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Abstract

Supersymmetry, Dark Matter and the Hierarchy of Yukawa Couplings

by

Sourav Kumar Mandal

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Hitoshi Murayama, Chair

While the standard model successfully describes a wide array of phenomena among
the fundamental particles and interactions, some significant problems remain. These
include the hierarchy problem in the Higgs sector, the hierarchy of the Yukawa cou-
plings, and the nature of dark matter.

These problems are addressed in this thesis. First, the standard model and its
problems are reviewed; supersymmetry is identified as possible framework for solving
all three problems. Second, brief reviews of supersymmetry and dark matter phe-
nomenology are provided. Then, using gamma rays and neutrinos, novel astrophysi-
cal constraints on the dark matter interpretation of the recently observed cosmic-ray
e± anomalies are developed. Finally, a class of supersymmetric models is described
wherein the first and second generation squarks and sleptons are pseudo-Nambu-
Goldstone bosons, making their standard model counterparts naturally light, thereby
resolving the Yukawa hierarchy problem. We show that this model an be easily iden-
tified at the Large Hadron Collider after a few months of running at 14 TeV. This
class of models also provides a promising dark matter candidate which evades the
derived gamma ray and neutrino bounds, and may be relevant to the cosmic ray e±

anomalies in a certain parameter region.
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Chapter 1

Introduction

The standard model has stood as a benchmark of predictive power among sci-

entific theories. It explains an array of observations in precision quantum electro-

dynamics, nuclear physics, collider phenomenology and particle cosmology, and in

doing so underlies much of our understanding of nature. However, there remain open

questions in the standard model, such as the existence and controlled renormalization

of the Higgs, the hierarchy of Yukawa couplings and the nature of dark matter.

In this thesis, these three questions are addressed. In Section 1.1, the standard

model is reviewed, and then in Section 1.2 the various problems of the standard

model are discussed. Here, supersymmetry is argued to be a framework that may

solve all three problems. Then, in Section 1.3 supersymmetry is developed from first

principles, installed in curved spacetime backgrounds, then applied to the standard

model. Finally, at the end of the Section it is discussed how supersymmetry can

explain the hierarchy of the Yukawa couplings. Afterward, in Section 1.4, dark matter

is broadly reviewed. Presented are evidence of its existence, possible candidates and

certain aspects of its detection, with an emphasis on WIMPs from supersymmetry.

Then, in Chapter 2, the dark matter interpretation of recently observed cosmic-

ray e± anomalies is put to the test by the development of novel astrophysical con-

straints from gamma rays and neutrinos. Finally, in Chapter 3, a class of supersym-

metric coset theories is presented in which the first and second generation quarks

and leptons are the fermionic partners to pseudo-Nambu-Goldstone bosons, thereby
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Symbol SU(3)c SU(2)L U(1)Y U(1)EM

QL,i =

(
uL,i
dL,i

)
3 2 +1/6

(
+2/3
−1/3

)
ūR,i = (uR,i)

c 3̄ 1 −2/3 −2/3
d̄R,i = (dR,i)

c 3̄ 1 +1/3 +1/3

LL,i =

(
νL,i
eL,i

)
1 2 −1/2

(
0
−1

)
ēR,i = (eR,i)

c 1 1 +1 +1

Table 1.1: The representations of one generation of matter in the standard model.
Note that all the fields as written such that they are left-handed. The index i = 1, 2, 3
denotes the generation.

resolving the problem of the Yukawa hierarchy. It is shown that such a class of mod-

els has a number of striking signatures at the Large Hadron Collider (LHC), and

that these can be easily seen within a few months of running at 14 TeV. This model

scenario also contains a promising dark matter candidate which evades the bounds

gamma ray and neutrinos by virtue of its low mass, and in a particular region of

parameter space may explain one of the cosmic ray anomalies.

1.1 The Standard Model

The standard model of the fundamental particles and interactions is a relativistic

(i.e., invariant under the proper isochronous Poincaré transformations) field theory

which possesses a local, or gauge, symmetry SU(3)c × SU(2)L × U(1)Y . The SU(3)c

gauge group describes the strong interaction; this sector of the theory is known as

quantum chromodynamics (QCD). SU(2)L×U(1)Y describes the so-called electroweak

interactions, and the symbol L denotes that SU(2)L only acts on left-handed particles

or right-handed antiparticles. At low energy (<∼ 300 GeV), the local symmetry is

broken down to SU(3)c×U(1)EM by the Higgs mechanism, where U(1)EM describes

quantum electrodynamics (QED).

The fermionic matter of the theory is arranged in three generations or “flavors”

of a single set of representations under the gauge groups, shown in Table 1.1. In
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the first generation, u and d are the up and down quarks; in the second generation,

they are the charm (c) and strange (s) quarks, and in the third top (t) and bottom

(b). Similarly, the ν and e are the electron neutrino (νe) and electron (e) in the first

generation, muon neutrino (νµ) and muon (µ) in the second, and finally tau neutrino

(ντ ) and tau (τ) in the third. There is no right-handed neutrino in the standard

model.

Because of the SU(2)L interaction, each of the fields is written as left-handed

Weyl spinors instead of as Dirac spinors; the left-handed particle fields are arranged

in fundamental doublets of SU(2)L. The antiparticle fields (denoted with a “ ¯ ”)

are left-handed because they are the charge-conjugates (“ ( )c ”) of the right-handed

fields, but they are trivial under SU(2)L. So, nominally the electroweak interaction

maximally violates parity, but not (charge)×(parity), also denoted CP. This is con-

sistent with the behavior of the weak interactions observed in early experiments. (It

will be shown later that a small CP violation can arise in the Yukawa sector.) At low

energy nature appears to conserve charge and parity separately, so the electroweak

couplings must be very small in order that the effects of SU(2)L were not visible

until the observation of β decay. Finally, the hypercharge assignments for the matter

fields are such that the fermions have the correct electrical charges at low energy,

while also being consistent with the pattern of the electroweak symmetry breaking.

In this regime the standard model has proven to be remarkably accurate, giving the

anomalous magnetic dipole moment of the electron, ae = (ge − 2)/2, correctly to ten

significant figures [1].

Whereas the electroweak interaction violates parity, the strong interaction SU(3)c

exhibits a chiral symmetry where the left- and right-handed quarks transform inde-

pendently. Since this interaction is confining at low energies (∼ 200 MeV), pseudo-

Nambu-Goldstone boson composites — pions — are formed when the axial part of

this SU(2)L × SU(2)R global symmetry is spontaneously broken. Other composite

states, the mesons and baryons, are also predicted by the quark model owing to the

flavor-blindness of the strong interaction, and most have been found. The first mesons

and baryons to be observed are organized as irreducible representations of SU(3)F , in

which the three quark species (d, u, s) are in the fundamental representation 3. The
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mesons contain two quarks and compose

3⊗ 3∗ = 8⊕ 1 . (1.1)

This results in two nonets, the first containing pions with orbital angular momentum

l = 0, and the second ρ mesons with orbital angular momentum l = 1. The baryons

contain three quarks and compose

3⊗ 3⊗ 3 = 10⊕ 8⊕ 8⊕ 1 . (1.2)

The states must be antisymmetric under the strong interaction, as well as under the

interchange of any two quarks of the same mass. Then one finds that 10 is symmetric

under the interchange of any two quarks, while the 1 is antisymmetric; the two 8 are

of mixed symmetry (one of these contains the proton and neutron). It should be

noted that because s is significantly heavier than u and d the symmetry, SU(3)F is

inexact, and because of the strong confinement involved, it is difficult to make precise

numerical predictions analytically; instead, we must rely on lattice computations.

Mesons containing c, b and baryons with c have also been observed.

On the other hand, at high energy the strong interaction grows asymptotically

free, so deep-inelastic scattering experiments on mesons and baryons induce inter-

actions with constituent quarks and gluons rather than with the composites as a

whole. This results in scattering cross-sections in which, at tree level, the momentum

distribution of the constituents is independent of the total collision energy. This phe-

nomenon is known as Bjorken scaling [2], has been observed in collider experiments.

Moreover, higher-order calculations show that the standard model is consistent with

other measurables at colliders (see, for example, Ref. [3]).

The gauge invariant Lagrangian for the theory described so far is

L =− 1

4

8∑
a=1

(Ga)µν(G
a)µν − 1

4

3∑
a=1

(W a)µν(W
a)µν − 1

4
BµνB

µν

+
∑
i=1,2,3

∑
f

f̄iiγ
µDµfi

(1.3)

where a is the index over the group generators {T a}, f denotes each of the fermions

in a generation, and i is the index over generations. In the first line are gauge kinetic
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terms expressed in terms of field strength,

F a
µν = ∂µA

a
ν − ∂νAaµ + gfabcA

b
µA

c
ν (1.4)

where Aaµ is the gauge connection, g is the gauge coupling and fabc are the structure

constants for the group

[Ta, Tb] = ifabcT
c . (1.5)

Since U(1)Y has only generator, there is no generator index a and the last term in its

field strength is absent because it is abelian. The second line in the Lagrangian are

the kinetic terms for the matter fields, where

Dµfi =

(
∂µ − igs

8∑
a=1

Ga
µT

a
SU(3)c − ig

3∑
a=1

W a
µT

a
SU(2)L

− ig′Y Bµ

)
fi . (1.6)

Here, gs is the SU(3)c gauge coupling and Ga
µ is the SU(3)c gauge connection; there

are corresponding terms for SU(2)L and U(1)Y . For U(1)Y , the factor of Y is the

hypercharge of fi.

Let us now introduce the Higgs mechanism for the symmetry breaking in the

electroweak sector. Supposing the Higgs field is the complex SU(2)L doublet

φ =

(
φ+

φ0

)
(1.7)

the gauge-invariant Lagrangian is

L = |Dµφ|2 − V (|φ|2) (1.8)

where

V (|φ|2) = −µ2|φ|2 + λ|φ|4 (1.9)

is the simplest potential that could induce a spontaneous symmetry breaking. For

µ2 > 0, the vacuum expectation value (VEV) is then

|〈φ〉| ≡ v =

(
µ2

2λ

)1/2

. (1.10)
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Using the freedom of the local SU(2)L symmetry, we can express the field as

φ(x) =

(
0

v + 1√
2
h(x)

)
(1.11)

where h(x) is a real scalar field. Replacing φ in the potential we find

V (h) =
1

2
m2
hh

2 +

√
λ

2
mhh

3 +
1

4
λh4 (1.12)

where mh =
√

2µ = 2
√
λv. As of this writing, the Higgs boson has not been observed,

but a lower bound has been set at mh ' 114 GeV [1]. However, from what follows

the VEV can be deduced to be v ' 174 GeV.

Using the Pauli basis for SU(2)L, {T a} = {σa
2
}, and asserting that the hyper-

charge of the Higgs is +1/2, the kinetic term for the Higgs is then

Lkin =
1

2
[∂h(x)]2

+

(
0

v + 1√
2
h(x)

)T (
g

3∑
a=1

W a
µ

σa

2
+

1

2
g′Bµ

)2(
0

v + 1√
2
h(x)

)

=
1

2
[∂h(x)]2

+
v2

4

[
g2
(
W 1
µ

)2
+ g2

(
W 2
µ

)2
+
(
−gW 3

µ + g′Bµ

)2
](

1 +
h√
2v

)2

(1.13)

giving masses to three of the four bosons. Writing those three gauge bosons as

W±
µ =

1√
2

(
W 1
µ ∓ iW 2

µ

)
Zµ =

1√
g2 + g′2

(
gW 3

µ − g′Bµ

) (1.14)

we then have

Lkin =
1

2
[∂h(x)]2 +

[
m2
WW

+W− +
1

2
m2
ZZ

2

](
1 +

h√
2v

)2

(1.15)

where

mW =
g√
2
v , mZ =

√
g2 + g′2√

2
v . (1.16)
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Lastly, the remaining, massless boson is

Aµ =
1√

g2 + g′2

(
gW 3

µ + g′Bµ

)
. (1.17)

Then, if we define the so-called Weinberg angle

cos θW ≡
g√

g2 + g′2
, sin θW ≡

g′√
g2 + g′2

(1.18)

the mapping between (Zµ, Aµ) and (W 3
µ , Bµ) is given simply by(

Zµ

Aµ

)
=

(
cos θW − sin θW

sin θW cos θW

)(
W 3
µ

Bµ

)
. (1.19)

Then, we can rewrite the covariant derivative for the left-handed lepton doublet and

right-handed electron, to obtain

Dµ
(
νL

eL

)
=

[
∂µ − i

g√
2

(
0 W+

µ

W−
µ 0

)

−i g

cos θW
Zµ

(
1
2

0

0 −1
2

+ sin2 θW

)

−ieAµ
(

0 0

0 −1

)](
νL

eL

)

DµeR =

[
∂µ − i

g sin2 θW
cos θW

Zµ − ieAµ(−1)

]
eR

(1.20)

where e = g sin θW . The corresponding covariant derivative for the quarks is easily

deduced.

This result shows that the theory produces the behavior observed in nature:

there are charged and neutral current weak interactions, with the former connecting

up-type and down-type quarks, and thereby violating isobaric spin (+1 for proton, −1

for neutron). Moreover, Aµ can be identified with the photon, the gauge connection

of electromagnetism, because it is massless and couples to the various fields by their

measured electrical charges. This verifies that the set of hypercharges for all the

matter fields (fermions and Higgs) is both consistent and correct.
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Now that a Higgs scalar is introduced into the theory, generically there will

be Yukawa couplings between the scalar and the fermion fields. This is also an

opportunity to give the fermions masses after the Higgs gets a VEV, noting that

couplings like me

(
L̄L,i

)
(eR,i) are not gauge invariant. Beginning with the leptons,

the Yukawa couplings are

Lyuk,e = −
∑
i,j

(ye)i,j
(
L̄L,i

)
φ (eR,j) + h.c. (1.21)

where h.c. denotes the hermitian conjugate and (ye)i,j is a complex matrix with flavor

indices. (Again, since there is no νR in the standard model, we omit the neutrino

coupling, though their oscillations show they do have mass.) An arbitrary complex

square matrix can be diagonalized by two unitary matrices,

ye → U† (ye) V =


ye

yµ

yτ

 (1.22)

and these matrices can just be absorbed into the fields,

LL,i →
∑
k

(U)i,k (LL,k) , eR,j →
∑
l

(V)j,l (eR,l) (1.23)

without affecting any other part of the Lagrangian, since U†U = 1 and V†V =

1. Then, we find that the lepton mass couplings preserve lepton number for each

generation, which is consistent with the lack of lepton flavor changing processes such

as µ− → e−γ [1]. After the Higgs gets a VEV (0, v), the mass of the charged leptons

is simply me,i = ye,iv where ye,i is the eigenvalue of the Yukawa matrix.

Turning to the quarks, the first major difference from the case of the leptons is

that, unlike neutrinos, up-type quarks clearly have masses. To include this, we must

have a coupling where the scalar has hypercharge −1/2 instead of +1/2. Then, again

in the Pauli basis, this can be done by

φ =

(
φ+

φ0

)
−→ φ̃ ≡ iσ2φ∗ =

(
φ0

−φ−

)
(1.24)
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such that

Lyuk,q = −
∑
i,j

(yu)i,j
(
Q̄L,i

)
φ̃ (uR,j)−

∑
i,j

(yd)i,j
(
Q̄L,i

)
φ (dR,j) + h.c. (1.25)

This time, because there are now two separate mass matrices for the up- and down-

type quarks, they cannot simply be rotated away as there is a cross-term connecting

them through the SU(2)L interactions in the kinetic term. If we change basis to the

mass eigenstates

uL,i →
∑
k

(Uu)i,k (uL,k) , uR,j →
∑
l

(Vu)j,l (uR,j)

dL,i →
∑
k

(Ud)i,k (dL,k) , dR,j →
∑
l

(Vd)j,l (dR,j)
(1.26)

then the charged current interaction becomes

LW =
g√
2

∑
i,j

(ūL,i) γ
µW+

µ

(
UuUd

†)
i,j

(dL,j) + h.c. (1.27)

The theory, however, remains trivial under the rotations of the right-handed quarks.

The matrix VCKM ≡ UuUd
† is known as the Cabibbo-Kobayashi-Maskawa

(CKM) matrix [5, 6]. We observe that the charged current electroweak interaction

now may have flavor changing couplings, though the neutral current interactions

remain flavor-preserving. This is consistent with a low number of b → sγ events

found in experiments [7]. However, the CKM matrix admits a physical complex

phase, which creates CP-violating couplings otherwise forbidden by the electroweak

interactions.

To see this, we first note that the CKM matrix is an element of the group U(3)

with 3 × 3 = 9 parameters. Modding out SO(3) which is parameterized by three

angles, this leaves six phases. Since we have couplings in the Lagrangian of the form

q̄LqL, q̄RqR and q̄LqR, in principle we have six arbitrary phases qL → eiϕqL, qR → eiϕqR,

one for each species of quark, which we could use to absorb the phases in the CKM

matrix. However, the global phase ϕu = ϕd = ϕc = ϕs = ϕt = ϕb does not change

the CKM matrix. Thus, precisely one phase remains. The CKM matrix is then an

element of SO(3) extended by a phase.
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One common parameterization of the CKM matrix using Euler rotation matrices

is

VCKM =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb



=


1 0 0

0 c23 s23

0 −s23 c23




c13 0 s13e
−iδ

0 1 0

−s13e
−iδ 0 c13




c12 s12 0

−s12 c12 0

0 0 1



=


c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13



(1.28)

where cij ≡ cos(θij) and sij ≡ sin(θij). A more useful parameterization where all of

the parameters are O(1) is the Wolfenstein parameterization [8],
1− λ2/2 λ Aλ3(ρ− iη)

−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

+O(λ4) (1.29)

where λ ≈ s12 ≈ 0.22 is roughly the Cabibbo angle, which gives the flavor mixing

between the first and second generations [5]. Then, it is manifest that the CP violating

effects are small because they are suppressed O(λ3). Finally, we should observe that

if there were only two generations of quarks, then there would be no CP violation: a

2× 2 unitary matrix has one angle and three phases, but in this case there would be

four quark species with arbitrary phases, so all the phases could be eliminated.

Then, finally, let us recapitulate the standard model after symmetry breaking in
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the mass eigenbasis:

L =− 1

4

8∑
a=1

(Ga)µν(G
a)µν − 1

4

3∑
a=1

(W a)µν(W
a)µν − 1

4
BµνB

µν

+

[
m2
WW

+W− +
1

2
m2
ZZ

2

](
1 +

h√
2v

)2

+
1

2
[∂h(x)]2 −

[
1

2
m2
hh

2 +

√
λ

2
mhh

3 +
1

4
λh4

]
+
∑
i

[
L̄L,i (iγ

µDµ)LL,i + ēR,i (iγ
µDµ) eR,i

]
+
∑
i

q̄R,i (iγ
µDµ) qR,i + h.c.

+
∑
i,j

(
Q̄L,i

)
(iγµDµδi,j) [(VCKM)i,j (QL,j)] + h.c.

+
∑
f

mf f̄LfR + h.c.

(1.30)

where

Dµ = ∂µ − igs
8∑

a=1

Ga
µT

a
s

− i g√
2

(
W+
µ T

+ +W−
µ T

−)− i g

cos θW
Zµ
(
T 3 − sin2 θWQ

)
− ieAµQ

(1.31)

in which Q = T 3 + Y is the electric charge of the interacting fermion, and

T+ =

(
0 1

0 0

)
, T− =

(
0 0

1 0

)
, T 3 =

(
1
2

0

0 −1
2

)
(1.32)

for the left-handed fermions and T+ = T− = T 3 = 0 for the right-handed fermions.

All the parameters for this Lagrangian are given in Table 1.2, from Ref. [1].

Some of these values are given implicitly, most notably g is contained within GF ,

known as the Fermi constant. GF comes from the effective Lagrangian first proposed

by Fermi for a four-fermion contact interaction,

Lint =
GF√

2

[
p̄γµ

(
1− gA

gV
γ5

)
n

]
[ēγµν] + h.c. (1.33)

where gA/gV ' 1.26. Reinterpreting the interaction as an the exchange of a massive

W boson, this now reads

Lint =
g2

m2
W

Jµ−W J+
µW (1.34)
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αs(mZ) = g2
s/4π 0.1176(20) me 0.510998910± 0.000000013 MeV

GF = g2

4
√

2m2
W

1.16637(1)× 10−5 GeV−2 mµ 105.658367± 0.000004 MeV

sin2 θW (mZ) 0.23119(14) (MS) mτ 1776.84± 0.17 MeV
mW = g√

2
v 80.398(25) GeV mu 1.5 to 3.3 MeV

mZ = mW
cos θW

91.1876(21) GeV md 3.5 to 6.0 MeV

λ 0.2257+0.0009
−0.0010 ms 105+25

−35 MeV
A 0.814+0.021

−0.22 mc 1.27+0.07
−0.11 GeV

ρ̄ ' ρ 0.135+0.031
−0.016 mb 4.20+0.17

−0.07 GeV(MS)
η̄ ' η 0.349+0.015

−0.017 mt 171.3± 1.1± 1.2 GeV

Table 1.2: Parameters for the standard model after symmetry breaking, from Ref. [1].

where the factor of m2
W in the denominator is from the weak boson propagator, and

where
(
J−W
)µ

is the current of the leptons and quarks,

(
J−W
)µ

=
1√
2

[∑
i

ēL,iγ
µνL,i +

∑
i,j

d̄L,iγ
µ
(
VCKM

†)
i,j
uL,j

]
(1.35)

and
(
J+
W

)
µ

is its hermitian conjugate. Then, we see that the strength of the interaction

∝ m−2
W , illustrating why these interactions were originally called “weak” and not

visible until β decay was observed. By comparison the effective Lagrangian for baryon

scattering mediated by pion exchange is roughly ∝ m−2
π ≈ (140 MeV)−2, a coupling

over 106 times stronger.

