second derivative for k ≥ 2 via ∆2Vk := Vk+1 + Vk−1 − 2Vk, and set

kelb := min{arg max{∆2Vk : k ∈ N, k ≥ 2}}.

Note that the restriction k ≥ 2 can be understood as taking the convention that V0 = ∞,
which equivalently means that k = 1 will never be selected as the number of clusters. Now
we consider 

minimize 1
n

∑n
i=1 minx∈S ∥x− Yi∥2

over S ⊆ H
with 1 ≤ #S ≤ kelb.

(8.3)

This is a naive formalism of the well-known method for choosing k, where one inspects the
graph of {Vk}k∈N and chooses the value of k for the which the added model complexity
experiences maximally diminishing returns. Such procedures are ubiquitous in exploratory
data science, where the number of clusters is not known and fixed ahead of time, but rather
must itself be estimated. See Figure 8.1 for an illustration.

In this chapter, we prove a general consistency result which shows that all of these clus-
tering procedures converge to a suitable population limit (Proposition 9), and we give several
probabilistic applications. Our work largely parallels the results of Chapter 4 although we
have to be much more careful with the set-valued analysis considerations. The main technical
innovation which allows us to deal with the adaptive case is a general-purpose “continuity”
result which shows that the set of sets of k-means cluster centers depends continuously on
the number of cluster centers and on the domain of the cluster centers.
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Figure 8.1: The elbow-method for choosing the number of clusters in k-means clustering.
We compute the minimal objective achieveable by k-means clustering when k ranges over
{1, 2, . . . , 8}, and we plot the resulting graph. We select k to be the “elbow” of the plot,
which is the point that maximizes the discrete second derivative.

8.1 Preliminaries

In this section we develop the basic results which will combine in the next sections to prove
various limit theorems for a wide class of clustering procedures. Many of these results are
slight generalizations of results from Chapter 4, where we now focus on the set-valued setting.

To begin, we write C(H) and Cw(H) for the collections of (norm) closed and weakly closed
subsets of H, respectively. Additionally, we write K(H) for the collection of all non-empty
(norm) compact subsets of H. In this subsection we introduce some notions of convergence
for such spaces of subsets and establish some basic properties that we will later need. In
order to clarify a possible confusion in the notation, let us emphasize that the symbol w
always represents the topology of weak convergence of measures and that the symbol w
always the topology of weak convergence in a Hilbert space.

To begin we introduce and review some basic properties of “Kuratowski convergence”,
sometimes called the “Kuratowski-Painlevé convergence”. For {Cn}n∈N arbitrary subsets of
H we define the sets

Ls
n→∞

Cn :=

{
x ∈ H :

for all (norm) open neighborhoods U of x,
U ∩ Cn ̸= ∅ for infinitely many n ∈ N

}
Li

n→∞
Cn :=

{
x ∈ H :

for all (norm) open neighborhoods U of x,
U ∩ Cn ̸= ∅ for large enough n ∈ N

}
.

called the (norm) Kuratowski upper limit and (norm) Kuratowski lower limit, respectively.
More concretely, for a point x ∈ H, we have x ∈ Lsn∈NCn if and only if there exists some
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subsequence {nj}j∈N and some xj ∈ Cnj
for each j ∈ N such that ∥xj−x∥ → 0, and we have

x ∈ Lin∈NCn if and only if for any subsequence {nj}j∈N there exists a further subsequence
{ji}i∈N and some xi ∈ Cnji

for each i ∈ N with ∥xi − x∥ → 0. We also write Lswn∈NCn

and Liwn∈NCn for the analogous notions for weak convergence, which can be defined mutatis
mutandis.

Next we recall some notions of “Hausdorff convergence”, which we already discussed
briefly in Chapter 6. That is, for x ∈ H and C ′ ∈ K(H), write

d(x,C ′) := min
x′∈C′

∥x− x′∥

for the shortest distance from the point x to the set C ′. Observe that C ′ being non-empty and
compact implies that d(x,C ′) <∞ and that the infimum is achieved. Now for C,C ′ ∈ K(H),
write

d⃗H(C,C ′) := max
x∈C

d(x,C ′) = max
x∈C

min
x′∈C′

∥x− x′∥

for the largest possible shortest distance from a point in C to the set C ′. Observe that C
and C ′ being non-empty and compact imply that d⃗H(C,C ′) < ∞ and that the supremum

and infimum are both achieved. Although d⃗H is not a metric (it is not symmetric), it it easy
to show that it satisfies the following type of triangle inequality

d⃗H(C,C ′′) ≤ d⃗H(C,C ′) + d⃗H(C ′, C ′′) (8.4)

for C,C ′, C ′′ ∈ K(H). Additionally, it is easy to see that we have a version of (4.2): For any
r ≥ 0, the constant cr := max{1, 2r−1} satisfies

(d⃗H(C,C ′′))r ≤ cr

(
(d⃗H(C,C ′))r + (d⃗H(C ′, C ′′))r

)
(8.5)

for C,C ′, C ′′ ∈ K(H).

We refer to d⃗H as the one-sided Hausdorff distance (although it is not a metric), and its
relationship to the Hausdorff metric of Chapter 6 is just

dH(C,C ′) := max{d⃗H(C,C ′), d⃗H(C ′, C)}
for C,C ′ ∈ K(H).

Note that The definition of d⃗H immediately extends from to the case of C,C ′ ∈ K(H) to
the case of non-empty C,C ′ ∈ Cw(H), provided that we replace the maximum and minimum
with supremum and infimum and that we allow it to take values in the extended real half-
line, [0,∞]. So, if {Cn}n∈N and C in Cw(H) are assumed only to be non-empty then the

expression d⃗H(Cn, C) → 0 is taken to mean that d⃗H(Cn, C) is finite for sufficiently large
n ∈ N and that it converges to zero as n→∞.

Now we give some important auxiliary results.

Lemma 22. If {Rn}n∈N in C(H) and C in K(H) have C ⊆ Lin∈NRn and #C < ∞, then,
there exists a subsequence {nj}j∈N and Cj ⊆ Rnj

with #Cj = #C for all j ∈ N such that we
have dH(Cj, C)→ 0.
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Proof. Write C = {x1, . . . , xk} for k := #C, and set ε := min{d(xℓ, xℓ′) : 1 ≤ ℓ < ℓ′ ≤
k} > 0. Then apply C ⊆ Lidn∈NRn iteratively k times to get a subsequence {nj}j∈N and sets
Cj := {x1,j, . . . , xk,j} ⊆ Rnj

for each j ∈ N such that we have xℓ,j → xℓ in d as j → ∞ for
all 1 ≤ ℓ ≤ k.

Next, observe that we have max1≤ℓ≤k d(xℓ,j, xℓ) < ε/3 for sufficiently large j ∈ N. Also
by the triangle inequality, we have ε ≤ d(xℓ, xℓ′) ≤ d(xℓ, xℓ,j) + d(xℓ,j, xℓ′,j) + d(xℓ′,j, xℓ′) for
all 1 ≤ ℓ < ℓ′ ≤ k. It follows that, for sufficiently large j ∈ N and all 1 ≤ ℓ < ℓ′ ≤ k, we
have 0 < ε

3
≤ d(xℓ,j, xℓ′,j). This implies that #Cj = k for sufficiently large j ∈ N.

