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Abstract——The cannabis derivative marijuana is
the most widely used recreational drug in the Western
world and is consumed by an estimated 83million indi-
viduals (�3% of the world population). In recent years,
there has been a marked transformation in society re-
garding the risk perception of cannabis, driven by its le-
galization and medical use in many states in the United
States and worldwide. Compelling research evidence
and theFood andDrugAdministration cannabis-derived
cannabidiol approval for severe childhood epilepsy have
confirmed the large therapeutic potential of cannabidiol
itself, D9-tetrahydrocannabinol and other plant-derived
cannabinoids (phytocannabinoids). Of note, our body
has a complex endocannabinoid system (ECS)—made
of receptors, metabolic enzymes, and transporters—
that is also regulated by phytocannabinoids. The first en-
docannabinoid to be discovered 30 years ago was ananda-
mide (N-arachidonoyl-ethanolamine); since then, distinct
elements of the ECS have been the target of drug design
programs aimed at curing (or at least slowing down) a

number of human diseases, both in the central nervous
system and at the periphery. Here a critical review of our
knowledge of the goods andbads of theECSas a therapeu-
tic target is presented to define the benefits of ECS-active
phytocannabinoids and ECS-oriented synthetic drugs for
humanhealth.

Significance Statement——The endocannabinoid
system plays important roles virtually everywhere in
our body and is either involved in mediating key pro-
cesses of central and peripheral diseases or represents a
therapeutic target for treatment. Therefore, under-
standing the structure, function, and pharmacology of
the components of this complex system, and in particu-
lar of key receptors (like cannabinoid receptors 1 and 2)
and metabolic enzymes (like fatty acid amide hydrolase
and monoacylglycerol lipase), will advance our under-
standing of endocannabinoid signaling and activity at
molecular, cellular, and system levels, providing new op-
portunities to treat patients.

I. Introduction
Paleobotanical records date the beginning of human

cannabis cultivation in Eurasia to > 8000 years ago,
while archaeological evidence anchors its use as a psy-
chotropic substance to approximately 2500 years ago

(Russo et al., 2008; Long et al., 2017). Today, cannabis
is one of the world’s most widely used recreational
drugs, after alcohol and tobacco, and is consumed by
an estimated 83 million individuals (�3% of the world
population) (https://www.unodc.org/wdr2017/field/

ABBREVIATIONS: AA, arachidonic acid; 2-AG, 2-arachidonoylglycerol; AEA, N-arachidonyl ethanolamine (anandamide); CADD, com-
puter-aided drug discovery; CBD, cannabidiol; CB1R, cannabinoid receptor 1; CB2R, cannabinoid receptor 2; CNS, central nervous system;
COVID-19, coronavirus disease of 2019; COX, cyclooxygenase; cPLA, cytosolic phospholipase A; CYP450, cytochrome P450; DAGL, diacyl-
glycerol lipase; DSE, depolarization-induced suppression of excitation; eCB, endocannabinoid; eCBome, endocannabinoidome; ECS, endo-
cannabinoid system; EMA, European Medicines Agency; FAAH, fatty acid amide hydrolase; FABP, fatty acid binding protein; FDA, Food
and Drug Administration; GPCR, G protein-coupled receptor; LOX, lipoxygenase; MAGL, monoacylglycerol lipase; MS, multiple sclerosis;
NAAA, N-acylethanolamine acid amide hydrolase; NAPE-PLD, N-acyl phosphatidylethanolamine-specific phospholipase D; NAT, N-acyl-
transferase; NOS, nitric oxide synthase; PAM, peptidyl-glycine alpha-amidating monooxygenase; PGE2-G, prostaglandin E2 glyceryl ester;
PGH2-EA, prostaglandin H2 ethanolamide; PLC, phospholipase C; PPAR, peroxisome proliferator-activated receptor; SAR, structure-activity re-
lationship; SERI, selective eCB reuptake inhibitor; (S)-OOPP, N-[(3S)-2-oxo-3-oxetanyl]-3-phenylpropanamide; THC, D9-tetrahydrocannabinol;
TRP(V), transient receptor potential (vanilloid).
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Booklet_1_EXSUM.pdf). Cannabis’ increasingly ex-
panding legal status heightens the need for research
into its therapeutic potential for a wide range of patho-
logic conditions (National Academies of Sciences, Engi-
neering, and Medicine, 2017; Cohen et al., 2019;
Friedman et al., 2019; Cristino et al., 2020) but also raises
concerns about its possible hazards to health. Indeed,
medical and nonmedical cannabis use has been associated
with short-term and long-term adverse effects, including
schizophrenia, alterations in cognition, and mood disor-
ders (Cohen et al., 2019), as well as an impact on adult
neurogenesis (Oddi et al., 2020) and female (Cecconi
et al., 2020) and male reproductive health (Maccarrone
et al., 2021).

A. Phytocannabinoids

The trichomes, specialized structures in the inflores-
cences of the female cannabis plant, produce a family of
terpenophenolic substances, called phytocannabinoids
(pCBs), which contain tricyclic, bicyclic, and monocyclic
structures. In most cannabis varietals, the most abun-
dant pCBs are the acidic (i.e., carboxylic) precursors of
D9-tetrahydrocannabinol (THC) and cannabidiol (CBD),
which are converted to THC and CBD by drying or
heating, but many others have been identified whose
pharmacological properties are still awaiting clarification
(Gomez-Ca~nas et al., 2023). Indeed, cannabis contains
more than 110 pCBs as well as hundreds of terpenoids,
flavonoids, sterols, and other non-pCB substances (El Sohly
and Gul, 2014; El Sohly et al., 2017; Solymosi and K€ofalvi,
2017). THC and its analogs (including D8-tetrahydrocannab-
inol and the propyl derivative D9-tetrahydrocannabivarin),
CBD and its analogs (including cannabidivarin), cannabinol
and its analogs (including the propyl derivative canna-
bivarin), and cannabigerol and its analogs are highly
abundant. In addition, trace amounts of cannabinodiol,
cannabichromene, cannabicyclol, cannabielsoin, and
cannabitriol are also detectable (Mechoulam, 2005; El
Sohly and Gul, 2014; El Sohly et al., 2017; Morales
et al., 2017; Li et al., 2022). The structures of the main
pCBs identified so far are shown in Table 1.
To date, the therapeutic potential of THC and CBD,

alone or in combination, seems apparent and has been crit-
ically discussed in recent reviews (Maccarrone et al., 2017;
Friedman et al., 2019; Pacher et al., 2020; Rock et al.,
2021; Stella, 2023). Here, the main applications of THC
and CBD for human health are summarized in Table 2.
By contrast, our understanding of the pharmacologi-

cal properties of less prevalent pCBs has only scratched
the surface, and very little information is available on
their effect in the human body (Russo, 2018; Franco
et al., 2020; Maccarrone, 2020; Rock et al., 2021; Me-
choulam, 2023; Li et al., 2022). For instance, cannabidiolic
acid and cannabichromene are used in creams, foods, and
beverages (Straiker et al., 2021), and the methyl ester of
cannabidiolic acid has been shown to suppress nausea
and anxiety (Pertwee et al., 2018), to reduce depression-

like effects (Hen-Shoval et al., 2018), and to have a potent
antihyperalgesic effect (Zhu et al., 2020). Further research
has shown that cannabinol exhibits neuroprotective ef-
fects in an experimental model of glaucoma (Somvanshi
et al., 2022); cannabigerol reduces inflammation, pain,
and obesity (Kogan et al., 2021); and both pCBs hold
anticancer potential (Li et al., 2022). Humans and other
mammals do not produce pCBs but can effectively re-
move them via the cytochrome P450 and glucuronida-
tion pathways in the liver and other organs (Huestis,
2007; Watanabe et al., 2007; Schafroth and Carreira,
2017; Solymosi and K€ofalvi, 2017).
Overall, it is apparent that the term “phytocannabinoid”

serves to cluster different plant-derived lipophilic com-
pounds (Pertwee, 2014; Ligresti et al., 2016). It is also
worth noting that different cannabis varietals can have
distinct chemical profiles (referred to as “chemovars”)
and can thus display both qualitative and quantitative
differences in their constituents. Because differences in
genetics, cultivation technique, harvest, and extraction
can affect the ultimate product consumed by humans, it
is reasonable to conclude that there is no “one cannabis”
and that caution must be taken in generalizing its effects
(Hanu�s et al., 2016; Procaccia et al., 2022). This variability
may also confound our understanding of cannabis’ phar-
macological properties, and, indeed, remaining uncertain-
ties represent a serious obstacle to its clinical applications
(Friedman et al., 2019). Unsurprisingly, despite its use for
millennia, cannabis remains surrounded by controversies,
debates, and misconceptions related to its medical poten-
tial, legalization, and long-term health consequences.
Taken together, the complexity of cannabis extracts

seems apparent. However, such a complexity is mirrored,
and possibly even exceeded, by that of the ensemble of
receptors, enzymes, and transporters of endocannabinoid
(eCB) substances that together form the “eCB system”
(ECS), recently discussed in comprehensive reviews (Ian-
notti et al., 2016; Maccarrone, 2017; Baggelaar et al.,
2018; Cristino et al., 2020; Kilaru and Chapman, 2020;
Simard et al., 2022; Piomelli and Mabou Tagne, 2022).
Notably, the main components of the ECS support and
control the manifold actions of the eCBs both in the
central nervous system (CNS) (Maccarrone et al., 2014;
Iannotti et al., 2016; Cristino et al., 2020) and the pe-
riphery (Maccarrone et al., 2015). Here it should be
stressed that little is still known about the effects that
pCBs have on the ECS. Emerging evidence indicates
that, even at low concentrations, THC can alter eCB
signaling, especially when administered during critical
periods such as adolescence (Lee et al., 2022). Additionally,
24-hour treatment with cannabigerol, cannabichromene,
D9-tetrahydrocannabivarin, and cannabigerolic acid has
been shown to modulate the function of distinct ECS ele-
ments in human HaCaT keratinocytes, where they all in-
crease binding of [3H]CP55940 to cannabinoid receptors 1
and 2 (CB1R and CB2R), stimulation of transient receptor
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potential vanilloid 1 (TRPV1) channels, as well as catalytic
activity of fatty acid amide hydrolase (FAAH) and monoa-
cylglycerol lipase (MAGL) catabolic enzymes (Di Meo et al.,
2022). These data extend previous studies on the effects
of cannabinoid-enriched cannabis extracts on transient
receptor potential (TRP) channels (De Petrocellis et al.,
2011) and of cannabidiol- and cannabigerol-type pCBs on
CB1R and CB2R (Navarro et al., 2020), suggesting that
these minor pCBs could have an impact when present in
various cannabis formulations (Di Marzo and Piscitelli,
2015; Turner et al., 2017).

B. Cannabinoid Receptors, Endocannabinoids, and
Their Congeners

The discovery of THC in the 1940s (Adams et al.,
1948) and its complete structural elucidation 20 years
later (Gaoni and Mechoulam, 1964) allowed research-
ers to synthesize radiolabeled synthetic analogs that
were instrumental to the identification and localization
of specific cannabinoid binding sites in the brain (Devane
et al., 1988; Herkenham, et al., 1990). In particular, a ra-
diolabeled THC congener, the nonclassical bicyclic canna-
binoid CP55940, allowed researchers to perform initial
binding assays and structure-activity relationship studies
of the receptor (Devane et al., 1988; Howlett et al., 1988).
This was followed by development of radiolabeled 50-(1,1-
dimethylheptyl)-7-hydroxyhexahydrocannabinol (Devane

TABLE 1
Major phytocannabinoids (pCBs)

Name (abbreviation) Chemical Structure

More Abundant pCBs
D9-Tetrahydrocannabinol

(THC)

Cannabidiol (CBD)

Cannabinol (CBN)

Cannabigerol (CBG)

Cannabivarin (CBV)

Cannabidivarin (CBDV)

D9-Tetrahydrocannabivarin
(THCV)

Less Abundant pCBs
Cannabichromene (CBC)

(continued)

TABLE 1—Continued

Name (abbreviation) Chemical Structure

Cannabinodiol (CBND)

Cannabicyclol (CBL)

Cannabielsoin (CBE)

Cannabitriol (CBT)

888 Maccarrone et al.



et al., 1992a). The pharmacological characterization even-
tually led to the molecular cloning of the CB1R from rat
(Matsuda et al., 1990) and human (Gerard et al., 1990,
1991) orphan G protein-coupled receptor (GPCR) clones.
CB1R activation in mice led to a standard set of canna-
bimimetic responses, the so-called “tetrad test,” which
sequentially assesses antinociception, catalepsy, hypo-
motility, and hypothermia (Smith et al., 1994). Shortly
afterward a second molecular target of THC was found
and named CB2R (Munro et al., 1993), predominantly
localized to the immune system (Lynn and Herkenham,
1994), where it leads to immune suppressive responses
(Howlett et al., 2002; Klein and Cabral, 2006; Cabral
and Griffin-Thomas, 2008; Cabral et al., 2008). For a
comprehensive review of both cannabinoid receptors see
the report of the International Union of Pharmacology
Cannabinoid Receptor Nomenclature Committee (Howlett
et al., 2002).
The identification of CB1R, the most abundant GPCR

in the mammalian brain, and of CB2R prompted intense
research into the endogenous ligands for these receptors
(Di Marzo and Fontana, 1995). Such ligands were
identified as anandamide [N-arachidonoylethanolamine
(AEA)] (Devane et al., 1992b) and 2-arachidonoylgly-
cerol (2-AG) (Mechoulam et al., 1995; Sugiura et al.,
1995). The first endogenous ligand of CB1R and CB2R
was named anandamide after the Sanskrit word
“Ananda,” which means bliss, and on its chemical na-
ture as an amide. Indeed, AEA and 2-AG are an amide
and an ester of the x-6 arachidonic acid (AA), respec-
tively (Table 3), and remain the best-studied eCBs.
Other potential members of the eCB family have

been discovered, including: (1) x-6 fatty acid-derived
eCBs like AEA, 2-AG, 2-arachidonoylglycerol (noladin) ether,
and the “inverted anandamide” virodhamine, reported to
have various biologic activities (Maccarrone, 2017; Bag-
gelaar et al., 2018; Cristino et al., 2020), and (2) x-3 fatty
acid-derived eCBs like N-eicosapentaenoylethanolamine
and N-docosahexaenoylethanolamine, endowed with
promising anticancer activity (Brown et al., 2010,
2020). In addition, various eCB-like fatty acid etha-
nolamides, including N-palmitoylethanolamine and
N-oleoylethanolamine, have been described, which

serve important functions in the control of energy
metabolism (Rodr�ıguez de Fonseca et al., 2001;
Schwartz et al., 2008; Misto et al., 2019), pain (Calig-
nano et al., 1998; Fotio et al., 2021b), and inflamma-
tion (Solorzano et al., 2009) by engaging the nuclear
receptor peroxisome proliferator-activated receptor
(PPAR) a (Fu et al., 2003; Lo Verme et al., 2005). N-
stearoylethanolamine also has anti-inflammatory ac-
tivity but via activation of PPARc (Kosiakova et al.,
2022). Finally, eCB-like amino acids (also known as
lipoamino acids) have been isolated, such as N-
arachidonoylglycine, N-arachidonoyldopamine, N-
arachidonoylserine, N-oleoylglycine, and N-oleoylalanine
(Ayoub et al., 2020), which may have a number of distinct
biologic activities and hold therapeutic potential against
vasodilation and osteoporosis (Table 3).
Athough THC and AEA have completely different

structures, with THC being a terpene-resorcinol deriv-
ative (Table 1) and AEA being an AA amide linkage
with ethanolamine (Table 3), their biologic activities
were found to be closely related (Fride and Mechoulam,
1993; Vogel et al., 1993). Also of note is the observation
based on phylogenetic analyses that eCBs appear to be
much older than pCBs. Cannabis (aged ca. 76� 107
million years) is much younger than organisms like
black truffles (Tuber melanosporum, aged ca. 156 million
years) (Pacioni et al., 2015), hydra (De Petrocellis et al.,
1999), and tetraymena (Anagnostopoulos et al., 2010)
where eCBs can be detected.

C. Diverse Phytocannabinoids and Endocannabinoid
Targets and Signaling Pathways

The number of receptors activated by pCBs and
eCBs in the same cell, both on the plasma membrane
and in the nucleus, appears striking and is schemati-
cally depicted in Fig. 1.
Indeed, pCB- and eCB-binding receptors include (1)

seven-transmembrane GPCRs CB1 and CB2 (Howlett et al.,
2002), as well the recently deorphanized GPCRs GPR55,
GPR119, and GPR18 that can also bind cannabinoid-like
ligands (Godlewski et al., 2009; Pertwee et al., 2010;
Zhao and Abood, 2013; Shore and Reggio, 2015; Morales
and Reggio, 2017; Alhouayek et al., 2018; Morales et al.,

TABLE 2
Approved and potential indications for THC and CBD

Cannabinoid Approved (A) and Potential (B) Indications

THC (A) Chemotherapy-induced nausea and vomiting; appetite stimulant (HIV/AIDS).
(B) Spasticity in MS; neuropathic pain in MS; cancer pain unresponsive to opioids; other pain conditions (i.e., postherpetic

neuralgia, postoperative pain); intraocular pressure in glaucoma; depression; anxiety/sleep disorder; psychosis; tics of Tourette
syndrome; tremor/bladder dysfunction in MS; dyskinesias in HD; levodopa-induced dyskinesias in PD; cervical dystonia;

epilepsy; and AD.
CBD (B) Childhood epilepsy; tuberous sclerosis complex seizure; Lennox-Gastaut syndrome; Dravet syndrome and infantile spasms.
THC/CBD (A) Spasticity in MS.

(B) Paraplegia and spasticity in amyotrophic lateral sclerosis; cancer pain unresponsive to opioids; other pain conditions (i.e.,
postherpetic neuralgia, postoperative pain); intraocular pressure in glaucoma; depression; anxiety/sleep disorder; psychosis; tics
of Tourette syndrome; tremor/bladder dysfunction due to MS; dyskinesias in HD; levodopa-induced dyskinesias in PD; cervical

dystonia; epilepsy; and AD.

AD, Alzheimer’s disease; CBD, cannabidiol; HD, Huntington’s disease; MS, multiple sclerosis; PD, Parkinson’s disease; THC, D9-tetrahydrocannabinol.
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2020; Im, 2021); (2) receptors that are located on the
plasma membrane and have intracellular binding sites,
such as ionotropic TRP vanilloid 1, 2, 3, 4 channels, TRP
cation channel A1, and melastatin 8, which are all six-
transmembrane spanning receptors; and (3) nuclear PPARs

a, c, and d, which are transcription factors able to regulate
gene expression (Maccarrone, 2020; Gomez-Ca~nas et al.,
2023). Of note, CB1R has been shown to move in and out
of distinct microdomains of the plasma membrane known
as lipid rafts, which might contribute to the control of their
G protein-dependent signaling (Oddi et al., 2017; Saumell-
Esnaola et al., 2021). In addition, CB1R appears to localize
also in the outer membrane of mitochondria, where it
modulates energy metabolism of neuronal and nonneuro-
nal cells (Pagano Zottola et al., 2022). GPCRs, TRPs, and
PPARs trigger different transduction pathways, summa-
rized in Fig. 2.
Therapeutic benefits have been documented by target-

ing the pCB/eCB-binding receptors and signal transduc-
tion thereof, both in CNS and peripheral pathologies as
detailed in the following sections. It is now widely appreci-
ated that GPCRs instigate intracellular signaling by two
transducer families, heterotrimeric G proteins and GPCR
kinases/arrestin. These transducers interact with agonist-
bound GPCRs to trigger alternative signaling cascades, so
that biased agonists that favor either heterotrimeric G pro-
tein or GPCR kinases/arrestin signaling are of profound
pharmacological interest (Chen and Tesmer, 2022). In this
context, recent advances in understanding biased signaling
and off-target activity of CB2R (Soethoudt et al., 2017),
also in living cells (Sarott et al., 2020), and molecular
mechanism of allosteric modulation of CB1R (Yang et al.,
2022) suggest that biased signaling driven by eCBs might
be better appreciated in the near future and usher in a
new generation of drugs with greatly reduced side effects.

D. Metabolic Routes

Metabolism of AEA and 2-AG has been intensely investi-
gated since their discovery in the mid-1990s, whereas little
information is as yet available on the metabolic routes of
the additional eCBs and congeners. AEA and 2-AG are me-
tabolized by a complex array of distinct biosynthetic and
catalytic enzymes and are transported through the plasma
membrane, intracellularly and extracellularly, by distinct
and poorly understood mechanisms that engage putative
protein carriers.
In general, it is of paramount importance that all biologic

activities of eCBs, either receptor dependent or indepen-
dent, are subjected to a stringent “metabolic control,” which
means that they depend on the cellular concentration of
eCBs, which in turn depends on a balance between synthesis
and degradation by multiple regulated enzymes (Friedman
et al., 2019; Cristino et al., 2020; Maccarrone, 2020).

1. Metabolism of N-Arachidonyl Ethanolamine.
AEA can be produced by membrane phospholipid precursors
via multiple pathways, as schematically depicted in Fig. 3.
Among these, N-acyltransferase (NAT), either Ca21-dependent
or independent (iNAT), and N-acylphosphatidylethanolamine-
specific phospholipase D (NAPE-PLD) catalyze the most classic
route for the release of AEA from phosphatidylethanolamine
and phosphatidylcholine precursors. In addition,

TABLE 3
Major endocannabinoids and congeners

Name (abbreviation) Chemical Structure

Major x-6 eCBs
N-Arachidonoylethanolamine

(Anandamide, AEA)

2-Arachidonoylglycerol
(2-AG)

2-Arachidonoylglycerol
(Noladin) Ether (2-AGE)

Virodhamine
(O-Arachidonoylethanolamine,
O-AEA)

Major x-3 eCBs

N-Eicosapentaenoylethanolamine
(EPEA)

N-Docosahexaenoylethanolamine
(DHEA)

Major eCB-like Compounds

N-Palmitoylethanolamine
(PEA)

N-Oleoylethanolamine
(OEA)

N-Stearoylethanolamine
(SEA)

N-Linoleoylethanolamine
(LEA)

2-Oleoylglycerol
(2-OG)

Major eCB-Amino Acids

N-Arachidonoyl dopamine
(NADA)

N-Arachidonoyl glycine
(NAGly)

N-Arachidonoyl serine
(ARA-S)

N-Oleoyl glycine
(OlGly)

N-Oleoyl alanine
(OlAla)
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soluble phospholipase A2, a/b hydrolase domain protein

4, phospholipase C, lyso-phospholipase D, protein tyrosine

phosphatase non-receptor type 22, SH2 domain-containing

polyinositol-5-phosphatase 1, and various glycerophospho-

diesterase family members catalyze parallel routes for

the biosynthesis of AEA.
Multiple pathways also exist for the degradation of

AEA, which can be cleaved into ethanolamine and AA,
thus terminating its biologic activity. This hydrolysis is
primarily catalyzed by fatty acid amide hydrolase-1
(FAAH-1) but also by the less widespread FAAH-2 or by
the lysosomal enzyme N-acylethanolamine acid amidase
(NAAA) (Piomelli et al., 2020), as shown in Fig. 4.
As an alternative to degradation, AEA can be biotrans-

formed by oxygenation (i.e., addition of molecular O2) of
the AA moiety catalyzed by lipoxygenase 5, 12, 15 isozymes
(5-, 12-, 15-LOX), cyclooxygenase-2 (COX-2) or cytochrome
P450 (CYP450), as summarized in Fig. 4 and recently
reviewed (Rouzer and Marnett, 2011; Fezza et al., 2014;
Simard et al., 2022). Remarkably, COX-2-generated prosta-
mides and the other oxidative derivatives of AEA are en-
dowed with biologic activities on their own (Van der Stelt
et al., 2002; Simard et al., 2022). To date, their

pathophysiological roles remain rather elusive, but appar-
ently they include neuroprotection of the brain (Veldhuis
et al., 2003).

2. Metabolism of 2-Arachidonoylglycerol. Much like

AEA, membrane phospholipid precursors like phosphatidyli-

nositol and phosphatidic acid are cleaved via phospholipase

A1 or phosphohydrolase, respectively, to release 2-arachi-

donoylglycerol-3-phosphate or diacylglycerol, respectively

(Fig. 5). Then, a Ca21-dependent phospholipase C (PLC)

or Ca21- and glutathione-dependent DAG lipases (DAGL)

a and b release 2-AG. The latter DAGLa/b-dependent
pathway is the classic biosynthetic route for 2-AG (Bisogno

et al., 2003), and glutathione seems to be a key regulator

in the brain (Maccarrone et al., 2008).
Alternative pathways have been discovered for the

degradation of 2-AG, which is primarily cleaved to glycerol
and AA by MAGL, as shown in Fig. 6. In addition, a/b
hydrolase domain proteins 2, 6, and 12, carboxylesterases
1 and 2, and palmitoyl-protein thioesterase 1 can de-
grade 2-AG to AA and glycerol (Baggelaar et al., 2018;
Maccarrone, 2020), as shown in Fig. 6. Much like AEA,
2-AG can be oxygenated by COX-2, 12- and 15-LOX
(Rouzer and Marnett, 2011; Fezza et al., 2014; Simard

Fig. 1. Endocannabinoid binding receptors. The two major endocannabinoids anandamide and 2-arachidonoylglycerol bind to and activate metabo-
tropic and ionotropic membrane receptors (with either an intracellular or an extracellular binding site) and nuclear receptors.
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et al., 2022), leading to oxidative derivatives like prosta-

glandin- or thromboxane-glyceryl esters with their own bio-

logic activities (Baggelaar et al., 2018; Simard et al., 2022).

E. Trafficking of Endocannabinoids

The stringent metabolic control of eCB tone is further
modulated by distinct transporters that facilitate the
movement of eCBs across the plasma membrane (possibly

via a purported and as yet elusive eCB membrane

transporter), as well as intracellularly and extracellulary.

Moreover, not only can eCBs be released from membrane

precursors when the cell receives a stimulus “on demand,”

but they can be stored in cytosolic organelles like adipo-

somes (Maccarrone, 2020). The mechanisms underlying

the membrane transport of eCBs have been extensively

investigated, leading to two prevailing models whereby

eCBs are transported either by passive diffusion (Fasia
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PKA:    Protein kinase A
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Fig. 2. Endocannabinoid signaling pathways. Receptor binding by anandamide and 2-arachidonoylglycerol triggers various signal transduction path-
ways, which activate G proteins, ion channels, as well as gene transcription.
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et al., 2003) or by facilitated diffusion through a mem-

brane carrier (Di Marzo et al., 1994; Beltramo et al.,

1997). The mechanism(s) of transmembrane transport of

eCBs remain(s) a highly debated issue in the field and

has/have been the subject of comprehensive critical re-

views (Fowler, 2013; Nicolussi and Gertsch, 2015; Kaczo-

cha and Haj-Dahmane, 2022). In addition to passive or

facilitated diffusion, eCBs can leave a cell as part of

microvesicles that undergo exocytosis, and indeed such

a mode of extracellular transport has been demon-

strated in the synaptic cleft for both AEA (Gabrielli

et al., 2015) and 2-AG (Nakamura et al., 2019). The

different modalities of transmembrane transport of

eCBs are schematically depicted in Fig. 7A.
The eCBs are lipids, and as such they cannot travel the

aqueous cytosol without a suitable carrier (Maccarrone

NArPE
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AEA: N-Arachidonoyl ethanolamine
ABHD4: / -Hydrolase domain protein 4
GDE1,4,7:   Glycerophosphodiesterase isoforms 1, 4 and 7
GDPD1,3:  Lysophospholipase D isoforms 1 and 3
NAPE-PLD: N-acyl phosphatidylethanolames-specific phospholipase D
NArPE:   N-arachidonoyl phosphatidylethanolamine
(i)NAT:   (Calcium independent) N-acyltransferase
p-AEA: Phospho-AEA
sPLA2:    Soluble phospholipase A2
PLC:      Phospholipase C
PLD:      Phospholipase D
PTPN22:    Protein tyrosine phosphatase non-receptor type 22
SHIP1: SH2 domain-containing polyinositol-5-phosphatase 1

Fig. 3. Biosynthetic pathways of anandamide. AEA can be synthesized from membrane phospholipid precursors via different routes. The Ca21-dependent
hydrolysis of NArPE by NAPE-PLD is considered the most relevant among these biosynthetic pathways.
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et al., 2010). Unsurprisingly, cytosolic AEA-binding proteins

have been demonstrated over the last few years and include

structurally unrelated proteins like heat shock protein 70 and

albumin (Oddi et al., 2009), fatty acid binding proteins

(FABPs) 1, 5, and 7 (Kaczocha et al., 2009; Elmes et al.,

2019), FAAH-like anandamide transporter (Fu et al.,

2011), sterol carrier protein 2 (Hillard et al., 2017), and

retinol-binding protein 2 (Plau et al., 2022). These eCB

transporters are schematically depicted in Fig. 7B.
While the pathophysiological relevance of intracel-

lular and extracellular trafficking of eCBs remains

elusive (Jacobson et al., 2019; Fauzan et al., 2022), it
appears that carriers of these lipids should be actively

investigated, because they might be major players in

driving eCB signaling. Indeed, these carriers can

ferry the right eCB to the right target, at the right

time and in the right concentration, thus holding po-

tential as primary action points for the development of

effective eCB-oriented therapeutics. Of note, these

novel therapeutics should be devoid of unwanted side ef-

fects often associated with drugs that target receptors

ormetabolic enzymes of eCBs (Ciaramellano et al., 2023).
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Fig. 4. Catabolic pathways of anandamide. AEA can be cleaved to arachidonic acid and ethanolamine by different hydrolytic routes. FAAH-1 is consid-
ered the most relevant among these catabolic pathways. Alternatively to hydrolytic routes, AEA can be oxidized by LOXs, COX-2, or cytochrome P450
to generate various eicosanoid-like PG-ethanolamides or hydroxy-AEAs.
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On a final note, to date, 3D structures of only 23
major components of the ECS have been resolved,
whereas many other elements still await clarifica-
tion of their structural features (Maccarrone, 2020).
Among the latter, key receptors (e.g., GPR55, GPR119,
and TRPV4), enzymes (e.g., NAT, DAGLa/b, GDE1,4,7,
ABHD2, 4, 6, 12), and the putative eCB membrane
transporter can be listed. It is apparent that such an
information gap is particularly troubling for drug dis-
covery programs and must be urgently filled.
In the following sections, the main properties and ther-

apeutic potential of some of the main ECS components
are detailed, whereas the other elements suffer from a
lack of information.