Finally, it is interesting to observe that mW ≈ mZ . In the limit mW = mZ ,

cos θW = 1 or equivalently sin θW = g′ = 0. We can see then from Eq. 1.13 that Zµ

would be pure W 3
µ and all the W a

µ bosons would have the same mass. This means

that in addition to the gauged SU(2)L symmetry which ensures that W 1
µ and W 2

µ

have the same mass when g′ 6= 0, there exists a global SU(2) under which all three

transform as a triplet when g′ = 0.

It is precisely the gauging of the U(1) in this SU(2) to form hypercharge which

splits this triplet. This additional SU(2) can be identified as the SU(2)R in the Higgs

potential (Eq. 1.9), where the Higgs transforms as the bifundamental, (iσ2φ)† φ →
L
[
(iσ2φ)† φ

]
R† under SU(2)L × SU(2)R. Upon spontaneous symmetry breaking, of

the four real degrees of freedom in the bifundamental of SU(2)L × SU(2)R, three
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becomes a triplet under the diagonal SU(2)V , and the fourth becomes the real Higgs

scalar. This SU(2)V is known as “custodial” symmetry.

If g′ as well as the ratio ρ ≡ mW/mZ and its corrections are well-specified by

measurements, this leaves no room for additional terms in the potential which lack

this SU(2)R symmetry. One example is
∣∣φ†Dµφ∣∣ /Λ2, which is excluded by precision

electroweak tests for Λ < O(1 TeV) [4]. This is a significant restriction on new physics

at TeV scales. These precision electroweak tests also put severe limits on additional

generations of fermions and too high of a Higgs mass.

1.2 Problems of the Standard Model

While the standard model has met with tremendous success in precision elec-

troweak tests, in predicting the array of QCD bound states, as well as in matching

observations in higher energy QCD processes, there still remain significant problems

which prevent the standard model from being a complete description of nature. Most

prominently, there is no mention of gravity in the standard model. This is not prob-

lematic for the phenomenology described by the standard model, as the expected

scale of quantum gravity is the Planck mass

mpl =

√
~c
G
' 1.2209× 1019 GeV, (1.36)

far too great to influence measurements at O(TeV) or below. In any event, incorpo-

rating gravity into the standard model has proven to be an immense challenge because

a quantum field theory with a spin-2 field is not renormalizable. String theory is the

most notable effort in devising a self-consistent theory of quantum gravity, while also

providing hope of reproducing the standard model at lower energies (see, for example,

Ref. [9]).

1.2.1 Hierarchy problem in the Higgs sector

There are, however, other problems which are of concern at TeV-scale or below.

Foremost is the so-called hierarchy problem, which does involve the Planck scale. If
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Figure 1.1: Contribution to Higgs mass from fermion loop, through Yukawa coupling.

we consider the contribution to the running of the Higgs mass from Yukawa couplings

to the fermions (see Figure 1.1),

∆m2
h =

∑
i

∑
f

−|yfi |
2

8π2
Λ2
UV + . . . (1.37)

we see that there is a quadratic dependence on the cutoff scale, rather than the

logarithmic one characteristic of bosonic corrections to fermion masses. The largest

correction to the Higgs mass is obviously from the top quark, whose Yukawa coupling

is yt ≈ 1. If we take ΛUV = mpl, and assume that λ and µ are O(1), then the Higgs

mass must be the result of a miraculous cancellation precise to one part in 1034. In

fact, if ΛUV is as small as O(TeV), the correction is still one part in 102, considered

unacceptable by many.

One obvious solution is to develop new physics at TeV-scale, but this is rather

difficult due to the severe constraints of electroweak precision tests mentioned above.

An example of a theory in this class is technicolor, where the Higgs is a condensate

arising from QCD-like dynamics at this scale (see, for example, Ref. [10]). This

framework has gone through several renditions in an effort to satisfy these tests and

constraints from flavor changing neutral currents. The latest is “walking” technicolor,

in which the theory is nearly conformal and lattice computations are ongoing to

determine its fitness [11]. Another class are little Higgs theories, where the Higgs

is a pseudo-Nambu-Goldstone boson from the breaking of product groups SU(2) ×
SU(2)× ... which are generated by dimensional deconstruction [12].

Another strategy is to reduce the scale of quantum gravity from Planck scale to
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TeV scale. Let us consider Gauss’s law for gravitation in 3 + 1 dimensions,

~g = −GM
r2

r̂ (1.38)

where M is a point-like source mass. Now suppose that the universe is in fact 3+1+δ

dimensions, where the extra δ dimensions are compactified with a scale R� r. Then,

Gauss’s law becomes

~gδ = −GδM

r2Rδ
r̂ (1.39)

such that taking ~gδ = ~g we have Gδ ≡ RδG (geometric factors are absorbed into Gδ).

Now supposing that r � R, Gauss’s law is rewritten

~gδ = −GδM

r2+δ
r̂ (1.40)

and so

mpl → mpl

( r
R

)δ/2
. (1.41)

To reduce mpl from 1019 GeV to ∼ 1 TeV at experimental energies of ∼ 1 TeV

(corresponding to r ∼ 10−18 m), for δ = 2 we require R to be a few millimeters.

Therefore, models using this strategy are known as large extra dimension models [13].

Yet another strategy using extra dimensions, proposed by Randall-Sundrum [14],

supposes that the Universe is a 5-dimensional anti-de Sitter space bounded at one

end by a “brane” with negative energy and at the other end by a brane with positive

energy. The standard model fields resides on the negative energy brane, whereas

gravitons propagate freely in the bulk. The difference in brane energies “warps”

space along the extra dimension y, giving a metric

ds2 =
1

k2y2

(
dy2 + gµνdx

µdyν
)

(1.42)

such that the energy scale corresponding to the curvature of space (i.e., quantum

gravity) is naturally much greater at one end than the other, resolving the hierarchy.

However, perhaps the most widely-regarded solution for the hierarchy problem

is “supersymmetry,” a symmetry between bosons and fermions. Suppose that every

fermionic field f in the standard model has two scalar counterparts f̃ (one for each

degree of freedom), and each boson in the standard model has a Majorana fermion
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f̃

Figure 1.2: Contribution to Higgs mass from scalar loop, through Yukawa coupling.

counterpart. Moreover, suppose that the quantum numbers and Yukawa couplings

are identical. Then, we have the additional contribution to the Higgs mass running

from the scalar four-point coupling (see Figure 1.2),

∆m2
h =

∑
i

∑
f

2× |yf,i|
2

16π2

[
Λ2
UV − 2m2

s log (ΛUV /ms) + ...
]

(1.43)

where ms is the mass of the scalar counterparts. This perfectly cancels the quadratic

divergence in Figure 1.1 [15]. The scalar top must be the largest contribution just like

the fermionic top since they have the same Yukawa couplings, so its mass cannot be

too big (<∼ 1 TeV) otherwise the logarithmic correction would spoil the cancellation.

If the scalar top is too heavy, this reintroduces a fine tuning in order to obtain a small

Higgs mass favored by electroweak precision tests. Nonetheless, the masses of these

supersymmetric partners are sufficiently high that they have yet to be observed in

experiments. How, and at what energy, to break supersymmetry is an open issue.

The particulars of supersymmetry — supersymmetry breaking, the low energy

spectrum, and coupling to gravity — will be discussed in Section 1.3.

1.2.2 Hierarchy of Yukawa couplings

Another problem at low scale presented by the standard model is the vast hi-

erarchy of fermion Yukawa couplings. Dividing through the fermion masses by the

Higgs VEV v, the resulting Yukawa couplings are shown in Table 1.3. These follow a
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yu ∼ 10−5 yc 7.3× 10−3 yt ≈ 1
yd ∼ 3× 10−5 ys ≈ 6× 10−4 yb 2.4× 10−2

ye 2.9× 10−6 yµ 6.1× 10−4 yτ 1.0× 10−2

Table 1.3: Yukawa couplings of the fermions in the standard model.

rough pattern 
ε5 ε3 1

ε5 ε4 ε2

ε6 ε4 ε2

 (1.44)

where ε ∼ 0.1. It is clear that on a linear scale, the coupling of the top quark is

vastly larger than those of the bottom quark and tau, and the couplings of the third

generation are vastly larger than those of first and second generations, while the

difference in the couplings between the first and second generations is not so great.

This structure of dimensionless parameters spanning six orders of magnitude requires

some explanation.

There have been a number of proposed solutions to this problem. One uses

a relatively low scale of supersymmetry breaking (O(107) GeV), giving masses to

a scalar field, which in turn gives masses to fields subject to the Froggatt-Nielsen

mechanism [16]. These in turn drive the masses of “flavon” fields negative through

two-loop running, creating a set of vacuum expectation values containing the desired

hierarchy [17].

Another idea uses extra dimensions, asserting a 4D domain wall where the stan-

dard model fields reside, and this wall is positioned along these extra dimensions. If

the left- and right-handed fields for each fermion are “stuck” at different positions

relative to one another along these extra dimensions inside the wall, then the effective

4D Yukawa coupling depends on the overlap of their higher-dimensional wavefunc-

tions. If these fields are highly peaked, then one can obtain a Yukawa hierarchy with

the required six orders of magnitude [18].

There are also avenues for creating the Yukawa hierarchy using string compact-

ifications [19] and a kind of “seesaw” mechanism [20].
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Yet another possibility using supersymmetry is the notion that the scalar su-

perparticles are pseudo-Nambu-Goldstone bosons of some broken global symmetry.

These have protected small masses due to the famous low-energy theorem [21], with

most of their mass coming from the running of supersymmetry breaking terms. Then,

the standard model fermionic partners of these fields are naturally light for the same

reason, resolving the hierarchy. The third generation set of fields are taken to be fun-

damental, so they are considerably heavier as desired. This hypothesis is described

in more detail at the end of Section 1.3, and the prospects for testing it at the Large

Hadron Collider (LHC) are studied in Chapter 3.

1.2.3 Neutrino mass

The problem of neutrino mass is one of omission from the standard model, but

unlike gravity has direct bearing at low energies. The mass of neutrinos is evidenced

by their flavor oscillations. This is analogous to two-state oscillations in ordinary

quantum mechanics, which require non-zero energy eigenvalues. Considering only

two neutrino flavors, the unitary matrix for flavor mixing is in U(1) ∼ SO(2),(
να

νβ

)
=

(
cos θ sin θ

− sin θ cos θ

)(
ν1

ν2

)
(1.45)

where θ is the mixing angle and α, β are one of e, µ or τ ; ν1 and ν2 are the mass

eigenstates. Computing the probability for (anti)neutrinos of one flavor to convert to

another, we find

P (να → νβ) ' 1.267× sin2 2θ × sin2

[
∆m2

eV2

L

km

GeV

E

]
(1.46)

where ∆m2 is the (mass)2 splitting between the eigenstates, L is the distance traveled

(at the speed of light) and E is beam energy. The dependence on finite neutrino mass

is now explicit.

Extending to three flavors, similar to the CKM matrix, we have the so-called
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Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix [22],

U =


Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3



=


1 0 0

0 c23 s23

0 −s23 c23




c13 0 s13e
−iδ

0 1 0

−s13e
−iδ 0 c13




c12 s12 0

−s12 c12 0

0 0 1



=


c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13



(1.47)

where the phase δ induces CP violation in the neutrino sector. There is an additional

matrix factor to the right 
eiα1/2 0 0

0 eiα2/2 0

0 0 1

 (1.48)

if the neutrinos are Majorana particles, where α1 and α2 are additional phases. Neu-

trino oscillation was first observed as a dearth of neutrinos from the sun, later under-

stood to be due to the oscillations combined with the Mikheyev-Smirnov-Wolfenstein

effect [23]. Bounds have been placed on the mixing angles in the matrix by long

baseline experiments, such as those using neutrinos emitted by nuclear power plants

or accelerators. The total size of the neutrino mass hierarchy is limited by cosmic mi-

crowave background (CMB) measurements [24, 25] to
∑3

i=1 mi < 1.3 eV; additional

data such as that from large scale structure in the universe can make this bound more

severe.

This opens the question of how to obtain a mass this small in a natural way. A

Yukawa coupling to achieve this mass would make the hierarchy another factor of 106

wider, and the same kind of coupling as the other fermions

Lν = yν ν̄Lφ̃νR + h.c. (1.49)

assumes the existence of a right-neutrino which has yet to be observed. However,

if we dispense with lepton number conservation, we can also assume that there are
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Majorana mass terms in addition to Dirac, giving

Lν =
1

2
mRν̄

c
RνR + h.c. (1.50)

which mixes ν̄ and ν. Using a seesaw mechanism [110] there are left- and right-handed

neutrinos with both Majorana and Dirac mass terms, which together can explain the

observed low neutrino mass. This is achieved with a mass matrix

Lν = −1

2

(
ν̄L ν̄cR

)( 0 m

m M

)(
νcL

νR

)
+ h.c. (1.51)

whose eigenvalues are approximately M and −m2/M . Choosing M near the grand

unification scale of the gauge fields O(1016 GeV) and m near the weak scale v gives

the lighter eigenvalue O(1 meV). Thus, we have lepton-number-conserving Dirac mass

couplings with a low eigenvalue (consistent with experiment) and a heavy, lepton-

number-violating Majorana mass coupling which may play an important role in the

very early universe in driving lepton genesis. Moreover, m ∼ v resolves the hierarchy

associated with creating light neutrinos — the effective coupling to the Higgs is the

same strength as the heavy standard model fermions. If, on the other hand, there are

Majorana mass terms at a low scale, this may be revealed in searches for neutrino-less

double-β decay.

Neutrino oscillations are a concern in our study of neutrino signals from dark

matter decay and annihilation in the next Chapter.

1.2.4 Dark matter and other problems

Assuming that νL is Dirac and there is no νR, the standard model contains every

allowed renormalizable term given the gauge symmetries and the matter content, save

for CP-violating gauge surface terms of the form

− θ g2

64π2

∑
a

εµνρσF a
µνF

a
ρσ = −θ g2

16π2

∑
a

F a
µνF̃

aµν (1.52)

where θ is a free parameter on the interval [0, 2π). Because SU(3)c can have a non-

trivial vacuum structure [27], this term cannot be ignored for the strong interaction.



21

However, the measured CP violation is very small, with θ < 10−10 from bounds on

the neutron electric dipole moment [28]. One solution is to promote θ to a scalar field

(called the “axion”) which is the result of broken U(1) global symmetry, known as

the Peccei-Quinn symmetry [29]. As a Nambu-Goldstone boson, the ground state is

at θ = 0, explaining why θ should be so small.

Turning to cosmology, the TeV-scale frameworks relevant to the two hierarchy

problems also come to bear on another problem of the standard model: what is the

composition of 80% of the mass in the universe? Most of the mass of the universe

is known to be “dark,” i.e. not subject to electromagnetic or strong interactions,

according to CMB measurements [24, 25]. Then, the dark matter can have at most

weak charges, or charges arising from some hidden sector. So far, all the evidence for

the existence for dark matter, while overwhelming, remains circumstantial because of

this characteristic.

TeV scale frameworks, to not have been discovered already, rely on Z2 parities

to demarcate the standard model fields from the fields special to this framework.

These parities arise from other considerations, such as conserving lepton and baryon

number in supersymmetry, or restricting TeV-scale fields from tree-level interactions

with standard model fields in technicolor, or generating chiral fermions in theories of

extra dimensions. However, if the the lightest Z2-odd particle has only weak charges,

it can be dark matter. A compelling reason for thinking that dark matter would be of

this mass scale is that thermal production in the early universe gives the abundance

observed today. Along with the hierarchy problems, this leads further credence to the

notion that there must be new physics at the TeV scale; it should be noted however,

the axion is also dark matter candidate, but is not related to TeV physics. Particle

dark matter candidates and their detection will be covered in Section 1.4.

There is another “dark” quantity missing from the standard model, dark en-

ergy. Established by observing the magnitude-redshift relationship of supernovae [30],

showing that the expansion of the universe is accelerating. Together with CMB

dark matter constraints, it is determined that the fraction of the energy density

of the universe currently due to dark energy is ' 72%, which corresponds to '
5 × 10−6 GeV cm−3 = 3.8 × 10−47 GeV4. To cause acceleration, dark energy must
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have a negative pressure. This can be due to a scalar field, such as the Higgs. How-

ever, the Higgs VEV is v = 174 GeV, giving an energy density ∼ 109 GeV4, a factor

of 1056 too large; if we presume that the standard model is valid to Planck scale,

then the expected energy density is m4
pl ∼ 1076 GeV4, a factor of 10123 too big. By

comparison, the Higgs hierarchy problem only requires a cancellation that one part

in 1034. Ironically, global supersymmetric models require the cosmological constant,

the simplest model of dark energy, to be precisely zero, which is certainly too small.

Given these difficulties, the remainder of this thesis will refrain from discussing

solutions to the dark energy problem. Instead, we will show how astrophysical gamma

rays and neutrinos can constrain models of dark matter. Then, we will describe a

class of supersymmetric models which provide a viable dark matter candidate and

a solution to the Yukawa hierarchy problem, demonstrating how they can be easily

detected at the LHC. But first, in the remainder of this Chapter, brief overviews of

supersymmetry and particle dark matter are provided.

1.3 A Brief Tour of Supersymmetry

1.3.1 A new symmetry

Let us first quickly review the formal aspects of supersymmetry. This will follow

Ref. [31]; for more details see the text and the references therein.

The Coleman-Mandula theorem states that the most general Lie algebra con-

sistent with the S-matrix of relativistic quantum field theory contains the operators

of the homogeneous Poincaré group as well as a finite number of Lorentz scalar op-

erators which must transform under a compact Lie group. The familiar structure of

Lagrangians in particle physics, such as that of the standard model, is consistent with

these requirements.

The set of algebras satisfying the theorem can be extended to include a certain

class of graded Lie algebras (i.e., algebras whose operator spaces can be decomposed

into subspaces) known as supersymmetry algebras, which have the following operator
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relations in addition to those of the Lorentz and compact Lie groups:{
Qα, Q̄β̇

}
= 2σµ

αβ̇
Pµ

{Qα, Qβ} =
{
Q̄α̇, Q̄β̇

}
= 0

[Pµ, Qα] =
[
Pµ, Q̄α̇

]
= 0

(1.53)

where {, } and [, ] are the anticommutator and commutator, respectively, and α, β

and α̇, β̇ are equal to one or two and denote the components of a Weyl spinor. Pµ is

the energy-momentum operator, and Q, Q̄ are new operators. This algebra can be

extended to an arbitrary number of Q, Q̄ operator pairs, as well as to include central

charges.

There exist quantum field theories which contain conserved currents that fall

in a representation of the supersymmetry algebra. The mass operator P 2 commutes

with Q and P , so the irreducible representations of the algebra are of equal mass. It

can be easily proven that every representation contains an equal number of bosonic

and fermionic degrees of freedom. Defining the fermionic annihilation and creation

operators in the rest frame

aα =
1√
2M

Qα , (aα)† =
1√
2M

Q̄α̇ (1.54)

then the states in the fundamental representation are the Clifford vacuum Ω, the sym-

metrized spin-1
2

fermionic state (aα)†Ω and the two antisymmetrized spin-0 bosonic

states

1√
2

(aα)† (aβ)†Ω = − 1

2
√

2
εαβ (aγ)† (aγ)

†Ω . (1.55)

In the massless case in the lightlike frame (−E, 0, 0, E) the algebra is modified

{
Qα, Q̄β̇

}
= 2

(
2E 0

0 0

)
(1.56)

so Q2 and Q̄2̇ are represented by zero. Therefore, there is only one bosonic state and

one fermionic state, with helicities λ0 and λ0 + 1
2
, respectively; λ0 is the helicity of

the vacuum. (For CPT-completeness, the number of states must in fact be doubled.)
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To formulate a field theory, the algebra must be given in terms of fields without

mass-shell conditions. Using the anticommuting parameters ξα and ξ̄α̇, the algebra

can be expressed entirely in commutators[
ξQ, ξ̄Q̄

]
= 2ξσµξ̄Pµ

[ξQ, ξQ] =
[
ξ̄Q̄, ξ̄Q̄

]
= 0

[P µ, ξQ] =
[
P µ, ξ̄Q̄

]
= 0

(1.57)

where the sums are implied. Considering a multiplet in the fundamental representa-

tion with components (A,ψ, . . . ), where A is a complex scalar and ψ is a spinor, let

us define the infinitesimal transformation

δξA =
(
ξQ+ ξ̄Q̄

)
× A

δξψ =
(
ξQ+ ξ̄Q̄

)
× ψ

...