By construction we have d⃗H(C,Cj) → 0, so it only remains to show Cj → C in dH as

j → ∞. To do this, note that for sufficiently large j ∈ N we have d⃗H(C,Cj) < ε/2 hence
we can construct a map ϕj : C → Cj by sending each x ∈ C to some ϕj(x) ∈ Cj such
that d(x, ϕj(x)) < ε/2. Of course, if ϕj(x) = ϕj(x

′) for x, x′ ∈ C then we have d(x, x′) ≤
d(x, ϕj(x)) + d(x′, ϕj(x

′)) < ε, hence x = x′ by the minimality of ε, hence ϕj : C → Cj is
injective. Since an injective map between finite sets of the same cardinality is automatically
a bijection, there exists, for sufficiently large j ∈ N, a well-defined function ϕ−1

j : Cj → C

such that for all xj ∈ Cj we have d(xj, ϕ
−1
j (xj)) < ε/2. This means we have d⃗H(Cj, C) < ε/2

for sufficiently large j ≥ N , as needed.

Lemma 23. If {yn}n∈N and y in H have yn → y and {Sn}n∈N and S in K(H) have Sn → S
in dH, then d(yn, Sn)→ d(y, S).

Proof. By (8.4), we have

d(yn, Sn) ≤ d(yn, S) + d⃗H(S, Sn)

and
d(yn, S) ≤ d(yn, Sn) + d⃗H(Sn, S).

Thus, the result follows from the well-known continuity of d( · , S) : H → R.

Next we define the objective function which will be minimized in k-means clustering and
its variants. That is, for p ≥ 1, we define the function Wp : K(H)× Pp(H)→ [0,∞) via

Wp(S, P ) :=

∫
H
dp(y, S) dP (y) =

∫
X

min
x∈S
∥x− y∥p dP (y).

In order to study Wp and its convergence properties, we will (as in the case of Fréchet means
from Chapter 4) need to employ various tricks with uniform integrability. The core to these
is the following extension of Skorokhod’s representation theorem:

Lemma 24. For p ≥ 1, suppose that {Pn}n∈N and P in Pp(H) have Pn → P in τ pw. Then,
there exists a probability space (Ω,F ,P), with expectation E, on which are defined random
variables {Y n}n∈N and Y with laws {Pn}n∈N and P , respectively, such that we have Y n → Y
almost surely and E[∥Y n − Y ∥p]→ 0 as n→∞.
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Proof. By the standard Skorokhod theorem [104, Theorem 4.30], we get a sequence of random
variables with desired laws and with the desired almost sure convergence property, so it only
remains to show that this coupling satisfies E[∥Y n − Y ∥p] → 0 as n → ∞. Indeed, recall
from the definition of τ pw that there exists some x ∈ H with E[∥x − Y n∥p] → E[∥x − Y ∥p],
hence {∥x− Y n∥p}n∈N is uniformly integrable. Also, from (4.2) we have:

∥Y n − Y ∥p ≤ cp (∥x− Y n∥p + ∥x− Y ∥p) .

This implies that {∥Y n − Y ∥p}n∈N is uniformly integrable, and it also converges to zero
P-almost surely, hence we have E[∥Y n − Y ∥p]→ 0.

From this, we get two important approximation results:

Lemma 25. The function Wp : (K(H)× Pp(H), dH × τ pw)→ [0,∞) is continuous.

Proof. Suppose {(Sn, Pn)}n∈N and (S, P ) in K(H)×Pp(H) have (Sn, Pn)→ (S, P ) in dH×τ pw,
and let (Ω,F ,P) be as in Lemma 24. By Lemma 23, we have dp(Y n, Sn)→ dp(Y, S) almost
surely. Now fix x ∈ S arbitrarily and note that {∥x − Y n∥p}n∈N is uniformly integrable.
Then we use (8.5) to get

dp(Y n, Sn) ≤ cp(∥x− Y n∥p + (d⃗H(S, Sn))p),

hence {dp(Y n, Sn)}n∈N is uniformly integrable. This implies Wp(Sn, Pn) = E[dp(Y n, Sn)] →
E[dp(Y, S)] = Wp(S, P ) as n→∞, as claimed.

Lemma 26. If {Sn}n∈N in K(H) and {Pn}n∈N and P in Pp(H) have Pn → P in τ pw, then

lim inf
n→∞

Wp(Sn, Pn) = lim inf
n→∞

Wp(Sn, P )

and
lim sup
n→∞

Wp(Sn, Pn) = lim sup
n→∞

Wp(Sn, P ).

Proof. Get a probability space (Ω,F ,P) as in Lemma 24. Then, for arbitrary ε > 0, use
[202, equation (6.10)] to get a constant Cε > 0 such that we have

Wp(Sn, Pn) = E [dp(Y n, Sn)]

≤ CεE [∥Y n − Y ∥p] + (1 + ε)E [dp(Y, Sn)]

= CεE [∥Y n − Y ∥p] + (1 + ε)Wp(Sn, P ).

Then take n→∞ and ε→ 0 to get

lim inf
n→∞

Wp(Sn, Pn) ≤ lim inf
n→∞

Wp(Sn, P ). (8.6)
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Similarly, we can bound, for any ε > 0:

Wp(Sn, P ) = E [dp(Y, Sn)]

≤ CεE [∥Y − Y n∥p] + (1 + ε)E [dp(Y n, Sn)]

= CεE [∥Y − Y n∥p] + (1 + ε)Wp(Sn, Pn).

Thus,
lim inf
n→∞

Wp(Sn, P ) ≤ lim inf
n→∞

Wp(Sn, Pn). (8.7)

Combining (8.6) and (8.7) gives the desired lim inf equality, and the lim sup equality is proved
in the same way.

8.2 Analysis of the Clustering Map

In this section, we show that various natural maps used in the construction of clustering
procedures are “continuous” with respect to various topologies of spaces of measures, space
of sets, and on spaces of sets of sets. In particular, we show Proposition 9 and Proposition 10
which provide “continuity” of the clustering map, and we show Proposition 11 which provides
sufficient conditions for the continuity of the adaptive choice of k arising in the elbow-method.
Throughout this section, as before, H is a separable (possilbly infinite-dimensional) Hilbert
space, and p ≥ 1 an arbitrary exponent.

To begin, we give the basic notions of the clustering procedures of interest.

Definition 12. For P ∈ Pp(H), k ∈ N, and R ∈ Cw(H), set

Vk,p(P,R) := inf
S′⊆R

1≤#S′≤k

Wp(S
′, P ), (8.8)

and also set Cp(P, k,R) to be the set of all S ⊆ R with 1 ≤ #S ≤ k satisfying

Wp(S, P ) ≤ Vk,p(P,R). (8.9)

If a set S ⊆ X has S ⊆ R and 1 ≤ #S ≤ k it is called feasible and if it achieves (8.9) it is
called optimal. Note that Cp(P, k,R) is empty if there are no optimal sets or if R is empty.
We refer to Cp(P, k,R) as the set of sets of R-restricted (k, p)-means clustering centers. For
ε ≥ 0, we also set Cp(P, k,R; ε) to be the set of all S ⊆ R with 1 ≤ #S ≤ k satisfying

Wp(S, P ) ≤ Vk,p(P,R) + ε, (8.10)

called the set of sets of ε-relaxed R-restricted (k, p)-means clustering centers.

