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Abstract

RNA-seq is increasingly employed for quantitative profiling of small RNAs (e.g., microRNAs, 

piRNAs, snoRNAs) in diverse sample types including isolated cells, tissues and cell-free biofluids. 

The accuracy and reproducibility of the multiple small RNA-seq library preparation methods in 

use, however, have not been systematically assessed. We report systematic results obtained by a 

consortium of nine labs that independently sequenced reference, ‘ground truth’, samples of 

synthetic small RNAs and human plasma-derived RNA. Three commercially available library 

preparation methods employing adapters of defined sequence and six methods using adapters with 

degenerate bases were assessed. Both protocol- and sequence-specific biases were identified, 

including biases that reduce the ability of small RNA-seq to accurately measure adenosine-to-

inosine editing in microRNAs. We report that these biases were mitigated by library preparation 

methods that incorporate adapters with degenerate bases. MicroRNA relative quantification 

between samples using small RNA-seq was found to be accurate and reproducible across 

laboratories and methods.

RNA-seq has transformed transcriptome characterization in a wide range of biological 

contexts 1,2. RNA-seq can be used to sequence long reads (long RNA-seq; e.g., messenger 

RNAs and long non-coding RNAs) and short RNAs (small RNA-seq; e.g. small non-coding 

RNAs such as microRNAs). These applications differ in terms of the size of the targeted 

RNAs, but also by the technical methods used and the resulting biases in the quantitative 

data produced3. For example, preparation of libraries for long RNA-seq, by virtue of having 

sufficiently long target RNA lengths, commonly utilizes primers for direct generation of 

cDNA from RNA. In contrast, small RNA-seq library preparation methods typically require 

RNA ligation or poly-A tailing steps to overcome the challenge of performing reverse 

transcription and subsequent PCR amplification from extremely short (e.g., 16-30 nt) target 

RNA sequences.

Multiple approaches have been developed to overcome the challenge of uniformly and 

robustly generating cDNA from small RNAs for the purpose of small RNA-seq4–9. Protocols 

in use for small RNA-seq therefore vary more widely than those used for long RNA-seq, 

creating greater potential for variation from different library preparation protocols and 

different labs. In addition, small RNA-seq is increasingly used to study samples with very 

Giraldez et al. Page 2

Nat Biotechnol. Author manuscript; available in PMC 2019 January 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



low RNA concentration, such as biofluids containing exosomes, other extracellular vesicles 

(EV)10–16 and RNA-protein complexes17–21. Normalization methods22–24 developed to 

correct for variation in long RNA-seq data are typically not well suited for small RNA-seq 

data. Whereas performance characteristics such as reproducibility and quantitative accuracy 

have been well studied for long RNA-seq25,26, only the reproducibility of a single library 

preparation protocol has been evaluated25.

Furthermore, the performance of different small RNA-seq methods for quantifying single 

nucleotide changes in RNA sequence, such as those seen with microRNA (miRNA) editing, 

for example, has not been systematically examined. Yet, with the rapid accumulation of 

small RNA-seq data (e.g., NIH short-reads archive27,28, EV-associated small RNA 

sequencing databases29–31, TCGA32, the exRNA Atlas,33 etc.), meaningful, quantitative 

interpretation of results, especially across studies, would benefit from a systematic 

examination of technical bias, its effects on accuracy and of the reproducibility of small 

RNA-seq.

Here, we report a study led by investigators from the NIH-funded Extracellular RNA 

Communication Consortium34 involving nine laboratories, which performed a systematic 

multi-protocol, multi-institution assessment of the accuracy, reproducibility and technical 

bias of small RNA-seq using standardized, synthetic reference reagents. We evaluated the 

performance of different protocols with respect to characterizing miRNA editing and 

identified a library preparation approach that reduces technical bias, improving the accuracy 

and comparability of small RNA-seq results.

Results

Study design and standard reference materials for miRNA quantification

In order to evaluate the performance of small RNA-seq library preparation protocols across 

multiple laboratories, we developed standard reference samples as well as a standardized 

study design (shown in Figure 1). We distributed detailed instructions for library preparation 

and sequencing to each lab, along with four reference RNA samples (Figure 1 and 

Supplementary Tables 1 and 2): i) an equimolar pool comprising 1,152 synthetic RNA 

oligonucleotides, corresponding predominantly to human miRNA sequences, as well as a 

small set of non-miRNA oligonucleotides of varied sequence and length (15-90 nt); ii) two 

synthetic small RNA pools, called ratiometric pools SynthA and SynthB, each containing 

the same 334 synthetic RNAs, but in which subsets of RNAs vary in relative amount 

between pools A and B by 15 different ratios, ranging from 10:1 to 1:10; and iii) RNA 

isolated from human blood plasma pooled from 11 individuals.

The common materials were distributed to nine participating research groups (Laurent lab, 

UCSD; Erle lab, UCSF, Ghiran lab, BIDMC/DFCI; Nolte-’t Hoen lab, UUTR; Freedman 

lab, UMass; Wang lab, ISB; Galas lab, PNRI; Van Keuren-Jensen lab, TGen and Tewari lab, 

U. of Michigan). Nine library preparation protocols were evaluated (Online Methods), 
wherein at least one group prepared and sequenced quadruplicate libraries from each of the 

reference samples. Three of the protocols–TruSeq (Illumina), NEBNext (New England 

Biolabs) and CleanTag (Trilink Biotech)–are commercial kits that employ adapters with 
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invariant sequences. The remaining protocols make use of adapters with 4 degenerate 

nucleotides at the ligation end as a strategy to reduce the bias, and we collectively call these 

“4N” protocols in this study. These six 4N protocols included: (i) a commercial kit, 

NEXTflex (Bioo Scientific), (ii) a recently published protocol35, and (iii) four variants of a 

protocol developed by members of the consortium (protocols 4N_A, B, C and D) that we 

collective refer to as “in-house” 4N methods. The TruSeq kit served as the common 

reference kit for this study, and was evaluated by all the groups using Illumina sequencing 

platforms (8 out of 9 groups). In addition, multiple labs generated libraries using the 

NEBNext kit (6 labs) and the in-house protocol 4N_B (4 labs), thereby allowing for 

standardized cross-lab comparisons for these two protocols in addition to the Illumina 

TruSeq protocol.

In all, the nine participating groups prepared 384 libraries for miRNA quantification 

analysis, of which 377 (98%) were successfully sequenced and submitted for central 

analysis. The 7 libraries that were not successfully prepared and sequenced included four 

plasma pool libraries (Lab8 4N_NEXTflex), two equimolar pool libraries (Lab7 NEXTflex) 

and one SynthB library (Lab8 TruSeq). Together, the nine participating groups collectively 

contributed 5.45 billion small RNA-seq reads to the analysis (Figure 1). These sequencing 

data were centrally analyzed using the Genboree Workbench and its implementation of the 

Extracellular RNA Communication Consortium’s ExceRpt Small RNA-seq pipeline, which 

is specifically designed for the analysis of small RNA-seq data and uses its own alignment 

and quantification engine to map and quantify a range of RNAs represented in small RNA-

seq data (see Supplementary Table 3 for pipeline QC metrics). Of the 377 samples analyzed, 

364 (>96%) satisfied minimum quality criteria (Online Methods) and were included in the 

analyses.

