
Lawrence Berkeley National Laboratory
LBL Publications

Title
Improving Performance of Structure-memory, Data-Intensive Applicationson Multi-core 
Platforms via a Space-Filling Curve Memory Layout

Permalink
https://escholarship.org/uc/item/2668z21d

Authors
Bethel, E. Wes
Camp, David
Donofrio, David
et al.

Publication Date
2015-05-29

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2668z21d
https://escholarship.org/uc/item/2668z21d#author
https://escholarship.org
http://www.cdlib.org/


Improving Performnace of Structure-memory,
Data-Intensive Applications on Multi-core Platforms via

a Space-Filling Curve Memory Layout

E. Wes Bethel, David Camp, David Donofrio
Lawrence Berkeley National Laboratory, Berkeley, CA, USA

Mark Howison
Lawrence Berkeley National Laboratory, Berkeley, CA, USA

Brown University, Providence, RI, USA

February, 2015

IPDPS 2015 Workshops
International Workshop on High Performance Data Intensive Computing (HPDIC 2015)

Hyderabad, India
May 2015

i



Acknowledgment

This work was supported by the Director, Office of Science, Office of Advanced Scientific Computing
Research, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. This
research used resources of the National Energy Research Scientific Computing Center.

Legal Disclaimer

This document was prepared as an account of work sponsored by the United States Government.
While this document is believed to contain correct information, neither the United States Gov-
ernment nor any agency thereof, nor The Regents of the University of California, nor any of their
employees, makes any warranty, express or implied, or assumes any legal responsibility for the ac-
curacy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by its trade name, trademark, manufacturer, or other-
wise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or The Regents of the University of California.
The views and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof or The Regents of the University of California.

ii



Improving Performance of Structured-memory, Data-Intensive Applications on
Multi-core Platforms via a Space-Filling Curve Memory Layout

E. Wes Bethel, David Camp, David Donofrio
Lawrence Berkeley National Laboratory

Berkeley, CA, USA
{ewbethel, dcamp, ddonofrio}@lbl.gov

Mark Howison
Lawrence Berkeley National Laboratory and

Brown University
Providence, RI, USA
mhowison@brown.edu

Keywords-memory layout; space-filling curve; memory lo-
cality; shared-memory parallel; data-intensive applications;
stencil operation; volume rendering

Abstract—Many data-intensive algorithms—particularly in
visualization, image processing, and data analysis—operate on
structured data, that is, data organized in multidimensional
arrays. While many of these algorithms are quite numerically
intensive, by and large, their performance is limited by the cost
of memory accesses. As we move towards the exascale regime
of computing, one central research challenge is finding ways
to minimize data movement through the memory hierarchy,
particularly within a node in a shared-memory parallel setting.
We study the effects that an alternative in-memory data layout
format has in terms of runtime performance gains resulting
from reducing the amount of data moved through the memory
hierarchy. We focus the study on shared-memory parallel
implementations of two algorithms common in visualization
and analysis: a stencil-based convolution kernel, which uses a
structured memory access pattern, and raycasting volume ren-
dering, which uses a semi-structured memory access pattern.
The question we study is to better understand to what degree an
alternative memory layout, when used by these key algorithms,
will result in improved runtime performance and memory
system utilization. Our approach uses a layout based on a
Z-order (Morton-order) space-filling curve data organization,
and we measure and report runtime and various metrics
and counters associated with memory system utilization. Our
results show nearly uniform improved runtime performance
and improved utilization of the memory hierarchy across
varying levels of concurrency the applications we tested. This
approach is complementary to other memory optimization
strategies like cache blocking, but may also be more general
and widely applicable to a diverse set of applications.

Keywords-memory layout, data intensive algorithms, image
analysis, visualization, multi-core CPUs, GPU algorithms, per-
formance optimization

I. INTRODUCTION

The performance of data-intensive codes, such as those
found in data analysis and visualization, is often limited
by memory access time. As we move towards the exascale
regime, the combination of increasingly deepening and more
complex memory hierarchies, combined with the increased
cost of moving data through the memory hierarchy, moti-
vates the need to optimize data movement. The primary

focus of our work here is to study the degree to which
changing the layout of data in memory can impact the
performance of data-intensive codes in terms of runtime and
memory system utilization. Our approach is to compare a
traditional array-order (or, row-major order) layout with an
alternative layout based upon a Z-order (a variation of the
Morton-order) space-filling curve (SFC) layout.

Previous approaches for optimizing memory access have
included cache blocking and data tiling strategies. These
have worked reasonably well, though they have limitations
that may preclude their use in a broad set of data intensive
applications. Other previous works have studied the use
of SFC approaches for optimizing memory access, though
those have focused primarily on numerical and scientific
computing methods and have an emphasis upon methods
that use structured and predictable memory access patterns.

The main contributions of this work are as follows. First,
we study the effects resulting from use of a SFC in terms
of runtime performance and memory system utilization for
two algorithms that are often-used in the field of visual data
analysis. One algorithm, the bilateral filter, uses a structured
memory access pattern, while the other, raycasting volume
rendering, uses a “semi-structured” memory access pattern.
The use of these two different algorithms, which have differ-
ent memory access patterns that are broadly representative of
many algorithms in visualization and analysis, helps provide
a diversity of problems to evaluate the locality gains to
be had by using a SFC for memory layout. Second, we
conduct this study on modern architectures, the Intel MIC
and IvyBridge, and report that the performance gains seen
from use of SFC in the past in other applications continue
to hold true today for two data-intensive algorithms. Third,
we measure and report the locality effects gained by using a
SFC by including a measure of memory system performance
counters in our experiment. Previous studies have tended
to focus on absolute runtime as a metric, while our work
here includes use of memory system performance counters
that serve as an indicator for quantifiably comparing the
reduction in data movement resulting from a more cache-
friendly layout.

1



Our results show improved runtime performance and
improved memory system utilization when using the Z-order
memory layout. The advantages of this approach are that
its implementation is nearly transparent to the application,
and it is generally beneficial to any data-intensive code that
works with structured data using structured, semi-structured,
or even unstructured access patterns.

