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Recommender systems are fundamental to numerous personalization services. However,

traditional systems often lack the ability to proactively explore user interests, explain their

choices, or adapt immediately to user feedback, leaving users unsatisfied with the recommen-

dation results. Conversational recommender systems, instead, offer a promising future with

the capability of understanding both explicit textual feedback and implicit behavior patterns.

Such systems accurately model user sequential interactions, proactively engage with users to

explore preferences and provide explanations and context for their recommendations through

conversations. The research on conversational recommender systems marks a crucial step in the

evolution from traditional recommender systems to truly personalized intelligent agents.
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In this dissertation, our research focuses on three pillars in developing effective conversa-

tional recommender systems: (1) Accuracy: modeling the dynamic and evolving nature of user

preferences within sequential behaviors to ensure recommendations better match the user’s needs.

(2) Explainability: improving the quality and expressiveness of explanations that accompany rec-

ommendations to enhance user understanding and trust. (3) Interactivity: exploring multi-round

conversational capabilities to support complex recommendation scenarios, including managing

bundled item recommendations and seamlessly integrating with Large Language Models for a

natural-language-driven user experience.

By advancing conversational recommender systems with the components for accuracy,

explainability, and interactivity, this research paves the way for future research to create powerful

conversational recommender systems that reshape how users discover and interact with products

and services.
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Chapter 1

Introduction

Recommender systems hold the potential to serve as personalized intelligent agents

capable of comprehending human preferences and interests, subsequently providing personalized

products or information tailored to their enjoyment. These systems enable users to effectively

manage information overload, clarify their needs, and easily access desired items. Meanwhile,

platforms employing recommender systems can adeptly understand user needs, manage product

supply, enhance user engagement, and ultimately boost business profits. The proficiency of

recommender systems in understanding user preferences and delivering pertinent suggestions

renders them invaluable tools for both individuals and organizations.

However, a gap persists between the envisioned personalized intelligent agents and

current recommender systems. Currently, mainstream recommender systems often exhibit

several limitations. First, they are mostly static, meaning they learn static user representations

from historical user-item interaction data. They lack the adaptability to accurately model users’

evolving preferences from their sequential actions. Second, they are mostly silent, as they

often solely offer a list of recommended items (e.g., movies) but fail to provide additional

information (such as justifications) or to engage meaningfully with direct user feedback (e.g.,

textual comments like “I don’t like this recommendation because of the color, please change it.”)

beyond simple clicks or ratings. Third, they are mainly based on one-shot paradigms because the

focus is on achieving successful recommendations in a single attempt. Such systems generally
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lack the capacity for multi-round interactions that allow them to actively solicit feedback or

pose questions. Such limitations collectively impede recommender systems in several key ways.

They hinder efforts to enhance recommendation accuracy, build trust with the user, handle more

complex and challenging recommendation scenarios, thus struggle to fully satisfy user needs.

In this dissertation, our core idea to mitigate or even overcome the issues outlined above

is to let recommender systems and users converse. In other words, we are interested in a

new research direction, namely Conversational Recommender Systems (CRS). Considering the

limitations of traditional recommender systems discussed above, our expected properties for the

proposed CRS should encompass the following:

1. Beyond static user representations: Accurately modeling users’ dynamic (mostly sequen-

tial) actions, effectively capturing historical user preferences and emerging user dynamics

within current sessions;

2. Beyond item lists only: Generating more evidence to serve as explanations for the recom-

mended item lists, supporting users’ decision-making processes;

3. Beyond one-shot paradigms: Making recommendations with single- or multiple-round

interactions, such as asking questions or answering users’ questions.

1.1 Our Framework

Motivated by those three properties, our research in this dissertation towards Conversa-

tional Recommendation System is naturally focusing on three different and interlinked pillars:

accuracy, explainability, and interactivity, which are illustrated in Figure 1.1.

• Accuracy: At the heart of recommender systems lies the ability to model user dynamics

and deliver accurate recommendations, including the new CRS paradigm. Due to the

inherent nature of CRS, we have a particular interest in modeling sequential user behaviors,

capturing both long-term preferences and short-term interests in the given sessions. Here,
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Figure 1.1. Our research framework towards conversational recommender systems.

we mainly investigate them with the testbed in sequential recommendations and consider

two cases where the user historical sequences may be homogeneous (i.e., single-type

historical interactions) or heterogeneous (i.e., multi-type historical interactions) with the

technical contributions about how to improve the model recommendation accuracy.

• Explainability: To enhance the expressive nature of recommendations and offer additional

information to support users’ decision-making processes, we aim to generate personalized

explanations or justifications that go beyond simply presenting recommended item lists.

This pillar focuses on how to generate accurate and informative explanations for different

users. To this end, we explored two directions about explanation generations. The first

direction is about how to incorporate highly specific product information with controllable

generation, and the second direction is about how to generate visually grounded results

and serve as multimodal explanations.

• Interactivity: We explore how CRS unlocks new and engaging recommendation scenarios

that cannot be handled by traditional recommender systems, by introducing multi-round
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conversational mechanisms. This pillar includes two different recommendation scenarios

we explored. The first scenario is about generating recommendations with complex

structures like item bundles, and the second scenario is about understanding natural

language dialogues and making recommendations by Large Language Models. This pillar

explores the boundaries of CRS by leveraging interactivity and new emerging techniques.

1.2 Dissertation Organization

In Chapter 1, we present the background, motivations, and framework of focusing

on accuracy, explainability, and interactivity towards conversational recommender systems.

We explain what are the limitations of the current mainstream recommender systems, and

why directions we need to work to improve such recommender systems and overcome those

limitations. Then we discuss the research directions in the following three parts, in detail.

The first part is about accuracy, i.e., accurately modeling user sequential and dynamic

behaviors. We investigate this topic in Chapter 2 and Chapter 3, mainly focusing on two

examples of how to effectively capture long-term user preferences and short-term dynamics

given homogeneous and heterogeneous user interaction sequences.

In Chapter 2, we first show that, for homogeneous sequential recommender systems,

although self-attentive [Vaswani et al., 2017a, Devlin et al., 2019, Kang and McAuley, 2018, Sun

et al., 2019] models are the de facto options for modeling user sequential behaviors, the standard

self-attention mechanisms overly focus on distant historical user behaviors. This is because,

without additional locality inductive bias, self-attention mechanisms fail to sufficiently attend

to recent user preferences from limited training user sequences. However, we reveal that such

recency signals play important roles in the accuracy of sequential recommenders. Motivated by

this, we propose a framework, LOCKER to explicitly introduce a focus on recent user interactions

and boost model recommendation accuracy.

In Chapter 3, we investigate a new setting for heterogeneous sequential recommender

systems, where user action sequences (e.g., clicks) are punctuated by an additional signal – user
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textual queries, namely Query-Aware Sequential Recommendation. Compared to traditional

recommendations, this setting moves a step towards CRS where models are required to handle

heterogenous signals from user actions and textual inputs. In this chapter, we show that user

queries are strong clues to uncover the user dynamic interests. Our proposed model, QUERYSR

exhibits superior recommendation performance where user queries are incorporated, as validated

by offline experiments and in-depth case studies.

The second part is about explainability, to enhance user understanding and trust. We

studied controllable and multi-modal explanation generations in Chapter 4 and Chapter 5 re-

spectively, where those techniques share the same objective for generating more accurate and

informative explanations or justifications for users to make decisions.

In Chapter 4, we reveal that many existing explanation generators struggle to include

faithful and informative keyphrases in explanation generation, which hurts users’ trust. Inspired

by the recent advancement of insertion-based language generators, we propose a framework,

UCEPIC, to combine aspect planning and lexical constrained generation into a single language

model. This model provides more personalized, informative, and faithful textual explanations

along with recommendation items, and is validated by automatic evaluations as well as human

evaluation.

In Chapter 5, we argue that generated explanations should go beyond text only, thus

we introduce a new visual modality in explanation generation. In detail, we identify the first

bottleneck is the lack of datasets with visual and textual explanations as ground truth. We thus

collect a large-scale dataset from Google Local Reviews and construct explanation pairs from

the data dump for restaurant recommendations. We further design a framework, P-SHOWCASE,

to present the images of interest for users, as well as generate relevant and informative textual

generations at the same time.

The third part is about interactivity, to explore complex recommendation scenarios that

cannot be handled by traditional recommender systems. CRS facilitates intricate recommenda-

tion scenarios challenging for traditional systems. Chapter 6 delves into conversational bundle
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recommendations, while Chapter 7 explores natural-language-based conversational recommen-

dations.

In Chapter 6, we investigate the challenging task of bundle recommendation within

the context of conversational recommendations. Bundle recommendation involves suggesting

multiple dependent items (e.g., outfits, playlists) to users rather than individual items. This

scenario offers additional benefits to users and platforms but poses exceptional challenges

to traditional recommendation methods due to its complexity and limited user signals. We

reexamine this task in a conversational setting, referred to as BUNDLEMCR, and demonstrate

that the conversational mechanism breaks down the bundling process, easing tasks across multiple

real-world datasets, and opening up new opportunities for research in this field.

In Chapter 7, we focus on a recommendation scenario with free-form natural language

inputs and outputs from both the user and system sides. This is a challenging setting historically

due to the limitations of models’ abilities to understand and generate high-quality natural

language content. However, recent LLMs demonstrate impressive abilities in language-related

tasks. Hence, in this chapter, we systematically study how to use LLMs in natural-language-based

CRS settings and with related insights, and further uncover the limitations for future research.

In Chapter 8 we describe the research works related to these three pillars of conversational

recommender systems. In Chapter 9, we summarize our research contributions and discuss future

directions.
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Part I

Accuracy: Modeling User Sequential and

Dynamic Behaviors
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Chapter 2

Homogeneous Sequential Recommender
Systems

In this chapter, we introduce a model design to improve the recommendation accuracy of

homogeneous sequential recommender systems. Homogeneous sequential recommender systems

aim to model user interaction sequences consisting of single-type actions, such as clicking. This

serves as a popular and fundamental sequential recommendation setting and remains challenging

since we lack more auxiliary data to help understand users’ long-term preferences and short-

term dynamics. Recently, self-attentive models have demonstrated significant potential in the

homogeneous sequential recommendation. Their ability to simultaneously capture long-term user

preferences and short-term dynamics from user click signals makes them particularly effective.

However, we argue that the non-local nature of self-attention modules hinders their ability to

accurately model short-term user dynamics in homogeneous sequential recommender systems

due to a lack of inductive local bias.

To investigate this hypothesis, we conduct a controlled analytical experiment focusing on

“short-term” scenarios. The results reveal a substantial performance gap between self-attentive

recommenders with and without local constraints. This finding supports our hypothesis that

existing self-attentive recommenders may not sufficiently model short-term user dynamics.

Motivated by this observation, we propose LOCKER, a simple plug-and-play framework designed

to enhance self-attentive recommenders. LOCKER combines local encoders with existing global
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Figure 2.1. Global self-attention tends to overly focus on distant items.

attention heads, improving short-term user dynamics modeling while preserving the long-

term semantics captured by standard self-attentive encoders. We evaluate LOCKER using five

different local methods and find that it consistently outperforms state-of-the-art self-attentive

recommenders on three datasets, which makes LOCKER stand as one of the state-of-the-art

sequential recommender systems in terms of the recommendation accuracy according to user

homogeneous interactions.

2.1 Introduction

Sequential recommenders seek to recommend accurate items based on user historical

actions in chronological order. Most sequential recommender studies are conducted on homo-

geneous user interaction sequences (e.g., interacted items only), where one important research

question is how to capture both long-term user preferences (e.g., preference for action movies)

and short-term context of recent actions(e.g., the last movie watched) without other auxiliary data.

Many approaches, such as Markov Chain (MC) based [Rendle et al., 2010, He and McAuley,

2016a] and RNN/CNN based methods [Li et al., 2017a, Tang and Wang, 2018, Yuan et al., 2019,

Devooght and Bersini, 2017], are proposed in this research direction to enhance recommendation

accuracy.

Recently, self-attentive recommenders have become the state-of-the-art to model both

long- and short-term user preferences [Kang and McAuley, 2018, Sun et al., 2019, Li et al.,

2020d, Wu et al., 2020] in sequential recommendation tasks with homogeneous (item-only)
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sequential data. These recommenders leverage self-attention mechanisms [Vaswani et al., 2017a]

to calculate item-to-item attention weights across the entire user behavior sequence. Some recent

enhancements [Wu et al., 2020, Lin et al., 2020] introduce user models for long-term semantics,

assuming that self-attentive recommenders can effectively capture short-term user dynamics.

However, in this dissertation, we argue that the existing “vanilla” self-attention (referred to

as global self-attention) in self-attentive recommenders falls short in adequately capturing the

significance of short-term user dynamics.

We begin with a motivating experiment on a “short-term” dataset. While global self-

attention theoretically has the capacity to learn correct semantics with sufficient homogeneous

sequential data [Yun et al., 2020], our experimental findings demonstrate that in real-world

sequential recommendation tasks with limited data of interacted items, global self-attention,

serving as a non-local operator, tends to excessively focus on distant historical items. This

leads to a decline in performance. As illustrated in Figure 2.1, some distant items (e.g., printer,

camera) are less relevant to users’ short-term interests (e.g., a mobile phone). In practice, global

self-attention often fails to accurately capture short-term dynamics and instead overly fixates

on distant items. Recent developments in linguistics indicate that incorporating inductive local

and other biases can enhance self-attention’s generalization ability [Guo et al., 2020, Yang et al.,

2018, Li et al., 2018a, Guo et al., 2019]. However, this concept has not been widely investigated

in the context of recommendation systems.

In this dissertation, we introduce a novel framework, Locally Constrained Self-attentive

Recommender (LOCKER), which extends self-attentive networks for sequential recommendation

tasks. LOCKER enhances the capture of short-term user dynamics through local constraints

(implemented in the local encoder) while preserving the ability to model long-term user pref-

erences. We explore various local operators (e.g., model- or masking-based local encoders)

for the local encoder, and for the global encoder, we leverage existing global self-attention

networks. We conducted experiments to compare the model accuracy with other baselines on

multiple datasets with item interaction sequences. Our experimental results demonstrate that
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LOCKER with diverse local encoders surpasses existing self-attentive recommenders with a

small computational overhead, standing as one of the state-of-the-art homogeneous sequential

recommender systems.

2.2 Preliminaries

2.2.1 Task Formulation

We formulate the homogenous sequential recommendation task as following: Given a

user set U , an item set I , and user behavior sequences S = {S1,S2, . . . ,S|U |}, where each

user sequence Su is chronologically ordered as Su = (s(u)1 ,s(u)2 , . . . ,s(u)Nu
), with Su 2S , u 2U ,

s(u)i 2I , and Nu representing the sequence length. Here s(u)i implies that we only consider a

single type of user interaction on the item s(u)i , such as purchasing or clicking. The objective

is to predict the next interacted item s(u)Nu+1 based on the interaction history Su. Without loss of

generality, we omit the user identifier u to simplify the notations below.

2.2.2 Self-Attentive Recommenders

Self-attentive recommenders [Kang and McAuley, 2018, Sun et al., 2019, Zhang et al.,

2019, Wu et al., 2020, Li et al., 2020d] heavily leverage global self-attention, with variations in

inputs, training, and masking strategies. The core idea of global self-attention is to learn pairwise

item-to-item “attention” weights from the sequential data, thereby identifying “relevant” items

from users’ complete interaction sequences to make predictions for future interactions.

Formally, let us place the position of the i-th item in the user interaction sequence. For

self-attention recommenders, Hl
i 2 R1⇥d represents the item embedding for si after the lth self-

attention layer. This item embedding is fed into a multi-head (let us set #Heads=M) self-attention

module [Vaswani et al., 2017b] to first generate related vectors for the “attention” weights

calculation, including the query vector Q(m)
i = Hl

iW
(m)
Q , key vector K(m)

i = Hl
iW

(m)
K and value

vector V(m)
i = Hl

iW
(m)
V for the m-th multi-head attention module, where W(m)

Q ,W(m)
K ,W(m)

V 2
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Figure 2.2. Short-term data processing example.

Rd⇥d/M are the m-th learnable projection matrices. With those vectors, the new value vector Ṽi

from this multi-head global self-attention module is calculated as:

Ṽi =
h
Ṽ(1)

i ; . . . , Ṽ(m)
i ; . . . ; Ṽ(M)

i

i
WO,

where Ṽ(m)
i =

N

Â
j=1

fatt
⇣

Q(m)
i !K(m)

j

⌘
·V(m)

j .
(2.1)

Here fatt is an attention function (e.g. scaled dot-product attention [Vaswani et al.,

2017a]) to calculate the “attention” weight for any item-to-item pair (i.e. Qi to K j) in the input

sequence; WO 2Rd⇥d is a learnable projection matrix to get Ṽi from concatenated vectors. Then,

the item embedding Hl+1
t after the next layer l +1 is generated by using Ṽi from Equation (2.1)

with Residual Connections [He et al., 2016], LayerNorm [Ba et al., 2016] and Pointwise Feed-

Forward Networks [Vaswani et al., 2017a]. Although the overall calculations involve complex

steps, it is worth emphasizing that the key aspect of “global” self-attention is to calculate pairwise

“attention” weights between the given query vector Qi and any key vectors K j, 8 j 2 [1,N].

2.2.3 Self-Attentive Recommenders Need Local Constraints

However, we argue that the popular global self-attention modules usually do not ef-

fectively capture short-term user dynamics in homogeneous sequential recommender systems.

To assess the inadequacy of global self-attention in capturing short-term user dynamics, we

introduce an analytical task using the widely adopted MovieLens dataset [Harper and Konstan,

2015] (refer to dataset details in Section 2.4).

In this preliminary experiment, training data is derived from MovieLens through two
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(a) HR@20 vs. a (b) N@20 vs. a (c) Average attention map (len.=20, #sample=200).

Figure 2.3. Motivating experiments to show short-term user dynamics are not sufficiently learned
my global self-attention.

steps, as illustrated in Figure 2.2: (1) To emphasize short-term dependencies, user sequences are

truncated, retaining only the last x% of items. (2) To evaluate the efficacy of global attention

in capturing short-term dynamics, a% random (non-meaningful) items are prepended before

the aforementioned x% items. Ideally, if global self-attention can apprehend “flexible order”

interactions from the data, the injected random items should receive minimal attention weight

and have negligible impact on recommendation performance.

Model Details. We adopt BERT4Rec [Sun et al., 2019], a self-attention-based recom-

mender, for dataset fitting. The hidden size is set to d = 64, and optimal hyperparameters are

determined through grid search. Similar self-attention modules are utilized in other recom-

menders [Kang and McAuley, 2018, Chen et al., 2019d, Zhang et al., 2019, Wu et al., 2020].

Evaluation Details. We follow the [Kang and McAuley, 2018, Sun et al., 2019] eval-

uations, using a leave-last-out data split. Specifically, for each sequence, the first N-2 items

are used for training, the (N-1)th item for validation, and the Nth item for testing. Evaluation

metrics include truncated Hit Ratio (HR@K) and Normalized Discounted Cumulative Gain

(N@K) [Sun et al., 2019, Kang and McAuley, 2018], with K set to 20 for measuring ranking

quality. Consistent with recommendations from evaluation reviews [Krichene and Rendle, 2020],

we adopt the all-item ranking approach.

We evaluate recommendation performance with different random item length ratios a
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and have such observations uncovering the limitations of using global self-attention modules:

Performance gap. Firstly, Figures 2.3a and 2.3b demonstrate that, in the absence of

inductive bias, global self-attention consistently underperforms the local model (i.e., a = 0).

This is observed despite the theoretical adequacy of training data in aiding global self-attention

to accurately capture short-term patterns.

Behavior sequence length. Secondly, Figures 2.3a and 2.3b demonstrate a consistent

performance deterioration with growing a . This decline is likely due to global self-attention

incorporating noise from distant tokens as sequences get longer, given its consideration of all

tokens.

Attention map. Lastly, Figure 2.3c illustrates the average attention map. Global self-

attention prioritizes tokens in close proximity (denoted by “brighter” neighbors), with an average

attention score of f̄att = 0.062. Nevertheless, in the absence of local constraints, the model

incorporates noise from distant and unrelated items, as indicated by the red box with an average

attention score of f̄att = 0.038.

2.3 Proposed Approach: LOCKER

Motivated by our initial experiment on the limitations of global self-attention modules

for homogeneous sequential recommender systems, we introduce a versatile framework, Locally

Constrained Self-attentive Recommender (LOCKER), designed for self-attentive recommenders

in a plug-and-play manner. This framework aims to improve the capacity to capture short-term

dynamics while preserving the ability to capture long-term semantics. Subsequently, we explore

various local encoders within the context of LOCKER.

2.3.1 Framework Overview

The core idea of LOCKER is to seamlessly and explicitly introduce local constraints into

existing self-attention networks, to enhance the inductive bias of locality for recommendation

accuracy improvements. Similar to Equation (2.1), the output value vectors from M attention
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heads are concatenated. However, LOCKER defines Ml +Mg = M to partition attention heads

into Ml local encoders and Mg global encoders. Formally,

Ṽi =
h
Ṽ(1)

i,l ; . . . ; Ṽ(Ml)
i,l ; Ṽ(1)

i,g ; . . . ; Ṽ(Mg)
i,g

i
WO, (2.2)

where Ṽ(ml)
i,l (Ṽ(mg)

i,g ) represents an output value vector from the local (global) encoder. Our focus

is on the explicit role of local encoders. Consequently, we maintain global encoders identical to

the single global attention head in Equation (2.1) and explore various local encoders, including

model-based and masking-based encoders.

2.3.2 Model-based Local Encoders

For the model-based local encoders, we generate Ṽ(ml)
i,l using neural-network operators

with the inductive bias of locality.

Fixed-Depth RNN (LOCKER+RNN). Recurrent networks excel in short-term sequence

modeling [Hidasi et al., 2015]. To enhance the efficiency of our local encoder while preserving

its capability to capture short-term dynamics, we incorporate a fixed-depth RNN module as the

local encoder:

Ṽ(ml)
i,l = g

�
V(ml)

i,l , g(V(ml)
i�1,l, . . .)| {z }

recurrent depth s

�
, (2.3)

where g is the recurrent neural unit; here we choose Gated Recurrent Units (GRU) [Cho et al.,

2014a] as in GRU4Rec [Hidasi et al., 2015]. Here we use a GRU with fixed and small depth s to

simplify computation and concentrate on short-term user dynamics.

Convolutional Network (LOCKER+Conv). A convolutional network presents an al-

ternative approach for capturing neighborhood dynamics. We introduce a convolution-based

encoder for Ṽ(ml)
i,l as:

Ṽ(ml)
i,l = [c1; . . . ;cd/M], c j = act

⇣
V(ml)
[i]s,l
�W( j)

⌘
, (2.4)
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where � denotes an inner product operator like [Tang and Wang, 2018], V(ml)
[i]s,l
2 Rs⇥d/M de-

notes the local [i� (s�1)/2, ..., i+(s�1)/2] rows (size s is odd number) in V(ml)
l 2 RN⇥d/M.

W( j) 2 Rs⇥d/M denotes the j-th convolutional kernel; act is an activation function to introduce

non-linearity such as ReLU. Compared to CASER [Tang and Wang, 2018], which used convolu-

tional networks to capture point-level and union-level item similarities, we adopt convolutional

networks as a local operator to enhance short-term user dynamics modeling.

2.3.3 Masking-based Local Encoders

For the masking-based local encoders, we reconsider the global attention function fatt

by incorporating locality-aware masking to better capture short-term dynamics. Specifically,

in Equation (2.1), where the detailed definition of fatt involves the “relevance” logit wi j with

positions i, j, and is fed into the softmax layer for normalization, i.e.:

fatt,l(Qi!K j) =
exp(wi j) ·si j

ÂN
k=1 exp(wik) ·sik

(2.5)

where the masking score si j ⌘ 1 for global self-attention. In the masking-based local encoder,

we improve the ability to capture short-term dynamics by modifying the masking score si j using

various strategies.

Fixed Window (LOCKER+Win). Fixed window simply deactivates all distant tokens,

where si j is defined as:

si j = I(|i� j| s), (2.6)

where I is an indicator function. Therefore, the attention map is masked by a fixed-length window

to deactivate the dependency on distant (distance > s) tokens.

Gaussian Initialization (LOCKER+Initial). LOCKER+Win pre-defines “hard” and

“static” masking scores for all training data, which may be overly rigid. We aim to introduce

“trainable” masking scores with a well-initialized, unbounded adjustable weight pi� j = lnsi j,

incorporating a locality prior into the encoder. The masking operation exp(wi j) ·si j in Equa-
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tion (2.5) can be expressed as exp(wi j + lnsi j), allowing us to “learn” the weight pi� j, where

i� j signifies mapping different distances to a trainable weight.

We propose weight initialization using a Gaussian-like function (e.g., p0
i� j = aexp(�(i�

j)2/b)), introducing local concentration in the neighborhood. It is important to note that a

change in weight initialization does not guarantee the explicit presence of a local “fixed window”

post-training. However, the initialization bias encourages the model to capture local patterns

from a more advantageous starting point compared to, for instance, uniform initialization and can

adapt during training. To further enhance the capture of locality by trainable weights from the

data, we eliminate positional embeddings (as in standard self-attentive recommenders [Kang and

McAuley, 2018, Sun et al., 2019]) for local encoder vectors, i.e., only incorporating positional

embeddings into the global encoder key and query vectors.

Adaptive Predictor (LOCKER+Adapt). LOCKER+Initial adjusts soft scores but lacks

the capability to encode additional information, such as a user identifier u. We enhance

LOCKER+Initial by introducing a parameterized adaptive predictor pred to forecast diverse

masking scores, i.e.:

p(u)i� j = pred
⇣

V(ml)
i,l +V(ml)

j,l +vu +bi� j

⌘
, (2.7)

where we encode user information vu 2 R1⇥d , distance embedding bi� j 2 R1⇥d , and current

value vectors V(ml)
i,l and V(ml)

j,l . The user representations vu are constructed following the methods

proposed in FISM [Kabbur et al., 2013] and FISSA [Lin et al., 2020], eliminating the need

for additional user embeddings. Similar to LOCKER+Initial, positional embeddings for local

encoder vectors are omitted to promote the model’s ability to learn locality from the data. The

pred component is a two-layer MLP model designed to learn more flexible masking scores by

incorporating user, distance, and current token information.
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Table 2.1. Data statistics for experiments.

#Interaction #Item #Sequence Average Length Density

Beauty 353,962 54,542 40,226 8.80 1e-4
Clothing 831,816 162,193 108,489 7.67 1e-5
MovieLens 1,000,000 3,416 6,040 165.56 1e-2

2.4 Experiments

2.4.1 Experimental Setting

Datasets. We consider the following datasets from different domains with various data

distributions (see Table 6.2): Beauty, Clothing are datasets collected from Amazon in [McAuley

et al., 2015]. MovieLens [Harper and Konstan, 2015] is a popular benchmark dataset for top-N

recommendation. We are using the 1-million version. We follow the data pre-processing and

splitting from [Sun et al., 2019] (details in Section 2.2.3).

Baselines. We incorporate the following baselines in our subsequent experiments.

PopRec: Recommends items based on their occurrences in the dataset. BPR-MF [Rendle

et al., 2009]: A classic personalized ranking learning algorithm utilizing matrix factorization.

SASRec [Kang and McAuley, 2018]: A seminal method employing self-attention mechanism

for sequential recommendation. BERT4Rec[Sun et al., 2019]: A BERT-like[Devlin et al., 2019]

model capturing bi-directional contextual item information through a cloze task for next-item

recommendation. SSE-PT [Wu et al., 2020]: A state-of-the-art self-attentive recommender,

extending SASRec by introducing explicit user representations.

Evaluation and Implementation. We adopt the evaluation protocols from Section 2.2.3.

All models are implemented using PyTorch, and baselines are fine-tuned using grid search with

consistent granularity as recommended by each baseline. LOCKER employs the identical training

and hyperparameter search strategy as our backbone model (BERT4Rec).1.
1LOCKER implementation in https://github.com/AaronHeee/LOCKER
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Table 2.2. Model comparison. We tune LOCKER with M={2,4} where Ml={1,...,M-1}, and use
similar settings for the backbone. Compared to the best baselines (underline), Avg. (Max.) for
average (maximum) relative improvement of five local encoders.