(1.58)

where δξ then satisfies the commutator

(δηδξ − δξδη)A = 2
(
ησµξ̄ − ξσµη̄

)
PµA . (1.59)

From the algebra, Q has mass dimension 1/2, so the transformation turns the scalar

into a spinor. Then, we define

δξA =
√

2ξψ

δξψ = i
√

2σµξ̄∂µA+
√

2ξF

δξF = i
√

2ξ̄σ̄µ∂µψ

(1.60)

such that the commutator above closes for A, ψ and F . These three fields form a

so-called supersymmetric chiral multiplet, with dimensions 1, 3/2 and 2, respectively.

F is an auxiliary field which transforms only into a space derivative, i.e. a surface

term.

To obtain a Lagrangian, we write terms that also only transform into space

derivatives,

L = −i∂µψ̄σ̄µψ − A∗�A+ F ∗F +mAF +mA∗F ∗ − 1

2
mψψ − 1

2
mψ̄ψ̄ (1.61)
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giving the equations of motion

−iσ̄µ∂µψ +mψ̄ = 0

F +mA∗ = 0

−�A+mF ∗ = 0

(1.62)

which describe a spinor and complex scalar, each of mass m. It can be shown that

the expectation value of the stress-energy tensor of this theory vanishes as long as

the vacuum is supersymmetric. This gives a cosmological constant of zero, which is

at once desirable and problematic as described in the previous section.

We now define a “superfield,” a compact description for the supersymmetry mul-

tiplet. Considering the supersymmetry algebra as a Lie algebra with anticommuting

parameters, a finite transformation is given by

G(x, θ, θ̄) = exp
[
i(−xµPµ + θQ+ θ̄Q̄)

]
(1.63)

then the infinitesimal transformation ξQ + ξ̄Q̄ can be expressed in the parameter

basis by

Qα =
∂

∂θα
− iσµαα̇θ̄α̇∂µ , Q̄α̇ =

∂

∂θ̄α̇
− iθασµ

αβ̇
εβ̇α̇∂µ . (1.64)

This is for left multiplication. For right multiplication, we define

Dα =
∂

∂θα
+ iσµαα̇θ̄

α̇∂µ , D̄α̇ = − ∂

∂θ̄α̇
− iθασµαα̇∂µ (1.65)

which have the same algebra as Q and Q̄, up to a sign.

Then, on the “superspace” (x, θ, θ̄) we can define any superfield by the full

expansion

F (x, θ, θ̄) = f(x) + θφ(x) + θ̄χ̄(x)

+ θθm(x) + θ̄θ̄n(x) + θσµθ̄vµ(x)

+ θθθ̄λ̄(x) + θ̄θ̄θψ(x) + θθθ̄θ̄d(x)

(1.66)

which transforms as F → (ξQ + ξ̄Q̄)F . Then, a chiral superfield corresponding to

the chiral multiplet above is

Φ = A(y) +
√

2θψ(y) + θθF (y)

Φ† = A∗(y†) +
√

(2)θ̄ψ̄(y†) + θ̄θ̄F ∗(y†)
(1.67)
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where yµ = xµ + iθσµθ̄. Explicit calculation shows that A, ψ and F here transform

the same way as those in the chiral multiplet. Explicit calculation also shows that

ΦiΦj and ΦiΦjΦk are superfields, but Φ†Φ is not.

Next, a vector multiplet V satisfies the condition V = V †, which gives the gauge

freedom V → V + Φ + Φ†. Then, with a gauge choice known as Wess-Zumino gauge,

the superfield can be expressed simply as

V = −θσµθ̄vµ(y) + iθθθ̄λ̄(y)− iθ̄θ̄θλ(y) +
1

2
θθθ̄θ̄ [D(y)− i∂µvµ(y)] . (1.68)

This gauge fixing breaks supersymmetry, but still permits the gauge transformation

vµ → vµ + ∂µa. Because

V 2 = −1

2
θθθ̄θ̄vµv

µ , V 3 = 0 (1.69)

we may interpret V as a gauge potential. Then, the corresponding field strength is

Wα = −1

4
D̄D̄e−VDαe

V V , W̄α̇ = −1

4
DDeV D̄α̇e

−V V (1.70)

Under gauge interactions, Φ → e−iΛΦ, where Λ is a multiplet containing λ, and

Λ =
∑

a ΛaT a where T a are the gauge group generators. The kinetic terms for Φ and

Wα are invariant when eV → e−iΛ
†
eV eiΛ, so then the most general, gauge-invariant,

renormalizable Lagrangian with chiral and vector superfields is

L =
1

16g2
Tra(W

αWα|θθ + W̄α̇W̄
α̇
∣∣
θ̄θ̄

) + Φ†eV Φ
∣∣
θθθ̄θ̄

+

[(
1

2
mijΦiΦj +

1

3
gijkΦiΦjΦk

)∣∣∣∣
θθ

+ h.c.

]
.

(1.71)

where X|θθ... denotes the θθ . . . component of the superfield.

Of course, since supersymmetry is not observed at low energies, it must be broken

at some scale. From the supersymmetry algebra, one can find

H =
1

4
(Q̄1Q1 +Q1Q̄1 + Q̄2Q2 +Q2Q̄2) (1.72)

which shows that 〈Ψ |H|Ψ〉 ≥ 0 for any state Ψ. Moreover, it shows that the ground

state is H = 0, and that it is supersymmetric since Q |0〉 = Q̄ |0〉 = 0. However, if
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H > 0 is the ground state, then supersymmetry is broken. One strategy for breaking

supersymmetry is to have a spontaneous breaking which gives a VEV.

As an example, let us consider so-called O’Raifeartaigh breaking, with the po-

tential

LPE = (λkΦk +mikΦiΦk + gijkΦiΦjΦk)|θθ + h.c. (1.73)

In components,

F ∗k = −(λk +mikAi + gijkAiAj) . (1.74)

The scalar potential is V = F ∗kFk; if this has a non-zero expectation value, supersym-

metry is broken. For the appropriate choices of λ, m and g there is no solution for

the VEV ai of Ai in

0 = λk +mikai + gijkaiaj . (1.75)

Since supersymmetry is a spacetime symmetry, we now consider how to extend

supersymmetry to curved spacetime backgrounds. This will eventually provide a

phenomenologically attractive way of breaking supersymmetry.

1.3.2 Supergravity

Let us define the collective superspace coordinate zM ∼ (xµ, θα, θ̄α̇), where M is

a collective index. These coordinates obey the relation zMzN = (−)nmzNzM , where

n and m take the values zero or one depending on whether N and M are vector or

spinor indices. Then, we can define a differential form

Ω = dzM1 ∧ · · · ∧ dzMpWMp...M1(z) (1.76)

which if it has an odd number of spinorial indices is fermionic, or bosonic with an

even number of spinorial indices. The usual properties of differential forms follow; in

particular, the superspace analogue of the Bianchi identity is

DLFNM + (−)l(n+m)DNFML + (−)m(n+l)DMFLN = 0 (1.77)
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where D is the covariant derivative and F is the rank-2 Ricci tensor.

Unfortunately, in the basis dNz the exterior derivative does not commute with

the supersymmetry generators. However, Dµ = ∂
∂xµ

, Dα and D̄α̇ do commute with

the generators. Taking DA ≡ (Dµ, Dα, D̄
α̇), we define a new basis

eA(z) = dzMeAM(z) (1.78)

such that the exterior derivative is eADA, where

DA = eNA
∂

∂zN
. (1.79)

Then, the Bianchi identity becomes

1

2
eAeBeCDCFBA +

1

2
eAdeBFBA −

1

2
deAeBFBA = 0 . (1.80)

Since supersymmetry is spacetime symmetry, to make contact with gravity we

must gauge it. So, we promote the superspace coordinates to

xµ → xµ − i(θσµξ̄(x)− ξ(x)σµθ̄)

θα → θα − ξα(x)

θ̄α̇ → θ̄α̇ − ξ̄α̇(x)

(1.81)

which generate coordinate transformations zM → zM − ξM(z), with vielbein E. Tak-

ing the Lorentz group L as the local structure group, one can construct the standard

Ricci and torsion tensors. It is interesting to note that in flat space the torsion is not

zero:

T µ
αβ̇

= T µ
β̇α

= 2iσµ
αβ̇
. (1.82)

The vielbein transforms as

EA
M → EA

M −DMξA − ξBTABM + EB
ML

A
B (1.83)

and has the physical degrees of freedom

EA
M(z)

∣∣
θ=θ̄=0

=


eνµ(x) 1

2
ψαµ(x) 1

2
ψ̄µα̇(x)

0 δαβ 0

0 0 δβ̇α̇

.

 (1.84)
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Here, eνµ is the spin-2 graviton and ψαµ and ψ̄α̇µ are the spin-3
2

gravitino.

After considerable work in solving the Bianchi identity, it can be shown that the

torsion and curvature tensors can be expressed in terms of the lowest components of

three superfields,

R(z)|θ=θ̄=0 = −1

6
M(x)

Gµ(z)|θ=θ̄=0 = −1

3
bµ(x)

(1.85)

and the vielbein E, indicating that they are the only physical supergravity degrees of

freedom. These four degrees of freedom form a multiplet.

Now that supersymmetry is local, we must promote the superspace coordinate

θ to Θα, such that the chiral superfield has covariant components

Φ = A(x) +
√

2Θαχα(x) + ΘαΘαF (x) . (1.86)

Then, the supergravity Lagrangian is

LSG = −6

∫
d2ΘER + h.c. (1.87)

where E is the vierbein determinant (i.e, the Jacobian of superspace) and the gravi-

tational coupling κ2 = 8πG has been set to one. In components, this is

LSG =− 1

2
eR− 1

3
eM∗M +

1

3
ebaba

+
1

2
eεµνρσ

(
ψ̄µσ̄νD̃ρψσ − ψµσνD̃ρψ̄σ

) (1.88)

where R is the Riemann curvature and D̃ρ is the covariant derivative. We see that

this expression contains the Rarita-Schwinger action for a spin-3
2

gravitino, and that

ba and M are not dynamical. Then, combining with the full Lagrangian in Eq. 1.71,

but omitting gauge interactions for simplicity, we find in curved space

L =

∫
d2Θ2E

[
−1

8
(D̄D̄ − 8R)Ω(Φ,Φ†) + P (Φ)

]
+ h.c. (1.89)

where

Ω(Φ,Φ†) = Φ†iΦi + ciΦi + c̄iΦ
†
i − 3

P (Φ) = d+ aiΦi +
1

2
mijΦiΦj +

1

3
gijkΦiΦjΦk

(1.90)
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are the superspace kinetic term and potential term, respectively, in which c and d

arise from shifts in the superfields. Expanding in components, one finds that

Ω(Φ,Φ†) = −3 exp

[
−1

3
K(Φ,Φ†)

]
(1.91)

where K(Φ,Φ†) is a hermitian function, known as the Kähler potential. The kinetic

terms are invariant under the simultaneous transformations

K(A,A∗)→ K(A,A∗) + F (A) + F ∗(A∗)

χi → exp

[
i

2
(ImF )χi

]
ψµ → exp

[
− i

2
(ImF )ψµ

] (1.92)

known as the Kähler-Weyl transformations. The first reflects an isometry of the

(Φ,Φ†) manifold, the latter two compensate for the spinor phase under the action of

this isometry group on curved backgrounds. The Kähler potential features promi-

nently in Chapter 3, and we will return to at the end of this chapter.

1.3.3 Minimal supersymmetric standard model

We now consider the low energy consequences of formal supersymmetry, follow-

ing Ref. [32].

Starting from the standard model Lagrangian before electroweak symmetry break-

ing, we must promote each chiral field to a chiral superfield, and every vector field to

a vector superfield. First, let us examine the additional terms to the standard model

kinetic terms from gauge invariant kinetic terms in the supersymmetric Lagrangian

(for each gauge field):

L =Lchiral + Lgauge

−
√

2g(φ∗T aψ)λa −
√

2gλ†a(ψ†T aφ)− g2

2
(φ∗T aφ)(φ∗T aφ) .

(1.93)

Here φ is the scalar partner to a chiral fermion ψ, and λ is the fermionic partner

to a gauge field. For example, the scalar partners of LL and ēR are denoted ν̃,

ẽL and ẽ∗R respectively, and are called “sneutrino” and “selectron;” in general the
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scalar partner of some fermion “foo” is “sfoo.” The new terms in the Lagrangian

are “supersymmetrizations” of the normal gauge interactions, where one or more

standard model legs are replaced by superpartner legs.

Next, ignoring the shift term and the singlet term (which can also be shifted

away), the superpotential P (Φ) (henceforth denoted W ) is purely in the Yukawa

sector,

W = ūyuQHu − d̄ydQHd − ēyeLHd + µHuHd . (1.94)

As explained earlier, due to the great hierarchy in the Yukawa couplings, conven-

tionally only the third generation couplings are taken to be non-zero. There are a

few oddities in this potential. First, there a two Higgs doublets, not just one. This

is because W is holomorphic, so terms like ūQH∗d are forbidden. Moreover, Higgs

mass terms like (H∗uHu + H∗dHd) are also forbidden, so the term µHuHd gives the

Higgs bosons mass. It is also true that two Higgs doublets are required for anomaly

cancellation, now that there are extra degrees of freedom running in the loops. Before

proceeding, let us remark that the size of µ is completely undetermined, and naive

considerations would set it to the Planck mass. However, we know it must be roughly

weak scale to give the right masses to the Higgs. This contradiction is known as the

“µ problem.”

Then, the additional Lagrangian terms in the Yukawa sector are

LH̃ =− µ(H̃+
µ H̃

−
d − H̃0

uH̃
0
d) + c.c.

LH =− |µ|2(|H0
u|2 + |H+

u |2 + |H0
d |2 + |H−d |2)

L(scalar)3 =µ∗(˜̄uyuũH
0∗
d + ˜̄dydd̃H

0∗
u + ˜̄eyeẽH

0∗
u

+ ˜̄uyud̃H
−∗
d + ˜̄dydũH

+∗
u + ˜̄eyeν̃H

+∗
u ) + c.c.

(1.95)

The first term gives mass to the “Higgsinos,” the second gives mass to the new

Higgses, and the third gives mass to the “sfermions” while also creating new doublet

interactions. There are also numerous (scalar)4 interactions which also contribute to

the sfermion masses; these are all possible terms which are symmetric combinations

of scalars proportional to yf
†yf ′ . For example, the interactions with coupling ye

†ye
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are

L(scalar)4,e2 =
1

2
|˜̄eyeẽ|2 + (˜̄e∗H0∗

u )ye
†ye(˜̄eH0

u) + (ẽ∗H0∗
u )ye

†ye(ẽH0
u)

+
1

2
|˜̄eyeν̃|2 + (˜̄e∗H−u )ye

†ye(˜̄eH+
u ) + (ν̃∗H−u )ye

†ye(ν̃H+
u )

+ (ν̃∗H−u )ye
†ye(ẽH0

u) + c.c.

(1.96)

One may notice that the superpotential is missing the renormalizable, gauge-

invariant lepton- and baryon-violating terms,

W∆L=1 =
1

2
λijkLiLj ēk + λ′ijkLiQj d̄k + µ′iLiHu

W∆B=1 =
1

2
λ′′ijkūid̄j d̄k

(1.97)

where i, j and k are family indices written explicitly. These terms are quite dangerous.

For example, if λ′ and λ′′ are both non-zero, then the proton can decay p+ → e+π0

through the exchange of a s̄∗R. If the couplings are of order unity, then the proton

lifetime would be a fraction of a second, when in fact the experimental lower bound is

1034 years. To preclude these kind of terms, we introduce a Z2 parity called R-parity,

PR = (−1)3(B−L)+2s (1.98)

which is +1 for standard model particles and −1 for superpartners. Then, the lightest

supersymmetric particle (LSP) is perfectly stable. If it has no electric charge or color,

it can be dark matter (described in the next section). Moreover, each superpartner

must eventually decay into an odd number of LSPs, and collider experiments can only

produce superpartners in even numbers. While this parity may seem ad hoc, it could

be the result of some breaking of a continuous U(1)B−L at high scale.

We now revisit the breaking of supersymmetry. In order not to spoil the can-

cellation of quadratic divergences in the Higgs running, the breaking method itself

should not contribute such divergences. In other words, the breaking must be “soft.”

Moreover, if there is some mass scale msoft in the breaking sector, as msoft → 0 su-

persymmetry should be restored. Thus, the corrections to the Higgs mass from the

breaking sector should go like

∆m2
H = m2

soft

[
λ

16π2
log

(
ΛUV

msoft

)
+ . . .

]
. (1.99)
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The way to achieve this is simply to give the superpartners masses differently than

their standard model counterparts. Unfortunately, renormalizable tree-level mass

terms would create severe phenomenological problems. Foremost, the tree-level masses

in spontaneously broken supersymmetric theories obey “sum rules,” deriving from the

so-called supertrace

STr(m2) ≡
∑
s

(−1)s(2s+ 1)Tr(m2
s) (1.100)

where s is the particle spin and the trace is over all the gauge and flavor indices. This

gives a sum rule

Tr(m2
B)− 2Tr(mF

†mF) + 3Tr(m2
V) = 0 (1.101)

where m2
B, mF and m2

V are the boson, fermion and vector mass matrices. In the

limit that lepton number, quark flavor, etc. are conserved then the supertraces for

each lepton and quark sector are separately equal to zero, e.g.

m2
ẽL

+m2
ẽR

+m2
ν̃ − 2m2

e − 2m2
ν = 0 . (1.102)

Then, to make some superpartners heavy, the squared-masses for the others would

have to be driven negative. One way to avoid this is to place the breaking in a hidden

sector, so that the mass is generated at loop-level instead of tree-level; another is to

use nonrenormalizable mass terms instead of renormalizable ones.

The latter option is useful for supergravity, since the Planck scale is a natural

choice for the suppression scale. At O(F/mpl), we can have terms such as

LNR =− 1

mpl

F

(
1

2
faλ

aλa +
1

6
y′ijkφiφjφk +

1

2
µ′ijφiφj

)
+ c.c. .

− FF ∗

m2
pl

kijφiφ
∗j .

(1.103)

The first term is for gauginos, the second for the Yukawa couplings, and the last is

for the scalars. Under the assumption that these terms are universal for the different

gauge symmetries, standard model generations, etc., the soft masses are

m1/2 = f
〈F 〉
mpl

, m2
0 = k

|〈F 〉|2
m2
pl

, A0 ∝
〈F 〉
mpl

, B0 ∝
〈F 〉
mpl

. (1.104)
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To obtain superpartners O(0.1-1) TeV, the scale of supersymmetry breaking should

be ∼ 1011 GeV. However, there is some flexibility, depending on the details of the

running of the theory down to electroweak scale.

Due to the simplicity of the soft masses in universal minimal supergravity, and

the gentle running in broken supersymmetry, the low-energy spectrum of the sfermions

is parameterized to good approximation as

m2
Q = m2

0 +K3 +K2 + 1
36
K1

m2
ū = m2

0 +K3 +4
9
K1

m2
d̄

= m2
0 +K3 +1

9
K1

m2
L = m2

0 +K2 +1
4
K1

m2
ē = m2

0 +K1

(1.105)

where

K1 ≈ 0.15m2
1/2 , K2 ≈ 0.5m2

1/2 , K3 ≈ (4.5 to 6.5)m2
1/2 . (1.106)

There are also mass rules for the Higgs bosons and Higgsinos, and for the charged and

neutral weak gauginos. These are subject to the constraints of electroweak symmetry

breaking and the ratio tan β ≡ vu/vd, where vu and vd are the VEVs for Hu and Hd.

Usually, tan β is specified instead of the B0 soft mass as a high-energy boundary con-

dition for the renormalization; B0, or equivalently, µ is then solved for. The charged

states mix into “charginos” denoted χ̃±1,2, and the neutral states into “neutralinos”

denoted χ̃0
1,2,3,4. There exists a “small µ region” in which the µ parameter is found

to be small, and thus the weak gauginos are light and of which the lightest higgsinos

are large components.

Finally, the mass of the gluino is roughly six times that of the lightest neutralino,

though more precise predictions can be made by accounting for the running of squark

loops.

In Chapter 3, an example spectrum for universal soft masses can be seen in

Figure 3.3. The chapter also describes how to reconstruct the masses in a gluino or

squark decay chain at the LHC. Moreover, we will see that a higher breaking scale

and non-universal soft masses are phenomenologically sound. Next, we will discuss

the motivation for these non-universal soft masses.
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1.3.4 Coset spaces

As discussed in the previous section, the hierarchy of Yukawa couplings is an

outstanding problem of the standard model, and one solution is to have the first and

second generation quarks and leptons be the supersymmetric fermionic partners to

the pseudo-Nambu-Goldstone bosons (NGBs) of some broken global symmetry. These

fermions may be called “quasi-Nambu-Goldstone” fermions (QNGFs). Because the

lower bound on the compositeness scale of standard model leptons established at

colliders is O(1-10 TeV) [1], they must be effectively massless at the supersymmetry

breaking scale for renormalization to not make them too heavy. The fermions reside

in the same supermultiplet as the NGBs, so their masses are protected by the low

energy theorem [21]. If the QNGFs have the correct quantum numbers, then both the

Yukawa hierarchy and the representations of the standard model generations would

have a dynamical motivation. Here we present some of basic aspects of this theory

(see, for example Ref. [33]).