II. BACKGROUND AND PREVIOUS WORK

A. Optimizing Data Access – Blocking and Tiling

Over the years, a number of efforts have studied the issue
of improving access to data through techniques that aim
to improve locality of reference, both spatial and temporal.
Temporal locality refers to reuse of the same datum within a
short window of time, while spatial locality refers to use of
data values that are nearby in memory. The basic idea is that
the cost associated with accessing a datum is less when it is
nearby in either space or time [1], and subsequent research
efforts have focused on maximizing locality of reference.

The key idea behind cache blocking is to process a larger
dataset iteratively by operating on a subset of it, where the
subset is sized such that it fits entirely into high-speed cache,
thereby maximizing locality of reference. Early research,
such as Lam et al. 1991 [2], focused on deriving the optimal
blocking factor size using a model that included cache line
size and code characteristics.

Over the years, as memory systems have vastly increased
in complexity, and cache replacement strategies are often
unknown, thereby making it extremely difficult to define
an accurate model for determining the optimal cache block
size, the idea of auto-tuning has emerged as a methodology
for empirically determining the optimal blocking factor, as
well as other tunable algorithmic parameters, for a given
code on a given platform [3]. Recognizing the increasing
difficulties posed by changing and increasingly complex
architectures, projects like Datta et al., 2008 [4] used auto-
tuning methods to find the values for tunable algorithmic
parameters, including cache block size, to achieve optimal
performance for a stencil-based computation on several
multi-core platforms.

The concept of tiling is closely related to that of blocking,
in that a larger problem is decomposed into smaller ones,
with the idea being that operating on smaller chunks, or
tiles, that are sized appropriately will make better use of the
memory hierarchy, which, in turn, will lead to improved per-
formance. Work by Unat et al., 2013 [5] presents language-
level constructs to enable tiling and parallelism, with the
key observation that “each tile represents an atomic unit
of work.” Their work shows performance improvements of
about 25% for a Navier-Stokes solver that result from better
use of the memory hierarchy.

One theme common in these approaches is that the funda-
mental unit of work is a chunk of data: a single operation is
performed on a block or tile of data. These methods aim to

induce a high degree of locality in data accesses by reducing
a larger problem size into a number of smaller problems,
where each of the smaller problems is sized to fit into
cache. Many types of problems, namely structured memory
access patterns on structured data, fall into this category.
Achieving the benefits of these methods requires varying
degrees of code modification, from the addition of pragmas
to loop unrolling and reordering. Of greatest significance
is the fact that this design pattern concept, of data-based
problem decomposition, does not apply in a straightforward
way to many types of data-intensive codes, such as those
that use other than structured memory access patterns.

B. Optimizing Data Access – Space-filling Curves

An alternative approach to achieving a high degree of
locality in data accesses is to simply lay out the data in
memory such that the intrinsic nature of the layout promotes
a higher degree of locality.

In other words, considering an array-order layout, one
fundamental problem that inhibits spatial locality is that
accesses that may be nearby in index space may not be
be spatially nearby in memory. For example, if A is a
two-dimensional array of 4-byte floats having dimensions
1024 × 1024, then A[i, j] and A[i + 1, j] are adjacent in
physical memory, but A[i, j] and A[i, j + 1] are 4K bytes
apart in memory. Blocking and tiling strategies aim to reduce
the effect of this trait by reducing a large problem into
a number of smaller ones. This problem, and its adverse
impact on memory performance, is exacerbated by increases
in data size and dimensionality.

In contrast, SFC approaches lay out data in memory
differently, so that an access that is nearby in index space
is likely nearby in physical memory. There are a number of
SFC approaches, including Z-order (also known as Morton-
order curves), Hilbert-order, and others, which are presented
in a comprehensive fashion in Bader, 2013 [6]. While these
approaches differ in the exact way they index a subspace,
they are all known for having favorable spatial locality
characteristics when compared to the traditional array-order
layout.

The idea of using SFC layouts to accelerate performance
has been well studied, particularly in the area of scientific
computing, and to some degree, in the visualization litera-
ture.

Pascucci and Frank, 2011 [7] compare the performance of
array-order, Z-order, and 3D blocking (tiling) data layouts
for unstructured access to structured data within the context
of a remote visualization system that supports taking arbi-
trary slice planes through 3D blocks of data at prescribed
levels of subsampling. There, the Z-order layout shows
significant runtime performance advantages over array-order
and tiling that result from the spatial locality characteristics
of the Z-order layout. The Z-order layout provides the ability

2



to quickly load data from disk at varying levels of resolution,
thereby enabling interactive exploration of large data sets.

DeFord and Kalyanaraman, 2013 [8] study the benefits
to scientific computing applications of SFC ordering and
partitioning of data in terms of its impact on communication
for an implementation of the Fast Multipole Method for n-
body problems. Their findings, which focus on evaluating
different efficiency metrics based upon communication dis-
tance in a distributed-memory context, suggest that using
a SFC data layout for data and task-processor assignment
can result in significantly less communication compared to
using an array-order layout. Bader, 2013 [6] uses SFC to lay
out data in memory for codes performing matrix operations,
and shows how traversal of the matrix elements in a cache-
friendly way has runtime performance benefits.

Reissmann et al., 2014 [9] compared the performance of
a matrix-matrix multiply code using array-order with Z-
order and Hilbert-order SFC layouts. They report runtime
performance and power cost estimates in each configuration,
and find that the Z-order layout offers performance and
power use advantages in many configurations, but that the
cost of computing the Hilbert-order curve indexing, which
is more complex than that of the Z-order method, exceeds
benefits that might be gained by locality effects.

Bethel and Howison, 2012 [10] showed that the Z-order
in-memory layout results in better runtime performance and
better use of the memory hierarchy, in terms of L2 cache
misses on an NVIDIA Fermi GPU, for a raytracing volume
renderer. The work we describe here goes into more detail to
show how the Z-order layout is less sensitive to performance
degradation caused by “against-the-grain”, or non-optimal
memory access patterns, that result in substantial perfor-
mance variation when using array-order memory layout,
as well as to study these effects in more detail, and on
current platforms. This feature is borne out quite clearly by
the results shown in Section IV-D, where the methodology
explicitly tests this idea.