II. Cannabinoid Receptor Physiology and
Pharmacology

The eCBs and THC are dual effectors at both CB1

R and CB2R, which share a ligand binding domain

sequence identity of 44% (Matsuda et al., 1990; Munro

et al., 1993; Howlett et al., 2002; Mackie, 2005). The

absolute stereochemistry of THC was deciphered in

1967 (Fig. 1) (Mechoulam and Gaoni, 1967), and this

was followed by the development of many analogs by

academic chemists (Razdan, 1986). THC is a dual CB1

R and CB2R partial agonist exhibiting multiple thera-

peutically interesting physiologic properties involving

both receptor types, which include anti-inflammatory,
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Fig. 5. Biosynthetic pathways of 2-arachidonoylglycerol. 2-AG can be synthesized from membrane phospholipid precursors via different routes. The
Ca21- and glutathione-dependent hydrolysis of DAG by DAGLa/b is considered the most relevant among these biosynthetic pathways.
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immunosuppressive, and analgesic effects. THC was

the first cannabinoid agonist approved as a medication by

the FDA under the generic name dronabinol (Marinol),

although its use was restricted due to CNS-mediated

psychotropic side effects.
Many additional nonselective cannabinoid agonists

have provided insights into pharmacotherapuetic poten-
tial (reviewed by Robson, 2001; Pertwee 2008b, 2012).
With a goal to develop cannabinoid, nonopioid analgesics,
Pfizer produced a series of A-C-bicyclic and A-C-D-tricyclic
analogs of THC’s CNS-active metabolite 11-OH-THC, and
these are referred to as “non-classical cannabinoids” be-
cause of their origin and similarity to the A-B-C-tricyclic
structure of THC (Johnson et al., 1981; Howlett et al.,
1990; Melvin et al., 1993, 1995). Of these, levonantradol
was taken to clinical trials for postoperative pain, but the
project was discontinued due to prominent sedative and
euphoric/dysphoric properties (Jain et al., 1981). The pri-
mary outcome of the Pfizer effort was the development of
the CB1R/CB2R nonselective full agonist CP55940, out-
performing THC with regard to CB1R/CB2R binding af-
finity and analgesic activity (Devane et al., 1988;
Howlett et al., 1988; Showalter et al., 1996) (Fig. 8).
CP55940 is a research tool that has been invaluable in
identifying cannabinoid receptor cellular and systems
physiology (Devane et al., 1988). Tritiated CP55940 was
critically involved in the deorphanization of both CB1R
(Matsuda et al., 1990) and CB2R (Munro et al., 1993) and
has been broadly applied to quantitate the structure-ac-
tivity relationships of most novel ligands developed for
the investigation of cannabinoid receptors.
Sterling-Winthrop discovered that structural modifi-

cations of the nonsteroidal anti-inflammatory agent

pravadoline resulted in greater antinociceptive activity
with diminished potential to block prostaglandin pro-
duction (Bell et al., 1991). Although the Sterling-Win-
throp project was terminated in the preclinical stages,
the introduction of the CB1R/CB2R nonselective full
agonist WIN55212-2 has contributed greatly to investi-
gations of cannabinoid receptor physiology and pharma-
cology (Fig. 9). WIN55212-2 in its tritiated form is a
standard CB1R/CB2R radioligand (D’Ambra et al., 1992;
Eissenstat et al., 1995) and with its derivatives is re-
ferred to as “aminoalkylindoles” because their structure
is built on indole or indene platforms.
Selective activation of either CB1R or CB2R by THC

or the other nonselective agonists seems to be controlled
by differential expression (induction or desensitization/
downregulation) of the receptors on a wide variety of
cells that control differentiated functions (reviewed by
Howlett and Abood, 2017).
Research work using ligand-assisted protein struc-

ture methodology has characterized the sites of action
at CB1R and CB2R (Janero et al., 2017). However, a
more detailed CB1R structure was reported in 2016 in
its inactive conformation by using the long-acting CB1

R antagonist AM6538 (Hua et al., 2016), shown in
Fig. 10, and the antagonist/inverse agonist taranabant
(Shao et al., 2016). This allowed the docking of sev-
eral CB1R antagonist analogs and the study of their
interactions with the receptor. This work was followed
by studies on the structures of the agonist-bound CB1

R (Hua et al., 2017; Krishna Kumar et al., 2019; Hua
et al., 2020), which demonstrated that activation of CB1

R induces dramatic conformational changes of both ex-
tracellular and intracellular domains of the receptor,
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Fig. 6. Catabolic pathways of 2-arachidonoylglycerol. 2-AG can be cleaved into arachidonic acid and glycerol by different hydrolytic routes. MAGL is
considered the most relevant among these catabolic pathways. Alternatively to hydrolytic routes, 2-AG can be oxidized by LOXs or COX-2 to generate
various eicosanoid-like PG-glyceryl esters or hydroxy-2-AGs.
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accompanied by a serious contraction of the binding
pocket. This more expansive conformation of CB1R in
its inactive state explains how several antagonists can
be accommodated in the receptor structure.
The high-resolution crystal structure of antagonist-

bound CB2R was determined in 2019, which first dis-
closes the binding mode of antagonist AM10257 (Li
et al., 2019). The latter locates at the orthosteric li-
gand-binding pocket and mainly forms hydrophobic
and aromatic interactions with residues from extra-
cellular loop 2, as well as the cytoplasmic parts of
transmembrane helices 2, 3, 5, and 6 of CB2R (Fig. 11A).
However, the antagonist AM10257 adopts a constrained
binding pose in CB2R, which is quite different from the
extended binding conformation of antagonists in CB1R
(Hua et al., 2016). Of note, the adamantyl moiety of
AM10257, adapting a vertical conformation, would clash
with the residue Phe102N-term of CB1R when two
structures are superimposed (Fig. 11, B–D). That is the
reason why the N-terminus of CB2R forms a short helix

over the orthosteric pocket, instead of the V-shaped loop
that directly interacts with the antagonist in CB1R (Hua
et al., 2016; Shao et al., 2016). In addition, the extracel-
lular part of transmembrane helices 1 and 2 in CB2R is
more compact compared with the conformations of the
same helices in CB1R, resulting in a much smaller an-
tagonist-binding pocket than that of CB1R (Hua et al.,
2016; Shao et al., 2016). The structural analysis provides
the basis for the high degree of antagonist selectivity be-
tween CB1R and CB2R.
In spite of the high selectivity of antagonists or in-

verse agonists, most agonists can bind both CB recep-
tors with comparable affinity (Pertwee et al., 2010).
The recently determined structures of agonist-bound
CB2R provide valuable information at the molecular
level for subtype-selective agonist design (Hua et al.,
2020; Xing et al., 2020) and subtype-selective receptor
activation (Li et al., 2023). Both the synthetic THC-
like agonist AM12033 and aminoalkylindole agonist
WIN55212-2 form mainly hydrophobic and aromatic
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Fig. 7. Transport of endocannabinoids. (A) Anandamide and 2-arachidonoylglycerol can cross the plasma membrane via different mechanisms,
which include passive diffusion, exocytosis of microvesicles and a putative membrane transporter. (B) Intracellular trafficking of anandamide
and 2-arachidonoylglycerol is driven by various carriers that include structurally unrelated proteins like albumin, RBP2, HSP70, FABPs, SCP2,
and FLAT.
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interactions with CB2R, including residues from trans-
membrane helices 2–3 and 5–7 and the extracellular
loop 2 with similar binding mode in the orthosteric
ligand-binding pocket (Fig. 11, E–F). Although the core
of WIN55212-2 forms p-p interactions with F1173.36
and W2586.48 of CB2R, the rotamers of F1173.36 and
W2586.48 are very similar in these two structures
(Fig. 11G). The superposition of agonist-bound CB1R
and CB2R structures shows that the agonist binding
pocket volume, as well as the key residues that form inter-
actions with ligands, are almost identical (Fig. 11, H–M).

This accurate molecular information of the CB receptors’
orthosteric binding pockets obtained so far should aid
the design of selective agonists for safer therapeutics.
The CB2R activation mechanism was revealed by

the comparison of active and inactive structures.
Though the antagonists and agonists of CB2R share sim-
ilar binding pockets, including the key interaction resi-
dues with the receptors, the interaction of CB2R ligands
with the “toggle residue” W2586.48 is related to their
efficacies. Compared with antagonist AM10257, agonist
AM12033 lacks the moiety that extends deeper into the
binding cavity to constrain W2586.48 rotation, which
can trigger receptor activation (Fig. 12A). Subsequently,
the classic rearrangements of N7.49 P7.50 � x Y7.53
and D3.49 R3.50 Y3.51 motifs were observed that con-
tribute to the conformational change of the intracellular
part of CB2R, eventually forming the G-protein binding
cavity (Fig. 12, B–C). However, in contrast to agonist-
bound CB1R, only the intracellular part of CB2R exhibits
obvious conformational changes while the extracellular
part including the N-terminus of CB2R undergoes minor
changes during its activation (Fig. 12, D–F). The balloon-
like plasticity of CB1R during its activation indicates its
higher ability to respond to a diverse array of ligands than
CB2R, which may explain the low selectivity compared
with CB1R for most classic THC-like agonists of CB2R.

A. Therapeutic Potential of Cannabinoid Receptor 1

The epigenetic regulation of CB1R expression and sig-
nal transduction pathways following Gi/o or b-arrestin

Fig. 8. Chemical structure, CB2R binding affinity and selectivity of relevant nonclassic cannabinoids. aConsensus human CB2R binding affinity values
from a multicentric collaborative profiling effort between multiple independent academic laboratories and industry (Soethoudt et al., 2017). bCB2R
selectivity (10�(pKi CB2R-pKi CB1R).

Fig. 9. Chemical structure, CB2R binding affinity and selectivity of repre-
sentative aminoalkylindole CB2R ligands. aConsensus human CB2R bind-
ing affinity values from a multicentric collaborative profiling effort
between multiple independent academic laboratories and industry (Soe-
thoudt et al., 2017). bCB2R selectivity (10�(pKi CB2R-pKi CB1R).

898 Maccarrone et al.



activation is related to differentiated cell functions,
as reviewed recently (Kendall and Yudowski, 2016;
Ligresti et al., 2016; Howlett and Abood, 2017; Lutz,
2020; Schurman et al., 2020). The CB1R is highly abun-
dant in the CNS and many peripheral tissues and or-
gans (Howlett et al., 2002; Pacher et al., 2006). For
instance, it is critically involved in the regulation of
mood and appetite, pain perception, learning, and mem-
ory, as well as motor control (Marsicano and Lutz, 2006;
Kano et al., 2009; De Laurentiis et al., 2014). The CB1R
has been recognized as a target for pharmacotherapeutic
development based on a wealth of preclinical data (for
reviews, see Mackie, 2008; Pertwee, 2008b, 2012; Tsang
and Giudice, 2016; Lu and Anderson, 2017; Amin and
Ali, 2019; Schurman et al., 2020; Wilkerson et al., 2021).
However, bringing CB1R agonists and antagonists to
market has been fraught with the challenges of selectiv-
ity resulting from the abundance of CB1R throughout
all areas of the brain, including expression by neuronal

and nonneuronal cells. This broad distribution increases
the probability of unwanted side effects accompanying
the therapeutic benefits.

1. CB1R Agonists and Positive Allosteric Modulators.
The only FDA-approved CB1R agonists are THC itself
(synthesized as dronabinol) and its dimethylheptyl analog
nabilone (LY-109514), specifically to treat cancer chemo-
therapy-induced nausea and vomiting, and these medi-
cines remain within the US Pharmacopeia (Clarivate,
2022d; https://adisinsight.springer.com/drugs/800025856).
The European Medicines Agency (EMA) approved the
mixture of THC and CBD extracted and purified from
cannabis (nabiximols) for the treatment of spasticity and
pain in multiple sclerosis (MS). Dronabinol, nabilone, and
nabiximols exhibit agonist activity at both CB1R and CB2

R, though therapeutic responses and untoward side effects
can be attributed to one or both CB receptors, as deter-
mined by pharmacological characterization in in vivo or
in vitro models. Nevertheless, targeting CB1R for unmet

Fig. 10. (A) X-ray structure of CB1R (blue) bound to the antagonist AM6538. (B) Cryo-EM structure of CB1R (green) in complex with G proteins (a subunit in
yellow, b subunit in blue, c subunit in purple) and the classic cannabinoid agonist AM841. (C) Chemical structures of AM6538 and AM841.
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therapeutic needs has evolved based on preclinical investi-
gations, and these opportunities will be considered in this
section.
Dronabinol was developed to counteract nausea and

vomiting in cancer chemotherapy and was later approved
to promote appetite stimulation and metabolic mainte-
nance to counteract cachexia in AIDS patients (Plasse
et al., 1991). Dronabinol is synthetically produced THC
formulated in a sesame oil capsule and marketed as
Marinol (https://adisinsight.springer.com/drugs/800007811).
Dronabinol is also available ina liquid formulation solubilized
in ethanol and propylene glycol and marketed as SYN-
DROS. The pharmacokinetics, dosage recommendations,

and drug interactions are available at Prescribers Dig-
ital Reference (https://www.pdr.net/drug-summary/
Marinol-dronabinol-2726). The warnings reported include
bradycardia and seizures in vulnerable populations. Mild
to moderate adverse reactions include emotional lability in
8% to24% ofusers; impaired cognition, dysphoria or eupho-
ria, depression, hypotension, drowsiness, paranoia, dizzi-
ness, or nausea in 3% to 10% of users; and conjunctivitis,
hallucinations, confusion, amnesia, ataxia, tinnitus,
nightmares, or diarrhea in 0.3% to 1% of users (https://
www.pdr.net/drug-summary/Marinol-dronabinol-2726).
Nabilone is synthesized as a 9-ketocannabinoid with a

dimethylheptyl side chain (Fig. 13) and is enzymatically

Fig. 11. Comparison of ligand binding modes in CB1R and CB2R. (A) The binding pocket of AM10257 in CB2R crystal structure (PDB code 5ZTY).
AM10257 and the key residues are shown in sticks as the following color code: CB2R, brown; AM10257, light coral. (B–D) Binding pose comparison of
AM6538 in CB1R (PDB code 5TGZ), and AM10257 in CB2R, using color code as follows: CB1R, slate blue; AM6538, dodger blue; CB2R, brown;
AM10257, light coral. (E–F) The binding pocket of AM12033 in CB2R (PDB code 6KPF) and WIN55,212-2 in CB2R (PDB code 6TP0). Ligands and the
key residues are shown in sticks as the following color code: AM12033, brown; CB2R (6KPF), dark green; WIN55,212-2, royal blue; CB2R (6TP0), dark
salmon. (G) The conformational comparison of “toggle switch” residues Trp2586.48 between AM12033- and WIN55,212-2-bound CB2R. (H–J) Binding
pose comparison of THC-like agonist in CB1R (PDB code 6KPG) and CB2R (PDB code 6KPF). THC-like agonists are shown as sticks (H) and surface
(I–J), the key residues are shown in sticks as the following color code: CB2R, dark green; AM12033, brown; CB1R, maroon; AM841, dark khaki. (K-M)
Binding pose comparison of agonist FUB in CB1R (PDB code 6N4B) and agonist WIN55,212-2 in CB2R (PDB code 6TP0). FUB and WIN55,212-2 are
shown as sticks (K) and surface (L–M), the key residues are shown in sticks as the following color code: CB2R, dark salmon; WIN55,212-2, royal blue;
CB1R, dark cyan; FUB, orange.
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reduced in the liver to the hydroxylated S(axial) isomer
believed to be the active form (Archer et al., 1977; Rubin
et al., 1977; Billings et al., 1980). Nabilone was approved
as an antiemetic for cancer chemotherapy but also exhib-
its anxiolytic properties (Lemberger and Rowe, 1975;
Ward and Holmes, 1985). Nabilone is used off-label for
treatment of the symptoms ofHuntington’s chorea (https://
www.pdr.net/drug-summary/Cesamet-nabilone-692). The
warnings and adverse reactions are similar to those re-
ported for dronabinol: seizures in vulnerable populations,
early euphoria or dysphoria, delayed depression, ataxia,
hypotension, drowsiness, vertigo, dizziness, asthenia, or
headache.
Nabiximols is a mixture of THC and CBD (1:1) in

ethanol and propylene glycol solvent as an oromucosal
spray formulation marketed as Sativex (see the EMA
compendium for information: https://www.medicines.org.
uk/emc/product/602/smpc#gref). The spray is intended to
be applied at the onset of muscle contractions to reduce
spasticity and pain in MS patients. Each application pro-
vides some fraction of the dosage to be absorbed via the
mucosal membranes, and the remainder is swallowed
and absorbed from the gastrointestinal tract. Sativex
was granted orphan designation by the EMA for the
treatment of glioma patients while clinical trials were be-
ing conducted; however, this status was later withdrawn

(see EMA notices: EMA, 2022). The EMA reports phar-
macokinetic data and recommends dosing schedules for
use in MS patients (https://www.medicines.org.uk/emc/
product/602/smpc#gref). The report includes warnings/
precautions for use in patients with histories of seizures
or cardiovascular disease. Adverse reactions found in
clinical trials include appetite changes, dizziness, disori-
entation, mood swings, depression, amnesia/memory im-
pairment, somnolence or blurred vision in 1% to 10% of
users, and pharyngitis, syncope, anxiety, illusions, para-
noia, hallucinations, or delusional beliefs in 0.1% to 1%
of users. Adverse effects at the site of application include
oral discomfort/pain, altered taste, mouth ulceration, and
accompanying pain.
Prior to the recognition of CB receptors, clinical tri-

als provided positive indications for CBD for seizure
control and movement disorders (Cunha et al., 1980;
Carlini and Cunha, 1981; Consroe et al., 1986, 1991).
CBD entered the market for the treatment of Dra-
vet syndrome, infantile severe myoclonic epilepsy, Len-
nox-Gastaut syndrome, and tuberous sclerosis
(Clarivate, 2022b). In addition, CBD and THC combi-
nations have been approved for MS-associated spastic-
ity and pain management (Clarivate, 2022g; https://
citeline.informa.com/drugs/details/175074). CBD in the
nabiximols formulation may or may not exert its

Fig. 12. Conformational changes during CB2R activation. (A–C) The conformational change of key residues between inactive- and active-CB2R.
“Toggle switch residue” (A), D3.49R3.50Y3.51 motif (B), and N7.49P7.50xxY7.53 motif (C). (D–F) The overall structure (D), the extracellular region (E), and
intracellular region (F) comparison of inactive- (brown) and active-state (dark green) CB2R structures.
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cellular actions via processes involving CB1R. CBD ex-
erts both negative and positive interactions with THC
over a range of biologic and behavioral responses in
animal models and humans (Pertwee, 2008a; McPart-
land et al., 2015). In a cloned neuronal cell model,
CBD competed with the CB1R agonist [3H]CP55940 in
binding to the receptor at concentrations nearly three
orders of magnitude greater than did THC (Devane
et al., 1988); however, CBD failed to inhibit cAMP pro-
duction via the CB1R-coupled Gi protein as does THC
(Howlett, 1984; Mukhopadhyay et al., 2002). Similar
findings of low potency binding to CB1R and inability
to stimulate CB1R cellular signaling were reported in
multiple studies using other models as compiled in a
meta-analysis from a pool of > 200 research publica-
tions (McPartland et al., 2015). Two influences of CBD
on CB1R pharmacology are most compelling: (1) CBD
could exert a noncompetitive antagonism at CB1 recep-
tor (Petitet et al., 1998; Thomas et al., 2007; Laprairie
et al., 2015) and (2) CBD could indirectly modulate
CB1R activity by FABP competition (Elmes et al.,
2015) and FAAH inhibition (Bisogno et al., 2001; De
Petrocellis et al., 2011) or activation (Massi et al.,
2008), thereby changing eCB tone. Non-CB1R mecha-
nisms proposed for CBD’s neurologic actions minimally
include the facilitation of serotonin signaling, activa-
tion of TRPV1 or PPARc receptors, neuroprotection via
antioxidant activity, and attenuation of proinflamma-
tory processes (Campos et al., 2012; Ibeas Bih et al.,
2015; Campos et al., 2017). Other molecular targets for
CBD include additional GPCRs (e.g., GPR55, GPR18,

l and d opioid receptors) and TRP channels A1, V2, M8
(McPartland et al., 2015; Ligresti et al., 2016).
Because dronabinol, nabilone, and nabiximols are cur-

rently approved medicines by regulatory agencies, it is
acceptable to repurpose these preparations for treatment
or amelioration of other disease symptoms based upon
preclinical evidence that justifies their use. Table 4 lists
the double-blind clinical trials that have been registered
with ClinicalTrials.gov and are completed or ongoing at
the date of publication of this review.
Appropriate preclinical data justify these putative

uses and warrant evaluation of both efficacy of these
cannabinoid agonists for these purposes and relative
safety given the risk:benefits assessment and the cir-
cumstances of patient treatment. Review articles are
cited that summarize research evidence in animal
models, address implications and challenges, and pro-
vide original references.
Nausea and vomiting that accompany surgical pro-

cedures, retroviral therapy, and neoplasms are unmet
needs that build upon the original usage approved by
regulatory agencies for patients undergoing cancer
chemotherapy (Abrams and Guzman, 2015). Preclinical
studies using animal models of nausea and vomiting
(“retching” or “gaping”) have demonstrated effective at-
tenuation with CB1R agonists, although the exact neu-
rologic mechanism has not been established (Parker
et al., 2011; Sticht et al., 2015). In contrast, in the cur-
rent population of recreational cannabis users, a novel
cannabis-induced hyperemesis syndrome has been at-
tributed to ingestion of very high doses of THC. The
mechanism is poorly understood, but it has been
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suggested that prolonged exposure to high doses of
THC might downregulate CB1R or otherwise perturb
the endogenous regulation of vomiting centers in the
brain stem and/or elicit stress mechanisms at the hypo-
thalamic-pituitary axis (Galli et al., 2011; DeVuono
et al., 2020). Thus, there may be a “bell-shaped” dose-
response curve suggesting multiple mechanisms for the
anti- versus pro-nausea/vomiting endpoints.
The appetite stimulation response was the impetus

for regulatory approval of CB1R agonists as “orphan”
drugs for the treatment of cachexia in cancer (Plasse
et al., 1991). However, it is the appetite suppression
by CB1R antagonism that prompted clinical trials for
weight loss in morbidly obese individuals and resulted
in an explosion of basic science research linking the
CB1R to metabolic processes associated with energy
storage (Piazza et al., 2017; DiPatrizio, 2021; Miralpeix
et al., 2021). Studies of CB1R-mediated inhibition of gut
mobility (Pertwee et al., 1992; Pertwee, 2001) led to the
consideration of agonist treatments for irritable bowel
syndrome and other gastrointestinal pathologies (Lee
et al., 2016; Sharkey and Wiley, 2016). Conversely, det-
rimental influences of CB1R stimulation on pancreatic
b-cell function, diabetic insulin resistance, and hepatic
steatosis (Gruden et al., 2016; Nagappan et al., 2019),
as well as on female (Cecconi et al., 2020) and male
(Maccarrone et al., 2021) reproductive functions, must
be considered in the safety profile for CB1R agonist
medicines.
Control of chronic and episodic pain continues to be

an unmet therapeutic need. The development of CB1R
agonists as antinociceptive agents by Pfizer Central
Research (Johnson et al., 1981; Howlett et al., 1990;
Melvin et al., 1993, 1995) was meant to fulfill this
need, but the effort was discontinued due to untoward
side effects in patients during clinical trials (Jain et al.,
1981). A resurgence of interest in cannabinoid analge-
sics as adjunctive or second/third-line treatments has
reassessed the benefits versus risks ratio for pain condi-
tions associated with cancer, neuropathy, fibromyalgia,
and spasticity (Tsang and Giudice, 2016; Woodhams
et al., 2017). Recent clinical trials suggest that cannabinoid-
mediated analgesia in humans could be attributed to a
moderate reduction in affective response but not a re-
duced perception of the experimental pain (L€otsch et al.,
2018).
CB1R agonist efficacy in symptomatic relief in MS

and amyotrophic lateral sclerosis is related to the re-
duced spasticity and tremors, as investigated in an
animal model of chronic relapsing experimental aller-
gic encephalomyelitis, as well as reports from patients
(Pryce and Baker, 2015; Pertwee, 2002). In addition
to relieving the spastic pain, cannabinoid agonists at
CB1R and CB2R slow the progression of the disease
as a result of neuroprotective mechanisms and oligoden-
drocyte development to promote myelination (Pryce and

Baker, 2015; Ilyasov et al., 2018; Khan et al., 2022).
Similarly, agonist stimulation of both CB receptors re-
duces symptomology and disease progression in other
neurodegenerative diseases such as Parkinson’s disease,
Huntington’s chorea, Alzheimer’s disease, and stroke
(Fern�andez-Ruiz et al., 2015a,b).
Numerous “cannabinoid products” that are not ap-

proved by regulatory agencies are being tested for
their potential therapeutic value. It is difficult to discern
the composition and concentration of active agents in
these herbal preparations, which are variously described
as cannabis, cannabis oil, smoked cannabis (cigarettes),
inhaled cannabis, vaporized cannabis, cannabis extract,
or “CBD-rich”/“THC-rich” marijuana or extracts. These
preparations are not further discussed here, because of
the lack of quantitative analyses of the materials being
used by the patients. Of note, these herbal studies are
registered in ClinicalTrials.gov as assessments (blinded
or unblinded) for symptomatic improvements in neuro-
psychiatric and neurologic disorders, including attention
deficit and hyperactivity disorder, dementia, anxiety,
depression, post-traumatic stress disorder, autism spec-
trum disorder, obsessive-compulsive disorder, refractory
epilepsy, MS, amyotrophic lateral sclerosis, Tourettes’
syndrome, pain (migraine, neuropathic, fibromyalgia,
pre- and post-surgical, back, and cancer), agitation asso-
ciated with aging dementia, irritable bowel disease,
chronic obstructive pulmonary disease, and retinitis
pigmentosa with degeneration. The rationale for using
plant products is that the effects of multiple chemical
entities (including “cannabinoids,” terpenes, and fla-
vonoids) may synergize, a concept referred to as an
“entourage effect.” The idea of combining medicines—
referred to as polypharmacology—that provide differ-
ent but complementary pharmacological responses, such
as anti-inflammatory plus analgesic agents, is not new
and is often a preferred treatment strategy (Brodie et al.,
2015; Ligresti et al., 2016). However, the challenges of
determining the active synergistic agents, appropriate
dosing schedule, specificity of therapeutic use, and safety
profile remain to be overcome when herbals are used as
medicinal products.
In an effort to address selectivity for the CB1R,

modifications have been made to pCB, aminoalkylindole,
and eCB ligands. For example, AEA analogs arachido-
nylcyclopropylamide (ACPA) and arachidonyl-2-chloroe-
thylamide (ACEA) exhibit 1-2 nM affinity for the CB1R
but 1-3 lM affinity for the CB2R, and both inhibit cAMP
CB1R selectivity of the ACPA (Hillard et al., 1999).
This selectivity led to the CB1R selective (CB1R/CB2R
Ki ratio 5 0.1) dual CB1R/CB2R agonist CMX-020, which
is currently being explored in phase 2 clinical trials for
the treatment of osteoarthritis (https://www.anzctr.org.au/
Trial/Registration/TrialReview.aspx?id=371547&isReview=
true), pain including sciatica, and diabetic neuropathy
(Clarivate, 2022c).
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TABLE 4
Diseases/symptoms for treatment with CB1R agonists and antagonists registered with ClinicalTrials.gov