Proposition 7. Suppose that {Rn}n∈N and R in Cw(H) satisfy Lswn∈NRn ⊆ R, and that
{Sn}n∈N satisfy Sn ⊆ Rn and #Sn = k for all n ∈ N. Then, for any labeling Sn =
{an1 , . . . , ank} for all n ∈ N, there exists a subsequence {nj}j∈N such that, for each 1 ≤ ℓ ≤ k,
exactly one of
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• {anj

ℓ }j∈N is unbounded, or

• {anj

ℓ }j∈N converges weakly to some aℓ ∈ R

holds. Consequently, the set S := {aℓ : 1 ≤ ℓ ≤ k, {anj

ℓ }j∈N is bounded} satisfies S ⊆ R and
#S ≤ k, and we have

dp(y, S) ≤ lim inf
j→∞

dp(y, Snj
)

for all y ∈ H, hence
Wp(S, P ) ≤ lim inf

j→∞
Wp(Snj

, P )

for all P ∈ Pp(H).

Proof. We construct {nj}j∈N by iteratively applying the Banach-Alaoglu theorem: First,
if A1 := {an1}n∈N is bounded, we use Banach-Alaoglu to get {n1,j}j∈N and a1 ∈ H with
a
n1,j

1 → a1 weakly. Then recursively for 1 < ℓ ≤ k, if Aℓ := {anℓ−1,j

ℓ }n∈N is bounded, we
use Banach-Alaoglu to get {nℓ,j}j∈N and aℓ ∈ H with a

nℓ,j

ℓ → aℓ weakly. Now we take
{nj}j∈N := {nk,j}j∈N, and we set

S ′
j := {anj

ℓ : 1 ≤ ℓ ≤ k,Aℓ is bounded}

for j ∈ N. Observe that we immediately have S ⊆ R and #S ≤ k. It follows that we have
S ′
j ⊆ Snj

for all j ∈ N, as well as

lim inf
j→∞

dp(y, S ′
j) = lim inf

j→∞
dp(y, Snj

)

for all y ∈ H, since all elements of Snj
\ S ′

j come from unbounded sequences as j →∞.
To show the inequalities, we take arbitrary y ∈ H. Let {ji}i∈N be a subsequence satisfying

lim inf
j→∞

dp(y, S ′
j) = lim

i→∞
dp(y, S ′

ji
).

By the pigeonhole principle, there exists some 1 ≤ ℓ ≤ k and a further subsequence {iu}u∈N
such that

dp(y, S ′
jiu

) =
∥∥∥anjiu

ℓ − y
∥∥∥p

for all u ∈ N. Therefore, by (W2) and the construction, we get:

dp(y, S) ≤ ∥aℓ − y∥p ≤ lim inf
u→∞

∥∥∥anjiu
ℓ − y

∥∥∥p = lim
u→∞

dp(y, S ′
jiu

)

= lim inf
j→∞

dp(y, S ′
j)

= lim inf
j→∞

dp(y, Snj
).
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Finally, we apply Fatou to get

Wp(S, P ) ≤
∫
H

lim inf
j→∞

dp(y, Snj
) dP (y)

≤ lim inf
j→∞

∫
H
dp(y, Snj

) dP (y) ≤ lim inf
j→∞

Wp(Snj
, P ),

as claimed.

Lemma 27. For any (P, k,R) ∈ Pp(H)× N× Cw(H), the set Cp(P, k,R) is non-empty.

Proof. For each n ∈ N, let Sn be a set of 2−n-relaxed R-restricted (k, p)-means cluster centers.
That is, we have Sn ⊆ R and 1 ≤ #Sn ≤ k, as well as Wp(Sn, P ) ≤ Vk,p(P,R) + 2−n for all
n ∈ N. We can also assume that #Sn = k by adding more points if necessary, since this
cannot increase the objective. Now get {nj}j∈N and S ⊆ R as in Proposition 7, and note
that this implies

Wp(S, P ) ≤ lim inf
j→∞

Wp(Snj
, P ) ≤ lim inf

j→∞
(Vk,p(P,R) + 2−nj) = Vk,p(P,R).

This shows S ∈ Cp(P, k,R), so Cp(P, k,R) is non-empty.

The remainder of our results require an important notion of non-singularity, which has
been introduced in [133, 161, 160]. To understand it, consider any (P, k,R) ∈ Pp(H)× N×
Cw(H). Notice that the infimum in (8.8) can equivalently be taken over all S ′ ⊆ R with
#S ′ = k, since adding points to a set of cluster centers can never increase its objective.
However, it is possible that a set of cluster centers S ′ ⊆ R with #S ′ < k is already optimal.
The following notion excludes this possibility:

Definition 13. We say that (P, k,R) ∈ Pp(H)×N×Cw(H) is non-singular if V1,p(P,R) >
V2,p(P,R) > · · · > Vk,p(P,R) and singular otherwise.

Observe for R = ∅ that we have mk,p(P,∅) =∞ for all k ∈ N, so (P, k,∅) can never be
non-singular. In other words, (P, k,R) being non-singular implies that R is non-empty. We
also give the following simple sufficient condition for non-singularity:

Lemma 28. If (P, k,R) ∈ Pp(H)× N× Cw(H) has k ≤ #(R ∩ supp(P )), then (P, k,R) is
non-singular.

Proof. Fix 1 < ℓ ≤ k, and use Lemma 27 to get S ∈ Cp(P, ℓ− 1, R). Then #S ≤ ℓ− 1 < k
and #(R ∩ supp(P )) ≥ k together imply that there is some z ∈ (R ∩ supp(P )) \ S. In
particular, the set S ∪ {z} satisfies S ∪ {z} ⊆ R and 1 ≤ #(S ∪ {z}) ≤ ℓ. Thus, the proof
is complete if we can show that we have Wp(S ∪ {z}, P ) < Wp(S, P ) = Vℓ−1,p(P,R). To do
this, assume for the sake of contradiction that we have Wp(S ∪ {z}, P ) = Wp(S, P ). Since
we of course have dp(y, S ∪ {z}) ≤ dp(y, S) for all y ∈ H, we conclude that we must have
dp(y, S ∪ {z}) = dp(y, S) for all P -almost all y ∈ H. Thus, choosing r > 0 small enough
so that we have dp(y, S ∪ {z}) = dp(z, y) for all y ∈ B◦

r (z), we find P (B◦
r (z)) = 0, and this

contradicts z ∈ supp(P ).
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One important consequence of non-singularity is that it guarantees the following uniform
boundedness property; this will help us verify the hypotheses of the last part of Proposition 7
in our later work. Its proof is just a slight strengthening of [165, 133], so we defer the details
to the supplementary material.

Proposition 8. Suppose that {(Pn, kn, Rn)}n∈N and (P, k,R) in Pp(H) × N × Cw(H) are
such that (P, k,R) is non-singular, and

• Pn → P in τ pw,

• kn ̸= k for finitely many n ∈ N, and

• R ⊆ Lin∈NRn.

Also suppose that non-negative constants {εn}n∈N have εn → 0. Then, there exists some
z ∈ H and r > 0 such that for sufficiently large n ∈ N and all Sn ∈ Cp(Pn, kn, Rn; εn), we
have #Sn = k and Sn ⊆ B̄r(z).

Proof. Let L denote the set of all ℓ ∈ {0, 1, . . . , k} for which there exists zℓ ∈ X and
rℓ > 0 such that for all sufficiently large n ∈ N and all Sn ∈ Cp(Pn, kn, Rn; εn), we have
#(Sn ∩ B̄rℓ(xℓ)) ≥ ℓ. We claim that L = {0, 1, . . . , k}; if this holds, then the result follows
by taking z := zk and r := rk. Since clearly 0 ∈ L, we see that L is non-empty. Now, we
assume for the sake of contradiction that L ̸= {0, 1, . . . , k}.

