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Deep phenotypic profiling of neuroactive
drugs in larval zebrafish

Leo Gendelev 1, Jack Taylor 1,2, Douglas Myers-Turnbull1, Steven Chen3,
Matthew N. McCarroll1,3, Michelle R. Arkin 3, David Kokel1 &
Michael J. Keiser 1,3,4,5

Behavioral larval zebrafish screens leverage a high-throughput small molecule
discovery format to find neuroactive molecules relevant to mammalian phy-
siology. We screen a library of 650 central nervous system active compounds
in high replicate to train deep metric learning models on zebrafish behavioral
profiles. The machine learning initially exploited subtle artifacts in the phe-
notypic screen, necessitating a complete experimental re-run with rigorous
physical well-wise randomization. These large matched phenotypic screening
datasets (initial and well-randomized) provide a unique opportunity to quan-
tify and understand shortcut learning in a full-scale, real-world drug discovery
dataset. The final deep metric learning model substantially outperforms cor-
relation distance–the canonical way of computing distances between
profiles–and generalizes to an orthogonal dataset of diverse drug-like com-
pounds. We validate predictions by prospective in vitro radio-ligand binding
assays against human protein targets, achieving a hit rate of 58% despite
crossing species and chemical scaffold boundaries. These neuroactive com-
pounds exhibit diverse chemical scaffolds, demonstrating that zebrafish
phenotypic screens combined with metric learning achieve robust scaffold
hopping capabilities.

The mechanism of action of central nervous system (CNS) drugs
remains poorly understood, even for those used for decades (e.g.,
ketamine1). The complex nature of G-Protein Coupled Receptor
(GPCR) and ion channel-mediated pathways of the vertebrate nervous
system2–11 exacerbate the problem. Because of the prevalence of
polypharmacology in neuroactive drugs12, a magic bullet single-target
approach to drug discovery13 falls short14. Phenotypic screening cir-
cumvents these problems by identifying compounds thatmay interact
with individual or multiple targets15,16. These screens prioritize desired
and often biologically complex readouts of induced phenotypes on
higher-level model systems. Despite historically limited throughput,
rapid phenotypic profiling of thousands of compounds in vivo is now

possible using larval zebrafish17–21. These vertebrates have high levels
of shared genetics22,23 and CNS anatomy24 (with humans) and scale to
high-throughput testing of complex behavioral readouts2–11. Pheno-
typic screening in larval zebrafish, combined with human-target-based
cheminformatic methods such as the Similarity Ensemble Approach
(SEA25,26), and enrichment factor (EF) calculations10,27–29, have enabled
drug discovery and target deconvolution for neuroactive phenotypes
in mammals.

However, high-content zebrafish behavioral screening data are
both a blessing and a curse for pharmacological studies because of the
challenges in extracting and comparing features in the collected video
data. In previous work, larval zebrafish, plated on 96-well plates, were
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treated with various compounds, and various stimuli — including
acoustic stimuli and high-intensity light of different colors — elicited a
broad spectrum of behavioral responses in the fish10,28. Videos recor-
ded each well, from which a “motion-index” (MI) time series is com-
puted to measure bulk motion over time (Fig. 1a–d7, Fig. 1b and
Equation 1). Traditionally, the phenotypic distance between MI time
series is computed using correlation distance28. Other approaches
have included classification and video analysis using machine
learning2,30–34. Correlation distance reliably discriminates
antipsychotic28 and anesthetic10,28,29 phenotypes but fails to distinguish

more subtle phenotypes. Indeed, fish rarely respond to stimuli in a
one-to-one video frame correspondencewhen each frame is 1/100th of
a second, breaking a basic assumption of how these MI distances are
traditionally computed. In an experiment with various assays, the
strength of the response to each assay may vary in drug-treated fish;
however, correlation distance values all frame contributions equally.

Various deep learning and unsupervised learning techniques have
been employed toward zebrafish behavior classification35. We sought a
distance metric that leveraged zebrafish phenotypic screens for a
broader range of induced behaviors. Specifically, we used a class of

Fig. 1 | Zebrafish behavioral screening and architecture. Diagrammatic repre-
sentation of zebrafish experimental screening setup, motion index calculations,
and deep metric learning model architectures. a Simplified representation of a
zebrafish screening platform, with larval zebrafish in 96-well plates under a camera
subject to varied stimuli such as blue light, purple light, acoustic stimuli, and
physical tapping. b Example of a representative video frame. c Zoom view of a
single well. d Example motion index (MI) time series for clozapine-treated (gold)
fish and negative control (DMSO) (gray) wells. The MIs are averaged across all the

drug- and control-treatedwell replicates. A stimulus legend shows the stimuli types
occurring at different times in the assay. e Deep metric learning model archi-
tectures: Twin-NN (top) and Twin-DN (bottom). In both models, the input is a pair
of MI time-series vectors passing through multiple neural net layers. A contrastive
loss function72 scores the two learnedoutput vectors (y1 and y2)distances basedon
whether the input MI vectors were from the same or different treatments. As in (d)
above, gold denotes drug-treated MI, and gray is the negative control (DMSO).
Source data are provided in the Source Data File.
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neural networks uniquely suited for learning distances between pairs
of inputs (Siameseneural networks, or twin neural networks, twin-NNs,
Fig. 1e). These models were initially developed for biometric finger-
print verification36, subsequently finding use inmanymachine learning
(ML) tasks, such as “one-shot learning” on small datasets for image
classification37,38. Siamese networks pre-date and often became the
neural network models and loss functions subsequently adopted by
various studies in deep metric learning and contrastive learning. Sia-
mese networks have been applied to study zebrafish behavior at lower
throughput39 or at higher throughput for embryonic development40,
but to our knowledge, not in the setting of high-throughput larval
zebrafish phenotypic screening.

In this work, we screen a library of 650 ligands (from the SCREEN-
WELL Neurotransmitter Set, “NT-650”, Methods) in high-replicate and
train twin-NNs to relate drugs via the phenotypes they induce in larval
zebrafish. We construct the screens from the ground up with ML
model training in mind, but the models still exploit unanticipated
artifacts in the resulting screen dataset via an undesirable process
known more broadly as “shortcut learning”41. We initially study the
effect of retraining the deep metric learning models on synthetically
randomized datasets that we design to test for confounding effects,
ultimately driving the redesign and re-collection of a newexperimental
screen with full physical randomization. Models trained on the revised
screen cluster diverse neuroactive compounds in a way that corre-
sponds strikingly well with known neuroactive biology, and they
phenotypically link structurally distinct compounds by scaffold
hopping42,43. Finally, the learned distance metric generalizes to a
screening dataset of diverse drug-like compounds unseen during
training, automating the discovery of neuroactive compounds active
on human receptors when tested prospectively in vitro.

Results
Twin neural networks identify drug replicates from complex
behavioral readouts
We collect a high-throughput phenotypic dataset based on theNT-650
neurotransmitter library screened in high replications (7–10 replicates
per drug) for training machine learning models. We plate larval zeb-
rafishonto 96-well plates (8 fish perwell) anddosewells with drugs at a
10 µM concentration, a reasonable dose for in-vivo primary screening
of neuroactives (Fig. 1a–c). Various stimuli, such as acoustic sounds,
light stimulus, and physical tapping of the multi-well plate stage, are
performed to elicit diverse behavioral responses in the fish, as opti-
mized previously7 (Fig. 1d). We record videos of the fish’s behavior
throughout the experiment. For each well, we encode and convert
videos of larval fish into aggregate motion over time, resulting in a
time-series vector, or motion index (MI).