Beauty Clothing MovieLens

Metric N@20 HR@20 N@20 HR@20 N@20 HR@20

Baselines

PopRec 0.0048 0.0131 0.0021 0.0056 0.0260 0.0686
BPR-MF 0.0172 0.0425 0.0035 0.0089 0.0498 0.1298
SASRec 0.0206 0.0496 0.0052 0.0140 0.1625 0.3652
BERT4Rec 0.0238 0.0541 0.0062 0.0153 0.1783 0.3870
SSE-PT 0.0232 0.0547 0.0059 0.0149 0.1763 0.3841

LOCKER

+RNN 0.0258 0.0568 0.0070 0.0166 0.1930 0.4012
+Conv. 0.2970 0.0661 0.0078 0.0184 0.1980 0.4119
+Win. 0.0296 0.0641 0.0074 0.0174 0.1831 0.3972
+Initial 0.0303 0.0652 0.0077 0.0184 0.1863 0.3900
+Adapt 0.0311 0.0672 0.0079 0.0187 0.1893 0.4047

Impr. Avg. +23.1% +16.8% +21.9% +17.0% +06.5% +03.6%
Max. +30.7% +22.9% +27.4% +22.2% +11.1% +06.4%

2.4.2 Result Analysis

General Performance. We have such observations from model ranking performance

on three datasets in Table 2.2. Firstly, Self-attentive sequential recommenders (SASRec,

BERT4Rec, SSE-PT) consistently surpass classic methods by effectively incorporating sequential

information through global self-attention networks. BERT4Rec outperforms SASRec through

bidirectional training, while SSE-PT achieves superior performance by introducing explicit

user representations. Secondly, our LOCKER framework consistently outperforms all baselines.

In comparison to the strongest global self-attention-based recommender models (BERT4Rec,

SSE-PT), our model achieves an average improvement of approximately 17.19% in N@20

and 12.46% in HR@20, while maintaining a comparable number of parameters. Additionally,

LOCKER with the most effective local encoder exhibits about 23.04% improvement in N@20

and 17.67% improvement in HR@20 across three datasets. This underscores the effectiveness of

introducing inductive local bias into self-attentive recommenders using different local encoders.
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Table 2.3. Local encoder characteristics in LOCKER.

Local Encoder Skipped Behavior? No Extra Param.? Adapt. Size?

RNN 7 7 7
Conv. 3 7 7

Win. 3 3 7
Initial/Adapt 3 7 3

Local Encoder Discussion. For local encoders, we make some observations as well.

First, Model- and masking-based encoders surpass pure global self-attentive sequential rec-

ommenders. On MovieLens, where the average user sequences are the longest, model-based

encoders outperform all alternatives. Second, presumably, due to its sequential encoding nature,

+RNN performs suboptimally on datasets requiring flexible “skip” behaviors, in contrast to other

encoders. This is evident in the inferior performance of the three datasets. Third, +Conv. and

+Win. are fixed-size encoders capable of capturing flexible item dependencies. The superior

performance of +Conv. on three datasets may be attributed to the introduction of additional

model parameters. Last, +Initial and +Adapt outperform fixed-window +Win. with learnable

masking. +Adapt excels in encoding additional information such as user and current tokens,

leading to enhanced performance, albeit with an extended training time, as illustrated below. The

characteristics of the five encoders are summarized in Table 2.3.

Efficiency and Convergence. Figure 6.4 displays NDCG@20 curves for the Beauty val-

idation set, computed on a single Nvidia 2080s GPU. LOCKER Max. represents LOCKER+Adapt

with the slowest training speed, while LOCKER Avg. presents the average NDCG@20 scores

and training time across five LOCKER models. A comparison with BERT4Rec reveals that

our models achieve comparable performance with significantly fewer training epochs (˜200 vs.

˜500). Furthermore, our models exhibit comparable convergence with similar training epochs,

experiencing minimal computational overhead (5.7s/epoch on average vs. 5.1s/epoch).
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Figure 2.4. LOCKER validation curve on Beauty in terms of NDCG@20.

2.5 Conclusion

Capturing users’ long-term preferences and short-term dynamics over time is a core

personalization task, which will also be a core personalization component for conversational

recommender systems. This sequential recommendation task becomes even more challenging in

the homogeneous sequential data setting. Recent self-attentive recommenders exhibit potential

in such recommendation tasks, with global self-attention being crucial. However, our research

reveals that global self-attention, lacking inductive bias of locality, struggles to effectively capture

short-term user dynamics. To address this limitation, we introduce LOCKER, a framework

incorporating local inductive bias. Through the integration of five local encoders into existing

self-attention networks, we enhance short-term dynamics modeling, demonstrating its efficacy

across various datasets. This approach establishes a new state-of-the-art for homogeneous

sequential recommender systems and promises to serve as a core recommendation component

backbone in many scenarios including conversational recommendations.

Chapter 2, in part, is a reprint of the material as it appears in “Locker: Locally constrained
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self-attentive sequential recommendation.” by Zhankui He, Handong Zhao, Zhe Lin, Zhaowen

Wang, Ajinkya Kale, and Julian McAuley, in Proceedings of the 30th ACM International

Conference on Information & Knowledge Management in 2021 referenced as [He et al., 2021].

The dissertation author was the primary investigator and author of this paper.
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Chapter 3

Heterogeneous Sequential Recommender
Systems

In this chapter, we take one step further from homogeneous sequential data settings to

heterogeneous data settings. The research focus is on considering more user interaction types

to form user interaction sequences beyond item clicks. Due to data sparsity and noisy user

behaviors, capturing long-term preferences and short-term dynamics is often challenging in

homogeneous sequential recommendation, but heterogeneous signals may help. The new chal-

lenge for heterogeneous sequential recommender systems is discovering which types of new user

signals are worth including and how to incorporate them. In this chapter, we discuss a new type of

user signal—textual users’ queries—into sequential recommenders, in a proposed heterogeneous

sequential recommendation setting, namely query-aware sequential recommendation.

The motivations behind this are as follows. First, when users interact with products

(like music or movies), their sequential behavior is driven by a combination of explicit queries

and subsequent actions. However, most interaction datasets discard queries. Consequently,

existing methods often model sequential behavior solely based on items, thereby neglecting

the vital context that queries provide about user intent. Second, the query-aware sequential

recommendation is a significant and practical step towards conversational recommendations.

Here, we explore how to make accurate recommendations in an environment where user clicks

and textual queries both exist. Meanwhile, more existing datasets can be accessible (e.g.,
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Figure 3.1. Motivating Examples. Given the same item sequence with different users’ queries,
the recommendation results are different, and the “boundaries” of useful historical interactions
(shaded) also differ.

from searching logs) than in a fully conversational recommendation without popular real-world

applications and datasets.

Methodologically, in this chapter, we emphasize the importance of user queries as

a powerful contextual signal for sequential recommendation. We introduce a novel query-

aware sequential recommendation setting that explicitly integrates user queries to model intent.

We propose a new model, QUERYSR, that not only incorporates query information into user

behavior sequences but also leverages query-item co-occurrence information to enhance model

generalization. Finally, we demonstrate the effectiveness of integrating query features across

three datasets, shedding light on combining users’ textual signals with traditional homogeneous

item interactions.

3.1 Introduction

Sequential recommender systems are crucial in personalized online services, such as

e-commerce and streaming media, relying on users’ historical action sequences. However,

accurately extracting relevant signals in a homogeneous sequential recommendation setting

poses challenges, as user intent may evolve gradually or change suddenly, causing a degradation

of sequential context among items.
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To address issues related to complex and noisy behavior sequences and enhance the cap-

ture of users’ intent, various methods have been proposed, targeting different aspects, including

improving model architectures [Hidasi et al., 2015, Tang and Wang, 2018, Kang and McAuley,

2018] and incorporating heterogeneous information [Liu et al., 2021, Meng et al., 2020, Li et al.,

2020a]. Heterogeneous information, such as item content [Liu et al., 2021, Zhang et al., 2019,

Hidasi et al., 2016] (e.g., reviews, images), user action types [Meng et al., 2020] (e.g., clicks,

downloads, purchases), and temporal information [Li et al., 2020a, Bogina and Kuflik, 2017]

(e.g., time intervals), has been leveraged for improved performance.

Despite the success of models utilizing rich heterogeneous information, certain crucial

signals remain under-explored. This dissertation focuses on users’ textual queries within their

chronological interaction sequences. In various recommendation scenarios, such as e-commerce,

music, and photo-sharing, users engage with the system by posing queries and browsing relevant

items alternately. However, these informative signals are often neglected in sequential recom-

mendation datasets, as illustrated in Figure 3.1. This research aims to explore a recommendation

environment, with the integration of explicit textual queries and user-item interactions over time,

specifically in the context of query-aware sequential recommendation.

Textual queries are expressed by users proactively; thus, those queries serve as crucial

contextual cues for understanding and predicting users’ changing intent. The advantages of

leveraging textual queries can be summarized as follows: (1) Textual queries offer insight

into intent granularity. As illustrated in Figure 3.1, queries such as “wallpaper” and “hot-

air balloon” not only indicate the recommended target but also express a desire for content

diversity within a specific context. (2) Textual queries establish connections between interactions,

enhancing item representations, particularly for infrequently interacted items. (3) Queries aid

in detecting boundaries of user intent. In Figure 3.1, the sequence “wallpaper” followed by

“desktop landscape” suggests a refinement of interests, while “mountain & water” followed by

“hot-air balloon” implies unrelated intent. These scenarios have distinct semantic implications

for understanding relationships among sequential interactions, such as clicks or purchases, and
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also pave the way for future fully conversational recommendations where textual queries are

presented in a more flexible manner.

In this dissertation, we argue for the value of user textual queries in the sequential rec-

ommendation and propose a model tailored for the query-aware sequential recommendation

scenario. Our approach involves organizing textual queries and item information into hetero-

geneous query and item sequences. To enhance the model’s generalization capability, we use

graph-based sequence augmentation based on query-item co-occurrence. Additionally, we

address the technical challenge of handling large item embedding tables (e.g., 10 million items)

during model training, a scale seldom addressed in existing sequential recommendation literature.

The primary contributions are succinctly summarized as follows:

• Introduction of user textual queries for heterogeneous sequential recommendation, wherein

explicit queries serve as crucial contextual cues for reflecting and predicting user intent.

• Proposal of a query-aware sequential recommender, denoted as QUERYSR, leveraging

heterogeneous user sequences and graph-based sequence augmentation. A self-attentive

model is also introduced within this framework.

• Evaluation on two established datasets1 adapted for the query-aware sequential recommen-

dation context, along with a new industrial dataset featuring millions of items. Experimen-

tal results highlight the impact of incorporating explicit user queries and demonstrate the

superior performance of our method compared to state-of-the-art baselines.

3.2 Proposed Approach: QUERYSR

3.2.1 Input Sequence Formulation

Homogeneous Item Sequence. In homogeneous sequential recommendation, we

are given a user set U , an item set I , and a set of user item interaction sequences S =

1These datasets collect queries and clicks for diverse applications, with user queries traditionally discarded in
conventional sequential recommendation settings.
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{S1, . . . ,S|U |}. Each sequence Su consists of user u’s (chronologically ordered) item interactions:

Su =
h
i(u)1 , i(u)2 , . . . , i(u)Tu

i
, (3.1)

where Su 2S , u 2 U . i(u)t 2 I is the item that the user clicked at the timestep t. Tu is the

sequence length.

Query-aware Heterogeneous Sequence. We consider user textual queries by introducing

an additional query set Q and word vocabulary V , where a query q 2Q consists of a list of

words [v1, . . . ,v|q|], v2 V . We enrich the sequence Su to a heterogeneous sequence Ŝu, containing

user u’s queries and item interactions in chronological order:

Ŝu =
h
ŝ(u)1 , ŝ(u)2 , . . . , ŝ(u)T̂u

i
, (3.2)

where T̂u is the length of this query-aware heterogeneous sequence. ŝ(u)t can be an item interaction

or a query action. We use d to indicate whether ŝ(u)t at t-th step is a query or an item interaction:

ŝ(u)t 2

8
><

>:

I , if d (ŝ(u)t ) = 0,

Q, otherwise.
(3.3)

We also examine other ways [Zhang et al., 2019, Liu et al., 2021] to incorporate user queries into

item interaction sequences in our empirical studies (see Section 3.3.2).

Recommendation Goal. Given the query-aware heterogeneous sequence Ŝu, the model

predicts the next item for user u, which is formalized as modeling the probability over all possible

items for this user’s next item interaction, i.e.:

P
⇣

ŝ(u)T̂u+1 = i⇤ | Ŝu, d (ŝ(u)T̂u+1) = 0
⌘
. (3.4)

d (ŝ(u)T̂u+1) = 0 assumes the next step is an item interaction. ŝ(u)T̂u+1 = i⇤ denotes that i⇤ 2I is the
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item the user interacts with at step T̂u +1. We omit the user identifier u to simplify the notations

below.

3.2.2 Graph-Based Sequence Augmentation

In the query-aware sequential recommendation, query-item co-occurrence offers unique

information absent in traditional approaches. This information facilitates the construction of a

query-item graph, enhancing model generalization through input sequence augmentation. The

intuition is to augment a sequence Ŝ into K sequences Ŝ(1), . . . , Ŝ(K) by stochastically substituting

item i (query q) with similar items (queries). The use of query-item co-occurrence provides

valuable cues for semantic similarities.

Graph Construction. We denote the query-item graph as G = (A ,E ), where A =

Q[I represents item and query nodes. The edge set E denotes all linkages between queries

and items (i.e., (q, i) or (i,q) 2 E ). We define the neighbors of item i as N (i) = {q | (i,q) 2 E },

and define N (q) similarly. The initial edge set E1 is constructed by connecting item i with its

latest query q. To further reduce noise and retain confident linkages, we introduce a threshold a

over E1. We retain the top da|N (i)|e linkages for item i and the top da|N (q)|e linkages for

query q. Therefore, the final edge set is defined as E = Ea . It is important to note that a trades

off the coverage and confidence of query-item linkages, where 0 < a  1.

Graph-Based Sequence Augmentation. We augment input sequences by adopting a

stochastic shared embedding (SSE) idea [Wu et al., 2019] based on our constructed query-item

graph. For ŝt 2 Ŝ, we replace ŝt with probability b following:

i⇠ ŝt , j 6⇠ ŝt ! p(i, ŝt)/p( j, ŝt) = r, if d (ŝt) = 0, i, j 2I (3.5)

q⇠ ŝt ,k 6⇠ ŝt ! p(q, ŝt)/p(k, ŝt) = r, if d (ŝt) = 1, q,k 2Q. (3.6)

Here p(·, ·) is the replacement probability, and r is a constant greater than 1. We use ⇠

(6⇠) to denote whether two nodes are similar or not. Given a graph G , we define similar queries
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Figure 3.2. Our QUERYSR model with heterogeneous sequences incorporating queries. Here the
labels of these deactivated ranked outputs (in gray) are user textual queries; these gray outputs
will not be used for loss calculation.

q⇠ k when q and k have some common neighbour(s), i.e., N (q)\N (k) 6=?. This is motivated

by the fact that nodes (e.g. “cafe” and “coffee” ) which connect to many common neighbors are

potentially similar, so are more likely to be replaced by each other for data augmentation. We

can augment sequences “on-the-fly” for each training epoch rather than generating all augmented

sequences in advance.

3.2.3 Transformer-Based Model Backbone

Query-aware sequential recommendation is a new setting that various sequential rec-

ommendation backbones can build. In this context, we introduce a Transformer-based model,

referred to as QUERYSR [Vaswani et al., 2017a, Kang and McAuley, 2018]. We subsequently

present the training of the model, addressing challenges associated with large item pool sizes,

such as 10 million items.

Representation. We utilize embeddings M0 2 R|I |⇥d , M1 2 R|Q|⇥d , P 2 RT̂⇥d , and

B 2 R2⇥d to denote d-dimensional representations for items, queries, timesteps, and interaction

types, respectively. (1) Item, timestep: Given item i and timestep t, we perform direct lookups

for the corresponding embeddings M0
i and Pt . (2) Query: For a query q = [v1, . . . ,v|q|], we
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obtain word embeddings and use average pooling to derive the query representation M1
q 2 R1⇥d .

Other methods, such as utilizing a hidden vector from an LSTM [Hochreiter and Schmidhuber,

1997] or a sentence vector from BERT [Devlin et al., 2019], can also be used to obtain M1
q. The

short length and lack of strong sequential patterns in user query words make average pooling

an effective way to represent queries in a bag-of-words paradigm. (3) Interaction type: We

perform a lookup in B 2 R2⇥d to obtain embeddings corresponding to different interaction types,

namely, item or query.

Query-Aware Transformer Layer. Given a heterogeneous sequence Ŝ described in Sec-

tion 3.2.1, we retrieve the input embedding matrix from the embedding layer Emb as:

E(0) = Emb(Ŝ) =

2

66664

Md (ŝ1)
ŝ1

+Bd (ŝ1) +P1

· · ·

Md (ŝT̂ )
ŝT̂

+Bd (ŝT̂ )
+PT̂

3

77775
. (3.7)

E(0) 2RT̂⇥d is the input embedding matrix and + denotes element-wise addition. Here item and

query representations (with interaction type embeddings B) are learned in a joint embedding

space and are aware of sequential order by positional (timestep) embeddings. We build L

Transformer [Vaswani et al., 2017a] blocks on top of the embedding layer Emb, which works as

sequential encoder to generate E(L) 2 RT̂⇥d as the output embedding matrix. The details of the

stacked transformer block construction refer to [Kang and McAuley, 2018, Sun et al., 2019].

Predictor Layer. Given the output E(L)
t 2 R1⇥d at timestep t (i.e., the t-th row in matrix

E(L) 2 RT̂⇥d), we follow BERT4Rec [Sun et al., 2019] to calculate output probability over a

target i as:

P
�
ŝt+1 = i | Ŝ,d (ŝt+1) = 0

�
= softmaxi

⇣
E(L)

t M0>
⌘
, (3.8)

where softmaxi denotes the i-th probability from the softmax layer and the logits are interpreted

as inner product similarities between the output E(L)
t with the original item embeddings from

M0.

30



3.2.4 Handling Large Item Vocabularies

Loss with Sampled Softmax. Technically, a large item embedding matrix M0 2 R|I |⇥d

due to item vocabulary size |I | (e.g. 10 million items [Ni et al., 2019]) may be prohibitive in

terms of GPU memory with the softmax layer in Equation (3.8) in backpropagation (e.g. in the

order of 100 GiB). Previous models like BERT4Rec [Sun et al., 2019] did not encounter this

problem because the experimental datasets are small (e.g. 30 thousand items). In such cases, we

use sampled softmax to reduce the memory cost in backpropagation, and revise Equation (3.8):

Pn
�
ŝt+1 = i | Ŝ,d (ŝt+1) = 0

�
= softmax1

⇣
E(L)

t M(n)>
⌘
. (3.9)

M(n) 2 Rn⇥d denotes sampled item embeddings. Pn is the probability that item i should be the

target rather than the other n� 1 candidates. This cross-entropy loss with sampled softmax

also unifies the widely used BPR loss [Rendle et al., 2009] when n = 2. We use the same full /

sampled softmax for baselines and our models for fair comparison. It also unifies the widely

used BPR loss [Rendle et al., 2009] as below:

L =

8
>>>><

>>>>:

CE Loss (Full Softmax) n = |I |,

CE Loss (Sampled Softmax) 2 < n < |I |,

BPR Loss n = 2,

(3.10)

where CE denotes cross entropy. In our experiments, we use the same full / sampled softmax for

baselines and our models for a fair comparison.

Multi-GPU Embedding. To accommodate a large item embedding table M0 2 R|I |⇥d

in GPU memory, we partition M0 along the hidden size dimension. This involves loading

M1
0 2 R|I |⇥d1 , . . . ,Mm

0 2 R|I |⇥dm onto m GPUs. Subsequently, during training, we retrieve

and concatenate the required item embeddings onto a single GPU in the form of mini-batches.
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Table 3.1. Data Statistics. Inter for item interaction; S for sequence; I for item; Q for query;
A-I for average number of interactions per item; A-S for average sequence length and A-Q for
average number of query occurrence.

#Inter #I #S #Q A-I A-S A-Q

Diginetica 52,164 22,587 8,020 5,870 2.31 6.50 1.92
Unsplash 1,623,566 22,517 240,993 56,634 72.10 6.74 9.63
Stock 25,731,635 8,633,462 987,173 1,516,020 2.98 26.07 1.95

3.3 Experiments

3.3.1 Experimental Setting

Evaluation Metrics. We adopt the leave-last-out data split strategy [Kang and McAuley,

2018, Sun et al., 2019], wherein each sequence is split into training (first T �2 items), validation

((T �1)-st item), and testing (T -th item) sets. Truncated Hit Ratio (HR@K) and Normalized

Discounted Cumulative Gain (N@K) [Sun et al., 2019, Kang and McAuley, 2018] with K =

{10,20} are selected as performance metrics to assess ranking quality. Further details on

hyper-parameter tuning and evaluation are provided as follows.

Datasets. To investigate the role of user queries in heterogeneous sequential recommen-

dation, we introduce three datasets (see statistics in Table 3.1).

1. Diginetica: Diginetica2 is a dataset introduced in the CIKM 2016 CUP, comprising user

search and browsing logs from diginetica.com. It is commonly utilized in session-based

or sequential recommendation, focusing solely on transaction data and neglecting user

queries. However, our experiments incorporate both user clicks (on items) and queries

within sessions. It is noteworthy that, due to the inclusion of query information, our

processed dataset is significantly smaller than the “item-only” homogenous Diginetica

dataset after filtering.
2https://competitions.codalab.org/competitions/11161

32

https://competitions.codalab.org/competitions/11161


2. Unsplash: Unsplash3 is a dataset derived from the freely-usable4 photography platform

unsplash.com, incorporating users’ search and download logs. The lite-version of the

dataset is used.

3. Stock-Industrial: Stock is the primary dataset used in our experiments, sourced from

a commercial Stock Image and Video Search platform Adobe Stock5 spanning Oct. 16

to Oct. 31, 2020. The dataset is constructed from users’ search and click logs for our

experimental analysis.

To concentrate on query-aware sequential recommendation, we exclude user sequences

lacking queries and sequences with less than three item interactions, in accordance with our

leave-last-out validation and testing protocol.

Implementation Details. We use the Adam optimizer [Kingma and Ba, 2014] with a

learning rate of 1⇥10�3 to train all models. The hidden dimensionality (d) is set to 64. Weight

decay is chosen from the set {0, 1⇥10�6, 1⇥10�4, 1⇥10�2, 1, 10}, and dropout probability

from {0, 0.2, 0.4, 0.6, 0.8}. Sequential augmentation parameters a are searched from {0.1, 0.2,

..., 1}, and r from {1, 1.1, ..., 2}. For the three datasets, the maximum length of query words

is set to 5, and the maximum length of user sequences is 50. The batch size for Diginetica and

Unsplash is 128, and evaluation is performed using all-item-ranking [Krichene and Rendle, 2020]

(positive item with all negatives forming candidate lists). For the Stock dataset, a batch size of

512 is used during training, and sampled-item-ranking is used during testing (forming candidate

lists using the positive item with 1000 randomly sampled negatives per user). Experiments on

Diginetica and Unsplash utilize a single-2080s-GPU server (8 GiB GPU, 32 GiB CPU), while

Stock experiments are conducted on a four-V100-GPU server (16 GiB GPU per card, 128 GiB

CPU). The code and models will be released on public datasets upon acceptance.

Baselines. We present two sets of recommendation baselines to demonstrate the efficacy
3https://unsplash.com/data
4Used for case studies in this research.
5https://stock.adobe.com
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of user queries in sequential recommendation. The initial set comprises standard homogeneous

item-only sequential recommenders that solely factor in users’ item interactions:

1. FPMC [Rendle et al., 2010]. A sequential recommender combining Markov chains with

matrix factorization to capture short-term user dynamics and long-term preferences.

2. GRU4Rec+ [Hidasi and Karatzoglou, 2018]. An RNN-based method to model users’

item interaction sequences for session-based recommendation [Hidasi et al., 2015, Hidasi

and Karatzoglou, 2018], we use the improved version [Hidasi and Karatzoglou, 2018]. We

treat each user’s item interaction sequence as a session.

3. SASRec [Kang and McAuley, 2018]. A self-attentive sequential recommender that uses

transformer blocks to assign item-to-item attention weights and predict the next item.

4. BERT4Rec [Sun et al., 2019]. A BERT-like [Devlin et al., 2019] sequential recommender

capturing bi-directional contextual item information via a cloze task. It is one of the

state-of-the-art models for next-item recommendation.

5. SSE-PT [Wu et al., 2020]. A state-of-the-art self-attentive recommender, extending

SASRec by using explicit user representations with SSE [Wu et al., 2020] regularizations.

The second group comprises widely adopted context-aware baselines that integrate query

information without accounting for the sequential order of users’ item interactions:

1. Non-personalized Search (NS). We project the query representations and item repre-

sentations into a joint embedding space and measure the relevance with inner product

similarities. We only use co-occurrence of queries and items in the data, so this model is

non-personalized.

2. QBPR. We adopt the VBPR [He and McAuley, 2016b] method to incorporate query

(instead of visual) information as part of item representations. We call this QBPR (i.e.

Query-Aware BPR).

34



Table 3.2. Method Comparison. Highest/second highest scores are bolded/underlined. Here D1
represents the relative improvement from SASRec to our QUERYSR, D2 represents the relative
improvement from the best baselines to QUERYSR. We use ⇤ to note sampled-item-ranking (1k
negatives, details in the implementation details.) rather than all-item-ranking metrics (which
is infeasible for the industrial-scale dataset). There are three groups of models: (1) Item-Only
homogeneous sequential baselines; (2) Query-Aware baselines; (2) Our QUERYSR.

Diginetica Unsplash Stock*

Group Metric HR@20 N@20 HR@20 N@20 HR@20 N@20

(1)

FPMC 0.2996 0.1953 0.5307 0.2669 0.3832 0.2993
GRU4Rec+ 0.2174 0.1160 0.5874 0.2924 0.4284 0.3412
SASRec 0.3508 0.1979 0.5881 0.2972 0.4527 0.3404
BERT4Rec 0.3221 0.1714 0.5912 0.2697 0.4472 0.3445
SSE-PT 0.3425 0.2315 0.5912 0.2985 0.4549 0.3541

(2)

NS 0.2948 0.1760 0.5317 0.2039 0.2215 0.1677
QBPR 0.1438 0.0986 0.2723 0.1221 0.2153 0.1129
FM 0.3571 0.2323 0.5199 0.1984 0.1749 0.1319
NeuFM 0.3359 0.2245 0.5499 0.2109 0.2625 0.1955

(3) QUERYSR 0.4037 0.2361 0.6796 0.3439 0.4831 0.3708

D1 +15.1% +19.3% +15.6% +15.7% +06.7% +08.9%
D2 +13.0% +01.6% +15.0% +15.2% +06.2% +04.7%

3. FM [Rendle, 2010]. Factorization machines (FM) are a classic context-aware recommen-

dation technique to encode context information. We use the same “bag-of-words” query

representations as what we used in Section 3.2.3. We adopt first-order feature interactions

among user, item, and query features.

4. NeuFM [He and Chua, 2017]. A deep architecture for effective feature interaction

modeling for context-aware recommendation. We use the same features as FM and adopt

MLPs for higher-order feature interactions.
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3.3.2 Result Analysis
Model General Performance

Table 3.2 shows recommendation performance of our QUERYSR and other baselines on

all datasets. Our conversations are from multiple aspects as follows:

Baseline Performance. The optimal baselines vary across datasets depending on user

behavior. For the Diginetica dataset, query-aware baselines, specifically Factorization Machines

(FM)6, demonstrate superior ranking performance compared to homogeneous user sequential

pattern baselines (e.g., SSE-PT). This suggests the significance of user historical queries as

essential signals for predicting users’ subsequent item interactions. On the other two datasets,

state-of-the-art sequential recommenders (e.g., SASRec, BERT4Rec, SSE-PT) outperform query-

aware baselines, indicating the heightened importance of sequential patterns for predicting the

next item on these datasets. Notably, SASRec outperforms BERT4Rec, with both models using

the same loss function from Equation (3.10) for fair comparison. In the original implementations,

SASRec employs Binary Cross Entropy (BCE) loss with one negative, while BERT4Rec uses

Cross Entropy loss with |I |�1 negatives [Kang and McAuley, 2018, Sun et al., 2019].