Under this assumption, we can let ℓ denote the largest element of L. Thus, ℓ ∈ L and
ℓ + 1 ̸= L. Now use ℓ ∈ L to get some zℓ ∈ X and rℓ > 0 such that for all sufficiently large
n ∈ N and all Sn ∈ Cp(Pn, kn, Rn; εn), we have,

#(Sn ∩ B̄rℓ(zℓ)) ≥ ℓ.

Next, use ℓ + 1 /∈ L inductively to get a sequence {nj}j∈N with the following property: For
each j ∈ N there exists Sj ∈ Cp(Pnj

, knj
, Rnj

; εnj
) with

#(Sj ∩ B̄rℓ+j(zℓ)) < ℓ + 1.

On the other hand, we also have

#(Sj ∩ B̄rℓ+j(zℓ)) ≥ #(Sn ∩ B̄rℓ(zℓ)) ≥ ℓ.

Since these finite cardinalities are all integers, this means we have

#(Sj ∩ B̄rℓ+j(zℓ)) = ℓ

for all j ∈ N.
Next, for j ∈ N we define Tj := Sj ∩ B̄rℓ(zℓ), and we investigate the asymptotics of the

excess loss Wp(Tj, Pnj
) −Wp(Sj, Pnj

) as j → ∞. To do this, construct a probability space
(Ω,F ,P) as in Lemma 24. By construction we have Sj \ Tj ⊆ H \ B̄rℓ+j(zℓ), hence

|dp(Y, Tj)− dp(Y, Sj)| → 0
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almost surely. Also, we have

|dp(Y nj , Sj)− dp(Y, Sj)| ≤ ∥Y nj − Y ∥p and |dp(Y nj , Tj)− dp(Y, Tj)| ≤ ∥Y nj − Y ∥p,

so this implies
|dp(Y nj , Tj)− dp(Y nj , Sj)| → 0

almost surely. Since (4.2) shows

|dp(Y nj , Tj)− dp(Y nj , Sj)| ≤ cpr
p
ℓ + cp∥zℓ − Y nj∥p,

we get that {dp(Y nj , Tj)− dp(Y nj , Sj)}n∈N is uniformly integrable. Thus,

lim
n→∞

(Wp(Tj, Pnj
)−Wp(Sj, Pnj

)) = 0

or
lim sup
n→∞

Wp(Tj, Pnj
) ≤ lim inf

n→∞
Wp(Sj, Pnj

)

upon rearranging.
Finally, let us show that this analysis gives a contradiction. To do this, take an arbitrary

S ′ ⊆ R with 1 ≤ #S ′ ≤ k. By Lemma 22 we can get a subsequence {ji}i∈N and a set
S ′
i ⊆ Rnji

with #S ′
i = #Sji for each i ∈ N, such that we have S ′

i → S ′ in dH. Then
Lemma 25 implies

Wp(Sji , Pnji
) ≤ Wp(S

′
i, Pnji

) + εnji
→ Wp(S

′, P )

as i→∞. Putting it all together, we get

lim sup
j→∞

Wp(Tj, P ) = lim sup
j→∞

Wp(Tj, Pnj
)

≤ lim inf
j→∞

Wp(Sj, Pnj
)

≤ lim inf
i→∞

Wp(Sji , Pnji
)

≤ Wp(S
′, P ).

Taking the infimum over all feasible S ′ and using the non-singularity of (P, k,R), we have

lim sup
i→∞

Wp(Tji , Pnji
) ≤ Vk,p(P,R) < Vℓ,p(P,R).

But this is a contradiction since we have #Tji = ℓ for all i ∈ N by construction. Hence, we
must have L = {0, 1, . . . , k}, and the result is proved.

Now we can prove the main result of this section.

Proposition 9. Let {(Pn, kn, Rn)}n∈N and (P, k,R) in Pp(H) × N × Cw(H) all be non-
singular, and suppose
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• Pn → P in τ pw,

• kn ̸= k for finitely many n ∈ N, and

• Lswn∈NRn ⊆ R ⊆ Lin∈NRn.

Then, for any Sn ∈ Cp(Pn, kn, Rn) for all n ∈ N, there exists {nj}j∈N and S ∈ Cp(P, k,R)
such that dH(Sn, S)→ 0 as j →∞.

Proof. The non-singularity of (Pn, kn, Rn) for each n ∈ N implies that #Sn = k. Also, the
non-singularity of (P, k,R) and Proposition 8 imply that {Sn}n∈N are uniformly bounded.
Thus, we can get {nj}j∈N and S ⊆ R with #S ≤ k as in Proposition 7. By construction, S
is feasible. To show that S is also optimal, we let J := {ji}i∈N be an arbitrary subsequence,
and we use the inequality of Proposition 7 along with Lemma 26 to get

Wp(S, P ) ≤
∫
H

lim inf
i→∞

dp(y, Snji
) dP (y)

≤ lim inf
i→∞

∫
H
dp(y, Snji

) dP (y)

= lim inf
i→∞

Wp(Snji
, P ) = lim inf

i→∞
Wp(Snji

, Pnji
).

(8.11)

Now take arbitrary S ′ ⊆ R with #S ′ = k. By Lemma 22 we can get a subsequence {iu}u∈N
and a set S ′

u ⊆ Rnjiu
with #S ′

u = #S ′ = k for all u ∈ N with dH(S ′
u, S

′) → 0. Therefore,
Lemma 25 implies

lim inf
i→∞

Wp(Snji
, Pnji

) ≤ lim inf
u→∞

Wp(Snjiu
, Pnjiu

)

≤ lim inf
u→∞

Wp(S
′
u, Pnjiu

) = Wp(S
′, P ).

Taking the infimum over all such S ′, we have proven

Wp(S, P ) ≤ Vk,p(P,R).

Therefore, S is optimal, hence S ∈ Cp(P, k,R). By the non-singularity of (P, k,R), this
also implies #S = k. In other words, we can write Snj

= {aj1, . . . , ajk} for all j ∈ N and

S = {a1, . . . , ak} so that we have ajℓ → aℓ weakly for all 1 ≤ ℓ ≤ k.
Before we can prove the second claim, we must make some preparations. Let us define,

for each subsequence J := {ji}i∈N, the set BJ := {y ∈ H : d(y, S) = lim infi→∞ d(y, Snji
)}.

Crucially, observe that the optimality of S implies that the inequalities of (8.11) are in
fact equalities, and hence that P (BJ) = 1 for each J . While of course the uncountable
intersection of full-measure sets need not have full measure, it suffices to further establish
that each set is closed (in norm). To see that BJ is indeed closed, suppose that {ym}m∈N in
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BJ have ym → y ∈ H. Then:∣∣∣d(y, S)− lim inf
i→∞

d(y, Snji
)
∣∣∣

= |d(y, S)− d(ym, S)|+
∣∣∣lim inf

i→∞
d(ym, Snji

)− lim inf
i→∞

d(y, Snji
)
∣∣∣

= |d(y, S)− d(ym, S)|+ lim sup
i→∞

|d(ym, Snji
)− d(y, Snji

)| ≤ 2∥ym − y∥ → 0.