Generic Name
Brand Name
Class/Efficacy Completed Clinical Trials Ongoing Clinical Trials

Dronabinol Chronic pain (with opioid treatment) Osteoarthritis pain
Marinol Fibromyalgia, back pain Diabetic neuropathy
Phytocannabinoid Migraine pain Knee arthroplasty
Synthetically produced Neuropathic, low back pain Arthroscopic surgery
D9-tetrahydrocannabinol

(THC)
Cervical dystonia Sleep and pain in MS

CB1R/CB2R partial agonist Chest pain Postsurgical pain-lumbar fusion
Neuropathic pain in MS Postsurgical pain-knee replacement
Cramps in ALS Pain in opioid-maintained pts
Irritable bowel syndrome Alzheimer’s agitation
Complex regional pain syndromes Bipolar disorder
Cannabis dependence Sleep
Cannabis use disorder Post-traumatic stress disorder
Marijuana withdrawal Trauma intrusive memories
Trichotillomania related behaviors Glaucoma hemodynamics
Post-traumatic stress disorder
Obstructive sleep apnea
PostSurgical N/V
Anti-retroviral therapy N/V
Brain neoplasms N/V
Schizophrenia

Dronabinol derivatives
BX-1 oral solution Spasticity Chemo N/V, pain in pancreatic CA
Syndros (dronabinol) Bone pain metastatic breast CA
Namisol THC Postsurgical abdominal pain
Namisol THC Pancreatitis abdominal pain
Namisol THC Dementia–Alzheimer’s
Namisol THC Dementia w/ neuropsych symptoms
THC olive oil Post-traumatic stress disorder
THC olive oil Fibromyalgia–pain
SCI-110 THC 1 PEA Tourette syndrome Tourette syndrome
THX-110 THC 1 PEA Tourette syndrome
dronabinol 1 naltrexone Opioid dependence

Nabilone
Cesamet Phantom limb pain Spinal neuropathic pain
Synthetic THC analog Fibromyalgia Pain and insomnia
CB1R/CB2R agonist Failed back surgery pain End-stage renal disease

Inflammatory bowel pain Obesity
Diabetic neuropathies Developmental cognitive disability
Spinal injury muscle Obsessive-compulsive disorder
Spinal cord injury Alzheimer’s disease agitation
Postsurgical N/V
Cancer anorexia/cachexia
Parkinson’s disease
Parkinson’s nonmotor symptoms
Alzheimer’s disease

PP-01 Nabilone1Gabapentin Cannabis withdrawal
Nabiximols

Sativex Chemotherapy neuropathic pain Diabetic neuropathy
Phytocannabinoid Advanced malignancy pain MS spasticity and pain
Purified Plant Extract Pain
THC:CBD (1:1) Tourette syndrome
THC: CB1R/CB2R agonist Attention deficit hyperactivity disorder
CBD: CB1 NAM Cannabis dependence

(Negative Allosteric Modulator)
Mixed THC:CBD

THC:CBD 1:1 Endometriosis pain
THC:CBD 1:1, 1:2 Chronic pain
THC:CBD1:10 Crohn’s disease
THC:CBD 1: 50 Childhood epilepsy
NanaBis Oro-MucSpray Cancer pain
NanaBis Oro-MucSpray Chronic widespread pain
THC or THC:CBD 1:10 Chronic spine back and neck pain
LGP1-20 THC:CBD (1:20) Adolescent migraines
FibroCann Solution Fibromyalgia
Pure Green SL Tablets Osteoarthritis pain
MPL-001 THC:CBD 1:25 Postsurgical osteoarthritis pain
TN-TC11G THC:CBD1:1 Glioblastoma (w/standard of care)
TIL-T150 THC:CBD 1:5;1:25 Depression, insomnia

(continued)
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Another mechanism for achieving selectivity is found
in the recent development of allosteric modulators to
modify the CB1R response. Exploiting allosteric modula-
tion is a broadly used approach for targeting GPCRs
(Wold et al., 2019). It allows addressing target selectivity
issues and associated off-target side effects of orthosteric
ligands by binding to a topographically distinct site.
Allosteric ligands modify the conformation of the recep-
tor protein, which allows for modulating the affinity of
orthosteric ligands. Allosteric ligands can either aug-
ment (positive allosteric modulation) or diminish (nega-
tive allosteric modulation) the effect of endogenous
ligands. Importantly, this provides the opportunity for
tissue-specific modulation of ECS signaling, for example,
via a local eCB increase as a consequence of an inflam-
matory stimulus. In contrast to the high evolutionary
conservation of orthosteric binding domains, allosteric
sites exhibit a greater sequence difference, allowing for
the generation of ligands with high subtype selectivity
(Kenakin and Miller, 2010). In addition, an interaction
with cholesterol was also observed with CB1R,

suggesting its endogenous allosteric modulating role
(Hua et al., 2020). This observation extended previous
in vitro (Bari et al., 2005) and ex vivo (Maccarrone
et al., 2009) functional data showing that membrane
cholesterol controls CB1R dimerization and binding
activity.
Positive allosteric modulation of CB1R is likely to

play an increasingly important role for drug discovery
(Saleh et al., 2018; Garai et al., 2021). For instance,
ZCZ011 increased the potency and reduced tolerance
development in the anti-nociceptive activity of CB1

agonists (Ignatowska-Jankowska et al., 2015); GAT211
synergized with FAAH- or MAGL-inhibitor-mediated eCB
accumulation to attenuate inflammatory and neuropathic
pain (Slivicki et al., 2018, 2020). Preclinical studies of
CB1R allosteric modulators have been reviewed recently
(Khurana et al., 2017; Hryhorowicz et al., 2019; Manning
et al., 2021).
Another promising approach to selectivity is the de-

velopment of “biased agonists.” The binding mechanism
for a biased agonist would be expected to alter the

TABLE 4—Continued

Generic Name
Brand Name
Class/Efficacy Completed Clinical Trials Ongoing Clinical Trials

Pure Femme SLTab
1:30 1 PEA 1 terpenes

Menstrual symptoms

THC or CBD HIV cognition
THC 1 CBD 1 CBG Chronic migraine

Pro-drug paracetamol
(or acetaminophen)
Biometabolite is AM404 Pruritis
CB1R/CB2R agonist Presurgical analgesia

Pain in tonsillectomies
SR141716

Rimonabant � Carotid atherosclerosis Recovery spinal cord injury
Acomplia, Zimulti Cannabis dependence
CB1R antagonist/inverse agonist Diabetes w/ metformin

Obesity, weight loss
� Metabolic syndrome
Reduce alcohol consumption
Fatty liver-NASH in T2D
Smoking cessation

MK-0364
Taranabant Obesity
CB1R antagonist/inverse agonist Smoking cessation

Fatty liver-NASH in T2D

CP-945598
Otenabant Nonalcoholic steato-hepatitis
CB1R antagonist/inverse agonist Obesity

SLV319
Ibipinabant Obesity

CB1R antagonist/inverse agonist

SR147778
Surinabant Obesity
CB1R antagonit/inverse agonist Smoking cessation

ANEB-001
CB1R antagonist/inverse agonist Acute cannabis intoxication

GFB-024
Peripherally acting CB1R inverse agonist

monoclonal Ab
Diabetic nephropathies

Nimacimab
Peripherally acting CB1R antagonist/inverse

agonist monoclonal Ab
Diabetic gastroparesis
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conformation of the CB1R to prefer either an interaction
with the Gi/o family or alternatively allow phosphoryla-
tion of the receptor via G-protein receptor kinases to
facilitate interaction with b-arrestins 1 or 2 (Priestley
et al., 2017; Al-Zoubi et al., 2019). The selectivity would
be for the signal transduction pathway involved in the
beneficial effects while diminishing the signal for unwanted
side effects. Preclinical studies that explore possible CB1R-
biased agonists have been reviewed recently (Laprairie
et al., 2016; Ibsen et al., 2017; Leo and Abood, 2021;
Manning et al., 2021).

2. Cannabinoid Receptor 1 Antagonists. Sanofi dis-
covered the first CB1R selective antagonist in the early
2000s (SR141716), and the compound was initially
earmarked for use as a medication for loss of weight
(rimonabant, marketed as Acomplia or Zimulti). It was
reasoned that since the activation of CB1R increased
food intake with weight gain, the use of its antagonist
as a drug would result in weight loss. The potential suc-
cess of such a medication prompted other drug companies
to produce their own compounds that were structurally
different but pharmacologically identical. The first CB1R
antagonist to enter clinical trials for several of these indi-
cations was rimonabant (Sanofi), followed by taranabant
(Merck), otenabant (Pfizer), ibipinabant (Solvay), and sur-
inabant (Sanofi) as shown in Fig. 13. Additional indica-
tions that have been explored clinically include hepatic
fibrosis and nonalcoholic fatty liver disease, renal dis-
eases, as well as alcohol dependence and smoking ces-
sation (Cinar et al., 2020). Recently, a CB1R antagonist,
ANEB-001 (Anebulo), has been under clinical develop-
ment as an antidote for acute cannabis intoxication.
Based on results showing weight loss and improved

cardiometabolic markers in overweight and obese pa-
tients (Despres et al., 2005), rimonabant was accepted
by the EMA in 2006 as an adjunct to diet and exercise
for the treatment of obesity and related metabolic
risks. However, approval by the FDA failed because of
its unexpected neuropsychiatric side effects, namely
depression and suicidal ideation (Christensen et al.,
2007). Some additional side effects of CB1R antagonists
are related to the gastrointestinal tract and include
nausea, vomiting, and frequent bowel movements (Addy
et al., 2008; Limebeer et al., 2010). When the use of
rimonabant was withdrawn by Sanofi in 2008, the
development of CB1R antagonists was discontinued
by other pharmaceutical companies. Notwithstanding
the failure of rimonabant, its availability allowed re-
search toward understanding the mechanism of action
of CB1R antagonists and the potential use of such com-
pounds for other indications. Ligands like SR141716
and AM251 (Rinaldi-Carmona et al., 1995; Lan et al.,
1999) were used to establish the role of CB1R in physiol-
ogy (Varga et al., 1995; Petitet et al., 1996; Gatley et
al., 1997; Liu et al., 2000; Di Marzo et al., 2001; Wang
et al., 2003).

The apparent therapeutic value of CB1R blockade
led to much of the research in developing selective
CB1R antagonists and their preclinical and clinical
testing for a variety of disorders related to metabolism,
the cardiovascular system, and addiction (Pacher et al.,
2008; Cinar et al., 2020). Given the clinical efficacy
shown by CB1R blockade for several conditions with un-
met medical needs, additional approaches have been ex-
plored to retain efficacy and circumvent the unwanted
neuropsychiatric side effects. Among these, CB1R
antagonist/inverse agonists that cannot enter the CNS
and CB1R neutral antagonists have shown promising
results in preclinical models.
The discovery of functional CB1Rs in the periphery

and the realization that they mediate many processes
of the cardiovascular system, metabolism, and fibrotic
conditions (Liu et al., 2000; Di Marzo et al., 2001; Jourdan
et al., 2014; Bowles et al., 2015) have led to the hypothesis
that peripherally selective CB1R antagonist/inverse
agonists may retain the therapeutic effects of CB1R
blockade without the unwanted CNS effects. Small-molecule
CB1R antagonist/inverse agonists with minimal brain
exposure have shown efficacy in animal models of obe-
sity and metabolic syndrome, alcoholic and nonalcoholic
liver steatosis, liver fibrosis, and renal diseases, as re-
cently reviewed by Kunos’ group (Cinar et al., 2020).
The primary methods used to determine brain perme-
ability are pharmacokinetic studies (Zhang et al., 2018;
Iyer et al., 2022), while for the specific engagement of
brain CB1R positron emission tomography tracers are
used (Tam et al., 2012; Chang et al., 2019), as well as
antagonism of the tetrad effects induced by CB1R ago-
nists (Fulp et al., 2013; Amato et al., 2018). Although
many peripherally restricted ligands have minimal
brain permeability after acute administration, it remains
to be ascertained whether chronic administration would
lead to an increase in brain permeability that can affect
the profile of unwanted CNS side effects. Furthermore,
only a few peripheral CB1R antagonists/inverse agonists
have been evaluated in detail for their unwanted effects,
with the most extensively studied being JD5037 (Kale
et al., 2019). This compound exhibited only minor side
effects such as repetitive grooming at doses much higher
than the therapeutic doses, which is translated into
a safer therapeutic window compared with the brain-
permeant CB1R antagonist/inverse agonists (Kale et al.,
2019).
In a different approach to achieving peripheral restric-

tion, monoclonal antibodies that act as CB1R antago-
nists/inverse agonists have been developed and entered
clinical evaluation. The two candidates that have been in
clinical development for renal diseases and diabetic com-
plications are Nimacimab (Bird Rock Bio) and GFB-024
(Goldfinch Bio), both listed in Table 4. However, there
are no publicly available data regarding the efficacy and
safety of this innovative approach.
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CB1R is a constitutively active receptor that even in
the absence of ligands exists in equilibrium between
active and inactive states; this condition is translated
into increased basal activity (Pertwee, 2005; Fong,
2014) and may be important for cellular homeostasis.
While inverse agonists reduce the basal activity of re-
ceptors, neutral antagonists do not significantly affect
it (Bond and Ijzerman, 2006; Sink et al., 2008). Addi-
tionally, the ECS as a whole exhibits an endogenously
active tone controlled by the cellular production of
eCBs (Howlett et al., 2011). Therefore, CB1R neutral
antagonists can compete with the endogenous cannabi-
noid ligands without affecting the basal activity of the
receptor. For this reason, it was hypothesized that CB1

R neutral antagonists could produce the therapeutic
phenotypes of CB1R antagonism without the unwanted
CNS and gastrointestinal side effects. In this regard,
the most extensively studied CB1R neutral antagonist,
AM4113, exhibited therapeutic efficacy with a better
tolerability profile. In animal models of obesity, AM4113
was shown to reduce food intake and weight gain, as
well as to suppress food-reinforced operant responding
and feeding (Chambers et al., 2007; Sink et al., 2008;
Gueye et al., 2016). In addiction-related models, AM4113
was effective in suppressing alcohol consumption, reduc-
ing drug-seeking behavior of nicotine and THC, as well
as inhibiting the self-administration of heroin (Gueye
et al., 2016; Schindler et al., 2016b; Balla et al., 2018; He
et al., 2019). Moreover, AM4113 did not induce anxiety-
like behaviors in elevated plus maze and electrical brain-
stimulation reward paradigm, unlike the CB1R antago-
nist/inverse agonist AM251 (Sink et al., 2010; Gueye
et al., 2016; He et al., 2019). Additionally, in contrast to
CB1R inverse agonists AM4113 did not produce gastroin-
testinal side effects such as nausea, potentiation of vom-
iting, and increase in whole gut transit (Chambers et al.,
2007; Sink et al., 2008; Storr et al., 2010). Other CB1R
neutral antagonists, such as the peripherally restricted
AM6545 and NESS06SM, have been shown to suppress
food intake and improve cardiometabolic risk factors
(Cluny et al., 2010; Randall et al., 2010; Tam et al., 2010;
Mastinu et al., 2013). AM6545 also exhibited efficacy
in animal models of experimental diabetic nephropa-
thy, alone and in combination with the CB2R agonist
AM1241 (Barutta et al., 2017; 2018).
On a final note, a novel and attractive dual-targeting

approach is represented by the combination of CB1R
antagonists and CB2R agonists, as evidenced by the
synergy shown by coadministration of AM6545 and
AM1241 for treating diabetic nephropathy (Barutta
et al., 2017). Indeed, there is early evidence that CB1R
and CB2R promote opposing functions in fibrotic and in-
flammatory conditions of peripheral organs (Gruden et al.,
2016), as well as in some preclinical models of addiction
(Delis et al., 2017; Gobira et al., 2019) that could be

leveraged for a therapeutic benefit by dual-acting CB1

R antagonists/CB2R agonists.

B. Therapeutic Potential of Cannabinoid Receptor 2

The CB2R is a class A (rhodopsin-like) GPCR (Fig. 14).
It is an essential element of the ECS, and indeed CB2R-
mediated signaling plays an important role in many
human health and disease conditions (Pacher and
Mechoulam, 2011; Gasperi et al., 2023). Therefore, CB2R
holds tremendous therapeutic potential for treating major
pathologies affecting humans.
A plethora of preclinical evidence demonstrating

the anti-inflammatory and tissue-protective effects of
CB2R activation has been generated, triggering the
design, synthesis, and evaluation of multiple CB2R
ligands. Based on their chemical structure, they can
be characterized as pCBs, eCBs, and congeners or
synthetic ligands (Han et al., 2013; Guba et al., 2020;
Brennecke et al., 2021). While the majority of these
molecules are CB2R activators, multiple antagonists/
inverse agonists and a few allosteric ligands have also
been discovered. Of these, more than 20 CB2R-selective
agonists have been advanced to clinical trials. Recently,
several 3D structures of CB2R in complex with ligands
have been reported (Li et al., 2019; Hua et al., 2020;
Xing et al., 2020). Furthermore, a wide variety of la-
beled chemical probes was generated and applied in
mechanistic studies (Basagni et al., 2020; Haider et al.,
2020; Sarott et al., 2020; Gazzi et al., 2022; Guberman
et al., 2022) and has contributed the understanding of
the structural basis of selective CB2R activation (Li
et al., 2023). Together this knowledge will facilitate the
design of novel, further improved ligands. Here efforts
were made to recognize the full range of studies that
have contributed to progress CB2R research since the
discovery of the receptor. Due to space limitations, the
content of this section highlights only foundational stud-
ies and key aspects.
The CB2R is primarily expressed in immune cells,

including macrophages, T and B cells, monocytes and
polymorphonuclear neutrophils, as well as tissues
like spleen (Bouaboula et al., 1993; Gali�egue et al.,
1995; Atwood and Mackie, 2010; http://www.immgen.
org/), bone (Ofek et al., 2006), and the gastrointestinal
tract (Atwood et al., 2012). CB2R is expressed both on
the cell surface and intracellularly (Kleyer et al.,
2012; Brailoiu et al., 2014; Castaneda et al., 2017)
and is highly inducible, for instance, in microglia
upon neuroinflammation (Cabral et al., 2008). The
CB2R is a Gi/o coupled GPCR, and its activation leads
to an inhibition of cAMP production. In addition, the
CB2R recruits b-arrestins, controls the activation and
phosphorylation of different mitogen-activated protein
kinase family members (ERK1/2, p38 MAPK, JNK),
and interacts with PLC as well as G-protein-coupled
inwardly rectifying K1-channels (Bouaboula et al.,
1993; Felder et al., 1995; Howlett et al., 2002; Cabral
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et al., 2008; Atwood and Mackie, 2010). Surface and
intracellular CB2R might be able to activate distinct
signaling responses (Brailoiu et al., 2014). In addi-
tion, agonists binding to the orthosteric site exhibit
different transduction profiles that might translate
into distinct pharmacodynamics read-outs (Oyagawa
et al., 2018; Yuan et al., 2021). Downstream effects of
CB2R activation encompass the differentiation of B
and T lymphocytes (Ziring et al., 2006), the suppres-
sion of T cell receptor signaling (B€orner et al., 2009),
the induction of natural killer cell migration (Kishimoto
et al., 2005), and the modulation of cytokine release
(Cencioni et al., 2010; Correa et al., 2011). CB2R inter-
actions at the molecular level and its resulting down-
stream effects translate toward modulation of disease
pathogenesis. CB2R ligands have demonstrated a huge
therapeutic potential in a large variety of disease mod-
els (e.g., in liver; Mallat and Lotersztajn, 2008; Pacher
and Gao, 2008), kidney (Mukhopadhyay et al., 2010a,b,
2016; Zoja et al., 2016), lung (Pacher et al., 2006), and
heart disorders (Pacher et al., 2008); skin pathologies

(B�ır�o et al., 2009; Maccarrone et al., 2015), neurode-
generative diseases (Centonze et al., 2007; Fern�andez-
Ruiz et al., 2007); and pain (Guindon and Hohmann,
2008; Anand et al., 2009). Generally, the reported effects
are a consequence of CB2R-mediated immunosuppressive
and anti-inflammatory effects leading to a dampening of
tissue injury. In hypoactivated immune states, CB2R
activation might, however, enhance tissue damage
(Pacher and Mechoulam, 2011). Under these pathologic
conditions, CB2R inverse agonists/antagonists might pro-
vide therapeutic options.

1. Cannabinoid Receptor 2 Agonists. Due to the
huge therapeutic potential of CB2R, multiple ligands
have been developed. In 1996, a first patent for a CB2R-
selective antagonist was filed (Rinaldi et al., 1996).
Since then, more than 1150 CB2R patent applications
have been registered. CB2R targeting molecules covered
by these papers and patents encompass agonists, modu-
lators, neutral antagonists, inverse agonists, and allo-
steric ligands. While the majority of these ligands are
classic small molecules, including many labeled chemi-
cal probes, some are of a peptidic nature. Multiple com-
prehensive and excellent reviews on this subject have
been published (Thakur et al., 2009; Riether, 2012,
Han et al., 2013, 2014; Morales et al., 2016; Aghazadeh
Tabrizi et al., 2016; Cooper et al., 2017; Guba et al.,
2020; Brennecke et al., 2021). Focus within this section
has been placed on representative molecules that de-
scribe the development of a “CB2R ligand space” with
a strong emphasis on those that made it into clinical
development, all of them being activators of CB2R. CB2

R agonists that are launched or under active develop-
ment and registered with ClinicalTrials.Gov are listed
in Table 5.

a. Endocannabinoids and related fatty acid deriva-
tives. Polyunsaturated C20 fatty acids such as AA
are the basic building blocks of eCBs and related fatty
acid derivatives, which include amides such as AEA, es-
ters like 2-AG, and ethers like noladin ether (Hanus
et al., 2001) (Figs. 1 and 2). 2-AG was first isolated from
canine gut and rat brain (Mechoulam et al., 1995; Su-
giura et al., 1995) and is considered as the most rele-
vant signaling component of the ECS. Like AEA, it can
be generated by several pathways and enzymes (Fezza
et al., 2014; Baggelaar et al., 2018; Tsuboi et al., 2018).
These key eCBs are synthesized and released on de-
mand following CB1/2R activation (De Petrocellis
et al., 2004; Lambert and Fowler, 2005; Di Marzo,
2018; Cristino et al., 2020). Besides CB1/2R (Fig. 15),
they interact also with further molecular targets, e.g.,
the vanilloid TRPV1 ligand-gated ion channel (De
Petrocellis et al., 2000).
In the meantime, further eCBs and a multitude of

eCB-like mediators have been isolated. Generally, the
eCBs are relatively short-acting ligands, especially
due to their hydrolysis through FAAH and MAGL.

CB2R

Gαi
Gβ Gγ

scFv16

A B

D

CB2R

C

Gαi Gγ
Gβ

scFv16

CB2R-AM12033

CB2R-WIN55,212CB2R-AM12033

CB2R-AM10257

Inactive state Intermediate

Active state Active state

Fig. 14. Structures of the CB2R in different states. (A) Crystal structure
of antagonist AM10257-bound CB2R (PDB code 5ZTY). (B) Crystal struc-
ture of agonist AM12033-boundCB2R (PDB code 6KPC). (C) Cryo-EM struc-
ture of AM12033-bound CB2R-Gi complex (PDB code 6KPF). (D) Cryo-EM
structure of WIN55,212-2-bound CB2R-Gi complex (PDB code 6TP0), using
color code as follows: CB2R-AM10257, brown; CB2R-AM12033 (PDB code
6KPC), sky blue; CB2R-AM12033 (PDB code 6KPF), green; CB2R-
WIN55,212-2, dark salmon; Gai in CB2R-AM12033, purple; Gb in CB2R-
AM12033, teal; Gc in CB2R-AM12033, orchid; scFv16 in CB2R-AM12033,
cornflower blue; Gai in CB2R-WIN55,212-2, medium purple; Gb in CB2R-
WIN55,212-2, turquoise; Gc in CB2R-WIN55,212-2, plum; scFv16 in CB2R-
WIN55,212-2, light blue.
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Therefore, synthetic efforts were undertaken to im-
prove the hydrolytic stability of eCBs, e.g., by modify-
ing the amide residue of AEA, which provided ligands
such as ACPA (Fig. 16) (Hillard et al., 1999).

b. Plant-derived cannabinoids. THC and its thermo-
dynamically more stable and similarly potent regioisomer
D8-THC served as a starting point for generating further
classic cannabinoids (Razdan, 1986; Mechoulam et al.,
1998). Dual CB1R/CB2R agonist Lenabasum, also known
as Anabasum, Resunab, ajulemic acid, JBT-101, or CT-3
(Tepper et al., 2014), demonstrated efficacy in reducing
chronic neuropathic pain in a phase 2 clinical trial
(Karst et al., 2003) (Fig. 17). Currently the ligand is be-
ing evaluated in phase 3 for the treatment of dermato-
myositis and scleroderma (https://adisinsight.springer.
com/drugs/800007180). Although Lenabasum activates
CB1R in addition to CB2R, it is not psychoactive (Zurier
et al., 1998). Presumably, this is the consequence of its low
brain penetrance.
Preferential CB2R activation can be achieved by omitting

the phenolic C-1 hydroxyl of THC (Reggio et al., 1990;
Gareau et al., 1996; Huffman et al., 1996), a strategy that
was successfully applied for the generation of JWH133.
The ligand is one of the first CB2R-selective agonists
(10^(pKi CB2R-pKi CB1R) > 153), and thus it has been
exploited to interrogate CB2R pharmacology (Pertwee,
1999; Soethoudt et al., 2017).The reference compound
CP55940 is a potent dual CB1R/CB2R agonist outper-
forming THC with regard to CB1/2R binding affinity
and analgesic activity (Showalter et al., 1996). Its triti-
ated congener has been broadly applied for the discov-
ery and profiling of many CB1/2R ligands (Devane et al.,
1988).
In contrast, nonpsychotropic (-)CBD exhibits mod-

erate affinity for CB2R (Showalter et al., 1996). CBD
has been suggested to function as an inverse agonist
of CB2R (Thomas et al., 2007) but interacts with multi-
ple other targets as well (Ibeas Bih et al., 2015). Second-
generation CBD derivative EHP-101 (VCI-004.8) is a
dual CB2R and PPARc agonist and activator of pro-
tein phosphatase 2A, which is currently investigated
in phase 2a clinical trials (Del R�ıo et al., 2016; EMA,
2022). Indications in focus are systemic and multiple
sclerosis, for which preclinical proof of concept, e.g.,
in fibrosis models (Garc�ıa-Mart�ın et al., 2018) and in
neuroinflammation (Navarrete et al., 2018), has been
demonstrated.
Cannabinoid fumaric acid ester PRS-211375 (Cannabinor)

is a selective CB2R agonist (CB2R EC50 cAMP 5 17.4 nM;
98% efficacy) (Gratzke et al., 2010). It showed efficacy
in various rodent in vivo disease models including pain
readouts in a chronic constriction injury model (Clari-
vate, 2022j). Analgesic effects were translated into the
clinic. In patients undergoing third molar dental extrac-
tion, nociceptive pain was reduced at 12 mg (i.v.) in a
phase 2a study (Clarivate, 2022j). Interestingly, no

effect was observed at higher doses. This bell-shaped
curve behavior is characteristic of the pharmacody-
namics studies with other cannabinoid-derived CB1/2R
ligands (Martellotta et al., 1998; Linares et al., 2019).
Converting the phenolic C-1 hydroxyl group of CBD-
dimethylheptyl into a methoxy moiety can enhance
selectivity for CB2R as exemplified for HU-308. This po-
tent, selective, and bioavailable CB2R agonist (Soethoudt
et al., 2017) has demonstrated anti-inflammatory and
tissue-protective effects in multiple rodent disease
models such as formalin-induced inflammation (Hanus
et al., 1999) and hepatic ischemia/reperfusion injury
studies (Rajesh et al., 2007). Attenuated leukostasis,
chemotaxis, and oxidative stress associated with re-
perfusion damage suppressed the acute inflammatory
response (Pacher and Hask�o, 2008). Structurally close
analog HU-910 exhibited high binding and functional
selectivity for CB2R over CB1R (Soethoudt et al., 2017).
In addition, it is highly selective against a representa-
tive set of further off-targets and displays favorable
pharmacokinetic properties. Therefore, HU-910 was rec-
ommended as a preferred CB2R agonist for studying
the role of the receptor in biologic and disease processes
(Soethoudt et al., 2017). HU-910 in vivo efficacy stud-
ies opened the door for exploring the potential of CB2R
activation for the treatment of type 2 diabetic nephrop-
athy (Zoja et al., 2016) and eye diseases such as uveitis
(Porter et al., 2019). Importantly, HU-910 exhibits a
different signaling preference in the five CB2R signal
transduction pathways in human and mouse. In con-
trast to being an unbiased agonist for the human CB2R,
HU-910 exhibited a preference toward G-protein activa-
tion as compared with cAMP signaling and b-arrestin
recruitment in mice (Soethoudt et al., 2017). Such inter-
species differences in signaling preference might influ-
ence the translation of preclinical models to the clinic.
The vast majority of synthetic cannabinoids exhibit

high lipophilicity, low aqueous solubility, and tight
plasma protein binding, which translates into poor
pharmacokinetic properties, such as high in vivo clear-
ance and low oral bioavailability (McGilveray, 2005;
Huestis, 2007). To overcome these issues, molecules
were developed to exhibit favorable physicochemical
properties and improved oral bioavailability. In the fol-
lowing paragraphs, key representatives from the most
important scaffolds were selected to illustrate the pro-
gress made on synthetic CB2R ligands.
Aminoalkylindoles were among the earliest discov-

ered CB2R scaffolds. In particular, dual CB1R and
CB2R agonist WIN55212-2 (Eissenstat et al., 1990;
Bell et al., 1991) was very important for identifying
and deciphering the role of cannabinoid receptors (Fig. 9).
It displays antihyperalgesic activity in multiple rodent
pain models (D’Ambra et al., 1992; Fox et al., 2001;
Johanek and Simone, 2004).
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Initial aminoalkylindoles were structurally simpli-
fied. Furthermore, CB2R selectivity was improved to
lead to CB2R agonists such as A-796260 (Fig. 9) (Frost
et al., 2008), which achieved efficacy in various rodent
pain models upon intraperitoneal-injection administra-
tion (Yao et al., 2008). Importantly, these antihyperalge-
sic effects could be blocked by pretreatment with a CB2R
antagonist.