General Performance Improvement. Our model surpasses all baselines across all

datasets. Specifically, D1 indicates a 12.5% improvement in HR@20 and a 14.6% improvement

in N@20 against the SASRec backbone model on average, highlighting the efficacy of integrating

query information and sequential augmentation strategies. Further insights are provided in the

ablation study below. D2 signifies the relative improvement against the top-performing baselines

for each dataset. For instance, our approach achieves an average gain of 11.4% in HR@20 and

7.2% in N@20.

Improving Across Datasets. The impact of incorporating queries varies across datasets.

While our model consistently improves on all datasets, the relative enhancements on Diginetica

and Unsplash outweigh those on the Stock dataset. For instance, D1 indicates a 15.6% HR@20
6NeuFM’s comparatively inferior performance against FM on Diginetica may be attributed to overfitting on this

small dataset, despite employing regularization techniques such as dropout and weight decay.
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Table 3.3. Ablation study for the effectiveness of query information and sequence augmentation.
Here Q represents incorporating query information as Section 3.2.1; A represents our sequence
augmentation method as Section 3.2.2; R means using uniform random replacement strategy to
replace A.

Ablation
Dataset Metric QUERYSR w/ R w/o A w/o Q

Diginetica HR@20 0.4037 0.3996 0.3908 0.3508
N@20 0.2361 0.2351 0.2287 0.1979

Unsplash HR@20 0.6796 0.6672 0.6698 0.5881
N@20 0.3439 0.3335 0.3403 0.2972

Stock⇤ HR@20 0.4831 0.4802 0.4758 0.4527
N@20 0.3708 0.3686 0.3653 0.3404

Table 3.4. Different query incorporation methods.

Incorporation HR@20 N@20

Heterogeneous 0.3908 0.2287
Early 0.3719 0.2169
FDSA [Zhang et al., 2019] (Late) 0.3697 0.2081
NOVA [Liu et al., 2021] 0.3594 0.2031

gain for Unsplash compared to a 6.7% HR@20 gain for Stock. This discrepancy is likely

attributed to the shorter average sequence lengths of Diginetica and Unsplash, such as 6.74

for Unsplash vs. 26.07 for Stock (refer to Table 6.2). Shorter sequences provide insufficient

information and introduce more uncertainty regarding user intent. Consequently, incorporating

user textual queries proves more beneficial in such scenarios.

Ablation Study

Effectiveness of Each Component. Table 3.3 presents ablation studies on essential

components: (1) The effectiveness of incorporating queries is demonstrated by comparing our

model with w/o Q. The results, along with w/o A, highlight that integrating query information

significantly enhances recommendation accuracy, as detailed in the case studies (refer to Sec-

tion 3.3.2). (2) The effectiveness of our sequential augmentation is illustrated by comparing
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Figure 3.3. Model accuracy improvements for diffrerent QUERYSR backbones, in terms of
HR@20 on the testing set of Diginetica.

ours vs. w/o A, showing that our augmentation strategy improves query-aware sequential rec-

ommenders. Additionally, ours vs. w/ R indicates that introducing the query-item graph for

augmentation outperforms uniform random replacement, as seen in SSE-PT [Wu et al., 2020].

Different Query Incorporation Methods. Table 3.4 presents the evaluation of various

query exploration methods on Diginetica without sequential augmentation. Empirically, Hetero-

geneous outperforms the other three methods in organizing query- and item-sequences, with a

HR@20 of 0.3908 compared to 0.3719 (Early), 0.3697 (FDSA [Zhang et al., 2019]), and 0.3594

(NOVA [Liu et al., 2021]). These methods were introduced in Section 3.2.1.

More Backbone Models. To demonstrate the flexiblity of our query-aware framework,

we conducted experiments using alternative sequential recommenders as backbones. Figure 3.3

illustrates that, despite varying model architectures (e.g., FPMC being Markov-Chain-based,

GRU4Rec+ being RNN-based, SSE-PT being Transformer-based), integrating user query in-

formation within our framework consistently enhances ranking performance significantly. For

instance, on Diginetica, the HR@20 of the query-aware FPMC surpasses the corresponding

backbone by 17.7% (relative improvement).
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CASE #1: Seq. ID: bb0e4fa7-845f-4b76-b727-8f7d33493808

CASE #2: Seq. ID: 27a26997-bc2f-4571-acfb-76cc9deb8eb9

Backbone Rec. G. T.

Ours.

Backbone Rec. G. T. Ours.

Figure 3.4. Case studies (in Section 3.3.2) to show the influence of user queries to “attention”
weights in sequential recommenders. Blue box is the backbone model input sequence and
predicted results; yellow box is our query-aware model input and results; red box is the ground
truth (G.T.). We visualize “attention” weights from two heads in the first layer (second layer
“attention” mostly focuses on the last item, which we omit), where larger weights are darker.
Figure 3.5 also follows the same colors.

Visualization and Case Study

We visualize the first-layer attention weights of our two-layer QUERYSR model and

demonstrate four representative cases in Figures 3.4 and 3.5. They show the benefits of introduc-

ing user textual query information as below:

Guide Attention Weights: CASE#1&2 in Figure 3.4, we present two cases illustrating

the impact of incorporating user queries on attention networks for improved relevance. In Case

#1, the attention weights of the backbone model (blue box) are overly distributed, emphasizing

“coral” images and even an unrelated “mountain” image (e.g., 14.9% weight from attention head

#2). Our query-aware model (green box) accurately identifies the boundary of the user behavior

sequence and, with knowledge of the query “sea life”, provides more relevant recommendations.

Case #2 demonstrates that our model not only focuses on the last “query session” but attends to

both “pool” and “girl swimming” images, aligning with the ground truth.
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CASE #3: Seq. ID: 6f59fd3f-a8e5-4066-ba29-726f54f3d621

CASE #4: Seq. ID: 94147963-8755-416d-b384-775d882d33d7

Backbone Rec. G. T.

Ours.

Backbone Rec. G. T. Ours.

Figure 3.5. Case studies (in Section 3.3.2) to show the influence of user queries on recommenda-
tion granularity.

Influence on Recommendation Granularity: CASE#3&4 in Figure 3.5 illustrates the

impact of user queries on recommendation granularity in CASE#3 and CASE#4. The results

from the backbone model in CASE#3 are deemed too “broad” due to the absence of information

about “golden retriever”, a limitation addressed by query-aware recommenders. Conversely,

the backbone model results in CASE#4 are considered too “narrow” as they only recommend

“desert” to users, lacking knowledge about the granularity of user intent. Our proposed model,

aware of user queries such as “desktop wallpapers”, produces more diverse yet relevant outputs

consistent with the ground truth.

Limitation and Discussion

We have demonstrated the efficacy of integrating user queries into sequential recommen-

dation within our framework; however, several noteworthy issues remain unexplored. Firstly, our

models are trained from scratch. Is it feasible to leverage existing pre-trained models/embeddings

to enhance performance with external textual/visual data? Secondly, many platforms use separate

models for search and recommendation. In query-aware sequential recommendation, can these
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models be unified, or can knowledge be shared to mutually reinforce each other? Thirdly, while

our datasets are primarily sourced from image search platforms (Unsplash, Stock), originally

intended for image retrieval, they may not align perfectly with our query-aware setting. We

anticipate that datasets from alternative recommendation scenarios (e.g., e-commerce, music)

may unveil more intricate and compelling sequential patterns.

3.4 Conclusion

In this chapter, we are focusing on heterogeneous sequential recommender systems. We

posit that user textual queries serve as a crucial contextual cue for capturing and forecasting

users’ evolving intent beyond item clicks only. We introduce a novel query-aware sequential rec-

ommendation setting, presenting a comprehensive framework for integrating query information

into sequential recommendation. Additionally, we instantiate a self-attentive sequential model

specifically designed for query-aware sequential recommendation tasks. Experimental results on

three datasets underscore the efficacy of incorporating query information, leading to a substantial

improvement in ranking performance compared to existing models. Furthermore, we provide

visualizations of representative cases and engage in discussions on intriguing challenges within

this new setting. Our proposed QUERYSR model effectively explores incorporation strategies for

recommendation settings where user textual inputs and clicks coexist, paving the way towards

more complex scenarios like conventional recommender systems.

Chapter 3, in part, is a reprint of the material as it appears in “Query-Aware Sequential

Recommendation.” by Zhankui He, Handong Zhao, Zhaowen Wang, Zhe Lin, Ajinkya Kale, and

Julian McAuley, in Proceedings of the 31st ACM International Conference on Information &

Knowledge Management in 2022, referenced as [He et al., 2022a]. The dissertation author was

the primary investigator and author of this paper.
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Part II

Explainability: Enhancing User

Understanding and Trust
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Chapter 4

Controllable Explanations for Recom-
mender Systems

In this chapter, we begin discussing generating natural language explanations for users

to provide more information about the recommended items, which is an important component

of conventional recommender systems to answer users’ questions about “why those items are

recommended to me?”. The desired explanations or justifications should be personalized, to

match different user styles, accurate, to prevent hallucinations that hurt user trust, and also

informative, to provide much useful information for decision making.

In this chapter, we demonstrate a model, UCEPIC, for controllable explanation genera-

tions in recommendations. Existing personalized natural language generates often use aspect

planning to guide the generation process. However, while showing promise, these aspect-

planning methods can struggle to accurately incorporate specific information, hindering the

persuasiveness of the generated explanations. We argue that introducing lexical constraints can

mitigate these shortcomings. In this paper, we introduce UCEPIC, a model that unifies aspect

planning and lexical constraints within an insertion-based generation framework to produce

high-quality, personalized explanations for recommendations. This UCEPIC model signifi-

cantly enhances the diversity and informativeness of generated explanations, as demonstrated on

datasets like RateBeer and Yelp, improving the quality of explanations, and can be considered as

an important component in conversational recommender systems.
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Table 4.1. Comparison of previous explanation generators for recommendation in group (A),
general lexically constrained generators in group (B), and our UCEPIC in group (C).

Group Methods Personalized
generation

Aspect
planning

Lexical
constraints

Random
keyphrases

(A)
ExpansionNet [Ni and McAuley, 2018] 3 3 7 7

Ref2Seq [Ni et al., 2019] 3 3 7 7
PETER [Li et al., 2021b] 3 3 7 7

(B)
NMSTG [Welleck et al., 2019] 7 7 3 7

POINTER [Zhang et al., 2020d] 7 7 3 7
CBART [He, 2021] 7 7 3 3

(C) Ours 3 3 3 3

4.1 Introduction

The recent trend in recommendation systems involves providing justifications or expla-

nations in natural language [Li et al., 2021b, Ni and McAuley, 2018, Lu et al., 2018, Li et al.,

2017b, 2020c, 2023b, Ni et al., 2019], which is also an essential component for conversational

recommender systems. This approach aims to present product information in a personalized

manner and explain how the recommendation aligns with user preferences. Specifically, for a

given user-item pair, the system generates explanations like “nice TV with 4K display and Dolby

Atmos!” to enhance the quality of personalized explanations. Recent studies emphasize aspect

planning, which involves incorporating different aspects [Li et al., 2021b, Ni and McAuley,

2018, Li et al., 2023b, Ni et al., 2019] into the generation process. This strategy ensures that the

generated explanations cover relevant aspects, making them more pertinent to both products and

user interests.

While current methods show promise, they struggle to incorporate precise and accurate

information into explanations. This limitation arises because aspects, such as “screen” for a

TV, predominantly control the high-level sentiment or semantics of the generated text (e.g.,

“good screen and audio!”). However, many informative product attributes, like “nice TV with

4K display and Dolby Atmos!”, are too specific to be accurately generated. Despite efforts by
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Figure 4.1. Preliminary experiments on the aspect coverage, phrase coverage, and Distinct-
2 of generated explanations from previous models ExpansionNet [Ni and McAuley, 2018],
Ref2Seq [Ni et al., 2019] and PETER [Li et al., 2021b] on RateBeer and Yelp datasets. Check
details in Section 4.3.2

aspect-planning explanation generators to extract expressive and personalized explanations from

users’ textual reviews [Li et al., 2021b, Ni and McAuley, 2018, Li et al., 2023b, Ni et al., 2019],

our preliminary experiments reveal that numerous informative and specific keyphrases from the

training corpus (i.e., user reviews) vanish in generated explanations.

As depicted in Figure 4.1, explanations generated by previous methods lack specific

keyphrases, resulting in lower Distinct (diversity) scores compared to a human oracle. Conse-

quently, existing methods with aspects only face challenges in generating (1) overly general

sentences (e.g., “good screen!”) that struggle to provide diverse and informative explanations to

users, and (2) sentences with inaccurate details (e.g., “2K screen” for a 4K TV), which diminish

users’ trust and relevance to the product.

To address the above problems, we propose incorporating more concrete lexical con-

straints into recommendation explanations alongside aspects. Our approach involves a model

that integrates lexical constraints and aspect planning. Introducing lexical constraints ensures the

utilization of specific keyphrases (e.g., “Dolby Atmos”), guaranteeing the inclusion of accurate

and detailed information. Similar to the aspect selection in previous explanation generators [Ni
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et al., 2019, Li et al., 2021b], these lexical constraints may originate from various sources such as

explanation systems, which select item attributes using specific strategies; vendors, who highlight

product features; and users, who can modify generated explanations by altering the lexical

constraints of interest or guide recommendation-related conversations with different focused

topics. Consequently, the informativeness, relevance, and diversity of generated explanations

can be significantly enhanced compared to previous methods relying solely on aspect planning.

Meanwhile, aspect planning retains its utility when specific information is absent, and multiple

aspects need coverage.

To achieve the goal of unifying aspect-planning and lexical constraints for generating

explanations in Recommendation, we introduce UCEPIC. Building UCEPIC presents challenges:

First, lexical constraints are incompatible with existing explanation generation models (see group

(A) in Table 4.1), primarily based on auto-regressive generation frameworks [Li et al., 2019,

Ni and McAuley, 2018, Li et al., 2020b, 2021a, Hua and Wang, 2019, Moryossef et al., 2019],

which lack guaranteed positions for lexical constraints using a “left-to-right” generation strategy.

Second, insertion-based generation models (see group (B) in Table 4.1) can naturally include

lexical constraints but struggle to incorporate personalization and aspects within the “encoder-

decoder” framework.

To address the first challenge, UCEPIC adopts an insertion-based generation framework

and undergoes robust insertion pre-training on a bi-directional transformer. This pre-training

imparts UCEPIC with the fundamental ability to generate text and handle diverse lexical con-

straints. Inspired by Masked Language Modeling (MLM) [Devlin et al., 2019], we propose

an insertion process that progressively introduces new tokens randomly, enhancing UCEPIC’s

robustness to random lexical constraints.

To overcome the second challenge, UCEPIC employs personalized fine-tuning for per-

sonalization and aspect awareness. To address the tendency to “ignore references” in existing

insertion-based models, we suggest treating references as inserted tokens during training. This

approach ensures that the model learns to insert tokens relevant to references. For aspect planning,
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Table 4.2. Notations.

Notation Description

Ru, Ri historical review profile of user u and item i.
Eui generated explanation when item i is recommended to user u.
Aui aspects controlling explanation generation for item i and user u.
Cui lexical constraints (e.g., keywords) controlling explanation genera-

tion for item i and user u.
Sk, Ŝk text sequence of the k-th stage generation. Sk is training data and

Ŝk is model prediction.
Ik,k�1, Îk,k�1 intermediate sequence between Sk�1 and Sk. (training data and

model prediction)
Jk,k�1, Ĵk,k�1 insertion number sequence between Sk�1 and Sk. (training data

and model prediction)
D a bi-directional transformer for encoding.
HMI a linear projection layer for insertion numbers.
HTP a multilayer perceptron with activation function for token predic-

tion.

we introduce aspects as a special insertion stage, generating aspect-related tokens as a starting

point for subsequent generation.

UCEPIC is the first explanation generation model that integrates aspect planning and

lexical constraints, resulting in substantial enhancements in relevance, coherence, and informa-

tiveness when compared to existing methods. The key contributions of this chapter are succinctly

outlined below:

• Identification of limitations in the sole reliance on aspect planning in current explanation

generation models and introduction of lexical constraints to address these limitations.

• Introduction of UCEPIC, which incorporates robust insertion pre-training and personalized

fine-tuning to unify aspect planning, lexical constraints, and references within an insertion-

based generation framework.

• Execution of extensive experiments on two datasets, with both objective metrics and human

evaluations demonstrating that UCEPIC significantly enhances the diversity, relevance,
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Figure 4.2. Overview of generating explanations for a given user and recommended items
using (a) an aspect-planning autoregressive generation model; using (b) our UCEPIC that unifies
aspect-planning and lexical constraints.

coherence, and informativeness of generated explanations.

4.2 Proposed Approach: UCEPIC

We present the methodology for aspect planning and incorporation of lexical constraints

in explanation generation as follows. Given a user persona Ru and item profile Ri corresponding

to user u and item i respectively, the generation model employing aspect planning produces the

explanation Eui associated with a designated aspect Aui. This explanation may not necessarily

include specific predefined words.

However, for lexical constraints, provided with a set of constraints Cui = {c1,c2, . . . ,cm},

representing phrases or keywords, the model generates an explanation Eui = (w1,w2, . . . ,wn) that

must precisely incorporate all given lexical constraints ci, denoted as ci = (w j, . . . ,wk). These

lexical constraints may originate from users, businesses, or item attributes recommended by

personalized systems in practical applications. Our approach unifies both constraint types in a

single model 1. Our focus is on the explanation generation method, assuming predefined aspects

and lexical constraints. The notations used are summarized in Table 4.2.
1UCEPIC operates in two modes: generating under aspect planning or generating under lexical constraints
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Table 4.3. Data construction examples.

Data Example

SK (sentence) <s>Good tacos. Love the crispy citrus + tropical fruits flavor. </s>
IK,K�1 <s>[MASK] tacos. Love the [MASK] [MASK] + tropical fruits flavor. </s>
JK,K�1 [1 0 0 0 2 0 0 0 0 0 0]

SK�1 <s>tacos. Love the + tropical fruits flavor. </s>
.. . . . .
S0 (lexical constraints) <s>tropical fruits flavor </s>

4.2.1 Robust Insertion and Data Construction

Our motivation is presented as follows. Previous methods for explanation generation (Ni

et al., 2019; Li et al., 2021) typically use auto-regressive approaches conditioned on personalized

inputs such as personalized references and aspects. In the auto-regressive process from Figure 4.2

(a), words are generated in a “left-to-right” direction, making it challenging to incorporate lexical

constraints into the generation process. Conversely, in the insertion-based generation depicted

in Figure 4.2 (b), new tokens are progressively inserted based on existing words, allowing for

easy containment of lexical constraints by considering constraints as a starting stage of insertion.

Formulation. We represent the insertion-based generation process as a progressive

sequence of K stages, denoted as S = {S0,S1, . . . ,SK�1,SK}. Here, S0 represents the initial stage

with lexical constraints, and SK is the final generated text. For each k 2 {1, . . . ,K}, Sk�1 forms

a sub-sequence of Sk. The generation process concludes when no new tokens are inserted into

SK . In the training phase, sentences are prepared as training pairs. Specifically, text sequences

are paired at adjacent stages (Sk�1,Sk), reflecting the reverse of the insertion-based generation

process. Each explanation Eui in the training data is decomposed into a consecutive series

of pairs: (S0,S1),(S1,S2), . . . ,(SK�1,SK). In the constructed training data, the final stage SK

corresponds to the explanation text Eui.

Data Construction. Given a sequence stage Sk, the previous stage Sk�1 is obtained

through two operations: masking and deletion. Tokens in a sequence are randomly masked

with a probability p using Masked Language Modeling (MLM) to produce the intermediate
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Algorithm 1. Insertion in the k-th Stage
procedure INSERTION(Ŝk�1)

Ĵk,k�1 predict number of masks from Ŝk�1 via Equation (4.1) ;
Îk,k�1 build intermediate sequence from Ĵk,k�1 and Ŝk�1;
Ŝk predict masked tokens in Îk,k�1 via Equation (4.2);
return predicted sequence Ŝk;

end procedure

sequence Ik,k�1. Subsequently, [MASK] tokens are deleted from the intermediate sequence Ik,k�1

to derive the stage Sk�1. The number of deleted [MASK] tokens following each token in Ik,k�1

is recorded as an insertion number sequence Jk,k�1. Each training instance comprises four

sequences: (Sk�1, Ik,k�1,Jk,k�1,Sk). An illustrative example of the data construction process is

presented in Table 4.3. Since T ⇤p tokens are deleted in sequence Sk, where T is the length of

Sk, the average number of deletions denoted as K is given by log 1
1�p

T . Models trained on this

data are using knowledge from BERT-like models that conduct a similar pre-training process

involving masked word prediction.

Insertion generation (see Algorithm 1) is a reverse process of data construction. In

each insertion step prediction from Ŝk�1 to Ŝk, the model reconstructs text sequences through

two operations: mask insertion and token prediction. Initially, UCEPIC inserts [MASK] tokens

between any two existing tokens in Ŝk�1 to obtain Îk,k�1 based on Ĵk,k�1 predicted by an insertion

prediction head. Subsequently, UCEPIC, using a language modeling head, predicts the masked

tokens in Îk,k�1 and restores [MASK] tokens into words to derive Ŝk.

Modules. Our model employs a bi-directional Transformer architecture with two distinct

prediction heads for mask insertion (HMI) and token prediction (HTP). The model architecture

is closely aligned with that of RoBERTa [Liu et al., 2019]. The bi-directional Transformer D

predicts mask insertion numbers and word tokens using the heads HMI (linear projection layer)

and HTP (multilayer perceptron with GeLU activation) respectively. The final predictions for
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mask insertion numbers and word tokens are calculated as follows:

yMI = HMI

⇣
D
⇣

Ŝk�1
⌘⌘

, Ĵk,k�1 = argmax(yMI) (4.1)

yTP = HTP

⇣
D
⇣

Îk,k�1
⌘⌘

, Ŝk = argmax(yTP) (4.2)

where yMI 2 Rls⇥dins and yTP 2 RlI⇥dvocab , ls and lI are the length of Ŝk�1 and Îk,k�1 respectively,

dins is the maximum number of insertions and dvocab is the size of vocabulary. Îk,k�1 is obtained

by inserting [MASK] tokens into Ŝk�1 according to Ĵk,k�1.

UCEPIC employs a robust insertion method for general text generation without personal-

ization during pre-training, as the random insertion process is more intricate to learn than the

traditional autoregressive generation process. This pre-trained model is capable of generating

sentences based on randomly provided lexical constraints.

4.2.2 Personalized References and Aspect Planning

To incorporate personalized references and aspects, one approach involves employing a

separate text and aspect encoder, coupled with an insertion generation mechanism conditioned

on the encoder, akin to the sequence-to-sequence model [Sutskever et al., 2014]. However, our

investigation reveals that utilizing a pre-trained insertion model with an additional encoder tends

to produce similar sentences with varied personalized references and aspects. This phenomenon

arises because the pre-trained insertion model interprets lexical constraints and existing tokens in

text sequences as robust signals for determining newly inserted tokens. Even when our encoder

imparts personalized features, the model exhibits a propensity to overfit to features derived from

existing tokens. In the absence of distinct lexical tokens providing diverse starting points, the

generated sentences tend to be homogeneous.

Formulation. To enhance understanding of personalization, we suggest treating refer-

ences and aspects as distinct tokens during the insertion process. Specifically, we formulate a
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training stage Sk
+ to incorporate references and aspects as follows:

Sk
+ =

h
Rui,Aui,Sk

i

=
h
wr

0, . . . ,w
r
|Rui|,w

a
0, . . . ,w

a
|Aui|,w0, . . . ,w|Sk|

i (4.3)

where Rui, Aui denote personalized references and aspects; wr, wa and w are tokens or aspect ids

in references, aspects and insertion stage tokens respectively. Because insertion-based generation

relies on token positions to insert new tokens, we create token position ids in Transformer starting

from 0 for Rui, Aui and Sk respectively in order to make it consistent for Sk between pre-training

and fine-tuning. Similarly, we obtain the insertion number sequence Jk,k�1
+ = [0|Rui|,0|Aui|,Jk,k�1]

and intermediate training stage Ik,k�1
+ = [Rui,Aui, Ik,k�1], where 0|Rui| and 0|Aui| are zero vectors

which have same length as Rui and Aui respectively, because we do not insertion any tokens into

references and aspects.

As for the moduels, we encode Ŝk
+ and Îk,k�1

+ with bi-directional Transformer D to get

the insertion numbers yMI and predicted tokens yT P as follows:

h
ORui

S ,OAui

S ,OSk
i
= D

⇣
Ŝk
+

⌘
(4.4)

h
ORui

I ,OAui

I ,OIk,k�1
i
= D

⇣
Îk,k�1
+

⌘
(4.5)

yMI = HMI

⇣
OSk

⌘
(4.6)

yTP = HTP

⇣
OIk,k�1

⌘
(4.7)

Similar as Equation (4.1) and Equation (4.2), we can get Ĵk,k�1 and Ŝk by argmax operation.

Due to the distinct recognition of personalized references and aspects as unique tokens, UCEPIC

integrates token-level information directly as generation conditions, resulting in the generation

of diverse explanations.

Recall that existing text sequences serve as strong signals for token prediction. To

enhance aspect-planning generation, we introduce two initial stages S0
+a and S0

+l for aspects and
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lexical constraints, respectively. Specifically, we anticipate that tokens related to aspects can be

generated in the initial stage (i.e., no existing tokens) based on given aspects and personalized

references. Thus, the aspect starting stage is defined as S0
+a = [Rui,Aui]. The lexical constraint

starting stage is defined as S0
+l = [Rui,Apad,Cui], where Apad represents a special aspect used for

lexical constraints. During training, we sample S0
+a with a probability of p to ensure effective

learning of aspect-related generation, a capability absent in pre-training.

4.2.3 Model Training and Inference

Training. The training process of UCEPIC is to learn the inverse process of data

generation. Given stage pairs (Sk�1
+ ,Sk

+) and training instance (Sk�1
+ , Ik,k�1

+ ,Jk,k�1
+ ,Sk

+) from

pre-processing 2, we optimize the following objective:

L =� log p(Sk|Sk�1)

=� log p(Sk,Jk,k�1|Sk�1)| {z }
Unique J assumption

=� log p(Sk|Jk,k�1,Sk�1)p(Jk,k�1|Sk�1)

=� log p(Sk|Ik,k�1)| {z }
Token prediction

p(Jk,k�1|Sk�1)| {z }
Mask insertion

,

where Ik,k�1 = MaskInsert(Jk,k�1,Sk�1),

(4.8)

where MaskInsert denotes the mask token insertion. We make a reasonable assumption that Jk,k�1
+

is unique given (Sk
+,S

k�1
+ ). This assumption is usually true unless in some corner cases multiple

Jk,k�1
+ could be legal (e.g., masking one “moving” word in “a moving moving moving van”);

Ik,k�1
+ by definition is the intermediate sequence, which is equivalent to the given (Jk,k�1

+ ,Sk�1
+ ).

In Equation (4.8), we jointly learn (1) the likelihood of mask insertion number for each token

from UCEPIC with HMI , and (2) the likelihood of word tokens for the masked tokens from
2For fine-tuning with personalized references and aspects, we train the model with stage pairs (Sk�1

+ ,Sk
+) and

training instance (Sk�1
+ , Ik,k�1

+ ,Jk,k�1
+ ,Sk

+)
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UCEPIC with HTP.