Consequently, the set B :=
⋂

J BJ satisfies P (B) = 1.
Next, we define the sets Vℓ := {y ∈ H : ∥y − aℓ∥ = d(y, S)} for 1 ≤ ℓ ≤ k. We claim

that for all 1 ≤ ℓ ≤ k there exists y ∈ Vℓ ∩ B satisfying d(y, Snj
) = ∥y − ajℓ∥ for sufficiently

large j ∈ N. If not, then there exists 1 ≤ ℓ ≤ k such that for all y ∈ Vℓ ∩ B there exists
ℓ(y) ∈ {1, . . . , k} \ {ℓ} such that we have d(y, Snj

) = ∥y − ajℓ(y)∥ for infinitely many j ∈ N.

Denoting by {ji}i∈N such a subsequence, we can use the lower semi-continuity of the norm
and y ∈ Vℓ ∩B to bound:

d (y, S \ {aℓ}) ≤
∥∥y − aℓ(y)

∥∥ ≤ lim inf
j→∞

∣∣∣y − ajℓ(y)

∥∥∥
≤ lim inf

i→∞

∥∥∥y − ajiℓ(y)

∥∥∥
= lim inf

i→∞

∥∥y − Snji

∥∥ = d(y, S) = ∥y − aℓ∥.

In other words, Vℓ ∩ B ⊆ ⋃ℓ′ ̸=ℓ Vℓ′ . However, this implies that S \ {aℓ} is optimal, which
contradicts the non-singularity of (P, k,R).

Now we put all the pieces together. For each 1 ≤ ℓ ≤ k, we use the above to get some
y ∈ Vℓ ∩ B satisfying d(y, Snj

) ∈ ∥y − ajℓ∥ for sufficiently large j ∈ N. Then let {ji}i∈N be
any subsequence satisfying

lim sup
j→∞

d
(
y, Snj

)
= lim

i→∞
d
(
y, Snji

)
,

and use the lower semi-continuity of the norm and y ∈ Vℓ ∩B to get:

lim sup
j→∞

∥∥y − ajℓ
∥∥ = lim sup

j→∞
d
(
y, Snj

)
= lim

i→∞
d
(
y, Snji

)
= lim inf

i→∞
d
(
y, Snji

)
= d(y, S) = ∥y − aℓ∥ ≤ lim inf

j→∞

∥∥y − ajℓ
∥∥ .

This shows ∥y− ajℓ∥ → ∥y− aℓ∥ as j →∞. Combining this with ajℓ → aℓ weakly as j →∞,
this implies ajℓ → aℓ in norm as j → ∞. Thus we have shown Snj

→ S in d, and this
completes the proof.

The next goal is to show that Proposition 9 implies a uniform convergence result with
respect to the Hausdorff metric dH. In order to make this precise, we need the following form
of regularity.
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Lemma 29. If (P, k,R) ∈ Pp(H)×N×Cw(H) is non-singular, then Cp(P, k,R) is non-empty
and dH-compact.

Proof. Lemma 27 gives non-emptiness, and Proposition 9 gives compactness.

Lemma 30. If {(Pn, Rn)}n∈N in Pp(H)× Cw(H) and (P, k,R) in Pp(H)× N× Cw(H) are
all non-singular and

• Pn → P in τ pw, and

• Lswn∈NRn ⊆ R ⊆ Lin∈NRn,

then Vℓ,p(Pn, Rn)→ Vℓ,p(P,R) for all 1 ≤ ℓ ≤ k.

Proof. Let us show that any subsequence of {Vℓ,p(Pn, Rn)}n∈N has a further subsequence
converging to Vℓ,p(P,R). Indeed, take arbitrary {nj}j∈N, and, for each j ∈ N use Lemma 27
to get some Sj ∈ Cp(Pnj

, ℓ, Rnj
). Since (P, k,R) being non-singular certainly implies that

(P, ℓ, R) is non-singular, we can apply Proposition 9 to get a further subsequence {ji}i∈N
and some S ∈ Cp(P, ℓ, R) such that dH(Sji , S)→ 0 as i→∞. Finally, note that Lemma 25
gives

Vℓ,p(Pnji
, Rnji

) = Wp(Sji , Pnji
)→ Wp(S, P ) = Vℓ,p(P,R)

whence the result.

Now our uniform convergence result follows:

Proposition 10. If {(Pn, kn, Rn)}n∈N and (P, k,R) in Pp(H) × N × Cw(H) are all non-
singular, and

• Pn → P in τ pw,

• kn ̸= k for finitely many n ∈ N, and

• Lswn∈NRn ⊆ R ⊆ Lin∈NRn,

then we have
max

Sn∈Cp(Pn,kn,Rn)
min

S∈Cp(P,k,R)
dH(Sn, S)→ 0

as n→∞.

Proof. Lemma 29 implies that Cp(Pn, kn, Rn) are non-empty and dH-compact, so the supre-
mum and infimum can, in fact, be replaced with a maximum and minimum. Now to prove the
claim it suffice to show that for each subsequence {nj}j∈N there exists a further subsequence
{ji}i∈N satisfying

max
Si∈Cp(Pnji

,knji
,Rnji

)
min

S∈Cp(P,k,R)
dH(Si, S)→ 0
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as i → ∞. To do this, take arbitrary {nj}j∈N, use Lemma 29 to get S ′
j ∈ Cp(Pnj

, knj
, Rnj

)
satisfying

min
S∈Cp(P,k,R)

dH(S ′
j, S) = max

Sj∈Cp(Pnj ,knj ,Rnj )
min

S∈Cp(P,k,R)
dH(Sj, S).

Finally, use Proposition 9 to get S ′ ∈ Cp(P, k,R) and {ji}i∈N such that we have dH(S ′
ji
, S ′)→

0 as i→∞, and note that this implies

max
Si∈Cp(Pnji

,knj ,Rnj )
min

S∈Cp(P,k,R)
dH(S ′

ji
, S) = min

S∈Cp(P,k,R)
dH(S ′

ji
, S)

≤ dH(S ′
ji
, S ′)→ 0,

as needed.

In addition to the preceding continuity result, we describe the continuity of the adaptive
choice of k arising in the elbow method. (Note that in this case, our “continuity” statement
is a bona fide continuity statement.) To set this up, we let P ∈ Pp(H) be arbitrary, and we
define

∆2Vk,p(P ) := Vk+1,p(P ) + Vk−1,p(P )− 2Vk,p(P )

for k ≥ 2; the restriction to k ≥ 2 is equivalent to adopting the convention V0,p(P ) = ∞.
Then we define the function kelb

p (P ) : Pp(H)→ N ∪ {∞} via

kelb
p (P ) := min{arg max{∆2Vk,p(P ) : k ∈ N}}

for P ∈ Pp(H). This leads us to the following result.

Proposition 11. Suppose that P ∈ Pp(H) satisfies #supp(P ) =∞ and # arg max{∆2Vk,p(P ) :
k ∈ N, k ≥ 2} = 1. Then, the function kelb

p : Pp(H)→ N is continuous at P .

Proof. First, we claim that we have Vk,p(P ) → 0 as k → ∞. To do this, use Prokhorov’s
theorem to get, for each η > 0, a compact Lη ⊆ H such that P (H \ Lη) ≤ η. In particular,
we have 1{y /∈ Lη} → 0 as η → 0 holding P -almost surely for all y ∈ H. Now let Nη be the
union of {0} with an η1/p-net of Lη. It follows that we have∫

H
dp(y,Nη) dP (y) =

∫
Lη

dp(y,Nη) dP (y) +

∫
H\Lη

dp(y,Nη) dP (y)

≤ η · P (Lη) +

∫
H\Lη

∥y∥p dP (y)→ 0

as η → 0, where we applied dominated convergence to the last term. Writing ℓη := #Nη for
η > 0, this implies Vℓη ,p(P ) → 0 as η → 0. Since {ℓη}η>0 is non-decreasing as η → 0, this
further implies Vk,p(P )→ 0 as k →∞.