III. IMPLEMENTATION

We implement and test two different shared-memory
parallel algorithms as part of this study. The 3D bilateral
filter (Section III-A) uses structured memory access patterns,
while the raycasting volume renderer (Section III-B) uses
a semi-structured memory access pattern. Both algorithms
operate on a single block of 3D data, where each accesses
via an interface that encapsulates the Z-order or array-
order indexing in a way transparent to the application
(Section III-C).

Both implementations use C/C++ and POSIX threads for
shared-memory parallelism. There are two primary reasons
for using POSIX threads rather than a compiler-assisted
approach, like OpenMP. First, the raycasting implementation
implements multiple types of work assignment strategies.

The best-performing strategy is a dynamic approach imple-
mented using a worker-pool model, which doesn’t lend itself
to automatic loop parallelization characteristic of compiler-
assisted approaches. Second, the MIC platform, at this point
in time, provides certain capabilities for thread management
that are accessible only through the POSIX threads interface.

A. Structured Memory Access: 3D Bilateral Filtering

The bilateral filter is an anisotropic, edge-preserving im-
age smoothing method first introduced for 2D images by
Tomasi and Manduchi, 1998 [11] (for a detailed introduction
and comparison to other image smoothing methods, see
Howison and Bethel, 2014 [12]). It can be extended to 3D
volumes, and is essentially a two-stage operation involving
first an N ×N ×N Gaussian convolution kernel followed
by a normalization step over the entire stencil of filtered
values to take into account data-dependent characteristics.
This type of stencil-based access pattern forms the basis of
many algorithms in data analysis and visualization where a
final answer is computed as a function of neighboring data
values.

The output at each image pixel/voxel D(i) is the weighted
average of the influence of nearby image pixels/voxels ī
from the source image S at location i. The “influence” is
computed as the product of a geometric spatial component
g(i, ī) and signal difference c(i, ī).

D(i) =
1

k(i)

∑
g(i, ī)c(i, ī) (1)

where k(i) is a normalization factor that is the sum of all
weights g(i, ī) and c(i, ī), computed as:

k(i) =
1∑

g(i, ī)c(i, ī)
(2)

While it is possible to precompute the portions of k(i)
contributed by g(i, ī), which depend only on the 3D Gaus-
sian filter weights, the set of contributions from c(i, ī) are
not known a priori as they depend upon the actual set of
photometric differences observed across the neighborhood
of c(i, ī) and will vary depending upon the source image
contents and target location i. For this reason, the bilateral
filter formulation is more computationally intensive than a
simple convolution kernel.

Tomasi and Manduchi define g and c to be Gaussian
functions that attenuate the influence of nearby points such
that those nearby in geometric or signal space have greater
influence, while those further away in geometric or signal
space have less influence according to a Gaussian distribu-
tion. So,

g(i, ī) = e
− 1

2

(
d(i,̄i)
σ

)2

(3)

Here, d(i, ī) is the spatial distance between a pixel i and
nearby pixels in the neighborhood ī. With the Gaussian

3



filter weights, the idea is to blend values of pixels in the
neighborhood such that those closer to pixel i have a greater
contribution, while those further away make less of a contri-
bution. The constant σ is a user-definable parameter defining
the standard deviation of the distribution. The impact of this
parameter is as follows: larger values result in a greater
degree of smoothing; smaller values produce less smoothing.

The photometric similarity influence weight c(i, ī) uses
a similar formulation, but d(i, ī) would be replaced with
the absolute difference ‖S(i)− S(̄i)‖ between the value of
the source pixel S(i) and the value of the nearby pixel S(̄i).
Here, the idea that nearby pixels having a value that is “close
to” pixel i will have more influence, while those with a value
“far from” pixel i will have less influence. It is this particular
trait that makes the bilateral filter an “edge preserving” filter.
This machinery is generally applicable to other problems,
such as edge-preserving mesh smoothing [13].

This type of computation can be done in “embarrassingly
parallel” fashion: the computation of each output pixel/voxel
D(i) is completely independent from every other output
pixel/voxel. We approach parallelizing the problem by as-
signing a “pencil” of output voxels—from a width-, height-,
or depth-row from the volume—to each thread, with work
being handed out in round-robin fashion to all threads.

The choice of width, height, or depth row assignment of
voxels to threads is significant, and can have a noticeable im-
pact on performance. For example, Bethel, 2012 [14] found
that doing a depth-row assignment resulted in a two-fold
performance gain over width- and height-row assignments
when run on a GPU. This performance gain resulted from the
benefits associated with coalesced memory accesses on the
GPU; the depth-row method generated coalesced memory
access patterns, whereas the others did not. We see similar
performance differences of this type later in Section IV.

B. Semi-structured Memory Access: Raycasting Volume
Rendering

Volume rendering is a common technique for displaying
2D projections of 3D sampled data [15], [16] and is com-
putationally, memory, and data I/O intensive.

Raycasting volume rendering is an image-order method in
which the outer loop iterates over image pixels, casting rays
from the viewpoint through the image plane, and computing
the color of each output pixel by sampling the data from
the 3D volume intersected by the ray and compositing those
samples into a final shade. In contrast, object-order methods
iterate over input voxels, and through a process akin to
rasterization, compute the colors for each of the output pixels
covered by the input voxel. Over the years, there has been
a great deal of research in the are of parallelizing volume
visualization methods (see Kaufman and Mueller, 2005 [17]
for an overview). Parallelization methods differ according to
whether the algorithm is image-order or object order.