Similar to BERT training [Devlin et al., 2019], we exclusively optimize the prediction

of masked tokens. The selection of tokens to mask involves a 0.1 probability of remaining

unchanged and a 0.1 probability of being randomly replaced by another token in the vocabulary.

For predicting mask insertion numbers, the majority of values in Jk,k�1
+ are 0 due to the absence of

token insertions between existing tokens in most cases. To address this imbalance, we randomly

mask the 0 values in Jk,k�1
+ with a probability q. Given the similarity of our mask prediction task

to masked language models, pre-trained weights from RoBERTa [Liu et al., 2019] are naturally

used for initialization of UCEPIC, providing valuable prior knowledge.

Inference. At inference time, the process initiates from the given aspects Aui or lexical

constraint Cui to construct the initial stage S0
+a or S0

+l , respectively. The model, denoted as

UCEpic, predicts the sequence of stages {Ŝ1
+, . . . , ŜK

+} iteratively until no additional tokens are

generated or the maximum stage number is reached. The final generated explanation, denoted as

ŜK , is derived from ŜK
+ by removing Rui and Aui.

Without loss of generality, we detail the inference process from the Ŝk�1
+ stage to the Ŝk

+

stage: (1) Given Ŝk�1
+ , UCEPIC utilizes HMI to predict the insertion number sequence Ĵk,k�1

+ . We

set the predicted insertion number as 0 for the given phrases in S0
+l to prevent modifications to

these phrases. (2) With Îk,k�1
+ obtained from MaskInsert(Ĵk,k�1

+ , Ŝk�1
+ ), UCEPIC employs HT P to

predict Ŝk
+ using a specific decoding strategy, such as greedy search or top-K sampling. (3) Given

Ŝk
+, UCEPIC checks if the termination requirements are met. If so, the process concludes;

otherwise, it repeats step (1). The termination criterion can be a maximum iteration number, or

UCEPIC stops when no new tokens are inserted into Ŝk
+.
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Table 4.4. Data Statistics.

Dataset Train Dev Test #Users #Items #Aspects

RateBeer 16,839 1,473 912 4,385 6,183 8
Yelp 252,087 37,662 12,426 235,794 22,412 59

4.3 Experiments

4.3.1 Experimental Setting

Data. For pre-training, we utilize English Wikipedia3 with 11.6 million sentences

for robust insertion training. For fine-tuning, we leverage Yelp4 and RateBeer [McAuley and

Leskovec, 2013] to evaluate our model (refer to Table 6.2). Reviews exceeding a length of 64

are filtered out. Following the approach of [Ni et al., 2019], we randomly reserve two samples

from each user’s reviews to construct the development and test sets. As per previous works [Ni

et al., 2019, 2017], an unsupervised aspect extraction tool [Li et al., 2022a] is used to obtain

phrases and corresponding aspects for lexical constraints and aspect planning, respectively. The

tool automatically determines the number of aspects for each dataset, providing coarse-grained

semantics for the generated explanations. It is noteworthy that the number of aspects is typically

much smaller than the number of lexical constraints, and aspects are more high-level.

Baselines. We evaluate model effectiveness through two baseline groups for automatic

evaluation in the context of text generation models for recommendation with aspect planning.

The first group includes existing models:

1. ExpansionNet [Ni and McAuley, 2018] generates reviews conditioned on various aspects

derived from a given review title or summary.

2. Ref2Seq [Ni et al., 2019] is a Seq2Seq model that incorporates contextual information

from reviews and employs fine-grained aspects to control explanation generation.
3https://dumps.wikimedia.org/
4https://www.yelp.com/dataset
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3. PETER [Li et al., 2021b] is a Transformer-based model utilizing user- and item-IDs along

with given phrases to predict words in target explanation generation, positioning it as a

state-of-the-art model for explainable recommendation.

We compare various baselines by evaluating their performance in incorporating lexical

constraints, specifically keyphrases, during aspect planning. The evaluation focuses on the

models’ capacity to integrate and reproduce these keyphrases in the generated text. The second

category includes general natural language generation models with lexical constraints:

1. NMSTG [Welleck et al., 2019]: A tree-based text generation scheme that utilizes lexical

constraints in prefix tree form. The model generates words to the left and right based on

the given constraints, resulting in a binary tree.

2. POINTER [Zhang et al., 2020d]: An insertion-based generation method pre-trained on

constructed data using dynamic programming.

3. CBART [He, 2021]: Utilizes the pre-trained BART [Lewis et al., 2020] and instructs the

decoder to insert and replace tokens based on the encoder’s guidance.

The second set of baselines lacks the capability to incorporate personalized information

or contextual references. These models operate by training and generating text exclusively based

on provided lexical constraints. Excluded from consideration are methods such as NRT [Chen

and Wang, 2017], Att2Seq [Dong et al., 2017], ReXPlug [Hada and Shevade, 2021], non-natural-

language explainable recommenders like EFM [Zhang et al., 2014] and DEAML [Gao et al.,

2019], as well as lexically constrained methods CGMH [Miao et al., 2019] and GBS [Hokamp

and Liu, 2017], as PETER and CBART demonstrated superior performance. Furthermore,

experiments involving the “encoder-decoder” based UCEPIC, mentioned in Section 4.1, are

omitted from the baseline, as this model generates identical sentences for all user-item pairs.

Detailed baseline settings can be found in Section 4.3.2.
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Evaluation Metrics. We evaluate the quality and diversity of generated sentences through

two main criteria: generation quality and diversity. Following the approach in [Ni et al., 2019,

Zhang et al., 2020d], we use n-gram metrics, including BLEU (B-1 and B-2) [Papineni et al.,

2002], METEOR (M) [Banerjee and Lavie, 2005], and ROUGE-L (R-L) [Lin, 2004], to gauge

the similarity between the generated text and human oracle. For evaluating generation diversity,

we utilize Distinct (D-1 and D-2) [Li et al., 2015]. Additionally, we introduce BERT-score

(BS) [Zhang et al., 2020a] as a semantic metric, beyond traditional n-gram-based evaluations.

Implementation Details. We use the RoBERTa-base model [Liu et al., 2019] with

approximately 130 million parameters (#params) for our study. During training data construction,

we randomly mask 20% of tokens in Sk to generate Ik,k�1. Zeros in Jk,k�1 are masked with a

probability of 0.9. The tokenizer used is byte-level BPE, following the RoBERTa approach.

For pre-training, we set the learning rate to 5e-5, the batch size to 512, and use the AdamW

optimizer [Loshchilov and Hutter, 2019] for one epoch. For fine-tuning on downstream tasks,

the learning rate is 3e-5, and the batch size is 128, using the same optimizer as pre-training. The

training process spans 10 epochs, and the best model on the development set is selected as the

final model, which is then evaluated on the test data. During aspect planning and lexical constraint

selection, we randomly sample one aspect and one phrase from the target text, respectively 5.

4.3.2 Result Analysis
Automatic Evaluation

Overall Performance. In Table 4.5, we present evaluation results for various generation

methods. For aspect-planning generation, our model (UCEPIC) demonstrates comparable

performance to the state-of-the-art model PETER. Although PETER achieves superior B-2

and ROUGE-L scores, UCEPIC exhibits significantly higher diversity in its results. This

discrepancy may be attributed to the nature of auto-regressive generation models like PETER,
5Further details can be found at https://github.com/JiachengLi1995/UCEpic. Additionally, we have released

an extra checkpoint pre-trained on personalized review datasets, including Amazon Reviews [Ni et al., 2019] and
Google Local [Yan et al., 2023b].
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Figure 4.3. Performance (i.e., B-2 and Meteor) of lexically constrained generation models on
RateBeer data with different numbers of keyphrases.

which tend to prioritize higher n-gram metric results, while our (insertion-based) UCEPIC

considers tokens in both directions during generation. Despite the inherent differences, UCEPIC

achieves comparable scores in B-1, Meteor, and BERT metrics when compared to PETER. When

subjected to lexical constraints, existing explanation generation models yield lower results than

aspect-planning generation, signifying the struggle of current models to incorporate specific

information, such as keyphrases, into explanations. While lexically constrained methods produce

diverse text, they often insert less-related tokens, resulting in lower coherence (as indicated

by low n-gram metric results) compared to UCEPIC. Notably, UCEPIC excels in including

keyphrases and learning user-item information from references, outperforming both existing

explanation generation models and lexically constrained generation models. In summary, our

model (UCEPIC) effectively integrates aspect planning and lexical constraints for explainable

recommendations.

Number of Lexical Constraints. Figure 4.3 illustrates the performance of lexically

constrained generation models under varying keyphrase numbers. UCEPIC consistently outper-

forms other models across different quantities of lexical constraints. Specifically, NMSTG and

POINTER show limited improvement as the number of keyphrases increases due to their inability

to handle random keywords, often breaking given phrases into individual words. The performance
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Figure 4.4. Ablation study on aspects and references.

gap between UCEPIC and CBART widens as the number of keyphrases decreases. CBART

struggles to generate explanations with only a few keywords, whereas UCEPIC addresses this

limitation by incorporating user persona and item profiles from references. These findings

suggest that existing lexically constrained generation models are not suitable for explanation

generation with lexical constraints.

Ablation Study. To assess the efficacy of our unified method and the indispensability

of aspects and references in explanation generation, we conducted an ablation study on two

datasets, and the results are illustrated in Figure 4.4. Our model was trained and explanations

were generated under three conditions: without aspects (w/o A), without references (w/o R),

and without both aspects and references (w/o A&R). The results indicate that the absence of

aspects leads to a decrease in BLEU-2 and Meteor scores, emphasizing the guiding role of

aspects in shaping the semantics of explanations. Without references, the model tends to generate

similar sentences, often containing high-frequency words from the training data. A marked

drop in performance is observed when both references and aspects are omitted. Therefore, our

unified approach for incorporating references and aspects is deemed effective, providing essential

user-item information for explanation generation.

Kind of Constraints. We assess the performance of UCEPIC under various constraints
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Table 4.6. UCEPIC with different constraints on Yelp dataset. L denotes lexical constraints.

Constraints B-1 B-2 D-1 D-2 M R BS

Aspect 8.03 0.72 1.89 14.75 8.09 11.58 83.53
L-Extract 13.77 3.06 2.85 20.39 14.45 16.92 84.55
L-Frequent 10.05 0.87 2.02 15.88 9.14 12.23 83.73
L-Random 9.81 0.79 3.00 21.04 8.73 11.61 83.50
Aspect & L 13.12 3.01 2.89 20.34 14.41 16.94 84.56

using the Yelp dataset, presenting the results in Table 4.6. The configurations for Aspect and

L-Extract remain consistent, representing UCEPIC under aspect-planning and lexical constraints,

respectively, as shown in Table 4.5 6. Additionally, we investigate three other constraint types:

(1) L-Frequent: Utilizing the most frequent noun phrase of an item as the lexical constraint. (2) L-

Random: Randomly sampling the lexical constraint from all noun phrases of an item. (3) Aspect

& L: Combining both aspect-planning and lexical constraints, as demonstrated in Table 4.5,

and employing both simultaneously. Analysis of the results reveals that: (1) L-Extract and

Aspect & L exhibit similar outcomes, suggesting strong constraints from lexical aspects, limiting

the controllability of aspect planning on the generation process. (2) Generation with lexical

constraints outperforms aspect-planning generation. (3) Selections of lexical constraints (i.e.,

L-Extract, L-Frequent, L-Random) lead to significant variations in generation performance,

indicating potential avenues for further exploration in future research.

Human Evaluation

We conducted a human evaluation of generated explanations using a set of 500 ground-

truth explanations extracted from the Yelp dataset. The corresponding generated explanations

from PETER-aspect, POINTER, CBART, and UCEPIC were collected for evaluation. Annotators

were tasked with selecting the best explanation based on different aspects, namely, relevance,

coherence, and informativeness, from explanations generated by PETER, POINTER, CBART,

and UCEPIC (refer to Section 4.3.2 for detailed information). We define relevance, coherence
6Aspects and phrases are extracted from the generation target, and one aspect and phrase are randomly sampled

as model inputs.
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Figure 4.5. Human evaluation on explanation quality.

and informativeness as:

• Relevance: the details in the generated explanation are consistent and relevant to the

ground-truth explanations.

• Coherence: the sentences in the generated explanation are logical and fluent.

• Informativeness: the generated explanation contains specific information, instead of

vague descriptions only.

The voting results are depicted in Figure 4.5. UCEPIC outperforms other methods, particularly in

relevance and informativeness. Lexically constrained generation methods (UCEPIC and CBART)

enhance explanation quality by incorporating specific product information. However, POINTER,

lacking robustness to random keyphrases, does not benefit from improvements through lexical

constraints.

Case Studies

We compare explanations generated by existing models (Ref2Seq, PETER), lexically

constrained models (POINTER, CBART), and UCEPIC in Table 4.7. Ref2Seq and PETER

typically produce non-informative, general sentences due to limitations in traditional auto-

regressive generation for specific item information. POINTER and CBART can incorporate
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Table 4.7. Generated explanations from Yelp dataset. Lexical constraints (phrases) are high-
lighted in explanations.

Phrases pepper chicken north shore , meat

Human Food was great. The pepper chicken
is the best. This place is neat and clean.
The staff are sweet. I recomend them to
anyone!!

Great Italian food on the north shore !
Menu changes daily based on the ingre-
dients they can get locally. Everything
is organic and made “clean”. There is
no freezer on the property, so you know
the meat was caught or prepared that
day. The chef is also from Italy! I highly
recommend!

Ref2Seq best restaurant in town ! ! ! what a good place to eat in the middle
of the area . the food was good and the
service was good .

PETER This place is great! I love the food and
the service is always great. I love the
chicken and the chicken fried rice. I
love this place.

The food was good, but the service
was terrible. The kitchen was not very
busy and the kitchen was not busy. The
kitchen was very busy and the kitchen
was not busy.

POINTER pepper sauce chicken ! one of the best restaurants in the north
as far as i love the south shore . great
meat ! !

CBART Great spicy pepper buffalo wings and
chicken wings.

Best pizza on the north shore ever!
Meatloaf is to die for, especially with
meat lovers.

UCEPIC Great Chinese restaurant, really great
food! The customer service are amaz-
ing! Everything is delicious and deli-
cious! I think this local red hot pepper
chicken is the best.

I had the best Italian north shore food.
The service is great, meat that is fresh
and delicious. Highly recommend!
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given phrases (e.g., pepper chicken) but may generate inaccuracies (e.g., pepper sauce chicken,

chicken wings) as they struggle to learn information from references. In contrast, UCEPIC

generates coherent and informative explanations that encompass specific item attributes and

maintain high relevance to the recommended item.

More Experiment Implementation Details

Motivating Experiment Details. In this study, we assess the diversity and informative-

ness of explanations by employing phrase coverage, aspect coverage, and Distinct-2 metrics to

evaluate both generated and human-written explanations.

Phrase coverage is determined by extracting noun phrases from explanations using spaCy

noun chunks. The comparison of phrases between human-written and generated explanations

helps identify covered phrases in the latter. This metric quantifies the extent to which specific

information is incorporated into the generated explanations.

Aspect coverage utilizes an aspect extraction tool [Li et al., 2022a] on each dataset to

create a table mapping phrases to aspects. The generated explanations are then mapped to aspects

by referencing the phrase-aspect table. Aspect coverage is calculated for each sample, indicating

how many aspects from the ground-truth explanation are covered in the generated explanations.

The average aspect coverage per dataset is reported.

Distinct-2 is computed using the numbers described in Table 4.5.

Baseline Details. For ExpansionNet, we use the default setting which uses hidden

size 512 for the RNN encoder and decoder, batch size of 25 and learning rate 2e-4. For aspect

planning in ExpansionNet, we use the set of lexical constraints (as concatenated phrases) to

replace the title or summary input as contextual information for training and testing.

For Ref2Seq, we use the default setting with 256 hidden size, 512 batch size and 2e-4

learning rate. For aspect planning, we concatenate our given phrases as references (historical

explanations are also incorporated as references following the original implementation) as

contextual information in training and testing.

64



For PETER, we use the original setting with 512 embedding size, 2048 hidden units, 2

self-attention heads with 2 transformer layers, 0.2 dropout. We use the training strategy suggested

by the authors. Since original PETER only supports single words as an aspect, we adopt PETER

to multiple words with a maximum length of 20 and reproduce the original single-word model

on our multi-word model. We input our lexical constraints as the multi-word input for PETER

training and testing.

For NMSTG, we use the default settings with an LSTM with 1024 hidden size with the

uniform oracle. We convert our lexical constraints into a prefix sub-tree as the input of NMSTG,

and then use the best sampling strategy in our testing (i.e., StochasticSampler) for NMSTG.

For POINTER, we use the pre-training BERT-large [Devlin et al., 2019] (#params ⇡

340M.) from WIKI to fine-tune 40 epochs on our downstream datasets. We use all the default

settings except batch sizes since POINTER requires 16 GPUs for distributed training that exceeds

our computational resources. Instead, we train POINTER with the same configuration on 3

GPUs. For testing, we select the base maximum turn as 3 with the default greedy decoding

strategy. We feed lexical constraints as the original implementation.

For CBART, we use the checkpoint pre-trained on BERT-large [Devlin et al., 2019]

(#params ⇡ 340M.) with the one-billion-words dataset to fine-tune our downstream datasets.

We use the ‘tf-idf’ training mode and finetune it on one GPU. For testing, we select the greedy

decoding strategy. We set other hyper-parameters to default as the code base 7.

Human Evaluation Details. We conduct human evaluation experiments on Yelp datasets

to evaluate the generation quality of generated explanations in terms of relevance, coherence

and informativeness. We used Amazon Mechanical Turk (MTurk) 8 to gather evaluations,

offering a reward of $0.02 per question. The evaluation process involved presenting workers

with definitions of relevance, coherence, and informativeness, followed by a randomized order

of model-generated explanations to mitigate positional bias. Each question was assigned to three
7https://github.com/NLPCode/CBART
8https://www.mturk.com

65

https://www.mturk.com


Figure 4.6. Human evaluation example on MTurk.

MTurk workers with a minimum HIT Approval Rate of 80% to ensure answer quality. An

example of our evaluation template is depicted in Figure 4.6. The collected answers underwent a

majority vote process, where a model received a majority vote if it obtained 2 or more out of

the 3 worker responses. Questions lacking a majority vote were excluded. In total, we amassed

1,120 valid votes for 370 questions, with 275, 281, and 266 questions achieving majority votes

for relevance, coherence, and informativeness respectively.
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4.4 Conclusion

In this chapter, we explore the incorporation of lexical constraints in explanation gen-

eration to enhance the informativeness and diversity of generated reviews by incorporating

specific information. In this way, we are able to build a high-quality explanation generator to

provide personalized and useful information for users to make decisions on whether accept the

recommended items, and also serving in conversational recommender systems to respond related

questions from users.

To achieve this goal, we introduce UCEPIC, an explanation generation model that inte-

grates aspect planning and lexical constraints within an insertion-based generation framework.

Comprehensive experiments are conducted using RateBeer and Yelp datasets, demonstrating

that UCEPIC surpasses previous explanation generation models and lexically constrained gener-

ation models. Human evaluation and a case study affirm that UCEPIC produces coherent and

informative explanations closely aligned with the reviewed item.

Chapter 4, in part, is a reprint of the material as it appears in “UCEpic: Unifying Aspect

Planning and Lexical Constraints for Generating Explanations in Recommendation.” by Jiacheng

Li*, Zhankui He*, Jingbo Shang, and Julian McAuley, in Proceedings of the 29th ACM SIGKDD

Conference on Knowledge Discovery and Data Mining in 2023, referenced as [Li et al., 2023a].

The dissertation author was the primary investigator and author of this paper.
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Chapter 5

Multimodal Explanations for Recom-
mender Systems

In this chapter, we go beyond generating textual explanations for recommendations

only. Instead, we explore how to present multimodal (i.e., textual- and visual-) explanations

in recommendations to further enrich the relevant information for the user’s decision-making.

Methodologically, we propose a novel task called personalized showcases. This task requires

visual and textual elements to provide richer, more compelling explanations for recommendations:

First, we select a personalized image set that aligns closely with a user’s interests in the context

of a recommended item. Second, we generate tailored natural language explanations that are

grounded in the selected images, related to the recommended items as well as the user personality.

In this chapter, we also introduce a large-scale dataset collected from Google Local

(i.e., maps), with a carefully constructed high-quality subset specifically designed for multi-

modal explanation generation. Treating this new dataset as a testbed, we propose a personalized

multi-modal framework that leverages contrastive learning to produce diverse and visually

cohesive explanations. Our experimental results demonstrate the superiority of this framework,

as it benefits from multi-modal inputs and consistently outperforms previous methods across

various evaluation metrics, opening up new research opportunities for explanation generation for

recommender systems.
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5.1 Introduction

Personalized explanation generation models enhance recommendation transparency and

reliability. Existing approaches focus on generating textual explanations from users’ historical

reviews [Zang and Wan, 2017], tips [Li et al., 2017b], or justifications [Ni et al., 2019]. However,

these methods face challenges in delivering diverse explanations, often producing generic

sentences (e.g., “food is very good!”) due to a lack of grounding information, such as images,

during the generation process. To address this limitation and enhance the diversity and richness

of recommendations, we introduce a novel task known as personalized showcases (illustrated

in Figure 5.1). This task involves explaining recommendations through both textual and visual

information, providing a collection of images relevant to a user’s interests, and generating

corresponding textual explanations.

For this objective, the primary challenge is constructing an appropriate dataset. Conven-

tional review datasets, such as those from Amazon [Ni et al., 2019] and Yelp1, are predominantly

unsuitable for the novel context at hand, as elaborated upon later in this dissertation. In response,

we initiate the development of a large-scale multi-modal dataset, denoted as GEST, sourced from

Google Local Restaurants. This dataset encompasses both review text and corresponding images,

as illustrated in Figure 5.2.

In this novel task, we propose a multi-modal explanation generation framework, namely

P-SHOWCASE. Initial steps involve the curation of relevant images sourced from historical

photos of the user’s preferred business. Subsequently, utilizing the selected images and user

profiles, such as historical reviews, as inputs, our model is trained to generate textual explanations

employing a multi-modal decoder. Despite advancements, generating text that is both expressive

and captivating, while avoiding monotony, remains a significant challenge. This is attributed to

the heightened demands on information extraction and multi-modal learning arising from the

distinctive alignment requirements between multiple images and generated text.
1https://www.yelp.com/dataset
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Recommended
Item List:

… 

R1: Chinese Food R3: Japanese Food

Great selection of beers 
and delicious burgers!

The bread with the entree soup is 
amazing. The cheesecake is on point.

Our Approach:
 Multimodal Explanations
 (Personalized Showcase)

Previous Approach:
 Text-Only Explanations
 (e.g. Ref2Seq)

Food is delicious!
Try it!

Burgers are great, and the 
service is good, too.

R2: American Food

Figure 5.1. Illustration of previous text-only explanation methods and our personalized show-
cases. Given a recommended item or business: (1) Text-only explanation models only use
historical textual reviews to generate textual explanations. (2) We propose a personalized
showcases task to enrich the personalized explanations with multi-modal (visual and textual)
information, which can largely improve the informativeness and diversity of generated explana-
tions.

Methodologically, conventional encoder-decoder models employing cross-entropy loss

often result in repetitive and uninteresting sentences, as observed frequently in the training corpus

(e.g., “food is great”) as noted by Holtzman et al. (2019). To address the identified challenges, we

propose a Personalized Cross-Modal Contrastive Learning (PC2L) method, which leverages the

contrastive learning paradigm to align input modalities with output sequences. While contrastive

learning has gained prominence as a self-supervised representation learning approach [Oord

et al., 2018, Chen et al., 2020a], we notice that training solely with randomly selected negative

samples in a mini-batch may be suboptimal for certain tasks [Lee et al., 2020], as the embeddings

could be easily discriminable in the latent space. To address this limitation, we introduce a

cross-modal loss that enforces alignment between images and output explanations. This is

achieved by constructing hard negative samples with randomly replaced entities in the output.

Additionally, considering the shared interests among users with similar historical reviews, we

incorporate a personalized loss that adjusts the weights of negative samples based on historical

similarities.
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Amazing! Best Cesar salad I ever 
had and the cake was delicious.

Seafood soup was excellent. Granddaughter 
loved the Spaghetti and meatballs.

I had an excellent experience here. The ambience 
is romantic and perfect for a couple date night.

An Italian 
Restaurant

User
Reviews

Figure 5.2. Example of business and user reviews in our constructed dataset GEST.

Experimental results, from both automatic and human evaluations, demonstrate that

our proposed model outperforms various baselines. Specifically, our model exhibits enhanced

capabilities in generating more expressive, diverse, and visually-aligned explanations. Overall,

our contributions are as follows:

• Introduction of a new task, personalized showcases, aimed at enhancing the informative-

ness of recommendations by providing multimodal (both textual- and visual-) explanations.

• Collection of a large-scale dataset from Google Local (maps) for the multimodal per-

sonalized showcases task, with a focus on extracting high-quality samples through pre-

processing and filtering.

• Development of a multi-modal framework P-SHOWCASE for the personalized showcases

tasks, incorporating contrastive learning to improve the diversity and visual alignment of

generated textual explanations.
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…

…

You have to get 
the scallops.
The “one bad 
hombre” drink is 
amazing!
……

Multi-
Modal

Encoder

Selection 
Model

Multi-
Modal

Encoder

Multi-
Modal

Decoder

Everything was 
fresh and good. 
Toro Sushi was the 
bomb and I even 
dream about it the 
night after!

All review images from the business

User historical images

User historical reviews

Step 1:
Personalized Image 

Set Selection

Step 2: 
Visually-Aware 

Explanation

Personalized 
Contrastive Learning

Cross-Modal 
Contrastive Learning

Figure 5.3. Illustration of our P-SHOWCASE framework. We take user historical images and
reviews as inputs. We fisrt select an image set that is most relevant to a user’s interest, then
generate language explanations accordingly. A cross-modal contrastive loss and a personalized
contrastive loss are applied between each input modality and the explanations. Last, the generated
images and textual explanations will be organized as multi-modal explanations to users.

5.2 Proposed Approach: P-SHOWCASE

5.2.1 Task Formulation

In the personalized showcases task, we aim to provide personalized textual and visual

explanations for user u, business b, and the image candidate set Ib = {ib1, i
b
2, . . . i

b
|Ib|} from b. We

select a set of images I from Ib based on user u’s profile, which includes historical reviews

Xu = {xu
1,x

u
2, ...,x

u
K} and images Iu = {iu1, i

u
2, ..., i

u
n}. The selected images Iu serve as visual

explanations, and textual explanations Su are generated using the user’s historical reviews Xu.

These personalized explanations aim to elucidate why business b is recommended to user u.

To examine the interrelation between modalities and establish benchmarks for future

investigations, our paper decomposes the task into two steps, as illustrated in Figure 5.3: (1) Se-

lecting an image set as a visual explanation related to a user’s interest; (2) Generating textual

explanations based on the selected images and a user’s historical reviews. We assess the task

with the following criteria:

1. Accuracy: Predicting the target images with precision and ensuring that the generated

text is relevant to the business.
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2. Diversity: Ensuring diversity and expressiveness in both visual and textual explanations.

3. Alignment: In contrast to prior review generation tasks that involve only the text modality,

our visually-aware setting necessitates grounding to the images. Thus, the model should

accurately depict the content and encompass key objects (e.g., the names of dishes, and

the environment) in the provided images.

5.2.2 Personalized Image Set Selection

To tackle this task, we propose a framework, namely P-SHOWCASE. The initial phase of

our framework is choosing a diverse image set that serves as a visually explanatory representation

aligned with the user’s interests. This selection process is formulated as a diverse recommendation

incorporating multi-modal inputs.

Multi-Modal Encoder. CLIP [Radford et al., 2021], a state-of-the-art pre-trained cross-

modal retrieval model as both textual- and visual-encoders, encodes raw images as image features,

and encodes user textual and visual profiles as user profile features.