Now we consider the value M := max{∆2Vk,p(P ) : k ∈ N, k ≥ 2}. It is clear that
Vk,p(P ) → 0 implies ∆2Vk,p(P ) → 0 hence M < ∞. Next let us also show M > 0. To do
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this, assume for the sake of contradiction that M ≤ 0, so ∆2Vk,p(P ) ≤ 0 for all k ≥ 2. Then
for all 2 ≤ j ≤ j′, we have

Vj,p(P )− Vj+1,p(P )− (Vj′,p(P )− Vj′+1,p(P )) =

j′∑
k=j

∆2Vk,p(P ) ≤ 0.

Sending j′ →∞, we conclude Vj,p(P ) ≤ Vj+1,p(P ) for all j ≥ 2. In other words j 7→ Vj,p(P )
is non-decreasing for j ≥ 2. But it is obviously non-increasing by definition, so it must in
fact be constant. Now note that the non-singularity of (P, 3,H) implies V2,p(P ) > 0, hence
lim infk→∞ Vk,p(P ) > 0. This contradicts the conclusion of the preceding paragraph, so we
must have 0 < M < ∞. Furthermore, by assumption there is a unique k∗ := kelb

p (P ) ∈ N
such that M = ∆2Vk∗,p(P ).

Now suppose that {Pn}n∈N in Pp(H) have Pn → P in τ pw. The result is proved if we can
show that for each subsequence {nj}j∈N there exists a further subsequence {ji}i∈N satisfying
kelb
p (Pnji

) → k∗ as i → ∞. To do this, we use the construction from above to choose η > 0
sufficiently small so that ∫

H\Lη

∥y∥p dP (y) ≤ M

16
.

Then, we set K := Lη, we let N denote the union of {0} with a 1
2
(M

8
)1/p-net of K, and we

define ℓ := #N . Now construct (Ω,F ,P) as in Lemma 24. Observe that for any subsequence
{nj}j∈N we can choose a further subsequence {ji}i∈N satisfying both

lim sup
j→∞

sup
k≥ℓ

Vk,p(Pnj
) = lim

i→∞
sup
k≥ℓ

Vk,p(Pnji
) (8.12)

and
E[∥Y nji − Y ∥p] ≤ 2−i for all i ∈ N. (8.13)

Now write δi := i22−i, and observe by Markov’s inequality that we have∑
i∈N

P
(
∥Y i − Y ∥p ≥ δi

)
≤
∑
i∈N

E [|Y i − Y ∥p]
δi

≤
∑
i∈N

1

i2
<∞.

Thus, by Borel-Cantelli, we have P(∥Y i − Y ∥p ≤ δi for sufficiently large i ∈ N) = 1.
Moreover, if we define Ki := {y ∈ H : dp(y,K) ≤ δi} for each i ∈ N, then we have

lim sup
i→∞

1{Y i /∈ Ki} ≤ 1{Y /∈ K}
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almost surely. So, we can apply Fatou’s lemma to get

lim sup
i→∞

∫
H\Ki

∥y∥p dPnji
(y) = lim sup

i→∞
E
[
∥Y i∥p1{Y i /∈ Ki}

]
≤ E

[
lim sup

i→∞
∥Y i∥p1{Y i /∈ Ki}

]
≤ E [∥Y ∥p1{Y /∈ K}]

=

∫
H\K
∥y∥p dP (y).

By (4.2), we also have dp(y,N) ≤ M
16

+ 2p−1δi for all y ∈ Ki. Therefore,

sup
k≥ℓ

Vk,p(Pnji
) = sup

k≥ℓ
inf
S⊆H

1≤#S≤k

∫
H
dp(y, S) dPnji

(y)

≤
∫
H
dp(y,N) dPnji

(y)

=

∫
Ki

dp(y,N) dPnji
(y) +

∫
H\Ki

dp(y,N) dPnji
(y)

≤ Pnji
(Ki)

(
M

16
+ 2p−1ai

)
+

∫
H\Ki

∥y∥p dPnji
(y).

Thus, taking i→∞ yields

lim sup
j→∞

sup
k≥ℓ

Vk,p(Pnj
) = lim

i→∞
sup
k≥ℓ

Vk,p(Pnji
) ≤ M

8
.

Now simply apply the triangle inequality to get

lim sup
j→∞

sup
k≥ℓ

∆2Vk,p(Pnj
) ≤ M

2
.

This means that, for sufficiently large j ∈ N, the maximum of {∆2Vk,p(Pnj
) : k ∈ N, k ≥ 2}

is not achieved on {ℓ, ℓ + 1, . . .}.
Finally, set

ε := min
{
|∆2Vk∗,p(P )−∆2Vk,p(P )| : k ≤ ℓ, k ̸= k∗

}
> 0.

By Lemma 30, there is sufficiently large j ∈ N such that we have |Vk,p(Pnj
) − Vk,p(P )| < ε

8

for all k ≤ ℓ. Combining this with the above and the triangle inequality shows that, for
sufficiently large j ∈ N, we have

arg max{∆2Vk,p(Pnj
) : k ∈ N} = arg max{∆2Vk,p(P ) : k ∈ N} = {k∗},

hence kelb
p (Pnj

) = k∗.
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The condition # arg max{∆2Vk,p(P ) : k ∈ N, k ≥ 2} = 1 should be interpreted as saying
that the distribution P has a uniquely-defined number of clusters, in the sense of the elbow
method. Thus, the preceding result says that, if Pn → P in τ pw and P has a uniquely-defined
number of clusters, then the same is true for Pn for sufficiently large n ∈ N.

8.3 Probabilistic Consequences

We now show how the considerations of the previous section can be used to prove a number
of limit theorems for clustering procedures of interest in statistical applications. For this
section, we fix p ≥ 1. An underlying probability space will be denoted (Ω,F ,P) and will be
assumed to be complete.

Strong consistency for IID data

Suppose that Y1, Y2, . . . is an IID sequence of random variables with common distribution
P ∈ Pp(H), and define the empirical measures via P̄n := 1

n

∑n
i=1 δYi

for all n ∈ N. First,
we have the following fundamental strong consistency result, which follows easily from our
preparations.

Theorem 19. Suppose P ∈ Pp(H), that {Rn}n∈N and R are random weakly closed subsets
of H, and that {kn}n∈N and k are random positive integers. Then, we have

max
Sn∈Cp(P̄n,kn,Rn)

min
S∈Cp(P,k,R)

dH(Sn, S)→ 0

almost surely on

{k ≤ #(R ∩ supp(P ))} ∩ {kn ≤ #(Rn ∩ supp(P̄n)) for sufficiently large n ∈ N}
∩ {kn ̸= k for finitely many n ∈ N} ∩ {Lswn∈NRn ⊆ R ⊆ Lin∈NRn}.

Proof. As in the proof of Theorem 9, we have P̄n → P in τ pw almost surely. Thus, the result
follows from Proposition 10.