When there is a breaking G → H, the resulting NGB fields continue to reside

in a linear representation under H, but compose a nonlinear realization of the coset

space G/H. They are described by the Lagrangian

LNLNGB = − (∂µπi) g
ij(π/fπ) (∂µπj) (1.107)

where gij is the metric of the coset space and fπ is scale fixed by the underlying dy-

namics [34]. (This Lagrangian is very similar to that for pions, which produced by the

breaking of the global chiral symmetry in standard model QCD.) The corresponding

Lagrangian for the QNGFs is

LNLQNGF =
cijkl
f 2
π

(ψ̄iγ
µψj)(ψ̄kγ

µψl) (1.108)

where cijkl is fixed by both the coset space and the underlying dynamics. Under

supersymmetry, each multiplet is required to have the same number of bosonic and

fermionic degrees of freedom, so we require

2nQNGF = nNGB + nQNGB (1.109)
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where “QNGB” denotes additional bosons from other sources that may fill the multi-

plets. The case in which nNGB < 2nQNGF thus requires some dynamical justification.

For a given breakdown G→ H the pattern of QNGFs, i.e. which fermions go in

what multiplets, is a dynamical question. If the NGBs are in real representation r,

then the QNGFs transform like r and so another set of QNGBs which transform the

same way is required; the same is true for a vector representation i + ī. However, if

G/H is a Kähler manifold, then one can have QNGFs which transform like i and no

QNGBs are required.

This can be understood by considering the supersymmetric generalization of the

nonlinear Lagrangian above, which is just the Kähler potential [34]

LNLSUSY = K(Φ,Φ†)
∣∣
θθθ̄θ̄

. (1.110)

This gives for the scalars

LNLscalar = −∂µϕ∗i
[
∂2K(ϕ∗, ϕ)

∂ϕ∗i∂ϕj

]
∂µϕ

j . (1.111)

The metric gij(ϕ
∗, ϕ) obeys the Kähler conditions,

∂gij
∂ϕ∗k

=
∂gkj
∂ϕ∗i

,
∂gij
∂ϕk

=
∂gik
∂ϕj

. (1.112)

The fact that the scalar fields are coordinates of a Kähler manifold is inherent in

supersymmetry, so if G/H is a Kähler manifold then no other scalar fields are required

to fill the multiplets. Of course, it is always possible to include extra QNGBs to match

the QNGF degrees of freedom.

Now, remembering that the superpotential W (Φ) is holomorphic, i.e. a function

of Φ and not of Φ†, it is invariant not only under some symmetry G but also its

complex extension G̃. The mass condition for the broken degrees of freedom is

(MQGF )i,j δa 〈φj〉 ≡
∂2W

∂φi∂φj

∣∣∣∣
φi=〈φi〉

δa 〈φj〉 = 0 (1.113)

where δa is the infinitesimal transformation generated by the algebra element Ta.

Since G̃ ⊃ G, after G→ H there is at least one generator Ta ∈ G̃, Ta 6∈ H for which

Ta 〈φi〉 6= 0. So, in general 2nQNGF −nNGB ≥ 1. In the case of equality, one QNGB is
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required to fill the open multiplet. This extra boson can be interpreted as the dilaton

of the G̃ manifold [35]. We note that since Ta is not hermitian, there can be chiral

QNGFs.

In Chapter 3 there is an example U(6)/ [U(4)× SU(2)] coset model, in which

the extra QNGB is provided by an additional superfield called the “novino.” By the

low energy theorem, the soft masses for the first and second generation scalars is set

to zero.

1.4 Major Aspects of Particle Dark Matter

In this section we discuss some aspects of the phenomenology of particle dark

matter, with an emphasis on WIMPs and on aspects of detection that are relevant to

later chapters. For reviews, please see for example Refs. [36, 37, 38].

1.4.1 Evidence

The first strong evidence for dark matter was the observation of anomalous

galaxy rotation velocity curves [39]. Assuming virialized bright and dark galaxy

components, the velocity curve should be

v(r) =

√
GM(r)

r
(1.114)

where M(r) is the mass enclosed at galactic radius r. The measured curves are flat

going out to large radius, even though there is less and less visible matter, suggesting

missing mass. The various mass contributions to the observed velocity at a given

radius is shown in Figure 1.3 for a sample galaxy [40]. The dark matter halo compo-

nent is dominant at large radius. Similar measurements of the velocity dispersion of

dwarf spheroidal galaxies in the Local Group show far greater mass than what can

be attributed to bright matter [41].

Another method for identifying missing mass is to measure the amount of gravi-

tational lensing of light from background sources. Perhaps the most striking example

is the Bullet Cluster, shown in Figure 1.4. The Bullet Cluster is in fact the collision
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Figure 1.3: The various mass contributions to the observed rotational velocity at a
given radius, for a sample galaxy [40]. The dark matter halo component is dominant
at large radius.

Figure 1.4: Observation of the Bullet Cluster. The green contours show the mass
distribution as measured by lensing, and the other colored component shows the
distribution of bright matter as measured by X-ray observations [42].
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of two galaxy clusters. The green contours show the mass distribution as measured

by lensing, and the other colored component shows the distribution of bright matter

as measured by X-ray observations. The separation of the shocked bright matter

from the region of space creating the lensing effect is highly problematic for modified

theories of gravity, but is entirely consistent with the existence of dark matter [42].

At cosmological scales, the dark matter abundance can be inferred by assuming

the Big Bang model for universe. The “standard model” for the Big Bang is the

Friedmann-Lemâıtre-Robertson-Walker equation

H2

H2
0

= ΩRa
−4 + ΩBa

−3 + ΩDMa
−3 + ΩΛ (1.115)

where a is the scale factor (a = 1 today), H ≡ ȧ/a is the expansion rate of space,

H0 = 71± 2.5 km s−1 Mpc−1 is the current expansion rate [25], ΩR is the fraction of

the critical density 3H2
0/8πG composed of radiation, ΩB is the fraction of baryonic

matter, ΩDM is the fraction of dark matter, and ΩΛ is the fraction of dark energy

(discussed earlier).

At early times, radiation was dominant and was in thermal equilibrium with

the ionized matter in the universe. As space expanded, the radiation component

cooled (∝ a4) and decoupled from baryonic matter at around redshift z = 1090,

when the universe was around 380,000 years old. The surface of last scattering for the

photons previously in thermal equilibrium can be seen today as the cosmic microwave

background (CMB). The power spectrum of the temperature anisotropies in the CMB

contains information on the collective motions of the photon-baryon fluid, called

baryon acoustic oscillations. The presence of dark matter, which decoupled at much

higher temperatures, offsets the amount of baryonic matter and thus the amplitude

of acoustic oscillations. The present-day parameters extracted from the CMB are

ΩDM = 0.222 ± 0.026, ΩB = 0.0448 ± 0.0028 and, in combination with supernova

observations, ΩΛ = 0.734±0.029 [25]. At lower redshifts/much later times, the power

spectrum of acoustic oscillations is imprinted into the large scale structure (LSS)

of matter in the universe. Observations of large scale structure independently give

ΩB + ΩDM = 0.273± 0.025 [44].

Finally, one more strong piece of evidence for dark matter comes from Big Bang
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nucleosynthesis (BBN). Certain light elements were produced very early on in the

Big Bang, at MeV scale, but not later in stars. The correct abundances of these light

elements is predicted only if the baryon-to-photon ratio is consistent with most of the

mass in the universe being dark matter. This approach gives ΩB = 0.044 ± 0.0026,

again consistent with the CMB parameters.

1.4.2 Candidates

Based on what has been presented so far, dark matter likely does not have

electromagnetic interactions, otherwise it would conflict with CMB, LSS and BBN

measurements. Moreover, dark matter that are too light (≤ 550 eV) would also

conflict with LSS and CMB observations because they would be moving too fast

at the time of their decoupling, erasing the observed structure [45]; this rules out

neutrinos. Then, dark matter must not only be dark, but cold/massive (it turns out,

however, that axions are an exception to this rule).

One class of dark matter candidates is the Massive Compact Halo Object (MA-

CHO). These are planet- or star-sized objects composed of exotic matter; baryons

are ruled out by BBN. One example of a MACHO is a primordial black hole (PBH),

formed during an epoch of the Big Bang with large density fluctuations [46]. During

such an epoch, there may be fluctuations that are the size of the horizon, and a suffi-

cient fraction of these may collapse into black holes on order to constitute the observed

dark matter abundance. However, the efficiency of this process depends greatly on

the details of collisions with nearby fluctuations while forming, their sphericity prior

to collapse, etc.

Their mass goes like

MPBH ≈M�

(
T

100 MeV

)−2 ( g∗
10.75

)−1/2

(1.116)

where M� is the solar mass, T is the temperature at which they form, and g∗ is the

number relativistic degrees of freedom at this temperature. Black holes from T <

O(MeV) are forbidden because they would interfere with BBN, ruling out much of

the intermediate mass (O(103)M�) black hole range. MACHOs 10−7M� to O(10)M�
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are ruled out by microlensing searches in our galaxy [47]. This eliminates QCD-scale

PBHs [48], however, electroweak black holes 10−8M� [49] evade the bound. Finally,

PBHs with mass <∼ 10−16M� are ruled out because their Hawking radiation would

exceed gamma ray diffuse flux limits.

As mentioned previously, axions are also a potential dark matter candidate.

After promoting the θ in the CP-violating QCD coupling to a dynamical field, the

action is

Lθ =

(
θ +

a

fa

)∑
a

εµνρσGa
µνG

a
ρσ (1.117)

where θ ' 10−10, a is the dynamical field and fa is the scale of the breaking of the

Peccei-Quinn symmetry. The corresponding potential is approximately

V ' m2
πf

2
π

[
1− cos

(
θ +

a

fa

)]
(1.118)

The minimum of the potential is at a = −θfa, so the strong CP problem is solved.

The mass turns out to be

ma ≈ 6µeV
1012 GeV

fa
. (1.119)

Limits on the cooling of stars and supernovae require fa
>∼ 1010 [1], so the axion is

necessarily an extremely light boson. Nonetheless, axions behave like non-relativistic

particles at late times. This is because the potential is so flat, the field need not be

at the minimum in the early universe. Moreover, coupling to QCD instanton effects

dampens the evolution of the field. At late times, when the universe is cold, the axions

will have already diluted like normal matter, propagating with very low speeds in the

current epoch. This phenomenon is called misalignment production.

Thus, the axion does not destroy structure. On the other hand, to obtain the

correct abundance of axions, fa ' 1012 is required. This leaves a rather narrow

window for axions to be a viable dark matter candidate.

We now turn to the dark matter candidates coming from TeV-scale frameworks

such as supersymmetry and extra dimensions. While these frameworks are already

well-motivated because they may solve the standard model hierarchy problem(s), they
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also provide a viable dark matter candidate. Taking supersymmetry as an example,

the LSP, if having only weak charges, may be a plausible dark matter candidate

if thermal production gives the correct abundance. This will depend on the LSP’s

mass and on the availability of other low-lying fields for coannihilation processes.

The general class of electroweak-scale dark matter with weak charges is the Weakly

Interacting Massive Particle (WIMP).

We can estimate the relic abundance from annihilation using the Boltzmann

equation,

dn

dt
+ 3Hn = −〈σv〉

(
n2 − (neq)2

)
(1.120)

where 〈σv〉 is the thermal average of the annihilation cross section times the velocity.

For a dark matter particle of mass m, in the non-relativistic limit the equilibrium

distribution is given by the Maxwell-Boltzmann distribution

neq = g

(
mT

2π

)3/2

e−m/T . (1.121)

Changing variables to

Y ≡ n

s
, Y eq ≡ neq

s
, x ≡=

m

T
(1.122)

where s = 2π2g∗T
3/45 is the entropy density, and assuming that entropy is preserved

in a comoving volume (i.e., d(sa3)/dt = 0), the Boltzmann equation becomes

dY

dx
= −〈σv〉 s

Hx

(
Y 2 − (Y eq)2

)
. (1.123)

Expanding the cross section in the non-relativistic limit as

〈σv〉 = a+ b
〈
v2
〉

+O(
〈
v4
〉
) ≈ a+ 6b/x (1.124)

and integrating from x = xF to x =∞ we obtain

Y −1
∞ =

√
πg∗
45

mplmx−1
F (a+ 3b/xf ) . (1.125)

Here, xF is the “freeze-out temperature,” the temperature at which the annihilation

reaction stops occurring. This can be found iteratively by matching the solutions in
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the late-time and early-time regimes of the Boltzmann equation. Then, substituting

the current entropy density, the relic density is

ΩDMh
2 ' 1.07× 109 GeV−1

mpl

xF√
g∗

1

(a+ 3b/xF )
(1.126)

where a and b are in GeV−2, and h = H0/(100 km s−1 Mpc−1) is the so-called Hubble

parameter. We also made the substitution

H =

(
π2

90

)1/2

g1/2
∗

T 2

mpl

(1.127)

which holds in a radiation-dominated universe.

For a WIMP of mass m ≈ 300 GeV, we put in a ≈ πα(mZ)2/m2 ≈ 3 ×
1026 cm3 s−1, g∗ ≈ 100 and xF ≈ 25. With these parameters, we obtain ΩDM = 0.24.

Thus, for an LSP right near the electroweak scale, annihilation through weak inter-

actions gives precisely the correct dark matter density. This coincidence is known as

the “WIMP miracle.”

Of course, this “miracle” has some flexibility, as it is the ratio 〈σv〉 /m2 that

matters. For example, if the annihilation is predominantly p-wave, then the b por-

tion of the cross section above will dominate, reducing the rate of annihilation at

decoupling by an order of magnitude. Similarly, if there is another state heavier by a

small amount ∆m, then its density will only be suppressed by the Boltzmann factor

e−∆m/T compared to the WIMP. Then, the WIMP can coannihilate with that state

to give a reduce relic density; if there are two parent particles close to one another

in mass, they can coannihilate to give an increased relic density instead. Because of

this flexibility, WIMPs can span a mass range from below 100 GeV to nearly 1 TeV.

WIMP-like dark matter may be heavier if the strength of interaction is greater, such

that the annihilation cross-section is the same. However, then the interaction may

no longer be considered weak. The unitarity limit is m ' 110 TeV [50].

So, WIMPs are well-motivated, because the frameworks in which they reside

can solve other problems of the standard model, and because they do not require any

contrivance to give the correct dark matter abundance; however, there is still flexibility

in WIMP model-building which can entertain other considerations, like new potential
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signals. By contrast, the uncertainties in PBH production and the narrow allowed

region for axions make them less appealing. There are also many other dark matter

candidates (e.g., SuperWIMPs, wimpzillas, Q-balls, etc.), but describing them would

be be beyond the scope of this presentation.

1.4.3 Detection

Direct detection involves detecting an interaction between a WIMP and a target

mass. The velocity of WIMPs in the galactic halo at the radius of our solar system

is around v = 220 km/s. For a 100 GeV WIMP, this is a kinetic energy of around

50 keV. To see such a small signal against background radiation is quite difficult,

more so because the interactions are weak. The event rate is

R = nDMv
M

mN

σN ≈
10

year
× 100 GeV

m
× M

100 kg

A

56
× σN

10−42 cm2
(1.128)

where nDM is the number density of dark matter in the vicinity of the Earth, M is

the mass of the detector, mN is the mass of a nucleon, and σN is the scattering cross

section between the WIMP and the nucleon. The cross section is given by [36]

σN =
4

π

(
mmN

m+mN

)2 [
(npfp + nnfn)2 + 4

J + 1

J
(ap 〈sp〉+ an 〈sn〉)2

]
(1.129)

where the first and second terms in the bracket are the spin-independent and the spin-

dependent contributions, respectively. The spin-independent WIMP-nucleon coupling

for the proton (p) and the neutron (n)

fp,n =
∑

fq 〈p |q̄q| p〉p,n (1.130)

is an average over the constituent quarks in the nucleon and their couplings to the

WIMP. In supersymmetry, the coupling fp,n is dominated by the higgsino-quark

Yukawa interaction, since weak squark exchange is suppressed by factor ∼ m4
q̃. Thus,

for any supersymmetric model in which the WIMP has a significant higgsino contri-

bution, e.g. being in a small µ region, the detectability will be significantly enhanced.

Spin-dependent interactions are also enhanced with higgsino mixing, since Z-boson
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Halo model α β γ rs in kpc
Cored isothermal [51] 2 2 0 5

Navarro, Frenk, White [52] 1 3 1 20
Moore [53] 1 3 1.16 30

exchange becomes more likely. This is the case for one of the model points in Chap-

ter 3. Moreover, an enhancement in the spin-dependent cross-section would increase

the capture rate of the WIMP in the sun [54], and thereby enhance the flux of neu-

trinos from WIMP annihilations from sun.

In addition to the dark matter in the vicinity of the Earth [54, 55], there is

the entire Milky Way galactic halo [56], as well as the halos in dwarf spheroidal

galaxies [57] and everywhere on cosmological scales. To associate the flux of indirect

products (e.g, neutrinos, gamma rays) from dark matter annihilation or decay [58]1

with the nature of the WIMPs, we must understand the halo shapes.

From rotational velocity curves and N-body simulations, halo profiles can be

parameterized as

ρ(r) = ρ�

[r�
r

]γ [1 + (r�/rs)
α

1 + (r/rs)α

](β−γ)/α

(1.131)

where for the Milky way ρ� is the dark matter density around the sun, r� is the

distance from the sun to the galactic center. The parameters are shown in Table 1.4.3.

At the galactic core, the flux from annihilations goes like ρ2r3∆Ω, where ∆Ω is the

solid angle of the region viewed. Then, for the Navarro-Frenk-White (NFW) profile,

the flux from successive shells of thickness dr about the galactic center is constant,

whereas for the cored isothermal profile it goes like r2, a significant reduction. Thus,

it is often advantageous to integrate over a large solid angle to escape uncertainties

in the halo shape near the galactic center.

Finally, a recent exciting development in indirect detection is the observation of

cosmic-ray e± anomalies by several instruments [59, 60, 61, 62]. Figure 1.5, shows

a rising fraction of cosmic ray positrons, and Figure 1.6 shows a hardening in the

cosmic-ray e± which cannot be attributed to background. It just so happens that

1In supersymmetry, LSP decay can be due to a small violation of R-parity.
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Figure 1.5: Anomalous rise in cosmic-ray positron fraction.

these anomalies are in the mass range of WIMP-like dark matter. If the dark matter

annihilates or decays to leptons, it could explain the anomalies.

In the Chapter 2, we use observations of gamma rays and neutrinos to constrain

the dark matter interpretation of these anomalies. In particular, we discuss the prop-

agation of cosmic-ray e±, the contributions to signal, characterization of backgrounds,

and techniques for reducing systematic errors, such as that due to the choice of dark

matter halo profile.

In Chapter 3, we examine model points from different parameters regions, and

these have different dark matter candidates. In one region, the small µ character of the

point gives a large higgsino component to the LSP. This enhances the direct detection

cross-section, while also enhancing the annihilation rate. With further analysis, this

could explain the anomalous rise in the positron fraction. Conversely, at the other

model points the LSPs are almost entirely “bino,” which is Majorana. Due to the

Pauli principle, their annihilation is is p-wave and therefore suppressed by v, which
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Figure 1.6: Anomalous hardening of cosmic-ray e± spectrum.

is only 0.001c in the present epoch — these cannot be seen by the current generation

of instruments.
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Chapter 2

Novel Astrophysical Constraints on

Particle Dark Matter

2.1 Introduction

The existence of dark matter has been established by numerous observations.

Although it constitutes most of the matter in the universe [24], the nature of dark

matter remains largely unknown. One widely held possibility is that it is a new

fundamental particle produced in the early universe and present today as a thermal

relic. Among the best motivated of these are the so-called weakly interacting massive

particles, or “WIMPs” (for reviews, see Refs. [36, 37]) which are predicted to be

undergoing annihilations [54, 55, 56, 57] and possibly decays [58] in the current epoch.

Recently, the instruments PAMELA [59], ATIC [60], PPB-BETS [61], and Fermi [62]

have observed features in the cosmic-ray e± spectrum and a positron fraction that are

inconsistent with known backgrounds. While these anomalies may be due to uniden-

tified astrophysical sources [63], one exciting possibility is that they are due to the

decay [64, 65, 66, 67, 68, 69, 70] or annihilation [71, 72, 73, 74, 75, 79] of dark matter

particles into standard model states. Even in the case that anomalies are not caused

by new physics in the dark sector, the constraints are generally applicable to dark

matter models.