Bicyclic (het)aryl scaffolds were investigated for CB2R
selectivity or minimal CB1R efficacy. Several high
throughput screening campaigns were conducted in
the search for potent, selective, and orally bioavailable
CB2R agonists, e.g., providing benzimidazole (Pag�e
et al., 2008) and triazolopyrimidine (Nettekoven et al.,
2016) derived starting points. Subsequent lead optimi-
zation efforts provided development candidates such as

TABLE 5
Diseases/symptoms for treatment with CB2R agonists and antagonists registered with ClinicalTrials.gova

Generic Name
Brand Name
Class/Efficacy Completed Clinical Trials Ongoing Clinical Trials

Dronabinolb

Dronabinol derivativesb

Nabiloneb

Nabiximolsb

Mixed THC:CBDb

Cannabidiol
Epidiolex Sturge-Weber syndrome Obsessive-compulsive disorder
CB1R/CB2R ligand others Opioid-use disorder Tuberous sclerosis complex

Prostate cancer Typical absence seizures
Cannabis use disorder Autism
Opioid withdrawal Fibromyalgia
Musculoskeletal pain Aromatase inhibitor-associated arthralgias
Alcohol use disorder Back pain
� Post-traumatic stress disorder Depressive symptoms
� Inflammatory bowel disease Electrical status epilepticus of slow-wave sleep
� Knee osteoarthritis Dental pain
Parkinson’s disease Behavioral problems in children and adolescents with

intellectual disability
Opiate addiction Knee arthritis
Epilepsy Chemotherapy-induced peripheral neuropathy
Seizures Bipolar disorder
COVID-19 Hypertension
Burn-out Anxiety and fear
Chronic periodontitis Chronic pain
Urinary stone Early psychosis
Schizophrenia Post-traumatic stress disorder
Blepharospasm Anorexia nervosa
Cocaine craving/dependence Gastroparesis and functional dyspepsia
Generalized anxiety disorder Anxiety in advanced breast cancer
Lennox-Gastaut syndrome Traumatic brain injury
Dravet syndrome Tobacco cessation
Psychotic disorders Social anxiety disorder
Infantile spasms Rheumatoid arthritis
Fragile X syndrome Diabetes
Tuberous sclerosis complex Chronic pain
Psoriatic arthritis Endometriosis pain
Hand osteoarthritis Social anxiety disorder
Cancer � Radiculopathy
Diabetic neuropathies Sleep disturbance
Ulcerative colitis Insomnia
Fatty liver Prevention aGVHD

Prader-Willi syndrome
Musculoskeletal pain

Lenabasum
CB2R/CB1R agonist Cystic fibrosis

Dermatomyositis
Systemic lupus erythematosus

Olorinab
CB2R agonist Crohn’s disease

Abdominal pain
RG7774
CB2R agonist Diabetic retinopathy
CNTX-6016
CB2R agonist Chronic pain Painful diabetic neuropathy

Nociceptive pain
Pain

EHP-101
CB2R agonist PPARc agonist Diffuse cutaneous systemic sclerosis

aStudies with the status “not yet recruiting, recruiting,” “enrolling by invitation,” “active, not recruiting,” and “completed” were included in this table.
bSee Table 4 for respective CB1R data.
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dual CB1R/CB2R agonist ART-27.13 (AZD-1940) (Pag�e
et al., 2010) (Fig. 18). This molecule is currently assessed
as oral treatment of cachexia in phase 2 and cancer-
related anorexia in phase 1 trials (Clarivate, 2022a;
https://artelobio.com/pipeline/). However, due to CNS-
related side effects, phase 2 studies for the treatment
of nociceptive and neuropathic pain were terminated
(Kalliom€aki et al., 2013; https://www.astrazeneca
clinicaltrials.com/study/D3120C00006/).
Phase 2 clinical trials for the oral treatment of osteoar-

thritic knee pain were conducted with CB2R agonist LY-
2828360 (Fig. 17), but they were terminated despite an ac-
ceptable side-effect profile (Hollinshead et al., 2013; https://
clinicaltrials.gov/ct2/show/NCT01319929; Clarivate, 2022f).
The imidazopyrimidine is brain penetrant and exhibits an
excellent selectivity over CB1R (ratio CB1R/CB2R EC50 for
GTPcSbindingwas> 50000). Recently reported triazolopyri-
midine-derived CB2R agonist (at 1 nM) RG7774 (Fig. 17) is
under active development in phase 2 as an innovative oral
treatment of diabetic retinopathy exhibiting very high selec-
tivity over CB1R (ratio CB1R/CB2R EC50 for cAMP > 6’940)
(Grether, 2022). Further bicyclic (het)aryl derived ligands
reached advanced preclinical stages and were successfully
explored in various disease models with an inflammatory
pathology.PF-03550096 (Kikuchi etal., 2008)andRQ-00202730
(Iwata et al., 2015) were tested in 2,4,6-trinitrobenzene sulfonic
acid-induced colonic pain rat models, and RO6871304 was
tested in rodent models of kidney ischemia–reperfusion,
renal fibrosis, and endotoxin-induced uveitis (Nettekoven
et al., 2016; Porter et al., 2019).
Multiple organizations developed bicyclic aliphatic

(het)aryl arrays with at least one aliphatic ring. Five-five,
five-six, and five-seven systems were elaborated, and four
of these CB2R agonists made it into clinical trials.

Tedalinab was investigated for the oral treatment of neu-
ropathic pain and osteoarthritis (Clarivate, 2022n) (Fig.
19). The CB2R-selective pyrazole carboxamide exhibits
similar binding affinities for human and rat CB2R (hu-
man CB2R Ki 5 rat CB2R Ki � 12 nM) and bioavailabil-
ities > 50% across species. Despite favorable safety and
tolerability data in single ascending dose (doses up to 1200
mg) and multiple ascending dose studies (doses up to 300
mg once daily for 14 days), developmentwas halted for un-
known reasons.
Lead optimization toward olorinab was guided by a

b-arrestin efficacy assay (Han et al., 2017). This highly
potent CB2R full agonist is a peripherally actingmolecule
that is devoid of psychotropic effects (https://adisinsight.
springer.com/drugs/800039670; https://clinicaltrials.gov/
ct2/show/NCT04043455). Olorinab (Fig. 19) was clinically
assessed as an oral treatment of pain related to irritable
bowel syndrome in phase 2.While the drugwaswell toler-
ated, it did not meet the primary efficacy endpoint of sta-
tistically significant improvement in the overall average
abdominal pain score (Pharma Intelligence, 2022). The li-
gand exhibits a short human half-life and was therefore
administered three times a day (Clarivate, 2022i). Dual
CB1R/CB2R agonist TAK-937 (Fig. 19) was developed as
an injectable for the treatment of stroke after observing
cerebroprotective effects in rat and nonhuman primate
in vivo efficacy studies (Suzuki et al., 2012; Clarivate,
2022m). Yet, due to a narrow safety margin, development
was halted. CB2R-selective agonist dihydro-benzofuran
NTRX-07 (Fig. 19) is being explored in phase 1 as an oral
drug for the treatment of memory loss in Alzheimer’s dis-
ease, cognitive disorder, and neuropathic pain (Clarivate,
2022h; https://www.neurotherapia.com/research). Follow-up
studies targeting MS and amyotrophic lateral sclerosis

Fig. 15. Chemical structure and CB2R binding affinity of THC, N-arachidonoylethanolamine, and 2-arachidonoyl glycerol. aConsensus human CB2R
binding affinity values from a multicentric collaborative profiling effort between multiple independent academic laboratories and industry (Soethoudt
et al., 2017). bCB2R selectivity (10�(pKi CB2R-pKi CB1R).

Fig. 16. Chemical structure and CB2R binding affinity of noladin ether and synthetic eCB analogs. aBinding to spleen cannabinoid receptor. bWith phe-
nylmethanesulfonyl fluoride.
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are foreseen. NTRX-07 preserves CB2R potency across
species and showed efficacy in multiple rodent efficacy
studies (Naguib et al., 2008). The (S)-enantiomer is the
active stereoisomer (Diaz et al., 2009).
CB2R modulators containing aromatic and aliphatic

five-, six-, and seven-membered central cores have
been described by multiple organizations. Pyrimidine-
based agonist GW-842166X displays high CB2R selectivity
over CB1R, and favorable pharmacokinetic properties,
translating into potent analgesic effects (ED50 5 0.1 mg/
kg) in the Complete Freund’s adjuvant rat model of in-
flammatory pain without initiating tetrad-like effects
such as catalepsy or hypothermia (Giblin et al., 2007)
(Fig. 20). The ligand reached phase 2 clinical trials for
pain associated with osteoarthritis (https://clinicaltrials.
gov/ct2/show/NCT00479427) and dental pain (https://
clinicaltrials.gov/ct2/show/NCT00444769).
Disubstituted phenyl derivative KN 387271 (Fig. 20)

is a dual CB1R/CB2R agonist. Neuroprotective effects in
rat models of cerebral ischemia and traumatic brain in-
jury (Mauler et al., 2002; Mauler et al., 2003) enabled
phase 1 stroke and phase 2 traumatic brain injury stud-
ies in humans (Clarivate, 2022e). The selective orally
bioavailable CB2R agonist S-777469 exhibited efficacy
in rodent models of scratching and skin inflammation
(Odan et al., 2012; Haruna et al., 2015, 2017). However,
these effects did not translate into therapeutic benefits

in phase 2a trials with patients suffering from atopic

dermatitis and pruritus (Clarivate, 2022l; https://www.

shionogi.com/content/dam/shionogi/global/investors/pdf/e_

p090803.pdf). Many additional CB2Rmodulators with dif-

ferent central cores such as pyrazoles (Ohta et al., 2007),

thiazoles (Yao et al., 2009), diazepanes (Zindell et al.,

2011), piperidines (Bartolozzi et al., 2015), pyrrolidones

(Riether et al., 2015), imidazoleidine-2,4-diones (Mukho-

padhyay et al., 2016), pyridines (Porter et al., 2019), and

4-oxo-1,4-dihydropyridines (El Bakali et al., 2014) have

been evaluated in detail. In some cases, minor structural

changes triggering a switch from agonism to inverse ago-

nism have been reported (Sellitto et al., 2010; Porter et al.,

2019). Insights on how to design CB2R agonists with fa-

vorable kinetic profiles were disclosed in a structure

kinetics relationship study on a biaryl imidazoleidine-

2,4-dione-based scaffold (Soethoudt et al., 2018b). An

adamantyl-derived series was investigated for functional

activity on the Q63R variant of CB2R (Nettekoven et al.,

2013), which is associated with the risk of schizophrenia

(Ishiguro et al., 2010) and an increased risk of celiac dis-

ease and liver damage in obese children (Rossi et al.,

2011).
2. Cannabinoid Receptor 2 Antagonists and Allosteric

Ligands. Selective CB2R antagonist/inverse agonist
SR144528 (human CB2R selectivity ratio 5 129;
mouse CB2R selectivity ratio 10^(pKi CB2R-pKi
CB1R) 5 6’026) (Rinaldi-Carmona et al., 1998; Portier
et al., 1999; Soethoudt et al., 2017) is an important
pharmacological tool for antagonizing effects

Fig. 17. Chemical structure, CB2R binding affinity and selectivity of representative classic cannabinoids. aConsensus human CB2R binding affinity
values from a multicentric collaborative profiling effort between multiple independent academic laboratories and industry (Soethoudt et al., 2017).
bCB2R selectivity (10�(pKi CB2R-pKi CB1R).

Fig. 18. Chemical structure, CB2R binding affinity or functional activity, and selectivity of clinically evaluated bicyclic (het)aryl derived CB2R ligands.
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triggered by CB2R agonists in vitro and in vivo
(Nackley et al., 2003). Interestingly, the ligand shows
a bias in suppressing different signal transduction
pathways. It effectively blocks the modulation of
cAMP signaling but is less potent with regard to an-
tagonizing CB2R-mediated signal transduction path-
ways (Soethoudt et al., 2017).
Few ligands targeting postulated CB2R allosteric

sites (Feng et al., 2014; Pandey et al., 2020) are
known. An allosteric CB2R interaction has been sug-
gested for CBD (Martinez-Pinilla et al., 2017). Con-
versely, it was also experimentally shown that CBD
acts as an orthosteric partial agonist (Tham et al.,
2019), although it does not follow a simple one-site
competition model. An overlap of allosteric and or-
thosteric binding pockets might provide a suitable ex-
planation for these findings. In contrast, 1,1’-dimethyl
heptyl CBD was shown to act as a pathway-specific
CB2R allosteric modulator (Fig. 21). While positively
modulating the cAMP response, it negatively modulated
b-arrestin1 recruitment by CP55940 and SR144528. In-
teraction with a high-affinity allosteric binding site has
been postulated by 5XRA- and 5TGZ-based in silico
docking studies.

Endogenously occurring RVD-hemopressin peptide
pepcan-12 (Fig. 21) exhibits positive allosteric modu-
lation of CB2R (Petrucci et al., 2017). It was shown to
increase binding of orthosteric ligands and to potenti-
ate 2-AG- and CP55940-induced CB2R signaling. Syn-
thetic ligand C2 shows positive allosteric modulation
of CB2R in vitro (Gado et al., 2019). Importantly,
these effects translated into dose-dependent efficacy
in a mouse model of neuropathic pain upon oral admin-
istration. Neither an X-ray crystal nor a cryo-electron
microscopy structure of a CB2R allosteric modulator in
complex with the receptor has been reported. Therefore,
the design of novel ligands is mostly aided by in silico
predictions including molecular dynamics simulations
that can lead to the identification and ranking of multi-
ple putative allosteric binding sites (Yuan et al., 2022).
Furthermore, molecular dynamics simulations suggest
that cholesterol exerts an allosteric effect on the intra-
cellular CB2R regions that interact with the G-protein
complex, thus altering the recruitment of G-protein
(Yeliseev et al., 2021). Therefore, cholesterol levels might
influence the screening for novel allo- and orthosteric
CB2R ligands, which should be taken into account in de-
signing selective drugs directed toward CB2R.

Fig. 19. Chemical structure, CB2R binding affinity or functional activity, and selectivity of clinically evaluated bicyclic aliphatic (het)aryl arrays.

Fig. 20. Chemical structure, CB2R binding affinity or functional activity, and selectivity of clinically evaluated CB2R agonists and CB2R inverse ago-
nists SR144528 containing five- and six-membered central cores. aConsensus human CB2R binding affinity values from a multicentric collaborative
profiling effort between multiple independent academic laboratories and industry (Soethoudt et al., 2017). bCB2R selectivity (10�(pKi CB2R-pKi
CB1R).
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3. Cannabinoid Receptor 2 Chemical Probes for Research
and Diagnostics. A labeled chemical probe is a small
molecule that is a ligand for a respective target and
carries a reporter unit, e.g., a radio, fluorescent, or bi-
otin label that allows characterization of ligand-target
interactions. Optionally a linker connects the target
recognition element and reporter unit (Prevet and Collins,
2019). Labeled probes are of utmost importance for all
research and discovery phases (Guberman et al., 2022).
Due to a major debate regarding the specificity of CB2R
antibodies (C�ecyre et al., 2014; Marchalant et al., 2014;
Zhang et al., 2019), labeled chemical CB2R probes are
highly important tools for determining CB2R protein ex-
pression. While radioligands are generally used for study-
ing binding affinity (Cascio et al., 2016) or drug-target
binding kinetics (Martella et al., 2017) of unlabeled li-
gands, positron emission tomography tracers focus on
determining receptor expression in tissues and nonin-
vasively measuring the distribution and receptor occu-
pancy of drug candidates in patients (Honer et al., 2014).
Nonselective [3H]CP55940 and [3H] WIN55212-2 are the
most relevant probes for measuring equilibrium binding
affinities of novel CB2R ligands applying radioligand
competition-binding assays. Selective CB2R inverse
agonist [35S]SCH225336 (Lavey et al., 2005; Gonsiorek
et al., 2006) was successfully applied for quantifying
CB2R expression in various cell lines and hemopoietic
cells making use of the superior specific activity of its 35S
reporter unit, as compared with tritiated cannabinoids
(> 1’400 versus �20 Ci/mmol) (Fig. 22).
Tritiated pyridine [3H]RO6957022 exhibits high bind-

ing selectivity targeting CB2R (Martella et al., 2017). The
CB2R inverse agonist was used for studying drug-target
binding kinetics. Its 11C-labeled analog [11C]RSR-056
carrying the carbon-11 reporter unit at the methoxy
group is a CB2R-specific brain-penetrant positron emis-
sion tomography tracer that displayed a higher brain
radioactivity in mice with lipopolysaccharide-induced
neuroinflammation than in the control group (Slavik
et al., 2015). 2-Oxoquinoline-derived [11C]NE40 is the
first tracer that has been used for CB2R in
vivo positron emission tomography in humans (Ahmad
et al., 2013). In agreement with the known expression
of CB2R, major uptake was observed in lymphoid tissue.
Despite a rapid brain uptake and washout, no CB2R up-
regulation was detected in the brains of Alzheimer’s

disease patients (Ahmad et al., 2016). [18F]RoSMA-18-
d6 exhibits subnanomolar affinity for CB2R across spe-
cies and a remarkable selectivity factor of > 12’000 over
CB1R (Haider et al., 2020). It showed specific and re-
versible target binding in vitro and in vivo and was suc-
cessfully used for detecting CB2R upregulation on post-
mortem human amyotrophic lateral sclerosis spinal
cord tissues.
Fluorescently labeled CB2R ligands are highly ver-

satile tools for studying receptor-ligand interactions
and cellular trafficking, e.g., applying techniques such
as flow cytometry, confocal fluorescence microscopy, and
time-resolved fluorescence resonance energy transfer. N-
Alkyl isatin acylhydrazone NMP6 was among the first
fluorescently labeled ligands that showed selectivity for
CB2R over CB1R (Petrov et al., 2011). In flow cytometry
and confocal microscopy studies, specific binding to en-
dogenously expressed CB2R in CD41 T cells and
B-lymphocytes was demonstrated. Cy5-labeled (Cy5-)
probe is a CB2R inverse agonist with an extended
linker moiety showing low levels of nonspecific fluores-
cence in live-cell experiments (Singh et al., 2019).
Combination of favorable structural elements of the
two cannabinoid ligands HU-308 and AM841 provided
a privileged chimera motif that was functionalized
with a range of fluorophores while retaining excellent
affinity and selectivity for CB2R (Sarott et al., 2020;
Westphal et al., 2020). Coumarin fluorophore-labeled
DY480-XL probe allowed for setting up a novel assay
based on fluorescence resonance energy transfer,
able to characterize equilibrium and kinetic binding
constants and visualize in real-time CB2R in endoge-
nously expressing murine splenocytes and human
macrophages. The reverse-design approach, in which
small molecules previously optimized in medicinal
chemistry programs form the basis for the generation
of high-quality probes (Guberman et al., 2022), was ap-
plied for the generation of cell-permeable agonist-based
SiR probe that was used for real-time in vivo tracing of
CB2R in zebrafish larvae (Gazzi et al., 2022). Near-in-
frared fluorophores are best suited for in vivo imaging
in higher species due to their deeper light penetration
of biologic tissues (Hong et al., 2017). Pyrazolopyrimi-
dine derivative NIR760-XLP6 displays high selectivity
over CB1R and improved specific binding as compared
with predecessors such as NIR760-mbc94 and therefore

Fig. 21. Chemical structure of validated CB2R allosteric modulators.
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holds promise for visualizing CB2R in in vivo imaging
studies (Ling et al., 2015). Alternatively to fluorescent
probes, biotinylated CB2R ligands have been applied for
visualization of the receptor after conjugation with
streptavidin-AlexaFluor488 (Martin-Couce et al., 2012).
While reversible noncovalent interaction with CB2R

can easily be disrupted under experimental conditions,
resulting in the washout of the probe from the binding
site, a covalent attachment can surmount these issues
(Weichert and Gmeiner, 2015; Yang et al., 2019). The
water-stable isothiocyanate group, which reacts prefer-
entially with the nucleophilic amino acid side chains of
cysteines, was exploited to covalently attach cannabi-
noids to CB2R (Szymanski et al., 2011; Mallipeddi
et al., 2017). Furthermore, CB2R-selective photoaffinity
probes carrying benzophenone (Dixon et al., 2012) or
azide (Szymanski et al., 2018) groups as photoreactive
moiety have been reported. Two-step photoaffinity-
based protein profiling probe LEI121 elegantly

combines the covalently modifying photoaffinity tech-
nique with a click chemistry approach, allowing for tar-
get engagement studies in live human cells by covalent
SDS-PAGE visualization, flow cytometry, and mass
spectrometry-based proteomics (Soethoudt et al.,
2018a).

C. Summary of Clinical Status of Cannabinoid
Receptor 1 and Cannabinoid Receptor 2 Agonists

In summary, three phytocannabinoid preparations
(dronabinol, nabiximols, and CBD) are currently avail-
able for treatment of diseases via stimulation of CB1R,
CB2R, both, or neither (Table 6). Although the need for
selective full agonist stimulation of CB1R is limited due
to side effects, selective CB2R agonists are in phase 2
clinical trials. We are at the stage of defining which
human diseases can best be treated with these CB2R
agonists. Mixed CB1R/CB2R-directed agonist prepara-
tions and numerous selective CB2R ligands are either

Fig. 22. Chemical structure, CB2R binding affinity, and selectivity of CB2R radioligands, PET tracers, fluorescent and pAfBPP probes.
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on the market or under clinical development (reported
in Table 6). Overall, more than 20 new molecular en-
tities that activate CB2R have been investigated in
humans for a wide range of indications. Structurally,
they cover a huge chemical space including fatty
acid derivatives, classic and nonclassic cannabinoids,
as well as multiple diverse synthetic ligands, thus re-
sulting also in the coverage of a broad range of physico-
chemical properties.
Dronabinol, nabilone, and CBD, exerting their action

through both CB1R and CB2R activation, have been in-
troduced to the market. Oral THC is used for the treat-
ment of anorexia, cachexia, and chemotherapy-induced
emesis (Clarivate, 2022d). Buccal THC has been launched
for cancer pain (https://adisinsight.springer.com/drugs/
800027102). Other routes of administration, e.g., inhal-
able and sublingual formulations, are under explora-
tion. Nabilone was launched for treating patients who
suffer from chemotherapy-induced nausea and vomit-
ing (https://adisinsight.springer.com/drugs/800025856).
Clinical trials for the treatment of Parkinson’s disease
and pain are in advanced stages. CBD, a nonclassic canna-
binoid for which themainmode of action is still a matter of
debate, is marketed for the treatment of infantile severe
myoclonic epilepsy, Dravet and Lennox-Gastaut syndrome,
and tuberous sclerosis (Clarivate, 2022b). As reported in
Table 2, combinations of CBD and THC have been ap-
proved for treating MS-associated spasticity and pain
management, while glioblastoma trials and studies tar-
geting further indications are ongoing (Clarivate, 2022g;

https://citeline.informa.com/drugs/details/175074). Nonpsy-
choactive dual CB1R/CB2R agonist Lenabasum (Zurier
et al., 1998) is in phase 3 trials for the treatment of sys-
temic sclerosis and dermatomyositis (https://adisinsight.
springer.com/drugs/800007180; Corbus Pharmaceuticals,
2022).Most advanced selectiveCB2R agonists are the syn-
thetic cannabinoids olorinab (https://adisinsight.springer.
com/drugs/800039670) and RG7774 (Grether, 2022). Clin-
ical focus of olorinab is on pain related to irritable bowel
syndrome, as such or with predominant constipation or
diarrhea. RG7774 aims to provide an oral treatment for
patients suffering from diabetic retinopathy (Clarivate,
2022k). AA analog CMX-020 is studied in phase 2 trials
for the treatment of pain, osteoarthritis, and diabetic neu-
ropathy using both oral and intravenous formulations
(https://www.anzctr.org.au/Trial/Registration/
TrialReview.aspx?id=371547&isReview=true). Pain, in
particular neuropathic pain, is also the focus of the selec-
tive synthetic CB2R agonists CNTX-6016, whose struc-
ture has not been yet disclosed (https://centrexion.com/
science/pipeline/; https://clinicaltrials.gov/ct2/show/
NCT04857957) , and NTRX-07 (ht tps : / /www.
neurotherapia.com/research; Clarivate, 2022h).
CNTX-6016 is in phase 2 andNTRX-07 in phase 1 trials.
Dual CB1R/CB2R agonist ART-27.13 is in phase 2 trying
to provide treatment options for cachexia and cancer-re-
lated anorexia (https://artelobio.com/pipeline/). CBD de-
rivative EHP-101, which activates both PPARc andCB2R,
is aimed at MS and scleroderma patient populations in
phase 2 clinical trials (EMA, 2022). Ten additional new

TABLE 6
CB2R agonist that are launched or under active clinical development

Drug Chemical Class Mode of Action
CB2R/CB1R in vitro

Pharmacology Indication(s)
Highest Phase of
Development

Dronabinol (THC,
Syndros, Marinol)

Classic cannabinoid CB2R/CB1R agonist pKi58.16/8.48a Appetite loss, CINV,
anorexia, cancer
pain

Launched

Nabilone (Cesamet) Classic cannabinoid CB2R/CB1R agonist Ki51.84/2.19 nM CINV Launched
Lenabasum

(Ajulemic acid)
Classic cannabinoid CB2R/CB1R agonist Ki551/628 nM CF, SLE, RA,

systemic sclerosis,
dermatomyositis

Phase 3 (systemic
sclerosis since 2017;
dermatomyositis
since 2018)

Olorinab (ADP-371) Tricyclic 3,5,5-fused
pyrazole 3-
carboxamide

CB2R agonist EC5056.2/>104 nMb IBS-related pain, IBS
with predominant
constipation or
diarrhea