We evaluate how well twin NNs can identify whether two MI
profiles, such as those shown in Fig. 1e, originate from the same
category— specifically, whether they are causedby the samedrug. This
is in contrast to other correlation metrics that often fail to reliably
recognize when different samples have been affected by the same
drug, especially when the resulting phenotypic changes are subtle. By
necessity, a Twin-NN must learn which time points are most informa-
tive and how to correct for slightly or partially misaligned MI traces to
correctly group same-drug replicates accurately across a diverse range
of pharmacology and their concomitant behavioral traces. Twin NNs
consist of twin encoding layers, which share model weights and
operate on a pair of different inputs (MI traces) to output a distance
reflecting whether the MIs represent replicates of the same drug
(distance =0) or traces from mismatched drugs (distance > 1)36.

We filter the dataset to remove human drugs that do not alter
zebrafish behavior, namely those whose MI traces cannot be dis-
tinguished from vehicle controls with a simple random forest model
(see “Methods”, Supplementary Fig. 1). Drugs can fail to induce strong
behavioral responses in zebrafish due to many factors, including

differences in cross-species biology, concentration, incubation time,
absorption route, or other factors. The neural network embedding
architectureof each half of themodel is a design choice; we implement
a fully connected multi-layer perceptron (Twin-NN) (Fig. 1e) as a
baseline model and a second architecture motivated by DenseNet44

(Twin-DN) as a more computationally expressive alternative. We con-
sidered using recurrent architectures – neural networks designed to
operate on sequences, such as the LSTM45 or GRU45,46 – but were
concerned that the long length of the time series samples raised issues
with vanishing gradients and run-time.

Priorwork using zebrafish behavioralMI for scaffold-hopping and
phenotypic drug discovery predominantly uses vector distance cal-
culations to compareMI traces without warping, alignment, or relative
weighting of individual time points. Compared to these conventional
correlation and Euclidean distance approaches, both the Twin-NN and
Twin-DN models discern positive (matched) and negative (mis-
matched) drug replicate pairs with drastically improved performance
(Fig. 2a), with Twin-DN scores achieving 0.97 ROC-AUC and 0.98 PRC-
AUC (Fig. 2b, c). We observe a near-perfect ability of the learned dis-
tancemetric to discernMIs of replicates from the same drug fromMIs
of different drugs. Further, a Uniform Manifold Approximation and
Projection (UMAP)47 plot (Fig. 2d), calculated over the means of the
time series for all replicates of all 650 drugs in the screen, yields pro-
nounced, discrete, and localized clusters. While heartening, this per-
formance was substantially higher than we had anticipated and to a
suspicious degree: many compounds do not reliably induce larval
zebrafish behavioral phenotypes. Nevertheless, these results sug-
gested that nearly all the compound library’s experimental replicates
could be grouped by the Twin-DNmodel with near-perfect fidelity. We
wondered whether the model’s exceptional performance might rely
instead on shortcut learning41 or the exploitation of hidden artifactual
cues encodedwithin the data that were invisible to human researchers
but perceivable by the deep learning model.

Machine learning exploits high-frequency components and
plate-location effects
We evaluate the presence of shortcut learning in our model by testing
how well the learned distance metric generalizes to an archival quality
control (QC) screen (“Methods”) performed at an earlier time on data
never seen by themetric-learningmodels. For this screen, we select 14
drugs with diversemechanisms of action (MOAs) and assay them, also
in high replications, along with a vehicle (dimethyl sulfoxide; DMSO)
control and lethal control (eugenol). To test generalizability, we train a
k-nearest neighbors classifier on the QC replicates using one of three
distance metrics: Twin-NN, Twin-DN, or correlation distance (“Meth-
ods”). For most drugs, the Twin-DN distance metric underperforms
correlation distance (Fig. 2e, orange bars). We suspected that the
expressive Twin-DN models readily memorize the high-frequency
components in the time series, which may come from artifacts such as
plate vibrations or high-frequency noise in the imaging sensor. Indeed,
when we ablate the high-frequency components of the time series
(with a Hanning smoothing filter48 as implemented in the scipy
package49), Twin-DN performance drops precipitously on the original
NT-650 screen, with Twin-NN performance likewise dropping, but to a
lesser extent (Fig. 2c, d). These results indicate that the learned dis-
tance metrics exploit the high-frequency components of the NT-650
screen data and that these hidden “shortcut” patterns do not gen-
eralize to the separate QC screen.

Per standard practice, we had already attempted to address
potential overfitting or data leakage by splitting the training and vali-
dation sets by drug - leaving no replicates of any one drug in common
between train and validation splits. In addition, we performed a set of
further machine-learning soundness checks (scrambling data labels
and randomizing the training data features (Supplementary Fig. 2), so
the Twin-DNmodel’s evident exploitationof high-frequency signal was
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initially surprising. However, all compounds in the NT-650 library
arrived from the supplier in preset layouts, meaning all replicates of
the same compounds (or all positive pairs) in the dataset always cor-
responded to identical plate locations. In contrast, mismatched pairs
could come from any combination of compound locations across and
within the plates. Our original experimental design for the screen did

not control for thepotentially confounding layout effect. Even a simple
machine-learning architecture might be able to learn light-based pat-
terns for distinguishing different location pairs. The Twin-DN model
performance took the biggest hit with data smoothing, suggesting that
the more expressive a model is, the more readily it can exploit feature
shortcuts.

d.b. c.
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Fig. 2 | Metric learning models exploit high-frequency components of time-
series signals in an initial non-randomized screen.Wecompare the Twin-NN and
Twin-DN models against traditional methods such as correlation and Euclidean
distance on both raw and smoothed motion index (MI) time series data and
examine howwell themodels cluster drugs and generalize to a separate dataset not
used for training. a Separation of positive (treatment replicate) and negative
(mismatched replicates) MI vector pairs using the Twin-DN model (left), the Twin-
NN model (2nd column), correlation distance (“Correlation,” 3rd column), and
Euclidean distance (“Euclidean,” right). The Twin-DN and Twin-NNmodels exhibit a
drastically improved ability to separate positive from negative pairs, as evidenced
by the strong distance separation (x-axis) between the positive and negative pair
distributions. Euclidean and correlation distances fail to separate the same- from
mismatched replicates for most MI pairs, except for those with minimal distances
(e.g., the most phenotypically similar pairs). b Receiver operator characteristic
plots. Twin-DN achieves the best area under the curve (AUC=0.97), followed by

Twin-NN (0.89). Performance dropped drastically for both learning models using
MI time-series inputs smoothed with a Hanning window48 of size 11, particularly
Twin-DN (from 0.97 to 0.78). Correlation and Euclidean distance were robust to
Hanning smoothing. c Precision recall curves, showing trends consistent with (c).
d A UMAP47 using the Twin-DN distances reveals extreme clustering with distinct
phenotypic islands; as many drugs are unlikely to induce strong phenotypes in the
fish, thiswas anunexpected and suspicious result. eWe trainedk-Nearest-Neighbor
(kNN) classifiers using scikit learn63 on a separate high-replicate MI trace dataset of
16 quality control drugs never used for training or model evaluation. For many
drugs (e.g., haloperidol), the Twin-DN-based distance underperforms the zero-
baseline defined by kNNs using correlation distance. Twin-NN distance outper-
forms correlation distance on a few drugs (e.g., tiagabine and lidocaine) and always
matches or exceeds the Twin-DN model. Source data are provided in the Source
Data File.
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An optimized experimental screening design
To unequivocally control for within-plate positional confounding
effects, we perform a second high replicate screen of NT-650, but this
time with the treatments fully robotically randomized across plates
and wells (“Methods”). We also include wells treated with a high dose
of the anesthetic eugenol as a control7 baseline for lethality. We take a
near-identical approach to pre-filter for drugs without effect as in the
original screen, except that we use the random forest model to label
the MI profile into three possible bins: “active,” “inactive,” and “lethal”
(“Methods”, Supplemental Fig. 1).