In order for dark matter to explain the anomalies, the products of decay or
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annihilation must be primarily leptonic. In either case, the Fermi observation gives

the most precise preferred region in mass and lifetime/cross-section; for decays, only

µ+µ− and τ+τ− final states fit the data, while for annihilations a small region of e+e−

is also permitted [76]. For the allowed parameter space, decays or annihilations into

hadrons and weak and Higgs bosons are severely limited. Decays are constrained by

the Fermi observation of the isotropic diffuse gamma-ray flux [77], and annihilations

are constrained by the production of antiprotons [78].

Explaining the anomalies with annihilations has an additional challenge. In

order to match the observed rates, the cross-section required is 103–104 times that

expected for thermal production of the dark matter in the early universe. This ne-

cessitates nonthermal production mechanisms or low-velocity enhancements to the

cross-section, such as the Sommerfeld enhancement [74, 79] or the Breit-Wigner en-

hancement [80, 81]. Moreover, high cross section annihilations to leptonic states are

tightly constrained by synchrotron radio emissions from the galactic center, although

this constraint can be evaded if the true galactic dark matter halo profile is much less

steep at the galactic center than benchmark profiles [82, 76]. Thus, the leptophilic

decaying DM scenario has recently gained momentum.

In this chapter, we develop the constraint from gamma-rays for decaying dark

matter, then propose enhancements to these constraints, as well as the constraints to

dark matter annihilations, using future neutrino detectors.

2.2 Gamma-ray Constraints on Decaying Dark Mat-

ter

Although the existence of dark matter (DM) has been firmly established by

numerous observations, the nature of DM mostly remains unknown. In particular,

it is not known whether DM is absolutely stable or not. If DM is unstable, it will

eventually decay into lighter particles which may be observed as an excess in the

cosmic-ray spectrum.

If DM is related to new physics which appears at the weak scale, it is natural
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to expect that the DM mass is in the range O(100) GeV–O(10) TeV. However, the

longevity of DM whose mass is of the weak scale is a puzzle and calls for some expla-

nation. The (quasi)stability may be the result of a discrete symmetry or extremely

weak interactions. For instance, in a supersymmetric (SUSY) theory, the lightest

SUSY particle (LSP) is stable and therefore a candidate for DM if R-parity is an

exact symmetry. However, R-parity violation may be a common phenomenon in the

string landscape [83], in which case the LSP DM is unstable and eventually decays

into standard model (SM) particles. On the other hand, if DM is in a hidden sector

which has extremely suppressed interactions with the SM sector, the only way to

probe DM may be to look in the cosmic rays for signatures of its decay products.

Leptophilic decaying DM models can be broadly divided into two categories.

One is such that DM first decays into additional light particles, which subsequently

decay into muons or electrons, while the decays into hadrons are forbidden by kine-

matics [84]. The other is such that the DM particle couples mainly to leptons due

to symmetry [65] or geometric setup [85]. While the hadronic activities are absent in

the former case, it is model-dependent to what extent the DM is leptophilic in the

latter case. One example is the hidden gauge boson decaying into the SM particles

through a mixing with a U(1)B−L gauge boson [64]; the DM is certainly leptophilic

in the sense that it mainly decays into leptons, but a certain amount of quarks are

also produced.

In this section we study the current constraints on the hadronic and leptonic de-

cay of DM. The anti-proton flux is known to provide a tight constraint on the hadronic

activities, but there are large uncertainties in the propagation [86]. The other con-

straint comes from gamma-ray observation. In contrast to charged cosmic-ray parti-

cles, gamma-rays travel undeflected and there is no uncertainty in the propagation;

the main uncertainty is the dark matter profile. Furthermore, the Fermi satellite has

been measuring gamma-rays with both unprecedented precision and statistics, and

we can expect a significant improvement over EGRET data [87, 88]. In this section

we will derive constraints on the partial decay rates of DM into WW , ZZ, hh, qq̄

and gg as well as e+e−, µ+µ− and τ+τ− using the Fermi [89, 90] and HESS [91] data.

The bounds obtained in this section are not only generic but also can be used to
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know what branching ratios are allowed in decaying DM models which account for

the PAMELA/Fermi cosmic-ray electron/positron excess.

2.2.1 Analysis

There are several contributions to the gamma-ray spectrum when DM decays

into SM particles. Photons from fragmentation are generated by the decay of mesons,

especially π0, and final-state radiation (FSR) is always produced when the DM de-

cays into charged particles. The electrons and positrons produced by the DM de-

cay will lose energy by emitting synchrotron radiation in the galactic magnetic field

and through inverse Compton (IC) scattering off ambient photons (star light, dust

re-emission, and CMB). In this section we summarize the calculation of these contri-

butions and how we derive constraints.

Local contributions

First, we use PYTHIA 6.4.21 [92] to simulate the fragmentation of the various

final states at a range of DM masses, and for charged final states we use the expression

in Ref. [93] for the photon multiplicity from final-state radiation. Since these contri-

butions are local to the site of DM decay, and because gamma-rays travel undeflected,

the differential flux from our galactic DM halo is given by flux conservation:(
dΦγ

dEdΩ

)(gal.)

local

=
1

4π
(r�ρ�)

1

mDMτ

(
dN

(frag.)
γ

dE
+
dN

(FSR)
γ

dE

)
J(∆Ω) (2.1)

where r� = 8.5 kpc is the solar distance from the galactic center [94], ρ� = 0.3 GeV cm−3

is the density of the DM halo at this distance, τ is the DM lifetime, and

J(∆Ω) =
1

∆Ω

∫
∆Ω

dΩ

∫
l.o.s.

ds

r�

(
ρDM(~x)

ρ�

)
(2.2)

is the line-of-sight integral, in which ∆Ω is the region of sky observed by a given

experiment and ρDM(~x) is the halo profile. In this analysis we use the NFW halo

profile [52].

There is also an isotropic, diffuse extragalactic contribution on cosmological

scales from DM residing in our past light cone. We find that this contribution to the
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differential flux is given by(
dΦγ

dEdΩ

)(ex.)

local

=
c

4π

ΩDMρc

H0Ω
1/2
M

1

mDMτ

×
∫ ∞

1

dy
y−3/2√

1 + ΩΛ/ΩMy−3

(
dN

(frag.)
γ

d(Ey)
+
dN

(FSR)
γ

d(Ey)

) (2.3)

where y ≡ 1+z and the cosmological parameters are given by Ref. [24]; the density of

radiation is taken to be negligible. This expression duplicates the result of Ref. [95].

Contributions from propagating electrons and positrons

Electrons and positrons as final states of DM decay, as well as those from the

fragmentation of other final states, will lose energy via synchrotron radiation and

IC scattering off ambient photons. Here we describe the calculation of these effects

and the resulting contribution to the gamma-ray flux; our analysis parallels that of

Ref. [96].

First, let us consider the galactic contribution. The diffusion of e± is governed

by the equation

K(E)∇2fe(E, ~x) +
∂

∂E
[b(E, ~x)fe(E, ~x)] +Q(E, ~x) = 0 (2.4)

where K(E) is the diffusion coefficient, fe(E, ~x) is the e± phase space distribution,

b(E, ~x) = bsyn(E, ~x) + bIC(E, ~x) is the energy loss rate, and Q(E, ~x) is the e± source

term. For this analysis we adopt the MED propagation model [97] to set K(E) and

the geometric boundary of diffusion. Under this model the propagation length for e±

with E >∼ 100 GeV is O(0.1) kpc before losing its most of the energy. In the limit that

this length is small compared to the distance traveled, fe(E, ~x) is well-approximated

by

fe(E, ~x) =
1

b(E, ~x)

ρDM(~x)

mDMτ

∫ ∞
E

dE ′
dNe

dE ′
. (2.5)

The energy loss rate due to synchrotron radiation is given by

bsyn(E) =
4

3
σT

(
E

me

)2(
B2

2

)
(2.6)
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where σT is the Thomson cross-section and B ≈ 3µG is taken as the strength of the

galactic magnetic field.1 The energy loss rate due to IC scattering is given by

bIC(E, ~x) =

∫
dEγdEγBG

(Eγ − EγBG
)
dσIC

dEγ
fγBG

(EγBG
, ~x) (2.7)

where dσIC/dEγ is the IC differential cross-section as given in Ref. [98], and fγBG
(EγBG

, ~x)

is the sum of the CMB radiation field and the galactic radiation field (star light and

dust re-emission). In our calculation we use the interstellar radiation field (ISRF)

furnished by the GALPROP collaboration [99].

Because the magnetic field is so weak, synchrotron emissions would only be in

the radio and is thus only relevant in this calculation as an energy-loss mechanism.

On the other hand, IC processes for e± of E ∼ O(100) GeV would produce gamma-

rays of E ∼ O(1) GeV which is in the range of the Fermi observations. Therefore,

the differential gamma-ray flux is given by(
dΦγ

dEdΩ

)(gal.)

prop.

=
1

4π

1

∆Ω

∫
∆Ω

dΩ

∫
l.o.s.

ds

∫
dEedEγBG

dσIC

dE
fγBG

(EγBG
, ~x)fe(Ee, ~x) .(2.8)

Now let us turn to the extragalactic contribution. On cosmological distances,

there is no interstellar radiation field, only the CMB, and negligibly small magnetic

fields. Thus, the only energy-loss mechanism is IC scattering of CMB photons. More-

over, assuming the universe is indeed isotropic and homogeneous, the distributions of

CMB photons and DM are spatially invariant. Then the diffusion equation becomes

∂

∂E
[b(t, E)fe(t, E)] +Q(t, E) +H E

∂fe(t, E)

∂E
=
∂fe(t, E)

∂t
(2.9)

where H is the Hubble parameter. Since the CMB photon energy is so low the e±

are non-relativistic in the center-of-momentum frame, the energy loss rate due to IC

scattering is given by the Thomson limit

bcosm(y, E) =
4

3

(
E

me

)2

σT
(
ρCMB y

4
)

(2.10)

where ρCMB ' 0.26 eV cm−3 is the present-day CMB energy density and y ≡ 1 + z

as before. The timescale of energy-loss E/bcosm
<∼O(1014) sec is much less than the

1The value of the magnetic field strength may be different close to the galactic center.
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Hubble time, so the term O(H) in the diffusion equation can be ignored. This gives

for the e± spectrum

fe(y, E) =
1

bcosm(y, E)

1

mDMτ

(
ρDM y3

) ∫ ∞
E

dE ′
dNe

dE ′
. (2.11)

Finally, we find for the differential flux(
dΦγ

dEdΩ

)(ex.)

prop.

=
c

4π

1

H0Ω
1/2
M

∫ ∞
1

dy
y−9/2√

1 + ΩΛ/ΩMy−3
A(y, E) (2.12)

where

A(y, E) ≡
∫
dEe dEγBG

dσIC

d(Ey)
fγBG

(y, EγBG
) fe(y, Ee) (2.13)

and fγBG
(y, EγBG

) is the CMB spectrum at redshift z = y−1. Comparable expressions

for annihilating dark matter may be found in Refs. [100, 101].

Derivation of constraints from data sets

We derive constraints using three data sets: observation of gamma-rays from the

galactic center (within 0.1◦) by the HESS telescope [91], observation of the galactic

mid-latitude (10◦ ≤ |b| ≤ 20◦) diffuse gamma-ray flux by the Fermi LAT [89], and

preliminary data for the isotropic diffuse flux (|b| ≥ 10◦) also by the Fermi LAT [90].

We do not use the HESS observation of the galactic center ridge [102] because

it requires a subtraction of nearby flux levels.2 The result of this procedure is highly

profile dependent: we find that for the NFW profile this procedure weakens the

constraint by a factor 5, and for the less-cuspy isothermal profile the constraint would

be weakened by a factor 200. Before the procedure our result is comparable to that

of Ref. [76].

For various DM masses and lifetimes, we calculate and sum the various contri-

butions to the gamma-ray flux for each of the energy bins of each data set, with two

exceptions due to limited computational power:

2We are grateful to J. F. Beacom [103] for pointing this out.
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• We use only the two highest bins of the Fermi mid-latitude data (energy ∼
O(10) GeV) when calculating the constraints for weak boson and colored chan-

nels. Since the spectra from DM decay are harder than the observed spectra,

any excess will be dominated by the highest energy bins anyway.

• We include galactic ICS for comparison to the HESS galactic center data only

for the leptonic final states, because they copiously produce hard e±. Also, since

we cannot know at this time how much galactic contribution (namely, galactic

ICS and galactic halo contributions) is present in the isotropic flux reported by

Fermi, we give this constraint both with and without galactic contribution added

in. For the Fermi mid-latitude data we include galactic ICS for all channels.

Then, we compute how many standard deviations the calculated flux exceeds

the data for these bins and take the largest of these, as in Ref. [76]. Again because

the spectra from DM decay are harder than the observed spectra, this statistic is

little different than reduced-χ2, but without the aliasing errors due to the number of

effective degrees of freedom changing near a contour. The 3σ contours are shown on

Figures 2.1, 2.2, and 2.3 for weak and Higgs boson, colored and leptonic channels,

respectively. The lower dotted blue line is the constraint from Fermi isotropic diffuse

flux without galactic contribution, and the upper dotted-dashed blue line is the the

constraint with galactic contribution.

Uncertainties

Finally, let us consider the uncertainties in these calculations:

• DM halo profile: We use the NFW profile for the galactic dark matter halo. If we

were to use instead the isothermal profile, the calculated flux of fragmentation

and FSR photons from the galactic center would be reduced by a factor 4,

weakening the constraint from the HESS observation. By contrast, because the

Fermi observations cover a much larger portion of the sky looking away from the

galactic center, switching to the isothermal profile would hardly change these

constraints.
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Figure 2.1: 3σ constraints for WW , ZZ and hh final states. The dotted green line
(“HESS GC”) is the constraint from HESS gamma-ray observations of the galactic
center; the solid red line (“Fermi (b=10-20)”) is the constraint from Fermi gamma-
ray observations of the galaxy at mid-latitudes, b = 10 − 20. The lower dotted blue
line is the constraint from Fermi isotropic diffuse flux without galactic contribution,
and the upper dotted-dashed blue line is the the constraint with galactic contribution
(“Fermi (iso)”).

• Local DM density: We use the conservative, standard value ρ� = 0.3 GeV cm−3

for the DM halo density at the radius of our solar system, though a wide range

is accepted [104]. A recent analysis gives the value ρ� = 0.39 GeV cm−3 within

10% [94].
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Figure 2.2: 3σ constraints for colored final states.

• ICS calculation: There are uncertainties associated with parameters such as

the galactic magnetic field and interstellar radiation field, as well as the choice

of the diffusion model and the approximation of dropping the diffusion effect

in calculating the e± phase space distribution. Ref. [105] found that the same

calculation with a slightly different setup matched the numerical results of GAL-

PROP, and Ref. [76] estimates that the no-diffusion approximation can change

photon flux by a factor of 2. Consequently, we estimate that the uncertainty in

our calculation of ICS is O(1).
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Figure 2.3: 3σ constraints for leptonic final states. The orange ellipse represents the
region favored by the PAMELA/Fermi excess [76].

2.2.2 Discussion

For a whole range of DM masses, it is the Fermi isotropic diffuse flux that places

most stringent constraints on the lifetime, followed by the Fermi galactic mid-latitude

data and then by the HESS galactic center data. We can also see that for the hadronic

channels shown in Figs. 2.1 and 2.2, as well as for the τ+τ− channel shown in Fig. 2.3,

the constraints derived from the Fermi mid-latitude data becomes weaker at heavier

DM masses. This feature can be understood as follows. The gamma-ray energy

spectrum from decaying DM is dominated by fragmentation and final-state radiation
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at energies near the threshold ∼ mDM/2, while the up-scattered photons through IC

process dominate at low energies. Since the Fermi mid-latitude data is available up

to O(10) GeV, it depends on the DM mass which contribution becomes important.

The up-scattered photons tend to be dominant at E ' O(10) GeV for a DM mass

above O(1) TeV. That is why the constraints become flatter above O(1) TeV. The

constraints from the Fermi isotropic data, which also goes up to O(10) GeV, show

a similar flattening for uū, bb̄, gg and τ+τ− final states, which fragment into hard

mesons. It is interesting to note that the IC scattering is important for the hadronic

and τ+τ− modes if the DM mass is heavier than several TeV.

From Fig. 2.3 one can see that the decay into e+e− and τ+τ− are more tightly

constrained than that into µ+µ−. This is because the direct production of energetic

electron/positron enhances the gamma-ray flux through final-state radiation and IC

scattering, and because the decay of τ is accompanied by the fragmentation photons.

The DM lifetime should be O(1026) sec in order to explain the PAMELA/Fermi

excess in cosmic-ray electrons/positrons (shown by the orange ellipses in the figure).

Therefore, in order to simultaneously satisfy the gamma-ray constraints and as well

as account for the PAMELA and Fermi excess, DM must decay primarily into either

muons or taus.

Suppose that the DM mainly decays into µ+µ− at a lifetime of O(1026) sec. The

allowed hadronic branching ratio is about O(10)% from the figure. Of course the

precise value depends on DM models. In next section we consider a DM model in

which a hidden gauge boson decays into quarks and leptons through a mixing with

an U(1)B−L gauge boson. The allowed hadronic branching ratio in this DM model is

about 30% at a reference point, mDM = 2 TeV and τ = 1.5× 1026 sec.

We may, however, compare these generic gamma-ray constraints with the generic

constraints from neutrinos. Bounds on leptonic final states from upward-going muons

due to neutrinos interacting with the Earth [106] are 10–100 times weaker than those

presented here, though the direct neutrino bounds from IceCube+DeepCore will sur-

pass present-day gamma-ray constraints after a few years of running [107].

In the above analysis we required that the the DM contribution should not exceed

the Fermi/HESS data points at more than 3σ. If a fraction f of the observed flux is
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due to the astrophysical gamma-ray sources, the constraint on the DM lifetime will

be improved by about 1/f . For instance, Ref. [108] proposed a model of blazars and

estimate its contribution to the diffuse isotropic gamma-ray flux. Although there is

uncertainty in the blazar model, their estimate agrees well with the preliminary Fermi

data. As the astrophysical understanding of the origin of the observed gamma-rays

flux is improved, the constraint on the DM property gets stronger.

2.2.3 Constraints on a dark matter model

Using the constraints derived in the previous section, we should be able to check

whether a specific DM model is allowed by the current gamma-ray observation. As

an example, we take up a model which was proposed in Ref. [109] to account for the

PAMELA and Fermi excess.

First, let us briefly review the model (see the original reference for details). The

lifetime needed to account for the excess is of O(1026) seconds, and such a longevity

calls for some explanation. To this end we introduce an extra dimension, which is

assumed to be compactified on S1/Z2 with two distinct boundaries. Suppose that a

hidden U(1)H gauge field is confined on one boundary and the SM particles on the

other. In such a set-up, direct interactions between the two sectors are suppressed by

a factor of exp(−M∗L), where M∗ is the five-dimensional Planck scale and L denotes

the size of the extra dimension. For e.g. M∗L ∼ 102, the direct couplings are so

suppressed that the hidden gauge boson will be practically stable in a cosmological

time scale [109]. Assuming that the hidden U(1)H gauge symmetry is spontaneously

broken, the hidden gauge boson, AH , can be therefore a candidate for DM.

Let us introduce an U(1)B−L in the bulk. Through a kinematic mixing between

the U(1)H and U(1)B−L, which is generically present, the AH will then decay into the

SM quarks and leptons at a rate determined by their B −L quantum number. After

integrating out the heavy U(1)B−L gauge boson3, the effective couplings between the

hidden gauge boson AH and the SM fermion ψi can be extracted from the U(1)B−L

3We expect that the U(1)B−L gauge symmetry is spontaneously broken around the grand unifi-
cation theory (GUT) scale of about 1015 GeV, since the seesaw mechanism [110] for neutrino mass
generation suggests the right-handed neutrinos of a mass about 1015 GeV.
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gauge interactions

Lint = −λ qi
m2

M2
AµH ψ̄iγµψi, (2.14)

where λ is a coefficient of the kinetic mixing, qi denotes the B − L charge of the

fermion ψi, and m and M are the masses of the hidden gauge boson AH and the

U(1)B−L gauge boson, respectively. The lifetime of AH is therefore given as

τ ' 1× 1025 sec

(∑
i

Niq
2
i

)−1(
λ

0.01

)−2 ( m

2 TeV

)−5
(

M

1015GeV

)4

, (2.15)

where Ni is the color factor (3 for quarks and 1 for leptons), the sum is taken over

the SM fermions, and we have neglected the fermion masses. The introduction of

the U(1)B−L has two merits. One is that, for a natural choice of the B − L breaking

scale, the lifetime of DM falls in a desired range of O(1026) seconds. The other is that

the DM decay mode is leptophilic and the branching ratios simply reflect the B − L
charge assignment, which makes the model very predictive; the branching ratio into

a quark pair is given by 2/39, while that into a charged lepton pair is 2/13.