Phase 2b (since 2017)

CMX-020 Arachidonic acid analog CB2R/CB1R agonist,
TRPV1 agonist

Ki5150/21 nM Pain, OA, DnP Phase 2 (since 2015)

RG7774 Triazolopyrimidine CB2R agonist EC5051/>104 nMc DR Phase 2 (since 2020)
CNTX-6016 Piperidine based ligand CB2R agonist — Pain Np, DnP Phase 2 (since 2020)
ART-27.13

(AZD-1940)
Benzimidazole CB2R/CB1R agonist Ki50.9/12 nM Pain, cachexia, CINV Phase 2 (since 2021)

EHP-101 (VCE-
004.8)

Cannabidiol derivative CB2R agonist, PPARc
agonist

Ki5170/>4x104 nM MS, ScD Phase 2 (since 2020)

NTRX-07 (MDA-7) 2,3-Dihydro-1-
benzofuran

CB2R agonist Ki5422/>104 nM AD, Np pain,
cognitive disorder

Phase 1 (since 2019)

AD, Alzheimer’s disease; CF, cystic fibrosis; CINV, chemotherapy induced nausea and vomiting; DnP, diabetic neuropathy; DR, diabetic retinopathy; IBS, irritable
bowel syndrome; LGS, Lennox Gastaut syndrome; MS, multiple sclerosis; Np, neuropathic; OA, osteoarthritis; RA, rheumatoid arthritis; ScD, scleroderma; SLE, systemic
lupus erythematosus.

aConsensus human CB2R binding affinity values from a multicentric collaborative profiling effort between multiple independent academic laboratories and industry
(Soethoudt et al., 2017).

bFunctional activity in b-Arrestin-2 assay on human cannabinoid receptors (Han et al., 2017).
cFunctional activity in cAMP assay on human cannabinoid receptors (Grether, 2022).
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chemical entities were investigated in phase 1 and 2 clini-
cal trials for different pain indications (neuropathic, den-
tal, pain associated with osteoarthritis of the knee),
postherpetic neuralgia, pruritis, atopic dermatitis, stroke,
traumatic brain injury, coronary artery bypass graft, and
ocular hypertension (Brennecke et al., 2021). Dual CB1R/
CB2R agonist TAK-937 was terminated due to a narrow
safety margin (Clarivate, 2022m), S-777469 due to the
lack of a pharmacological effect (Clarivate, 2022l; https://
www. s h i o n o g i . c om / c o n t e n t / d am / s h i o n o g i /
global/investors/pdf/e_p090803.pdf), while for KN 387271
(Clarivate, 2022e) and PRS-211375 13 (Clarivate, 2022j)
business reasonswere reported.
It is clear from this summary that there aremany thera-

peutic opportunities for both CB1R and CB2R agonists
(Pacher and Kunos, 2013), yet the untoward effects of the
CB1R at the CNS have limited the clinical progression of
CB1R agonists that penetrate the blood-brain barrier and
preclude their use in the nonhospitalized population. Tis-
sue and cell-type selectivity for therapeutic responses is a
challenge, asmany cannabinoid and aminoalkylinodle ago-
nists have been relegated to research rather than clinical
use. Development of dual-target compounds that act by in-
hibiting CB1R-mediated side effects while simultaneously
activating CB2R-mediated beneficial responses is also
ongoing. Current development of peripherally re-
stricted agonists and antagonists that fail to cross the
blood-brain barrier will open avenues for treatment of dis-
eases in organs outside of the brain. Research on “biased
agonists” that promote cannabinoid receptor conforma-
tions that favor G-protein versus b-arrestin signaling is
an approach that offers treatment opportunities if one
pathway dominates in treatment while the alternative
pathway is responsible for side effects. Researchers are
screening for allosteric modulators based on the notion
that their effects would be limited to only those receptors
simultaneously engaged with an eCB agonist in the dis-
ease process. Thus, a positive allosteric modulator could
potentiate responses if eCBs are understimulating the re-
ceptors. In contrast, a negative allosteric modulator
would impart noncompetitive antagonism in a situa-
tion of excessive eCB tone. Research findings not dis-
cussed in the present review have recognized the
presence of CB1R and CB2R receptor heterodimers with a
wide range of GPCRs, as well as receptor complexes with
other associated proteins. As these studies gain maturity,
the understanding of the impact of such receptor combina-
tions within the same cell can open avenues for novel
therapeutic compounds. Although the present use of
pCB and smallmolecule agonists ismeeting unmet needs
of many diseases, particularly those involving inflamma-
tion, the future for cannabinoid receptor pharmacothera-
peutics must advance to agonists, antagonists, and
modulators that exhibit greater selectivity to improve treat-
ments andeliminateunwanted side effects.

III. Therapeutic Potential of Metabolic
Enzymes of AEA

A. Enzymes of AEA Production

AEA is produced upon demand from the membrane
phospholipid precursor N-arachidonoyl- phosphatidyleth-
anolamine via two enzyme-mediated reactions (Fig. 3).

1. NAT and iNAT. The first step is the formation of
NArPE, which occurs through N-acylation of phosphati-
dylethanolamine, mediated by Ca21-dependent or inde-
pendentN-acyl transferase (NATand iNAT). It should be
noted that the acyl donor is another phospholipid mole-
cule, such as phosphatidylcholine, rather than acyl-CoA.
The presence of N-arachidonoyl-phosphatidylethanol-
amine in mammalian tissues and the N-acyl-transferase
activity responsible for its production were first reported
in the late 1990s (Cadas, et al., 1997) and later molecu-
larly identified as cytosolic phospholipase A2e (cPLA2e)
(Ogura et al., 2016). Members of the phospholipase A and
acyltransferase (PLAAT) family (Jin et al., 2007; Uyama
et al., 2012) were identified as Ca21-dependent and
-independent NAT, respectively. cPLA2e belongs to the
cPLA2 family with a serine residue as catalytic nucleo-
phile. Since forN-acylation of phosphatidylethanolamine
cPLA2e selectively abstracts an acyl chain from the sn-1
position of the glycerol backbone of glycerophospholipid,
which is abundant in saturated and mono-unsaturated
fatty acids rather than poly-unsaturated fatty acids like
AA, N-arachidonoyl-phosphatidylethanolamine and AEA
account for a small percentage of theN-acyl-phosphatidyl-
ethanolamine (NAPE) and fatty acid ethanolamides pre-
sent in cells. The analysis of cPLA2e-deficient mice
revealed the central role of this enzyme in the accumu-
lation of NAPEs and N-acylethanolamines in an imiqui-
mod-induced psoriasis model (Liang et al., 2022), as well
as in an ex vivo model of brain ischemia (Rahman et al.,
2022). The NAPE-forming activity of cPLA2e in skin
was suggested to be protective against skin inflamma-
tion such as psoriasis by producing anti-inflammatory
N-acylethanolamines. On the other hand, PLAAT en-
zymes compose a small protein family with a cysteine
residue as catalytic nucleophile (Uyama et al., 2017).
Among the five members (1–5) in humans, PLAAT1, 2,
and 5 exhibit relatively highNATactivity over the coexist-
ing PLA1/A2 activity (Uyama et al., 2012). Since without
any cellular stimulus theNATactivity is easily detected in
the cells where recombinant PLAAT is expressed, the role
of PLAATs is presumed to maintain the basal levels of
NAPEs and N-acylethanolamines in unstimulated cells.
However, their contribution to the formation of NAPEs
in vivo remains unclarified.

2. N-Acyl Phosphatidylethanolamine-Specific Phospholi-
pase D. NAPE-phospholipase D (PLD) catalyzes the
second step of AEA formation (Fig. 3). The enzyme re-
leases AEA and other fatty acid ethanolamides from
their corresponding NAPEs in a PLD-type hydrolytic
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reaction (Okamoto et al., 2004). However, NAPE-PLD
is a member of the metallo-b-lactamase superfamily
and shows no sequence similarity to classic PLDs con-
verting phosphatidylcholine to phosphatidic acid. Multi-
ple aspartic acid and histidine residues, highly conserved
among the family members, are essential for catalytic
activity, and metal analysis suggested the presence of
Zn21 coordinated by these amino acid residues (Wang
et al., 2006). The crystal structure of human NAPE-
PLD clarified the formation of homodimers adapted to
associate with phospholipids and the presence of a binu-
clear Zn21 center at the active site (Magotti et al.,
2015). Purified recombinant NAPE-PLD selectively hy-
drolyzes NAPE among various phospholipids (Wang
et al., 2006). However, the enzyme does not distinguish
N-acyl species in NAPE, explaining why the composi-
tion of naturally occurring fatty acid ethanolamides is
similar to the N-acyl composition of NAPEs. Recently,
the role of NAPE-PLD in energy metabolism has re-
ceived much attention. A common NAPE-PLD haplo-
type was reported to be protective against obesity
(Wangensteen et al., 2011). Conditional knockout of
adipocyte, intestinal, or hepatic NAPE-PLD showed
the tendency to induce obesity (Geurts et al., 2015;
Everard et al., 2019; Lefort et al., 2020). Moreover,
LEI-401, the first brain-active NAPE-PLD inhibitor,
was instrumental in demonstrating the distinctive role
of NAPE-PLD in AEA biosynthesis in the brain (Mock
et al., 2020). LEI-401 activated the hypothalamus-
pituitary-adrenal axis and impaired fear extinction,
thereby emulating the effect of a CB1R antagonist
and suggesting the presence of an endogenous AEA
tone controlling emotional behavior (Mock et al.,
2020).

3. Alternative Pathways. The analysis of NAPE-PLD-
deficient mice revealed the existence of alternative path-
ways for fatty acid ethanolamide biosynthesis in brain
(Leung et al., 2006; Tsuboi et al., 2011) and peripheral tis-
sues (Inoue et al., 2017). Among the proposed multistep
pathways (Fig. 3), the route via lyso-NAPE and glycero-
phospho-N-acylethanolamines appears to be the most
important, whereby either a/b-hydrolase domain protein
4 (Simon and Cravatt, 2006) or cPLA2c (Guo et al., 2021)
generates glycerophospho-N-acylethanolamines fromNAPE
via lyso-NAPE in two consecutive esterase reactions.
The resultant compound is further hydrolyzed to gener-
ateN-acylethanolamines by glycerophosphodiesterase 1
(Simon and Cravatt, 2008) and 4 (Tsuboi et al., 2015;
Rahman et al., 2016). The glycerophosphodiesterase
family is composed of seven proteins (1–7) in mammals
(Yanaka, 2007), and isoforms 4 and 7 also show lyso-PLD
activity directly producing N-acylethanolamines from
lyso-NAPE (Tsuboi et al., 2015; Rahman et al., 2016).
It is not fully elucidated how much these alternative
pathways contribute to the generation of AEA and other
N-acylethanolamines in the tissues of wild-type mice.

Thephysiologic significance inhuman tissues also remains
unclarified.

B. Enzymes of N-Arachidonyl Ethanolamine Degradation

The major pathway of AEA degradation is hydroly-
sis to AA and ethanolamine, which is mediated by
FAAH (Desarnaud et al., 1995; Hillard et al., 1995;
Cravatt et al., 1996), two isoforms of which have been
described: FAAH-1 and FAAH-2 (Wei et al., 2006). It
should be noted that FAAH-2, sharing 20% sequence
identity with FAAH-1, is expressed in humans but
not in rodents (Wei et al., 2006), making its complete
understanding difficult. Different from FAAH-1, which
is found in the endoplasmic reticulum and the nucleus,
FAAH-2 may be localized to lipid droplets (Kaczocha
et al., 2010). NAAA and acid ceramidase also hydrolyze
AEA, albeit with low activity (Ghidini et al., 2021; Tsuboi
et al., 2021). In addition to hydrolytic degradation, AEA
can be oxygenated by lipoxygenases (5-, 12-, 15-LOX),
COX-2, or CYP450 (Fig. 4), all of which have been fully
characterized as eicosanoid-generating oxygenase enzymes
(Rouzer and Marnett, 2011; Fezza et al., 2014; Simard
et al., 2022). The physiologic significance of these AEA
oxygenation pathways remains unclear.

1. Fatty Acid Amide Hydrolase. FAAH-1, which is
often referred to simply as FAAH, is widely distributed in
mammalian tissues with high expression in liver, brain,
and small intestine of rats (Katayama et al., 1997). The
analysis of FAAH-1-deficient mice revealed increased
endogenous AEA levels and hence the central role of
FAAH-1 in AEA degradation (Cravatt et al., 2001).
FAAH deletion reduced pain sensation, and when AEA
was administered, FAAH-1-deficient mice exhibited
intense hypomotility, antinociception, catalepsy, and
hypothermia in a CB1R-dependent manner. Although
FAAH-1 is highly active with AEA, the enzyme shows
broad substrate specificity, hydrolyzing other fatty
acid ethanolamides, N-acyl taurines, and primary
fatty acid amides such as oleamide. FAAH-1 can also
catalyze the reverse reaction in which AEA is formed
from AA and ethanolamine. However, the equilibrium
constant demonstrated the predominance of the hydro-
lytic action of AEA (Katayama et al., 1999). FAAH-1 is
an integral membrane protein functioning as a serine
hydrolase and belongs to the amidase signature family
characterized by the Ser-Ser-Lys catalytic triad (McKinney
and Cravatt, 2005). Rat FAAH was crystallized as a ho-
modimer. In common with bacterial enzymes of the same
family, the structure exhibits a core fold comprised of
a twisted b-sheet consisting of 11 mixed strands sur-
rounded by a number of a-helices (Bracey et al., 2002).
Remarkably, the FAAH dimer is stabilized by the lipid
bilayer and shows a higher enzymatic activity within
membranes containing cholesterol (Dainese et al., 2014)
according to allosteric kinetics (Dainese et al., 2020).
Additionally, colocalization of cholesterol, AEA, and
FAAH in mouse neuroblastoma cells suggests a
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mechanism by which cholesterol increases the sub-
strate accessibility of FAAH (Dainese et al., 2014);
yet, the pathophysiological implications of these find-
ings remain to be understood. C385A polymorphism
of the FAAH-1 gene (rs324420) results in the forma-
tion of P129T mutant, which is associated with the re-
duction of FAAH activity and cellular expression as
well as increased risk for substance use disorders
(Sipe et al., 2002). This polymorphism also affects sus-
ceptibility to various diseases (Hosseinzadeh Anvar and
Ahmadalipour, 2023).

2. N-Acylethanolamine Acid Amide Hydrolase. NAAA
is a lysosomal hydrolase (Tsuboi et al., 2007a; Ueda
et al., 2010) that shows 33% amino acid identity with
acid ceramidase, which hydrolyzes ceramide to sphin-
gosine and fatty acid. Similar to other members of the
N-terminal nucleophile hydrolase family (Linhorst and
L€ubke, 2022), NAAA is synthesized as a catalytically
inactive precursor and then matured to heterodimer,
consisting of a and b subunits, by post-translational
autoproteolytic cleavage (Zhao et al., 2007). This reac-
tion proceeds in vitro only at acidic pH, suggesting
that the maturation occurs only after its migration to
endosomes/lysosomes from the endoplasmic reticulum via
the Golgi apparatus. The resultant N-terminal cysteine
residue of the b subunit (Cys-126 in human NAAA, Cys-
131 in rodents) functions as the catalytic nucleophile. Im-
portantly, this cysteine residue is also indispensable for
the autoproteolytic cleavage. The crystal structures of
NAAA elucidated that autoproteolysis exposes the bur-
ied active site to enable catalysis (Gorelik et al., 2018).
NAAA hydrolyzes various fatty acid ethanolamides in vitro,
but its highest reactivity is for N-palmitoylethanolamine
(Ghidini et al., 2021). The fact that NAAA is highly
expressed in macrophages (Tsuboi et al., 2007b) and
other immune cells (Ribeiro et al., 2015) suggests that
this enzyme may regulate fatty acid ethanolamide lev-
els at the site of inflammation. In fact, in dermatitis in-
duced by treatment of mice with 2,4-dinitrofluorobenzene,
NAAA-deficient mice showed elevated N-palmitoyletha-
nolamine, but not N-oleoylethanolamine, levels in ear
tissue relative to wild-type controls and exhibited a
strong reduction in the inflammatory reaction (Sasso
et al., 2018). Furthermore, NAAA deficiency in mice in-
creased N-palmitoylethanolamine and AEA levels in
bone marrow and macrophages and AEA levels in lungs
(Xie et al., 2022).

C. Fatty Acid Amide Hydrolase Inhibitors

The first potent, selective, and systemically active
FAAH inhibitor was the N-biphenylcarbamate derivative
URB597, shown in Fig. 23 (Kathuria et al., 2003; Tarzia
et al., 2003). This agent acts by forming a carbamoyl
adduct with FAAH’s catalytic serine (Mileni et al., 2010)
and exhibits robust anxiolytic-like and antidepressant-
like properties, which depend on indirect CB1R

activation by accumulated anandamide (Kathuria et al.,
2003; Gobbi et al., 2005; Bortolato et al., 2007).
Importantly, unlike direct-acting CB1R agonists such

as THC, URB597 is not rewarding to nonhuman pri-
mates, suggesting a lack of abuse potential (Justinova
et al., 2008). An exploration of its scaffold unexpectedly
led to the identification of the first peripherally restricted
FAAH inhibitor, URB937 (Fig. 23), which strongly
attenuates pain-related responses in animal models
(Clapper et al., 2010). The promising pharmacological
profile of URB597 prompted efforts by both academe
and industry to create more advanced inhibitors. Re-
views of this considerable body of work are available
(Tuo et al., 2017; Fazio et al., 2020; Piomelli and Mabou
Tagne, 2022), but one especially significant chemical
class, the piperidine/piperazine-ureas, should be men-
tioned here. High-throughput screening of a chemical li-
brary led scientists at Johnson & Johnson to discover
JNJ-1661010 (Fig. 23), which inhibits human FAAH
with nanomolar potency (IC50 5 33 nM) and through
a covalent mechanism (Keith et al., 2008). Further opti-
mization identified the compound JNJ-42165279, a
slowly reversible FAAH inhibitor that was selected for
clinical testing. Concomitant work at Pfizer produced
several nanomolar piperidine/piperazine-urea covalent
FAAH inhibitors (Ahn et al., 2007) and eventually led
to PF-04457845 (Fig. 23), which was also moved to clini-
cal development. There are several possible therapeutic
indications for which FAAH inhibitors have been or are
currently being tested, including anxiety disorders, sub-
stance use disorders, and pain.
Building on the observation that URB597 exerts

profound anxiolytic-like and antidepressant-like effects
in mice and rats, animal and human experiments have
shown that AEA signaling at CB1R modulates the
emotional response to stress via regulation of prefron-
tal cortical-amygdala circuits (Patel et al., 2017). For
example, subjects carrying the loss-of-function faah
gene polymorphism C385A (rs324420) display enhanced
fronto-amygdalar connectivity and cued fear extinction
(Dincheva et al., 2015). This conclusion was later con-
firmed by several other human experimental medicine
studies. For instance, Paulus and coworkers found that
JNJ-42165279 (100 mg) dampens amygdala activity

Fig. 23. Chemical structures of representative inhibitors of FAAH.
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during an emotion face-processing task, an effect that is
associated positively with plasma AEA concentrations
(Paulus et al., 2021). A lower dose of the drug (25 mg)
was tested in a multicenter, placebo-controlled phase
2 trial in patients with social anxiety disorder. The
study reported statistically detectable signs of effi-
cacy, but the dosage was considered insufficient to fully
inhibit FAAH (Schmidt et al., 2021). Additional clinical
testing in anxiety and allied conditions is clearly
warranted.
The impact of FAAH inhibitors on tobacco and can-

nabis use disorders exemplifies well the promise of-
fered by these agents but also their complex actions.
URB597 was shown to reduce nicotine reward and to
prevent reinstatement of nicotine use in animal mod-
els (Justinova et al., 2015), an effect that was associ-
ated with reduced burst firing of dopamine neurons
in the midbrain and dopamine release in the terminal
field of such neurons (Melis et al., 2004). Unexpect-
edly, the effects of URB597 on nicotine reward were
prevented by PPARa rather than CB1R blockade,
leading to the suggestion that they were mediated by
PPARa agonists, such as N-oleoylethanolamine and
N-palmitoylethanolamine, rather than by AEA acting
at CB1R. With regard to cannabis, a phase 2 clinical
trial demonstrated that PF-04457845 is effective in
reducing cannabis use and alleviating cannabis with-
drawal symptoms in men (D’Souza et al., 2019).
There is strong preclinical evidence indicating that

eCBs are critical regulators of pain sensation (for re-
view, see Finn et al., 2021). The analgesic phenotype
of individuals carrying loss-of-function FAAH mutations
(C385A, faah-out) supports this conclusion (Habib et al.,
2019), but the results of clinical trials have been disap-
pointing (Huggins et al., 2012; Wagenlehner et al., 2017).
Possible explanations for this discrepancy include
species-specific differences, selection of inadequate clini-
cal pain conditions, inconsistencies between preclinical
and clinical study design, and lack of predictive validity
of current animal models. Other pathologies where
FAAH inhibitors might be clinically useful include
chronic cough (Wortley et al., 2017) and urinary tract
dysfunction (Wagenlehner et al., 2017). Overall, several
FAAH inhibitors have been patented for their potential
therapeutic use, as summarized in Table 7 (Fazio et al.,
2020).
Several compounds (URB597, PF-04457845, SSR411298,

APD8477, V158866, BIA 10-2474, and JNJ-42165279)
have also been tested in clinical trials (Table 8). Of note,
the FAAH inhibitor BIA 10-2474 led to adverse neuro-
logic side effects and the death of one healthy volunteer
in a phase 1 clinical trial (Kerbrat et al., 2016). Since the
other FAAH inhibitors tested in clinical trials did not
elicit any adverse neurologic effects and BIA 10-2474
was shown to have multiple off-targets, inhibition of
FAAH is considered to be safe.

D. N-Acylethanolamine Acid Amide Hydrolase

The search for potent, selective, and systemically
active NAAA inhibitors started in 2009 with the iden-
tification of the b-lactone derivative N-[(3S)-2-oxo-3-
oxetanyl]-3-phenylpropanamide [(S)-OOPP] shown in
Fig. 24, which inhibits rat NAAA with submicromolar
potency (IC50 5 420 nM on rat NAAA) via a noncompe-
titive and partially reversible mechanism (Solorzano
et al., 2009).
Due to the opening of its b-lactone ring, (S)-OOPP

undergoes rapid hydrolytic deactivation, which makes
it unsuitable for systemic administration. The compound
has, however, two interesting properties (Solorzano
et al., 2009). First, it is selective for NAAA over other
functionally (FAAH) or structurally (acid ceramidase)
related lipid amidases. Second, its inhibitory effect is
stereospecific, allowing researchers to leverage the en-
antiomer (R)-OOPP (IC50 5 6 lM) as a negative con-
trol in pharmacological experiments. These experiments
showed that incubation with S-OOPP increases
N-palmitoylethanolamine levels in RAW264.7 macro-
phages stimulated with bacterial endotoxin, whereas
(R)-OOPP does not (Solorzano et al., 2009). Moreover,
subdermal application of (S)-OOPP, but not (R)-OOPP,
blocked carrageenan-induced neutrophil infiltration

and plasma extravasation in mice, two effects that are

prevented by genetic PPARa ablation and are mimicked

by administration of PPARa agonists. These findings

identified NAAA as a druggable target for the treatment

of inflammation and encouraged efforts to discover inhib-

itors with greater potency and stability. The first notable

outcome of this search was another b-lactone derivative,

ARN077 (also known as URB913), in which the amide

group of (S)-OOPP is replaced by a carbamate moiety

and a syn-methyl group is introduced at the b position

of the lactone ring (Fig. 24).
Compared with (S)-OOPP, ARN077 exhibits better

chemical stability and greater NAAA inhibitory po-
tency (IC50 5 50 nM on rat NAAA) (Ponzano et al.,
2013). ARN077 was found to be selective for NAAA
when assessed in a broad panel of potential off-
targets. Importantly, topical application of ARN077 on
the mouse or rat skin attenuated inflammation and
pain-related responses (Sasso et al., 2013, 2018). De-
spite these significant steps forward, the low chemical
and enzymatic stability of the b-lactone ring remained
a challenge to the systemic use of ARN077 and other
chemically related inhibitors. Efforts were thus un-
dertaken to overcome this problem, which led to the
discovery of several new classes of NAAA inhibitors,

including b-lactam derivatives (e.g., ARN726) (Ribeiro

et al., 2015), isothiocyanate derivatives (e.g., AM9023)

(Alhouayek et al., 2015), azetidine-nitrile derivatives

(Malamas et al., 2020), and benzothiazole derivatives
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(e.g., ARN19702) (Migliore et al., 2016), shown in Fig. 24.

The discovery, inhibitory properties, and mechanism of

action of these agents were recently reviewed (Piomelli

et al., 2020). Thus far, three main therapeutic indica-

tions have emerged for NAAA inhibitors: inflammation,

pain, and neuroinflammation/neurodegeneration.
A chemically diverse set of NAAA inhibitors exhibit

notable anti-inflammatory properties in animal models.
For example, topical application of the b-lactone ARN077
was shown to suppress skin inflammation elicited by

exposure to UV B-radiation in rats or phorbol ester in
mice (Sasso et al., 2013). The compound also attenuated
itch and skin inflammation in sensitized mice challenged
with 2,4-dinitrofluorobenzene (Sasso et al., 2018). Con-
firming that ARN077 acts by protecting N-palmitoyletha-
nolamine from NAAA-mediated hydrolysis, the effects of
ARN077 were accompanied by restoration of normal N-
palmitoylethanolamine content in inflamed skin tissue
and were dependent on PPARa activation (Sasso et al.,
2013, 2018). The striking effects produced by ARN077
on critical mediators of the allergic response (e.g.,

TABLE 7
Potential therapeutic use of patented FAAH inhibitorsa

Compound
Potential Therapeutic

Use

Oxazole Derivatives Treatment of different types of pain: postoperative pain, chronic pain, cancer pain,
cancer chemotherapy, neuralgia, nociception pain, inflammatory pain

Urea Derivatives Treatment of depression, analgesia, and cannabis use disorders

Urea/Carbamate Treatment of pain, inflammation, neuropathy, neurodegenerative diseases, anxiety,
motor function disorder, infertility, eating disorders, THC dependence, metabolic
disorders, movement disorders, chemotherapy-induced nausea and vomiting, and
cancer

ARN2508 Treatment of intestinal inflammation where a pure FAAH inhibitor was weakly active
and the pure COX inhibitor flurbiprofen aggravated inflammation
Simultaneous blockade of FAAH and COX-1/COX-2 results in a combination of
profound anti-inflammatory and tissue protective actions

Oxazolyl-ketones [replacement of the phenyl hexyl
group of OL-135 with a piperidine ring]

Treatment of anxiety, pain, sleep disorders, eating disorders, inflammation, or
movement disorders (e.g., in multiple sclerosis)

JNJ-42119779 Effective in the spinal nerve ligation (Chung) model of neuropathic pain

JNJ-40413269 Effective in the rat spinal nerve ligation (Chung) model of neuropathic pain

2,3,4-Tetrahydro-2,6-naphthyridines Treatment of pain, anxiety, depression, inflammation, cognitive disorders, weight and
eating disorders, Parkinson’s disease, Alzheimer’s disease, spasticity, addiction,
glaucoma

aFor further details see Fazio et al. (2020).
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interleukin 4 and immunoglobulin E) (Sasso et al.,
2018) and the efficacy demonstrated by N-palmitoyle-
thanolamine as an adjuvant treatment of eczema (Eber-
lein et al., 2008) encourage further evaluation of NAAA
as a target for the treatment of the atopic diathesis, a
disease cluster that includes atopic dermatitis, bronchial
asthma, hay fever, and allergic rhinitis. Other inflam-
matory diseases in which NAAA inhibitor might find
clinical use, as suggested by animal model studies, in-
clude osteoarthritis (Bonezzi et al., 2016; Zhou et al.,
2019b) and colitis (Alhouayek et al., 2015; Xiu
et al., 2020).
In addition to inflammation, NAAA inhibitors may also be

effective in the treatment of pain and neuroinflammation/
neurodegeneration. For example, the systemically active
NAAA inhibitor ARN19702 exhibited a broad antinoci-
ceptive profile in mouse models of acute and chronic pain
(Fotio et al., 2021a) and alleviated symptoms of

neuroinflammation in mouse models of multiple sclerosis
(Migliore et al., 2016) and Parkinson’s disease (Palese
et al., 2022). Similarly, the topically active b-lactone deriva-
tive ARN077 alleviated hypersensitivity in mouse and
rat models of neuropathic pain (Sasso et al., 2013),
while the oxazolidinone imide derivative F96 (Fig. 24)
attenuated acetic acid-induced writhing and tactile al-
lodynia evoked by sciatic nerve injury in mice (Yang
et al., 2015). No NAAA-targeting compound has yet
reached clinical trials.