Characterization of sequence-specific bias of small RNA-seq protocols

Out of the 1,152 synthetic RNAs, we focused on 977 5’-phosphorylated RNAs 16-25 nt in 

length, which can be captured with standard small RNA-seq protocols. The efficiency of 

recovery of RNA sequences varied by multiple orders of magnitude depending on the 

protocol, confirming that small RNA-seq protocols are associated with prominent sequence-

dependent bias 4,25,36–38 (Figure 2a, 2b) and that the bias is greater as compared to that in 

long RNA-seq26. This was highly reproducible within a given protocol, both across technical 

replicates and laboratories using the same protocol (Figure 2a). Libraries prepared by 

different labs clustered first into two groups, corresponding to methods with invariant 

(TruSeq, NEBNext and Cleantag) or degenerate (4N) adapters. Within each of these two 

larger groups, the libraries then formed distinct clusters corresponding to the different 

protocols included in the study, indicating that the impact of the protocol bias is potentially 

greater than that of lab-to-lab variation. The ten most overrepresented and underrepresented 

sequences varied widely between protocols (Supplementary Figure 1).

Although all protocols exhibited some bias, it was reduced in those using degenerate 

adapters (Figure 2b and Supplementary Figure 2). As one measure of this, we calculated the 

median percentage of sequences with a number of reads (i.e., counts per million) more than 

ten times above or below the expected value, for each protocol. This ranged from 41.6% to 
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61.5% for protocols using adapters with defined sequences (TruSeq: 41.6%; CleanTag: 

53.9% and NEBNext: 61.5%), and from 2.8% to 22.4% for protocols using adapters with 

degenerate nucleotides (4N_A: 8.9%; 4N_B: 2.8%; 4N_C: 12.1%; 4N_D: 22.4%, 4N_Xu: 

7.1% and 4N_NEXTflex: 17%) (Figure 2c). The 4N in-house protocols showed fewer 

missing sequences from the equimolar pool (Supplementary Table 4) and when 

downsampling to compare the same number of total mapped reads across protocols, at 

varying sequencing depths (Supplementary Figure 3). We found that with the in-house 4N_B 

protocol, even when downsampling to 10,000 total mapped reads, >90% of the miRNAs had 

a high probability of detection (median: 92%; range: 78-95%). In contrast, even with the 

best-performing invariant adapter protocol, TruSeq, <50% of miRNAs had a high probability 

of detection (median: 46%; range: 40-55%) at the same depth, indicating that the 4N_B 

protocol may require lower read depth to yield similar coverage as other library protocols.

We also assessed the reproducibility of small RNA cloning biases across labs by examining 

the rank-order of RNA sequence abundance. To do so, we calculated Spearman rank 

correlations for the equimolar synthetic pool counts between labs and protocols. As 

expected, the strongest correlations were found between technical replicates from the same 

lab and method (Supplementary Figure 4). Correlations were also strong between samples 

generated by different labs using the same protocol (Supplementary Table 5). The somewhat 

lower correlation value observed for 4N_B can be attributed to the overall lower variation in 

read counts across miRNAs due to less cloning bias with this protocol. The reduced spread 

in the data limits the maximum absolute correlation coefficient values that can be obtained. 

This limitation notwithstanding, comparison across labs using different protocols showed 

much weaker correlations (Supplementary Table 5)

To dissect the source of observed bias, we evaluated the effect of several variables (5’ or 3’ 

terminal bases, %GC of the four 5’ or 3’end bases, overall %GC, dG [free energy], dH 

[enthalpy], dS [entropy], and Tm) on the number of obtained reads with different library 

preparation protocols (Supplementary Figures 5-13). However, none of these variables 

substantially explained the observed bias.

Accuracy and cross-protocol concordance for relative quantification

To investigate the accuracy of relative quantification of the same small RNAs between 

different samples, we designed two ratiometric pools, SynthA and SynthB, each containing 

the same 334 synthetic RNA sequences, but varying the relative abundance of sequences 

between the two pools for fifteen expression ratios (Figure 1; Supplementary Table 2). All of 

the protocols tested showed close concordance between observed and expected ratios 

(Figure 3a). We also analyzed the data using standard differential expression workflows 

from three commonly used R packages (EdgeR39,40, DESeq241 and limma/voom42) to 

determine the smallest difference in abundance that could be distinguished using small 

RNA-seq methods. We observed that for most protocols and for the majority of miRNAs, a 

difference in levels as little as 1.5-fold between the two samples could be detected 

(Supplementary Figure 14). As shown in Supplementary Table 6, all the evaluated protocols 

performed relatively well in detecting miRNAs abundances.
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We examining the rank-order of RNA sequence abundance and found that in general, the 

Spearman rank correlations results obtained for the SynthA and SynthB samples were 

similar to those obtained for the equimolar pool: the correlation was strong when using the 

same protocol, but weaker across different protocols (see left and middle heatmaps in Figure 

3b). In contrast, when we analyzed the concordance of the obtained SynthA/SynthB ratios 

(Figure 3b), we found a very strong correlation between labs not only when using the same 

protocol, but also across different protocols, confirming that relative quantification is 

resilient to variation in protocol used (Supplementary Table 5)

Reproducibility of small RNA-seq protocols

In order to quantify intra-lab variation for each sequence, we used two metrics, (i) 

coefficient of variation -CV- (standard deviation/mean) and, (ii) quartile coefficient of 

dispersion –QCD- (interquartile range/average of the first and third quartile). The median 

CV for the equimolar pool libraries ranged from 6.18% (TruSeq) to 23.92% (CleanTag) for 

the different library preparation methods (Figure 4a and Supplementary Table 5). In 

addition, the median QCD was <0.1 for all the protocols/labs (Figure 4a and Supplementary 

Table 5). We also evaluated the intra-lab variation from technical replicates of sequencing 

the SynthA and SynthB libraries. The calculated CV and QCD values were similar to those 

observed for the equimolar libraries (Supplementary Figure 15).

To characterize the reproducibility of small RNA-seq libraries across laboratories, we 

focused on the three protocols (TruSeq, NEBNext and 4N_B) for which libraries were 

generated by at least three groups. In addition, of the six labs that generated libraries using 

the NEBNext protocol, two of the labs used somewhat modified conditions based on options 

provided by the manufacturer and were excluded from the analysis (Online Methods).

Using the results for the equimolar pool and treating each laboratory’s results as one trial of 

the experiment, we calculated the CV and QCD for the mean CPM values for each RNA 

sequence across laboratories. The median CV across labs ranged from 30.42% (4N_B) to 

35.28% (NEBNext) and the median QCD from 0.13 (4N_B) to 0.18 (Truseq and NEBNext) 

(Figure 4b and Supplementary Table 5). We confirmed that the choice of pseudo-counts for 

calculating CPM does not appreciably alter the %CV and QCD distribution (Supplementary 

Figure 16). In addition, repeating the inter-lab CV and QCD calculations using all 

combinations of n=3 labs from the TruSeq, NEBNext and 4N_B equimolar pool libraries 

showed that results from analysis of subsets of the data were comparable to those from 

analysis of the full datasets (Supplementary Figure 17a-b). We also calculated across lab 

variation for the SynthA and SynthB pools individually and obtained median CV and QCD 

values that were comparable to those described for the equimolar libraries (Supplementary 

Table 5):

Performance of small RNA-seq protocols using biological samples

We also sought to characterize the performance of small RNA-seq protocols across labs 

using standard reference RNA derived from biological material to assess the reproducibility 

and the diversity of miRNA sequences recovered.
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In order to perform this analysis, aliquots of RNA extracted from a pool of human blood 

plasma from 11 donors were shipped to the participating labs for sequencing in 

quadruplicate (Figure 1). We focused our analysis on miRNAs because they are well 

characterized and have been extensively studied in human plasma43. Hierarchical clustering 

generally mirrored that from the synthetic pools, with technical replicates of the same 

protocol clustering most-closely together (Figure 5a) and with samples also broadly 

clustering according to library preparation protocol.