In a similar way as we did in the previous section, we have derived constraints

on the lifetime of AH from the gamma-ray data. See Fig. 2.4. The Fermi galactic

mid-latitude data plays an important role in constraining the model at low side of

DM masses, while the HESS galactic center data takes over for the high side. For

example, the lifetime of the AH of mass 500 GeV (2 TeV) should be longer than

about 2 × 1025 (2.7 × 1025) seconds. We take the reference point mDM = 2 TeV and

the lifetime τ = 1.5 × 1026 sec shown as a star in Fig. 2.4 which can explain both

the Fermi and PAMELA excess. The antiproton flux was calculated for the reference

point and we found that it is consistent with the current PAMELA [78] and other

observational data on the cosmic-ray antiproton. On the other hand, as one can see

from Fig. 2.4, the reference point is marginally excluded by the bound obtained from

the Fermi isotropic diffuse data. Since the gamma-ray flux calculation is more robust

over the antiproton flux4, we conclude that the hidden gauge boson DM model, which

4 The flux of the antiproton produced by DM annihilation/decay is very sensitive to the diffusion
model and it varies by about two orders of magnitude for different diffusion models.[86]
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point, mDM = 2 TeV and τ = 1.5× 1026 sec, which accounts for both PAMELA and
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can account for both the PAMELA and Fermi excess while satisfying the antiproton

flux constraint, is now marginally excluded by the Fermi isotropic diffuse gamma-ray

data.

2.2.4 Conclusions

In this section we have derived constraints on the partial decay rates of DM into

WW , ZZ, hh and qq̄ as well as e+e−, µ+µ− and τ+τ− using the gamma-ray data

observed by the Fermi LAT and HESS. One of the merits of using gamma-ray is that

the predicted flux does not depend on the diffusion model in the Galaxy, in contrast to

charged cosmic-rays. The constraints derived in this section provide implications for

DM model-building attempting to account for the PAMELA/Fermi excess. According

to our results, the allowed hadronic branching ratio is of O(10) %. We have applied
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the result to a DM model based on the hidden gauge boson decaying through a mixing

with the U(1)B−L, and found that the model is now marginally excluded by the Fermi

gamma-ray observation. The allowed hadronic branching ratio is about 30% at the

reference point shown as a star in Fig. 2.4.

Gamma-ray observations have the power to constrain the properties of DM.

Thanks especially to the Fermi LAT data, which provides greater accuracy and statis-

tics over the experiments in the past, the gamma-ray constraint has become as tight as

or even tighter than current neutrino and antiproton constraints. However, neutrino

constraints may surpass gamma-ray constraints in the future.

2.3 Future Neutrino Constraints on Dark Matter

Decay and Annihilation

For either decays or annihilations, neutrino observations may provide the strongest

constraints — or the most promising corroborating signatures — for dark matter to

be the source of the anomalies. With the exception of the disfavored e+e− channel,

the required leptonic final states decay into neutrinos. These travel undeflected from

their sources, eliminating any uncertainties in modeling their propagation. Moreover,

astrophysical sources that may explain the anomalies are not expected to produce a

large flux of neutrinos. Pulsars, for example, would generate at mostO(1) events/year

at a full km-scale detector, and only at energies greater than 10 TeV [111].

There are, however, challenges to constraining dark matter models with neutri-

nos. As they are observed only by collecting Cherenkov light from induced particle

showers or from secondary muons, angular resolution is poor compared to gamma-ray

observatories. Also, there are significant backgrounds from atmospheric muon and

neutrino fluxes. However, if these backgrounds can be controlled, the poor angular

resolution need not be a barrier; indeed by integrating the flux over a large area of

the sky, the resulting constraint is much less sensitive to the choice of dark matter

profile [112, 113]. Moreover, by observing the galactic and extragalactic diffuse dark

matter, rather than any that may have been captured by the Sun or the Earth, any
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constraints will be independent of the dark matter-nucleon cross sections, which are

related to final states in a model-specific way [114].

Recent analyses show the power of neutrino constraints, using various strategies

to reduce the effect of atmospheric backgrounds. The Super-Kamiokande observatory

resides in the northern hemisphere, facing away from the galactic center, minimizing

atmospheric backgrounds. Measurements of upward-going muons place a limit on

the flux of galactic νµ, providing a robust constraint that eliminates annihilations

to τ+τ− as a source of the e± anomalies [106, 76]. The IceCube observatory, on

the other hand, resides at the South Pole where down-going atmospheric fluxes are

coincident with the neutrinos from the galactic center. The overwhelming background

of atmospheric muons can be suppressed by event selection to establish an isotropic

diffuse flux limit [115, 116, 117], but this limit only starts at a high energy threshold

O(10 TeV), and yields a relatively weak constraint as we will show.

Currently under construction is DeepCore [118], an in-fill of the IceCube detector

which will use the outer instrumented volume as a veto on downward-going muons to a

level of one part in 106 [119]. This will allow the galactic neutrino flux to be measured

and compared against the atmospheric neutrino flux, providing a constraint on dark

matter decays and annihilations. Recent work [120, 121] by some of the authors shows

that IceCube+DeepCore will be able to significantly constrain the parameter space

of decays to µ+µ−, and rule out decays to τ+τ− and annihilation to µ+µ− as possible

sources of the anomalies in less than five years of running.

Recently, IceCube+DeepCore has demonstrated in simulations the ability to dis-

tinguish between track-like events, which are due to the charged-current interactions

of νµ, and cascade events, which are induced by νe,τ through charged-current interac-

tions and by all neutrino flavors through neutral-current interactions [122, 123]. This

is very useful for constraining dark matter neutrino fluxes because νµ is the dominant

flavor of atmospheric neutrinos above 40 GeV [124, 125]. The neutrino-nucleon cross

sections are the same for all flavors, so signal would be considerably enhanced, while

background would be reduced because νµ only creates cascade events through the

neutral-current interaction, which is lower in cross section than the charged-current

interaction [126, 127, 112] (see Fig. 2.5). Moreover, cascade events are easy to distin-
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Figure 2.5: Cross sections for (anti)neutrino-nucleon interactions, given by Ref. [126].
The blue lines are for charged-current interactions, and the red lines are for
neutral-current interactions. Solid lines are for neutrinos and dashed lines are for
antineutrinos.

guish from the tracks caused by any atmospheric muons that are not vetoed by the

outer volume.

In this section we show that observation of cascade events at IceCube+DeepCore

can enhance the neutrino constraints on dark matter, and rule out (or corroborate)

dark matter decays to µ+µ− or τ+τ− and annihilation to µ+µ− as sources of the

observed e± cosmic-ray anomalies in a much shorter time compared to searches that

rely solely on track-like events.

2.3.1 Analysis

For brevity, in the expressions below we write only the terms for neutrinos and

not the terms for antineutrinos. The terms are identical, except replacing “ν” by “ν̄”.
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Galactic flux signal and background

The flux of neutrinos from the galactic dark matter halo is given by

dΦνi

dEdΩ
=

1

4π
(r�ρ�)

1

mτ

dNνi

dE
J1(∆Ω) (2.16)

for decays and by

dΦνi

dEdΩ
=

1

8π
(r�ρ

2
�)

1

m2
〈σv〉 dNνi

dE
J2(∆Ω) (2.17)

for annihilations, where r� = 8.5 kpc is the distance from the Sun to the galactic

center [94], ρ� = 0.3 GeV cm−3 is the dark matter density in the solar neighborhood,

m is the dark matter mass, and τ and 〈σv〉 are the dark matter lifetime and thermally

averaged cross section respectively. Jn is the line-of-sight (los) integral through the

halo profile:

Jn(∆Ω) =
1

∆Ω

∫
∆Ω

dΩ

∫
l.o.s.

ds

r�

(
ρ

ρ�

)n
(2.18)

where ∆Ω is the region of sky observed. In this analysis we use the Navarro-Frenk-

White (NFW) halo profile [52]

ρ(r) = ρ�

(r�
r

)(1 + r�/rs
1 + r/rs

)2

(2.19)

with rs = 20 kpc.

The neutrino source spectra dNνi/dE for flavors i are given by PYTHIA [92]

simulation. Assuming sin2 2θ12 : sin2 2θ13 : sin2 2θ23 ≈ 1 : 1 : 0, the flavor distribution

will be 1 : 1 : 1 as the neutrinos reach the Earth, having traveled a variety of long

distances across the galaxy and being well mixed through vacuum oscillations.

As discussed in the Introduction, the only background to cascade events is at-

mospheric neutrinos after the veto suppresses the background of atmospheric muons

to one part in 106 and event selection is used to eliminate the rest. The νµ and νe

fluxes are given by Ref. [124], where the νµ flux agrees well with AMANDA obser-

vation [130]. At low zenith angles, the flux of background νµ is ∼ 20 times greater

than the flux of νe from 40 GeV to 100 TeV; it is ∼ 1000 times greater than the flux

of ντ (see Ref. [125]). However, below 40 GeV, especially at high zenith angles, the

atmospheric fluxes of the three flavors only differ by O(1) due to flavor mixing. Since
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modeling the background (and signal) below 40 GeV would require simulating flavor

mixing as the neutrinos propagate through the limb of the Earth, for this analysis we

simply set an energy cutoff of Ethresh = 40 GeV.

To obtain the event rates due to the galactic and background fluxes, we first

set energy bins for dark matter of mass m to be [max(Ethresh,m/10),m/2] for de-

cays and [max(Ethresh,m/5),m] for annihilations. Note that the bin width is much

greater than the energy resolution, log10(Emax/Emin) ' 0.4 for track-like events and

log10(Emax/Emin) ' 0.18 for cascade events [119]. We then integrate the flux times

the effective area over the energy for each bin.

For track-like events due to νµ, the event rate is

Γtr. =

∫
dΩ

∫ Emax

Emin

dE ρiceNAVtr.

(
[σνN(E)]CC

dΦνµ

dEdΩ

)
(2.20)

where ρice = 0.9 g cm−3 is the density of ice, NA = 6.022 × 1023 g−1 is Avogadro’s

number (to convert mass to number of nucleons), [σνN(E)]CC is the neutrino-nucleon

cross section for the charged-current interaction, and Vtr. ≈ 0.04 km3 is the effective

volume of the detector for track-like events [119]. Note that we do not add the

residual atmospheric muon background to the background of track-like events due to

the uncertainty in its value.

For cascade events we use the instrumented volume Vcasc ≈ 0.02 km3 [119, 129],

the charged-current interaction for νe,τ , and the neutral-current interaction for all

flavors to obtain

Γcasc. =

∫
dΩ

∫ Emax

Emin

dE ρiceNAVcasc.

(
[σνN(E)]CC

dΦνe,τ

dEdΩ
+ [σνN(E)]NC

dΦνe,µ,τ

dEdΩ

)
.

(2.21)

Unlike track-like events, cascade events are well contained, so the effective volume for

their detection will vary little with energy. Also, we assume that in neutral-current

interactions all the energy of the neutrino goes into the cascade. Taking partial energy

transfer into account would yield a modest improvement in significance, since most

of the signal is from νe,τ charged-current interactions but most of the background is

from νµ neutral-current interactions.5

5Inelasticity curves are given in Ref. [128], but only for energies 10 TeV and higher.
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Finally, because the pointing capability for cascades is approximately 50◦ [119,

122] and the pointing capability for track-like events has yet to be established, we

integrate over the 2π field of view around the galactic center. As mentioned before,

this should provide a constraint which is robust to changes in dark matter halo profile.

Specifically, the fractional change between the NFW profile used here and the much

less steep isothermal profile for J1(2π) is O(10−3), and for J2(2π) is O(0.1).

Extragalactic isotropic diffuse flux

For comparison to the DeepCore constraints from down-going fluxes, we calculate

the constraint from the isotropic diffuse flux limit for AMANDA-II from track-like

events [116] and the projected limit for IceCube from cascade events [117].

The main contribution from dark matter decay to the isotropic diffuse flux is

that from extragalactic dark matter residing on cosmological scales. The flux from the

decay of cosmological dark matter is given by the previously derived formula [95, 77](
dΦνi

dEdΩ

)(ex.)

=
c

4π

ΩDMρc

H0Ω
1/2
M

1

mτ

∫ ∞
1

dy
y−3/2√

1 + ΩΛ/ΩMy−3

(
dNνi

d(Ey)

)
(2.22)

where y ≡ 1 + z, with z being the redshift, H0 = 71.9 km s−1 Mpc−1 is the Hubble

constant, ρc = 3H2
0/(8πGN) is the critical density, ΩM = 0.258, ΩDM = 0.214, and

ΩΛ = 0.721 are, respectively, the total matter, dark matter, and dark energy densities

divided by the critical density [24]. The isotropic diffuse flux from the annihilations of

cosmological dark matter is too small to be relevant, since the density of dark matter

on cosmological scales is very low, and the flux is suppressed by another power of

ρc/m.

Because of the loss of signal due to event selection and the presence of background

fluxes, both the AMANDA-II limit and the projected IceCube limit are only valid

at energies greater than ∼ 20 TeV. Below these thresholds we add the atmospheric

background flux to these limits, and use these total fluxes to calculate the constraints

on the dark matter lifetime.
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Figure 2.6: Constraints for decay to µ+µ− (left) and τ+τ− (right); the regions be-
low the contours are excluded. The black contour (“Super-K up-µ”) is the Super-
Kamiokande limit to 3σ from up-going muons, the orange band is the PAMELA-
preferred region, and the red ellipses are the Fermi-preferred region; these three are
given by Ref. [76]. The dashed green line (“AMANDA-II diff.”) is the constraint to
90% confidence from the AMANDA-II limit on the isotropic diffuse flux of νµ, and the
solid green line (“IceCube casc. diff.”) is the constraint to 90% confidence from the
projected IceCube limit on the isotropic diffuse flux using cascade events. The dashed
blue line (“DeepCore tr. 5yr”) is the constraint to 2σ from IceCube+DeepCore for νµ
track-like events after five years of running, and the solid blue lines are the constraints
to 2σ for all-flavor cascade events after one year (“DeepCore casc. 1yr”) and three
years (“DeepCore casc. 3yr”) of running.

2.3.2 Results

The results for dark matter decays are shown in Fig. 2.6; the regions below the

contours are excluded. The black contour (“Super-K up-µ”) is the Super-Kamiokande

limit to 3σ from up-going muons discussed in the Introduction. The orange band is the

preferred region to fit the PAMELA e± anomaly, and the red ellipses are the preferred

region to fit the Fermi e± anomaly. These three regions are given by Ref. [76] up to

mass 30 TeV and lifetime 1027 s.

The dashed green line (“AMANDA-II diff.”) is the constraint to 90% confidence
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from the AMANDA-II limit on the isotropic diffuse flux of νµ, and the solid green

line (“IceCube casc. diff.”) is the constraint to 90% confidence from the projected

IceCube limit on the isotropic diffuse flux using cascade events. Since the flux from

cosmological dark matter is weak to begin with, contributing only 1% of the total

flux over the 2π facing the galactic center, we see that it is quickly overwhelmed by

the atmospheric flux below ∼ 40 TeV. Nonetheless, due to the lower background of

atmospheric νe compared to νµ at these high energies, using cascade events improves

the constraint by a factor of ∼ 5.

The dashed blue line (“DeepCore tr. 5yr”) is the constraint to 2σ from Ice-

Cube+DeepCore for track-like events after five years of running, and the solid blue

lines are the constraints to 2σ for cascade events after one year (“DeepCore casc.

1yr”) and three years (“DeepCore casc. 3yr”) of running. We see that for the µ+µ−

final state, while track-like events can only reduce the available Fermi-preferred pa-

rameter space in five years, cascade events can rule it out altogether in only three

years. Similarly for the τ+τ− final state, track-like events can rule out the parameter

space in less than five years, but with cascade events it will only take one year. Note

the weakening of the constraints below m = 250 GeV, where the energy per final-state

particle is less than 125 GeV. This is caused by the energy cutoff at 40 GeV.

The results for annihilation are shown in Fig. 2.7; the regions above the contours

are excluded. The plots show the same constraints as for decay, except that no

isotropic limits are shown because they are weaker than the Super-Kamiokande limit

by a factor ∼ 105 due to the low density of dark matter on cosmological scales. As

with decays, cascade events greatly accelerate the development of a useful constraint.

For the µ+µ− final state the region by the Fermi data can be eliminated in only one

year.

The exclusion plot for annihilations to τ+τ− is shown only for completeness, as

the Fermi-preferred region has already been eliminated by the Super-Kamiokande ob-

servation of upward-going muons. However, it may provide a useful generic constraint

on all dark matter models irrespective of the e± anomalies.
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Figure 2.7: Constraints for annihilation to µ+µ− (left) and τ+τ− (right); the regions
above the contours are excluded. The black contour (“Super-K up-µ”) is the Super-
Kamiokande limit to 3σ from up-going muons, the orange band is the PAMELA-
preferred region, and the red ellipses are the Fermi-preferred region; these three are
given by Ref. [76]. The dashed blue line (“DeepCore tr. 5yr”) is the constraint to 2σ
from IceCube+DeepCore for νµ track-like events after five years of running, and the
solid blue lines are the constraints to 2σ for all-flavor cascade events after one year
(“DeepCore casc. 1yr”) and three years (“DeepCore casc. 3yr”) of running.

2.3.3 Conclusions

We have shown that, by using cascade events, IceCube+DeepCore can more

quickly establish constraints on dark matter models that would explain the reported

e± anomalies, and over time establish stronger constraints than from track-like events.

Specifically, track-like events will be able to significantly constrain the parameter

space of decays to µ+µ−, and rule out decays to τ+τ− and annihilations to µ+µ− in

less than five years of running. In comparison, cascade events can rule out decays

to µ+µ− in only three years, and rule out decays to τ+τ− and annihilation to µ+µ−

after only one year. Moreover, these constraints are highly robust to the choice of

dark matter halo profile and independent of dark matter-nucleon cross section.

In closing, we note two interesting possibilities for future work. First, if the
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pointing accuracy for track-like events at IceCube+DeepCore is established to be

less than 10◦, the signal-to-noise for annihilations may be significantly enhanced by

observing a smaller region around the galactic center, possibly out-performing cascade

searches (albeit with greater dependence on the choice of dark matter halo profile).

This would strengthen the discovery potential for dark matter because the galactic

center could be identified as a localized source of excess neutrinos. Second, because

the ντ atmospheric background is so low at energies above 40 GeV and at low zenith

angles, if IceCube+DeepCore can demonstrate efficient ντ discrimination [123], signal

to noise could be increased by a factor ∼ 100. This would put leptophilic dark matter

to a severe test.
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Chapter 3

Quarks and Leptons as

quasi-Nambu-Goldstone Fermions

3.1 Introduction

One of the fundamental problems in particle physics is to explain the hierarchy

in the Yukawa couplings of the quarks and leptons. This is a long-standing problem,

and in fact many models have been proposed to account for the smallness of the

Yukawa couplings of the first and second generations relative to those of the third.

In supersymmetric (SUSY) theories, there arises an intriguing possibility that the

quarks and leptons are nothing but SUSY partners of Nambu-Goldstone (NG) bosons

[131, 132], where the Yukawa couplings are forbidden by the celebrated low-energy

theorem [21]. Thus, the small Yukawa couplings for the first and second generations

are regarded as small breakings of postulated symmetries.

If that is indeed the case, then squarks and sleptons in the first and second

generations are approximately massless at some cut-off scale Λ of the theory and

they acquire masses from radiative corrections. If the corrections are dominated by

the standard model gauge interactions, then they each have nearly flavor-independent

masses, solving the SUSY flavor-changing neutral current problem. This hypothesis

predicts a remarkable spectrum for SUSY particles at the electroweak scale. The

purpose of this chapter is to examine the low-energy implications of the Nambu-
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Goldstone hypothesis.

It is very important to note here that if the Kähler manifold parameterized by

the NG bosons is a compact manifold such as CPn, the symmetry is explicitly broken

by a constant term O(m3/2) in the superpotential [133]1. As a consequence of the

explicit breaking, the NG bosons have masses of O(m3/2), and it will be not easy to

test the NG hypothesis at the Large Hadron Collider (LHC). Thus, we consider in

this chapter some non-compact complex manifold (non-linear sigma model) accom-

modating squarks and sleptons in the first and second generations as massless NG

bosons, which will yield dramatic signatures at the LHC. (The results in this chapter

do not depend on the explicit model for the non-compact complex manifold. We show

it for the existence proof of a model.) We treat quark and lepton chiral multiplets in

the third generation and Higgs chiral multiplets as just matter fields and hence their

scalar bosons have soft SUSY-breaking masses of order of the gravitino mass, m3/2,

at the cut-off scale Λ 2.

Finally, this class of models has a lightest supersymmetric particle (LSP) which

is a promising dark matter candidate. Depending on the parameter region, the LSP

may evade all current detection efforts or give interesting signals in direct detection

and cosmic rays.

1It is very interesting that two light generations in an SO(10) GUT are naturally accommodated
in E7/SO(10)×U(1)2. It has been shown that if one eliminates the U(1)2 in the unbroken subgroup
one can couple the non-linear sigma model to supergravity without any explicit breaking of the
E7 [134].