IV. Therapeutic Potential of Metabolic Enzymes
of 2-AG

A. Metabolism of 2-Arachidonoylglycerol

The endocannabinoid 2-AG can be produced via two
distinct biologic pathways. The metabolic pathway uses
sn-2 arachidonoyl-containing triglycerides, which are
hydrolyzed by hormone-sensitive lipase, carboxyl ester-
ases, or other lipases toward sn-2 arachidonoyl DAGs
(Baggelaar et al., 2018). The signaling pathway utilizes
phosphatidylinositol-4,5-bisphosphate, which is converted
by PLC b in the CNS or PLCc2 in immune cells. The
PLC enzymes are activated by Ca21 ions and integrate
Gq protein-coupled receptor activation and extracellular
Ca21 influx via ionotropic receptors and voltage-gated
Ca21-channels, thereby also producing DAGs. The digly-
cerides activate protein kinase C and are the central pre-
cursors for the production of 2-AG in both the metabolic
and signaling pathways. The sn-1 acyl group from DAGs
is predominantly hydrolyzed by two isoenzymes, diac-
ylglycerol lipase-a and -b (DAGLa and DAGLb, also
termed diacylglyceride lipases), which produce 2-AG
and other sn-2 acylglycerides. The DAGLs were discov-
ered by Doherty’s group in 2003 (Bisogno et al., 2003),
and the generation of genetically modified animals lack-
ing dagla and daglß, the genes encoding the DAGL pro-
teins, demonstrated that these enzymes are essential for
2-AG production in the brain (Gao et al., 2010; Tanimura
et al., 2010). Of note, the DAGLs also terminate protein
kinase C signaling by hydrolyzing DAGs; thus, these en-
zymes are an important hub to connect lipid and kinase
signaling.
Termination of 2-AG signaling at CB1R or CB2R occurs

through hydrolysis of the ester bond, thereby generating
AA and glycerol. MAGL (also termed monoglyceride
lipase) is the main enzyme responsible for the inactiva-
tion of 2-AG in the brain (Dinh et al., 2002), whereas
a/b-hydrolase domain protein 6 and 12 may play a role
in 2-AG hydrolysis in specific cell types (Marrs et al.,
2010; Blankman et al., 2007). In various tissues, includ-
ing the brain, 2-AG is responsible for the main supply
of AA, which is the central precursor for proinflammatory
signaling lipids, such as the prostaglandins (Nomura
et al., 2010). Thus, MAGL is a central node that connects
endocannabinoid and eicosanoid signaling. Modulators ofFig. 24. Chemical structures of representative inhibitors of NAAA.

TABLE 8
Diseases/symptoms for treatment with FAAH inhibitors registered with

ClinicalTrials.gova

Generic Name
Brand Name
Class/Efficacy Completed Clinical Trials Ongoing Clinical Trials

FAAH inhibitors
PF-04457845 Tourette syndrome Cannabis use disorder

Cannabis withdrawal
Fear conditioning
Acute pain
� Chronic pain
� Knee osteoarthritis

URB597 Schizophrenia
SSR411298 Major depressive disorder

Cancer pain
APD8477 Peripheral neuropathic pain
V158866 Neuropathic pain
JNJ-42165279 Major depressive disorder

Social anxiety disorder
Autism

aStudies with the status “not yet recruiting, recruiting,” “enrolling by in-
vitation,” “active, not recruiting,” and “completed” were included in this table.
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2-AG metabolism are listed in Table 9, and in the next
sections their therapeutic potential is described. For an
extensive review on chemical probes of the endocannabi-
noid system, see also Punt et al. (2023).

B. Therapeutic Potential of Diacylglycerol Lipase-a

DAGLa belongs to the family of serine hydrolases,
and is responsible for the production of 2-AG in the CNS
(Bisogno et al., 2003), where it is primarily found in the
dendrites and soma of neurons and to a lower extent
in astrocytes, but not in microglial cells. DAGLa is ex-
pressed in various brain regions, such as cortex, hippo-
campus, cerebellum, and striatum, and its activity
is highest in the cerebellum (Baggelaar et al., 2017).
DAGLa is a 120 kDa integral plasma membrane protein
with multiple domains (Fig. 25) and has four transmem-
brane helices followed by a lipase domain, which contains
the catalytic triad Ser, His, Asp (Bisogno et al., 2003).
DAGLa produces 2-AG on demand as a retrograde

messenger upon depolarization of the post-synaptic
neuron or by stimulation of Gq/11-coupled metabotropic
receptors, with or without activation of ionotropic recep-
tors at both excitatory and inhibitory synapses (Gao
et al., 2010; Tanimura et al., 2010). Animals with con-
stitutive genetic disruption of DAGLa show a variety
of neurologic phenotypes, including impaired synaptic
transmission, disturbed memory and learning, compromised
adult neurogenesis (Gao et al., 2010), hypophagia (Powell
et al., 2015), enhanced anxiety and fear responses (Shonesy
et al., 2014; Jenniches et al., 2016), and susceptibility to
spontaneous seizures (Powell et al., 2015). Multiple se-
lective pharmacological tools have been developed to
modulate DAGLa (as well as DAGLb) activity in an
acute and temporary manner (Baggelaar et al., 2018;
Punt et al., 2023). LEI-105, DO34, and DH376 are cur-
rently widely used DAGL inhibitors to study the in-
volvement of these enzymes in physiologic processes
(Baggelaar et al., 2015; Ogasawara et al., 2016). For
example, the same inhibitors were instrumental, in con-
junction with genetic models, to unequivocally demon-
strate that 2-AG production is “on demand,” i.e., when
and where needed upon stimuli during short-term synap-
tic plasticity, such as depolarization-induced suppression
of inhibition or excitation (DSE) in hippocampal and cere-
bellar slices (Baggelaar et al., 2015; Ogasawara et al.,
2016). DAGL inhibitors also contributed to our under-
standing of the role of 2-AG in cocaine seeking (McRey-
nolds et al., 2018), alcohol addiction, food intake (Deng
et al., 2017), neuroinflammation (Ogasawara et al., 2016),
anxiety and stress (Bluett et al., 2017), learning and mem-
ory (Schurman et al., 2019), pain sensation (Wilkerson
et al., 2017), and voluntary movement (Farrell et al.,
2021). It should be noted that DO34 and DH376, but not
LEI-105, also inhibited other serine hydrolases suABHD6.
Thus, it is advisable to include DO53 as a negative control

in the experimental design when using DO34 or DH376
(Deng et al., 2017).
DAGLa is very well conserved throughout evolution.

Human DAGLa has 97% homology with its mouse or-
tholog, whereas it has only 79% homology to DAGLb.
DAGLa has a long unstructured C-terminal tail, which
contains many phosphorylation sites that regulate its
activity and subcellular localization through protein-
protein interactions. It has been shown that CaMKII
phosphorylates Ser782 and Ser808, thereby reducing
the enzyme activity (Shonesy et al., 2013). On the other
hand, protein kinase A, which is activated by cAMP,
has been shown to phosphorylate multiple sites in the
C-terminus of DAGLa, including Ser798, thereby acti-
vating the enzyme (Shonesy et al., 2020). It has been
suggested that the opposing actions of protein kinase A
and CaMKII on DAGLa activity may be important in
setting the level of tonic 2-AG signaling. Of note, cAMP-
induced phosphorylation of Ser738 of DAGLa has been
shown to enhance the interaction of DAGLa with an-
kyrin-G, a scaffolding protein in dendritic spines (Yoon
et al., 2021). This led to increased spine size and de-
creased DAGLa surface diffusion. Repeated strong excit-
atory dendritic spine stimulation resulted in a feedback
signal that promoted the growth of an inhibitory c-amino-
butyric acid bouton onto the same dendrite in a DAGL-
dependent manner. The C-terminus also contains the
consensus motif PPxxF, needed to bind the coiled-coil do-
main of Homer proteins, which are adapter proteins that
localize DAGLa close to the post-synaptic density in the
vicinity of metabotropic glutamate receptor 5 (Jung et al.,
2007). Interestingly, the surface localization of DAGLa
was shown to be a dynamic process controlled by protein
kinase C. DAGLa colocalized with b-tubulin and cycled
between the plasma membrane and endosomal compart-
ments via EEA1- and Rab5-positive early endosomes in
a clathrin-independent pathway (Zhou et al., 2016).
This process could be disrupted by protein kinase C in-
hibitors but not by protein kinase A inhibitors. In a
mouse model of Fragile X syndrome, which is the
most commonly known genetic cause of autism, aberrant
subcellular localization of DAGLa was found to cause a
disruption in glutamatergic signaling, thereby impairing
long-term depression (Jung et al., 2012). Recently, the
first clinical evidence was presented that a dagla vari-
ant, which led to a disrupted cellular localization of the
protein, was connected to a human genetic disorder. Nine
children from eight families with heterozygous de novo
truncating variants in the last exon of DAGLa exhibited
developmental delay, ataxia, and complex oculomotor ab-
normalities (Bainbridge et al., 2022). Altogether, these
observations demonstrate that the post-translational
regulation of DAGLa activity and its subcellular locali-
zation enable a tight spatiotemporal control on 2-AG-de-
pendent synaptic transmission. Disturbances in the
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subcellular localization of DAGLa and its activity re-
sult in abnormal neurotransmission and neurologic
disorders. Unfortunately, pharmacological inhibition of
DAGLa in the CNS is unlikely to be of therapeutic
value due to on-target toxicity.

C. Therapeutic Potential of Diacylglycerol Lipase-b

DAGLb is the main enzyme responsible for the pro-
duction of 2-AG in immune cells, including microglia
that are the brain resident macrophages. DAGLb is a
70 kDa multidomain, integral membrane serine

TABLE 9
Modulators of 2-AG metabolism

Name Target Phase Structure Reference

LEI-105 DAGL Preclinical Baggelaar et al., 2015

DO34 DAGL Preclinical Ogasawara et al., 2016

DH376 DAGL Preclinical Ogasawara et al., 2016

DO53 Negative control compound Preclinical Ogasawara et al., 2016

KT109 DAGL Preclinical Hsu et al., 2012

JZL184 MAGL Preclinical Long et al., 2009

MJN110 MAGL Preclinical Niphakis et al., 2013

ABX-1431 (Lu-AG06466) MAGL Phase 2
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hydrolase that lacks the unstructured C-terminal tail
observed in DAGLa. This suggests that the activity
and subcellular localization of DAGLb is differently
regulated. DAGLb has a similar substrate preference
as DAGLa, but it is also capable of hydrolyzing poly-
unsaturated fatty acid-specific triacylglycerides (Shin
et al., 2020). DAGLb knockout mice show 50% reduction
in 2-AG levels in the brain, whereas in the liver, a
> 90% reduction was observed (Gao et al., 2010). DAGLb
is not involved in the regulation of depolarization-
induced suppression of inhibition or DSE in hippocam-
pal or cerebellar slices (Gao et al., 2010), and in the de-
veloping brain, it is detected in the axonal growth cone
of neurons (Bisogno et al., 2003). DAGLb is transported
to the cone via the adaptor protein complex AP-4 (Davies
et al., 2022). A patient deficient in AP-4 was shown to
accumulate DAGLb in the trans-Golgi network of cells,
and AP-4 knockout mice had reduced eCB levels in the
brain (Davies et al., 2022). Recently, a specific subset of
nigral dopaminergic neurons in the adult brain was
found to express DAGLb. This expression was impli-
cated in the inhibition of c-aminobutyric acid release
from dorsal striatal spiny projection neurons and is sup-
posed to be involved in locomotor skill learning across
sessions (Liu et al., 2022). Multiple homozygous loss-
of-function mutations in DAGLb were linked to spo-
radic, early-onset autosomal recessive Parkinsonism in
Chinese families (Liu et al., 2022). PLCc2, for which ac-
tivating mutations are associated with autoinflamma-
tory disorders and Alzheimer’s disease, has recently
been shown to serve as the principal enzyme providing
the DAG pool for DAGLb-MAGL axis in human innate
immune cells and microglia (Jing et al., 2021). Mouse
microglia lacking PLCc2 displayed a suppressed en-
docannabinoid-eicosanoid cross-talk and an impaired
in vivo inflammatory response to lipopolysaccharide
that led to reduced CD68-expression but not to release
of proinflammatory cytokines. These findings extend the
previous observations that genetic and pharmacological

inhibition of DAGLb exerts anti-inflammatory proper-
ties in mouse macrophages and microglia (Hsu et al.,
2012; Viader et al., 2016). Overall, it was suggested
that selective inhibitors of DAGLb (and MAGL) may
be therapeutically of interest for immune pathologies
caused by activation of PLCc2.
Currently, no selective DAGLb inhibitors are available.

KT-109 was originally reported as a selective DAGLb
inhibitor (Hsu et al., 2012), which displayed analgesic
efficacy in an inflammatory and neuropathic pain model
(Wilkerson et al., 2016; Shin et al., 2018), as well as in
a sickle cell disease model (Khasabova et al., 2023).
However, it should be noted that KT109 also inhibits
DAGLa to the same extent as DAGLb (Deng et al., 2017);
thus care should be taken in the interpretation of the
effects of this compound. As noted earlier, nonselective
dual DAGL inhibitors, such as DO34 and DH376, have
anti-neuroinflammatory properties (Ogasawara et al.,
2016; Viader et al., 2016). They reduced production of
proinflammatory cytokines and prostaglandins in micro-
glia and impaired lipopolysaccharide-induced hypother-
mia in mice. In summary, selective compounds are still
required to test the therapeutic potential of DAGLb
inhibition in neuroinflammatory diseases and inflam-
matory pain.

D. Therapeutic Potential of Monoacylglycerol Lipase

MAGL is a membrane-associated serine hydrolase,
which was cloned in 1997, and consists of two tissue-
specific splice-variants with a molecular weight of 33
kDa and 36 kDa. It has the typical catalytic triade
Ser122, Asp239, and His269 and uses monoacylgly-
cerols with different chain length and saturation,
including 2-AG, as a substrate (Dinh et al., 2002). Oxi-
dation of two noncatalytic cysteines (C201 and C208) re-
duces its enzymatic activity (Dotsey et al., 2015). MAGL
is abundantly expressed in various tissues (e.g., brain,
lung, liver, spleen, kidney, heart, and intestines) and is
active in different brain regions including hippocampus,

Fig. 25. (A) Structured part of the AlphaFold model for human DAGLa, residues 1-681; red: transmembrane domain, blue: catalytic domain, green:
regulatory loop. (B) Unstructured tail region from the AlphaFold model, residues 682–1042 highlighting potential phosphorylation sites, as discussed
in the text, and Homer binding domain. (C) Schematic representation with highlighted regions and relevant serines shown.
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cerebellum, cortex, and striatum (Baggelaar et al.,
2017). MAGL is found in neurons and astrocytes, and to
a lesser extent in microglia (Viader et al., 2016), and no-
tably is localized at the presynaptic site along with the
CB1 receptor and opposed to DAGLa. This lipase termi-
nates the retrograde eCB signaling mediated by 2-AG,
and indeed mice lacking the mgll gene that encodes for
MAGL show robust elevations of 2-AG in the brain
and less pronounced elevations in liver, spleen, and
thymus (Long et al., 2009). This observation suggests
that other esterases may participate in the hydrolysis of
2-AG at the periphery. MAGL knockout mice also have
significantly reduced AA levels in their brain, which in-
dicates that the DAGL-MAGL axis is responsible for
the pool of free AA in the brain (Nomura et al., 2010).
Furthermore, MAGL knockout animals have a desensi-
tized CB1R, and show impaired eCB-dependent synap-
tic plasticity and physical dependence (Schlosburg
et al., 2010).
Several in vivo active MAGL inhibitors, including

JZL184 and MJN110, have been described in the liter-
ature (Long et al., 2009; Niphakis et al., 2013).
Together with the MAGL knockout animals, these in-
hibitors have been instrumental in studies of the ther-
apeutic potential of MAGL inhibition in a broad range
of diseases, spanning from cancer (Nomura et al., 2011),
Parkinson’s disease (Nomura et al., 2010), Alzheimer’s
disease (Chen et al., 2012), and MS (Hern�andez-Torres
et al., 2014) to inflammatory and neuropathic pain
(Hohmann et al., 2005; Kinsey et al., 2009), acute liver
injury (Cao et al., 2013), and anxiety and depression
(Bluett et al., 2017; Zhang et al., 2015a). For recent
reviews, see Gil-Ord�o~nez et al. (2018), Deng and Li
(2020), and Van Egmond et al. (2021). Of note, chronic,
high dosing of MAGL inhibitors caused desensitization
and downregulation of CB1R, and behavioral tolerance
to CB1R agonists. A therapeutic window for anti-
nociceptive efficacy without CB1R desensitization
was observed upon acute and chronic low dosing. In this
respect, MAGL inhibition may have therapeutic potential
for treating inflammatory and neuropathic pain, as well as
neurodegenerative diseases accompanied by neuroinflam-
mation like MS, Alzheimer’s, and Parkinson’s diseases.
Several pharmaceutical companies, including Johnson &
Johnson, Lundbeck, Takeda Pharmaceuticals, Pfizer, and
Hoffman-LaRoche, have filed patents describing a diverse
range of chemotypes of MAGL inhibitors (Bononi et al.,
2021). Among these compounds, the covalent, irreversible
MAGL inhibitor Lu-AG06466, developed by Lundbeck
(formerly ABX-1431 from Abide Therapeutics), is the
most advanced experimental drug. It has been reported
that Lu-AG06466 exerts adverse effects in the CNS
and appeared ineffective in a phase 2 clinical trial for
Tourette syndrome (M€uller-Vahl et al., 2021, 2022), yet
this compound is currently being investigated in phase
2 trials for other indications, such as post-traumatic

stress disorder and spasticity in multiple sclerosis.
Clinical trials for Lu-AG06466 listed in Clinical
Trials.gov at the date of this review are shown in
Table 10.
Overall, it is hypothesized that reversible MAGL in-

hibitors may avoid some of the adverse effects observed
with covalent, irreversible inhibitors (Van Egmond et al.,
2021). However, another strategy to avoid CNS-mediated
side effects could be to generate peripherally restricted
MAGL inhibitors for the potential treatment of cancer,
tissue ischemic-reperfusion injury, and/or antinociception.

V. Therapeutic Potential of Transmembrane,
Intracellular, and Extracellular Transporters

While translational efforts toward the development
of ECS modulators have been primarily dedicated to
eCB degradation inhibitors, in particular FAAH and
MAGL blockers (Blankman and Cravatt, 2013; Fowler,
2021; van Egmond et al., 2021), translating research on
inhibitors of eCB cellular uptake or cellular trafficking
remains slow. The development of such transport inhibi-
tors has been convoluted by the fact that extra- and
intracellular eCB-binding proteins are promiscuous, as
well as by the lack of a concrete target responsible for
plasma membrane transport, whose identity remains
elusive. Nevertheless, RT126, a FABP inhibitor that
competes with eCB binding for FABP4 and FABP5, and
SYT510, a selective eCB reuptake inhibitor (SERI) which
increases extracellular eCB levels in the brain by target-
ing the putative eCB membrane transporter, are under
development by the pharmaceutical industry (https://ir.
artelobio.com/news-events/press-releases/detail/90/artelo-
biosciences-reports-positive-pre-clinical-results, https://
www.synendos.com). Unlike active cellular transport
mechanisms that are energy-driven, the lipophilic eCBs
seem to traffic between membranes and across aqueous
barriers through interactions with binding proteins and
pass the plasma membrane by energy-independent mech-
anisms (Fig. 7). Among these, facilitated diffusion is
influenced by both the interaction of eCBs with extra-
and intracellular binding proteins and their metabolic
enzymes. The measurement of facilitated diffusion and
plasma membrane lipid transport is challenging and
demands special phenotypic assays not easily accessible
for routine screening (Oddi et al., 2010; Fowler, 2013;
Rau et al., 2016; Reynoso-Moreno et al., 2023). A major
challenge has been to differentiate FAAH and AEA up-
take inhibitors as these processes are intrinsically cou-
pled (Fowler et al., 2004; Vandevoorde and Fowler, 2005;
Hillard et al., 2007). Therefore, only recently selective
and potent eCB cellular uptake inhibitors have been
developed (Chicca et al., 2017).
In 2009, the identification of intracellular carrier

proteins, primarily FABPs, and lipid droplets as poten-
tial sequestration domains for AEA provided a new

926 Maccarrone et al.

https://ir.artelobio.com/news-events/press-releases/detail/90/artelo-biosciences-reports-positive-pre-clinical-results
https://ir.artelobio.com/news-events/press-releases/detail/90/artelo-biosciences-reports-positive-pre-clinical-results
https://ir.artelobio.com/news-events/press-releases/detail/90/artelo-biosciences-reports-positive-pre-clinical-results
https://www.synendos.com
https://www.synendos.com


perspective in AEA transport research (Oddi et al.,
2008, 2009; Kaczocha et al., 2009). FABPs facilitate the
spatial organization of eCBs into domains and enable
the trafficking between plasma and intracellular mem-
branes. In this section, an update on previous reviews
on the topic (Fowler, 2013; Nicolussi and Gertsch,
2015; Reynoso-Moreno and Gertsch, 2021) is provided,
focusing on the molecular pharmacology and possible
implications for therapeutic intervention of using the di-
verse eCB transport inhibitors shown in Fig. 26. Since
such inhibitors show CB1R/CB2R-dependent indirect
cannabimimetic effects like analgesia, anti-inflamma-
tory, and anxiolytic effects, they constitute a new class
of pharmacological inhibitors that indirectly activate
the ECS, showing a differential effect on the system
compared with FAAH and MAGL inhibitors.

A. Endocannabinoid Trafficking and Transport

Although 2-AG is the major eCB in tissues such as
the brain and is generally more soluble in water than
AEA (1400 ng/ml versus 250 ng/ml, respectively; see
Tetko et al., 2005), most research on eCB transporters
has been carried out on AEA. Intriguingly, almost 30 years
after the identification of AEA in porcine brain (Devane
et al., 1992b), the mechanisms of eCB membrane trans-
port (i.e., release into the extracellular space and cellular
reuptake) remain only partially understood. However,
different hypothetical models have been proposed and
reviewed for AEA uptake and trafficking (Felder et al.,
2006; Yates and Barker, 2009; Nicolussi and Gertsch,
2015), as shown in Fig. 7. The currently the best sub-
stantiated model of facilitated diffusion is discussed
here in the context of the emerging specific pharmaco-
logical modulators.
In the 1990s, the first reports on the cellular uptake

of AEA designated a temperature- and time-dependent
transport, which was linked to the enzymatic hydroly-
sis by FAAH in C6 glioma cells, N18TG2 neuroblas-
toma cells, and primary neuronal cells (Deutsch and

Chin, 1993; Di Marzo et al., 1994). This cellular uptake
process of AEAwas rapid (t1/2 5 2.5 minutes), saturable,
and, importantly, did not compete with closely related
N-acylethanolamines such as N-stearoylethanolamine,
N-linoleoylethanolamine, or N-palmitoylethanolamine,
shown in Table 3 (Di Marzo et al., 1994). Since all
N-acylethanolamines compete for FAAH hydrolysis,
being ideal substrates for this enzyme, the fact that
they showed no competition for cellular AEA uptake
clearly suggested a mechanism independent of AEA
metabolism (Chicca et al., 2012).
The early investigations in the 1990s suggested a

carrier-mediated uptake process for AEA that was not
dependent on either ATP or coupled to ion (Na1, Cl-, H1)
gradients (Beltramo et al., 1997; Hillard et al., 1997;
Hillard and Jarrahian, 2000). The transport process of
AEA displayed high-affinity Michaelis-Menten constants
in astrocytes (Km 5 0.3 mM), cortical neurons (Km 5
1.2 mM), and human neuroblastoma CHP100 cells (Km 5
0.2 mM) (Beltramo et al., 1997; Maccarrone et al., 1998),
with values comparable to those obtained with the
transporters of serotonin (Km 5 0.3–0.5 mM), dopamine
(Km 5 0.9–1.2 mM), and noradrenaline (Km 5 0.4 mM)
(Masson et al., 1999; Piomelli, 2003). Among more than
25 cell lines, and considering different assay protocols
and confounding factors such as sticking of lipids to
plastic and vials, the range of the apparent Km values
for AEA uptake diverges dramatically, from 0.1 mM to
45 mM (Felder et al., 2006; Oddi et al., 2010). Although
different routes of AEA catabolism exist (Fig. 4), which
in principle can influence AEA cellular uptake, their
contribution seems insignificant compared with that of
FAAH. In an experiment on [3H]AEA uptake competition
in U937 cells, different eCBs congeners (AEA, 2-AGE,
O-AEA, and NADA, shown in Table 3) competed with
[3H]AEA uptake, suggesting that a common cellular
membrane uptake mechanism seemingly competes for
one target related to cellular eCB uptake (Chicca et al.,
2012).

TABLE 10
Clinical trials for MAGL inhibitor Lu-AG06466 listed in ClinicalTrials.gov

Identifier Status Condition Title

NCT04597450 Ongoing PTSD Lu-AG06466 in Participants With Post Traumatic Stress Disorder
NCT04990219 Ongoing Multiple sclerosis A Study of Lu-AG06466 for the Treatment of Spasticity in Participants With

Multiple Sclerosis
NCT05028673 Completed Healthy A Study to Evaluate a New Tablet Formulation of Lu-AG06466 in Healthy

Participants
NCT04713254 Completed Healthy Drug Drug Interaction Study With Lu-AG06466 in Young Healthy Men
NCT04405323 Completed Healthy Study That Evaluates the Effect of CYP3A4 Inhibition on Lu-AG06466 in

Healthy Men and Women
NCT04419636 Completed Healthy Binding of Lu-AG06466 in the Brain in Healthy Men
NCT05081518 Terminated Focal epilepsy A Study of Lu-AG06466 in Participants With Treatment Resistant Focal

Epilepsy
NCT05201092 Completed Healthy A Study Investigating Lu-AG06466 in Healthy Men
NCT05219838 Completed Healthy Binding and Effects of Lu-AG06466 in the Brain of Healthy Men
NCT04974359 Terminated Fibromyalgia A Study to Evaluate Lu-AG06466 in Participants With Fibromyalgia
NCT05177029 Terminated Healthy Safety and Tolerability Study of Lu-AG06466 in Healthy Young Japanese

and Caucasian Participants
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Fig. 26. Model of eCB membrane transport and trafficking showing druggable targets. Molecular pharmacology and possible implications for thera-
peutic intervention of using diverse eCB transport inhibitors are shown. See text for details and abbreviations.
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Albumin and Hsp70 have been identified as cytosolic
AEA-binding proteins in mouse skin keratinocytes us-
ing proteomics and functional assays (Oddi et al., 2009).
Another candidate in the list of intracellular carrier pro-
teins for AEA is the reported FAAH-like AEA trans-
porter (FLAT) (Fu et al., 2011). The latter was proposed
to be a partially cytosolic, catalytically silent variant
of the AEA-degrading enzyme FAAH. The role and exis-
tence of FLAT as an AEA transporter were subsequently
questioned, as no expression in either mouse brain,
spinal cord, or dorsal root ganglia could be detected by
independent groups (Leung et al., 2013; Fowler, 2014).
Furthermore, a certain enzymatic activity could still be
detected in artificial FLAT-transfected HeLa cells (Leung
et al., 2013). On the other hand, an inhibitor of FLAT
(ARN272) showed promising indirect cannabimimetic
effects in a mouse model of nausea and vomiting (O’Brien
et al., 2013).
In a docking study, the sterol carrier protein 2 (SCP2)

was shown to be yet another potential eCB carrier pro-
tein (Liedhegner et al., 2014). Although an increase of
AEA accumulation could be detected in SCP2-transfected
HEK-293 cells, competition experiments with AM404
and 2-AG did not show a significant difference in their
IC50 values between SCP2-expressing and wild-type
cells. It was concluded that SCP2 is a low affinity bind-
ing protein for AEA and that it might facilitate AEA
cellular uptake to a minor degree. A fluorescent probe
displacement assay was developed to screen for SCP2
inhibitors, which might help to elucidate the role of
SCP2 in eCB transport. Using this assay, the binding
affinities of AEA (Ki 5 0.68 ± 0.05 lM) and 2-AG
(Ki 5 0.37 ± 0.02 lM) to SCP2 were calculated (Hillard
et al., 2017). The binding affinities of a library of previously
reported SCP2 inhibitors were tested along with a new
series of analogs, where SCPI-1 was the most potent
probe with a Ki 5 1.0 ± 0.1 mM (Hillard et al., 2017).
SCP-2/SCP-x gene ablation in FABP1 null (LKO) mice
antagonized the impact of LKO and high-fat diet on
brain AA and, subsequently, on eCB levels, suggesting
that both FABP1 and SCP-2 directly or indirectly par-
ticipate in regulating the ECS (Martin et al., 2019). In
principle, any protein with hydrophobic surfaces/cavities
may serve as an acceptor for lipids like AEA and other
eCBs. This is confirmed by the recent crystal structure
of cellular retinol-binding protein in complex with 2-AG
(Lee et al., 2020). Currently, the pharmacological compe-
tition of eCBs at extracellular binding proteins like albu-
min, Hsp70, SCP2, or extracellular FABPs by synthetic
ligands has not been studied in sufficient detail to allow
conclusions regarding their druggability; i.e., it remains
unclear whether competing for extracellular AEA pro-
tein binding would exert robust cannabimimetic effects,
as well as diverse CB1R/CB2R-dependent pharmacologi-
cal effects. Therefore, the current focus is on plasma
membrane-associated and intracellular processes.