We train new Twin-NN and Twin-DN models on this experimen-
tally randomized NT-650 dataset (NT-650-revised). While the SNN
models achieved slightly lesser performance on the randomized
dataset than on the original non-randomized (NT-650-naive) well lay-
out dataset (e.g., 0.84 vs. 0.89 AUROC for Twin-NN and 0.84 vs. 0.97
AUROC for Twin-DN), their performance still dramatically exceeded
that of correlation distance and Euclidean distance approaches (0.66
and 0.62 AUROC, respectively). Striking differences in the distribution
of Twin-NN and Twin-DN distances for the positive and negative pairs
(Fig. 3a) agree with greater ROC-AUC and PRC-AUC performance
(Fig. 3b, c). Fast-DTW, a popular dynamic time-warping approach for
time series prediction that optimizes the alignment between time
series50, marginally improves on Euclidean distance and falls short of
correlation distance in classifying positive versus negative pairs.
Training these baseline models on the NT-650-revised screen with
computationally smoothed high-frequency components did not

significantly reduce performance, indicating themodels no longer rely
on high-frequency feature components.

Another way of assessing model performance is by measuring its
ability to identify replicates of a compound. In the ideal case, a model
can identify all replicates for compounds that induce significant
behavioral responses. In practice, experimental replicates will often be
ineffective for many reasons. However, the better a model performs,
the more replicates across drugs it can identify. Although correlation
distance identified one replicate for most drugs, it rarely identified
three or more replicates, whereas Twin-NN did so frequently and
sometimes picked up all 7–8 replicates (Fig. 3d). This effect is
emphasized by the early plateauing of the cumulative count curve for
correlation distance. The total cumulative count does not reach the
total number of drugs for either method because nomethod perfectly
identified all replicates for all drugs, some of which may have been
inactive and thus indistinguishable from negative control (DMSO).

Mapping a larval zebrafish “behaviorome”
Using theTwin-NN learneddistancemetric,wecluster the compounds’
MI traces from the fully randomized NT-650 screen and visualize the
resulting phenotypic landscape by UMAP47 (Fig. 4a). We observed
defined clustering and structure within this view, representing a
behavior-based pharmacological map of 650 known human drugs in
larval zebrafish. Ineffective drugs populated the yellow region, while
drugs inducing behavioral readout changes favored the violet region.
Themost robustphenotypes appeared towards thebottomof the plot,

b. d.Receiver operating 
characteristic curves

Precision–recall curvesc. Replicate identification

 Twin-NN
 Corr

a.

Fig. 3 | Metric learning operates actionably on a fully randomized screen. We
investigatemodels trained on the second, fully randomized screen. a Separation of
positive and negative motion index (MI) trace pairs from the fully randomized
screen with Twin-NN (left), Twin-DN (2nd column), correlation (3rd column),
euclidean (4th column), and Fast-DTW (right) distances. Assessed as in Fig. 2a, the
revised deep learning models significantly outperform correlation, euclidean, and
fast-DTW distances. b Twin-NN and Twin-DN receiver operator characteristic per-
formance is similar (AUC=0.84 and 0.79, respectively) and significantly exceeds
correlation, euclidean, and fast-DTW (0.66, 0.62, and 0.64). Notably, models
trained with and without Hanning smoothing no longer differ significantly.
c Precision recall curves are consistent with (b). d The Twin-NN model identifies

matched drug replicatesmore effectively than correlation distance, which typically
starts to fail beyond one replicate. We compute an all-by-all distancematrix across
NT-650 compounds at the individual replicate level and determine how many
replicatewells of the compoundappearwithin the top 50most similar rankedwells.
We plot the cumulative total of unique drugs (y-axis) versus the increasing count of
identified replicates (x-axis). The y-axis maximum does not reach the total number
of NT-650 compounds because neithermethod perfectly ranks all replicates within
the top 50 most phenotypically similar ranked wells for all NT-650 compounds.
Indeed, some compounds are inactive, with replicates indistinguishable from
DMSO. Source data are provided in the Source Data File.
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falling in the negative value range for principal component 2 (y-axis) of
the UMAP. When we colored the 325-compound subset predicted to
have strong phenotypes (“Methods”) by the generic functional classes
corresponding to plate-wide assignments by the chemical vendor (e.g.,
“opioids”, “serotonergic ligands”),weobservedonly aweakcorrelation
with the position in the UMAP (Supplementary Fig. 16). This was
unsurprising, as these classes do not account for the poly-
pharmacology of many neuroactive compounds.

One qualitative way to assess the behaviorome layout is whether
specific drugs with similar known MOAs and indications group toge-
ther.We highlight several such drugs in this plot with labels. The SSRIs
fluoxetine and paroxetine clustered (labels 2,13) but distinctly sepa-
rated from the tricyclic antidepressant clomipramine (label 4),
although these shared a broader neighborhood as expected. This
observation is consistent with the intuition that behaviors based on
different classes of antidepressants should be more closely related to
each other than to other classes of neuroactive drugs, such as stimu-
lants. The dopamine D2/3 agonizts lisuride and PD 128,907 also
appeared in a similar region of space (labels 10,12). Antipsychotics
clozapine and mianserin appeared closely in phenotypic space (labels
1,7). Through the lens of correlation distance instead (Supplementary
Fig. 3), we see some similar high-level patterns but less behaviorome
structure. For example, mianserin and loxapine are no longer neigh-
bors; indeed, mianserin (label 1) appears closer to paroxetine (label 2)

than to loxapine (label 7). In other words, correlation distance places
an antipsychotic closer to an SSRI than another antipsychotic, sug-
gesting a lower clustering quality based on this region’s canonical
MOAs and indications.

Model generalization to an orthogonal library of diverse drug-
like compounds
We test the ability of the machine learning model to generalize to a
library of diverse drug-like compounds from the DIVERSet, which had
been screened months before the NT-650 set. The prior screen con-
tained compounds with less than 0.3 Tanimoto Similarity, on average,
to their closest match in NT-650 (Supplementary Fig. 14). Its goal was
neuroactive compound discovery rather than quality control ormodel
training; thus, it traded fewer replicates than NT-650 for greater
compound diversity. We previously used a similar library to discover
drug-like compounds that cause paradoxical excitation in larval
zebrafish10,28,29. In that study,weperformed thephenotypic screenwith
theDIVERSet library, and the resultingMI traceswere compared (using
correlation distance) against a reference drug, etomidate, that con-
sistently induced a strong phenotype in the larval zebrafish.

Here, we investigate if the learned distance model outperforms
correlation distance in identifying drug-like compounds from the
DIVERSet library that cause similar phenotypes. Instead of focusing on
a single known reference drug, we calculate a distancematrix for every

Fig. 4 | A learned phenotypic distance identifies islands of drugs by protein
target profile that correlation distance cannot. We investigate how well the
learned phenotypic distance meaningfully clusters drugs using a UMAP47 on Twin-
NN distances between the average time series across all replicates of each drug of
the fully randomized NT-650 screen. Labeled example drugs represent anchor

points across the phenotypic landscape. Dot color changes by phenotype strength
asdeterminedby a separate randomforest classifier employedearlier in thedataset
construction process (“Methods”). A UMAP on correlation distances of the same
data (Supplementary Fig. S3) fails to formmeaningful phenotypic clusters. Source
data are provided in the Source Data File.
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known compound in the NT-650 set against every compound in the
DIVERSet library. Figure 5a shows an example of the top 5 compounds
matching fluoxetine’s phenotype. Evaluating performance in this
context was challenging, as the diverse drug-like compounds lack
known bioactivity ground-truth labels.