2The boundary condition of SUSY-breaking masses in the this chapter may be also realized
in a brane world. That is, one assumes that quark and lepton multiplets in the first and second
generation are confined on one brane separated from the other brane on which the third-generation
quark and lepton, Higgs and hidden-sector multiplets ride. The gauge multiplets are in the bulk.
This model may generate a partially realized Higgs-exempt [135] no-scale type supergravity model
[136] where squarks and sleptons in the first and second generation have very small SUSY-breaking
masses, while those in the third generation have masses of order the gravitino mass m3/2.
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3.2 An example of a non-compact manifold for the

first and second generations

Let us first consider a non-compact complex manifold that accommodates one

generation of left-handed quark and lepton multiplets. In particular, take a SUSY

U(6)/[U(4)× SU(2)] non-linear sigma model which consists of (4× 2 + 1) NG chiral

multiplets, φai and ϕ, where a = 1, . . . , 4 and i = 1, 2. The former superfield contains

the left-handed quarks and leptons,

φai =

(
uξL νL

dξL e−L

)
∼ (4,2) (3.1)

where ξ = 1, 2, 3 is the color index. The latter is a non-standard-model field known

as the “novino” [132]. All the bosons in φai and one real boson in ϕ are NG-boson

coordinates of the U(6)/[U(4)× SU(2)] manifold. The other extra real boson in the

novino superfield, ϕ, is necessary to construct the SUSY U(6)/[U(4) × SU(2)] non-

linear sigma model [35]. Then, we have a complex manifold which consists of all 18

bosons.

We arrange these into a matrix,

Ψ =

(
eκϕ/v12

φai /v

)
, (3.2)

which has 12 components Ψα
i , α = 1, . . . , 6. The general form of the Kähler potential

of the SUSY U(6)/[U(4)× SU(2)] non-linear sigma model is then given by [137]

K = v2F (det[Ψ†αΨα]), (3.3)

where the dimension-one constant v is determined, together with the constant κ, by

normalization conditions for the NG chiral multiplets as

v2 ∂2F

∂φ†ia ∂φbj

∣∣∣∣
φai =ϕ=0

= δab δ
j
i (3.4)

(κv)2 ∂2F

∂ϕ†∂ϕ

∣∣∣∣
φai =ϕ=0

= 1. (3.5)
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The parameter v corresponds to the energy scale of the U(6) breaking. Here, notice

that the function F (x) is an arbitrary function satisfying (3.4) and (3.5). This freedom

originates from the presence of one extra (non-NG) boson in the novino superfield, ϕ

[132, 138].

The above Kähler potential is invariant under the U(6)global×SU(2)local symme-

try

Ψ→ gΨh−1(x, θ), (3.6)

where g is a parameter of the global U(6) transformation and h(x, θ) is a chiral

superfield parameter of the hidden local SU(2) transformation. The form in (3.3) is

maintained by using the local SU(2) transformation. Thus, the global U(6) symmetry

is non-linearly realized by the NG chiral multiplets, φai and ϕ.

Let us now couple the above model to supergravity. The Lagrangian is given by

L = 3

∫
d2θd2θ̄Eexp

(1

3
K(φai , ϕ, φ

†i
a , ϕ

†)
)
. (3.7)

Here, E is the supervierbein determinant. It should be stressed here that the super-

gravity Lagrangian is completely invariant under the global U(6) symmetry.

It is straightforward to introduce the hidden sector responsible for the SUSY

breaking. For simplicity, we introduce a single singlet field, Z, for this purpose.

Then, the total Kähler potential is

K = K(φai , ϕ, φ
†i
a , ϕ

†) + Z†Z + .... (3.8)

The introduction of this SUSY-breaking sector preserves the global U(6) symmetry

and, therefore, leaves our NG bosons massless. However, there is a real scalar in ϕ

that is not a NG boson, and it acquires a soft mass of O(m3/2). This fact is shown

by an explicit calculation [139].

So far, only the left-handed quarks and leptons have been introduced in our non-

linear sigma model. It is straightforward to accommodate the right-handed quarks

and leptons in another U(6)/[U(4)× SU(2)] manifold. The NG chiral multiplets are

Ψ̃ =

(
eκeϕ/v12

φ̃ia/v

)
, (3.9)
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where the φ̃ia are the chiral multiplets for the right-handed quarks and leptons and

the ϕ̃ is another novino. The total manifold is now (U(6)/[U(4) × SU(2)])2. The

SM gauge group is a subgroup of the unbroken (U(4) × SU(2))2. If one gauges the

SU(2)× SU(2) and a diagonal SU(4) subgroup of the U(4)× U(4) in the unbroken

symmetry, one obtains the Pati-Salam gauge model with one generation.

It is now clear how to extend the model to accommodate the second generation

of quarks and leptons. That is, we consider a manifold (U(10)/[U(8)×SU(2)])2, such

that the left and right multiplets are

(φai )L =

(
uξL νeL cξL νµL

dξL e−L sξL µ−L

)
∼ (8,2) (3.10)

(φai )R =

(
uξR νeR cξR νµR

dξR e−R sξR µ−R

)
∼ (8,2) . (3.11)

Gauging suitable subgroups properly we obtain the supersymmetric standard model

(SSM) with three generations, where the first two generations are Nambu-Goldstone

bosons in the coset space and the third generation is fundamental. After SUSY

breaking, according to the low-energy theorem we have massless squarks and sleptons

in the first two generations. On the other hand, the Higgs and the squarks and

sleptons in the third generation may have soft-SUSY breaking masses of O(m3/2),

since they are just matter fields.

The masslessness of squarks and sleptons in the first and second generations is

guaranteed when the global U(10) × U(10) symmetry is exact. However, once we

introduce the SSM gauge interactions and necessary Yukawa interactions, the global

symmetry is explicitly broken and the squarks and sleptons are no longer true NG

bosons. Therefore, the radiative corrections from the gauge and Yukawa interactions

induce masses for the squarks and sleptons. The induced masses are logarithmically

divergent and hence we need counter terms in the Kähler potential. In principle, we

cannot determine the counter terms, but we expect those terms to vanish at some cut-

off scale Λ where the present non-linear sigma model is realized. In this chapter, we

simply assume the GUT scale ' 2× 1016 GeV to be the cut-off scale. In other words,

we choose a boundary condition such that squarks and sleptons in the first and second



78

generations are massless at the GUT scale. We easily see that squarks and sleptons in

the first two generations have almost flavor-independent masses, since the SM gauge

interactions are flavor blind and the Yukawa couplings are negligible compared with

the gauge interactions. Thus, we do not have the serious flavor-changing neutral

current problem.

However, this model does likely suffer from a gravitino problem [140] since m3/2

is of O(1 TeV). The problem of late-decaying, non-LSP gravitinos can be solved

through a dilution process with a sufficiently low reheating temperature [141], but

such a discussion is beyond the scope of this study. Similarly, although the novino may

have interesting phenomenology because its mass is of O(m3/2), making numerical

predictions would require an explicit model which we do not provide here.

The results that follow do not rely on any particular model. We assume that non-

MSSM fields, including those of the GUT and the novino, are efficiently decoupled.

Our results then follow from a set of SUSY-breaking parameters specified at the

cut-off scale which are generic to the NG hypothesis on non-compact manifolds.

3.3 Low-energy spectrum for SUSY particles

Consistent with the NG hypothesis on non-compact manifolds, we consider the

subspace of mSUGRA [142] models with the SUSY-breaking parameters

m1/2 = 300 GeV, tan β = 10, µ > 0, A0 = 0 (3.12)

while setting m0 = 0 for the first and second generation of scalars and m0 = 1 TeV for

the third generation scalars. Using the SOFTSUSY SUSY spectrum calculator (version

3.0.7) [143] and the DarkSUSY suite (version 5.0.5) [144, 145, 146, 147] we scan the

(MHu ,MHd) parameter space where MHu ∼MHd ∼ O(m3/2) to find the region which

gives the correct dark matter relic density while also evading other phenomenological

constraints. We set the top mass to mt = 175 GeV and let SOFTSUSY solve for the

GUT scale, which is always ' 2 × 1016 GeV. Results for the most relevant bounds

are shown in Figure 3.1. The colored regions are as follows:
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• red: 3σ-allowed dark matter relic density given by the seven-year WMAP

data [25].

• gray: Charged LSP.

• magenta: Excluded by DarkSUSY limits on b→ sγ.

• yellow: Excluded by DarkSUSY Higgs mass bounds.

• blue: Excluded by 90% limit on spin-independent WIMP-nucleon cross sections

in direct detection experiments [148]. For any given bin the more stringent limit

among the proton or neutron cross sections is chosen.

• green: Same as the blue region, but for spin-dependent limits.

The allowed parameter space in Figure 3.1 shows some interesting properties. First,

significantly different combinations of (MHu ,MHd) can give the correct relic density.

The upper and lower branches with a large difference between the two soft masses

compose a “bulk region” where coannihilation with ẽ, µ̃ or ν̃e,µ yields the required

abundance. The “bridge” at MHu ≈ MHd ≈ 1100 GeV is a small-µ region where

annihilation though h̃ contributes to the correct abundance for a relatively light neu-

tralino [149]. Due to the large higgsino component in χ̃0
1, this bridge branch is near

the region excluded by direct detection experiments (see, for example, Ref. [150]).

For the upper, lower and bridge branches we have chosen benchmark points for fur-

ther study, marked by black stars. (These benchmark points give dark matter relic

densities within 1σ of the WMAP7 value.)

Second, the regions giving the correct relic density are far from those excluded

by bounds from b→ sγ and Higgs mass. The former is not surprising since we have

chosen small tan β, µ > 0 and a gaugino soft mass that is not too light, but heavy t̃

and b̃ also suppress the relevant diagrams. If t̃ and b̃ were nearly as light as the squarks

of the first and second generation, the b→ sγ limit would be exceeded for nearly all

of the (MHu ,MHd) plane. Similarly, the Higgs mass bound is also avoided rather

easily because t̃ is heavy, enhancing the contribution of the yt term in the MSSM

running of the h0 mass, although the relationship to (MHu ,MHd) is more intricate.
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Figure 3.1: Scan in (MHu ,MHd) for the mSUGRA subspace m1/2 = 300 GeV, tan β =
10, µ > 0 and A0 = 0, with m0 = 0 for the first and second generation scalars and
m0 = 1 TeV for the third generation scalars. The regions shown are: 3σ-allowed
dark matter relic density given by the seven-year WMAP data (red), charged LSP
(gray), excluded by DarkSUSY limits on b → sγ (magenta), excluded by DarkSUSY

Higgs mass bounds (yellow), excluded by 90% limit on spin-independent WIMP-
nucleon cross sections in direct detection experiments (blue), excluded by 90% limit on
spin-dependent WIMP-nucleon cross sections in direct detection experiments (green).
Benchmark points chosen for further study are denoted by the black stars (see text
for details).
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Figure 3.2: Same as Figure 3.1, except with m0 = 0 for the third generation scalars
as well.

For comparison, see Figure 3.2, which has the same parameters as Figure 3.1 except

that m0 = 0 for the third generation scalars as well.

Finally, we note that at small m0 a gaugino soft mass m1/2 ' 300 has some

phenomenological support, as it gives χ̃0
1,2 and χ̃±1,2 masses favored by muon g−2 [151].

Also, although a small m0 usually gives dangerously small τ̃ masses [151], this is not

the case if it is only for the first and second generations. This accounts for the

difference between the gray regions of Figures 3.1 and 3.2.

Altogether, these properties show that for the choices tan β = 10, µ > 0 and

A0 = 0, the NG hypothesis meets the relevant SUSY phenomenological requirements

rather generically: several different regions of (MHu ,MHd) at the correct mass scale

can give the required relic density, and only a small portion of these regions is subject

to other phenomenological constraints. We now consider how this scenario can be
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Benchmark point MHu MHd

BP 1 860 1140
BP 2 680 760
BP 3 1115 1150

Table 3.1: Higgs soft masses for benchmark points, in GeV.
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ẽL, µ̃L

ν̃eL
, ν̃µL
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Figure 3.3: Spectrum for comparison point (CP), in GeV.

distinguished from conventional mSUGRA by examining the spectra of the benchmark

points, whose (MHu ,MHd) are shown in Table 3.1.

First, we choose a conventional mSUGRA point with similar soft masses for

comparison:

m0 = 75 GeV, m1/2 = 300 GeV, tan β = 10, µ > 0, A0 = −200 GeV . (3.13)

This point, denoted CP, gives roughly the correct χ̃0
1 relic density through τ̃ coanni-

hilation and exhibits a small l̃R-χ̃0
1 mass splitting. The choice of A0 = −200 GeV is

to avoid Higgs mass bounds. The resulting spectrum is shown in Figure 3.3.
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Figure 3.4: Spectrum for benchmark point 1 (BP 1), in GeV.

Let us consider benchmark point 1 (BP 1) shown in Figure 3.4. As expected,

compared to CP, the third generation scalars are very heavy, as are the heavy Higgs

bosons due to the large values of MHu and MHd . Also, like CP, there is a small

splitting between the lightest slepton and χ̃0
1. However, the expected hierarchy of

sleptons is “inverted,” i.e. ν̃e,µ and ẽL are lighter than l̃R. This is due to the S term

in the running of the scalar masses (see, for example, Ref. [32]),

16π2 d

dt
m2
φi

= −
∑
a

8Ca(i)g
2
a |Ma|2 +

6

5
Yig

2
1S (3.14)

where

S ≡ Tr
[
Yjm

2
φj

]
= M2

Hu −M2
Hd

+ Tr
[
m2

Q −m2
L − 2m2

ū + m2
d̄ + m2

ē

]
. (3.15)

In (3.15), the rightmost trace is zero for our case since m0 is universal across all the

scalars in a given generation, so S = (M2
Hu
− M2

Hd
). Since l̃R has hypercharge of

Y = −1, but l̃L and ν̃e,µ have hypercharge of Y = −1/2, l̃R is driven heavier. For

the same reason, the spectrum of the left and right squarks of the first and second
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Figure 3.5: Spectrum for benchmark point 2 (BP 2), in GeV.

generations is brought closer together than in CP. Unfortunately, the size of this

effect is difficult to estimate analytically since MHu and MHd are themselves subject

to significant running due to S.

Benchmark point 2 (BP 2) in Figure 3.5 is similar to BP 1, except that (M2
Hu
−

M2
Hd

) is smaller, so the slepton hierarchy is narrowed but remains non-inverted.

Benchmark point 3 (BP 3) in Figure 3.6 is also similar, with (M2
Hu
− M2

Hd
) being

even smaller. Except, in addition to a non-inverted and narrowed slepton hierarchy,

because it is in the bridge branch it exhibits typical small-µ neutralino and chargino

hierarchies. In fact, χ̃0
2 and χ̃±1 are lighter than ν̃e,µ, closing off that decay channel.

In the next section, we discuss how these points can be identified at a collider,

and use simulated events to demonstrate that this can be done early in 14 TeV running

at the LHC.
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3.4 LHC physics

3.4.1 Discrimination at the LHC

We now consider the distinguishing characteristics of NG hypothesis model

points and their prospects for detection at the LHC.

Under the NG hypothesis, the third generation scalars are significantly heavier

than both the g̃ and the first and second generation squarks, which will result in very

few b- and τ -jets. Nearly all the squarks produced at the LHC will be of the first

and second generation, both from g̃ decay and direct production. By contrast, at CP

many b- and τ -jets would be produced because all three generations are of comparable

mass.

Turning to leptons, because χ̃0
2 → τ̃ τ is closed, there will be many more events

with the number of leptons nl ≥ 2 than for conventional mSUGRA points. In the

bridge branch, χ̃0
2 → ν̃e,µνe,µ is closed as well, and q̃ → qχ̃0

4 and q̃L → qLχ̃
±
2 are

open due to gaugino mixing caused by small µ; however, most importantly, the right
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squarks have a large branching ratio to χ̃0
2 due to bino mixing. Thus for BP 3 the

number of nl ≥ 2 events is greatly enhanced, even over BP 1 and BP 2. Overall, NG

hypothesis model points require less integrated luminosity than conventional points

in order to reconstruct two-lepton decay chains.

In short, b-jet, τ -jet and lepton multiplicities can broadly distinguish NG hy-

pothesis model points from conventional model points.

For greater precision, the effects of the S-term on the slepton mass hierarchy

should be visible at the LHC. At BP 1 and BP 2, the left squarks will decay mostly

to qLχ̃
0
2 and qLχ̃

±
1 because these gauginos are mostly wino, and these in turn will

decay mostly into left sleptons. The right squarks will decay mostly to qRχ̃
0
1 because

χ̃0
1 is mostly bino, so no leptons will be produced. Thus, at these points we expect the

leptons produced in the squark decay chains to be mostly left-handed. By comparison,

at CP χ̃0
2 → l̃±Rl

∓ and χ̃±1 → ν̃Ll
± exclusively since l̃L is too heavy — most of these

leptons will be right-handed.

This difference can be inferred by measuring the charge asymmetry of the mjl

invariant mass distributions from the squark decay chains [152]. In squark decay, χ̃0
2 is

back-to-back with the quark in the squark rest frame and carries the same polarization

as the quark since the squark is scalar. Then, when χ̃2
0 decays, the lepton carries its

polarization in the same direction. Thus, the chirality of this lepton is positively

correlated with the chirality of the quark. Since the LHC is a p-p collider, more q̃

is produced than q̃∗, so if the chiralities of the lepton and quark are the same then

we expect a positive charge asymmetry. The lepton from the slepton decay is not

correlated since the slepton is scalar. Then, for BP 1 and BP 2 there will be a large

positive charge asymmetry since most of the χ̃0
2 are from q̃L rather than q̃R, and χ̃0

2

decays predominantly to l̃LlL .

The situation is more complicated at BP 3 because so many different squark

decay channels are open. Moreover, because χ̃0
2 is so light, it can only decay to l̃R. In

order to determine the charge asymmetry, we first note that the gluino prefers decays

to right squarks (branching ratio 59%) because they are lighter than the left squarks

(40%). Then, we observe that the right squarks produce leptons mostly through

χ̃0
2 (22%), whereas the left squarks produce leptons through χ̃0

2 (17% for up, 10% for
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down), χ̃0
4 (∼ 15%) and χ̃±1,2 (∼ 65%); χ̃0

4 decays to lLl̃L only 21% of the time, and χ̃±1,2

to l±LνL(χ̃0
1) only ∼ 35% of the time. Multiplying the branching ratios, one finds that

the charge asymmetry from right squarks is positive, but the charge asymmetry from

left squarks is largely canceled between χ̃0
2 and χ̃±1,2. Thus, overall charge asymmetry

of BP 3 will be positive, though not as large as that of BP 1 and BP 2. Then, to

clearly distinguish BP 3 from BP 1 and BP 2, its small-µ character can be seen by

observing the tight neutralino mass hierarchy through the small χ̃0
2-χ̃0

1 mass splitting.

being small.

Lastly, at all the benchmark points the heavy states in the Higgs sector will not

be produced in sufficient quantities to be identified because their mass is too high.

However, if tan β > 15, a heavy Higgs of O(500 GeV) may be observed at a CP-like

model point [153].

3.4.2 Simulation and reconstruction

To demonstrate this phenomenology at the LHC, for each of the model points

we generated 105 signal events at 14 TeV for inclusive squark production using the

ISAJET (version 7.72) spectrum calculator [154], HERWIG (version 6.5) shower gener-

ator [155] and AcerDET (version 1.0) [156] fast detector simulation. (MSSM input

parameters were tuned slightly such that ISAJET would produce the same spectrum

as SOFTSUSY.) The inclusive production cross section is >∼ 15 pb, so the integrated

luminosity required for the following analysis is only 7 fb−1; this should be achievable

in roughly one month of running [157].

To grossly distinguish NG hypothesis model points from conventional points we

first extract and compare:

• number of b-jets nb with pT > 50 GeV

• number of τ -jets nτ with pT > 20 GeV

• number of leptons nl with pT > 15 GeV and η < 2 .

Here, the b- and τ -jets are the jets labeled as such by AcerDET, with an efficiency

of around 80%. However, real tagging efficiencies are probably around 60% and
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Model point % nb ≥ 1 % nτ ≥ 1 % nl ≥ 2
BP 1 2.29 0.04 15.80
BP 2 2.22 0.02 15.84
BP 3 3.17 2.284 28.97
CP 31.70 16.94 4.10

Table 3.2: Percentage of events with the given multiplicities (see text for details).

50% for b- and τ -jets, respectively [156]. The results are shown in Table 3.2, as a

percentage of events. As expected, for the benchmark points there are a few b-jets

and very few τ -jets from direct production of third generation squarks. BP 3 shows

an enhancement in τ -jets from off-shell χ̃±1 decays. By contrast, CP has many b-jets

from both gluino and third generation squark decays, as well as many τ -jets (and

therefore fewer multi-leptons) from χ̃0
2 decays.