To see that this result has immediate consequences for strong consistency of (k, p)-means
suppose that P ∈ Pp(H) has supp(P ) = ∞. Then fix k ∈ N, and take kn = k and
Rn = R = X for all n ∈ N. It immediately follows that we have

max
Sn∈Ck,p(P̄n)

min
S∈Ck,p(P )

dH(Sn, S)→ 0

almost surely. In words, this says that (k, p)-means is strongly consistent.
For (k, p)-medoids, we fix kn = k ∈ N for n ∈ N, and we take Rn = suppw(P̄n) =

{Y1, . . . , Yn} for n ∈ N and R = suppw(P ), where suppw( · ) denotes the support of a prob-
ability measure with respect to the topology of weak convergence. In order to apply Theo-
rem 19,we require the following:
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Lemma 31. We have Lswn∈Nsuppw(P̄n) ⊆ suppw(P ) ⊆ Lin∈Nsuppw(P̄n) almost surely.

Proof. Recall that suppw(P̄n) = {Y1, . . . , Yn} almost surely. To show Lswn∈Nsuppw(P̄n) ⊆
suppw(P ) almost surely, consider any x /∈ suppw(P ). This means there exists a weakly open
set U ⊆ H with x ∈ U with P (U) = 0. In particular, this implies Yn /∈ U for all n ∈ N almost
surely, which implies that x cannot be the limit point of any weakly convergent subsequence
of elements of {suppw(P̄n)}n∈N. To show suppw(P ) ⊆ Lin∈Nsuppw(P̄n) almost surely, note
that we almost surely have P̄n → P in τw. Thus, the result follows.

Consequently, we get

max
Sn∈Cmed

k,p (P̄n)
min

S∈Cmed
k,p (P )

dH(Sn, S)→ 0

almost surely, which states that (k, p)-medoids is strongly consistent. Note that we used
suppw(P ) instead of supp(P ) in this result, and that we have suppw(P ) ⊇ supp(P ) in
general.

For (k, p)-means where k is chosen adaptively according to the elbow method, we take
kn = kelb

p (P̄n) for all n ∈ N as well as k = kelb
p (P ), and Rn = R = X for all n ∈ N. If

we assume additionally that # arg max{∆2Vk,p(µ) : k ∈ N, k ≥ 2} = 1, then Proposition 11
implies

max
Sn∈Celb

p (P̄n)
min

S∈Celb
p (P )

dH(Sn, S)→ 0

almost surely. In words, (k, p)-means, where k is chosen adaptively according to the elbow
method, is strongly consistent provided that P has a uniquely-defined number of clusters in
the sense of the elbow method.

Strong consistency for MC data

Suppose now that Y1, Y2, . . . is an aperiodic Harris-recurrent Markov chain (MC) on H. Let
K denote its transition kernel and P its unique stationary distribution. As always, write
P̄n := 1

n

∑n
i=1 δYi

for the empirical measures of the first n ∈ N data points. Then we get the
following:

Theorem 20. If P ∈ Pp(H) and k ≤ #supp(P ), then we have

max
Sn∈Ck,p(P̄n)

min
S∈Ck,p(P )

dH(Sn, S)→ 0

almost surely.

Proof of Theorem 20. By [174, Theorem 4] we have P̄n → P in total variation, and by [174,
Fact 5] we have 1

n

∑n
i=1 ∥x − Yi∥p →

∫
H ∥x − y∥p dP (y), both holding almost surely; in

particular, we have P̄n → P in τ pw almost surely. Thus, the result follows from Theorem 19
by taking Rn = R = H and kn = k for all n ∈ N.
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In words, this result guarantees that (k, p)-means is strongly consistent when applied to
data coming from a suitable MC. A typical application of interest in which data assumed
to follow such a Markovian structure is the setting where Y1, Y2, . . . are samples from a
posterior distribution in Bayesian statistics which are computed via Markov chain Monte
Carlo (MCMC). In this setting, one typically has H = Rm with its usual metric, which
certainly satisfies our hypothesis. Moreover, if P and K(x, · ) for all x ∈ Rm have strictly
positive densities with respect to the Lebesgue measure, then the only hypothesis that one
needs to check is the simple

∫
Rm ∥y∥p dP (y) <∞.

The case of (k, p)-medoids applied to data coming from a MC is more subtle. For the
sake of simplicity, we focus on the case of MCs on finite state spaces. Thus, let us make the
following assumption for the remainder of this subsection: X ⊆ H is a finite set that can be
decomposed into X = X0 ⊔X1 where X0 are the inessential states with respect to K (that
is, the states that are almost surely visited finitely often) and X1 are the essential states
with respect to P (that is, the states that are almost surely visited infinitely often), and K
is aperiodic and irreducible on X1.

It is illustrative to see what can go wrong in the simplest possible setting: Consider
X = {−1, 0, 1} with the metric inherited from the real line. Then let Y1, Y2, . . . be a MC
with Y1 = 0 and with the transition matrix

P =

1/2 0 1/2
1/3 1/3 1/3
1/2 0 1/2

 .

In words, this MC stays at state 0 for a geometric amount of time, then subsequently
visits {−1, 1} independently and uniformly at random. It is clear that the only stationary
distribution for this MC is P = 1

2
δ−1 + 1

2
δ1, and that it is aperiodic and Harris-recurrent.

Now write I := max{i ∈ N : Yi = 0} for the number of data equal to 0 and Zn :=
∑n

i=1 Yi

for the cumulative sum of the data. Observe in particular that I < ∞ almost surely and
that we have P̄n = 1

2n
(n−Zn− I)δ−1 + I

n
δ0 + 1

2n
(n+Zn− I)δ1 for n > I. Moreover, {Zn}n>I

is a simple symmetric random walk. Next notice that on {n > I, Zn = 0} we have∫
R
∥ ± 1− y∥p dP̄n(y) =

I

n
+

(
1− I

n

)
2p−1 > 1− I

n
=

∫
R
∥y∥p dP̄n(y),

hence Cmed
1,p (P̄n) = {{0}}. Also, Cmed

1,p (P ) = {{−1}, {1}}. In particular, we have shown

max
Sn∈Cmed

1,p (P̄n)
min

S∈Cmed
1,p (P )

dH(Sn, S) = 1

on {n > I, Zn = 0}. Finally, notice that we have P(n > I, Zn = 0 for infinitely many n ∈
N) = 1 by the recurrence of the simple random walk, hence we are able to conclude that
maxSn∈Cmed

1,p (P̄n) minS∈Cmed
1,p (P ) dH(Sn, S) → 0 occurs with probability zero. In words, (k, p)-

medoids for data coming from this MC is strongly inconsistent.
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We now introduce a method to repair this apparent deficiency. The difficulty in the
preceding example is that the adaptively-chosen domain of the cluster centers includes some
states not included in the support of the stationary distribution, so, to get around this, we
allow our clustering procedure to “forget” some initial segment of states. This is similar to
giving the MC a suitable “burn-in” period.

Indeed, let f = {fn}n∈N be any integer sequence with 0 ≤ fn ≤ n for all n ∈ N. Then
define

P̄ f
n :=

1

n− fn

n∑
i=fn+1

δYi

for n ∈ N; that is, {P̄ f
n }n∈N are the empirical measures of only the most recent data points,

where we forget initial segments of sizes determined by f .

Lemma 32. If fn/n→ 0 and fn →∞, then

(i) P̄ f
n → µ in τw almost surely, and

(ii) Lsn∈Nsupp(P̄ f
n ) = supp(P ) ⊆ Lin∈Nsupp(P̄ f

n ) almost surely.