As one means of assessment, we use an established systems
pharmacology tool, the similarity ensemble approach (SEA25), to
predict MOAs for all DIVERSet compounds from their chemical

structures alone and compare these predictions against the estab-
lished MOAs of NT-650 compounds that were their closest neigh-
bors in the learned distance-metric space (see “Methods”). While
SEA predictions are not perfect, they illuminate an otherwise dark
MOA landscape of chemical matter. In a “phenosearch” approach,
we rank-order and select the top 500 DIVERSet compounds by
phenotypic distance to each known drug using correlation distance
versus the Twin-NN models.

Fig. 5 | Learned distance is a good proxy for the target bioactivity profile of
DIVERSet compounds. Assessed in a scaffold-agnostic screening paradigm, we
comparemotion index (MI) traces of NT-650 query compounds against a screened
library of diverse compounds (Chembridge DIVERSet) using the Twin-NN learned
distance and correlation distance versus a random baseline wherein the matched
traces are randomly selected. a As an example, the fluoxetine MI trace (purple)
from theNT-650agreeswellwith the top 5matched library compound traces (gold)
ranked by Twin-NN distance. All time series in this plot are scaled to the minimum
and maximum of the dataset (0 and 6750 MI units, respectively), and the y-axis is
plotted on this normalized 0 to 1 scale. b We use a separate chemical informatics
method, the Similarity Ensemble Approach (SEA25,26), to assess the library com-
pound hits. Ranked by the similarity of their phenotypes to drugs from the NT-650
screen, we would expect that the likelihood of SEA target profiles between a query
(NT-650) and its closest-match library (DIVERSet) compoundswill increasewith the

quality of the phenotypic distance metric. “Hits” (y-axis) are the number of
DIVERSet compounds in a given sample that match their separate SEA profiles.
“Sample” (x-axis) is the percentage of the DIVERSet library examined, where the
analysis is limited to the top 500 matches from the library. The learned distance
metric enriches for SEA hits better than correlation and the randombaseline across
the entire range of the screen. The plot uses a confidence interval of 95% via the
seaborn lineplot function. c Similar to (b); but for specific NT-650 compounds
selected by phenotypic strength (see “Methods”). Learned distance outperforms
correlation and random distance, as with pindolol, imetit, and chlorpromazine.
Correlation distance has significantly better enrichment for only one NT-650
compound, MDL 72832 (4th row, 4th column in grid plot). All subplots use a con-
fidence interval of 95% via the seaborn lineplot function. Source data are provided
in the Source Data File.
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We observe a striking enrichment for known-target MOAs for the
Twin-NN distance over correlation distance (Fig. 5b, d) based on the
phenotypic associations for these diverse drug-like compounds. Twin-
NN identifies more DIVERSet compounds with similar MoAs to the
drug queries than correlation distance (Fig. 5b). Unexpectedly, ran-
dom selection (as a null hypothesis; Fig. 5b, violet line) typically out-
performs correlation distance at identifying shared MOAs,
highlighting the limitations of correlation distance as ametric for time-
series data such asMI.We also comparedistancemetrics by examining
how often negative control wells match up with known drugs. With
correlation distance, negative controls frequently rank in the top-500
“phenosearch” list for known drugs, but not by Twin-NN distance
(Supplementary Fig. 4a, b). These findings suggest that the Twin-NNs
are more effective than correlation distance at discovering DIVERSet
compounds that induce similar phenotypes to known drugs and
improve scaffold-hopping and neuroactive drug discovery for diverse
drug-like chemical matter.

We also asked how the phenotypic space of the DIVERSet com-
pares to the NT-650.We computed a combinedUMAP (all compounds
from NT-650 combined with DIVERSet), colored by the dataset the
compounds came from (Supplementary Fig. 17). Strikingly, there is a
large overlap between the blue (NT-650) and orange (DIVERSet)
compounds, considering that the models were not trained on
DIVERSet data. Despite this out-of-domain setting, on new compounds
and behavioral data, the models usefully associate drug-like com-
pounds from the DIVERSet with known compounds in the NT-650 set.
This overlap supports the “phenosearch” approach, as most NT-650
query compounds have many phenotypically-similar DIVERSet com-
pound neighbors in the map. Some regions have a higher density of
NT-650 compounds and vice-versa, suggesting behaviors more com-
monly appear on one screen versus the other. Further studies might
focus on selected sub-regions with DIVERSet density higher than
NT650 to explore phenotypic space unexplored in the NT-650 phe-
notypic screen.

Experimental validation of learned-distance metric in finding
diverse drug-like compounds with shared pharmacology
Since the Twin NN models consistently enriched for predicted MOAs
of DIVERSet compounds shared with known compounds (Fig. 5b), we
sought to experimentally test these learned-distance predictions pro-
spectively in a scaffold-hopping drug-discovery scenario. We selected
12 neuroactive drugs from diverse regions in the behaviorome UMAP
(Fig. 4a). We purchased the top 5 DIVERSet compounds ranked by
Twin-NN distance for each drug (60 compounds in total, of generally
low Tanimoto similarity to their query drug; Supplementary Fig. 15).
We hypothesized that the DIVERSet compounds acted through the
same protein targets as those known for the drugs that the DIVERSet
compounds mimicked phenotypically.

This was a straightforward logic in some cases: for example,
IMETIT is a humanHistamineH3 agonistwith activity at HistamineH4

51.
We purchase and test the five DIVERSet compounds most closely
rankedby theTwin-NNdistance for direct binding tohumanHistamine
H3 and H4, discovering binding of three of those compounds to H3, at
1.1 µM, 0.99 µM, and 2.7 µM (binding affinity Ki), and one of them to H4

at 5.4 µM (Ki) (Fig. 6c). In other cases, the choice of test targets was
more complex, such as for the tricyclic antidepressant clomipramine,
an inhibitor of serotonin and norepinephrine transporters with addi-
tional activity against other GPCRs, including serotonergic, dopami-
nergic, adrenergic, and histaminergic receptors. Furthermore, a
compound’s most potent activity in humans may not always account
for its observed behavior in zebrafish. Off-target or side activities
might cause the most pronounced response in the fish; this is an
inherent limitation in the cross-organism study’s design for poly-
pharmacological drugs. Clomipramine’s phenotypic location being
closer to chlorpromazine than to the SSRIs fluoxetine and paroxetine

in the behaviorome (Fig. 4a), illustrates one such case. In humans, the
clinical timescales involved in serotonin reuptake for behavioral
modification aremuch longer52 than the 1 h treatment duration used in
our phenotypic screening, so we reasoned that the DIVERSet com-
pounds phenomatched with fluoxetine might have acted through a
subset of the targets it shares with chlorpromazine, such as serotonin
2B (5-HT2B)

53,54. Accordingly, two of clomipramine’s top 5 pheno-
matched DIVERSet compounds achieve affinity (Ki) of 33 nM and
1.9 µM Kis at 5-HT2B in prospective testing (Fig. 6c).

We test 216 new compound-target pairs based on 60 unique
compounds and 17 unique protein targets. Of these, 8.3% are active
at 10 µM or better Ki (Fig. 6a, b and Supplementary Table 2). IMETIT
has the highest hit rate; 3 of its top 5 DIVERSet compounds have at
least 50% inhibition at 10 µM or better against at least one of the
targets; in the dose-response assays, two yields Ki < 10 µM, and the
most potent, compound 58040, has a Ki = 0.99 µM for Histamine H3.
Overall, 7 of the 12 drug queries yield at least one DIVERSet hit for a
58% per-query hit rate; this corresponded to a 22% hit rate on a per-
compound basis. All the dose-response binding curves from the
secondary assays for the hits are provided (Supplementary
Figs. 5–13). Where the tests failed, we may have picked the wrong
subset of a query drug’s protein targets to test against its DIVERSet
compounds. For instance, clomipramine has known activities at a
substantially wider range of targets than we could empirically test
within the scope of this study, and this may account for mechanisms
of action for those of its DIVERSet compounds that did not bind
to 5-HT2B.