Notably, the involvement of FABPs in the transport of
eCBs was suggested already in the context of intracel-
lular PPAR activation (Sun et al., 2008). Consequently,
FABP5 and FABP7 were shown to mediate AEA intracel-
lular transport from the plasma membrane to FAAH in
COS-7-FAAH-eGFP and N18TG2 neuroblastoma cells
(Kaczocha et al., 2009).
As shown in Fig. 1, membrane-derived AEA and 2-AG

can initiate cellular signaling at both extracellularly
accessible (e.g., CB and other GPCRs) and intracellu-
larly accessible (e.g., TRPVs, TRPs, and PPARs) sites
(Ross, 2003; Watanabe et al., 2003; Goodfellow and Glass,
2009; Sigel et al., 2011; Baur et al., 2013). Because any
eCB agonist needs to be removed from the orthosteric
binding site of its receptor targets, the evolution of a
membrane protein that facilitates reuptake and CB1R/
CB2R clearance would make sense. The interference
with the movement of eCBs through competitive inhi-
bition at binding sites or the putative eCB membrane
transporter, therefore, has great potential to modulate
pathophysiological processes through the ECS, with a
range of possible therapeutic applications like FAAH
and MAGL inhibitors.

B. Evolution of Pharmacological Inhibitors of N-Arachidonyl
Ethanolamine Transport

In the 1990s, the first AEA uptake inhibitors were
synthesized. Based on the observed substratespecificity,
initially mainly structural analogs of AEA were synthe-
sized and tested for [3H]AEA uptake inhibition in rat
brain neurons and astrocytes (Khanolkar et al., 1996;
Beltramo et al., 1997). The first inhibitor of AEA cellu-
lar uptake was the N-(4-hydroxyphenyl)-arachidona-
mide AM404, which exhibited an IC50 value �1 mM in
neurons and an IC50 value �5 mM in astrocytes (see
Table 11) (Beltramo et al., 1997).
This probe, which was later discovered to be a bioactive

AA conjugated metabolite of paracetamol (also known
as acetaminophen) (H€ogest€att et al., 2005), was initially
reported to be selective toward uptake inhibition over
FAAH inhibition (IC50 > 30 mM). AM404 was later sug-
gested to be a competitive inhibitor of AEA uptake and
was found to be transported as a pseudo-substrate of
the postulated AEA transporter (Beltramo and Piomelli,
1999). Yet, independent groups showed that AM404 in-
hibits FAAH with IC50 values close to those obtained for
AEA uptake inhibition (Table 11), thus questioning the
selectivity of this compound. In addition, AM404 may
also interact with other targets of the ECS. The re-
versed amide analog AM1172 apparently solved the
problem of selectivity by being an equally potent in-
hibitor of AEA uptake as AM404 but resistant to hy-
drolysis by FAAH (Fegley et al., 2004). Yet, it was
subsequently reported that AM1172 also inhibits
FAAH (Hillard et al., 2007).
The quest for better AEA cellular uptake inhibi-

tors continued with the aim to increase their
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TABLE 11
Potent inhibitors of AEA cellular uptake relative to inhibition of AEA degradation (by FAAH) or intracellular transport (by FABP5)

Compound

AEA Cellular Uptake Inhibition

IC50 (mM) Cell Type AEA Cellular Uptake Kinetics

FAAH
IC50 value

(mM)
FABP5

Ki value (mM)

Thiazolidinone-type second-

generation selective
endocannabinoid

reuptake inhibitors (SERIs)
Patent ES2845636T3

0.08-0.50 U937 ND >10 >10

WOBE437
Chicca et al., 2017

0.01
0.137
0.055
�1

[50% inh.]

U937
HMC-a

Neuro2A
Rat cortical neurons

Km 5 0.25 mM, Vmax 5 67.4 fmol/
min/cell in U937 cells

>10 >50

RX-055
Chicca et al., 2017

0.014
�1

[35% inh.]

U937
Neuro2A

ND 4.0 ND

Guineensine
Nicolussi et al., 2014b

1.32
0.29
0.62

U937
U937

HMC-1a

ND 46.8 >100

Macamide 7
Hajdu et al., 2014

0.67 U937 ND 4.1 ND

Farinosone-C derivative (BSL-34)
Burch et al., 2013

0.23 U937 ND >10 ND

AM404
Beltramo et al., 1997; Maccarrone
et al., 1998; Piomelli et al., 1999;

De Petrocellis et al., 2000;
Rakhshan et al., 2000; Jarrahian
et al., 2000; Deutsch et al., 2001;
Porter et al., 2002; Glaser et al.,
2003; L�opez-Rodr�ıguez et al.,
2003a; Fowler et al., 2004;

Vandevoorde and Fowler, 2005;
Dickason-Chesterfield et al., 2006;

Hillard et al., 2007;
Nicolussi et al., 2014a

1.0
5.0
2.2

10.2
10.9
8.1

10.2
4

Ki � 14
14.9
20
1.8
4.9

>100
44.4

Rat cortical neurons
Rat cortical astrocytes

Astrocytoma
C6 glioma
RBL-2H3
RBL-2H3
RBL-2H3
RBL-2H3
RBL-2H3
RBL-2H3
RBL-2H3
U937

Cerebellar granular
neurons
HMC- a

HeLaa

Km 5 1.2 mM, Vmax 5 90.9 pmol/
min/mg in neurons

Km 5 0.32 ± 0.1 mM, Vmax 5 171
pmol/min/mg in astrocytes

Km 5 0.6 ± 0.1 mM, Vmax 5 14.7
± 1.5 pmol/min/mg in astrocytoma
Km 5 0.7 ± 0.1 mM, Vmax 5 0.39
fmol/min/cell in C9 glioma cells
Km 5 11.4 ± 2.3 mM, Vmax 5 17.5

± 2.1 � 10�17 mol/min/cell in
RBL-2H3 cells

Km 5 0.13 ± 0.01 mM, Vmax 5 140
± 15 pmol/min/mg in U937 cells

5.9
3.6
0.5
0.8
>30

Ki 5 0.60
6
2.1

0.39

(continued)
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TABLE 11—Continued

Compound

AEA Cellular Uptake Inhibition

IC50 (mM) Cell Type AEA Cellular Uptake Kinetics

FAAH
IC50 value

(mM)
FABP5

Ki value (mM)

AM1172
Fegley et al., 2004; Dickason-

Chesterfield et al., 2006;
Kaczocha et al. 2006; Hillard

et al., 2007

2.5
2.1

24.0
86.6
68.9

Astrocytoma
Rat cortical neurons
Cerebellar granular

neurons
RBL-2H3
HeLa a

ND >5
Ki �3.2
>100
>50

ND

VDM11
De Petrocellis et al., 2000;

Fowler et al., 2004; Vandevoorde
and Fowler, 2005; Dickason-
Chesterfield et al., 2006;

Kaczocha et al., 2006; Hillard
et al., 2007; Kaczocha et al.,
2012; Nicolussi et al., 2014a

10.2
6.1

11.2
9.9
1.1
5.5

>100
23.8

C6 glioma
C6 glioma
RBL-2H3
RBL-2H3
U937

Cerebellar granular
neurons
HMC-1a

HeLa a

ND 2.0
1.2
0.4

Ki � 0.44
11.174

5111

1.6 - 2.9

1.75

OMDM-1/2
Ortar et al., 2003; Fowler et al.,
2004; Dickason-Chesterfield
et al., 2006; Kaczocha et al.,

2006; Hillard et al., 2007; Chicca
et al., 2012; Kaczocha et al.,
2012; Nicolussi et al., 2014a

Ki � 3
16.6
3.2
9.1
3.93
5.2
3.2
3.1

>100
4.9

RBL-2H3
C6 glioma
RBL-2H3
RBL-2H3
U937
U93764

U937
HMC-1a

HeLaa

Cerebellar granular
neurons

ND >50
54
23.4
>100

Ki � 9.7
>100
>50

3.85
>100

UCM707
L�opez-Rodr�ıguez et al., 2003a;

Fegley et al., 2004; Fowler et al.,
2004; Dickason-Chesterfield
et al., 2006; Kaczocha et al.,

2006; Hillard et al.,
2007; Chicca et al., 2012;
Nicolussi et al., 2014a

0.8
1.34
1.8
41
25
20.1
3.6
56.4
30.3
4
3

U937
U937
U937

C6 glioma
RBL-2H3
RBL-2H3
HMC-1a

HeLaa

Cerebellar granular
neurons

Cortical neurons
Cortical neurons FAAH�/�

Km 5 1.1 mM, Vmax 5 151 pmol/
min/mg in WT cortical neurons
Km 5 1.3 mM, Vmax 5 157 pmol/
min/mg in FAAH�/� cortical

neurons

30
8.32
>100

Ki � 0.37
20.5
50

25.8

LY2183240
Moore et al., 2005; Alexander
and Cravatt, 2006; Dickason-
Chesterfield et al., 2006; Ortar
et al., 2008; Nicolussi, 2014;

Nicolussi et al., 2014a

0.000270
0.015

0.00095
1.93
29.7

RBL-2H3
RBL-2H3
U937

HMC-1a

HeLaa

Km 5 4.69 ± 0.46 mM, Vmax 5
0.02 fmol/min/cell in RBL-2H3
cells

0.014
0.0021
0.0124
0.001

ND

WOBE492
Nicolussi et al., 2014

0.000005
0.12

U937
HMC-1

ND 0.000014 ND

(continued)
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potency and generate structure-activity relation-
ship studies for the postulated transporter target (Jar-
rahian et al., 2000; Di Marzo et al., 2004). Since the
inhibition of FAAH also leads to the inhibition of [3

H]AEA uptake, the aspect of selectivity over FAAH
became a crucial differentiation criterion (Day et al.,
2001; Deutsch et al., 2001). Besides the well-studied
AEA uptake inhibitor VDM11 (De Petrocellis et al.,
2000), more selective inhibitors such as the oleic acid
derivatives OMDM-1 and OMDM-2 (Ortar et al.,
2003) or UCM707 (L�opez-Rodr�ıguez et al., 2001,
2003a) were synthesized (Table 11). Despite their ini-
tially published selectivity over FAAH, some of these
inhibitors were later found to inhibit FAAH with simi-
lar or even identical IC50 values obtained for AEA up-
take inhibition (Fowler et al., 2004; Vandevoorde and
Fowler, 2005; Hillard et al., 2007). Unfortunately, al-
most nothing is known about the pharmacokinetics
and tissue distribution of these compounds, and phar-
macological effects are difficult to attribute to either
FAAH inhibition or AEA transport inhibition.
UCM707 was investigated in neuronal preparations of
FAAH�/� mice and still showed an IC50 5 3 ± 1 mM
for AEA accumulation (Ortega-Guti�errez et al., 2004).
This finding agreed with its selectivity for AEA uptake
inhibition over FAAH (L�opez-Rodr�ıguez et al., 2003b).
A direct comparison of the data obtained with neuro-
nal cells of FAAH1/1 mice demonstrated that AEA
cellular uptake is a facilitated process in which a spe-
cific “UCM707-binding protein” was proposed to partic-
ipate with a relative contribution of at least 30%
(Ortega-Guti�errez et al., 2004). FABP5 as an intracel-
lular eCB carrier protein (Kaczocha et al., 2012; San-
son et al., 2014) was therefore a possible candidate.
However, the affinity of UCM707 to FAPB5 was mea-
sured (Table 11) and resulted in a Ki 5 25.8 mM
(19.5–44.7 mM) (Nicolussi, 2014). This low affinity in-
teraction of UCM707 with FABP5 clearly does not
match the determined IC50 value for AEA cellular up-
take. Moreover, given that UCM707 still works in
FAAH-lacking cells and synergizes with FAAH inhibi-
tors for AEA uptake inhibition and inhibits AEA ef-
flux (Chicca et al., 2012), the possibility that UCM707
targets a membrane transport mechanism is still

valid. Unsurprisingly, the highly potent FAAH inhibi-
tors LY2183240 and URB597 (Table 11) resulted in
pronounced AEA cellular uptake inhibition in differ-
ent cell types (Mor et al., 2004; Moore et al., 2005;
Dickason-Chesterfield et al., 2006) and were essen-
tially representative of all FAAH inhibitors. The un-
expected and paradoxical inhibition of passive
diffusion by small organic molecules, as the primary
evidence of the carrier-mediated model, was readily
refuted because inhibitors like AM404 did not inhibit
AEA cellular uptake at short incubation times (< 40
seconds) and inhibited FAAH (Glaser et al., 2003). Li-
gresti and colleagues convincingly showed saturable
AEA uptake within 90 seconds not only in RBL-2H3
and C6 glioma cell lines but also in mouse brain syn-
aptosomes from FAAH�/� mice (Ligresti et al., 2004).
In the study by Glaser and colleagues (Glaser et al.,
2003), where simple diffusion of AEA was measured,
very high nonphysiologic AEA concentrations (1–100
mM) were used, which may easily mask the transport
kinetics seen with concentrations of 50 to 500 nM (as
a note, at $ 1 mM AEA simple diffusion kinetics can
be measured). Yet, such high AEA concentrations are
not found in tissues, and much less is needed for recep-
tor activation. Eli Lilly developed the highly potent tet-
razole inhibitor called LY2183240 with an astonishing
IC50 5 270 ± 29 pM for AEA cellular uptake in RBL-
2H3 cells (Moore et al., 2005; Ortar et al., 2008) (Table
11). Using the modified radiolabeled probe [125I]-
LY2318912, a high-affinity membrane binding site in-
volved in the transport of AEA could be identified, curi-
ously also in FAAH-lacking HeLa cells (Kd 5 7.06 ±
1.69 nM, Bmax 5 32.2 ± 2.98 fmol/mg). In human
FAAH-transfected HeLa cells, neither the binding affin-
ity (Kd) nor the Bmax value changed significantly, indi-
cating that one binding site is independent of FAAH
(Moore et al., 2005). Having raised hopes for the molec-
ular identification of the postulated AEA transporter,
shortly afterward, LY2183240 was shown to be an ultra-
potent, irreversible, and nonspecific inhibitor of FAAH,
MAGL, and other serine hydrolases (Alexander and
Cravatt, 2006).
Additional indirect evidence for the existence of a

transporter-mediated (facilitated) AEA uptake

TABLE 11—Continued

Compound

AEA Cellular Uptake Inhibition

IC50 (mM) Cell Type AEA Cellular Uptake Kinetics

FAAH
IC50 value

(mM)
FABP5

Ki value (mM)

WOBE498
Nicolussi et al., 2014

0.00005
0.25

U937
HMC-1

ND 0.000015 ND

ND, not determined.
aCells lacking FAAH-activity.
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mechanism was provided by the demonstration of
AEA uptake in synaptosomes from human, mouse,
and rat brain (Battista et al., 2002) and in neuronal
preparations of FAAH knockout mice (Fegley et al.,
2004; Ligresti et al., 2004; Ortega-Guti�errez et al.,
2004). Known AEA uptake inhibitors like UCM707
still reduced the accumulation of AEA, but the uptake
efficacy was much lower in cells lacking FAAH com-
pared with those from wild-type mice (Fegley et al.,
2004; Ligresti et al., 2004; Ortega-Guti�errez et al.,
2004). However, FAAH activity alone did not seem to
be causative of all AEA uptake phenomena (Ligresti
et al., 2004). In agreement with the view that FAAH
is not the only player in AEA transport, cells lacking
FAAH like HMC-1 cells (Maccarrone et al., 2000;
Nicolussi et al., 2014b) show robust AEA uptake ki-
netics, although with a lower Vmax than in FAAH-
expressing cells. Moreover, an energy-independent
and saturable export of [3H]AEA was demonstrated
in human endothelial cells (Maccarrone et al., 2002).
Obviously, hydrolysis by FAAH has no impact on AEA
efflux. Additionally, it was demonstrated that the trans-
port inhibitor VDM11 inhibited the release of de novo–
generated AEA in HEK-293 cells (Ligresti et al., 2004).
Taken together, these studies pointed toward a bidirec-
tional membrane transport mechanism for AEA shown
by independent groups (Hillard et al., 1997; Maccarrone
et al., 2002; Ligresti et al., 2004; Chicca et al., 2012). In
this context, the release of AEA and 2-AG was assessed
in an electrophysiological study measuring striatal long-
term depression in acute brain slice preparation, where
postsynaptic blockage of eCB membrane transport using
VDM11 achieved a disruption of eCB release (Ronesi
et al., 2004). In another study, OMDM-2 and AM404
increased activity-dependent AEA and 2-AG levels in
the hypothalamus and inhibited the synaptically driven
spiking activity in postsynaptic neurons upon enhanced
retrograde signaling (Di et al., 2005). In urethane-
anesthetized rats, VDM11 inhibited the micturition re-
flex at least in part through CB1R (Honda et al., 2016),
suggesting a possible therapeutic role of AEA trans-
port inhibitors in disturbances of the storage function
of the bladder or disturbances of the emptying func-
tion. The only pharmacological study that uses AEA
release inhibition as an explanation for the effect was
the comparison of OMDM-2 versus the FAAH inhibitor
URB597 on social withdrawal in rodents (Seillier and
Giuffrida, 2018). Systemic administration of OMDM-2
reduced social interaction, but, in contrast to URB597-
induced social deficit, this effect was not reversed by
the TRPV1 antagonist capsazepine. Conversely, the CB1

R antagonist AM251, which did not affect URB597-
induced social withdrawal, exacerbated OMDM-2 effect
(Seillier and Giuffrida, 2018). The infusion of OMDM-2
and VMD11 in both cases reduced the extracellular lev-
els of dopamine collected from nucleus accumbens and

suggested a role for AEA transport in sleep modulation
(Murillo-Rodriguez et al., 2013). Interestingly, AM404
but not VDM11 reduced the acute freezing response in
male mice in a strong auditory-cued fear memory via
CB1R- and TRPV1-mediated mechanisms (Llorente-Berzal
et al., 2015). Finally, in nonhuman primates, AM404
reinforced anandamide or cocaine self-administration
behavior and induced reinstatement of drug-seeking
behavior in abstinent monkeys by a CB1R-dependent
mechanism (Schindler et al., 2016a).

C. Preclinical Development of Selective Endocannabinoid
Reuptake Inhibitors

The N-isobutylamide guineensine from Piper species
(Table 11) was identified as a nanomolar and strongly
selective inhibitor of AEA cellular uptake over FAAH
inhibition and other ECS targets (Nicolussi et al.,
2014b). Guineensine did not show a relevant inhibition
of FAAH activity (IC50 > 50 mM) or FABP5 binding
(Ki > 100 mM) and dose-dependently induced cannabi-
mimetic effects in BALB/c mice shown by strong cata-
lepsy, hypothermia, reduced locomotion, and analgesia
in the hot plate test. The catalepsy and analgesia
were blocked by the CB1R antagonist rimonabant
(SR141716A) (Reynoso-Moreno et al., 2017). The
pharmacological evidence of indirect cannabimimetic
effects strongly suggests that guineensine also targets
eCB cellular reuptake in vivo (Reynoso-Moreno et al.,
2017). An efficient total synthesis of guineensine was
published that may facilitate the provision of this rare
natural product for research (Bartholom€aus et al.,
2019). Another compound in the list of plant-derived
natural AEA uptake inhibitors is the N-benzyl-(9Z,12Z)-
octadecadieneamide (macamide 7, shown in Table 11),
which exhibited a nanomolar IC50 value for AEA uptake
inhibition but also inhibits FAAH at low micromolar con-
centrations (Hajdu et al., 2014). Furthermore, an analog of
the natural product farinosone-C (BSL-34, Table 11) was
found to be a more selective inhibitor of AEA uptake
(IC50 5 232 nM) over FAAH inhibition (IC50 > 10 mM),
with close structural similarity to OMDM-2 (Burch
et al., 2013).
Building on previous work on N-alkyl-2,4-dodeca-

dienamides from Echinacea purpurea, which have
been shown to interact with the ECS (Raduner et al.,
2007; Chicca et al., 2009), a series of derivatives and
analogs were synthesized. Diverse N-alkylcarbamates
were also synthesized and tested in U937 cells for
their ability to inhibit AEA hydrolysis and uptake,
showing ultrapotent FAAH inhibition that led to hyper-
potent AEA uptake inhibition (Nicolussi et al., 2014a).
Interestingly, some of these N-alkylcarbamates (e.g.,
WOBE492 and WOBE498) showed a FAAH-independent
AEA uptake inhibition in HMC-1 cells with IC50 values
below 300 nM (Nicolussi et al., 2014a). This study led to
the identification of (2E,4E)-N-[2-(3,4-dimethoxyphenyl)

Endocannabinoid System as a Therapeutic Target 933



ethyl] dodeca-2,4-dienamide (WOBE437, shown in
Table 11) as a highly potent and selective eCB uptake
inhibitor, which was extensively profiled (Chicca et al.,
2017). For instance, WOBE437 inhibits AEA and 2-AG
uptake in U937 cells with IC50 values of 10 ± 8 nM and
283 ± 121 nM, respectively (Chicca et al., 2017). Fur-
thermore, WOBE437 was tested in Neuro2a mouse neu-
roblastoma cells, primary rat cortical neurons, and
FAAH-deficient HMC-1 cells, showing differential but
significant inhibition of AEA uptake in all the cell lines.
WOBE437 did not inhibit FAAH, MAGL, a/b-hydrolase
domain proteins 6 and 12, or COX-2, nor did it show a
significant interaction with CB1R/CB2R, FABP5, or any
of 45 relevant CNS-related receptors/transporters/ion
channels/enzymes tested (Chicca et al., 2017). More-
over, in C57BL6/J male mice WOBE437 was found to
be orally bioavailable (Reynoso-Moreno et al., 2018),
and in a clinically relevant mouse model of MS-like
experimental autoimmune encephalomyelitis, it sig-
nificantly reduced disease severity and accelerated
recovery through CB1R/CB2R-dependent mechanisms
(Reynoso-Moreno et al., 2021). A structure-activity re-
lationship study on the WOBE437 scaffold for cellular
AEA uptake inhibition was recently published (M€ader
et al., 2021). However, using a clickable analog of the
WOBE437-derived photoaffinity probe RX-055 (Table 11),
saccharopine dehydrogenase-like oxidoreductase, vesi-
cle amine transport 1, and ferrochelatase were identi-
fied as low affinity (10 mM) off-targets of WOBE437 in
Neuro-2a cells (Gagestein et al., 2022), calling for at-
tention on the therapeutic exploitation of this inhibitor
at higher doses.
Currently, a new class of SERIs, the thiazolidinones

(Table 11), are being developed for the treatment of
psychiatric or neurologic disorders and inflammation
at Synendos Therapeutics, though their target protein
has not yet been published.

D. Preclinical Development of Fatty Acid Binding
Protein Inhibitors

In liver, it has been shown that FABP1 not only
acts as an eCB and pCB binding protein but also regu-
lates hepatic eCB levels (Huang et al., 2018). Studies
using FABP1 knockout mice revealed a markedly di-
minished impact of a high-fat diet on brain eCB levels,
especially in male mice, suggesting the involvement of
FABP1 in the biosynthesis of these lipids (Martin et al.,
2017). FABPs seem to be generally involved in modulat-
ing AEA trafficking as the overexpression of FABP5
and FABP7 in COS-7-FAAH-eGFP cells increased AEA
uptake and hydrolysis by 32% and 35%, respectively
(Kaczocha et al., 2009). N18TG2 cells showed an in-
crease of 36% upon FABP5 and 42% upon FABP7
overexpression. In the same cells, a reduction of AEA
uptake and hydrolysis could be monitored after

preincubation with the FABP4/5 inhibitor
BMS309403 (Table 12). While BMS309403 exhibited a
Ki 5 350 ± 3 nM for FABP5 binding, a concentration
of 100 mM of this probe was needed to reach �50% in-
hibition of cellular AEA uptake (Sulsky et al., 2007;
Furuhashi and Hotamisligil, 2008; Kaczocha et al.,
2009). FABP5 was suggested as the main target of the
AEA uptake inhibitors OMDM-2, VDM11, and AM404,
because these blockers showed binding affinities to
FABP5 comparable to the published Ki values for
AEA-FABP5 binding (Kaczocha et al., 2012; Nicolussi
et al., 2014a).
Surprisingly, AA also showed a strong affinity to

FABP5 (Kaczocha et al., 2012). It is generally accepted
that AA does not affect AEA cellular uptake up to a
concentration of 100 mM (Beltramo et al., 1997; Hillard
et al., 1997; Piomelli et al., 1999), a finding that would
challenge the role of FABP5 in AEA transport. The de-
velopment of potent and specific FABP5 inhibitors
with the aim to modulate AEA cellular transport is on-
going (Berger et al., 2012; Zhou et al., 2019a), and a
first in vivo evaluation of SBFI-26 (one of these com-
pounds shown in Table 12) was reported (Kaczocha
et al., 2014). SBFI-26 is an a-truxillic acid 1-naphthyl
monoester, originally identified using a computational
docking protocol and synthesized as a mixture of both
the (S) and (R) enantiomers (Berger et al., 2012). SBFI-
26 produced antinociceptive and anti-inflammatory ef-
fects in mice and inhibited the activities of FABP5 and
FABP7 with Ki values of 0.9 mM and 0.4 mM, respectively
(Berger et al., 2012; Kaczocha et al., 2014). In FABP5,
SBFI-26 was unexpectedly found to bind at the substrate
entry portal region in addition to binding at the ca-
nonical ligand-binding pocket (Hsu et al., 2017).
However, it is noted that the high concentrations
needed in vitro for AEA cellular uptake inhibition
experiments do not match the reported FABP5 affin-
ity of SBFI-26. In rodents, SBFI-16 showed peripheral
and supraspinal analgesic effects (Peng et al., 2017)
and abrogated pulmonary artery remodeling in pulmo-
nary hypertension secondary to left heart disease and
improved cardiac function (Lei et al., 2022). Yet, the in-
volvement of the ECS in these effects was not eluci-
dated. As already pointed out above, the Ki values
obtained for AEA binding to FABP5 are not in agree-
ment with the Km values in many cells that show
AEA transport. Recently, it was demonstrated that
FABP5 both promotes the hydrolysis of AEA to AA and
thus reduces brain eCB levels and directly shuttles AA
to the nucleus, where it delivers it to PPARb/d, enabling
its activation (Yu et al., 2014). Interestingly, in adult
neurons, neither FABP5 nor FABP7 seems to be ex-
pressed in significant amounts (Liedhegner et al., 2014).
The first evidence for intracellular carriers of 2-AG

was provided by two independent groups. The known
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cytosolic FABP5, which is an AEA carrier and binds
numerous highly abundant fatty acids, was also shown
to bind 2-AG. Using fluorescence polarization and a la-
beled fatty acid probe that was displaced from FABP5, a
Ki 5 8.7 mM was determined (Nicolussi, et al., 2014a).
Simultaneously, a crystallographic study of FABP5 as
an intracellular carrier protein of eCBs confirmed the
binding data (Sanson et al., 2014). Of note, the Kd for
2-AG binding to FABP5 more closely matches the Km
for 2-AG transport than in the case of AEA.
It was recently reported that FABP5 could act as a

synaptic (i.e., extracellular) transporter of 2-AG and
control the retrograde signaling by this eCB (Haj-Dah-
mane et al., 2018). Using dorsal raphe neurons incu-
bated with SBFI-26 (a FABP5 and FABP7 inhibitor) or
from FABP5�/� mice, it was shown that FABP5 inhi-
bition or absence prevented DSE, which under normal
conditions occurs after depolarization of postsynaptic
neurons and phasic 2-AG release, followed by presyn-
aptic CB1R activation, reduction of glutamate release,
and a reduction in excitatory postsynaptic currents.
Furthermore, FABP5 inhibition or absence prevented
the increase seen in excitatory postsynaptic currents
after incubation with AM251 (a CB1R antagonist/in-
verse agonist), showing that by acting as a carrier
FABP5 modulates the effect of phasic and tonic levels
of 2-AG in the control of retrograde signaling. Addi-
tionally, in a coculture of primary hippocampal astro-
cytes and neurons, it was shown that FABP5 is

secreted by astrocytes to the extracellular media in a
time-depended manner, supporting its role as an extra-
cellular synaptic transporter of 2-AG. In FABP5�/�
neurons, no changes were observed in the protein ex-
pression of CB1R, DAGLa (the neuronal isoform) or
MAGL, concluding that there are no changes in either
CB1R activation or 2-AG metabolism. Although nonsignif-
icant changes in 2-AG levels were observed after incuba-
tion with SBFI-26, the opposite occurred in FABP5�/�
neurons, which showed a significant increase. Further-
more, dorsal raphe neurons incubated with SBFI-26
showed an increase in AEA levels, which agrees with pre-
vious reports (Kaczocha et al., 2009; 2014); however, there
were no changes in AEA levels measured in FABP5�/�
neurons compared with wild-types. These contradictions
raise a question regarding other possible changes in the
metabolic pathways of 2-AG and AEA, respectively, that
might not be observed at the protein level. As shown re-
cently, deletion of FABP5 impaired tonic 2-AG and AEA
signaling at striatal c-aminobutyric acid synapses of me-
dium spiny neurons and blunted phasic 2-AG mediated
short-term synaptic plasticity without altering CB1R ex-
pression or function (Fauzan et al., 2022). Based on the
expression of FABP5 in TRPV1-positive nociceptors, a
conditional knockout strategy was employed that
showed that deletion of FABP5 specifically in nocicep-
tors augments AEA levels, resulting in antinociceptive
effects mediated by CB1R (Bogdan et al., 2022). Given
that the concentration of free fatty acids including

TABLE 12
Additional and less potent inhibitors of AEA cellular uptake relative to inhibition of AEA degradation (by FAAH)

or intracellular transport (by FABP5)

Compound

AEA Cellular Uptake Inhibition

IC50 (mM) Cell Type
FAAH

IC50 Value (mM)
FABP5

Ki Value (mM)

BMS309403
Sulsky et al., 2007; Kaczocha et al., 2009; Berger et al., 2012;

Kaczocha et al., 2012; Nicolussi et al., 2014a

�100
[57% inh.]