Image Selection Model. Determinantal Point Process (DPP) [Kulesza and Taskar, 2012]

a technique recently applied in diverse recommendation tasks [Wilhelm et al., 2018, Bai et al.,

2019], is used to select image subsets. DPP-based models, unlike other algorithms geared

towards individual item recommendation, demonstrate suitability for multiple image selection

scenarios. Given a user u and a business b, our prediction for the image set Îu,b is expressed as

follows:

Îu,b = DPP(Ib,u), (5.1)

where Ib represents the image set associated with business b. In our approach, we determine

user-image relevance by utilizing CLIP-based features from the user’s profile and image features.

Further details about the model can be found in [Wilhelm et al., 2018].
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5.2.3 Visually-Aware Explanation Generation

Upon having a set of images, the next phase of our P-SHOWCASE framework is to

generate personalized explanations based on both the image set and the user’s historical reviews.

To achieve this, we use a multi-modal encoder-decoder model utilizing GPT-2 [Radford et al.,

2019] as the backbone.

Multi-Modal Encoder. Given a user u’s historical reviews X = {x1,x2, . . . ,xK}, CLIP’s

text encoder is used to extract review features R = {r1,r2, . . . ,rK}. Similarly, the CLIP visual

encoder is used to extract visual features V = {v1,v2, . . . ,vn} from input images I = {i1, i2, . . . , in}.

These features are then projected into a latent space using learnable matrices:

ZV
i =WV vi, ZR

i =W R
i ri, (5.2)

where WV and W R are the projection matrices. Subsequently, a multi-modal attention (MMA)

module, comprising stacked self-attention layers [Vaswani et al., 2017a], is used to encode the

input features:

[HV ;HR] = MMA([ZV ;ZR]), (5.3)

where each HV
i and HR

i aggregate features from the two modalities, and [; ] denotes concatena-

tion. This design accommodates varying lengths of each modality and facilitates intermodal

interactions through co-attentions.

Multi-Modal Decoder. Inspired by recent advances in pre-trained language models,

we utilize GPT-2 as the decoder for generating explanations. To efficiently integrate linguistic

knowledge from GPT-2, we incorporate the encoder-decoder attention module into the pre-trained

model, following a similar architecture as in [Chen et al., 2021].

With the aim of enhancing generation performance, we further fine-tune GPT-2 using

domain-specific data. The resulting multi-modal GPT-2 is trained on 260k samples with causal

language modeling, excluding data from users who only wrote one review and are thus not part
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of our personalization dataset. The empirical findings indicate that training GPT-2 with domain-

specific knowledge significantly improves generation performance. For a target explanation

Y = {y1,y2, ...,yL}, the decoding process at each time step t is formalized as:

ŷt = Decoder([HV ;HR],y1, . . . ,yt�1). (5.4)

We maximize the conditional log-likelihood log pq (Y |X , I) for N training samples

(X (i), I(i),Y (i))
N
i=1 by using cross entropy (CE) loss:

LCE =�
N

Â
i=1

log pq (Y (i)|X (i), I(i)). (5.5)

During training, we use ground-truth images from the user, while images from our

image-selection model are used for inference.

5.2.4 Personalized Cross-Modal Contrastive Learning

Our task, distinct from image captioning, involves using multiple images as “visual

prompts” for conveying personal feelings and opinions. To help the generation of expressive,

diverse, and visually-aligned explanations, we propose PC2L technique in our framework. This

technique initially maps the hidden representations of images, historical reviews, and the target

sequence into a latent space:

H̃V = fV (HV ), H̃R = fR(HR), H̃Y = fY (HY ) (5.6)

where fV , fR, and fY consist of two fully connected layers with ReLU activation and average

pooling over the hidden states HV , HR and HY from the last self-attention layers. With the

InfoNCE loss [Oord et al., 2018, Chen et al., 2020a], the objective is to maximize the similarity

between the source modality and target sequence pair, while simultaneously minimizing the
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similarity between negative pairs. This is expressed as follows:

LCL =�
N

Â
i=1

log
exp(sX ,Y

i,i )

exp(sX ,Y
i,i )+ Â

j2K
exp(sX ,Y

i, j )
. (5.7)

where sX ,Y
i, j = sim(H̃X

(i), H̃
Y
( j))/t , sim is the cosine similarity between two vectors, t is the temper-

ature parameter, (i) and ( j) are two samples in the mini-batch, K is the set of negative samples

for sample (i).

One challenge in this task is describing multiple objects within a set of images. To address

the need for visual grounding between various image features and output text, we propose a

novel cross-modal contrastive loss. Specifically, for a target explanation Y = {y1,y2, ...,yL}, we

randomly replace entities 2 in the text with other entities from the dataset, creating a hard negative

sample Y ent = {y0ent1,y2, ...y0ent2, ...yL} (e.g., from “I like the sushi” to “I like the burger”). During

training, this exposes the model to samples with incorrect entities related to the images, making

it non-trivial to distinguish from the original target sequence. Consequently, we introduce the

hidden representation of Y ent as an additional negative sample ent to formulate the cross-modal

contrastive loss:

LCCL =�
N

Â
i=1

log
exp(sV,Y

i,i )

exp(sV,Y
i,i )+ Â

j2K[ent
exp(sV,Y

i, j )
, (5.8)

On the other hand, for improved personalization of explanations, we adjust the weights

of negative pairs based on user personalities. The rationale is that individuals with more distinct

personalities are prone to generating diverse explanations. Accordingly, we introduce a weighted

personalized contrastive loss to address this motivation:

LPCL =�
N

Â
i=1

log
exp(sR,Y

i,i )

exp(sR,Y
i,i )+ f (i, j) Â

j2K
exp(sR,Y

i, j )
. (5.9)

where negative pairs in a mini-batch are re-weighted based on user personality similarity function
2Entities are extracted using spaCy noun chunks (https://spacy.io/).
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f . In our framework, user personalities are represented by their historical reviews. Specifically,

we define f function as:

f (i, j) = a(1�sim(R̃(i),R̃( j))), (5.10)

i.e., we reduce the weights of negative pairs with similar histories, and increase those with

distinct histories. a (a > 1) is a hyperparameter that weighs the negative samples, sim is the

cosine similarity, R̃(i) and R̃( j) are the average features of two users’ input historical reviews.

Overall, the model is optimized with a mixture of a cross-entropy loss and those two contrastive

losses:

Lloss = LCE +l1LCCL +l2LPCL, (5.11)

where l1 and l2 are hyperparameters that weigh the two losses.

5.3 Experiments

5.3.1 Experimental Setting

Baselines. We compare our model with popular baselines from different tasks, including

image captioning, report generation and explanation generation: (1) ST [Xu et al., 2015] is a

classic CNN+LSTM model for image captioning. (2) R2Gen [Chen et al., 2020b] is a state-

of-the-art memory-driven transformer specialized at generating long text with visual inputs.

(3) Ref2Seq [Ni et al., 2019] is a popular reference-based seq2seq model for explanation

generation in recommendation. (4) Peter [Li et al., 2021b] is a recent transformer-based

explanation generation model which uses the user and item IDs to predict the words in the target

explanation. (5) img and text refer to image and text features respectively.

Evaluation Metrics. For image selection, we utilize Precision@K, Recall@K, and

F1@K to measure ranking quality. Given the nature of our task, we set a small K = 3. To assess

diversity, we introduce the truncated div@K, where K = 3. Formally, for a set of K images
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Table 5.1. Results on personalized showcases with different models and different input modalities.
Results are in percentage (%). GT is the ground truth.

Model Input N-Gram Metrics Diversity Metrics Embedding Metrics

BLEU-1 METEOR NIST DIST-1 DIST-2 CLIP-S BERT-S

GT - - - - 6.06 43.23 28.41 -

ST img 8.24 3.41 28.08 2.74 17.41 24.01 85.20
R2Gen img 6.47 3.10 36.55 3.23 22.45 24.28 85.89

Ref2Seq text 7.09 3.80 30.78 0.92 5.89 22.83 84.71
Peter text 8.89 3.28 34.45 0.38 1.27 23.27 86.94

P-SHOWCASE
img 9.92 3.64 37.35 3.37 26.37 24.68 88.03

img+text 10.40 3.83 50.64 3.58 28.58 24.50 88.23

{i1, . . . , iK}, div@K is defined as:

div@K = Â
1m<nK

dis(im, in)
K(K�1)/2

. (5.12)

Textual explanations are evaluated for relevance using n-gram-based metrics such as

BLEU (n=1,4) [Papineni et al., 2002], METEOR [Banerjee and Lavie, 2005], as well as

NIST (n=4) [Doddington, 2002]. To assess diversity, we report DISTINCT-1 and DISTINCT-2

proposed in [Li et al., 2015]. Additionally, we use embedding-based metrics using CLIP and

BERT. CLIP-SCORE [Hessel et al., 2021] and BERT-SCORE [Zhang et al., 2020a] are recent

embedding-based metrics.

Dataset & Implementation Details. We gathered 1.77 million Google Local reviews

in the United States and selected 108,000 high-quality reviews about restaurants. We call this

dataset GEST, standing for Google Reviews on Restaurants. The data is divided into a 0.8/0.1/0.1

ratio for training, validation, and testing, respectively. Our approach utilizes CLIP with ViT-B/32

for encoding reviews and images, and GPT-2 small as the decoder backbone. Further information

on dataset statistics, preprocessing, comparison with other datasets, and implementation details

can be found in the supplementary material.
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Table 5.2. Ablation study on personalized image selections. Results are reported in percent-
age (%).

Accuracy Diversity
Method Prec@3 Recall@3 F1@3 Div@3

random 4.87 6.14 5.43 30.24

img 25.21 34.05 28.97 17.12
text 15.28 20.58 17.54 18.68
img+text 25.21 34.37 29.09 17.07

5.3.2 Result Analysis
Framework Performance

We present the model performance on text evaluation metrics in Table 5.1. The incorpora-

tion of image features addresses challenges in generating human-like explanations and avoiding

monotonous text. The comparison between text-input and image-input models highlights the

clear superiority of visually-aware generation models in terms of diversity and embedding met-

rics. Meanwhile, our proposed PC2L exhibits significant improvement across various metrics

compared to other transformer-based models. This underscores the effectiveness of a pretrained

language model with contrastive learning in generating high-quality explanations. Despite

competitive results on n-gram metrics such as BLEU and METEOR, text-based models Ref2Seq

and Peter lag behind in diversity and embedding metrics. Additionally, these models demonstrate

lower text quality with frequent occurrences of repetitive and non-informative sentences, as

confirmed by human evaluations and case studies.

Component Analysis

We perform ablation studies to evaluate the effectiveness of individual components.

Models for image set selection. To assess personalized image set selection performance,

we compare our model against random selection and various input modalities. As presented

in Table 5.2, despite the text-only model having the highest truncated diversity, its ranking
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(a) (b)

Figure 5.4. (a) The length distributions of generated texts on the test set. (b) The generation
coverage of nouns (Noun), adjectives (ADJ) and adverbs (ADV).

performance is markedly inferior to models incorporating images, indicating the inadequacy of

text input alone for user personalization. Historical images, conversely, serve as a crucial visual

cue for capturing user preferences. In summary, a multi-modal model combining images and

text attains the superior ranking performance for image set selection, showing the significance of

our proposed multi-modal approach in achieving personalized showcases.

Effectiveness of Contrastive Learning. We conduct ablation studies on various config-

urations of our contrastive loss. As presented in Table 5.3, our PC2L outperforms all baseline

models across different metrics. CCL enhances visual grounding by compelling the model to

distinguish between random and correct entities, resulting in an improvement in CLIP-SCORE

compared to the vanilla contrastive framework [Chen et al., 2020a]. On the other hand, PCL

enhances diversity by directing the model’s focus towards users with dissimilar interests.

To understand the impact of contrastive learning on generation quality, we analyze

outputs based on length distributions and keyword coverage. Figure 5.4 (a) compares length

distributions on the test set, categorized into 6 groups within the range [0, 60] with a 10-unit

interval. The model without PC2L exhibits a sharper distribution, while incorporating PC2L

results in a distribution closer to the ground truth, showcasing its efficacy and ability to generalize

to unseen images.
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Table 5.3. Ablation study on contrastive learning. CL, CCL and PCL are the contrastive losses
in Equations (5.7) to (5.9).

BLEU-1 DISTINCT-2 CLIP-S

Base model w/o CL 7.96 25.90 23.71

img CL + text CL 9.72 27.58 23.93
CCL+ text CL 10.19 28.10 24.36
img CL + PCL 9.96 28.32 24.15

PC2L 10.40 28.58 24.50

Table 5.4. Human evaluation on two models. We present the workers with reference text and
images, and ask them to give scores from different aspects. Results are statistically significant
via sign test (p < 0.01).

Method Expressiveness Alignment

Ref2Seq 3.72 3.65
PC2L 4.25 4.10

Figure 5.4 (b) illustrates keyword coverage in output sentences. A keyword is considered

covered if it exists in the corresponding ground truth. Models trained with and without PC2L

are compared, revealing that PC2L improves coverage for all types of keywords, indicating that

our contrastive learning method enhances the diversity and personalization of generated text.

In conclusion, integrating contrastive learning into multi-modal explanation generation yields

improved output quality with more diverse and visually-aligned texts.

Human Evaluation

To fully evaluate our model, we conduct human evaluation on Amazon Mechanical

Turk.3 For each model, we randomly sample 500 examples from test set. Each example is scored

by three human judges using a 5-point Likert scale to reduce variance. We instruct the annotators

to consider expressiveness (semantically correct, diversity, no repetition) and visual alignment

(the text describes the context of the images). As is shown in Table 5.4, PC2L significantly

outperforms Ref2Seq, which is consistent with the automatic evaluation metrics.
3https://www.mturk.com/
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5.4 Conclusion

In this chapter, to generate explanations with rich information for recommendations,

we explore the multimodal generation tasks for recommender systems. To be specific, we

propose a new task, namely personalized showcases, and collect a large-scale dataset GEST from

Google Local for the task. We design a multi-modal explanation framework, P-Showcase, with

contrastive learning to learn visual and textual explanations from user reviews. Experimental

results show that showcases provide more informative and diverse explanations compared to

previous text-only explanations.

As future work, one promising direction is to develop an end-to-end framework for gen-

erating both visual and textual explanations. Besides, we find that visual grounding on multiple

images is still challenging for showcases. Hence, effectively leveraging multi-modal information

and improving visual alignment are also important works to explore for the new task. At the same

time, applying our P-SHOWCASE in real-world conversational recommendations as a multimodal

explanation generator is an interesting direction as well. We hope our dataset and framework

would benefit the community for future research on multi-modalities and recommendations.

Chapter 5, in part, is a reprint of the material as it appears in “Personalized Showcases:

Generating multi-modal explanations for recommendations.” by An Yan*, Zhankui He*, Jiacheng

Li*, Tianyang Zhang, and Julian McAuley in Proceedings of the 46th International ACM SIGIR

Conference on Research and Development in Information Retrieval in 2023, referenced as [Yan

et al., 2023a]. The dissertation author was the primary investigator and author of this paper.
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Part III

Interactivity: Exploring Complex

Recommendation Scenarios
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Chapter 6

Item Bundling in Conversational Recom-
mender Systems

In this chapter, we start exploring complex recommendation tasks in the context of

conversational recommendations. Many recommendation needs cannot be satisfied by using

traditional recommender systems. However, enhancing the interactivity between users and the

systems by introducing a conversational recommendation mechanism may help.

Our exploration in this chapter demonstrates how to handle challenging bundle recom-

mendation tasks by introducing conversational mechanisms. Traditional bundle recommender

systems, which suggest sets of complementary items (e.g., clothing outfits), frequently face

challenges due to significant interaction sparsity and a large output space. We propose extending

multi-round conversational recommendation (MCR) to address these issues. MCR utilizes a

conversational approach to elicit user preferences through questions about tags (e.g., categories

or attributes) and incorporates user feedback across multiple rounds. This approach has the

potential to acquire valuable user input and refine the recommendation space, but its application

within bundle recommendation remains unexplored.

We formulate the bundle recommendation with MCR conversational mechanisms as

BUNDLEMCR. Unlike traditional bundle recommendation, which typically involves bundle-

aware user modeling and generation, BUNDLEMCR focuses on encoding user feedback as

conversation states and strategically formulating questions. Additionally, while existing MCR
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systems recommend individual items, BUNDLEMCR must accommodate more complex user

feedback involving multiple items and related tags. Furthermore, we introduce a model archi-

tecture called Bundle Bert (BUNT) with the following capabilities: (1) item recommendation,

(2) question generation, and (3) conversation management based on bundle-aware conversation

states. We also devise a two-stage training strategy for BUNT training. Experiments on mul-

tiple offline datasets, along with human evaluation, demonstrate the value of extending MCR

frameworks to bundle settings and the overall effectiveness of our BUNT design.

6.1 Introduction

Bundle recommendation is suggesting sets of items for simultaneous consumption by

users [Pathak et al., 2017, Chen et al., 2019a, Deng et al., 2021a] (e.g., outfits, playlists), en-

hancing user satisfaction [Deng et al., 2020, Chen et al., 2019c]. However, it faces inherent

challenges: (1) Interaction sparsity, as user-bundle interactions are sparser than user-item inter-

actions, making accurate modeling of user preferences difficult; (2) Output space complexity,

as predicting correct bundles from all item combinations is more challenging than traditional

individual item recommendations.

Currently, two approaches are proposed in bundle recommendation to address these

challenges. The first approach [Pathak et al., 2017, Chang et al., 2020, Chen et al., 2019a]

introduces discriminative methods, wherein bundles are treated as generalized individual items,

avoiding complexity by ranking existing bundles. However, these methods often have narrow

application scenarios, such as pre-defined bundle sales. The second approach [Bai et al., 2019,

Deng et al., 2021a, Hu and He, 2019] employs generative methods, capable of generating

(potentially new) bundles, offering greater flexibility but suffering from limited accuracy. In

these works, bundle recommenders are one-shot, recommending a complete bundle with a single

attempt. As depicted in the traditional bundle recommendation in Figure 6.1a, the user receives

a complete bundle (e.g., shirt, shoes, and pants), reacts to it (e.g., picking a shirt but ignoring
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Traditional Bundle Rec.

t1: model rec t2: user action

“I want a 
sport-style 

shirt.”

t1: user action t2: model rec ti: model ask

…
“Would 

you like a 
blue one?”

…

tn: user action

Conv. Rec. For Individual Item

Ours: Bundle Conv. Rec.

“Show 
me a nice 
outfit.”

t1: user action t2: model rec

“I like the 
shirt but not 
the pants.”

t3: user action

“Would you like 
sport-style pants 

with white shoes ?”

t4: model ask

…

tn: user action

SYSTEM
update conv. 

state !!(#) 

USER
seek desired  
bundle ℬ%∗

Ask tags, e.g., 
categories, attributes

Rec. multiple items as 
a (partial) bundle

Feedback to items

Initial State !!(') 
1. start

2. ask
or rec

3. respond

(a) Example of Conversational Bundle Recommendation vs Others (b) Diagram of BUNDLEMCR

Feedback to tags

Figure 6.1. Left: Use case comparisons among traditional bundle recommendation, in-
dividual conversational recommendation, and our conversational bundle recommendation.
Right: Diagram of our proposed Bundle-Aware Multi-Round Conversational Recommendation
(i.e., BUNDLEMCR) scenario, which extends traditional individual MCR [Lei et al., 2020a,b,
Deng et al., 2021b, Zhang et al., 2022] to bundle settings.

others), and the recommendation process concludes. However, this one-shot setting restricts

the model from collecting continuous user feedback to enhance bundle accuracy. Recognizing

these limitations, we introduce a new approach, termed multi-round and interactive bundle

recommendation, referred to as BUNDLEMCR. As shown in Table 6.1, this approach allows

the user and system to engage in a “conversation” regarding bundle composition over multiple

rounds.

The BUNDLEMCR concept extends multi-round conversational recommendation (MCR)

mechanisms, specifically designed for individual item recommendation, to address the challenge

of bundle recommendation. While existing MCR frameworks, such as Individual MCR, have

demonstrated effectiveness in eliciting user preferences for individual items, they are not directly

applicable to bundle settings due to factors like neglecting user-bundle interactions, recommend-

ing top-K individual items instead of bundles, and handling feedback and questions at the item

level without considering the bundle context. This disparity is depicted in Figure 6.1a. Individual

MCR focuses on updating user feedback on tags for a single item, while BUNDLEMCR aims to

generate multiple items as a bundle or partial bundle, considering user feedback and questions

related to different items within the bundle. The proposed BUNDLEMCR framework enhances
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conversational recommendation by accommodating bundle contexts, facilitating more accurate

bundle recommendations through user feedback on item tags during conversations.

We approach the BUNDLEMCR problem by formulating it as a Markov Decision Process

(MDP) with multiple agents. We introduce a novel model architecture, Bundle Bert (BUNT),

designed to handle these tasks within a unified self-attentive framework [Vaswani et al., 2017a,

Kang and McAuley, 2018, Sun et al., 2019]. To effectively train BUNT, a two-stage training

strategy is used. Initially, we pre-train BUNT using multiple cloze tasks, enabling the model

to acquire foundational knowledge on inferring correct items, tags, and determining when to

ask or recommend based on conversation contexts simulated by offline user-bundle interactions.

Subsequently, we use a user simulator to create a simulated online environment and fine-tune

BUNT agents using reinforcement learning on conversational bundle interactions with users. In

summary, the key contributions of this work are as follows:

• Introducing a novel BUNDLEMCR setting, where users and the system collaboratively

complete a bundle. This work addresses conversational mechanisms in bundle recommen-

dation, mitigating challenges related to information sparsity and output space complexity.

• Presenting an MDP framework with multiple agents for BUNDLEMCR. Within this

framework, we propose Bundle Bert (BUNT) as a unified self-attentive architecture for

conducting multiple BUNDLEMCR functions. A two-stage strategy (pre-training and

fine-tuning) is devised for BUNT learning.

• Evaluating conversational bundle recommendations on four offline bundle datasets and

conducting a human evaluation to demonstrate the effectiveness of BUNT and the potential

of conversational bundle recommendation.
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Table 6.1. Functionality requirements in BUNDLEMCR model design and comparisons with
individual MCR and bundle recommendation.

Functionalities Individual MCR Bundle Rec. BUNDLEMCR

Bundle-Aware User Modeling 8 [Deng et al., 2021a,
Bai et al., 2019,

Pathak et al., 2017,
Chang et al., 2020,

Chen et al.,
2019a,c]

4

Bundle Generation 8 [Deng et al., 2021a,
Bai et al., 2019,

Pathak et al., 2017,
Chen et al., 2019c]

4

Bundle-Aware Feedback Handing 8 8 4
Bundle-Aware Question Asking 8 8 4
Conversation Management [Lei et al., 2020a,b,

Zhang et al., 2020b,
Deng et al., 2021b]

8 4

6.2 Proposed Scenario: BUNDLEMCR

6.2.1 BUNDLEMCR Scenario Formulation

We extend multi-round conversational recommendation (MCR) [Lei et al., 2020a,b, Deng

et al., 2021b] to a bundle setting, termed BUNDLEMCR. In contrast to individual MCR, we

introduce the concept of a slot in BUNDLEMCR1, which serves as a placeholder for a consulted

item. For instance, an outfit (1: shoes, 2: pants, 3: shirt) comprises three slots X = {1,2,3}.

The objective of bundle MCR is to (1) determine the number of slots and (2) fill target items in

these slots during conversations.

The formulation of BUNDLEMCR involves the set of users U and items I , where we

collect tags corresponding to items, such as the set of attributes P (e.g., “dark color”) and

categories Q (e.g., “shoes”). As depicted in Figure 6.1b, for a user u 2U :

1. Conversation starts from a state S(1)
u , which encodes user historical bundle interactions

{B1,B2, . . .}, where B⇤ represents a bundle of multiple items. Let us set conversational
1This slot concept differs from that in dialog systems.
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round t = 1, the system creates multiple slots as X
(t).

2. Then, the system decides to recommend or ask, i.e., (i) recommending |X (t)| items as

a (partial) bundle to fill these proposed slots, denoting as B
(t)
u = {îx | x 2 X

(t)}; or

(ii) asking for user preference per slot on attributes A
(t)

u = {âx | x 2X
(t)} and categories

C
(t)
u = {ĉx | x 2X

(t)}. Here in each slot x, îx 2I , âx 2P and ĉx 2Q.

3. Next, user u is required to provide feedback (i.e., accept, ignore, reject) to the proposed

partial bundle B
(t)
u or attributes A

(t)
u and categories C

(t)
u per slot x 2X

(t).

4. After that, the system updates user feedback into new state S(t+1)
u , records all the accepted

items into a set, denoting as B̌u
2, and updates the slots of interest as X

(t+1) by creating

new slots and removing the slots x in which user has accepted the recommended item îx.

After multiple rounds of step (2)-(4), the system collects rich contextual information and create

bundle B̌u for user. The conversation terminates when u is satisfied with the current bundle

(i.e., B̌u equals the target bundle B
⇤
u) or this conversation reaches the maximum number of

rounds T .

In BUNDLEMCR, we address several key questions: (1) how to encode user feedback

into the bundle-aware state S(t+1)
u ; (2) how to accurately predict bundle-aware items or tags; (3)

how to effectively train models in BUNDLEMCR; and (4) how to determine the size of slots

X
(t) per round. In this study, we concentrate on addressing questions (1)-(3), while adopting a

straightforward strategy for (4), specifically, maintaining a fixed slot size K. Despite the fixed

slot size per round, the final bundle sizes exhibit diversity due to varying user feedback and

conversation rounds. More flexible slot strategies are deferred to future investigations.

It is important to note that we use attribute set P and category set Q, along with

associated models, in all baseline and proposed methods. However, for clarity in the subsequent

methodology sections, we exclusively refer to the attribute set P as an example of tags.
2We use the \check mark for the meaning of “being accepted by user”; similarly, we use \hat for the meaning

of “being proposed to user”.
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6.2.2 General MDP Framework for BUNDLEMCR

We model BUNDLEMCR as a two-step Markov Decision Process (MDPs) involving

multiple agents. This is due to the system’s two-step decision-making process: first, deciding

whether to recommend or ask (conversation management), and second, determining what to

recommend or ask. Additionally, multiple agents are assigned distinct responsibilities: an

agent (using pM) handles conversation management, a bundle agent (using pI) decides on

recommending items to form a bundle, and an attribute agent (using pA) determines which

attributes to inquire about. The overarching objective of our framework is to maximize the

expected cumulative rewards by learning distinct policy networks p⇤M,p⇤I ,p⇤A. We segment a

conversation round into user modeling, consultation, and feedback handling stages, following

a structure similar to [Zhang et al., 2022]. Subsequently, we elaborate on the design of state,

policy, action, and transition within this framework across the relevant stages.

States: Bundle-Aware User Modeling

We first introduce the shared conversation state S(t)
u for all agents. S(t)

u is encoded (specific

encoder is introduced in Section 6.3) from the conversational information S(t)u at conversational

round t, which is defined as:

S(t)u =
�

{B1,B2, . . .},| {z }
long-term preference

{(ǐ(t)x , ˇA
(t)

x ) | x 2X
(t)},| {z }

short-term contexts

{(I (t)
x ,P

(t)
x ) | x 2X

(t)}| {z }
candidate pools

�
.

(6.1)

• Long-term preference is represented by the set of user u’s historical bundle interactions

{B1,B2, . . .}.

• Short-term contexts collect accepted items and attributes in conversations before conver-

sational round t. X
(t) is the set of slots till rounds t, i.e., X

(t) =
St

t 0=1 X
(t 0). In slot x

at round t, we record the tuple (ǐ(t)x , ˇA
(t)

x ), where ǐ(t)x denotes the item id accepted by the

user. If no item accepted in slot x, ǐ(t)x is set as a mask token [MASK]; ˇA
(t)

x is the set of

90



accepted attributes in slot x. For example, the initial short-term context is a K-sized set of

([MASK], /0) tuples, meaning we know nothing about accepted items or attributes.3

• Candidate pools contain item and attribute candidates per slot at round t (it is not space

costly by black lists). They are initialed as completed pools I and P , and updated with

user u’s feedback, described in Section 6.2.2.