To evaluate the intra-lab reproducibility of plasma small RNA-seq, we calculated the CV 

and QCD for individual miRNA sequences across technical replicates in each lab (Figure 

5b). After applying the same minimum CPM filtering criteria as before, in order to focus on 

reliably detected miRNAs, we found that the median CV across the miRNAs analyzed 

ranged from 7.7% (TruSeq) to 24.9% (CleanTag) for different protocols. Although this 

degree of reproducibility seems comparable to that observed with the synthetic reference 

pool RNA (Figure 4 and Supplementary Table 5), it is important to note that the filtering 

criteria used for plasma sequencing data are different (and generally more stringent) than for 

the synthetic RNA sequencing data. In addition, the median QCD was ≤0.1 for all the 

protocols (Supplementary Table 5)

Unsupervised clustering of the plasma miRNA expression data revealed clear groups 

separating by preparation protocol (TruSeq, NEBNext and 4N_B), with results obtained 

from different labs using the same protocol clustering together (Figure 5a). The median 

variability across labs measured using CV ranged from 25.7% (4N_B) to 32.9% (TruSeq) 

and using QCD was < 0.3 for all protocols. (Figure 5c and Supplementary Table 5). The 

overall reproducibility of small RNA-seq using RNA isolated from biological samples was 

therefore comparable to that observed using the synthetic reference RNA samples.

In order to assess differences between protocols in the diversity of miRNA sequences 

recovered from the standard reference plasma RNA, we performed an analysis of the 

number of miRNAs detected by each protocol, in which we plotted data from in-house 4N 

protocols as one group for the sake of comparison. This was done using downsampled 

datasets so the same total number of mature miRNA-mapping reads could be compared 

across protocols, at varying sequencing depths. The in-house 4N protocols recovered a larger 

number of miRNAs than those using defined adapter sequences (Figure 5d). In addition, an 

indirect assessment of miRNA diversity (i.e., percent of total reads accounted for by the 10 

most abundant miRNAs) was consistent with the conclusion that 4N protocols generate a 

more diverse profile of miRNAs (Supplementary Figure 18).

Evaluation of small RNA-seq in miRNA A-to-I editing

We extended our study to evaluate performance of different protocols for quantifying 

sequences exhibiting adenosine to inosine (A-to-I) miRNA editing. This naturally occurring 

RNA modification can alter both miRNA biogenesis and regulatory functions44,45. We 

designed six synthetic RNA pools, each of which contained ten miRNAs that have 

previously been reported to undergo A-to-I editing46,47. Each pool combined the unedited 

(A) and edited (I) miRNA variants in different ratios (i.e. 0%, 0.1%, 0.5%, 5%, 50% and 

100% edited). Each of these mixtures was then combined with a background of 277 
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different, unedited human miRNAs in order to increase complexity in the pools (Figure 6a; 

Supplementary Table 7). The six pools were sequenced by three different labs, each in 

triplicate, using TruSeq, NEBNext and in-house 4N_B protocols (Figure 6a). The resulting 

162 libraries yielded 1.42×109 reads aligned to editing pool sequences in total, with a 

median library size of 8.22×106 (range: 1.74×106 − 29.01×106). All 162 libraries satisfied 

minimum quality criteria (Online Methods and Supplementary Table 3).

To determine accuracy of quantifying miRNA editing in our six synthetic pools, we 

compared the number of reads observed for the A and I variant oligos in each library to the 

expected abundance based on the known composition of the pools. Inaccurate and widely 

varying estimates of editing levels were apparent for many miRNAs using the NEBNext and 

TruSeq protocols, especially for the 1%, 5% and 50% editing pools (Figure 6b; 

Supplementary Table 8). In contrast, the in-house protocol, 4N_B, proved more accurate for 

detecting editing levels ≥ 1%. For example, in the 50% editing pool where the edited and 

unedited forms of each miRNA are present at equivalent levels, the mean percent editing 

observed ranged from 19% - 98% and 5% - 95% for TruSeq and NEBNext libraries, 

respectively, whereas for the 4N_B protocol, estimates were all within 10% of the expected 

value (43% - 53%).

Aside from accuracy, we calculated across-lab reproducibility (i.e., precision) of the 

measured edited fraction in each pool for each of the evaluated protocols, using CV and 

QCD, which are most meaningful where there are reads in both edited and unedited 

categories (Supplementary Table 8). We found that precision varied as a function of known 

percent editing, with greater precision observed in the 5% and 50% edited pools compared 

to the 0.1% and 1% pools, as expected from the higher number of edited read counts in the 

former pools. Across all protocols tested, for the majority of miRNAs, the precision of 

percent editing measurements was (i) CV: <5% in the 50% edited pool, <20% in the 5% 

edited pool and <25% in the 1% edited pool; and (ii) QCD: <0.3 in the 50% edited pool, 

<0.4 in the 5% edited pool and <0.6 in the 1% edited pool.

We evaluated the specificity and limit of detection for identifying miRNA editing by 

downsampling each library to 106 reads to allow standardized comparisons across libraries. 

To calculate specificity, we first estimated the false positive frequency for each protocol by 

evaluating: (i) the average percent edited reads observed in the 0% edited pool (i.e., false 

positive edited read frequency), and; (ii) the average percent unedited reads observed in the 

100% edited pool (i.e., false positive unedited read frequency). The overall median false 

positive rate was 0.10% across all protocols, all miRNAs and both edited and unedited false 

positive calls (median false positive frequencies for individual protocols: TruSeq 0.05% 

(edited) and 0.06% (unedited); NEBNext 0.30% (edited) and 0.14% (unedited); 4N_B 

0.10% (edited) and 0.08% (unedited) (Supplementary Table 8). This corresponds to an 

overall specificity across all three protocols of 99.88% for calling unedited sequences and 

99.91% for calling edited sequences (Supplementary Table 8). To calculate the limit of 

detection (LOD), we defined detection of editing as an observed edited count that is more 

than three standard deviations above the observed edited count in the 0% edited synthetic 

pool. For all three protocols, the majority of miRNAs had a limit of detection at or below the 

1% edited fraction, with a few miRNAs detectable in the 0.1% edited pool (Supplementary 
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Table 8). It is worth noting, however, that the LOD is expected to vary based on sequencing 

depth, sample complexity, relative abundance of the miRNA being studied, and the pipeline 

used for analysis.

Discussion

Our results have quantitatively confirmed that small RNA-seq is highly affected by 

sequence-related bias4,36–38,48, which is largely protocol-dependent. The observed biases are 

as large as 104-fold with some commonly used commercial library preparation protocols. 