Our implementation of a parallel raycasting volume ren-
derer uses thread-based shared-memory parallelism within
a node, and MPI-based, distributed-memory parallelism for
use at large scale [18]. Since our study here is on intra-node
memory utilization and its relationship to runtime, we are
using only on the shared-memory parallel portion of this
code. The problem is parallelized by dividing the output
image into tiles, then assigning a thread to compute the
final output pixel values for each tile. Bethel and Howison,
2012 [10] found that the choice of tile size can have a
profound impact on the runtime of this algorithm on both
multi-core CPUs and many-core GPUs. For our tests in
this work, we use a tile size of 32 × 32 pixels, as that
size had consistently good performance across a diversity
of platforms in our previous studies.

When using orthographic projection, all the rays are
parallel, and as such, they all traverse through the 3D
block of data in the same way. In contrast, with perspective
projection, which is what we are using here, the rays diverge
from one another along their length as one moves away from
the eyepoint. Along each ray, the memory access pattern
is consistent and predictable, but each ray in perspective
projection will use a slightly different traversal through
memory.

More specifically, if the slope of a ray’s path is
(δx, δy, δz), then in orthographic projection, all rays will
have that same slope. In perspective projection, each ray will
have a unique (δx, δy, δz) slope. Therefore, in perspective
projection, each ray uses a memory access pattern that is
distinct and different from all other rays. For this reason,
we refer to this class of algorithm as using a semi-structured
memory access pattern.

In the case of an array-order memory layout, we assume
that if a ray’s path is parallel to the x-axis of the 3D volume,
and has a slope of the form (δx, σy, σz), where σy, σz ≈ 0,
that the integration along that ray’s path will result in a
more favorable memory access pattern. As data samples are
taken along the ray’s length, additional sample along the
ray will access a data value that is located approximately
(δx, σy, σz) from the previously taken sample. Such a
sampling pattern results in contiguous samples being taken
from nearby locations in physical memory.

Similarly, we assume that when the ray’s path does not
closely follow the most-quickly varying index direction of
the array-order layout, e.g., where its slope more closely
resembles (σx, δy, δz) and σx ≈ 0, that contiguous ray
samples will be accessing locations that, while nearby in
index space, will be significantly more distant in physical
memory when compared to the (δx, σy, σz) access pattern.

It is this very problem we are attempting to solve by using
a Z-order layout. The hypothesis we wish to test is whether
or not replacing the array-order layout with a more cache
friendly Z-order layout will result in contiguous ray samples
accessing data that is located nearby in physical memory,

4



regardless of the ray’s slope.

C. Accessing Memory

Our intention is to streamline and unify access to memory,
regardless of whether using Z-order and array-order layouts,
for use by each of the above algorithm implementations.
Conceptually, each of the above algorithms will access
memory using something like data = A[i, j, k], though the
computation of i, j, k varies as a function of algorithm.

Our implementation is a lightweight library that imple-
ments both Z-order and array-order indexing in a way that
puts the indexing computation cost on more or less equal
footing. During an initialization call, the library constructs
some static tables, which are then referenced during the
indexing calculation. The tables themselves are of modest
size, as follows using a 3D structured dataset of size 5123

as an example.
For array-order indexing, we construct two tables of

off_t values: a yoffset table that is ysize = 512 in length,
and a zoffset table that is zsize = 512 in length. Each
j’th entry of the yoffset table contains the value j ∗ xsize,
and each k’th entry of the zoffset table contains the value
k ∗xsize ∗ ysize. Computing an array-order index for some
arbitrary (i, j, k) location requires two table lookups and two
additions.

For Z-order indexing, we use a similar approach to that
described in Pascucci and Frank, 2001 [7]: we construct
three tables of length max(xsize, ysize, zsize) in length,
then each i’th entry of each table contains precomputed bit-
shifted values for the Z-order index. Computing a Z-order
index for some arbitrary (i, j, k) location requires three table
lookups and two OR operations.

Conceptually, this difference is transparent to the applica-
tion: after some one-time initialization, during which time
the static indexing tables are constructed, the application
would simply make a getIndex(i,j,k) call and the library
returns the array-order or Z-order index. We used this
approach because it is a very efficient way to construct
the Z-order indices, and to put the array-order and Z-order
index calculations on more or less equal footing so that in
the performance results, the cost of index computation is
essentially equal, and the differences in performance will
reflect the gains due to memory layout.

IV. METHODOLOGY AND RESULTS

A. Test Platforms

We ran our study on two different platforms located at the
National Energy Research Scientific Computing (NERSC)
facility:
edison.nersc.gov is a Cray XC30 system comprised

of 5,576 compute nodes, each of which is comprised of two
2.4GHz Intel Ivy Bridge processors, twelve cores each, and
having 64GB of DDR 1300MHz memory. On this processor,

each core has its own 64KB L1 and 256KB L2 cache, and
all cores share a single 30MB L3 cache.
babbage.nersc.gov is a testbed system containing

one login and 45 compute nodes, each containing two
2.6GHz, 8-core Intel Sandy Bridge processors, and two 60-
core Intel MIC/Knight’s Corner 5100P accelerators having
8GB of GDDR5 memory.

On both platforms, we make use of PAPI [19] to collect
a variety of hardware performance counters.

B. Methodology

Our hypothesis is that the Z-order memory layout will
result in better runtime due to better use of the memory
hierarchy. In our case, we are defining “better use” as in-
creased cache hit rates, which will allow the kernel to avoid
the long-latency (100’s of cycles) main-memory access.

1) Performance Counters: After looking at several differ-
ent PAPI metrics on our two test platforms, and considering
realistic problem sizes, we found that:

Ivy Bridge. The PAPI L3 TCA metric is closely cor-
related to relative performance: increases/decreases in
runtime are generally reflected as increases/decreases in
PAPI L3 TCA counts. The idea is that an L3 cache access
occurs because a memory request can’t be satisfied by L1
or L2 cache. So, when PAPI L3 TCA is lower, then the
memory access requests are being satisfied by L1 or L2
cache.

Intel MIC. The L2 DATA READ MISS MEM FILL is
a proxy for memory bandwidth. The Intel MIC has two
levels of caching, as opposed to three in Ivy Bridge, and to
test our theory that Z-order performance is closely related
to LLC cache utilization, we wish to examine the relative
memory bandwidth between the two kernels as a way
to quantify how effectively each kernel uses the memory
hierarchy. We found that increases/decreases in runtime are
reflected by increases/decreases in L2 read miss numbers.