Second, we introduce an additional conversation information denoted as S̄(t)u , encoded

as an additional state S̄(t)
u (refer to Section 6.3.1) for the conversation management agent. S̄(t)u

maintains a record of the result IDs from the previous t-1 rounds in the form of a list, e.g.,

[rec fail, ask fail, ...]. This state representation is commonly used for conversation management

agents in existing works such as [Lei et al., 2020a,b, Deng et al., 2021b]. The result ID settings

align with [Lei et al., 2020a], with the addition of a “bundle suc” ID to capture the outcome of

successfully recommending the entire bundle, alongside the existing “rec suc” ID for successfully

recommending a single item.

Policies and Actions: Bundle-Aware Consultation

The system transitions to the consultation stage following the acquisition of conversation

states during the user modeling stage. At this point, a two-step decision-making process occurs:

(1) determining whether to recommend or inquire, guided by policy pM; (2) selecting what

to recommend through policy pI or deciding what to ask through policy pA. We define these

policies as:

• pM – conversation management: use S̄(t)
u and S(t)

u to predict a binary action (recommend-

ing or asking).

• pI – (partial) bundle generation: if recommending, the agent uses S(t)
u as input to generate

|X (t)| (i.e., K) items as B
(t)
u = {îx | x 2X

(t)}, where îx is the action corresponding to

slot x and the actions space is I
(t)

x .
3We can record rejected items or attributes as well, but we omit them since they are currently not effective

empirically in our experiments.
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• pA – attributes consultation: if asking, the agent uses S(t)
u as input to generate |X (t)|

(i.e., K) attributes as A
(t)

u = {âx | x 2X
(t)}, where âx is the action corresponding to slot

x and the actions space is P
(t)
x .

Transitions: Bundle-Aware Feedback Handling

The system handles user feedback in a transition step. The user u will react to the

proposed K items or attributes with acceptance, rejection or ignoring. Generally, in our transition

step, “acceptance” is mainly used to update short-term contexts, “rejection” is used to update

candidate pools and we change nothing when getting “ignoring”.

• Update S(t+1)
u : long-term preference is fixed, we update the short-term contexts and

candidate pools as follows: (1) Feedback to items: for each consulted item îx, (i) all

item candidates pools I
(t+1)

x0 where x0 2X
(t) delete îx because it has been recommended;

(ii) if îx is accepted, short-term contexts in slot x will assign îx to ǐ(t)x . (2) Feedback

to attributes: for each consulted attribute âx, (i) different from consulted items, only

attribute pool P
(t+1)
x removes âx because the user has a different preference on attributes in

different slots (e.g., white shirt but black pants); (ii) if âx is accepted, ˇA
(t+1)

x in short-term

context is updated by ˇA
(t)

x [{âx}; (iii) if âx is explicitly rejected, it only happens when

user strongly dislikes this attribute. So âx will be removed from all attributes candidate

pools, and items associated with âx will be removed from all item candidate pools as well.

• Update S̄(t+1)
u : it is updated by appending a new result id for round t, resulting in a t-sized

list.

• Update slots X
(t+1): as Section 6.2 described, if items accepted, we remove the corre-

sponded slots from X
(t), and create new slots to keep the size as K. For a new slot x0, the

short-term contexts are ([MASK], /0), and candidate pools are the union sets of previous

candidate pools to excluded items or attributes that the user strongly dislikes.
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Rewards: Two-Level Reward Definitions

We define two-level rewards for multiple agents. (1) Low-level rewards pertain to pI

and pA, focusing on enhancing the accuracy of item recommendations and question posting

online. At round t, the reward rI
x = 1 is assigned if pI successfully recommends the target item,

otherwise 0. Similarly, reward rA
x for pA follows the same pattern. (2) High-level rewards are

designated for the conversation management agent pM to reflect the overall conversation quality.

The reward rM remains 0 unless the conversation concludes, at which point rM is computed using

a final bundle metric such as F1 score or accuracy.

6.3 Proposed Model: BUNT

In this framework, we introduce a unified model called Bundle BERT (BUNT). The

architecture of BUNT is outlined in this section, followed by a discussion on the training

methodology involving offline pre-training and online fine-tuning.

BUNT is an encoder-decoder framework designed for user modeling, consultation, and

feedback handling, supporting multiple input and output types. Utilizing a self-attentive archi-

tecture, we justify this choice for three reasons: (1) Self-attentive models have demonstrated

effectiveness in encoding representations and generating accurate recommendations [Kang and

McAuley, 2018, Sun et al., 2019, Chen et al., 2019c, He et al., 2021, Li et al., 2021b]; (2)

Unlike RNN-based models that require ordered inputs, self-attentive models discard unnecessary

order information, aligning with the unordered nature of bundles; (3) Self-attentive models are

well-suited for cloze tasks, such as those found in BERT [Devlin et al., 2019], making them

suitable for predicting unknown items or attributes in slots.

6.3.1 BUNT for Bundle-Aware User Modeling

Long-Term Preference Representation. We encode user historical interactions, which

are denoted as {B1,B2, . . .}, as user long-term preferences Eu using hierarchical transformer
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Figure 6.2. (a) BUNT architecture illustration. Bunt is a Bert-like model that encodes long-
term preference and short-term contexts to infer masked items, categories and attributes per
slot x 2X

(t). In this example, X
(t) = {2,N} because the related items are still unknown

(i.e.,with [MASK]), and X
(t) = {1, . . . ,N}. We define long-term preference and short-term

contexts in Section 6.2.2. (b) BUNT offline pre-training diagram, where 1� denotes user modeling,
2� mimics the consultation step, 3� mimics the feedback handling step, but instead of updating

the conversation state at the next round, offline training simply re-masks the target bundle to
generate the next masked bundle as BUNT inputs. (c) BUNT online training diagram, where 1�
is user modeling, 2� is the consultation step to generate partial bundle B

(t)
u or attributes A

(t)
u

and categories C
(t)
u , 3� is the feedback handling step to update short-term contexts. We describe

steps 1�- 3� in Sections 6.2.2 and 6.3, where we keep pA and omit the similar policy pC, for ease
of description.

(TRM) [Kang and McAuley, 2018] encoders:

Eu = TRMbundle({B1,B2, . . .}), where Bn = AVG(TRMitem(Bn)), n = 1,2, . . . . (6.2)

TRMbundle is a transformer encoder over the set of bundle-level representations {B1,B2, . . .},

the output Eu 2 RNu⇥d represents user long-term preferences, Nu is the number of historical

bundles, and d is the hidden size of the TRMbundle model. The bundle representation Bn 2 R1⇥d

is also extracted by a transformer encoder, namely TRMitem, over the set of item embeddings in

this bundle, then the set of output embeddings from TRMitem is aggregated by average pooling

(AVG) as Bn. Our two-level transformers contain no positional embeddings since the input

representations are unordered.

Short-Term Contexts Representation. We delineate the representation of short-term
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contexts {(ǐ(t)x , ˇA
(t)

x )|x 2X
(t)}, which are subsequently inputted into a dedicated embedding

layer EMB. Subsequently, we derive two sets of embeddings for items and attributes.

E(t)
I,u, E(t)

A,u = EMB({(ǐ(t)x , ˇA
(t)

x )|x 2X
(t)}), (6.3)

where E(t)
⇤,u 2 R|X (t)|⇥d represents embeddings for items (I) and attributes (A). For items, the

embeddings are retrieved for accepted item ids (or [MASK] id). Regarding attributes, embeddings

corresponding to accepted attribute ids (or [PAD] id) in ˇA
(t)

x for x 2X
(t) are retrieved, followed

by applying average pooling (AVG) on embeddings to obtain E(t)
A,u 2 R|X (t)|⇥d .

Long- and Short-Term Representation Fusion. We input user long-term preferences

Eu and short-term contexts E(t)
⇤,u into an L-layer transformer. For simplicity in notation4, we

represent E(t)
I,u as O0, obtaining the fused representation:

Ol = TRMl(eOl�1,Eu), eOl�1 = LN
⇣

Ol�1�E(t)
A,uWl�1

⌘
, where l = 1, . . . ,L, (6.4)

where TRMl is the lth transformer layer with cross attention [Vaswani et al., 2017a], Wl�1 2Rd⇥d

is a learnable projection matrix at layer l-1 for attribute representation. � is element-wise addition

and LN denotes LayerNorm [Vaswani et al., 2017a] for training stabilization. We incorporate

the attribute feature E(t)
A,u before each transformer layer in order to incorporate multi-resolution

levels, which is effective in transformer-based recommender models [Li et al., 2020d]. Thus

for the output representation OL 2 R|X (t)|⇥d , each row OL
x (x 2X

(t)) contains contextual

information from slots in conversation contexts. We treat OL and candidate pools I
(t)

x ,P
(t)
x for

all slots x 2X
(t) as the encoded state S(t)

u . Moreover, for the additional conversation records

S̄(t)u introduced in Section 6.2.2, we encode it as a vector S̄(t)
u by using result id embeddings and

average pooling.

4To be precisely represented as O(t,0)
I,u ; some notations are omitted for brevity in the decoder description below.
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Algorithm 2. BUNT Offline Pre-Training
Input: historical user bundles D , masking ratio r , BUNT (including p 00M , pI , pA) parameters Q, slot size K;
Output: BUNT parameters Q after pre-training;
1: while not meet training termination criterion do
2: Sample a user u 2U , get historical bundles {B1, . . . ,BNu} from D ; sample a historical bundle as target

bundle, e.g., Bn;
3: Get Eu Equation (6.2) with input {B1, . . . ,BNu}\{Bn};
4: Sample l items in Bn as B

l
n; . Mimic partial bundle. W.l.o.g., assume |Bn|> K

5: Sample k 2 [1,K], then mask k items in Bl
n, set the masked positions as slots X ;

6: Retrieve attributes for items in B
l
n and mask attributes with probability r; . Mimic short-term contexts

7: Predict the distributions of masked items, attributes, and conversation management in slot x 2X via Equa-
tion (6.5);

8: Compute loss Loffline with Equations (6.6) to (6.8); update Q using gradient-related optimizer (e.g., [Kingma
and Ba, 2014]).

9: end while

6.3.2 BUNT for Bundle-Aware Consultation

For the consultation step, we feed the encoded state into multiple policy networks to get

outputs for each slot x 2X
(t):

8
>>>>><

>>>>>:

PM(a | S̄(t)
u ,OL

x ) = b ·p 0M(a | S̄(t)
u )+(1�b ) ·p 00M(a | OL

x ), where a 2 {0,1}, Conv. Management

PI(a | OL
x ) = pI(a | OL

x ), where a 2I
(t)

x , Bundle Generation

PA(a | OL
x ) = pA(a | OL

x ), where a 2P
(t)
x . Attribute Consultation

(6.5)

P⇤ denotes probability. The policy network pM is a linear combination of two sub-models,

p 0M and p 00M, corresponding to states S̄(t)
u and OL

x respectively. The gating weight b is predicted

by an MLP model with a sigmoid function, taking concatenated S̄(t)u ,OL
x as input. The models

p 0M, p 00M, pI , and pA are MLP models with ReLU activation and softmax layer. We utilize pI or

pA for inferring masked items or attributes in slot x. During the inference stage, actions with the

highest probability determine whether to recommend or ask, constructing the consulted (partial)

bundle B
(t)
u or questions on attributes A

(t)
u . In contrast to other individual-item MCR models,

the contextual information stored in different slots plays a crucial role in bundle recommendation.

Hence, a unified self-attentive architecture is used to share the state encoded from various slots

for both recommendation and question predictions.
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Algorithm 3. Online BUNT Fine-Tuning
Input: trainable BUNT parameters QI , QA and QM for three networks pI , pA and pM , empty buffer MM , MI and

MA;
Output: BUNT policy networks parameters QI , QA and QM;
1: for episode e = 1,2, . . . do
2: Sample a user u, get target bundle B

⇤
u ; initialize B̌u /0 for recording all the accepted items;

3: for conversation round t = 1,2, . . . ,T do
4: Get conversation states S(t)

u and S̄(t)
u via Section 6.3.1; get slots X

(t) via Section 6.2.2; . 1. user
modeling

5: Sample action aM from {0,1} using pM via Section 6.3.2 ; . 2. consultation
6: if aM == 1 then
7: Use OL from S(t)

u to generate a partial bundle B
(t)
u using pI via Section 6.3.2; . 2.1 recommending

8: Update conversation states S(t+1)
u and S̄(t+1)

u via Sections 6.2.2 and 6.3.1; get ÕL from S(t+1)
u ; . 3.

feedback handling
9: Add {(OL

x ,ÕL
x , îx,rI

x) | x 2X
(t)} to MI , calculating rI

x via Section 6.2.2; . i.e., (state, next state,
action, reward)

10: Add accepted items into B̌u;
11: else if aM == 0 then
12: Use OL from S(t)

u to generate questions on attributes A
(t)

u using pA via Section 6.3.2; . 2.1 asking
13: Update conversation states S(t+1)

u and S̄(t+1)
u via Sections 6.2.2 and 6.3.1; get ÕL from S(t+1)

u ; . 3.
feedback handling

14: Add {(OL
x ,ÕL

x , âx,rA
x ) | x 2X

(t)} to MA, calculating rA
x via Section 6.2.2; . i.e., (state, next state,

action, reward)
15: end if
16: Add ((OL, S̄(t)

u ),(ÕL, S̄(t+1)
u ),aM,rM) to MM , calculating rM via Section 6.2.2; . i.e., (state, next state,

action, reward)
17: if B̌u = B

⇤
u or t = T then

18: Current conversation terminates;
19: end if
20: end for
21: if Mk (k = {M, I,A}) meets pre-defined buffer training criterion (e.g., buffer size) then
22: Update Qk using Mk with RL methods (e.g., DQN [Mnih et al., 2015], PPO [Schulman et al., 2017]);

Then reset Mk; . policy learning
23: end if
24: end for

6.3.3 Offline Pre-Training

Given the extensive action spaces of items and attributes, training agents directly from

scratch poses challenges. Consequently, we initiate the pre-training of the BUNT model using

offline user-bundle interactions. The essence of pre-training involves emulating model inputs

and outputs within the context of BUNDLEMCR. This can be conceptualized as multiple cloze

(i.e., “fill the slot“) tasks, wherein a few accepted items and attributes are provided to infer the

masked items and attributes.
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Multi-Task Loss. BUNT offline training is based on a multi-task loss for recommendation

and question asking simultaneously, i.e., Loffline = Lrec +lLask, where l is a trade-off hyper-

parameter to balance the importance of these two losses in offline pre-training. We treat item

prediction as a multi-class classification task for masked slots X
(t):

Lrec =� Â
x2X (t)

Â
i2I (t)

x

yi logPI(i | OL
x ), (6.6)

where yi is the binary label (0 or 1) for item i. Meanwhile, attribute predictions are formulated

as multi-label classification tasks. We use a weighted cross-entropy loss function considering

the imbalance of labels to prevent the model from only predicting popular attributes. The loss

function of attribute predictions is:

Lask =� Â
x2X (t)

Â
a2P(t)

x

wa · ya logPA(a | OL
x ), (6.7)

where wa is a balance weight of attribute a following [King and Zeng, 2001], and note that multi-

ple ya can be 1 for multi-label classification. Furthermore, we pre-train part of the conversational

manager, i.e., p 00M, to decide whether to recommend or ask:

Lconv =� Â
x2X (t)

I(lx 6=�1) · logp 00M(lx | OL
x ). (6.8)

For slot x, as long as item agent pI hits the target item, lx is set as 1; otherwise, if the attribute

agent hits the target, lx is 0. lx is set as -1 when no agents make successful predictions. We

denote Lask = Lcate +Lattr +Lconv.

Training Details. Figure 6.2b illustrates BUNT offline training. We pre-train BUNT on

offline user-bundle interactions, to obtain the basic knowledge to predict the following items

or attributes given historical bundle interactions and conversational information. The training

details are in Algorithm 2.
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6.3.4 Online Fine-Tuning

Figure 6.2c shows the online-training diagram, where we fine-tune BUNT agents during

interactions with (real or simulated) users. Our core idea is fixing BUNT backbone parameters,

fine-tune agents pI , pA and pM in a BUNDLEMCR environment to update related parame-

ters and improve the accuracy after interacting with users. The online fine-tuning details are

in Algorithm 3. We omit the details of RL value networks like [Lei et al., 2020b].

6.4 Experiments

6.4.1 Experimental Setting

Evaluation Protocol and Metrics. Following [Deng et al., 2021a, Kang and McAuley,

2018, Lei et al., 2020b], we use a leave-one-out data split. Specifically, for each user, N-1

bundles are randomly selected for offline training. In contrast, the remaining bundle is used

for online training, validation, and testing, with a ratio of 6:2:2. We evaluate the quality of the

generated bundle using multi-label precision, recall, F1, and accuracy as defined in [Zhang and

Zhou, 2014].

Data. We augment four datasets for BUNDLEMCR, as outlined in Table 6.2. Due to the

absence of item attributes or category information, alternative bundle datasets such as Youshu and

NetEase are not utilized. (1) Steam: Utilizing user interactions with game bundles from [Pathak

et al., 2017] on the Steam platform5, we use item tags as attributes in BUNDLEMCR, and item

genres as categories. Users with fewer than two bundles are excluded according to our evaluation

protocol. (2) MovieLens: Employing the ML-10M benchmark dataset [Harper and Konstan,

2015] for collaborative filtering tasks, we consider movies rated with the same timestamps as a

bundle. Genres are treated as categories, and tags as attributes in BUNDLEMCR. (3) Clothing:

Derived from [McAuley et al., 2015] on the Amazon e-commerce platform6, this dataset focuses
5https://store.steampowered.com
6https://www.amazon.com
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Table 6.2. Data Statistics, where # denotes quantity number, U denotes user, I denotes item,
B denotes bundle, C denotes category and A denotes attributes. B/U represents the number of
bundles per user, B size represents the average number of items per bundle.

Dataset #U #I #B #C #A #Inter B/U B Size

Steam 13,260 2,819 229 21 327 261,241 2.95 5.76
MovieLens 46,322 5,899 851,361 19 190 3,997,583 27.81 3.11
Clothing 19,065 25,408 79,610 668 4,027 285,391 5.03 3.17
iFashion 340,762 68,921 5,593,387 61 4,264 21,552,716 16.41 3.79

on the clothing subcategory. Co-purchased items form a bundle by timestamp. Item categories

in the metadata serve as categories in BUNDLEMCR, and style in item reviews (e.g., “format” is

“hardcover,” we use “hardcover”) serve as attributes. To enhance data quality, users and items

appearing no more than three times are filtered out. (4) iFashion: An outfit dataset with user

interactions [Chen et al., 2019c]. Following [Wang et al., 2021], iFashion is pre-processed as

a 10-core dataset for improved data quality. Categories features from iFashion metadata and

tokenized title are utilized as categories and attributes in BUNDLEMCR, respectively.

Baselines. We evaluate BUNDLEMCR and our proposed BUNT (referred to as BUNT-

Learn in Section 6.3) against three groups of recommendation baselines.

1. Traditional bundle recommenders. Freq predicts the most frequent bundle without

personalization. BBPR [Pathak et al., 2017] ranks existing bundles due to the impractical

time cost of cold bundle generation in BBPR. BGN [Bai et al., 2019] employs an encoder-

decoder [Sutskever et al., 2014] architecture to encode user interactions and generate a

sequence of items as a bundle. We use the top-1 bundle in BGN’s generated bundle list as

the result. PoG [Chen et al., 2019c] is a transformer-based [Vaswani et al., 2017a] encoder-

decoder model for personalized outfits. We use it for general bundle recommendations.

BYOB [Deng et al., 2021a] is the latest bundle generator using reinforcement learning

methods.

2. Adopted individual recommenders for BUNDLEMCR. FM-All is an FM [Rendle,

2010] variant used in MCR frameworks [Lei et al., 2020a,b], where “All” indicates
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recommending top-K items per round without questions. FM-Learn follows the item

predictions in FM-All but utilizes other pre-trained agents in BUNT for conversation

management and question posting. EAR [Lei et al., 2020a] and SCPR [Lei et al., 2020b]

are popular Individual MCR frameworks based on FM. We maintain the core ideas of

estimation-action-reflection in our EAR, and path reasoning in our SCPR, renaming them

to EAR* and SCPR* to adapt to BUNDLEMCR. We exclude recent UNICORN [Deng

et al., 2021b] and zhang2022multiple [Zhang et al., 2022] due to incompatible action

spaces and question settings with BUNDLEMCR.

3. Simple bundle recommenders for BUNDLEMCR. BUNT-One-Shot uses BUNT in

traditional bundle recommendation following the inference of PoG [Chen et al., 2019c].

{BYOB, BGN, BUNT}-All are straightforward bundle recommender implementations in

BUNDLEMCR, recommending only top-K items per round without posing questions.

Training Details. Our training process consists of two stages7: (1) In the offline pre-

training phase, we use Algorithm 2 to implement and train the BUNT model using PyTorch.

The number of transformer layers and heads is selected from the set {1,2,4}, with d = 32,

K = 2, l = 0.1, and a masking ratio r = 0.5. We utilize the Adam optimizer [Kingma and

Ba, 2014] with an initial learning rate of 1e-3 for all datasets, employing a batch size of

32. The maximum bundle size is specified as 20. (2) For the online fine-tuning phase, we

implement Algorithm 3 using the OpenAI Stable-Baselines RL training code. We utilize

Proximal Policy Optimization [Schulman et al., 2017] (PPO) in Stable-Baselines8 to jointly

train four agents (pM, pI , pC, pA). Here, pC represents the category policy, similar to pA. The

training is conducted using the Adam optimizer with lr=1e-3. Remaining hyper-parameters

follow default settings in Stable-Baselines. We repeat all experiments three times with

different random seeds and report the average performance along with related standard errors.
7For detailed metric definitions, data processing, BUNT implementation, and human evaluation setup, refer to

https://github.com/AaronHeee/Bundle-MCR.
8https://stable-baselines3.readthedocs.io
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User Simulator Setup Due to the challenges and expenses associated with interacting

with real users, our framework evaluations primarily utilize user simulators, as seen in previous

studies [Lei et al., 2020a,b, Deng et al., 2021b, Zhang et al., 2022]. We emulate user behavior by

simulating a user with a target bundle B
⇤ sampled from our online dataset. The user simulator

accepts system-provided items that align with the target bundle B
⇤ and accepts categories

and attributes corresponding to potential target items in the current slot.9 The user simulator

explicitly rejects categories or attributes not associated with any items in B
⇤. In other scenarios,

the user simulator ignores items, categories, and attributes provided by the system. The user

simulator can terminate conversations when all items in B
⇤ have been recommended; otherwise,

the system concludes conversations after t = T rounds. We set the maximum conversation rounds

T to 10 in our experiments.

6.4.2 Result Analysis
Main Performance of BUNDLEMCR and BUNT-Learn

Table 6.3, Figures 6.3 and 6.4 illustrate the primary performance metrics of our proposed

framework and model architecture in comparison to various conversational recommendation

baselines. Several key observations can be derived from the results:

BUNT Backbone Performance. While we propose BUNT for the BUNDLEMCR task,

we demonstrate its competitiveness in traditional one-shot bundle recommendation. Figure 6.3

illustrates that BUNT significantly outperforms classic bundle recommenders (BBPR), and

performs comparably or superiorly to recent bundle generators (BGN, PoG). This suggests that

the BUNT backbone effectively acquires fundamental “bundle recommendation” knowledge

similar to other models.

Effectiveness of BUNDLEMCR. We demonstrate the efficacy of BUNDLEMCR by

comparing models (e) and (i) in Table 6.3. Notably, the accuracy on MovieLens data significantly
9Initially, all items in B

⇤ are potential items for a given slot x, but some items are removed with the acceptance
of items, categories, and attributes in slot x.
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Table 6.3. BUNT and other individual conversational recommendation methods that are adopted
for bundle settings. Here P denotes Precision, R is Recall, Acc is accuracy. The best is bold.

Steam MovieLens
Group Method P R F1 Acc P R F1 Acc

Individual
Rec.

Model

(a) FM-All .149 .611 .239 .138 .019 .087 .031 .017
(b) FM-Learn .269 .664 .382 .239 .038 .096 .055 .031
(c) EAR* .186 .592 .282 .166 .036 .099 .053 .029
(d) SCPR* .173 .544 .262 .151 .044 .110 .063 .032

Bundle
Rec.

Model

(e) BUNT-One-Shot .456 .452 .454 .450 .075 .093 .083 .061
(f) BYOB-All .328 .799 .463 .323 .020 .113 .034 .018
(g) BGN-All .568 .919 .702 .567 .073 .216 .109 .070
(h) BUNT-All .633 .927 .752 .632 .100 .289 .149 .096

(i) BUNT-Learn .737 .928 .822 .727 .251 .302 .275 .181

Clothing iFashion
Group Method P R F1 Acc P R F1 Acc

Individual
Rec.

Model

(a) FM-All .003 .013 .005 .003 .006 .026 .010 .005
(b) FM-Learn .006 .010 .008 .004 .008 028 .012 .006
(c) EAR* .011 .022 .014 .008 .017 .026 .020 .010
(d) SCPR* .013 .028 .018 .009 .014 .032 .019 .010

Bundle
Rec.

Model

(e) BUNT-One-Shot .006 .005 .005 .005 .008 .007 .007 .005
(f) BYOB-All .002 .010 .003 .002 .005 .023 .008 .004
(g) BGN-All .009 .023 .013 .008 .011 .032 .016 .010
(h) BUNT-All .008 .023 .012 .008 .014 .043 .021 .014

(i) BUNT-Learn .019 .026 .021 .015 .020 .035 .025 .017

improves from 0.061 to 0.181 when introducing the conversational mechanism. This underscores

that, even with the same backbone model, the incorporation of BUNDLEMCR enables the collec-

tion of immediate feedback, leading to enhanced recommendation performance. Furthermore,

we observe a higher relative improvement on three datasets compared to Steam. Specifically,

the accuracy increases by 61.56% on Steam, while it rises by 196.72% on MovieLens. This

highlights that challenging datasets, characterized by sparser and larger item spaces, derive more

significant benefits from BUNDLEMCR, as it facilitates user feedback during interactions.

Effectiveness of BUNT-Learn. We incorporated various Individual MCR recom-
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Figure 6.3. BUNT performance compared with other bundle recommenders in one-shot bundle
recommendation.

menders (a)-(d) from Table 6.3 into bundle settings, where the FM backbone model [Rendle,

2010] suggests top-K items without considering bundle contexts. BUNT-Learn outperforms these

individual MCR recommenders, achieving the highest performance. For instance, compared

to model (b) where we replace the BUNT backbone with FM, our approach improves accuracy

from 0.239 to 0.727 on Steam. This highlights that directly applying existing individual MCR

recommenders in BUNDLEMCR is suboptimal and underscores the advantages of our BUNT

design. Furthermore, in comparison to bundle recommenders exclusively suggesting items (mod-

els (f)-(h)), our approach incorporates question asking, consistently enhancing recommendation

performance, except for the recall score in iFashion. This discrepancy arises as we replace rec-

ommending with asking, potentially leading to a decrease in recall due to fewer recommendation

rounds (although F1-Score still improves).

Accuracy Curve with Conversation Rounds. The cumulative accuracy curves in Fig-

ure 6.4 show BUNT-All achieves the best results in beginning conversation rounds, then is

outperformed by BUNT-Learn. This is because BUNT-Learn requires several rounds to ask ques-

tions and elicit preferences. Thus, BUNT-Learn in late rounds can recommend more accurately

and surpass baselines. For example, on MovieLens, BUNT-Learn outperforms the baselines after

t = 6.

BUNT-Learn Component Analysis. Compared with (a), (b)-(d) show the effectiveness
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Figure 6.4. Cumulative accuracy curve, i.e., accuracy after t rounds, t 2 [1,10].

of long-term preference and short-term context encoding; (e) indicates the importance of using

bundle-aware models; (f)-(i) show the benefit of online fine-tuning, which helps pM most because

conversation management is hard to mimic in offline datasets, and pM with only a binary action

space is easier for online learning than other policies; (j)-(m) show pre-training is necessary,

especially for item policy, because bundle generation is challenging to directly learn from online

interactions with RL. This also indicates the proposed multiple cloze pre-training tasks are

suitable for training BUNDLEMCR effectively.