This sequence-dependent bias is more severe than that previously reported for long RNA-seq 
26, highlighting differences between the technologies and unique challenges involved in 

small RNA sequencing. Additionally, this bias can be particularly vexing when working with 

low RNA input samples such as biofluids, preventing the reliable detection of some low-

abundance small RNAs. The in-house 4N protocols evaluated here, which employ adapters 

containing degenerate bases in the ligating ends, reduced the bias on the order of 100-fold 

and achieved better coverage at a lower sequencing depth than the widely used commercial 

library preparation kits with invariant adapter sequences. The magnitude of the bias 

observed for some sequences when using fixed adapter protocols was so high that it is likely 

impractical to overcome simply with increased sequencing depth. There were, however, 

differences in the results of different 4N methods, suggesting that not only the use of 

adapters with degenerate bases but also other factors in the protocols, such as the 

concentration of polyethylene glycol in ligation reactions, the time and temperature of 

ligations, etc., may also affect the bias. Our computational analyses of a range of sequence-

related variables (e.g., 5’ or 3’ terminal nucleotides, %GC of the four 5’ or 3’end 

nucleotides, overall %GC, dG [free energy], dH [enthalpy], dS [entropy] and Tm) did not 

reveal strong associations, suggesting that the mechanistic basis of the bias may be complex.

Even using the best-performing 4N protocols, there is still considerable sequence-related 

bias, which precludes the use of read counts alone for accurate quantification of different 

small RNAs within a given sample. However, despite the observed biases, we found that 

small RNA-seq is consistently accurate for relative quantification of a given miRNA 

between samples, as long as the same library preparation protocol is used for the two 

samples being compared, which is in agreement with previous observations for mRNA 

sequencing26. In this sense, all of the evaluated protocols were able to distinguish samples 

with as little as 1.5-fold difference in relative abundance of most sequences examined, 

although the design of our ratiometric pools is such that differences smaller than 1.5-fold 

could not be assessed.

Reproducibility across laboratories is a crucial requirement for any experimental method 

used for research or clinical applications49,50. We found that for common commercial 

protocols as well as for our in house 4N protocol, results are reproducible between labs with 

a CV ≤ 20% for most sequences. Moreover, when comparing relative quantification 

measurements obtained by small RNA-seq across labs, the results were highly concordant 

even when the centers were using different protocols.
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We believe that the datasets generated in this study can also serve as a valuable resource for 

benchmarking computational tools designed to facilitate and improve upon RNA-seq 

analysis. This is important both for developing new software, and also for evaluating the 

suitability of using existing mRNA-seq algorithms for the analysis of small RNA-seq 

datasets. This could be particularly important for benchmarking software developed to 

account for various technical biases found in mRNA-seq data51–54, as our data suggest that 

such biases may be different in small RNA-seq data.

We also hope that our data may facilitate development of computational approaches for 

normalization of datasets generated using different library preparation protocols. While 

normalization algorithms are generally not intended to account for cross-platform variation, 

our preliminary analysis suggests that small RNA-seq protocol-specific biases largely 

correlate across samples. This suggests that one may be able to account for the protocol-

specific differences in sequencing bias individually for each sequence, raising the possibility 

of cross-protocol data normalization. We performed an initial exploration of this concept 

using a simple approach for calculating correction factors (Supplementary Results, 

Supplementary Table 9 and Supplementary Figures 19 and 20). Although this approach was 

able to make overall profiles from different protocols appear more similar to each other, its 

performance is not sufficient to be practically relevant yet. We propose that synthetic RNA 

reference data such as that generated here can provide a foundation for future development 

of more advanced computational approaches to enable accurate cross-protocol comparisons.

We also assessed the ability of library protocols to measure miRNA A-to-I editing. Our 

results demonstrate that low bias protocols (i.e. in house 4N_B) quantify editing more 

accurately than protocols using defined adapter sequences (i.e. TruSeq and NEBNext). It 

worth noting than accuracy of editing estimates can also be affected by low sequencing 

coverage. Indeed, some miRNAs had very low coverage by at least one of the protocols, 

which contributed to the inaccuracy and variation in editing estimates. However, this lack of 

coverage is a consequence of technical biases in small RNA-seq, since 4N_B libraries all 

had sufficient coverage of each sequence and because, at a minimum, all libraries had depth 

enough for ~6000x coverage of each sequence in the pool. Thus, protocols with a higher 

degree of sequencing bias also have a greater potential for inaccurate estimates of editing 

levels, because of lower read coverage for some miRNAs and/or differential preferences 

based on a single base difference. This is relevant to miRNA editing estimates reported in 

the literature, given that prior studies have commonly used the more biased protocols with 

fixed sequence adapters.55

Online Methods. Experimental methods

Note: a Life Sciences Reporting Summary has been submitted with this paper.

Reference samples

A synthetic equimolar pool containing 1,152 synthetic RNA oligos was prepared in an 

RNase-free environment and working on ice to minimize degradation. The pool was 

prepared by combining (i) the miRXplore Universal Reference from Miltenyi Biotec Inc 

(Auburn, CA), which comprises 962 RNA oligonucleotides with sequences matching human 
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and other miRNAs, and (ii) a set of 190 additional, custom-synthesized RNA 

oligonucleotides, to generate the pool in which each of the 1,152 RNA oligonucleotides is 

present at equimolar concentration. This latter set comprises miRNAs and non-miRNA 

sequences of varied length from 15 to 90 nt, which were synthesized, HPLC-purified and 

quantified spectrophotometrically by IDT, Inc. (Coralville, IA). This latter set of RNA 

oligonucleotides is available to qualified investigators seeking to reproduce the synthetic 

equimolar for non-commercial purposes, by request of the corresponding authors (as long as 

supplies last). The resulting equimolar pool was aliquoted in prelabeled DNA-, DNase-, 

RNase-, and pyrogen-free screw cap tubes with low adhesion surface and stored 

immediately at −80C. Aliquots were distributed to the participant laboratories in overnight 

shipments with an abundant supply of dry ice. The complete list of RNA sequences 

comprising the equimolar pool is provided in Supplementary Table 1.

Two ratiometric pools, SynthA and SynthB, containing 334 synthetic RNA oligonucleotides 

were designed in the coordinating lab (see computational methods) and synthesized by IDT. 

Subsets of these oligos were present in 15 different ratios between the two mixtures. These 

pools were also prepared, aliquoted and distributed to the participant centers following the 

same previously mentioned precautions to avoid RNA degradation. The complete list of 

sequences in the SynthA and SynthB pools, as well as their ratios, are provided in 

Supplementary Table 2.

Plasma samples from eleven healthy male donors with age ranging from 21-45 years were 

collected and pooled in one of the participating labs (Supplementary protocol 1). The Beth 

Israel Deaconess Medical Center approved the study protocol to consent participants and 

collect samples. Informed consent was obtained from all subjects, and the samples were 

subsequently anonymized before distributing to participating research groups. RNA was 

isolated from this plasma pool (Supplementary protocol 2) in a single lab and aliquots of the 

purified RNA were mixed and distributed to the rest of the participant centers.

Library preparation and small RNA-seq of reference samples

A written guideline for library preparation and sequencing was distributed to all the 

participant centers. The input for library preparation was 10 femtomoles of RNA for 

synthetic pools and 2.1 ul of RNA for the plasma pool. Each group prepared four replicate 

libraries from each sample using the following small RNA library preparation protocols: 

Lab1 (TruSeq, NEBNext and in-house 4N_D), Lab2 (TruSeq, NEBNext and in-house 

4N_B), Lab3 (TruSeq and NEBNext), Lab4 (TruSeq, NEBNext and in-house 4N_B), Lab5 

(TruSeq, CleanTag, NEBNext, in-house 4N_A, in-house 4N_B and 4N_Xu), Lab6 (TruSeq, 

in-house 4N_B and in-house 4N_C), Lab 7* (NEXTflex), Lab 8* (TruSeq and NEXTflex) 

and Lab 9* (TruSeq and NEBNext). The labs marked with an asterisk did not contribute 

plasma libraries.