2) Scaled, Relative Differences: The numbers we report
in most of the figures that follow are “scaled, relative
differences.” If we let a represent the measurement for the
array-order code and z represent the measurement for the Z-
order code, then scaled relative difference, ds, is computed
as:

ds = (a− z)/z (4)

The result of this computation is that when ds is less than
zero, the measurement for a is less than that for z. Con-
versely, when ds is greater than zero, then the measurement
for a is greater than z.

We use a scaling factor, namely z, to normalize the results,
since some measures, like runtime, are a few 1000s millisec-
onds, whereas some of the other performance counters can
generate numbers into the 10s of millions. The scaling factor
makes it easier to compare the relative (scaled) difference

5



Figure 1: In the case of the array-order layout (left), the rays from some viewpoints align well with memory layout, while
in others, the rays align poorly with memory layout. In contrast, with the Z-order layout (right), rays from all viewpoints
do not have particularly unfavorable alignment.

between different measures, like runtime and cache access
counters.

The ds is similar to, but not exactly the same as, a
percentage. For example, a value of 0.1 means, for example,
that there is a 10% difference between a and z; a value of
1.0 means there is 100% difference between a and z; and
a value of 10.0 means there is a 1000% difference between
a and z. It is an effective way to measure the difference
between a and z in a normalized fashion.

3) Bilateral Filter: We test this algorithm using as input
a dataset, the source of which is an MRI instrument at
the University of California–Davis, that is 5123 in size and
that consists of 4-byte floating point values. We vary the
following three parameters during testing.

Stencil size, from a smaller 3×3×3 to a larger 11×11×11.
These different stencil sizes are reflected in the results as r1,
r3, and r5, which correspond to 33, 53, and 113 stencil sizes,
respectively.

Concurrency, which varies by platform (see Sec-
tion IV-B5).

Voxel-row assignment, and stencil processing order. We
test using both width- and depth-row voxel assignments (see
Section III-A), as well as stencil iteration order. The idea
with stencil iteration order is to change the way that the
loops are structured so that an xyz order means that the
innermost loop iterates over x, the most quickly varying
order in memory (in the array-order sense), then over y, the
next most quickly varying order, then over z. In contrast,
zyx order iterates over z in the innermost loop, which is
the least favorable for array-order layouts. The intention is

to purposefully induce a potentially unfavorably memory
access pattern into the stencil code.

4) Raycasting Volume Rendering: We test this algorithm
using as input a dataset, the source of which is a combustion
simulation code, that is 5123 in size and that consists of
4-byte floating point values. We vary the following two
parameters during testing:

Viewpoint. In these tests, we vary the viewpoint by orbit-
ing around the center of the dataset over the course of a test
run; each individual run and the associated performance data
corresponds to a single viewpoint. Our intention is to vary
the data access pattern such that in some views, the rays’
data access pattern align well with memory layout (in the
array-order sense), while in other views, the rays’ data access
pattern will align poorly with memory. Figure 1 illustrates
this idea with a 2D example.

Concurrency, which varies by platform (see Sec-
tion IV-B5).

5) Concurrency: For both algorithms, we use the same
set of varying-concurrency levels across the test battery.

On the Ivy Bridge platform, where there are
two 12-core processors, we vary concurrency over
{2, 4, 6, 8, 10, 12, 18, 24} threads. This platform supports
alternative ways of mapping threads to cores, and we used
the “compact” method for these tests. In this way, when
running up to 12 threads, they are all placed on the same
processor.

On the MIC platform, where there are 60 cores per MIC
card, we vary concurrency over {59, 118, 177, 236} threads.
According to our system documentation, one core is needed
to run O/S and other functions, so we use the remaining

6



2 4 6 8 10 12 18 24 2 4 6 8 10 12 18 24
r1	  px	  xyz -‐0.02 -‐0.02 -‐0.03 -‐0.03 -‐0.03 -‐0.03 -‐0.04 -‐0.06 -‐0.87 -‐0.81 -‐0.90 -‐0.88 -‐0.92 -‐0.88 -‐0.91 -‐0.89
r1	  pz	  zyx 1.62 1.56 1.48 1.43 1.34 1.30 1.21 1.13 0.63 0.60 0.60 0.54 0.62 0.61 0.77 1.13
r3	  px	  xyz 0.27 0.30 0.42 0.42 0.45 0.45 0.45 0.45 36.15 26.37 38.26 35.32 43.60 50.78 47.07 26.92
r3	  pz	  zyx 1.04 1.04 1.08 1.08 1.07 1.06 1.22 1.18 2.84 3.98 3.07 4.32 3.92 3.43 2.24 1.56
r5	  px	  xyz 0.31 0.32 0.33 0.33 0.36 0.36 0.36 0.35 67.13 69.88 72.03 72.34 75.04 74.80 73.89 69.58
r5	  pz	  zyx 2.23 2.21 2.22 2.24 2.23 2.25 2.29 2.31 131.43 129.26 127.31 138.44 124.74 133.76 133.34 130.92

2 4 6 8 10 12 18 24 2 4 6 8 10 12 18 24

Concurrency:	  #Threads	  

RunAme	   Total	  L3	  Cache	  Accesses	  

Bilat3d,	  512^3,	  IvyBridge:	  Scaled,	  RelaAve	  Difference	  Z-‐	  vs.	  A-‐Order	  

Figure 2: A comparison of the differences in runtime (left) and total L3 cache accesses (right) for the bilateral3d code on
the Ivy Bridge platform.