Human Evaluation on Conversation Trajectories

Considering the expenses associated with deploying interactive Bundle MCRs, as exem-

plified in previous studies ([Xian et al., 2021, Jannach and Manzoor, 2020]), we conducted human

evaluations where real users assessed generated conversation trajectories from Section 6.4.2.

Sampling 1000 pairs of conversation trajectories from the Steam and MovieLens datasets, derived

from either (BUNT-Learn, SCPR*) or (BUNT-Learn, FM-Learn) (with SCPR* and FM-Learn

representing the best baselines utilizing individual item recommenders), we posted each pair on

MTurk10 to collect 5 responses. MTurk workers, spending more than 30 seconds and possessing

a LifeTimeAcceptanceRate of 100%, were instructed to assess subjective quality by selecting

the superior model within the given pair. Majority votes were tallied for each pair, resulting
10https://requester.mturk.com/
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Table 6.4. Ablation Studies (F1-score) to evaluate model architecture, fine-tuning (FT) and
pre-training (PT).

Ablation Steam MovieLens

(a) Bunt-Learn .822 .275

(b) w/o Long-term Pref. .701 .148
(c) w/o Short-term Tags .787 .165
(d) w/o Short-term Items .330 .084
(e) replace BUNT pI with FM .382 .032
(f) w/o FT pM .765 .210
(g) w/o FT pI .817 .268
(h) w/o FT p{A,C} .811 .257
(i) w/o FT All .753 .206
(j) w/o PT pM .807 .258
(k) w/o PT pI .056 .008
(l) w/o PT p{A,C} .815 .171
(m) w/o PT All .003 .001

in 388 valid responses: (BUNT-Learn, SCPR*) received 121 votes to 88, and ¡BUNT-Learn,

FM-Learn¿ received 110 votes to 69. This outcome demonstrates the superiority of BUNT-Learn.

Notably, the performance gap in human evaluation is not as pronounced as observed in simulator

results (e.g., on Steam, BUNT-Learn accuracy is 3 times that of FM-Learn).

6.5 Conclusion and Future Work

In this chapter, we extend the Multi-Round Conversational Recommendation (MCR)

framework to encompass bundle recommendation scenarios, formulating it as a Multi-Agent

Markov Decision Process (MDP). We introduce the BUNT model architecture to handle bundle

contexts in conversations. To enable BUNT to acquire bundle knowledge from both offline

datasets and an online environment, we propose a two-stage training strategy involving cloze

tasks and multi-agent reinforcement learning. The effectiveness of our model and training strat-

egy is demonstrated through experiments on four offline bundle datasets and human evaluation.

As the first work addressing conversation mechanisms in bundle recommendation, potential
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future research directions are highlighted. The incorporation of free text in bundle conversational

recommendation remains an open question, given that our question spaces in BUNT pertain

to categories and attributes. Explicitly integrating item relationships (e.g., substitutes, com-

plements) into conversational bundle recommendation poses an interesting and challenging

task. Additionally, unifying existing individual conversational recommenders into conversational

bundle recommendations, thereby enhancing conversational agents’ capabilities at no extra cost,

presents an intriguing avenue for exploration.

We investigate the challenging task of bundle recommendation within the context of con-

versational recommendations. Bundle recommendation involves suggesting multiple dependent

items (e.g., outfits, playlists) to users rather than individual items. This scenario offers additional

benefits to users and platforms but poses exceptional challenges to traditional recommendation

methods due to its complexity and limited user signals. We reexamine this task in a conversa-

tional setting, referred to as BUNDLEMCR, and demonstrate that the conversational mechanism

breaks down the bundling process, easing tasks across multiple real-world datasets, and opening

up new opportunities for research in this field.

Chapter 6, in part, is a reprint of the material as it appears in “Bundle MCR: Towards

Conversational Bundle Recommendation.” by Zhankui He, Handong Zhao, Tong Yu, Sungchul

Kim, Fan Du, and Julian McAuley, in Proceedings of the 16th ACM Conference on Recommender

Systems in 2022, referenced as [He et al., 2022b]. The dissertation author was the primary

investigator and author of this paper.
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Chapter 7

Large Language Models in Conversational
Recommender Systems

In this chapter, we delve into another intricate recommendation scenario – natural-

language interaction scenarios. In these scenarios, users express their needs and provide feedback

to the recommender systems using natural languages. This is typically considered a fully free-text

conversational recommendation scenario. Our contribution involves presenting empirical studies

in this scenario using representative large language models in a zero-shot setting.

In particular, we make three primary contributions. (1) Data: To gain insights into

model behavior in “in-the-wild” natural-language conversational recommendation scenarios,

we construct a new dataset of recommendation-related conversations by scraping a popular

discussion website. This is the largest public real-world conversational recommendation dataset

to date. (2) Evaluation: On the new dataset and two existing conversational recommendation

datasets, we observe that even without fine-tuning, large language models can outperform existing

fine-tuned conversational recommendation models. (3) Analysis: We propose various probing

tasks to investigate the mechanisms behind the remarkable performance of large language models

in conversational recommendation. We analyze both the large language models’ behaviors and

the characteristics of the datasets, providing a holistic understanding of the models’ effectiveness,

and limitations and suggesting directions for the design of future conversational recommenders.
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7.1 Introduction

Conversational recommender systems (CRS) aim to offer personalized recommendations

through interactive conversations, considering users’ natural-language inputs alongside historical

actions. Unlike traditional recommenders, CRS can provide human-like responses, serving

purposes like preference refinement, knowledgeable discussion, or recommendation justification.

A typical CRS consists of a generator for natural-language responses and a recommender for

ranking items [Li et al., 2018b, Chen et al., 2019b, Zhou et al., 2020b, Wang et al., 2022].

Recent advancements in large language models (LLMs)1, such as ChatGPT [John Schul-

man, 2022], have sparked interest in leveraging LLMs for recommendation and personalization

tasks [Kang et al., 2023, Bao et al., 2023, Hou et al., 2023, Salemi et al., 2023, Liu et al., 2023].

However, existing efforts primarily focus on evaluating LLMs in traditional recommendation

settings, relying on users’ past actions like clicks [Kang et al., 2023, Bao et al., 2023, Hou et al.,

2023, Liu et al., 2023]. The conversational recommendation scenario, which involves more

natural language interactions, is still nascent [Friedman et al., 2023, Wang et al., 2023].

This work proposes the use of large language models as zero-shot conversational rec-

ommenders and empirically investigates their recommendation abilities [John Schulman, 2022,

OpenAI, 2023, Chiang et al., 2023, Xu et al., 2023]. Our contributions encompass three key

aspects related to data, evaluation, and analysis.

Data. We introduce REDDIT-MOVIE, a substantial conversational recommendation

dataset comprising over 634k recommendation-seeking dialogs from users on Reddit2. Unlike

existing crowd-sourced conversational recommendation datasets such as ReDIAL [Li et al.,

2018b] and INSPIRED [Hayati et al., 2020], where workers simulate user-recommender interac-

tions, REDDIT-MOVIE captures real-world conversations where users naturally seek and provide

item recommendations. This dataset is the largest public conversational recommendation dataset
1LLMs refer to large-sized pre-trained language models with exceptional zero-shot abilities as defined in [Zhao

et al., 2023].
2https://www.reddit.com/
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to date, containing 50 times more dialogs than ReDIAL.

Evaluation. In assessing the recommendation performance of Language Models (LLMs)

across multiple Conversational Recommendation System (CRS) datasets, we identify a repeated

item shortcut in current CRS evaluation protocols. This involves the presence of “repeated

items‘’ in testing samples, serving as ground-truth items and enabling the creation of a simplistic

baseline (e.g., copying mentioned items from the conversation history) that outperforms many

existing models. We address this issue by eliminating “repeated items” from training and testing

data and re-evaluate various representative conversational recommendation models [Li et al.,

2018b, Chen et al., 2019b, Zhou et al., 2020b, Wang et al., 2022] on ReDIAL, INSPIRED, and

our Reddit dataset. In this refined experimental setup, we empirically demonstrate that LLMs can

outperform existing fine-tuned conversational recommendation models even without additional

fine-tuning.

Analysis. Given the notable zero-shot performance of LLMs in Conversational Recom-

mendation Systems, a fundamental question emerges: What contributes to their outstanding

performance? Similar to [Penha and Hauff, 2020], we propose that LLMs leverage both con-

tent/context knowledge (e.g., “genre,” “actors,” and “mood”) and collaborative knowledge (e.g.,

“users who like A typically also like B”) for making conversational recommendations. We

design probing tasks to unveil the model’s inner workings and the characteristics of CRS data.

Furthermore, empirical findings are presented, highlighting specific limitations of LLMs as

zero-shot CRS, despite their effectiveness.

The main findings of this study are summarized as follows: (1) Re-evaluating CRS

recommendation abilities requires avoiding using repeated items as ground truth. (2) Zero-shot

conversational recommenders, specifically LLMs, exhibit enhanced performance on both estab-

lished and new datasets compared to fine-tuned CRS models. (3) LLMs primarily leverage their

superior content/context knowledge for recommendations, rather than relying on collaborative

knowledge. (4) CRS datasets inherently contain a substantial amount of content/context infor-

mation, making them well-suited for LLMs in comparison to traditional recommendation tasks.
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[User]:  I love Back to the Future, any recommendations?
You would love Terminator! :[System]

[User]:  Who is in it?
Arnold Schwarzenegger!  :[System]

[User]:  Did they make a new Terminator?
Yes, there is a new Terminator movie. :[System]

 Have you seen the trailer for it?            .
[User]:  I also need a sci-fi movie with my family, 
             it should be lighthearted and enjoyable.

[BLANK] :[System]

1.
2.

3.

4.

5.

6.

7.

8.

Pretend you are a movie 
recommender system. I will give 
you a conversation between a user 
and you (a recommender system). 

Based on the conversation, you 
reply me with 20 recommendations 
without extra sentences. 

Here is the conversation: 
{}

T

F

S

Prompting 

1.Guardians of the Galaxy
2.The Lego Movie
3.Men in Black
4.WALL-E
5.The Fifth Element ...

1. MOVIE_320442
2. MOVIE_352933
3. MOVIE_435849
4. MOVIE_235802
5. MOVIE_239823 ...

Processing

!
ℱ

Figure 7.1. Large Language Models (LLMs) as Zero-Shot Conversational Recommenders
(CRS).We introduce a simple prompting strategy to define the task description T , format re-
quirement F and conversation context S for a LLM, denoted as F , we then post-process the
generative results into ranked item lists with processor F.

(5) Despite their effectiveness, LLMs face limitations such as popularity bias and sensitivity to

geographical regions.

These findings highlight the unique significance of superior content/context knowledge

in LLMs for CRS tasks, highlighting the potential of LLMs as a valuable approach in CRS.

However, it is crucial for future CRS designs with LLMs to acknowledge challenges in evaluation,

datasets, and potential issues like debiasing.

7.2 Proposed Approach: LLM4CRS

7.2.1 Task Formation

Given user set U , item set I , and vocabulary V , a conversation is represented as

C = (ut ,st ,It)T
t=1. In the t th turn, a speaker ut 2U generates an utterance st = (wi)m

i=1, where

wi 2 V . The utterance st includes a set of mentioned items It ⇢I (It can be empty if no items

are mentioned). Typically, two users in the conversation play the roles of seeker and recommender.

For example, in the 2nd turn of the conversation shown in Figure 7.1, t = 2, ut is [System], st is

“You would love Terminator !”, and I2 is a set containing the movie Terminator. Following

the approach in many Conversational Recommender Systems (CRS) papers [Li et al., 2018b,

Chen et al., 2019b, Zhou et al., 2020b, Wang et al., 2022], the recommender component aims to
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optimize the following objective during the kth turn: with uk as the recommender, it takes the

conversational context (ut ,st ,It)
k�1
t=1 as input and generates a ranked list of items Îk that best

matches the ground-truth items in Ik.

7.2.2 Framework

Prompting. Our objective is to use Large Language Models (LLMs) as zero-shot

conversational recommenders. Specifically, without the necessity for fine-tuning, we aim to elicit

responses from an LLM, denoted as F , using a task description template T , format requirement

F , and conversational context S before the kth turn. This procedure can be formally expressed as:

Îk = F(F (T,F,S)) . (7.1)

To better understand this zero-shot recommender, we present an example in Figure 7.1 with the

prompt setup in our experiments.3

Models. We consider several popular LLMs F that exhibit zero-shot prompting abilities

in two groups. To try to ensure deterministic results, we set the decoding temperature to 0 for all

models. (1) GPT-3.5-turbo [John Schulman, 2022]4 and GPT-4 [OpenAI, 2023] from OPENAI

with abilities of solving many complex tasks in zero-shot setting [OpenAI, 2023, Bubeck et al.,

2023] but are closed-sourced. (2) BAIZE [Xu et al., 2023]5 and Vicuna [Chiang et al., 2023],

which are representative open-sourced LLMs fine-tuned based on LLAMA-13B [Touvron et al.,

2023].

Processing. We do not assess model weights or output logits from LLMs. Therefore,

we apply a post-processor F (e.g., fuzzy matching) to convert a recommendation list in natural

language to a ranked list Îk. The approach of generating item titles instead of ranking item IDs

is referred to as a generative retrieval [Cao et al., 2021, Tay et al., 2022] paradigm.
3We leave more prompting techniques such as CoT [Wei et al., 2022] in future work.
4Referred as GPT-3.5-t hereafter
5We use BAIZE-V2 in https://huggingface.co/project-baize/baize-v2-13b
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Conversation Info. 
(Low to High)

(User Previously Watched Movies): Back to the Future, Man in Black, 

Harry Potter, ... 

I like 2001: A Space Odyssey and Tangerine, and I watched Enter the Void 

last night and it was pretty good. 

Something that I can focus on but nothing too harsh. It can be strange and 

bizarre, but dreamy visuals and movement and smooth and sometimes 

unnatural dialogue is what gives it. It's a sweet sensation. It's how I felt 

watching Wings of Desire, Eyes Wide Shut, Querelle, for some reason. 

MovieLens

ReDIAL

Reddit-Movie (Ours)

Item Only

Item + 
Verbal 

Preference

Item + 
Complex 
Verbal 

Preference

Figure 7.2. Typical model inputs from a traditional recommendation dataset (MovieLens [Harper
and Konstan, 2015]), an existing CRS dataset (ReDIAL [Li et al., 2018b]), and our REDDIT-
MOVIE dataset. The REDDIT-MOVIE dataset contains more information in its textual content
compared to existing datasets where users often explicitly specify their preference. See Sec-
tion 7.5.2 for quantitative analysis.

Table 7.1. Dataset Statistics. We denote a subset of REDDIT-MOVIE in 2022 as base, and the
entire ten-year dataset as large.

Dataset #Conv. #Turns #Users #Items

INSPIRED [Hayati et al., 2020] 999 35,686 999 1,967
ReDIAL [Li et al., 2018b] 11,348 139,557 764 6,281
REDDIT-MOVIEbase 85,052 133,005 10,946 24,326
REDDIT-MOVIElarge 634,392 1,669,720 36,247 51,203

7.3 Constructed Dataset: REDDIT-MOVIE

Ideally, to assess the conversational recommendation models accurately, a large-scale

dataset featuring diverse interactions and real-world conversations is crucial. Existing conver-

sational recommendation datasets, typically obtained through crowdsourcing [Li et al., 2018b,

Hayati et al., 2020, Kang et al., 2019, Zhou et al., 2020c], only partially capture realistic conver-

sation dynamics. For instance, responses like “Whatever Whatever I’m open to any suggestion.”

in the ReDIAL dataset reflect crowd workers’ general lack of specific preferences during task

completion. This stands in contrast to real users who may have distinct and specific needs, as
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illustrated in Figure 7.2.

To construct CRS datasets, we introduce the REDDIT-MOVIE dataset. This dataset,

the largest-scale conversational movie recommendation dataset to date, comprises naturally

occurring movie recommendation conversations from Reddit. It provides richer perspectives for

training and evaluating CRS models when combined with existing crowdsourced datasets such

as ReDIAL [Li et al., 2018b] and INSPIRED [Hayati et al., 2020]. Our model evaluation and

analysis encompass these three datasets, demonstrating qualitative examples from the Reddit

dataset (see Figure 7.2) and quantitative analyses (refer to Section 7.5.2).

7.3.1 Dataset Construction

To construct the CRS dataset from Reddit, we utilize pushshift.io6, processing posts span-

ning from January 2012 to December 2022. Focusing on movie recommendation contexts, we

extract pertinent posts from five relevant subreddits: r/movies, r/bestofnetflix, r/moviesuggestions,

r/netflixbestof, and r/truefilm. Our methodology involves a pipeline comprising conversational

recommendation identification, movie mention recognition, and movie entity linking. Additional

details, including evaluation data, scripts, and results, are available in our GitHub repository7.

For evaluation, the most recent 9k conversations in REDDIT-MOVIEbase from December 2022

constitute the test set, with the remaining 76k conversations serving as the training and validation

set for other compared models.

7.3.2 Discussion

Analyzing the statistics presented in Table 7.1, we observe that REDDIT-MOVIE is the

most extensive conversational recommendation dataset, featuring 634,392 conversations encom-

passing 51,203 movies. In comparison to ReDIAL [Li et al., 2018b] and INSPIRED [Hayati et al.,

2020], REDDIT-MOVIE exhibits a lower number of multi-turn conversations, attributed to the

inherent characteristics of Reddit posts. Representative instances depicted in Figure 7.2 illustrate
6https://pushshift.io/
7https://github.com/AaronHeee/LLMs-as-Zero-Shot-Conversational-RecSys
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Figure 7.3. To show the repeated item shortcut, we count CRS recommendation hits using the
Top-K ranked list K = {1,5}. We group the ground-truth hits by repeated items (shaded bars)
and new items (not shaded bars). The trivial baseline copies existing items from the current
conversation history in chronological order, from the most recent and does not recommend new
items.

Figure 7.4. CRS recommendation performance on New Items in terms of Recall@K, with
K = {1,5}. To exclude the influence of repeated items in CRS evaluation, we remove all
repeated items in training and testing datasets and re-train all baselines.

that REDDIT-MOVIE conversations manifest more intricate and detailed user preferences, thereby

contributing to the diversity of discussions within conversational recommendation datasets.

7.4 General Experiments

In this section, we evaluate the proposed LLMs-based framework on ReDIAL [Li et al.,

2018b], INSPIRED [Hayati et al., 2020], and our Reddit datasets. We first explain the evaluation

setup and a repeated item shortcut of the previous evaluation in Sections 7.4.1 and 7.4.2. Then,

we re-train models and discuss LLM performance in Section 7.4.2.
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7.4.1 Experimental Setting

Repeated vs. New Items. Given a conversation C = (ut ,st ,It)T
t=1, identifying ground-

truth recommended items, Ik, at the kth turn is challenging. In the common evaluation setup,

if uk is the recommender, all items i 2Ik are assumed to be ground-truth recommended items.

We introduce a finer categorization of items i 2Ik into repeated items and new items. Repeated

items are those that appeared in previous turns, i.e., {i | 9t 2 [1,k), i 2It}, while new items are

not mentioned in earlier turns. Details of this categorization are provided in Section 7.4.2.

Evaluation Protocol. On the three datasets, we assess the recommendation capabilities

of various CRS models and LLMs. Utilizing the authors’ training code, we establish baselines

and measure prediction performance through Recall@K [Li et al., 2018b, Chen et al., 2019b,

Zhou et al., 2020b, Wang et al., 2022] (i.e., HIT@K). We present the mean and standard errors8

of the metric for K = {1,5}.

Compared CRS Models. We utilize representative CRS models, employing entity

linking results from the ReDIAL and INSPIRED datasets by UniCRS [Wang et al., 2022] as

baselines that rely on structured knowledge. Omitted are additional works [Li et al., 2022b, Ren

et al., 2022, Ma et al., 2021] as UniCRS [Wang et al., 2022] is considered representative with

comparable results.

• ReDIAL [Li et al., 2018b]: This model is released along with the ReDIAL dataset with an

auto-encoder [Sedhain et al., 2015]-based recommender.

• KBRD [Chen et al., 2019b]: This model proposes to use the DBPedia [Auer et al., 2007]

to enhance the semantic knowledge of items or entities.

• KGSF [Zhou et al., 2020b]: This model incorporates two knowledge graphs to enhance

the representations of words and entities, and uses the Mutual Information Maximization

method to align the semantic spaces of those two knowledge graphs.
8Standard errors are depicted as error bars in figures and gray numbers in tables.
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• UniCRS [Wang et al., 2022]: UniCRS uses DialoGPT [Zhang et al., 2020c], a pre-

trained language model, with prompt tuning to conduct recommendation and conversation

generation tasks respectively.

7.4.2 Result Analysis
Repeated Items Can Be Shortcuts

Current evaluation methodologies for conversational recommendation systems do not

distinguish between repeated and new items in a conversation. This evaluation approach tends

to favor systems optimizing for repeated item mentions. As illustrated in Figure 7.3, a basic

baseline that consistently copies seen items from the conversation history outperforms most

previous models under the standard evaluation criteria.

This observation raises concerns about shortcut learning [Geirhos et al., 2020], where

a decision rule excels against specific benchmarks and evaluations but fails to capture the true

intent of the system designer. Specifically, the #HIT@1 metric for the tested models decreases by

over 60% on average when focusing solely on new item recommendations, a nuance not apparent

in the overall recommendation performance. Upon manual inspection, a recurring pattern of

repeated items is identified, as exemplified in the conversation snippet presented in Figure 7.1.

In this instance, the movie Terminator at the 6th turn serves as the ground-truth item. The

system repeats this item because it was quoted for content-based discussion, rather than making

a recommendation. Given the context of recommendation conversations, it is more likely that

repeated items are intended for discussion rather than serving as recommendations.

We argue that considering the substantial occurrence of repeated items (e.g., more than

15% of ground-truth items are repeated items in INSPIRED), it is advantageous to eliminate

repeated items and reevaluate conversational recommendation system (CRS) models to gain a

better understanding of their true recommendation capabilities. It is noteworthy that repetition

patterns have also been explored in the evaluation of other recommender systems, such as

next-basket recommendation [Li et al., 2023c].
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Figure 7.5. Ablation studies for the research question about the primary knowledge used by
LLMs for CRS. Here F1 is the post-processor which only considers in-dataset item titles; F2
is the post-processor based on F1 and further excludes all seen items in conversational context
from generated recommendation lists. For inputs like Original (S0) and ItemOnly (S1), LLMs
show similar performance with F1 or F2, so we only keep F1 here. We consider F2 because
ItemRemoved (S2) and ItemRandom (S3) have no information about already mentioned items,
which may cause under-estimated accuracy using F1 compared to Original.

Table 7.2. Recall@1 results of considering all generated item titles (F0) and only considering
in-dataset item titles (F1).

INSPIRED ReDIAL Reddit

Model F0 F1 F0 F1 F0 F1

BAIZE .019 .028 .021 .021 .012 .013
Vicuna .028 .033 .020 .020 .012 .012
GPT-3.5-t .047 .052 .041 .043 .022 .023
GPT-4 .062 .066 .043 .046 .022 .023

LLM4CRS Performance

Finding 1 - LLMs outperform fine-tuned CRS models in a zero-shot setting. For a

comparison between models’ abilities to recommend new items to the user in conversation, we

re-train existing CRS models on all datasets for new item recommendation only. The evaluation

results are as shown in Figure 7.4. Large language models, although not fine-tuned, have the best

performance on all datasets. Meanwhile, the performance of all models is uniformly lower on

Reddit compared to the other datasets, potentially due to the large number of items and fewer

conversation turns, making recommendations more challenging.

Finding 2 - GPT-based models achieve superior performance than open-sourced
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Table 7.3. Fraction of Top-K (K = 20 in our prompt setup) recommendations (#rec) that can be
string matched in the IMDB movie database (%imdb) for the different models, which shows a
lower bound of non-hallucinated movie titles.

BAIZE Vicuna GPT-3.5-t GPT-4

#rec %imdb #rec %imdb #rec %imdb #rec %imdb

259,333 81.56% 258,984 86.98% 321,048 95.51% 322,323 94.86%

LLMs. As shown in Figure 7.4, large language models consistently outperform other models

across all three datasets, while GPT-4 is generally better than GPT-3.5-t. We hypothesize this is

due to GPT-4’s larger parameter size enables it to retain more correlation information between

movie names and user preferences that naturally occurs in the language models’ pre-training data.

Vicuna and BAIZE, while having comparable performance to prior models on most datasets,

have significantly lower performance than its teacher, GPT-3.5-t. This is consistent with previous

works’ finding that smaller distilled models via imitation learning cannot fully inherit larger

models’ ability on downstream tasks [Gudibande et al., 2023].

Finding 3 - LLMs may generate out-of-dataset item titles, but few hallucinated

recommendations. We note that language models trained on open-domain data naturally

produce items out of the allowed item set during generation. In practice, removing these items

improves the models’ recommendation performance. Large language models outperform other

models (with GPT-4 being the best) consistently regardless of whether these unknown items are

removed or not, as shown in Table 7.2. Meanwhile, Table 7.3 shows that around 95% generated

recommendations from GPT-based models (around 81% from BAIZE and 87% from Vicuna) can

be found in IMDB 9 by string matching. Those lower bounds of these matching rates indicate

that there are only a few hallucinated item titles in the LLM recommendations in the movie

domain.
9Movie titles in https://datasets.imdbws.com/.
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Figure 7.6. GPT-3.5-t Recall@5 results grouped by the occurrences of items in conversation
context, and count the conversations per dataset.

7.5 Detailed Analysis

Observing LLMs’ remarkable conversational recommendation performance for the zero-

shot recommendation, we are interested in what accounts for their effectiveness and what their

limitations are. We aim to answer these questions from both a model and data perspective.

7.5.1 Knowledge in LLMs

Experiment Setup. Motivated by the probing work of [Penha and Hauff, 2020], we posit

that two types of knowledge in LLMs can be used in CRS:

• Collaborative knowledge, which requires the model to match items with similar ones,

according to community interactions like “users who like A typically also like B”. In

our experiments, we define the collaborative knowledge in LLMs as the ability to make

accurate recommendations using item mentions in conversational contexts.

• Content/context knowledge, which requires the model to match recommended items with

their content or context information. In our experiments, we define the content/context

knowledge in LLMs as the ability to make accurate recommendations based on all other
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Table 7.4. To understand the content/context knowledge in LLMs and existing CRS models, we
re-train the existing CRS models using the same perturbed conversation context ItemRemoved
(S2). We include the results of the representative CRS model UniCRS (denoted as CRS*) as well
as a representative text-encoder BERT-small [Devlin et al., 2019] (denoted as TextEnc*).

INSPIRED ReDIAL Reddit

Model R@1 R@5 R@1 R@5 R@1 R@5

Vicuna .024 .062 .014 .053 .008 .025
GPT-3.5-t .057 .123 .030 .105 .018 .068
GPT-4 .062 .128 .032 .102 .019 .075

CRS* .039 .087 .015 .058 .001 .008
TextEnc* .038 .090 .013 .053 .002 .009

conversation inputs rather than item mentions, such as contextual descriptions, mentioned

genres, and director names.

To understand how LLMs use these two types of knowledge, given the original conversa-

tion context S (Example in Figure 7.1), we perturb S with three different strategies as follows

and subsequently re-query the LLMs. We denote the original as S0:

• S0 (Original): we use the original conversation context.

• S1 (ItemOnly): we keep mentioned items and remove all natural-language descriptions in

the conversation context.

• S2 (ItemRemoved): we remove the mentioned items and keep other content in the

conversation context.

• S3 (ItemRandom): we replace the mentioned items in the conversation context with items

that are uniformly sampled from the item set I of this dataset, to eliminate the potential

influence of S2 on the sentence grammar structure.

Finding 4 - LLMs mainly rely on content/context knowledge to make recommenda-

tions. Figure 7.5 shows a drop in performance for most models across various datasets when
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replacing the original conversation text Original (S0) with other texts, indicating that LLMs

leverage both content/context knowledge and collaborative knowledge in recommendation tasks.