The protocols for TruSeq, CleanTag, NEBNext and NEXTflex for Illumina were performed 

according to the manufacturer’s instructions in all labs except for NEBNext in Lab9 that 

performed 3’ overnight ligation. Note that some manufacturers recommended dilution of the 

adapters when working with low input RNA (for NEBNext, adapters were diluted, 1:2 in 

Lab3 and Lab9 and 1:6 in Lab1, Lab2, Lab4 and Lab5; for CleanTag 1:20 dilution of the 
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adapters was performed). NEXTflex for Ion Torrent sequencing was performed as described 

in Supplementary protocol 3. In-house 4N protocols A, B, C and D were performed as 

described in Supplementary protocol 4-7. 4N_Xu protocol was performed as previously 

described4835. Size selection was performed using Pippin Prep instruments (in Lab1, Lab2, 

Lab4 and Lab6 for all protocols and Lab5 for in-house 4N_B only), 6% acrylamide gels (in 

Lab3, and Lab9 for all protocols, Lab 8 for TruSeq and Lab5 for TruSeq, NEBNext, 

CleanTag, 4N_A and 4N_Xu) or Ampure XP beads (in Lab7 and Lab8 for NEXTflex).

Single-end libraries were sequenced using the Illumina HiSeq 2500 (Lab8 and Lab9 for all 

the protocols and Lab5 for TruSeq, CleanTag, 4N-Xu and 4N_A), Illumina HiSeq 4000 

(Lab4 for all the protocols and Lab1 for TruSeq, 4N_D and equimolar NEBNext), Illumina 

NextSeq 500 (Lab2, Lab3 and Lab6 for all the protocols, Lab5 for NEBNext and in-house 

4N_B and Lab1 for ratiometric and plasma NEBNext) or Ion Torrent (Lab7) platforms (see 

Supplementary Table 3 which also includes information on miRNA editing libraries). All 

labs using Illumina sequencing performed runs specifying ≥ 50 bp single-end reads. Details 

on read lengths for each library are included in Supplementary Table 3. Each laboratory was 

free to choose the number of samples to pool per lane, with a target of at least 8 million 

reads per library. FASTQ files were uploaded to the Genboree Workbench for central data 

analysis.

Evaluation of miRNA editing

Ten human miRNAs previously shown in the literature to undergo adenosine-to-inosine (A-

to-I) RNA editing were selected to evaluate the performance of small RNA-seq in the 

detecting miRNA editing. To this end, we designed six pools containing different ratios of 

the selected synthetic edited miRNAs and their unedited counterparts (i.e. 0%, 0.1%, 0.5%, 

5%, 50% and 100% edited) plus 277 unrelated human miRNAs. All RNA oligonucleotides 

were synthesized by IDT (the complete list of sequences included in these pools is provided 

in Supplementary Table 7). The pools were prepared and aliquoted in the coordinating center 

and distributed to two additional labs following the same previously mentioned precautions 

to avoid RNA degradation. Each lab prepared three replicate libraries from 10 femtomoles of 

each pool using the three different small RNA library preparation protocols: TruSeq, 

NEBNext and in-house 4N_B. The protocols for TruSeq and NEBNext were performed 

according to the manufacturer’s instructions (note that for NEBNext, adapters were diluted 

1:2). In-house 4N_B was performed as described in Supplementary protocol 5. Size 

selection was performed using the Pippin Prep. ≥ 50 bp single-end libraries were sequenced 

using the Illumina NextSeq 500.

Online methods. Computational methods

Designing ratiometric pools

290 artificial sequences were assigned at random to 8 ratiometric groups (1, 1.5, 2, 3, 4, 5, 8 

and 10x) and to either ratiometric pool SynthA or SynthB. The ratio indicates the 

concentration in the assigned pool relative to the other pool. For example, a sequence in the 

10x pool assigned to SynthA would be present at the base concentration in SynthB and at 

10x the base concentration in SynthA. To make groups of approximately equal size, 

Giraldez et al. Page 12

Nat Biotechnol. Author manuscript; available in PMC 2019 January 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



assigned 8 sequences to the 8 ratiometric groups randomly, without replacement. To ensure 

the total amount of oligonucleotide was approximately equal in SynthA and SynthB, an even 

number of sequences was assigned to each ratiometric group and were distributed equally 

between pools, using a similar method of equally distributed random assignment. The 

random assignment was performed in Excel and the complete pool composition and ratios 

are shown in Supplementary Table 2.

Barcode splitting, FASTQ generation and data coordination

High-throughput sequencing, demultiplexing and FASTQ file generation was performed by 

each participating group independently. FASTQ files were uploaded to the Genboree 

Workbench for centralized analysis using the ExceRpt small RNA analysis pipeline. (http://

genboree.org/java-bin/workbench.jsp).

Preprocessing, mapping and read counting

FASTQ files for the equimolar, ratiometric and plasma pools were initially processed 

through the exceRpt small RNA-seq Pipeline (Version 4.6.2), using the batch submission 

tool. For details on the exceRpt pipeline and the associated processing steps, see the 

Genboree Workbench documentation (http://genboree.org/theCommons/projects/exrna-

tools-may2014/wiki/Small%20RNA-seq%20Pipeline). A brief description of parameters 

changed from the default settings or that differed between libraries is included below.

The exceRpt pipeline was used at the default settings whenever possible. The default for 

adapter trimming is “auto-detect” which identifies and trims the adapter sequence for 

multiple library types, and all samples were initially submitted using this functionality. For 

4N libraries (A, B, C, D, Xu and NEXTflex), an additional parameter was selected to 

indicate the degenerate sequence at the end of each adapter. The default random barcode 

settings were used, indicating that random 4nt sequences are present immediately 5’ and 3’ 

of the insert sequence. The sequence and identity of the adapter identified by the exceRpt 

pipeline was confirmed in the output files. Any library with a missing or incorrect adapter 

identified was re-submitted to the pipeline with the adapter sequence chosen manually, and a 

note was added to Supplementary Table 3.

For plasma pool libraries, sequences shorter than 18 nt after adapter trimming were removed 

and not used for downstream analysis. For synthetic pools, the minimum length was changed 

to 15 nt, which corresponds to the length of the shortest sequences in the equimolar and 

ratiometric pools.

To quantify alignments to the full set of synthetic pool sequences, equimolar, ratiometric 

SynthA and ratiometric SynthB libraries were mapped to a “Spike-In” sequence library 

uploaded to the Genboree Workbench. This spike-in library FASTA file contains a non-

redundant set of sequences from the ratiometric and equimolar pools (Supplementary Table 

7). Adapter-trimmed and filtered reads were mapped to the spike-in index with bowtie2 

using the default Genboree Workbench alignment parameters, except that the minimum read 

length was reduced to 15. The number of reads aligning to each sequence was obtained from 

the “calibratormapped” output files. At the time of writing, reads mapped to the spike-in 

sequences are removed prior to genomic alignment, so any endogenous alignment 
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information from these samples was ignored. To quantify alignments to endogenous 

miRNAs, equimolar and plasma pool libraries were also run through the exceRpt pipeline 

without mapping to spike-in sequences. The default minimum read length of 18 nt was used, 

along with all default alignment parameters. Reads were mapped to hg19 using the STAR 

alignment algorithm. Multi-mapping-adjusted read counts corresponding to mature miRNAs 

were used for all plasma pool analyses and for the equimolar pool correction factor analyses. 