59 118 177 236 59 118 177 236
r1	  px	  xyz 0.05 0.00 0.03 0.05 -‐0.28 0.00 0.03 0.05
r1	  pz	  zyx 0.42 0.27 0.23 0.19 8.41 3.03 2.96 5.67
r3	  px	  xyz 0.11 0.31 0.12 0.10 0.72 10.37 23.70 22.86
r3	  pz	  zyx 0.86 0.77 0.84 0.69 2.24 2.76 20.01 12.68
r5	  px	  xyz 1.06 0.58 0.40 0.22 63.40 24.38 39.07 48.50
r5	  pz	  zyx 8.92 6.17 4.93 4.12 207.82 147.62 176.99 618.27

59 118 177 236 59 118 177 236

Run6me	   L2_DATA_READ_MISS	  

Bilat3d,	  MIC:	  Scaled,	  Rela6ve	  Difference,	  Z-‐	  vs.	  A-‐Order	  

Concurrency:	  #Threads	  

Figure 3: A comparison of the differences in runtime (left) and L2 DATA READ MISS MEM FILL (right) for the
bilateral3d code on the MIC platform.

59 cores for our application. The four different concurrency
levels reflect each core’s ability to accommodate up to 4
threads each.

C. Bilateral Filter—Results

Fig. 2 shows scaled, relative differences in runtime (left)
and PAPI L3 TCA (right) for the bilateral3d code on the
Ivy Bridge platform. Positive numbers, shaded in hues of
green (runtime) and blue (L3 cache accesses) indicates in
which configurations the Z-order code is running faster and
has fewer total L3 cache accesses compared to the array-
order code. The rows are individual tests, where we use
three different stencil sizes, 33 (r1), 53 (r3), and 113 (r5),
vary the assignment of voxel pencils (px vs. pz) to threads,
and vary the stencil processing order (xyz vs. zyx).

Except for the smallest stencil size (r1) and the stencil
processing order most favorable to array-order (px, xyz),
the Z-order code shows better runtime, ranging from about
27% difference to about a 231% difference. Except for
the r1, px, xyz configuration, differences in PAPI L3 TCA
rates are lower for Z-order than array-order from as little
about half an order of magnitude up to over two orders of
magnitude. In the cases where we see the relatively large

difference in PAPI L3 TCA, we generally see the biggest
improvements in runtime. Some of these differences are
magnified by the relative comparison and show how much
more effectively (i.e. higher hit rates) the L2 cache is being
used in the Z-order case.

We observe one unusual feature in this data, namely the
r3, PAPI L3 TCA data. In the r1 and r5 cases, there is
a substantial decrease in PAPI L3 TCA count going from
the px to pz configuration. In the r3 case, the converse is
true: runtime decreases but PAPI L3 TCA increases. Even
so, it is the case that the Z-order code shows uniformly
better performance for both runtime and PAPI L3 TCA
counts compared to the array-order implementation. We
continue to investigate other performance counter data to
refine our understanding of the correlation between runtime
and memory system utilization.

Test results from the MIC platform, shown in Fig. 3,
indicate that the Z-order code runs faster than the
array-order code in all but one configuration. The
L2 DATA READ MISS MEM FILL plot shows similar-
ities to that for Ivy Bridge: the difference in memory
utilization grows substantially with both increase stencil

7



0	  

1	  

2	  

3	  

4	  

5	  

6	  

7	  

0	   1	   2	   3	   4	   5	   6	   7	  

Ti
m
e	  
(s
ec
s)
	  

Viewpoint	  

Volrend,	  512^3,	  IvyBridge,	  run?me	  	  

a-‐order	  

z-‐order	  

0	  

20000000	  

40000000	  

60000000	  

80000000	  

100000000	  

120000000	  

140000000	  

160000000	  

180000000	  

0	   1	   2	   3	   4	   5	   6	   7	  

PA
PI
_L
3_
TC

A	  

Viewpoint	  

Volrend,	  512^3,	  IvyBridge,	  PAPI_L3_TCA	  

a-‐order	  

z-‐order	  

Figure 4: Comparing array-order and Z-order runtime (left) and PAPI L3 TCA (right) performance on the Ivy Bridge
platform for one specific volume rendering test configuration. The array-order code’s performance is best when the viewpoint
rays are well aligned with memory, at viewpoints 0 and 4, but falls off as the viewpoint rays become increasingly misaligned
with memory. In contrast, the performance of the Z-order implementation appears to be uncorrelated with viewpoint,
indicating better utilization of the memory system.

2 4 6 8 10 12 18 24 2 4 6 8 10 12 18 24
0 -‐0.01 -‐0.01 0.00 0.00 0.01 0.02 0.02 0.05 0.85 0.84 0.79 0.83 0.86 0.84 0.88 0.89
1 0.17 0.19 0.18 0.23 0.18 0.19 0.16 0.23 2.72 3.27 3.18 3.58 3.17 3.30 2.79 3.66
2 0.34 0.33 0.34 0.32 0.33 0.34 0.33 0.33 3.99 3.40 3.87 3.18 3.80 3.51 3.76 2.96
3 0.17 0.21 0.18 0.24 0.18 0.20 0.17 0.23 3.15 3.93 3.40 4.42 3.53 3.79 3.29 4.27
4 -‐0.01 -‐0.01 -‐0.01 0.00 0.01 0.00 0.04 0.05 0.83 0.82 0.84 0.82 0.93 0.89 1.03 0.92
5 0.17 0.16 0.17 0.14 0.16 0.15 0.16 0.16 3.30 3.86 3.46 4.08 3.35 3.51 2.99 3.65
6 0.30 0.30 0.30 0.29 0.29 0.30 0.31 0.30 4.22 3.81 3.85 2.98 3.94 3.56 4.35 2.73
7 0.16 0.15 0.16 0.13 0.16 0.15 0.15 0.13 3.35 2.94 3.01 3.33 2.97 2.99 2.94 3.59

2 4 6 8 10 12 18 24 2 4 6 8 10 12 18 24

Run0me	   Total	  L3	  Cache	  Accesses	  

Volrend,	  512^3,	  IvyBridge:	  Rela0ve	  Z-‐	  vs.	  A-‐Order	  

Concurrency:	  #Threads	  Viewpoint	  

Figure 5: A comparison of the differences in runtime (left) and PAPI L3 TCA (right) for the volume rendering code on
the Ivy Bridge platform. As with Fig. 4, the array-order code’s performance is at its best at viewpoints 0 and 4, where the
viewpoint rays are aligned well with memory.

size and varying voxel-row assignment as well as stencil
processing order. The combination of large stencil size and
processing order reveals the distinct advantages of the Z-
order layout.