However, the importance of these knowledge types differs. Our analysis reveals that content/con-

text knowledge is the primary knowledge utilized by LLMs in CRS. When using ItemOnly (S1)

as a replacement for Original, there is an average performance drop of more than 60% in terms of

Recall@5. On the other hand, GPT-based models experience only a minor performance drop of

less than 10% on average when using ItemRemoved (S2) or ItemRandom (S3) instead of Original.

Although the smaller-sized model Vicuna shows a higher performance drop, it is still considerably

milder compared to using ItemOnly. To accurately reflect the recommendation abilities of LLMs

with ItemRemoved and ItemRandom, we introduce a new post-processor denoted as F2 (describe

in the caption of Figure 7.5). By employing F2, the performance gaps between Original and

ItemRemoved (or ItemRandom) are further reduced. Furthermore, Figure 7.6 demonstrates the

consistent and close performance gap between Original and ItemRemoved (or ItemRandom)

across different testing samples, which vary in size and the number of item mentions in Original.

The findings indicate that, in the context of a conversation, Language Models (LLMs)

primarily rely on content/context knowledge rather than collaborative knowledge for generating

recommendations. This behavior contrasts with conventional recommenders such as collaborative

filtering [Koren et al., 2009, Rendle, 2010, Liang et al., 2018, He and Chua, 2017, He et al., 2018,

Sedhain et al., 2015] or sequential recommenders [Kang and McAuley, 2018, Sun et al., 2019,

Zhou et al., 2020a, He et al., 2021], where user-interacted items play a crucial role.

Finding 5 - GPT-based LLMs possess better content/context knowledge than existing

CRS. From Table 7.4, we observe the superior recommendation performance of GPT-based

LLMs against representative conversational recommendation or text-only models on all datasets,

showing the remarkable zero-shot abilities in understanding user preference with the textual

inputs and generating correct item titles. We conclude that GPT-based LLMs can provide more

accurate recommendations than existing trained CRS models in an ItemRemoved (S2) setting,

demonstrating better content/context knowledge.
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Table 7.5. To understand the collaborative knowledge in LLMs and existing CRS models, we
re-train the existing CRS models using the same perturbed conversation context ItemOnly (S1).
We include the results of the representative CRS model UniCRS (denoted as CRS*) as well as a
representative item-based collaborative model FISM [Kabbur et al., 2013] (denoted as ItemCF*).

INSPIRED ReDIAL Reddit

Model R@1 R@5 R@1 R@5 R@1 R@5

Vicuna .005 .024 .011 .039 .005 .015
GPT-3.5-t .024 .052 .021 .063 .007 .026
GPT-4 .014 .052 .025 .069 .007 .028

CRS* .038 .085 .025 .072 .003 .015
ItemCF* .042 .087 .029 .088 .004 .018

Finding 6 - LLMs generally possess weaker collaborative knowledge than existing

CRS. In Table 7.5, the results from INSPIRED and ReDIAL indicate that LLMs underperform

existing representative CRS or ItemCF models by 30% when using only the item-based conversa-

tion context ItemOnly (S1). It indicates that LLMs, trained on a general corpus, typically lack the

collaborative knowledge exhibited by representative models trained on the target dataset. There

are several possible reasons for this weak collaborative knowledge in LLMs. First, the training

corpus may not contain sufficient information for LLMs to learn the underlying item similarities.

Second, although LLMs may possess some collaborative knowledge, they might not align with

the interactions in the target datasets, possibly because the underlying item similarities can be

highly dataset- or platform-dependent.

However, in the case of the Reddit dataset, LLMs outperform baselines in both Recall@1

and Recall@5, as shown in Table 7.5. This outcome could be attributed to the dataset’s large

number of rarely interacted items, resulting in limited collaborative information. The Reddit

dataset contains 12,982 items with no more than 3 mentions as responses. This poses a challenge

in correctly ranking these items within the Top-5 or even Top-1 positions. LLMs, which possess

at least some understanding of the semantics in item titles, have the chance to outperform

baselines trained on datasets containing a large number of cold-start items.

Recent research on LLMs in traditional recommendation systems [Liu et al., 2023, Hou
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(a) Entropy v.s. Token Counts (b) Pre-training Effectiveness

Figure 7.7. The left subfigure shows the entropy of the frequency distribution of 1,2,3-grams
with respect to the number of words drawn from each dataset (item names excluded) to measure
the content/context information across datasets. The right subfigure shows the results of the
processed Reddit collaborative dataset aligned to ML-25M [Harper and Konstan, 2015]. RAND
denotes random baseline, FT denotes fine tuning on Reddit, PT denotes pre-training on ML-25M,
PT+FT means FT after PT.

et al., 2023, Kang et al., 2023] also observes the challenge of effectively leveraging collaborative

information without knowing the target interaction data distribution. Additionally, another

study [Bao et al., 2023] on traditional recommendation systems suggests that LLMs are beneficial

in a setting with many cold-start items. Our experimental results support these findings within

the context of conversational recommendations.

7.5.2 Information from CRS Data

Experimental Setup for Finding 7. To understand LLMs in CRS tasks from the data

perspective, we first measure the content/context information in CRS datasets. Content/context

information refers to the amount of information contained in conversations, excluding the item

titles, which reasonably challenges existing CRS and favors LLMs according to the findings

in Section 7.5.1. Specifically, we conduct an entropy-based evaluation for each CRS dataset and

compare the conversational datasets with several popular conversation and question-answering
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datasets, namely DailyDialog (chit chat) [Li et al., 2017c], MsMarco (conversational search) [Ba-

jaj et al., 2018], and HotpotQA (question answering). We use ItemRemoved (S2) conversation

texts like Section 7.5.1, and adopt the geometric mean of the entropy distribution of 1,2,3-grams

as a surrogate for the amount of information contained in the datasets, following previous work

on evaluating information content in text [Jhamtani et al., 2018]. However, entropy naturally

grows with the size of a corpus, and each CRS dataset has a different distribution of words per

sentence, sentences per dialog, and corpus size. Thus, it would be unfair to compare entropy

between corpus on a per-dialog, per-turn, or per-dataset basis. To ensure a fair comparison,

we repeatedly draw increasingly large subsets of texts from each of the datasets, compute the

entropy of these subsets, and report the trend of entropy growth with respect to the size of the

subsampled text for each CRS dataset.

Finding 7 - Reddit provides more content/context information than the other two

CRS datasets. Based on the results in Figure 7.7a, we observe that the Reddit dataset has

the most content/context information among the three conversational recommendation datasets.

Those observations are also aligned with the results in Figure 7.5 and table 7.4, where LLMs

– which possess better content/context knowledge than baselines – can achieve higher relative

improvements compared to the other two datasets. Meanwhile, the content/context information

in Reddit is close to question answering and conversational search, which is higher than existing

conversational recommendation and chit-chat datasets.

Finding 8 - Collaborative information is insufficient for satisfactory recommen-

dations, given the current models. Quantifying the collaborative information in datasets is

challenging. Instead of proposing methods to measure collaborative information, we aim to

make new observations based on general performance results presented in Figure 7.4 and recom-

mendation results using only collaborative information in Table 7.5. Comparing the performance

of the best models in Table 7.5 under an ItemOnly (S1) setting with the performance of the best

models in Figure 7.4 under an Original (S0) setting reveals a significant disparity. For instance,

on ReDIAL, the Recall@1 performance is 0.029 for ItemCF* compared to 0.046 for GPT-4,
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Figure 7.8. Scatter plots of the frequency of LLMs (GPT-4) generated recommendations and
ground-truth items.

representing a 39.96% decrease. Similarly, for Reddit, the Recall@1 performance is 0.007

compared to 0.023 for GPT-4, which is 69.57% lower. We also experimented with other recom-

mender systems, such as transformer-based models [Kang and McAuley, 2018, Sun et al., 2019]

to encode the item-only inputs and found similar results. Based on the current performance gap,

we find that using the existing models, relying solely on collaborative information is insufficient

to provide satisfactory recommendations. We speculate that either (1) more advanced models

or training methods are required to better comprehend the collaborative information in CRS

datasets, or (2) the collaborative information in CRS datasets is too limited to support satisfactory

recommendations.

Experimental Setup for Finding 9. To understand whether the collaborative information

from CRS datasets is aligned with pure interaction datasets, we conduct an experiment on the

Reddit dataset. In this experiment, we first process the dataset to link the items to a popular

interaction dataset ML-25M [Harper and Konstan, 2015] 10. We then experiment with two
10We only use items that can be linked to ML-25M in this experiment. Here 63.32% items are linked using the

links.csv file from ML-25M.
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Figure 7.9. Ground-truth item counts in Reddit by country (in log scale) and the corresponding
Recall@1 by country.

representative encoders for item-based collaborative filtering based on FISM [Kabbur et al.,

2013] and Transformer [Sun et al., 2019] (TRM), respectively. We report the testing results

on Reddit, with fine-tuning on Reddit (FT), pre-training on ML-25M (PT), and pre-training on

ML-25M then fine-tuning Reddit (PT+FT). Note that since it is a linked dataset with additional

processing, the results are not comparable with the aforementioned results on Reddit.

Finding 9 - Collaborative information can be dataset- or platform-dependent. From

Figure 7.7b shows that the models solely pre-trained on ML-25M (PT) outperform a random

baseline, indicating that the data in CRS may share item similarities with pure interaction data

from another platform to some extent. However, Figure 7.7b also shows a notable performance

gap between PT and fine-tuning on Reddit (FT). Additionally, we do not observe further per-

formance improvement when pre-training on ML-25M then fine-tuning on Reddit (PT+FT).

These observations indicate that the collaborative information and underlying item similarities,

even when utilizing the same items, can be largely influenced by the specific dataset or platform.

The finding also may partially explain the inferior zero-shot recommendation performance of

LLMs in Table 7.5 and suggest the necessity of further checking the alignment of collaborative

knowledge in LLMs with the target datasets.
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7.5.3 Limitations of Our LLM4CRS

Finding 10 - LLM recommendations suffer from popularity bias in CRS. Popularity

bias is the tendency for popular items to be recommended more frequently than their inherent

popularity [Chen et al., 2023]. In fig. 7.8, the presence of popularity bias in language model

(LLM) recommendations is evident, although it may not align with the popularity distribu-

tion in the target datasets. For instance, on ReDIAL, highly popular movies like Avengers:

Infinity War appear approximately 2% of the time across all ground-truth items; on Reddit,

movies like Everything Everywhere All at Once make up less than 0.3% of ground-truth

items. However, in the generated recommendations from GPT-4 (similar trends observed in other

LLMs), highly popular items like The Shawshank Redemption are present around 5% of the

time on ReDIAL and approximately 1.5% of the time on Reddit. The LLMs’ recommendations

exhibit a concentration on popular items compared to the target datasets, potentially leading

to issues such as the bias amplification loop [Chen et al., 2023]. Notably, the consistently

recommended popular items across different datasets may reflect the prevalence of these items in

the LLMs’ pre-training corpus.

Finding 11 - Recommendation performance of LLMs is sensitive to geographical

regions. Despite the effectiveness in general, it is unclear whether LLMs can be good recom-

menders across various cultures and regions. Specifically, pre-trained language models’ strong

open-domain ability can be attributed to pre-training from massive data [Brown et al., 2020].

But it also leads to LLMs’ sensitivity to data distribution. To investigate LLMs recommendation

abilities for various regions, we take test instances from the Reddit dataset and obtain the produc-

tion region of 7,476 movies from a publicly available movie dataset 11 by exact title matching,

then report the Recall@1 for the linked movies grouped by region. We only report regions with

more than 300 data points available to ensure enough data to support the result. As shown in

Figure 7.9 the current best model, GPT-4’s performance on recommendation is higher for movies
11https://www.kaggle.com/datasets/rounakbanik/the-movies-dataset
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produced in English-speaking regions. This could be due to bias in the training data - the left

of Figure 7.9 show items on Reddit forums are dominated by movies from English-speaking

regions. Such a result highlights large language model’s recommendation performance varies by

region and culture and demonstrates the importance of cross-regional analysis and evaluation for

language model-based conversational recommendation models.

7.6 Conclusion and Discussion

Our empirical study addresses a repetition shortcut in standard CRS evaluations, high-

lighting its potential to yield unreliable conclusions on model design. Furthermore, we showcase

the superior performance of LLMs as zero-shot CRS, outperforming fine-tuned existing models.

Inspired by this efficacy, a comprehensive analysis from both model and data perspectives is

conducted to elucidate the working mechanisms of LLMs, characteristics of CRS tasks, and

limitations of direct LLM utilization in CRS. Experimental evaluations utilize publicly available

datasets and a newly created, extensive movie recommendation dataset sourced from a popular

discussion website, establishing the largest public CRS dataset for more diverse and realistic

conversations. Future directions based on our findings are also discussed in this section.

On LLMs. Given the remarkable performance even without fine-tuning, LLMs exhibit

potential as an effective CRS approach, leveraging superior content and contextual knowledge.

The success of open-sourced LLMs [Xu et al., 2023, Chiang et al., 2023] opens avenues for

improving CRS through efficient tuning [Hu et al., 2021, Bao et al., 2023] and collaborative

filtering [Koren et al., 2009] ensembling. Concurrently, tasks like debiasing [Chen et al., 2023]

and ensuring trustworthiness [Ge et al., 2022] in the context of LLMs merit reconsideration.

On CRS. Our findings advocate systematic re-benchmarking of various CRS models to

comprehend their recommendation abilities and task characteristics comprehensively. A deeper

understanding of CRS tasks necessitates diverse datasets from sources such as crowd-sourcing

platforms [Li et al., 2018b, Hayati et al., 2020], discussion forums, and realistic CRS applications
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spanning domains, languages, and cultures. Additionally, our analysis of information types un-

derscores the unique importance of superior content and contextual knowledge in LLMs for CRS

tasks. This distinction sets CRS tasks apart from traditional recommendation settings, prompting

exploration of interconnections between CRS tasks and traditional recommendation [Harper and

Konstan, 2015] or conversational search [Bajaj et al., 2018] tasks.

Chapter 7, in part, is a reprint of the material as it appears in “Large language models

as zero-shot conversational recommenders.” by Zhankui He*, Zhouhang Xie*, Rahul Jha,

Harald Steck, Dawen Liang, Yesu Feng, Bodhisattwa Prasad Majumder, Nathan Kallus, and

Julian McAuley in Proceedings of the 32nd ACM International Conference on Information &

knowledge management in 2023, referenced as [He et al., 2023]. The dissertation author was the

primary investigator and author of this paper.
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Chapter 8

Related Work

8.1 Related Work for LOCKER and QUERYSR

To accurately model users’ sequential interactions, we focus on capturing complex

item-to-item patterns and user dynamics. To this end, various model architectures have been

investigated for sequential recommendation. Traditional models integrate factorized user models

with Markov Chains (MCs) to capture sequential dynamics [Rendle et al., 2010, He and McAuley,

2016a]. For example, FPMC [Rendle et al., 2010] used first-order MCs to capture item-to-item

transitions and Matrix Factorization (MF) models [Koren et al., 2009] to model static user

preferences; FOSSIL [He and McAuley, 2016a] adopts higher-order MCs with the item-based

factorized model FISM [Kabbur et al., 2013].

Recently, the effectiveness of deep neural networks has been widely demonstrated for

sequential modeling (e.g. language models [Cho et al., 2014b, Vaswani et al., 2017a]). Therefore,

RNN-based models have been proposed [Hidasi et al., 2015, Hidasi and Karatzoglou, 2018,

Donkers et al., 2017] for sequential recommendation with several variants [Huang et al., 2018b,

Ma et al., 2019]. CNN-based models have been proposed [Tang and Wang, 2018, Ma et al.,

2019] to capture more complex user behavior patterns (e.g. “skip behaviors” and “union-level”

dependencies). Attention-based models [Kang and McAuley, 2018, Sun et al., 2019] and related

variants [Wu et al., 2020, Lin et al., 2020] have achieved state-of-the-art performance with the

help of Transformer [Vaswani et al., 2017a] architectures to identify relevant’ items in sequences
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to predict the next action(s). We can leverage any model architecture above as a backbone for

query-aware sequential recommendation. In this paper, we build our model on SASRec [Kang

and McAuley, 2018], which is a popular transformer-based “backbone” for state-of-the-art

sequential recommendation variants [Wu et al., 2020, Lin et al., 2020].

Conventional user behavior sequences take the form of (user, action, item, time) tuples

in chronological order. Side information can be introduced among these four aspects to better

understand user behavior. For user profiles, ARNN [Song and Lee, 2018] considers user-side

information (e.g. age, gender) to model user preferences with a product-based network. For user

actions, MKM-SR [Meng et al., 2020] incorporates user micro-behavior and item knowledge

to learn better representations. For items, to enrich item representations, Parallel-RNN [Hidasi

et al., 2016], FDSA [Zhang et al., 2019] and NOVA-BERT [Liu et al., 2021] propose different

frameworks on the basis of sequential recommenders [Hidasi et al., 2015, Kang and McAuley,

2018, Sun et al., 2019] to incorporate heterogeneous item features such as keywords, genres and

textual reviews. For temporal information, TiSASRec [Li et al., 2020a] proposes a time interval-

aware self-attention module for sequential recommendation; dwell time is also considered by a

few works [Bogina and Kuflik, 2017, Dallmann et al., 2017].

8.2 Related Work for UCEPIC and P-SHOWCASE

Generating explanations for recommended items has been extensively explored in vari-

ous formats [Zhang et al., 2020e, 2014, Gao et al., 2019] such as item aspects, attributes, and

similar users. Recently, there has been a growing interest in natural-language-based explanation

generation [Li et al., 2021b, Ni and McAuley, 2018, Lu et al., 2018, Li et al., 2017b, 2020c,

2023b, Ni et al., 2019] for producing post-hoc explanations in a personalized style. For instance,

Li et al. [2017b] used an RNN-based model to generate explanations based on predicted ratings.

To enhance control over the explanation generation process, Ni et al. [2019] extracted aspects

and managed the semantics of generated explanations conditioned on different aspects. Addi-

132



tionally, Li et al. [2021b] proposed a personalized transformer model that generates explanations

based on given item features. The area of review generation is closely related, as explanation

generation methods often derive expressive and informative explanations from user reviews.

Several controllable review generators [Dong et al., 2017, Ni and McAuley, 2018] serve as

baseline models in early experiments for explanation generation. Although previous works have

increased generation controllability, they are predominantly based on auto-regressive generation

frameworks [Li et al., 2019, Ni and McAuley, 2018, Li et al., 2020b, 2021a, Hua and Wang,

2019, Moryossef et al., 2019], focusing solely on aspect planning.

In particular, for UCEPIC, lexically constrained generation involves ensuring that gener-

ated text adheres to specific lexical constraints, such as keywords. Early approaches typically

used specialized decoding methods. Hokamp et al. [Hokamp and Liu, 2017] introduced a

lexical-constrained grid beam search decoding algorithm, integrating constraints into the decod-

ing process. Post et al. [Post and Vilar, 2018] proposed an algorithm for lexically constrained

decoding with reduced complexity in constraint handling. Hu et al. [Hu et al., 2019] enhanced de-

coding through a vectorized dynamic beam allocation. Miao et al. [Miao et al., 2019] introduced

a sampling-based conditional decoding method, placing constraints in a template and decoding

words using Metropolis-Hastings sampling. While special decoding methods often incur high

time complexity, Zhang et al. [Zhang et al., 2020d] achieved hard-constrained generation with

O(logn) time complexity. This was accomplished through language model pre-training and

insertion-based generation [Stern et al., 2019, Gu et al., 2019b, Chan et al., 2019, Gu et al.,

2019a] commonly used in machine translation. CBART [He, 2021] leverages the pre-trained

BART model [Lewis et al., 2020], utilizing the encoder for insertion instruction and the decoder

for predicting masks.

In terms of multimodal generative methods for P-SHOWCASE, recent successes in deep

learning for multi-modal learning and pretraining [Tan and Bansal, 2019, Radford et al., 2021,

Chen et al., 2021] leverage Transformer [Vaswani et al., 2017a] structures to encode visual

and textual features for pretraining, benefiting downstream multimodal tasks. CLIP [Radford
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et al., 2021] is a powerful model trained on massive image-caption pairs, exhibiting strong

zero-shot capabilities across vision and language tasks. Approaches like CLIPScore [Hessel

et al., 2021] and Imagine [Zhu et al., 2021] use CLIP embeddings for modality similarity metrics

in text generation tasks. Particularly, Contrastive learning [Oord et al., 2018] aims to learn

representations by contrasting positive and negative pairs, applied in various machine learning

fields. In computer vision [Chen et al., 2020a, He et al., 2020], natural language processing

[Huang et al., 2018a], and recommender systems [Wei et al., 2021], promising results emerge.

Recent works demonstrate the effectiveness of contrastive learning in conditional text generation,

involving adversarial example generation [Lee et al., 2020] and hard negative identification using

pre-trained language models [Yan et al., 2021].

8.3 Related Work for BUNDLEMCR and LLM4CRS

We discuss interactivity in the context of Conversational recommender systems (CRS).

CRS aims to understand user preferences and provide personalized recommendations through

conversations. Existing CRS interactivities are categorized based on dialogue setups:

(1) About Free Text: Generates human-like responses in natural language [Kang et al.,

2019, Li et al., 2018b, Chen et al., 2019b]. For instance, [Li et al., 2018b] introduces the ReDial

dataset and employs a hierarchical RNN framework. KBRD [Chen et al., 2019b] integrates

knowledge-grounded information.

(2) About Items: Utilizes absolute (e.g., “Do you want item A?”) or relative-question

templates (e.g., “Choose between item A or B?”)[Christakopoulou et al., 2016, Xie et al., 2021].

Strategies include Greedy, UCB[Auer, 2002], or Thompson Sampling [Chapelle and Li, 2011].

(3) About Tags: Poses questions on user preferences for different tags associated with

items [Sun and Zhang, 2018, Zhang et al., 2018]. CRM [Sun and Zhang, 2018] integrates

conversation and recommender systems using a unified deep reinforcement learning framework.

SAUR [Zhang et al., 2018] employs a System Ask-User Respond paradigm. Multi-round Conver-
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sational Recommendation (MCR) [Lei et al., 2020a,b, Deng et al., 2021b, Zhang et al., 2022]

falls under this setting.

In particular, MCR is arguably the most practical setting available [Lei et al., 2020a,b,

Deng et al., 2021b, Zhang et al., 2022] before the appearance of LLMs to support free-text

conversation interactions and has been widely adopted in recent conversational recommender

systems. For instance, EAR [Lei et al., 2020a] introduces an Estimation-Action-Reflection

framework that solicits attributes and models users’ online feedback. Additionally, SCPR [Lei

et al., 2020b] integrates an item-attribute graph to offer explainable conversational recommen-

dations. UNICORN [Deng et al., 2021b] proposes a unified reinforcement learning framework

based on a dynamic weighted graph for MCR. To enhance the realism of individual MCR,

zhang2022multiple [Zhang et al., 2022] permits users to select multiple choices for questions

and models user preferences using multi-interest encoders. However, existing MCR frameworks

are primarily designed for individual item recommendation (Individual MCR). Consequently, the

overall model architecture (e.g., FM [Rendle, 2010]) and question strategy design are incompati-

ble with bundle contexts. In this dissertation, our BUNDLEMCR adopts a similar conversation

management approach as existing individual MCRs. Nevertheless, we specifically design model

architectures for bundle-aware user modeling, question asking, feedback handling, and bundle

generation.

For free-text conversational recommendations, as natural language processing has ad-

vanced, the community developed “deep” CRS [Li et al., 2018b, Chen et al., 2019b, Wang et al.,

2022] that support interactions in natural language. Aside from collaborative filtering signals,

prior work shows that CRS models benefit from various additional information. Examples

include knowledge-enhanced models [Chen et al., 2019b, Zhou et al., 2020b] that make use of

external knowledge bases [Auer et al., 2007, Liu and Singh, 2004], review-aware models [Lu

et al., 2021], and session/sequence-based models [Zou et al., 2022, Li et al., 2022b]. Presently,

UniCRS [Wang et al., 2022], a model built on DialoGPT [Zhang et al., 2020c] with prompt

tuning [Brown et al., 2020], stands as the state-of-the-art approach on CRS datasets such as
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ReDIAL [Li et al., 2018b] and INSPIRED [Hayati et al., 2020]. Currently, by leveraging LLMs,

[Friedman et al., 2023] proposes a new CRS pipeline but does not provide quantitative results,

and [Wang et al., 2023] proposes better user simulators to improve evaluation strategies in LLMs.

In this dissertation, our LLM4CRS uncover a repeated item shortcut in the previous evaluation

protocol and propose a framework where LLMs serve as zero-shot CRS with detailed analyses

to support our findings from both model and data perspectives.

136



Chapter 9

Conclusion and Future Outlook

9.1 Summary of Contributions

In this dissertation, we present three research pillars towards the core components of

conversational recommender systems, including accuracy, explainability, and interactivity.

In terms of accuracy, we study how to accurately model user sequential and dynamic

behaviors with both homogeneous and heterogeneous sequential data. One contribution from

LOCKER is to uncover and address the intrinsic limitations of the vanilla self-attention architec-

tures in capturing users’ interests in sequential action sequences. Another contribution is from

QUERYSR, which shows that the heterogenous user behavior sequences punctuated by textual

queries provide strong signals to uncover user dynamics. Those two models are evaluated in

sequential recommendation datasets as testbeds, yet they have the potential to serve as backbones

of pure conversational recommendation applications where user sequential behaviors are mixed

with text inputs and combined by long-term preferences and short-term interests.

In terms of explainability, we focus on the controllability and multi-modality of explana-

tion generation for recommended items. One contribution from UCEPIC shows the effectiveness

of including accurate and detailed keyphrases in explanation generation to offer richer infor-

mation to users. Another contribution from P-SHOWCASE is that we are able to go beyond

text-only explanations to involve more modalities (e.g., visual) in explanation generation to

provide more intuitive and useful explanations for users. Those models are evaluated by the
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explanation sub-tasks and human evaluations and can serve as an important part of conversational

recommender systems as well.

In terms of interactivity, we enable multi-round interactions between systems and users by

investigating two complex recommendation scenarios. First, our contribution in BUNDLEMCR

demonstrates that complex recommendation tasks, which traditional recommender systems are

struggling with, become much easier when conversational mechanisms are introduced. Second,

another contribution in LLM4CRS provides insights for using LLMs in natural-language-

based conversational recommendations, where LLMs are able to understand item content and

complex contextual descriptions from users, yet more efforts should be made to enhance LLMs’

collaborative knowledge to make recommendations.

In addition to those technical contributions, our works also contribute two important

research resources for the community. The first is the dataset GEST from Google Local reviews,

serving as a large-scale recommendation dataset with unique multi-modal explanations along

with user-item interactions, and other interesting features such as locations; The second is

the dataset REDDIT-MOVIE from Reddit platforms, serving as the largest-scale conversational

recommendation dataset to date, from real discussion platforms, to facilitate the further research

in the conversational recommendation field.

9.2 Future Directions

In addition to the directions explored in this dissertation, there are several potential

research avenues or challenges that merit further investigation to work toward an ideal conversa-

tional recommender system:

1. Fairness and Debiasing. Fairness and debiasing have been a focus in traditional recom-

mender systems, but remain underexplored in conversational contexts. An open question

is whether systems proactively asking questions or collecting explicit textual feedback

(e.g., critiques) from users can significantly alleviate biased issues or improve fairness.
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2. Evaluation with User Simulators. With the advancement of large language models (LLMs),

an open question is whether we can develop user simulators to serve as satisfactory

surrogates for real users in conversational interactions. If so, these simulators could

significantly change the future of conversational recommendation research by providing

inexpensive and scalable evaluation.

3. Resources and Benchmarking. Although some contributions have provided resources for

conversational recommendations, this field is still in its nascent stage. More datasets,

benchmarks, and software libraries could greatly facilitate research by providing common

platforms. Developing such research-oriented resources also poses interesting system-

design challenges.

4. Real-world Applications. Conversational recommender systems in the real world face

challenges like open-domain settings, distribution shifts, and adversarial attacks. Formu-

lating such practical issues as research questions and contributing solutions is critical for

advancing conversational recommendation research.
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