For all other analyses with the equimolar and ratiometric pools, the spike-in read counts 

from the “calibratormapped” files were used.

Sample filtering

Unless specifically noted in the text, only libraries meeting minimum read count 

requirements were considered for analysis. For the synthetic pools, an average of one million 

reads mapping to the “spike-in” sequences (the unique set of sequences present in the 

equimolar and ratiometric pools), were required across all replicate libraries. The average 

was taken after filtering, such that the totals were based only on 5’-phosphorylated 

sequences 16-25 nt in length. For the plasma pool samples, replicate libraries with fewer 

than 100,000 miRNA-mapping reads were removed. The entire sample was removed if more 

than one of the replicate libraries failed to pass the minimum count threshold.

Equimolar pool analysis

Read counts for the equimolar (and likewise for the ratiometric pools) were obtained from 

“calibratormapped.counts” files included in the exceRpt pipeline output for each sample file. 

Sample-specific information, including the contributing lab, library preparation method and 

replicate number were associated with the corresponding calibrator count file, and were 

loaded into R for analysis. A full list of equimolar and ratiometric sequences with additional 

sequence information was used as a reference to merge all input files and add zero counts, 

where needed. Unless specifically mentioned in the text, analysis of ratiometric and 

equimolar libraries was limited to sequences with a 5’-phosphate modification, 16-25nt in 

length. Read counts were scaled to counts-per-million (CPM) using the total counts from the 

filtered sequences.

For plots and calculations using log-transformed values, an arbitrarily small count was added 

to avoid taking the log of zero. To confirm that the extent of sequencing bias and 

reproducibility we observed was not influenced by the choice of pseudo-count for 

calculating CPM, we repeated our calculations in different ways with pseudo-counts ranging 

from 1 to 0.0001 (see Supplementary Figure 16). The adjusted CPM values were calculated 

using the method employed by the R package, EdgeR39,40. This scales the user-supplied 

prior count (0.25; the default setting) to be proportional to the library size. The scaled prior 

count is calculated by multiplying the raw prior count (0.25) by the sample library size 

divided by the mean library size across all equimolar samples and then adding this value to 

the raw counts for each miRNA. Library sizes are adjusted by adding 2 x the scaled prior 

count value. Adjusted CPM values are finally calculated as (raw.count + adjusted.prior) * 

106/adjusted.library.size.
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Determining overrepresented and under-represented sequences

Sequences in each equimolar pool replicate library were ranked by abundance, assigning the 

minimum rank value in case of ties. The 10 top and bottom-ranked sequences were 

determined by arranging counts in descending and ascending order, respectively. TruSeq, 

NEBNext, CleanTag and 4N libraries were each queried for sequences consistently found in 

the top or bottom 10, as defined by at least 75% agreement among the libraries of at least 

one method.

Dissecting the source of bias

The CPM obtained for each sequence of the equimolar pool was calculated using pseudo-

counts, as in the equimolar pool analysis described above, except that the library sizes were 

calculated from all equimolar pool sequences prior to filtering for length and end 

modifications. Sequence length, 5’and 3’ terminal bases, %GC of the four 5’or 3’end base, 

overall %GC, dG [free energy], dH [enthalpy], dS [entropy] and Tm [melting temperature] 

were calculated from the annotated sequence. UNAFold 56 (http://unafold.rna.albany.edu/) 

was used to obtain the dG, dH, dS and Tm values of each of the sequences comprising the 

equimolar pool.

Ratiometric pools analysis

Ratiometric pool counts were initially processed as described above for equimolar pools, 

considering only counts for 16-25 nt sequences. The ratio of SynthA:SynthB was calculated 

as the ratio of the mean CPM across technical replicates in SynthA/SynthB.

Ratiometric Pools: Differential Expression—Independent differential expression 

workflows were run for each lab and library prep method, following a standard two-group 

comparison between “A” and “B” ratiometric pools. Normalization, dispersion estimation 

and differential expression testing was performed using three different R packages: 

EdgeR39,40, DESeq241 and limma/voom42. For EdgeR, normalization factors were 

calculated using the Relative Log Expression (RLE) method, and significance was 

calculated (after calculating common, trended and tagwise dispersion estimates) using the 

default settings, based on a likelihood ratio test on the null hypothesis that ratiometric 

sample B - A = 0. Default settings were used for DESeq2, and significance was calculated 

based on a Wald Test. Significance for the limma/voom workflow was based on an empirical 

Bayes moderated t-test.

Plasma pool analysis

Comparison of plasma pool libraries was limited to mature miRNAs. Read counts for mature 

miRNAs were taken from “readCounts_miRNAmature_sense.txt” files provided in the 

exceRpt pipeline output. The read count files and associated metadata for all samples were 

loaded and merged in R for further analysis. Multi-mapping-adjusted read counts are 

calculated as part of the exceRpt pipeline and were used for all comparisons. The total 

number of unique reads mapping to miRNAs was taken from “.stats” files provided in the 

exceRpt pipeline output.
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Downsampling read counts

The R package Vegan, was used to simulate random downsampling of equimolar and plasma 

pool count matrices. The Vegan function, drarefy, was used to estimate the probability of 

detection for each sequence based on random simulations of downsampling to specified 

levels. For the plasma pools, downsampling was performed to four different levels (104, 

104.5, 105 and 105.5). Equimolar pools were downsampled to six different levels (106.5 down 

to 104 at half-log intervals). Libraries with read counts below the specified threshold were 

removed. A minimum probability of 0.9 was used as the threshold for detection.

Inter-protocol bias correction factors: estimation

Equimolar pool samples were processed through the exceRpt pipeline using the same input 

parameters as the plasma pool libraries, in order to obtain multi-mapping, scaled read counts 

for mature miRNAs that were directly comparable to the plasma pool counts. Differential 

expression analyses were performed using the mature miRNA read counts for the equimolar 

pool samples, and scaling factors were calculated for each miRNA, and were taken from the 

resulting log2 fold-change estimates. Key assumptions used in these calculations were: that 

the median mapped read level calculated for a given protocol should match the median for 

the 4N results given the same RNA input; that the comparisons of the results from a given 

protocol and the 4N protocol are performed on data processed in the same way that 

biological samples are processed (i.e., using the exceRpt pipeline and its mapped read 

outputs). For details on limma and voom functionality and the parameters used, see the 

documentation for the limma package.

To summarize: correction factors were calculated for each pair of library preparation 

methods using the following workflow:

1. Filter out miRNAs with 0 counts in any library: For the subset of samples being 

tested, scaling factors are only calculated for miRNAs having at least one count 

in every sample of the two methods being tested.

2. Prepare miRNA count matrices for linear modeling: Use the R package, voom, to 

calculate precision weight estimates and normalize data to allow count data to be 

analyzed appropriately using the limma package. Normalization is also 

performed between samples such that the median miRNA expression value is the 

same in all samples.

3. Fit miRNA-wise linear models to account for batch (lab) effect: The lmFit 

function from the limma package is used to fit linear models for each miRNA, 

estimating coefficients for each lab+library prep method. The coefficients 

represent the differences in expression for each miRNA between each lab+library 

prep method.