Learnedphenotypic distances enable chemical scaffold hopping
Despite strikingly different chemical structures, the learned distance
metric identified compounds that induced a similar behavioral phe-
notype in the case studies.We explored this idea further by comparing
ECFP455 (chemical fingerprint Tanimoto distance) versus Twin-NN
phenotypic distance for all possible combinations of two drugs from
the randomizedhighly-replicated libraryused for training (Fig. 7).Here
we define four quadrants: top-left (low Tanimoto distance, high Twin-
NN distance), top-right (high Tanimoto and high Twin-NN), bottom-
left (low Tanimoto and low Twin-NN), and bottom-right (high Tani-
moto and lowTwin-NN). Of potential interest indrug discovery efforts,
the bottom-right region (dark purple) highlights where the commonly
used cheminformatic means of comparing two molecules fail, but the
Twin-NN distance succeeds.

Tanimoto chemical-structure distance does not correlate with
phenotypic distance, except for isolated cases in the lower left (Fig. 7).
Most pairs have Tanimoto chemical-structure distances greater than
0.4, despite sometimes inducing similar phenotypes through puta-
tively shared MOAs. Dot size reflects observed MOA similarity, com-
puted as a separate Tanimoto distance between the vectors of known-
target activities for the two drugs derived from the ChEMBL 23 phar-
macology database51, “Methods”). The highest concentration of high-
target-similarity compound pairs (large dots) favors regions where
phenotypic distance is low, and chemical structure distance is average
(0.3–0.7). This enrichment of known-MOAmatches in the presence of
good (low) Twin-NN phenotypic distance pairs is consistent with
learnedphenotypic distancepredicting sharedbiologicalmechanisms.
We hone in on these known-drug pairs with several thresholds (> 0.2
ChEMBL target-activity similarity, a chemical-structure distance >0.5,
and a Twin-NN phenotypic distance <0.3), which yields 51 known-drug
pairs that we rank by biological target similarity (full table provided in
Supplementary Table 3). We note that there are two seemingly iden-
tical rows in the table for Clozapine with Chlorpromazine since there
were two unique occurrences of Clozapine in the NT-650 plates pro-
vided by the supplier. The drugs in the top pair (7-OH-DPAT and
ropinirole) are potent Dopamine D3 agonizts and antiparkinsonian
agents. Thus our Twin-NN phenotypic distance associates known
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drugs with a shared mechanism of action but high chemical structure
distance, highlighting its usefulness for scaffold hopping.

On the other hand, some pairs of drugs with high phenotypic
similarity and middling structural similarity lack shared MOAs (small
dots), which suggests these drugs induce similar phenotypic effects in
larval zebrafish through different, parallel, or unstudied MOAs. These
pairs correspond to a region of the known drug space of particular
interest for drug discovery, and further studies might explore why

these pairs of known drugs are linked phenotypically in our study
through potentially underexplored mechanisms.

Discussion
Deep metric learning models trained on high-replicate phenotypic
larval zebrafish screens identify pairs of drug-like compounds despite
experimental variability, grouphumandrugs basedonzebrafisheffect,
find connections among compounds that traditional chemical data
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analyses fail to make, and group structurally distinct compounds by
biological MOAs. These observations support usingmetric learning on
large phenotypic screening datasets for drug discovery and scaffold
hopping. Moreover, our first implementation of these complex
learned-distance models fell prey to shortcut learning41, wherein they
exploited experimental artifacts in the screening dataset to achieve
misleadingly high performance that did not generalize to similar but
independent zebrafish screens. This deep mis-learning was nuanced
and eluded conventional cross-validation, soundness checks, and
exploratory data analysis tests. We believe the strategies described
here to detect, correct, and stress-test the experimental screening
datasets and revisedmodels will find use in other studies that combine
complex biological data with deep learning models.

Straightforward measurement methods like correlation, Eucli-
dean, or dynamic time-warping distance fall short when identifying
drugs whose replicates induced perceptible but subtle changes in
zebrafish behavior (Fig. 3a, b). The main issue is that these methods
cannot differentiate between irrelevant random variations and mean-
ingful changes that illuminate the underlying pharmacology. Con-
ventional metrics take all time points into account without weighting
their importance. On the other hand, contrastive metric learning
models disregard irrelevant parts of the data (features) and con-
centrate on the segments that display significant behavioral differ-
ences. For instance, clozapine- and DMSO-treated zebrafish exhibit
periods of reduced motion (Fig. 1d, time points 600–700). Clozapine
can look like a negative control by standard correlation methods,

Fig. 6 | Prospective experimental validation against human receptors in vitro.
Using a cheminformatic protein targetprediction approach (SEA25,26) with the Twin-
NN phenotypic distance, wemake themechanism of action predictions for NT-650
compounds and test them experimentally by radioligand binding assays. a Left:
Top 5 DIVERSet compounds (represented by their motion index time-series, rows
2–6, gold) matched by Twin-NN distance to the NT-650 drug Imetit (top row,
purple). Right: Diagram of this “phenoblast” approach. NT-650 drugs are columns.
DIVERSet compounds are rows, ordered by Twin-NN phenotypic distance. Sup-
plemental Table 1maps compound IDs to supplier IDs. All time series in this plot are
scaled to the minimum and maximum of the dataset (0 and 6750 MI units,
respectively), and the y-axis is plotted on this normalized 0 to 1 scale. b Primary

radioligand binding assays (binding inhibition at 10 µM, %) for 7 known drugs. The
heatmap shows 5 DIVERSet compounds selected for testing (rows), with the SEA-
predicted human protein targets as columns. c Same as (b) for secondary assays
(dose-response radioligand binding experiments).d Representative dose-response
curves from (c) for selected DIVERSet compounds tested against two human tar-
gets: the histamine H3 receptor (left) and the 5-hydroxytryptamine 2B receptor
(right). Results (mean ± SEM) from a minimum of 3 independent assays (each in
triplicate) were normalized, pooled, and fitted to the built-in one-site competition
binding function in theGraphPadPrismV10. Sourcedata areprovided in theSource
Data File.
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Fig. 7 | Phenotypic screening with learned distance reveals scaffold hopping
and drug prospecting opportunities. Learned phenotypic distance (Twin-NN,
y-axis) complements conventional chemical informatic distance based on chemical
structure (Tanimoto coefficient on ECFP4 circular fingerprints, x-axis). The scat-
terplot contains all pairwise combinations of 83 NT-650 compounds (each pair is a
dot), calculated from their average MI traces and chemical structures. Where the
phenotypic distance is low (< 0.3) but the Tanimoto distance is average or high
(>0.4),molecular structuredissimilaritymisses neuroactive similarity.We illustrate
each quadrant with examples. Bottom left: low Tanimoto and phenotypic distance

(both metrics agree that molecules are similar). Bottom right: low phenotypic
distance and high Tanimoto distance (scaffold hopping opportunity). Top-left: low
Tanimoto distance, but high phenotypic distance (classic “activity cliff”: disparate
activity despite high structural similarity). Top right: high Tanimoto and pheno-
typic distances (both metrics agree that molecules are unrelated). Dot size reflects
the Tanimoto similarity between the target profiles (as binary vectors) of the
compound pairs. All time series in this plot are scaled to the minimum and max-
imumof the dataset (0 and 6750MI units, respectively), and the y-axis is plotted on
this normalized 0 to 1 scale. Source data are provided in the Source Data File.
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which attribute equal importance to periods of inactivity and activity.
In an extreme example, correlation distance scores two traces as
almost identical when comparing a drug that sedates the fish except
for a sudden movement spike versus a lethal control such as eugenol.
However, a metric learning model learns that sudden motion spikes
matter in differentiating drugs.