Turning to the other discriminators, in order to obtain the χ̃-l̃ mass splittings

and charge asymmetry, we must study the gluino and squark decay chains

(g̃ →) q̃j → χ̃0
2jj → l̃±jjl∓ → jjl±l∓+ 6ET . (3.16)

Henceforth, we define the lepton from χ̃0
2 decay as the “near” lepton, and the lepton

from l̃ decay to be the “far” lepton. We use the method of invariant mass distributions

and endpoints to reconstruct the masses [153, 158, 159]. This method can determine

the l̃-χ̃0
1 and χ̃0

2-l̃ mass splitting rather precisely, which is useful here; extracting the

squark mass scale is less critical because it is mostly determined by m0. We use

the MINUIT2 fitter in ROOT [160] to find the endpoints, and the inversion formulas in

Ref. [159] to find the mass differences and squark mass.

For each model point we identify events with nl ≥ 2, nj ≥ 2 where the two

highest pT leptons are same-flavor/opposite-sign (SFOS). To subtract the chargino

contribution to SFOS, we also identify nl = 2 events with different-flavor/opposite-

sign (DFOS) and subtract these counts from the SFOS invariant mass distributions

before fitting. In a given event, we choose the jet among the two highest pT jets

that gives the smallest mjll. This identifies the jet from squark decay on the correct

branch.
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Figure 3.7: Example smeared ramp function with the vertical edge to the right and
the sloping edge to the left. Left endpoint = 100, right endpoint = 600, with gaussian
smearing widths = 0 (black), 10 (blue), 50 (green) and 100 (red).

Noting the example mass distribution shapes in Ref. [159], we use the vertical

edge from a ramp function with gaussian smearing in order to fit the mmax
ll end-

point, and the sloping edge of a ramp function with gaussian smearing in order to fit

the mmax
jll and mmax

jl(lo) endpoints (for examples showing both kinds of edges, see Fig-

ure 3.7). We also choose a vertical edge for mmax
jl(hi) instead of a sloping edge because

the histogram bins containing this edge usually have few entries, and the resulting

broadening obscures any slope. In our fits the smearing width is left as a free param-

eter to match the broadening of the endpoint due to a finite number of counts; this

is most apparent in the mmax
jl(hi) fits.

For BP 3, however, there are significant tails in the mjl(hi) and mjll distributions

due to the decays of χ̃0
4 and χ̃±2 . In these fits the fitting function is a left-facing smeared

ramp added to a sloping line in piecewise fashion. Moreover, in these functions we

set the maximum smearing width to 5 GeV and over a limited mass range to avoid

over-fitting to the curves of the edges which are resolvable due to the large statistics.

The χ̃0
4 and χ̃±2 edges of BP 3 can be seen in the mll mass distribution in Fig-

ure 3.8. At 93 GeV is the χ̃±2 → ν̃Ll
± → χ̃±1 ll endpoint, and at 107 GeV is the
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Figure 3.8: Higher range of mll for BP 3. At 93 GeV is the χ̃±2 → ν̃Ll
± → χ̃±1 ll

endpoint, and at 107 GeV is the χ̃0
4 → l̃Ll→ χ̃0

2ll endpoint.

Model point ml̃ −mχ̃0
1

mχ̃0
2
−ml̃ mq̃ −mχ̃0

2
mq̃

BP 1 37.7± 1.1 (37.9) 73.3± 1.9 (73.5) 433± 7 (428) 655± 35 (660)
BP 2 73.1± 1.4 (73.5) 40.8± 0.3 (40.8) 414± 5 (409) 658± 20 (643)
BP 3 29.1± 1.0 (28.9) 31.4± 0.9 (31.6) 491± 12 (472) 693± 88 (639)

CP 27.7± 3.3 (25.7) 76.0± 4.5 (77.5) 497± 51 (444) 848± 237 (666)

Table 3.3: Reconstructed mass differences and squark masses, in GeV. True values
are shown in parentheses.

χ̃0
4 → l̃Ll → χ̃0

2ll endpoint. All the other plots of the mass distributions and their fit

endpoints, as well as all the inversion solutions, are shown in the Appendix starting

on page 111. Here, we show the correct solutions in Table 3.3, where the values in

the parentheses are the true values. The correct solution is chosen by first noting

that none of the model points have off-shell decays in the squark decay chains, which

would manifest in flat mass distributions. This eliminates Region 4 of mmax
jll , in the

terminology of Ref. [159]. Next, among the Region 1 solutions we choose the one with

the plausible squark mass that would give the observed production cross-section. If

this is ambiguous, looking at the mjl(hi) mass distribution, if there is a secondary edge
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Model point Ac,soft Ac,hard
BP 1 −0.11± 0.02 0.25± 0.02
BP 2 −0.04± 0.02 0.11± 0.02
BP 3 −0.01± 0.01 0.04± 0.01
CP 0.04± 0.04 −0.14± 0.06

Table 3.4: Lepton charge asymmetries for each model point.

then the lepton at the fit edge is the far lepton, and so the l̃-χ̃0
1 splitting is larger;

conversely, if there is no secondary edge, the fit lepton is the near lepton, and the

χ̃0
2-l̃ splitting is the larger one.

Finally, to calculate the charge asymmetry, we create mjl± distributions sepa-

rately for both the near and far leptons, where j is the same jet as from mjll. This

gives us four distributions mjl±(soft) and mjl±(hard) in increasing lepton pT (these are

also shown in the Appendix). Then, we integrate each of the distributions,

N(l) =

∫ b

a

dm′ mjl(m
′) (3.17)

where (a, b) = (mmax
jl(lo) − 100 GeV,mmax

jl(lo)) for the soft distribution. For the hard

distribution, (a, b) = (mjl(near) − 100 GeV,mjl(near)) where mnear is the edge of the

mjl(hi) distribution for the near lepton. For our model points, mjl(near) 6= mmax
jl(hi) only

for BP 2, which has a secondary edge at 350 GeV.

This gives us four quantities Nsoft(l
±) and Nhard(l

±). Finally, we define the

charge asymmetry as

Ac ≡
N(l+)−N(l−)

N(l+) +N(l−)
. (3.18)

The soft and hard lepton charge asymmetries, Ac,soft and Ac,hard, are shown for each

of the model points in Table 3.4. We see that |Ac,soft| < |Ac,hard|, since more of the

soft leptons are from slepton decay.

3.4.3 Model point identification

Using the results from the reconstruction procedures above, we describe how to

identify the different model points from the data. We will assume universal gaugino
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soft masses at high scale, such that M3 : M2 : M1 ≈ 6 : 2 : 1 at low scale [32].

BP 1

The single edge of the mjl(hi) distribution suggests that this is from the near

lepton. The large χ̃0
2-χ̃0

1 mass splitting and non-observation of higher mll edges from

χ̃0
4 and χ̃±2 decays indicate that µ > M2 − M1, so χ̃0

2 is gaugino-dominated and

the decay chains are primarily from left squarks. Combined with the large positive

charge asymmetry, this suggests that the slepton for this edge is l̃L. Following the

mSUGRA mass relations [32], the large χ̃0
2-l̃L splitting is inconsistent with mSUGRA

assumptions; on the other hand, the l̃L-χ̃0
1 splitting is small enough to give the right

dark matter relic abundance. Then, we can infer that l̃R is heavier than l̃L. Along

with the lack of b- and τ -jets, an upper branch point in the NG hypothesis is a

plausible candidate.

BP 2

Again, the χ̃0
2-χ̃0

1 splitting is large and no higher mll edges are observed, so we

are not in a small-µ region and left squark decays produce the most leptons. The

secondary edge at 350 GeV in the mjl(hi) distribution suggests that the fitted edge is

for the far lepton. Combined with the large l̃-χ̃0
1 mass splitting and positive charge

asymmetry, we infer that this edge is for the l̃L and that there is an unresolved l̃R close

to χ̃0
1, giving the correct dark matter relic abundance. The smaller charge asymmetry

than for BP 1 is consistent with the far lepton being more likely to be the hard lepton,

contributing roughly 50% below 350 GeV in the mjl(hi) distribution. Thus, in this

case, a lower branch point in the NG hypothesis is a plausible candidate.

BP 3

The additional edges in the mll distribution are due to the higher neutralinos

and the small χ̃0
2-χ̃0

1 mass splitting suggest a small-µ point. These edges can be

reconstructed to obtain the masses of these heavy neutralinos [152]. Combining the

inferred branching ratios, we can determine that right squark decays contribute more
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strongly to the the positive charge asymmetry, suggesting that the reconstructed

slepton is l̃R; we can reconstruct l̃L and ν̃L at some specific higher mass. A bridge

branch point is consistent with all these features, as well as with the great number of

multi-lepton events observed.

CP

Unlike the three scenarios above, here we observe a typical number of b- and

τ -jets along with few multi-lepton events. Since the χ̃0
2-χ̃0

1 splitting is large, this is

not a small-µ point, so most of the multi-lepton events are from left squark decays.

Combined with the negative charge asymmetry, we infer that the slepton for this edge

is l̃R. We also see that the lepton is near, so it is the χ̃0
2-l̃R splitting which is large.

Then, l̃L has some mass greater than that of χ̃0
2, otherwise the charge asymmetry

would be washed out or positive. This is likely a typical mSUGRA point.

In summary, the benchmark points of the NG hypothesis from different regions

in the (MHu ,MHd) plane can be readily identified in early 14 TeV running at the

LHC, and are easily distinguished from typical mSUGRA points.

3.5 Conclusions and outlook

The hierarchy of the Yukawa couplings in the standard model remains an open

question. We have presented a class of models wherein the first and second generation

fermions are SUSY partners of Nambu-Goldstone bosons which parameterize a non-

compact Kähler manifold, such that the first and second generation Yukawa couplings

are forbidden by the low-energy theorem. Then we gave an (incomplete) example to

show that such a model can be constructed.

Next, we found that many different model points in this scenario can give the

correct dark matter abundance while easily evading phenomenological bounds, and

examined the spectra of benchmark points in different regions of the allowed parame-

ter space. Finally, we argued that these points can be distinguished from conventional

mSUGRA points at the LHC, and demonstrated this assuming only 7 fb−1 of inte-
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grated luminosity at 14 TeV, with mg̃ ∼ 700 GeV.

Nonetheless, improvements can be made. First, explicit models should be con-

structed, and the consequences of their gravitino and novino fields investigated. Also,

the running of the soft masses between the SUSY-breaking and GUT scales should

be verified to be small. Second, a more expansive simulation (including backgrounds)

should be done with higher integrated luminosity to improve the quality of the end-

point fits and increase the significance of the charge asymmetries. Third, observability

at LHC should be verified across the entire (MHu ,MHd) plane, not only for specific

benchmark points.

Finally, it must be noted that the dark matter candidate here evades all the

bounds established in Chapter 2 for the total cosmic-ray e± flux. At model points

BP 1 and BP 2, the LSP is mostly bino and thus the annihilation cross-section is

p-wave suppressed, reducing it to O(10−30) cm3 s−1 in the present universe. However,

at BP 3, the large higgsino component, in addition to enhancing the direct detec-

tion cross-section, also gives a large annihilation rate O(10−26) cm3 s−1 to W+W−.

Combined with the low mass, the LSP of BP 3 may be able to explain the anoma-

lous rise in the positron fraction (see Figures 1.5 and 2.7). However, the bound from

antiprotons must be computed.

In conclusion, we have shown that the NG hypothesis is a promising scenario for

explaining the standard model fermion mass hierarchy, as well as providing a dark

matter candidate.
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Chapter 4

Conclusion

While the standard model has been extremely successful in describing the fun-

damental particles and interactions, there remain a number of important, open ques-

tions. These include resolving the hierarchy problem in the renormalization of the

Higgs, the hierarchy in the fermion Yukawa couplings, and understanding the nature

of dark matter.

In Section 1.1, the standard model was reviewed. Then, in Section 1.2, the short-

comings of the standard model and possible solutions were described. Supersymmetry

was one of the solutions argued to have the potential for solving the problems de-

scribed above. In Section 1.3, supersymmetry was developed from first principles,

connected with gravity, then applied to the standard model. Finally, supersymmetric

coset spaces were reviewed in order to motivate the work in Chapter 3. In Section 1.4,

a broad overview was given on the evidence for dark matter, major candidates for

dark matter, and certain aspects of WIMP dark matter detection.

In Chapter 2, novel constraints on the the WIMP dark matter interpretation of

the recent cosmic-ray e± anomalies were developed using gamma-rays and neutrinos.

Then, in Chapter 3, we presented a class of supersymmetric models which can make

the first and second generations of the (s)quarks and (s)leptons light, while also

providing a dark matter candidate. It is shown by simulation that this class of

models can be easily detected at the Large Hadron Collider when it begins to run

at 14 TeV. It is also noted that the dark matter candidate here likely evades all
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the bounds established in Chapter 2 for the total cosmic-ray e± flux, but still may be

useful for explaining the anomalous rise in the cosmic-ray positron fraction. However,

most importantly, a supersymmetric coset theory provides a dynamical motivation for

the masses, generations and representations of the quarks and leptons in the standard

model. Future work will involve making an explicit model for quasi-Nambu-Goldstone

fermion quarks and leptons, then understanding the astrophysical implications in dark

matter and Big Bang nucleosynthesis.

In conclusion, this stands as an important time in particle physics. As the

LHC starts up and astrophysical observatories grow more powerful, the critical TeV

frontier is beginning to open. We will learn not just about the Higgs, but the TeV

particle spectrum and what questions it may answer or create. It is the hope of the

author that an elegant dynamical picture will be revealed which resolves the problems

addressed in this thesis. As we go higher in energy, peer deeper into the cosmos, and

grow more precise in our observations, may we continue to peel back the layers of

nature to uncover more profound underlying orders.
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Appendix A

Appendix for Chapter 3

In this section we give miscellaneous data on the model points:

• Plots of invariant mass distributions, with edge fits

• Expected and fit endpoints (as well as secondary endpoints)

• All mass solutions

• Notable branching ratios

Note: All mass units are in GeV.
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Benchmark point 1 (BP 1)

True masses

mχ̃0
1

= 120.3, ml̃ = 158.2, mχ̃0
2

= 231.7, mq̃ = 660.4

Endpoint values

mmax
ll mmax

jll mmax
jl(lo) mmax

jl(hi)

Expected 109.9 528.5 336.8 451.8
Fit 109.7± 0.4 533.3± 3.0 341.2± 6.0 457.1± 2.4

Mass solutions

Region [159] ml̃ −mχ̃0
1

mχ̃0
2
−ml̃ mq̃ −mχ̃0

2
mq̃

Expected 37.9 73.5 429 660
(1,1) 73.0± 1.7 43.1± 1.0 459± 11 876± 62
(1,2) Imaginary
(1,3) 37.7± 1.1 73.3± 1.9 433± 7 655± 35
(4,1) Imaginary
(4,2) 33.3± 3.5 76.5± 3.0 423± 3.2 551± 5
(4,3) 37.2± 1.3 73.5± 2.0 423± 3.0 621± 15

Correct solution is in bold.
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Figure A.1: BP 1 invariant mass distributions and endpoint fits. Upper left, mll;
upper right, mjll; middle left, mjl(lo); middle right, mjl(hi). Lower left, mjl+(soft) −
mjl−(soft); lower right, mjl+(hard) −mjl−(hard).
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Notable branching ratios

Parent Daughters Branching ratio
ũL uLχ̃

0
2 0.33

dLχ̃
±
1 0.66

ũR uRχ̃
0
1 1.0

uRχ̃
0
2 1.1× 10−3

χ̃0
2 l±L l̃

∓
L 0.42

l±R l̃
∓
R 5.8× 10−5

νLν̃L 0.58
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Benchmark point 2 (BP 2)

True masses

mχ̃0
1

= 120.1, ml̃ = 193.7, mχ̃0
2

= 234.5, mq̃ = 643.5

Endpoint values

mmax
ll mmax

jll mmax
jl(lo) mmax

jl(hi)

Expected 103.7 514.6 337.8 470.0
Fit 103.7± 0.3 516.7± 1.2 338.0± 1.2 469.1± 4.8

For calculating charge asymmetry: mjl(near) = 349.5± 2.8

Mass solutions

Region [159] ml̃ −mχ̃0
1

mχ̃0
2
−ml̃ mq̃ −mχ̃0

2
mq̃

Expected 73.5 40.8 409 643
(1,1) 73.1± 1.4 40.8± 0.3 414± 5 658± 20
(1,2) Imaginary
(1,3) 29.9± 1.5 75.0± 1.8 412± 1.5 562± 6
(4,1) Imaginary
(4,2) 23.4± 2.4 80.3± 2.6 413± 1 528± 2
(4,3) 29.8± 1.5 75.0± 1.7 412± 1 561± 5

Correct solution is in bold.
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Figure A.2: BP 2 invariant mass distributions and endpoint fits. Upper left, mll;
upper right, mjll; middle left, mjl(lo); middle right, mjl(hi). Lower left, mjl+(soft) −
mjl−(soft); lower right, mjl+(hard) −mjl−(hard).
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Notable branching ratios

Parent Daughters Branching ratio
ũL uLχ̃

0
2 0.33

dLχ̃
±
1 0.66

ũR uRχ̃
0
1 1.0

uRχ̃
0
2 5.0× 10−4

χ̃0
2 l±L l̃

∓
L 0.36

l±R l̃
∓
R 5.7× 10−4

νLν̃L 0.64
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Benchmark point 3 (BP 3)

True masses

mχ̃0
1

= 106.4, ml̃ = 135.3, mχ̃0
2

= 166.9, mq̃ = 639.2

Endpoint values

mmax
ll mmax

jll mmax
jl(lo) mmax

jl(hi)

Expected 60.4 475.6 324.4 381.4
Fit 60.4± 0.1 473.2± 4.5 323.3± 0.9 370.2± 4.4

Secondary edge mmax
ll

χ̃±2 → ν̃Ll
± → χ̃±1 ll 93.0

χ̃0
4 → l̃Ll→ χ̃0

2ll 107.4

χ̃0
4 → l̃Ll→ χ̃0

1ll 176.4

Mass solutions

Region [159] ml̃ −mχ̃0
1

mχ̃0
2
−ml̃ mq̃ −mχ̃0

2
mq̃

Expected 28.9 31.6 472 639
(1,1) 33.8± 0.4 27.3± 0.3 580± 48 988± 170
(1,2) 29.1± 1.0 31.4± 0.9 491± 12 693± 31
(1,3) 28.7± 1.0 32.1± 0.6 437± 24 558± 50
(4,1) Imaginary
(4,2) 38.1± 2.2 30.1± 0.6 404± 6 480± 7
(4,3) 30.6± 1.0 31.5± 0.6 411± 5 506± 10

Correct solution is in bold.
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Figure A.3: BP 3 invariant mass distributions and endpoint fits. Upper left, mll;
upper right, mjll; middle left, mjl(lo); middle right, mjl(hi). Lower left, mjl+(soft) −
mjl−(soft); lower right, mjl+(hard) −mjl−(hard).
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Notable branching ratios

Parent Daughters Branching ratio
g̃ qq̃L 0.40

qq̃R 0.59
ũL uLχ̃

0
2 0.17

uLχ̃
0
4 0.16

dLχ̃
±
1 0.37

dLχ̃
±
2 0.30

d̃L dLχ̃
0
2 0.095

dLχ̃
0
4 0.19

uLχ̃
±
1 0.20

uLχ̃
±
2 0.45

ũR uRχ̃
0
1 0.76

uRχ̃
0
2 0.22

χ̃0
2 l±R l̃

∓
R 1.0

χ̃0
4 l±L l̃

∓
L 0.21

l±R l̃
∓
R 0.02

νLν̃L 0.4
χ̃±1 l±LνLχ̃

0
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Comparison point (CP)

True masses

mχ̃0
1

= 118.8, ml̃ = 144.5, mχ̃0
2

= 222.0, mq̃ = 666

Endpoint values

mmax
ll mmax

jll mmax
jl(lo) mmax

jl(hi)

Expected 95.9 530.3 310.4 476.6
Fit 95.3± 0.4 547.6± 6.2 309.0± 2.7 479.6± 15.5

Mass solutions

Region [159] ml̃ −mχ̃0
1

mχ̃0
2
−ml̃ mq̃ −mχ̃0

2
mq̃

Expected 25.7 77.5 444 666
(1,1) 75.2± 3.8 31.6± 0.7 526± 67 1080± 400
(1,2) Imaginary
(1,3) 27.6± 3.3 76.0± 4.5 497± 51 848± 236
(4,1) Imaginary
(4,2) 14.9± 3.8 89.0± 7.9 444± 7 574± 10
(4,3) 24.9± 2.5 78.3± 45.3 444± 6 664± 30

Correct solution is in bold.
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Figure A.4: Comparison point invariant mass distributions and endpoint fits. Upper
left, mll; upper right, mjll; middle left, mjl(lo); middle right, mjl(hi). Lower left,
mjl+(soft) −mjl−(soft); lower right, mjl+(hard) −mjl−(hard).
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Notable branching ratios

Parent Daughters Branching ratio
ũL uLχ̃

0
2 0.32

dLχ̃
±
1 0.65

ũR uRχ̃
0
1 0.99

uRχ̃
0
2 4.7× 10−3

χ̃0
2 l±R l̃

∓
R 0.052

τ±τ̃∓1 0.44
νLν̃L 0.50
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