Proof. For (i), note that X being finite means that convergence in τw is equivalent to con-
vergence in the total variation norm, ∥ · ∥TV. To use this, write

P̄ f
n =

n

n− fn
· 1

n

n∑
i=1

δYi
− 1

n− fn

fn∑
i=1

δYi

hence

∥P̄ f
n − P̄n∥TV ≤

∣∣∣∣ n

n− fn
− 1

∣∣∣∣ 1

n

n∑
i=1

∥δYi
∥TV +

1

n− fn

fn∑
i=1

∥δYi
∥TV

≤
∣∣∣∣ n

n− fn
− 1

∣∣∣∣+
fn

n− fn
.

Now note that fn/n → 0 implies that the right side goes to zero, hence ∥P̄ f
n − P̄n∥TV →

0. Since ∥P̄n − P∥TV → 0 almost surely by the classical ergodic theorem, we conclude
∥P̄ f

n − P∥TV → 0 whence (i). For (ii), note that X being finite means that convergence in
norm and weak convergence are equivalent. By the same argument in Lemma 31, we have
supp(P ) ⊆ Lin∈Nsupp(P̄ f

n ) almost surely. For the converse, suppose that x ∈ Lsn∈Nsupp(P̄ f
n ).

Since X is discrete, this means that there is a subsequence {nj}j∈N with x ∈ supp(P̄ f
nj

) for
all j ∈ N. Consequently, there is some sequence {ℓj}j∈N (not necessary non-decreasing) with
fnj

+ 1 ≤ ℓj ≤ nj and Yℓj = x for all j ∈ N. Since fn → ∞, this means Y1, Y2, . . . visits
x infinitely often. But X0 is inessential with respect to K, so we must have x /∈ X0. This
implies x ∈ X1 hence x ∈ supp(P ) since X1 is irreducible and aperiodic with respect to K.
We have shown Lsn∈Nsupp(P̄ f

n ) ⊆ supp(P ) almost surely, so combining with the first part
gives (ii).
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This, in particular, gives the following strong consistency.

Theorem 21. If fn/n→ 0 and fn →∞, then we have

max
Sn∈Cmed

k,p (P̄ f
n )

min
S∈Cmed

k,p (P )
dH(Sn, S)→ 0

almost surely.

Proof. Immediate by Theorem 19 and Lemma 32.

To be concrete in the setting above, one can take fn := ⌊log n⌋ for n ∈ N.

Large deviations for IID data

Suppose again that Y1, Y2, . . . is an IID sequence of random variables with common distribu-
tion P . As always, let us define the empirical measures via P̄n := 1

n

∑n
i=1 δYi

for all n ∈ N.
We have already established the almost sure convergence

max
Sn∈Ck,p(P̄n)

min
S∈Ck,p(P )

dH(Sn, S)→ 0,

and this of course implies the convergence in probability

P
(

max
Sn∈Ck,p(P̄n)

min
S∈Ck,p(P )

dH(Sn, S) ≥ ε

)
→ 0,

for all ε > 0. Presently, we address the question of determining the rate at which these
probabilities decay to zero.

Theorem 22. Suppose that P ∈ Pp(H) satisfies
∫
H exp(α∥y∥p) dP (y) < ∞ for all α > 0.

Then, for all k ≤ #supp(P ) and ε > 0, we have

lim sup
n→∞

1

n
logP

(
sup

Sn∈Ck,p(P̄n)

inf
S∈Ck,p(P )

dH(Sn, S) ≥ ε

)
≤ −ck,p(P, ε),

for some ck,p(P, ε) > 0.

Proof of Theorem 12. Consider the set

A :=

{
Q ∈ Pp(H) : sup

T∈Ck,p(Q)

inf
S∈Ck,p(P )

dH(T, S) ≥ ε

}
=
{
Q ∈ Pp(H) : D⃗H(Ck,p(Q), Ck,p(P )) ≥ ε

}
.
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Here, we write D⃗H for the one-sided Hausdorff distance on (K(H), dH). Now let us show that
A is τ pw-closed. Indeed, suppose {Qn}n∈N in A and Q ∈ Pp(H) have Qn → Q in τ pw. Then
apply (8.4) to get:

D⃗H(Ck,p(Qn), Ck,p(Q)) + D⃗H(Ck,p(Q), Ck,p(P )) ≥ D⃗H(Ck,p(Qn), Ck,p(P )) ≥ ε.

Now use Proposition 10 with kn = k and Rn = H for all n ∈ N, which guarantees that
we have D⃗H(Ck,p(Qn), Ck,p(Q)) → 0, hence D⃗H(Ck,p(Q), Ck,p(P )) ≥ ε, by the above. In
particular, Q ∈ A, thus A is τ pw-closed.

Next, note that P is a Borel probability measure on a Polish metric space with all
exponential moments finite, so we conclude via [205, Theorem 1.1] that {P̄n}n∈N satisfy a
large deviations principle in (Pp(H), τ pw) with good rate function H( · |P ) : Pp(H)→ [0,∞].
In particular, the large deviations upper bound implies

lim sup
n→∞

1

n
logP

(
D⃗H(Ck,p(P̄n), Ck,p(P )) ≥ ε

)
= lim sup

n→∞

1

n
logP(P̄n ∈ A)

≤ − inf{H(Q|P ) : Q ∈ A} := ck,p(P, ε).

Finally, assume towards a contradiction that ck,p(P, ε) = 0, so that there exist {Qn}n∈N in
A with H(Qn|P )→ 0. As a consequence of the Donsker-Varadhan variational principle one
can show that H(Qn|P ) → 0 and

∫
H exp(α∥y∥p) dP (y) < ∞ for all α > 0 together imply

Qn → P in τ pw, so Proposition 10 implies D⃗H(Ck,p(Qn), Ck,p(P )) → 0. This is impossible
since Qn ∈ A for all n ∈ N, hence we must have ck,p(P, ε) > 0.

Now, we make some remarks on possible limitations and extensions of this result. First
of all, the constant ck,p(P, ε) appearing as the exponential rate of decay has an exact char-
acterization as

ck,p(P, ε) := inf{H(Q|P ) : Q ∈ Pp(H), D⃗H(Ck,p(Q), Ck,p(P )) ≥ ε}. (8.14)

From this form we have shown ck,p(P, ε) > 0 for all ε > 0, but it appears difficult to say
much else. We believe it would be interesting to try to understand for which distributions
P ∈ Pp(H) the quantity ck,p(P, ε) can be exactly or approximately computed. For example,
if P is compactly-supported, then do we have ck,p(P, ε) ≲ ε−2, which can be interpreted as
a sort of asymptotically sub-Gaussian concentration?
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[122] Krzysztof Krakowski, Knut Hüper, and J Manton. “On the computation of the
Karcher mean on spheres and special orthogonal groups”. In: Conference Paper, Robo-
mat. Citeseer. 2007.

[123] Alexey Kroshnin, Vladimir Spokoiny, and Alexandra Suvorikova. “Statistical infer-
ence for Bures–Wasserstein barycenters”. In: The Annals of Applied Probability 31.3
(2021), pp. 1264 –1298. doi: 10.1214/20-AAP1618. url: https://doi.org/10.
1214/20-AAP1618.

[124] K. Kuratowski. Topology. Vol. I. New edition, revised and augmented. Translated
from the French by J. Jaworowski. Academic Press, New York-London; Państwowe
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[134] Mingjie Liang, René L. Schilling, and Jian Wang. “A unified approach to coupling
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