D. Raycasting Volume Renderer—Results

As an indicator of the effect of how moving the viewpoint
from a location where rays are well aligned with array-order
memory order to one where they are poorly aligned, Fig. 4
shows both runtime and PAPI L3 TCA for one particular
test configuration on the Ivy Bridge platform. Here, we see
that the array-order runs fastest when the view is positioned
such that rays are well aligned with array-order memory
layout, at viewpoints 0 and 4. We also see that runtime
increases as the rays become increasingly unaligned with

memory layout. The impact on memory system utilization
of this misalignment is clearly visible in the PAPI L3 TCA
chart in Fig. 4. In contrast, the Z-order runtime and memory
system performance is much less, if at all, impacted by
viewpoint.

Looking at all test results, Fig. 5 shows a comparison of
the differences in runtime (left) and PAPI L3 TCA (right)
for the volume rendering code on the Ivy Bridge platform.
Positive numbers, shaded in hues of green (runtime) and
blue (PAPI L3 TCA) indicates in which configurations the
Z-order code is running faster and has fewer total L3
cache accesses compared to the array-order code. Each
row corresponds to a different viewpoint, where we orbit
the viewpoint about the origin from 8 different locations.

8



59 118 177 236 59 118 177 236
0 0.06 0.02 0.04 0.09 2.89 0.77 0.84 0.42
1 0.09 0.06 0.04 0.03 3.78 1.55 1.38 1.19
2 0.30 0.18 0.16 0.14 7.84 2.46 1.98 1.99
3 0.10 0.10 0.04 0.03 3.80 1.22 1.11 0.97
4 0.00 0.04 0.00 0.04 2.80 0.69 0.61 0.42
5 0.07 0.08 0.03 0.03 3.23 1.48 1.33 1.09
6 0.24 0.13 0.09 0.08 6.51 2.14 1.75 1.66
7 0.12 0.07 0.05 0.02 3.78 1.35 1.21 1.06

59 118 177 236 59 118 177 236

Run/me	   L2_DATA_READ_MISS	  

Volrend,	  512^3,	  MIC:	  Scaled,	  Rela/ve	  Difference,	  
Z-‐	  vs.	  A-‐Order	  

Concurrency:	  #Threads	  

Viewpoint	  

Figure 6: A comparison of the differences in runtime (left) and L2 DATA READ MISS MEM FILL (right) for the volume
rendering code on the MIC platform.

Rows 0 and 4 correspond to viewpoints where the rays
are parallel to the X axis, or in other words, that each
ray’s data access pattern is well aligned with memory. In
these cases, we see that Z-order and array-order have very
similar runtimes, though the Z-order configuration has more
favorable PAPI L3 TCA performance.

As the rays begin to fall off the X axis, and the con-
sequently the memory access pattern becomes increasingly
unaligned, we see that the Z-order layout results in sub-
stantially better runtimes, ranging from about 13% to about
34%. We observe a correspondence between lower runtimes
and improvements in utilization of the memory hierarchy as
evidenced by lower PAPI L3 TCA counts.

Results from the runs on the MIC platform are shown in
Fig. 6. Here, we see a similar pattern, where the difference
in runtime between Z-order and array-order is less at view-
points 0 and 4, where the rays’ access pattern is more closely
aligned with memory. As the viewpoint moves away from
those positions, the difference becomes more pronounced.

For the L2 DATA READ MISS MEM FILL metric, we
see that the Z-order code has uniformly better numbers,
which indicates the Z-order code’s memory reads are much
more frequently satisfied by values resident in L2 cache
when compared to the array-order code. We also see that
this metric is highest for the 59-thread configuration; as we
increase the number of threads per core, this metric drops.
This effect is most likely caused by the lower likelihood
that threads mapped onto a core are all accessing the same
region of data, thereby reducing the amount of spatial
locality (effectiveness of the LLC). This effect is more
pronounced on the Intel MIC vs. Ivy Bridge as the L2 Cache
on the MIC (512KB) is significantly smaller than the Ivy
Bridge’s 30MB shared LLC. Further investigation into the
relationship between per-thread tile size and the resulting

performance would help refine understanding in this area.

V. CONCLUSION

The main focus of our study has been to study the im-
pacts on performance, as measured by runtime and memory
system utilization, that result when using a SFC layout for
two data-intensive algorithms common in visualization on
modern platforms. For the two algorithms we study, the
results suggest there are indeed performance gains to be had
with this approach: codes run faster in most circumstances,
and also make better use of the memory hierarchy. In the
long run, finding ways to minimize data movement is of
high priority due to the increased cost of accessing more
distant locations in the memory hierarchy.

Our study focuses on comparing two metrics: absolute
runtime, and one measure of memory system utilization,
which varies by platform. The memory system metrics we
show here, L2 DATA READ MISS MEM FILL on the
MIC and PAPI L3 TCA on the IvyBridge, are a coarse
measure of memory system utilization. Even as a coarse
metric, it is a useful leading indicator of the correlation
between runtime and memory system utilization. There are
a few individual test cases where the correlation is less
clear. This result suggests that additional metrics, of which
there are dozens on each platform, will help to refine
our understanding of the relationship between runtime and
memory system utilization.

While this approach does appear promising, it does have
limitations. One significant limitation is the fact that SFC
approaches, which are based upon the concept of recursive
subdivision of space, work best when data is sized to be an
even power of 2 along each axis. While the SFC indexing
scheme can, in principle, accommodate data sizes that are
not an even power of two in size, doing so requires an the

9



data be stored in a buffer that is an even power of two in size,
which is then indexed by the SFC. Worthwhile future work
would explore ways to overcome this limitation. Another
limitation is that while it is readily applicable to structured
data, it is unlikely as readily applicable to unstructured data.