4. Estimate the log fold change between the two methods for each miRNA: Use the 

fitted model to calculate for each miRNA the average expression estimated using 

the method A coefficients - the average expression estimate for the method B 

coefficients.
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The R packages limma/voom were used for read count normalization and differential 

expression estimates, using standard workflows suggested for RNA-seq data to account for 

batch (lab) effects, and then testing for the main effect of the library prep methods. For each 

pairwise comparison of library preparation methods, equimolar pool counts matrices were 

extracted and only miRNAs with ≥ 1 read count in all samples of both methods were kept 

for analysis. After filtering, voom was used to normalize the count data and calculate 

precision weight estimates that allow count data to be appropriately tested with the linear 

modeling schema used in the limma package. Voom was run with the default parameters, 

except that read counts were additionally normalized between arrays using the “scale” 

method, which adjusts read counts such that the median miRNA expression value is the 

same in all labs. The voom-transformed data was supplied to the limma lmFit function, 

along with a design matrix indicating the coefficients to be estimated. Initially, coefficients 

were estimated for each lab+library prep method in order to model batch/lab-specific effects. 

The main effect of the library prep method was then calculated as the average effect of 

method 1 - method 2. A contrasts matrix was generated and supplied, with the fitted model, 

to the contrasts.fit function, followed by an empirical Bayes function to estimate the 

resulting statistics for each miRNA. Log2 fold-change estimates, along with 95% CI were 

obtained from these estimates.

Inter-protocol bias correction factors: applying corrections

The equimolar pool-derived, inter-protocol bias correction factors were applied to the 

corresponding plasma pool samples for testing. To apply the correction factors, count 

matrices for the subset of plasma pool libraries being compared were selected and were then 

pre-filtered and normalized in the same way as the equimolar pools in generating the 

correction factors, described above. MiRNAs were filtered to include only those with a) a 

correction factor estimated from the equimolar pool and b) at least 5 counts in every library 

in the subset of methods being compared. Correction factors were applied to the appropriate 

samples. For example, if correction factors were calculated as the log2 fold-change between 

TruSeq and 4N samples (TruSeq - 4N), then the correction factors would be applied to the 

log2-transformed TruSeq plasma pool samples by subtracting the correction factor. For the 

heatmaps and density plots, corrected values were added to the original count matrix of 

untransformed values, and unless specifically noted in the text, normalized using quantile 

normalization.

miRNA editing analysis

Editing libraries were trimmed of 5’ and 3’ adapters using cutadapt (version 1.9.1). Trimmed 

reads ≥ 16 nt were aligned to editing pool sequences using bowtie2 (version 2.3.2) in local 

alignment mode. The first (5’) 4 nt were removed from 4N library reads during the 

alignment stage by adding the optional parameter “–trim5p 4”. Read counts were calculated 

from alignments filtered to have a minimum MAPQ of 20 and 0 mismatches to the reference 

sequence within the locally-aligned region. The sum totals of the filtered read counts for 

each library were used to calculate read Counts Per Million (CPM). Down-sampling was 

performed using the R package Vegan.
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Data availability and accession code availability statements

Sequencing data for all experiments can be obtained from the GEO Superseries, GSE94586. 

Accession numbers for the four subseries are: GSE94584 (Equimolar), GSE94585 

(Ratiometric A/B), GSE94582 (Human Plasma Pool) and GSE108138 (A-to-I Editing). 

GEO records include raw FASTQ files and processed counts from the ExceRpt pipeline.

All code, metadata and processed data files required for reproducing the figures, tables and 

in-text statistical summaries are freely available on GitHub (https://github.com/rspengle/

CrossU01_exRNA_Manuscript2017). The repository also includes a Packrat library with a 

snapshot of R package versions used.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Overview of study design
(Top) The four primary RNA pools used as common reference samples in the study are 

shown. Equimolar and ratiometric pools were prepared using chemically-synthesized RNA 

oligonucleotides to establish “ground-truth” knowledge of absolute and relative abundances, 

respectively. The equimolar pool consisted of 1,152 synthetic RNAs (15-90 nt) mixed at 

equal concentration. Downstream analyses focused on the subset of 977 RNAs 16-25 nt in 

length and with 5’-phosphate modifications. The two ratiometric pools, A and B, consisted 

of 334 synthetic RNAs, in which subsets of RNAs were varied in relative abundance 

between the two pools. The RNAs were divided into 15 ratiometric subgroups. The subset of 

290 RNAs, 16-25 nt in length, was used for downstream analyses, and the number of RNAs 

in each ratiometric subgroup is indicated. The plasma RNA pool comprised RNA from 11 

healthy males that was centrally isolated and distributed to the participating labs. (Middle) 
Nine different library preparation protocols were tested. Three commercially available kits 

with “invariant” adapters and six 4N Random-End protocols were tested. (Bottom) 

Common reference RNA pools were distributed to 9 participating labs for sequencing in 

quadruplicate, using a standardized common protocol (TruSeq) and at least one additional 
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method of their choice. The breakdown of the resulting libraries is depicted in the colored 

grid, with the Lab IDs indicated by columns, and the replicates and pools shown in rows. 

Solid grey blocks indicate libraries that were not attempted. Grey blocks with a diagonal red 

line indicate samples where library preparation and sequencing was attempted but was 

unsuccessful. Sequencing was performed by each lab independently.
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Figure 2. Equimolar pool sequencing results across multiple labs and protocols
(a) The heatmap shows expression levels for each synthetic RNA sequence (rows) across all 

replicate equimolar pool libraries (columns). Expression levels represent log2-scaled counts-

per-million (CPM) calculated for 977 equimolar pool sequences which are 16-25 nt in length 

and 5’-phosphorylated. Hierarchical clustering for rows and columns represents complete 

linkage clustering on Euclidean distances (the default setting for the R package, pheatmap, 

used for plotting). Columns are labeled at the bottom to identify replicate samples. Library 

Size indicates the sequencing depth for each library (log2-scaled). (b) Violin plots 

summarize the mean CPM observed for each of the 16-25 nt, 5’-phosphorylated equimolar 

pool sequences (y-axis; log10-scaled), as measured from equimolar pool libraries prepared 

by different institutions and using different library preparation protocols (x-axis). The width 

of the violins is proportional to the density of data points at each position. The horizontal 

lines within each violin represent the 25, 50 and 75th percentiles. The dashed horizontal line 

shows the expected CPM for each sequence in the equimolar pool (106/977 miRNAs = 

1023.5 CPM). Each violin plot and corresponding quantile lines summarize mean CPM 

values for n=977 distinct equimolar pool sequences. The mean CPM values were calculated 
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from n=4 technical replicate libraries for each lab/library preparation method shown, with 

the exception of 4N_NEXTflex. Lab7 (n=2). (c) The percentage of equimolar pool 

sequences sequenced at levels 10x higher (>10,235 CPM) or 10x lower (<102.35 CPM) than 

expected (y-axis) are plotted for each lab. The dots and whiskers indicate the median and 

range of values, respectively, measured across the technical replicates for each lab. N=4 

technical replicate libraries per lab/library preparation method, with the exception of 

4N_NEXTflex (n=2).
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Figure 3. Small RNA-seq accuracy and cross-protocol concordance in measuring relative 
expression levels between samples
(a) Boxplots show the observed ratio (y-axis; log2-scale) vs. expected ratio (x-axis) for 

miRNAs present in each of the SynthA and SynthB synthetic RNA subpools. Observed 

ratios for each miRNA were calculated as mean CPM of SynthA/mean CPM of SynthB 

across technical replicates for each lab + library prep method. Boxes show the median + 

IQR; upper/lower whiskers indicate the smallest/largest observation less than or equal to 

1st/3rd quartile -/+ 1.5 * IQR; outliers are calculated as being < 1st quartile – 1.5 * IQR or > 

3rd quartile + 1.5 * IQR. Mean CPM ratios were calculated from n=4 SynthA and n=4 
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SynthB technical replicate libraries for each lab and library preparation method shown, with 

the exception of TruSeq Lab8 SynthB (n=3). Those miRNAs with a mean CPM of 0 in 

SynthA or SynthB are not plotted. The numbers of miRNA not plotted are as follows: 

Truseq Labs 1,2,3,4,5,6,8: 1; Lab9: 0; CleanTag Lab5: 0; NEBNext Labs 1,3,5,9: 0; Lab4: 1; 

Lab2:3; 4N_NEXTflex Lab7: 1; other 4N: 0. The number of sequences represented in each 

boxplot is provided in Supplementary Table 10 (b) Heatmaps show the pairwise, squared 

Spearman rank correlation coefficients from sequencing the SynthA and SynthB pools. 