At a more global level, we construct a “behaviorome” - a visual
map of drug similarity based on zebrafish behavior. This landscape,
created by pairing zebrafish phenotype with an appropriate distance
metric, reveals relationships between known neuroactive drugs and
identifies underexplored areaswith potential for drug discovery. From
high-throughput behavioral screening data and the learned distance
metric, we link human drugs directly to the in vivo vertebrate beha-
viors they induce. Classical informatic methods falter on diverse che-
mical structures, as they rely on the necessity of the similar property
principle of chemical informatics56. This is particularly true at activity
cliffs57, where slight chemical structure changes drastically affect
bioactivity. Phenotypic screening, using behavior, circumvents these
limitations. Different compounds triggering similar zebrafish beha-
viors may interact with the same targets and pathways. The learned
distance metric complements raw structural similarity (Fig. 7), under-
lining traditional cheminformatics limitations and opportunities for
drug discovery and scaffold hopping.

We attempted to automate the discovery of diverse drug-like hits
for disease-related mechanisms and pathways in the CNS. For new
compounds, such as those from the Chembridge DIVERSet library, the
Similarity Ensemble Approach25,26,57 predicted unknown experimental
MOAs. The metric learning models identified library compounds with
marked enrichment in their predicted MOAs to the MOAs of known
drugs, indicating pharmacological similarities (Fig. 5b, d). Instead of
relying on in silico validation, we experimentally tested the predicted
MOAs in vitro via prospective radio-ligand binding assays. We found
that neuroactive drugs successfully linked to DIVERSet library com-
pounds by phenotype and MOA 58% of the time. This hit rate sur-
passed early drug discovery hit rates using high throughput screening
(HTS, 0.01–0.14%) or virtual screening (VS, 1–40%)58. Unlike typical
HTS or VS hits, behavioral hits may offer more robust lead series
starting points because they, by definition, already trigger an in vivo
effect in zebrafish and show animal tolerance. Many in vitro hits fail
in vivo due to absorption, distribution, metabolism, excretion (ADME)
issues, and pharmacodynamic/kinetic properties such as blood-brain
barrier penetration are crucial for neuroactive drugs. However, deep
metric learning on behavioral screening data quickly identified hits
that could circumvent these issues.

In an unintended but instructive project outcome, we grappled
with the first metric learning models silently exploiting shortcut
learning on the original dataset, which had not used randomized plate
layouts. Despite passing conventional soundness check analyses,
including label randomization and scrambling input features (y- and x-
scrambling), the learning models exploited subtle experimental data-
set artifacts. Pre-determined plate layouts from drug suppliers might
inadvertently teach the models positional effects by exploiting slight
irregularities in the experimental setup, such as minor differences in
distance to directional light and sound sources (Fig. 1a). These effects,
imprinted in high-frequency components of time-series traces, were
imperceptible to humans but perceptible to deep learning models.
This generalizability limitation was not an overfitting issue and could
not be rectified by refining training-test set splits, such as scaffold-
splitting drugs or time-series trace clustering. Consequently, we re-ran
the full-scale experimental screen with robotically randomized plate
layouts on the same compound library to assess this challenge
unequivocally. Indeed, models trained on the original dataset dete-
riorated when we computationally smoothed high-frequency compo-
nents of the motion index traces (Fig. 2b), but those trained on the fit-
to-purpose randomized screen remained unaffected (Fig. 3b). While

we might instead have attempted to train generative adversarial net-
works (GANs)59 to remove shortcut signals computationally60, complex
models such as GANs can be brittle, and we sought a more definitive
analysis. As an intriguing challenge, follow-up studies by those inter-
ested in mitigating shortcut learning might find value in comparing
new algorithmic versus the experimental plate-effect removal strate-
gies on these two datasets.

We faced several practical caveats in the metric learning training
procedures. Particularly,mismatched compoundpairswithin the same
pharmacological class may trigger similar behaviors in zebrafish. We
considered using Anatomical Therapeutic Chemical (ATC)61 class or
predicted protein target activity profiles by the Similarity Ensemble
Approach (SEA)25,26 to exclude misleading false-negative compound
pairs frommodel training. However, many NT-650 substances are not
approved drugs and lack ATC codes. Moreover, ATC classes operate
across a hierarchy of varying branch depths, and it is likewise not clear
what threshold to use for SEA-prediction similarity, given the ~ 2000
proteins in a target profile. Conversely, we might incorrectly label
compound pairs as positive (false-positives) if they do not elicit a
strong behavioral response. Inactive compounds could result from
biological differences between humans and zebrafish, inactive con-
centrations, or limited effects on zebrafish behavior in our particular
assay conditions. To tackle this, we deployed a separate random forest
(“Methods”) to remove inactive traces from positive-pair candidacy
before metric learning training as a provisional solution. Conse-
quently, the ground truth labels of compound phenotypic similarity
used during model training are imperfect and noisy. Whereas
improving these weak labels62 may be an avenue for further refine-
ment, we found them sufficient to train distance metrics robust to this
biological label noise. Another caveat is that due to experimental
scope, we could not account for compound dose, as all compounds
were screened at a single concentration of 10 µM. However, models
trained on such data could presumably infer phenotypes triggered by
alternative doses of compounds, as they already distinguish DMSO
wells from treatments. In the out-of-domain application of the models
to the larger DIVERSet library, compounds populated the full gamut of
behavioral space compared to compounds in the NT-650 training set,
including those thatwere fully orpartially inactive. In futuredirections,
the models might serve as bridges to relate otherwise disparate per-
turbations, ranging from compound doses to functional genomics or
the role of environmental changes.

Comparing our success rates with conventional single-target-
based high throughput screening (HTS) or virtual screening (VS) pre-
sents different hurdles. Since we do not know the protein MOA for
DIVERSet neuroactive compounds a priori, we tested these com-
pounds against multiple predicted protein targets. Consequently, we
calculate a best-of-hit rate, which provides more identification
opportunities than a single-target screen. However, the lack of
knowledge about which protein targets the DIVERSet compound
impact makes direct comparisons with per-target success rates pro-
blematic. Our overall hit rate was 58%, which implies a 42% chance that
a given query using a known drug would result in no protein-matched
hits. These represent missed opportunities more thanmethodological
failure. Here, errors in MOA prediction for DIVERSet compounds or
cryptic but shared protein off-targets may cause unexpected associa-
tions between NT-650 and DIVERSet compounds. However, as che-
minformatic target prediction accuracy improves, this will further
complement the phenotype-based metric learning approach. Finally,
we acknowledge that the larval zebrafish animal model for studying
neuroactive drugs has limitations due to genetic, anatomical, and
behavioral complexity differences with mammals. Consequently, we
must carefully vet the compounds, pathways, or behavioral phenom-
ena identified in the larval zebrafish in more advanced animal models
and humans to establish their therapeutic import, which is beyond our
scope. This study’s blend of screening technology andmetric learning
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is thus a tool to complement but not replace accepted animal models
and methods.