Our study here focuses on two specific algorithms com-
mon in visualization and analysis. Additional studies on a
broader set of algorithms from visualization and analysis
will help further reveal benefits and limitations of this
approach.

ACKNOWLEDGMENT

This work was supported by the Director, Office of Sci-
ence, Office and Advanced Scientific Computing Research,
of the U.S. Department of Energy under Contract No.
DE-AC02-05CH11231. This research used resources of the
National Energy Research Scientific Computing Center, a
DOE Office of Science User Facility supported by the Office
of Science of the U.S. Department of Energy under Contract
No. DE-AC02-05CH11231.

REFERENCES

[1] P. J. Denning, “The Locality Principle,” Commun. ACM,
vol. 48, no. 7, pp. 19–24, Jul. 2005. [Online]. Available:
http://doi.acm.org/10.1145/1070838.1070856

[2] M. D. Lam, E. E. Rothberg, and M. E. Wolf, “The
cache performance and optimizations of blocked algorithms,”
in Proceedings of the Fourth International Conference
on Architectural Support for Programming Languages
and Operating Systems, ser. ASPLOS IV. New York,
NY, USA: ACM, 1991, pp. 63–74. [Online]. Available:
http://doi.acm.org/10.1145/106972.106981

[3] R. C. Whaley, A. Petitet, and J. Dongarra, “Automated
Empirical Optimization of Software and the ATLAS Project,”
Parallel Computing, vol. 27, no. 1-2, pp. 3–35, 2001.

[4] K. Datta, M. Murphy, V. Volkov, S. Williams,
J. Carter, L. Oliker, D. Patterson, J. Shalf, and
K. Yelick, “Stencil Computation Optimization and Auto-
tuning on State-of-the-art Multicore Architectures,” in
Proceedings of the 2008 ACM/IEEE Conference on
Supercomputing, ser. SC ’08. Piscataway, NJ, USA:
IEEE Press, 2008, pp. 4:1–4:12. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1413370.1413375

[5] D. Unat, C. Chan, W. Zhang, J. Bell, and J. Shalf, “Tiling as
a Durable Abstraction for Parallelism and Data Locality,” in
Proceedings of Workshop on Domain-Specific Languages and
High-Level Frameworks for High Performance Computing,
Nov. 2013.

[6] M. Bader, Space-Filling Curves - An Introduction with Appli-
cations in Scientific Computing, ser. Texts in Computational
Science and Engineering. Springer-Verlag, 2013, vol. 9. [On-
line]. Available: http://link.springer.com/book/10.1007/978-3-
642-31046-1/page/1

[7] V. Pascucci and R. J. Frank, “Global Static Indexing
for Real-time Exploration of Very Large Regular Grids,”
in Proceedings of the 2001 ACM/IEEE conference on
Supercomputing (CDROM), ser. Supercomputing ’01. New
York, NY, USA: ACM, 2001, pp. 2–2. [Online]. Available:
http://doi.acm.org/10.1145/582034.582036

[8] D. DeFord and A. Kalyanaraman, “Emperical Analysis of
Space-Filling Curves for Scientific Computing Applications,”
in 42nd International Conference on Parallel Processing
(ICPP), Oct. 2013, pp. 170–179.

[9] N. Reissmann, J. C. Meyer, and M. Jahre, “A Study of
Energy and Locality Effects using Space-filling Curves,”
in Proceedings of the 28th IEEE International Parallel &
Distributed Processing Symposium (IPDPS 2014) and IPDPS
2014 Workshops (IPDPSW 2014), May 2014.

[10] E. W. Bethel and M. Howison, “Multi-core and Many-
core Shared-memory Parallel Raycasting Volume Rendering
Optimization and Tuning,” International Journal of High
Performance Computing Applications, vol. 26, no. 4, pp. 399–
412, Nov. 2012.

[11] C. Tomasi and R. Manduchi, “Bilateral Filtering for Gray
and Color Images,” in ICCV ’98: Proceedings of the Sixth
International Conference on Computer Vision. Washington,
DC, USA: IEEE Computer Society, 1998, p. 839.

[12] M. Howison and E. W. Bethel, “GPU-accelerated
denoising of 3D magnetic resonance images,” Journal
of Real-Time Image Processing, 2014. [Online]. Available:
http://dx.doi.org/10.1007/s11554-014-0436-8

[13] T. R. Jones, F. Durand, and M. Desbrun, “Non-iterative,
feature-preserving mesh smoothing,” ACM Trans. Graph.,
vol. 22, no. 3, pp. 943–949, Jul. 2003. [Online]. Available:
http://doi.acm.org/10.1145/882262.882367

[14] E. W. Bethel, “Exploration of Optimization Options for
Increasing Performance of a GPU Implementation of a Three-
Dimensional Bilateral Filter,” Lawrence Berkeley National
Laboratory, Berkeley, CA, USA, 94720, Tech. Rep. LBNL-
5406E, 2012.

[15] M. Levoy, “Display of Surfaces from Volume Data,” IEEE
Computer Graphics and Applications, vol. 8, no. 3, pp. 29–
37, May 1988.

[16] R. A. Drebin, L. Carpenter, and P. Hanrahan, “Volume ren-
dering,” SIGGRAPH Computer Graphics, vol. 22, no. 4, pp.
65–74, 1988.

[17] A. Kaufman and K. Mueller, “Overview of Volume Render-
ing,” in The Visualization Handbook, C. D. Hansen and C. R.
Johnson, Eds. Elsevier, 2005, pp. 127–174.

[18] M. Howison, E. W. Bethel, and H. Childs, “Hybrid Paral-
lelism for Volume Rendering on Large, Multi, and Many-core
Systems,” IEEE Transactions on Visualization and Computer
Graphics, vol. 18, no. 1, pp. 17–29, Jan. 2012, lBNL-4370E.

[19] U. of Tennessee Knoxville Innovative Computer Lab (ICL),
“Performance Application Programming Interface (PAPI),”
last accessed: October 2014. [Online]. Available:
http://icl.cs.utk.edu/papi

10