Pairwise correlation coefficients were calculated based on the mean CPM across technical 

replicates for SynthA samples (left), SynthB samples (middle) and the ratio of SynthA : 

SynthB (right). The mean CPM value for each ratiometric pool sequence was calculated 

from n=4 technical replicate libraries per lab, library preparation method and pool. Mean 

CPM values for n=290 ratiometric pool RNAs were used for calculating each pairwise 

correlation coefficient. Hierarchical clustering for rows and columns is the same for all 

heatmaps, and is based on the average pairwise Euclidean distances calculated from the 

SynthA CPM and SynthB CPM correlation matrices. Column labels indicate the lab ID and 

library prep method; row labels indicate only lab ID, but are presented in the same order (top 

to bottom) as columns (left to right).
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Figure 4. Reproducibility of small RNA-seq within- and between-labs
(a) Violin plots summarize the technical reproducibility of quantification for all equimolar 

pool sequences, as calculated from each lab and library preparation method. Reproducibility 

measurements, percent coefficient of variation (%CV; top) and quartile coefficient of 

dispersion (QCD; bottom), were calculated from CPM values. Horizontal lines within each 

violin indicate the 25, 50 and 75th percentiles, calculated from the mean CPM values of 

n=977 equimolar pool RNA sequences. Mean CPM values were calculated from n=4 

technical replicate libraries for each of the lab/library preparation methods shown, with the 

exception of TruSeq Lab1 (n=3). (b) Boxplots summarize the sequence-specific 

reproducibility of quantification measured in equimolar pool libraries generated by different 

labs using the same protocol. Percent CV (top) and QCD (bottom) values were calculated 

for each equimolar pool sequence across TruSeq (n=8 labs), NEBNext (n=4 labs) and 4N_B 

(n=4 labs) library preparation protocols. The mean CPM for each sequence across technical 

replicates (n=4 technical replicates per lab/library preparation method) was used to calculate 

the between-lab %CV and QCD plotted here. Boxplot statistics and outliers were calculated 

from %CV or QCD values for n=977 equimolar pool sequences. The overlaid boxes indicate 

the median and IQR. Whiskers represent the 1st/3rd quartile +/- 1.5 * IQR. Outliers are < 1st 

quartile – 1.5 * IQR or > 3rd quartile + 1.5 * IQR.
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Figure 5. Small RNA-seq of reference plasma RNA by multiple laboratories using multiple 
library preparation protocols
(a) The heatmap shows CPM (log2 scale) for each sequence (rows) across plasma pool 

libraries (columns). Only mature miRNAs with a high confidence of detection are shown, 

requiring a minimum of 100 CPM in 90 percent of samples from at least one protocol 

(TruSeq, CleanTag, NEBNext or 4N). Hierarchical clustering for rows and columns 

represents complete linkage clustering on Euclidean distances. “Library Size” indicates the 

sum of the mature miRNA-mapped read counts prior to filtering for the individual libraries 
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(log2-scaled). (b) Violin plots summarize the technical reproducibility of quantification for 

miRNAs expressed in plasma pool libraries, as calculated from each lab and library 

preparation method. Reproducibility measurements, percent coefficient of variation (%CV; 

top) and quartile coefficient of dispersion (QCD; bottom), were calculated from CPM 

values. Horizontal lines within each violin indicate the25, 50 and 75th percentiles, calculated 

from the mean CPM values of n=977 equimolar pool RNA sequences. . For TruSeq Lab1 

n=3 technical replicates; for all other lab/protocols n=4. (c) Boxplots summarize the 

between-lab reproducibility for miRNAs expressed in the plasma pool libraries using TruSeq 

(n=6 labs), NEBNext (n=4 labs) and 4N_B (n=4 labs) library preparation protocols. Each 

dot represents %CV or QCD calculated across labs for a single miRNA. The between-lab 

%CV and QCD were calculated using the mean CPMs for each sequence across technical 

replicates for each lab. The underlying boxes show the median and IQR. Whiskers represent 

the 1st/3rd quartile +/- 1.5 * IQR. Outliers are < 1st quartile – 1.5 * IQR or > 3rd quartile 

+ 1.5 * IQR. (d) Boxplots show the number of mature miRNAs detected by each protocol 

based on downsampling of datasets to the indicated sequencing depths (see Methods for 

more details). Each box summarizes number of miRNAs detected by each lab for the 

indicated protocol. The probability of each miRNA being detected was estimated for every 

sample randomly downsampled to 104, 104.5, 105, or 105.5 total read counts. A miRNA was 

only counted as detected if the probability of detection was at least 90%. Libraries with total 

counts less than the indicated sample size were excluded. Boxplots for 4N includes only in-

house 4N protocols (4N_A, B, C and D). The number of libraries summarized by each 

boxplot is as follows: 105.5: TruSeq=19; CleanTag=4; NEBNext=12; 4N=28; 105, 104.5 and 
104 : TruSeq=23; CleanTag=4; NEBNext=16; 4N=28. The underlying boxes show the 

median and IQR. Whiskers represent the 1st/3rd quartile +/- 1.5 * IQR. Outliers are < 1st 

quartile – 1.5 * IQR or > 3rd quartile + 1.5 * IQR.
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Figure 6. Library protocol performance in measuring miRNA A-to-I editing events
(a) A schematic depicting the experimental design for the miRNA A-to-I editing 

experiments. (left) 10 miRNAs were synthesized with either an Adenosine or Inosine at a 

single position previously shown to be edited in human cells. The position, relative to the 5’ 

end of the mature miRNA, is indicated to the right of the respective miRNA IDs, along with 

the identity of the nucleotide. 277 other unedited human miRNAs were added at a fixed 

concentration to increase the background complexity of the pools. (middle) Six different 

editing subpools were generated, using a constant amount of the background (Bk) pool and 
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varying percentages of unedited (Un; adenosine) and edited (Ed; inosine) oligos in each 

pool. (right) The color-coded grid depicts the library design used in the A-to-I editing 

experiment. Specifically, the six editing pools were sequenced by three participating labs, 

using three different library preparation protocols, with each lab generating libraries in 

triplicate. (b) The observed percent editing (y-axis) is shown for each miRNA in the six A-

to-I editing pools, as measured by each of the three labs, using TruSeq, NEBNext and 4N_B 

protocols. The expected editing percent in each pool is both indicated to the right of each 

plot group and indicated by the horizontal dotted line within each plot. The library prep 

method is indicated to the right of each plot. The dots and whiskers represent the median and 

range of percent editing for each miRNA (x-axis) as measured by the three labs. Individual 

miRNA % editing is shown for n=3 technical replicate libraries for each lab and library 

preparation method.
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