Deep metric learning models with high-replicate behavioral zeb-
rafish screens directly reveal scaffold hopping opportunities. These
models outperform traditional distance metrics and cheminformatics
methods, accurately classifying and grouping compounds from their
zebrafish behavior alone. Prospective testing confirmed most of the
predicted neuroactive MOAs using human receptors in vitro. Deep
metric learning enriches phenotypic screening, yielding diverse drug-
like compounds with actionable neuroactive effects despite different
chemical structures.Despite the challenges presentedbyexperimental
variability and shortcut learning—where models exploited experi-
mental artifacts—we successfully redeployed the screen and stress-
tested the models, creating a robust approach applicable to diverse
investigations that pair complex biological data with deep learning.
Closely integrating fit-to-purpose larval zebrafish behavioral screening
with deepmetric learning is an efficient and robustway to identify new
neuroactive compounds in vertebrates.

Methods
Ethics statement
All zebrafish procedures were performed and approved according to
UCSF’s Institutional Animal Care Use Committee (IACUC) and the
Guide to Care and Use of Laboratory Animals (National Institutes of
Health 1996) and conducted according to established protocols that
complied with ethical regulations for animal testing and research.

Animal husbandry
Eggs from a wild-type Singapore strain were collected by group mat-
ings and raised on a 14/10-hour light/dark cycle at 28 °C in egg water
(GCULA) until 7 dpf. 8 healthy larvae were then distributed by pipette
into the wells of 96-well plates. They were then incubated pre-
treatment for 1 hr, dosed, incubated post-treatment for 1 hr, and then
screened in the behavioral instrument. The zebrafish larvae used in
these studies have not undergone sexual differentiation at this stage,
eliminating sexual dimorphism as a potential confounding factor. In
addition, the larvae are sourced from large group spawnings of wild-
type zebrafish,which ensures a genetically diverse andbalancedmix of
male and female progenitors, further supporting thegeneralizability of
the findings.

Chemical libraries
Two chemical libraries were used in our study: the SCREEN-WELL
Neurotransmitter Set (Enzo Life Sciences, Farmingdale, USA https://
www.enzolifesciences.com/BML-2810/screen-well-neurotransmitter-
library-10-plate-set/ and the ChemBridge DIVERSet Screening Library
https://www.chembridge.com/screening_libraries/diversity_libraries/.
Additional information about the chemical libraries, such as all com-
pound structures (in SMILES format), is provided in Supplemen-
tary Data 1.

Screening platform
The screening platform is described in detail7 (Fig. 1 and “Methods”).
TheQC set screeningmethods are also described in that study. For the
randomized experiments using the Screen-Well Neurotransmitter Set,
we randomized the plate layouts with a custom code provided with
this study. We transformed the physical layout of the plates accord-
ingly using a BioMek robot in the Arkin lab at UCSF. For the
NT650 screen, we treat each plate with 8 DMSO controls, 2-3 H2O
controls, and 2-3 Eugenol (toxic) controls. Throughout the study we
treat DMSO and H2O controls identically since we observe no sig-
nificant differences in the motion index time series between these two
types of negative controls. For the DIVERSet, only DMSO controls are
included. Additional details are provided in the Supplement (Supple-
mentary Tables 4, 5).

Data collection
Larval zebrafish are plated onto 96-well plates (8 fish per well), and
wells are dosed with drugs at 10 µM for primary screening (Fig. 1).
Various stimuli such as acoustic sounds and physical tapping of the
plate platforms are performed to elicit diverse behavioral responses in
the fish, as optimized byMyers-Turnbull et al.7. Videos are recorded of
the fish behavior for the duration of the experiment, which for the
screens discussed in this work is around 14min. For each well, the
videos are encoded and converted into bulk motion over time,
resulting in a one-dimensional time series or motion index (MI). Spe-
cifically, we used pre-interpolation m’ values7 defined by:

m0ðItÞ=
X

ij

1 Itij � It�1
ij ≥ 10

���
��� ð1Þ

where It is the grayscale imagematrix at 1-indexed frame t. These videos
represent the average motion across all 8 fish in each well. Since
zebrafishmovement can be uncoordinated, averaging overmultiple fish
cangreatly improve thesignal-to-noise ratio formanyclassesofdrugs7,10.

Data analysis
We performed data analysis using scripts in GraphPad Prism v10 and
Python (e.g., numpy (1.16.3), pandas (0.24.2), scipy (1.5.1), sklearn
(0.20.3), and seaborn (0.11.1), rdkit (2019.03.2), pytorch (1.1.0)). SEA
(Python code) is referenced in Keiser MJ et al. Nat Biotech, 200725. For
further details, see the study code repository (Code Availability).

Filtering ineffective and lethal compounds by Random Forest
For the first high-replicate screen, we trained a random forest classifier
to identify ineffective compounds (mimicking DMSO) using sci-kit
learn63. The inputs are theMI of drugs andDMSO-treatedwells, and the
output is a binary label (effective or ineffective).Wefirst split the entire
dataset using an 80/20 train/test split. Therewere fewerDMSO-treated
examples, so we randomly undersampled from the drug-treated wells
to match the number of DMSO-treated wells. This resulted in 556
examples from each class in the training set and 180 examples in each
class in the test set. For the randomized high-replicate screen, we
include positive controls (eugenol), which is lethal to the larval zeb-
rafish. Here, the random forest is trained to label MI into one of 3
possible bins (effective, ineffective, or toxic). As before, we first split
the entire dataset using an 80/20 train/test split. There were fewer
toxic examples than in the other 2 classes, so we randomly under-
sampled from those classes to match the number of toxic examples.
This resulted in 100 examples for each class in the training set and 28
examples for each class in the test set (using an 80/20 train/test split).

Conventional metrics used to calculate phenotypic distance
We used the sci-py package49 to compute correlation, euclidean, and
the fast-dtw64 python library to compute the dynamic time warping
distance between the 101,250 frame-long MI time series traces.

Classifying quality control drugs with distance metrics
We trained a kNN (k-Nearest-Neighbors)65 algorithm as implemented
in the sklearn KNeighborsClassifier package to classify the quality
control (QC) 16 neuroactive drugs based on their motion-index time-
series traces using the implementation in the scikit-learn package49,63.
Each QC compound was screened in replicates of 10, so we split the
dataset into train and validation splits (8 train, 2 validation) replicates
for each drug. The task of the KNN was to predict, for a given time
series, which one of the 16 drugs it most closely corresponds to. We
chose 15 for the number of nearest neighbors parameter.

Training deep metric learning models for phenotypic distance
Our Twin-NN and Twin-DN models use a Contrastive Divergence loss
function and may be thought of as contrastive learning approaches
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that simply use real-world (experimentally collected) compound-
replicate data instead of relying on the synthetically generated data-
augmentation procedures used in contrastive learning architectures
such as SimCLR66. Thus, our models are formally metric learning
models because we provide a training label for each compound pair,
reflecting whether the MI trace replicates are of the same small-
molecule compound. Conceptually, however, the models are moti-
vated by contrastive learning because they rely on a contrastive logic
on replicated observations, albeit without requiring post hoc synthetic
augmentations. Thus, a formal contrastive learningmodel like SimCLR
that learns from imperfect synthetic augmentations would be unlikely
to perform better than our approach that directly leverages the real-
world compound replicate readouts we purposefully collected in a fit-
to-purpose way specifically for this study.

In general, a dataset of positive and negative pairs is required to
train a Twin-NN or Twin-DN model. To construct such a dataset, we
screened the SCREEN-WELL Neurotransmitter Set (“NT-650”) in high
replicate. We define any two replicates of the same compound to be
positive pairs, while a replicate of one compound paired with a repli-
cate of another compound was a negative pair. Each plate of 96 drugs
was replicated 7–10 times, creating a sizable dataset of positive and
negative pairs. In practice, not all compounds will exhibit an obser-
vable effect in larval zebrafish, so it can be misleading to label repli-
cates of such drugs as “positive” (see Discussion). Thus, we filtered all
pairs where at least one pair member was “ineffective” or “lethal” by
the random forest. We trained the second round of Twin-NNs similarly
but using the fully randomized dataset instead.

To create the dataset of pairs, we first split the dataset by drug to
minimize memorization and over-fitting, allocating 80% of drugs for
training and 20% for the test set. This scheme naturally presents a
generalizability challenge for the models, since phenotypes induced
by the training drugs might not be induced in the test drugs. Data
splitting encourages themodels to learn fundamental features that are
independent of drug or phenotype, which can lead to much better
generalizability. Next, we performed a class balancing procedure.
There are many more pairs that can be enumerated across different
drugs (negative pairs) than pairs from the same drug (positive pairs),
but this could lead to class imbalance issues during training. Hence, we
randomly subsampled the negative pairs to match the number of
positive pairs for both the training and test sets. Next, we aimed to
include additional commonly encountered pair types. For positive
pairs, we often encountered control-control and tox-tox pairs, and for
the negative pairs, we often encountered control-drug, control-tox,
and tox-drug pairs. To ensure the models were exposed to enough of
these pairs, we ensured that 25% of the total positive pairs in the
dataset came from the control-control or tox-tox classes (allocated
evenly) and that 25% of the total negative pairs in the dataset came
from the control-drug, control-tox, or tox-drug classes (allocated
evenly across these 3 classes). We saved pairs to NumPy arrays of
indices that corresponded to indices of the time series data and pro-
vided both the pair arrays and raw data in our online data repository.

We used PyTorch to train the Twin-NN and Twin-DN models (see
Github repository). Briefly, we loaded the positive and negative pairs
using a Pytorch Dataloader, randomly swapped the pair order, sampled
at every 5th frame, andmin-maxnormalized them.Thenwepassed these
pairs of motion index time series through the MLP architecture (Twin-
NN) or Dense architecture (Twin-DN). The Twin architecture was a
6-layer feed-forward neural network. The input layer size was 20250
(length of the input); each subsequent layer was 4000, 500, 250, 100,
and 10, respectively. After each linear layer (except the last), we per-
formed batch normalization and ReLU activation. We passed each time
series froman inputpair in this feed-forwardarchitecture, afterwhichwe
computed a contrastive loss from the 2 outputs (vectors of length 10
each). We used a margin of 0.5 for the negative pairs in the contrastive
loss. We back-propagated the contrastive loss and updated model

weights after each batch, until reaching convergence or the maximum
epoch count. We used the same training procedure for the Twin-DN
models, except that we based the architecture on DenseNets instead.
The final output for each input from the DenseNet was also a vector of
length 10. To train the models, we used a learning rate of 5e-4 with the
Adam optimizer and weight decay set to 1e-6. For the Twin-NN model,
we used a batch size of 32. For the Twin-DNmodel, we used a batch size
of 8, as this was the largest batch size to fit in GPUmemory. We used an
NVIDIA GeForce GTX 1080 Ti GPU on a CentOS Linux kernel 3.10.0
operating system with an x86-64 architecture.

Behaviorome UMAPs
To plot a UMAP embedding for the NT-650 dataset (Fig. 4), we com-
puted the mean time series for every compound in the dataset (across
all replicates of the compound). We then calculated an NxN distance
matrix based on these mean times series. This distance matrix is pas-
sed into the UMAP library from Python47min_dist parameters to 10
(default is 15) and 0.1 (same as default), respectively.

For the behaviorome with supplier-provided class labels (Sup-
plementary Fig. 16), we performed the analysis for the 325 compounds
with strong predicted phenotypes (“Methods”). We computed the
UMAP embedding using the same procedure as for Fig. 4, except that
points are colored by the class labels, keeping the n_neighbors para-
meter the same and setting min_dist to 0.25. For the joint UMAP
between NT-650 and DIVERSet (Supplementary Fig. S17), we applied
the same procedure to the combination of the two datasets (all unique
replicates of NT-650 and all unique wells of DIVERSet), but setting the
n_neighbors parameter to 50while using the default value formin_dist
(0.1). For compounds highlighted in the legend, we computed the
mean embedding point across all replicates of the compound.

Stress-testing the metric learning models
We performed high-frequency signal filtering using a Hanning
smoothing filter48 as implemented in the scipy package49, using a
window size of 11. We tried three adversarial controls on our Twin-NN
models: label-shuffling, input randomization, and predicting well dis-
tance (Supplementary Fig. 2). For label-shuffling, we randomly shuffled
the labels while keeping the input fixed. For input randomization, we
generated random MI vectors of the original length using the Python
NumPy package67, while holding the labels fixed. For well distance, we
used the Twin-NN models to predict well distance (computed as the
Euclidean distance between pairs of wells). We define as “same” those
pairs that are neighbors below a certain distance cutoff (2 and 5.2 plate
distance units), and as “different” thosepairs that are distant fromeach
other (above the chosen cutoffs). The Twin-NNmodels appear to have
no ability to distinguish between pairs in this context at either of these
cutoffs, suggesting a lack of strong signal in the motion index time
series attributable to plate location alone.

Chemical informatics and bioactivity prediction
Chemical structure similarity is computed fromECFP4fingerprints and
Tanimoto similarity using the rdkit package. Bioactivities of com-
pounds of unknown indication or mechanism of action (as for hits
from the SCREEN-WELLNeurotransmitter Set) are computed using the
similarity ensemble approach (SEA25,26) together with version 23 of
ChEMBL51. We use a SEA p-value cutoff of 1e-25 for bioactivities.

In vitro binding assays against human receptors
The 60 compounds from the DIVERSet screen were tested in radi-
oligand binding assays (performed as previously described68–70)
against human receptors at the National Institute of Mental Health
Psychoactive Drug Screening Program at UNC (PDSP). Primary inhibi-
tion screens were performed at the final dose of 10 µM in the in-plate
quadruplicate set, and compounds passing a threshold of 50% inhibi-
tion were subjected to secondary dose-response assays to determine
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binding affinity (Ki) in the intra-plate triplicate set. All binding assays
are conducted in 96-well plates at the final volume of 125 µl per well. In
brief, samples, radioligands, and receptor membranes are mixed and
incubated for 60min at room temperature in the dark. The reactions
are terminated by rapid vacuum filtrationonto glass fiber filters chilled
with 0.3% PEI solution. The filters are quickly washed twice with cold
wash buffer (50mMTris HCl, pH 7.4) and dried. Radioactivity is read in
a Microbeta counter. Results are analyzed in GraphPad Prism V10.
Detailed assay protocols and procedures are also available from the
NIMH PDSP homepage (https://pdsp.unc.edu/pdspweb/?site=assays).

Use of Large Language Models (LLMs)
We used OpenAI ChatGPT 3.5 Turbo and ChatGPT 4 as scientific edit-
ing tools when writing the manuscript. We prompted the LLMs to
suggest revisions to ourmanually drafted text for improved clarity and
conciseness at the sentence and paragraph levels. We did not ask the
LLMs to generate content de novo. An example of a prompt we used
was, “You are helping edit papers for a broad scientific audience,
emphasizing clarity and conciseness. Revise the following paragraph:
< draft text here >.”Wemanually reviewed the LLMs’ suggested revised
text word-by-word and decided whether to include parts, all, or none.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The processed motion index time series data used in this study is
available at: https://zenodo.org/records/10652682 (https://doi.org/10.
5281/zenodo.10652682). Source data are provided with this paper as
Source Data file. Source data are provided with this paper.

Code availability
The source code andmodelweights underlying theTwin-NNandTwin-
DN models are available at: https://github.com/keiserlab/deepfish
(https://doi.org/10.5281/zenodo.13910211)71.
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