>100
[48% inh.]

24.7
>100

[30% inh.]

N18TG2
COS7-FAAH-eGFP

U937
HMC-1*

>100
>100

0.35
0.75
0.89

SBFI-26 (RT26)
Berger et al., 2012: Zhou et al., 2019a

�20
[40% inh.]

HeLaa >50 0.9

aCells lacking FAAH-activity.
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AA may be much higher in the synaptic cleft and in
neuronal membranes, it is intriguing that FABP5
binds 2-AG in a physiologic environment, which is
found at significantly lower concentrations and com-
petes for the same binding site as AA in this protein,
especially because there are not multiple lipid binding
sites in FABP5. Overall, it cannot be ruled out that the
effects observed with FABP KO mice may also be re-
lated to AA metabolism.

E. Translational Implications of Endocannabinoid
Transport Inhibitors

The different models of eCB cellular uptake and
trafficking offer different druggable sites, that are
schematically depicted in Fig. 26. The identification of
intracellular carrier proteins for AEA has clearly pro-
vided a missing link to explain how eCBs are able to
cross the cytosol, which constitutes a hydrophilic barrier
for these lipophilic compounds (Hillard and Jarrahian,
2003; Fegley et al., 2004; Glaser et al., 2005; Hillard
et al., 2007; Kaczocha et al., 2009; Oddi et al., 2009;
Fowler, 2012, 2013).
To date, different AEA transport inhibitors and de-

tailed pharmacological assessment of their in vivo effects
have led to a better understanding of the druggability of
such processes within the ECS. However, only a few in-
hibitors used in pharmacological experiments have been
studied for their bioavailability, tissue distribution,
and overall pharmacokinetics; thus in vivo effects of
such inhibitors are difficult to interpret. As yet, only
FABP5 inhibitors AT26 and SYT510 have shown effi-
cacy in models of pain, anxiety, and inflammation
through mechanisms involving the ECS and are drug
candidates in a late preclinical stage (Table 13).
The new generation of selective inhibitors for AEA

uptake (WOBE437, RX-055, guineensine) also blocks 2-
AG uptake but does not interact with any of the known
metabolic enzymes or AEA binding proteins, suggesting
an additional common target that is competitive with
eCB membrane transport. This observation has inspired
the development of thiazolidinones like SYT510 that act
as SERIs for the treatment of neuropsychiatric disor-
ders—in a manner that is comparable to MAGL inhibi-
tors—and are in early clinical development (Table 13).
Based on the pharmacological profiles of these SERIs,
it can be expected that they are more specific and do
not interfere with metabolic classes. Moreover, unlike
FAAH, MAGL, and FABP5 inhibitors, SERIs rather

selectively inhibit the uptake of both AEA and 2-AG,
without modulating other lipids (Chicca et al., 2017).
Remarkably, their mild modulation of the eCB tone
may be beneficial when it comes to issues related to the
desensitization of CB1R (Reynoso-Moreno et al., 2021).

VI. Therapeutic Potential of Additional Targets
Within the “Endocannabinoidome”

A. Definition of the Endocannabinoidome

Two realizations during the past 20 years have
brought to the attention of the scientific community
that the ECS should be considered as part of a much
wider signaling system, now referred to as the endo-
cannabinoidome (eCBome) (Balvers et al., 2009; Piscitelli
et al., 2011; Di Marzo, 2018; Cristino et al., 2020): (1) the
discovery that several endogenous congeners of AEA and
2-AG, i.e., the N-acyl-ethanolamines and 2-monoacylgly-
cerols, respectively, and other eCB analogs like long
chain fatty acid derivatives are present in tissues and bi-
ologic fluids, although they seldom share with eCBs the
capability of modulating the activity of CB1R and CB2R
(while often being biosynthesized and/or degraded by the
same enzymes) (Di Marzo, 2018), and (2) the finding
that most plant cannabinoids other than THC, such as
cannabidiol, cannabigerol, cannabidivarine, and cannabi-
chromene, to name a few, also do not share with THC,
AEA, and 2-AG their activity at cannabinoid receptors,
although they often interact, among others, with several
receptors of the aforementioned eCB-like molecules (Di
Marzo, 2018). The main components of the eCBome are
summarized in Table 14.
In particular, beyond N-acyl-ethanolamines and 2-

monoacylglycerols, whose existence was known even
before the discovery of AEA and 2-AG, several other
subfamilies of eCB-like molecules have been recently
discovered, including (1) primary amides of long chain
fatty acid, of which the sleep-inducing factor oleamide
is the prototypical member; (2) amides between long
chain fatty acids and several amino acids, such as
N-acyl-taurines, -glycines, and –serines (Huang et al.,
2001; Milman et al., 2006; Saghatelian et al., 2006); (3)
amides of long chain fatty acids with neurotransmitters
and other amines, such as N-acyl-dopamines and
-serotonines (Huang et al., 2002; Verhoeckx et al.,
2011), and (4) oxidation products (usually, but not nec-
essarily, produced by the action of “arachidonate

TABLE 13
Drug candidates that target eCB transport in late preclinical stage

Name Company Indication(s) Target

RT26 Artelo Biosciences Prostate cancer
Chemotherapy-Induced Peripheral Neuropathy

FABP5 inhibitor

SYT510 Synendos
Therapeutics

Neuropsychiatric
Disorders

SERI, undisclosed target

SERI, selective eCB reuptake inhibitor.
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cascade” enzymes COX-2 and LOXs) of the di- and poly-
unsaturated members of the aforementioned families
(namely N-acyl-ethanolamines and 2-monoacylglycer-
ols), a subfamily of lipids that we can refer to as the
“oxyendocannabinoidome” (oxyeCBome) (reviewed
in Simard et al., 2022). Therefore, considering that
several long chain fatty acids exist, from the C16-
containing and completely saturated palmitic acid,
to the C22-containing hexa-unsaturated docosahexea-
noic acid, it can be reckoned that, in principle, hundreds
of such eCBome mediators exist. However, the actual
occurrence of only a few dozens of them has been ascer-
tained so far, through the use of bidimensional liquid
chromatography mass spectrometry approaches (Piscitelli
et al., 2011; Leishman et al., 2016; Kantae et al., 2017;
Lacroix et al., 2019).
Importantly, each different member of these subfami-

lies, depending on its fatty acid and amine moieties, can
modulate the activity of one or more different receptors
that in a few cases, have been suggested to be also tar-
geted by AEA or 2-AG (Table 14), although often at con-
centrations higher than those required to activate CB1R
and CB2R (Di Marzo, 2018; G�omez-Ca~nas et al., 2023).
In fact, at least three classes of receptors have been sug-
gested to act as targets for eCBome mediators (Morales
and Reggio, 2017; Muller et al., 2019; Lago-Fernandez
et al., 2021): (1) GPCRs, like CB1R and CB2R and be-
yond, and including some orphan GPCRs like GPR18,
GPR55, GPR110, GPR119, and GPR130 or GPCRs that
are known to be activated or inhibited by other mediators,
such as some serotonin receptors; (2) ligand-activated
ion channels, such as (i) TRP channels of the V1-4, A1,
and M8 types and T-type Ca21 (Cav3) channels, which
have been suggested to be modulated also by other
lipid mediators, and (ii) amino acid neurotransmitter-
activated targets, such as c-aminobutyric acid or glycine
receptors; and (3) nuclear PPARs. However, for some
eCBome mediators, such as the primary amides, the
molecular targets are still unknown, although for olea-
mide evidence of it being a weak agonist of CB1R (Leggett
et al., 2004) and a TRPV2 antagonist (Schiano Moriello
et al., 2018) exist. Additionally, some eCB-like molecules
have also been shown to produce some of their pharmaco-
logical actions by interacting with eCB metabolic enzymes.
While stimulation of DAGLs by N-palmitoylethanolamine,
which possibly explains why this mediator can enhance
2-AG levels in vitro and in vivo, has been only recently
shown (Petrosino et al., 2019), inhibition of FAAH lead-
ing to increased levels of AEA and other endogenous
substrates for these enzymes (e.g., N-acyl-taurines and,
under certain circumstances, 2-AG) has been suggested
as the basis of some of the pharmacological effects of
other NAEs and unsaturated N-acyl-serotonins, -glycines,
and -alanines (Jonsson et al., 2001; Petrosino and Di
Marzo, 2017; Bashashati et al., 2017; Ayoub et al., 2020).
Interestingly, the capability of inhibiting FAAH is shared

also by the noneuphoric cannabinoid CBD (Watanabe
et al., 1996; Bisogno et al., 2001).
As mentioned, several non-THC cannabinoids, as

well as AEA and 2-AG, have also been suggested to
influence the activity of the aforementioned eCBome
receptors, including (1) orphan GPCRs, particularly
for CBD, which antagonizes GPR55 and seems to
modulate some opioid and serotonin receptor subtypes
(reviewed by de Almeida and Devi, 2020); (2) TRPV1-4 or
TRPA1 channels, which are activated by several noneu-
phoric cannabinoids—with TRPV1 now being widely con-
sidered also as an alternative physiopathological target
for AEA, unsaturated NAEs, and 2-AG—and TRPM8,
which is antagonized by all tested cannabinoids (with
the only exception of cannabichromene) as well as by
both AEA and 2-AG (Zygmunt et al., 1999; De Petrocel-
lis et al., 2007; De Petrocellis et al., 2011; De Petrocellis
et al., 2012; Muller et al., 2019); 3) Cav3.3 channels and
glycine receptors, which can be variedly inhibited by
THC, cannabidiol, and several types of eCBome media-
tors, as well as by AEA and some N-acylethanolamines,
whereas some subunits of the c-aminobutyric acid recep-
tor are instead activated by 2-AG and CBD (Sigel et al.,
2011; Baur et al., 2013; Chemin et al., 2014; Bakas
et al., 2017; Mirlohi et al., 2022); and (4) PPARs, which
can be activated by CBD and cannabigerol, particularly
in their acidic forms normally found in cannabis flowers,
as well as, particularly in the case of PPARa, by some
N-acylethanolamines, 2-palmitoyl-glycerol, and
N-acyl-glycines (O’Sullivan, 2016; Donvito et al., 2019;
D’Aniello et al., 2019; Tutunchi et al., 2020; Depommier
et al., 2021; Lago-Fernandez et al., 2021). These
eCBome receptors are schematically depicted in Fig. 27.
In summary, the eCBome and the oxyeCBome po-

tentially include perhaps hundreds of mediators (sev-
eral combinations of amides between long chain fatty
acids and amino acids or bioactive amines and the
plethora of oxidation products that can be generated
from polyunsaturated eCBome mediators, to name a
few) and dozens of receptors. Of the latter, however,
many had been previously described as molecular tar-
gets for other mediators (neurotransmitters, fatty acids,
etc.) and cannot be listed as “specific” eCBome receptors,
at least not until their preferential role is ascertained
as intermediates of the biologic effects of eCBome me-
diators, which, however, are often very promiscuous in
their modulation of the activity of pharmacologically
relevant proteins. While it is of crucial importance to
know that AEA and 2-AG are accompanied in tissues
by several congeners and metabolites with similar bio-
chemistry and different pharmacology, a discussion of the
pharmacological and therapeutic importance of these
non-CB1R, non-CB2R receptors is too speculative and
goes beyond the scope of this article.
Indeed, the existence of the eCBomes both opens

new opportunities and raises new challenges for the

Endocannabinoid System as a Therapeutic Target 937
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development of new therapeutics from the study of
the ECS. On the one hand, the recognition that some
plant cannabinoids, which are devoid of the typical
psychotropic and unwanted effects of THC, owe some
of their pharmacological effects—and hence potential
therapeutic actions—to modulation of the activity of
eCBome receptors beyond CB1R and CB2R, widens
their potential applications in medicine (Fig. 27). This
same realization is also at the basis of the use of some
eCBome mediators, such as N-palmitoylethanolamine
and N-oleoylethanolamine, as either synthetic drugs,
nutraceuticals, and tissue-targeted nanoparticles (Bowen
et al., 2017; Petrosino and Di Marzo, 2017; Wu et al.,
2021) or through diets rich in their fatty acid precursors
(Sihag and Di Marzo, 2022) as potential new therapeutic
approaches in inflammatory and metabolic disorders.
On the other hand, the fact that several eCBome media-
tors that have noncannabinoid receptors as their main
targets and share with AEA or 2-AG the capability of
being inactivated by FAAH (as in the case of N-acyl-
ethanolamines, -glycines and -taurines) or MAGL (as in
the case of 2-monoacylglycerols), respectively, may limit
the clinical applicability of FAAH and MAGL inhibitors.
In fact, such drugs might concomitantly elevate the
tissue levels not only of AEA or 2-AG, thus indirectly
activating CB1 and CB2 receptors, but also of other
eCBome mediators with targets whose functions in disease
might also be opposite to those exerted by cannabinoid
receptors in disease. A typical example of this potential
problem might be represented by the failure, to date, of
FAAH inhibitors to counteract inflammatory and
chronic pain in clinical trials, when the fact that such
molecules elevate the levels not only of AEA but also of
N-palmitoylethanolamine and N-oleoylethanolamine,
which may consequently act at targets such as TRPV1
and GPR55, may explain the lack of efficacy. Likewise,
inhibitors of DAGLs, which have been proposed as a po-
tential treatment of obesity and metabolic disorders
through the impairment of 2-AG biosynthesis and sub-
sequent CB1R activation (Bisogno et al., 2013; Janssen
and van der Stelt, 2016), might reduce the levels of
2-monoacylglycerols acting at CB2R, GPR119, and
TRPV1, which, unlike CB1R, may have beneficial effects
in such pathologic conditions (Di Marzo and Silvestri,
2019). In yet other pathologic conditions, however,
where both cannabinoid and other eCBome receptors
play similar functions (e.g., inflammation, neurodegen-
eration, and mood control), such an intrinsic lack of
functional selectivity of inhibitors of eCB metabolism
may provide additional advantages. It is, therefore,
clear that the use of such inhibitors requires (1) first
the understanding of what eCBome receptors are in-
volved in a given disorder and (2) in case of conflicting
effects being predicted for the blockade of a given en-
zyme, the development of multitarget drugs, capable
also of modifying the activity of targets that exert opposing

roles in a given disorder (see, for review, Maione et al.,
2013). The eCBome mediators and their synthetic analogs
that are under clinical testing are listed in Table 15.

B. Interaction with the Gut Microbiome

An additional possibility that is attracting attention
is to explore targeted nutritional strategies for the
therapeutic manipulation of the eCBome, based on
the concept that the content of different eCBome me-
diators is strongly affected by the presence of their
fatty acid precursors in the diet (Castonguay-Paradis
et al., 2020). Indeed, an important opportunity opened
by the discovery of the eCBome lies in its capability of
interacting, much more than the ECS does, with an-
other fundamental player in mammalian physiology
and pathology that, like the eCBome, is also strongly
influenced by diet, medications, and other environ-
mental and lifestyle as well as genetic factors: the gut
microbiome (Di Marzo and Silvestri, 2019). Trillions
of microorganisms, belonging to thousands of species
from several phyla (bacteria, archea, viruses, yeasts,
eukaryote parasites), populate the mammalian gut
and communicate with, and subsequently regulate, the
activity of host cells, mostly through the production of a
plethora of chemical signals that are capable of interact-
ing with host targets. In particular, some small mole-
cules typically produced by gut bacteria following the
digestion (fermentation) of dietary macro- and micro-
nutrients, have been well characterized and include,
among others, (1) short chain fatty acids (derived from
the processing of dietary complex carbohydrates), (2)
branched chain fatty acids and amino acids (usually de-
rived from the processing of dietary proteins), (3) trypto-
phan derivatives, and (4) secondary bile acids (Gold and
Zhu J, 2022). These molecules usually act at receptors
located in host cells (e.g., GPCRs and PPARs, in the
case of branched chain fatty acids, and the aryl hydro-
carbon receptor, in the case of some tryptophan deriva-
tives), as recently reviewed (Ikeda et al., 2022; Wang
et al., 2022). However, only recently it has become evi-
dent that some gut bacteria and yeasts can produce
eCB-like molecules, such as N-acylated glycines, dopa-
mines, tyramines, phenylethylamines, and tryptamines,
as well as oxyeCBome mediators capable of binding to
the same receptors as the host eCBome mediators (De Petro-
cellis et al., 2009; Cohen et al., 2017; Chang et al.,
2021). This emerging “microbendocannabinoidome,”
also summarized in Table 14, enlarges the span of mi-
crobe-host communication and expands it to the
eCBome, as depicted in Fig. 28. It also adds to previous
evidence suggesting that, reciprocally, the ECS modu-
lates the gut microbiome.
This evidence came from experiments carried out in

animal models of obesity, gut dysbiosis (i.e., perturba-
tion of gut microbiota composition and function), and
ensuing metabolic endotoxaemia using CB1R antago-
nists and TRPV1 agonists (namely capsaicin) (Cluny
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et al., 2015; Shen et al., 2017; Mehrpouya-Bahrami et al.,
2017), as well as in mice where eCB metabolic enzymes
were knocked out (Geurts et al., 2015; Dione et al.,
2020). These interventions, together with the expected
alterations of eCB and eCBome signaling, were found
to lead to concomitant and interrelated modulation

of metabolic and inflammatory parameters and gut micro-
biota composition, with increases of the relative abundance
of beneficial gut bacteria species, such as Akkermansia
muciniphila. More recently, some therapeutic effects of
pCBs were likewise found to be accompanied by corre-
sponding beneficial actions on the gut microbiome. Clearly,

Fig. 27. The eCBome receptors as a pharmacological substrate for plant-derived cannabinoids and host or commensal bacteria-derived eCBs and eCB-like
molecules. The elements of the ECS as part of the eCBome are shown squared in red. The chemical structures of commendamide,N-miristoyl-alanine, and
N-oleoyl-serinol are shown from the top right and down. CBD, cannabidiol; THC, D9-tetrahydrocannabinol; THCV, D9-tetrahydrocannabidivarin.

TABLE 15
Endocannabinoidome mediators and their synthetic analogs under clinical testing

Name
Company (and Commercial

Name) when Available Indication(s) Main Proposed Target Clinical Trials Gov Identifier

N-Palmitoylethanolamine
(PEA)

Epitech Italy (Normast,
Pelvilen, Glialia)

Neuropathic pain from
spinal cord injury
Covid-19
Fibromyalgia
Chronic pain
Chronic pelvic pain in
endometriosis
Frontotemporal
Dementia
Tourette’s syndrome (in
combination with
dronabinol)

PPARa
GPR55a

TRPV1b

CB2R
b

NCT01851499
NCT04568876
NCT04488926
NCT02699281
NCT02372903
NCT04489017
NCT03066193

N-Oleoylethanolamine
(OEA)

University of California
Davis
Davis, California,
United States
NutriForward LLC
(RiduZone, 90% OEA)

Post-prandial
inflammation
Overweight and obesity

PPARa
TRPV1
GPR119

NCT05017428
NCT04614233

Bimatoprost (Prostamide
F2a analog)

Allergan (Lumigan) Intraocular Pressure,
Glaucoma, Ocular
Hypertension
Eyelash hypotrichosis,
alopecia

FP/Alt4-FP heteromer
FPa

Several completed studies
Several completed studies

Reported studies are mostly completed (only in a few cases recruitment is still ongoing), and results of most of them have not been disclosed yet. An exception is the
case of bimatoprost, which has proven to be very effective on eyelash hypotrichosis and promising on various forms of alopecia (Jha et al., 2018). N-Palmitoylethanol-
amine is often administered as the ultramicronised solid, and/or in combination with other molecules, such as transpolydatin (in Pelvilen, for pelvic pain) or luteolin
(Glialia, for some CNS disorders) (Petrosino and Di Marzo, 2017). Abbreviations: see Table 14.

aStill controversial.
bThese targets are activated indirectly via elevation of endogenous ligand levels or activity.
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it is difficult to understand solely from these in vivo studies
whether the effects observed on the gut microbiome were
the direct consequence of the pharmacological and ge-
netic manipulation of the eCBome or only an indirect
and host-mediated effect of the latter.
In fact, there is now also accumulating ex vivo and

in vitro evidence that host-derived eCB-like mediators
can directly affect the composition and function of the
gut microbiome. In particular, both N-acylethanol-
amines and 2-monoacylglycerols were found to affect
the function (e.g., proliferation, biofilm formation, and
virulence) of gut bacteria, clearly through mecha-
nisms and at experimental concentrations that are
quite different from those underlying their effects on
host cells (Ellermann et al., 2020; Dione et al., 2020;
Fornelos et al., 2020; Sionov and Steinberg, 2022).
On the other hand, it was also shown that the ma-
nipulation of the gut microbiome, either in germ-free
mice or following prolonged treatment of mice with
antibiotics, directly affects the expression of eCBome
receptors, metabolic enzymes, and mediators in the
gut and other, more distal host tissues like the brain
(Muccioli et al., 2010; Aguilera et al., 2015; Manca
et al., 2020a, b). The mechanisms through which
this influence is exerted are not yet known but are
likely to be due to the action on host cells of the
aforementioned microbiome-derived metabolites (i.e.,
short chain fatty acids) and may include epigenetic

regulation of genes encoding for eCBome proteins,
since these changes can be reversed upon reinstate-
ment of the gut microbiome.
Also, probiotics are known to affect the intestinal

ECS and to potentially owe to this interaction part of
their pharmacological actions (Rousseaux et al., 2007;
Ringel-Kulka et al., 2014; Rossi et al., 2020; Cuozzo
et al., 2021). Yet, it remains unclear whether these ef-
fects are due to a direct action of probiotic bacterial
species on host cells or to their capability of modulat-
ing the gut microbiome. Interestingly A. muciniphila,
a proposed gut microbiota-derived probiotic whose
administration produces beneficial actions in both ani-
mal models of obesity and dysmetabolism and authentic
obese subjects with metabolic syndrome (Everard et al.,
2013; Plovier et al., 2017; Depommier et al., 2019), was
found to increase the intestinal levels of pharmacologi-
cally active 2-monoacylglycerols (i.e., 2-AG, 2-palmitoyl-
glycerol, and 2-oleoyl-glycerol) in mice with diet-induced
obesity (Everard et al., 2013), as well as the circulating
levels of 2-palmitoyl-glycerol—a PPARa agonist with
potential metabolic beneficial activity—in obese individuals
(Depommier et al., 2021). Probiotics can also reverse
the gut dysbiosis-induced alterations of N-acyl-serotonin
and N-acylethanolamine concentrations in gut (Guida
et al., 2018) or adipose tissue (Geurts et al., 2015),
respectively, with a corresponding amelioration of dys-
metabolism and mood disturbances, respectively; again

Fig. 28. Reciprocal modulation of the ECS and the gut microbiome. The emerging microbendocannabinoidome (lbeCBome), also summarized in Table 14,
enlarges the span of microbe-host communication and expands it to the eCBome.
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it is not clear whether these effects were exerted di-
rectly on eCBome mediator biosynthesis or degradation.
Clearly, in vitro studies, using, for example, cocultures
of commensal bacteria or probiotic species (or their
culture media) with mammalian intestinal cells or organo-
ids, are again needed to understand whether these in vivo
effects are the consequence of direct bacterial interactions
with host cells.

VII. Conclusion

Plant-derived cannabinoids and endocannabinoids
represent two different but equally complex systems,
so that the terms “(phyto)cannabinoids” and “endo-
cannabinoids” are actually used to identify rather het-
erogeneous groups of lipophilic substances. It is strik-
ing how some of these molecules happened to share
3D structures, allowing exogenous pCBs to play so
many biologic activities in our body, because they
mimic eCBs. The additional layer of complexity
brought about by these structural similarities makes
extremely challenging the use of pCBs and ECS-ori-
ented drugs as potential therapeutics to combat human
diseases and requires deeper knowledge of the structural
and functional details of their potential targets in the cell.
Undoubtedly, a better understanding of these fine molecu-
lar clues will allow us to turn pCBs and ECS-oriented
drugs from threats to a treasure trove for human health.
Among the various components of the ECS, CB1R,

CB2R, and FAAH have been the most largely exploited
to develop therapeutic drugs for human diseases.
Shortly after the discovery of CB1R, many therapeutic

opportunities identified it for its agonists and antago-
nists; yet, improvements in medicinal cannabinoids are
continually meeting novel challenges (Pacher and Kunos,
2013). Selectivity for specific tissue responses is necessary
to promote beneficial therapeutic responses while mini-
mizing side effects. Developing agonists that are highly
selective for CB1R but devoid of activity at other receptors
(e.g., CB2R, GPR55) continues to remain a challenge.
Organ-system selectivity is a second goal for minimizing
CNS actions of CB1R agonists and antagonists and is
being met by the development of peripherally restricted
ligands that have limited access to brain CB1R (Amato
et al., 2019). A third approach to selectivity involves tun-
ing the functional outcome of ligands such as “biased ag-
onists” that would modify the active CB1R conformation
to direct signaling preferentially through either G pro-
tein pathways or b-arrestin pathways and, further, to se-
lect for individual G protein subtypes (Gs or G12/13

versus Gi/o) and for b-arrestin 1 versus b-arrestin 2. A
fourth mechanism for selectivity is to develop allosteric
modulators whose effects would be limited to only those
receptors concurrently being stimulated by an endoge-
nous agonist. A positive allosteric modulator would aug-
ment the response to eCBs and could potentiate ongoing
stimulatory signals, whereas a negative allosteric

modulator would be expected to provide noncompetitive
inhibition to those receptors receiving an endocannabi-
noid signal. Additionally, future goals for antagonists
would be the development of biased antagonists, nega-
tive allosteric modulators, as well as neutral antagonists
that do not affect the basal activity of CB1R. A still un-
explored approach with therapeutic potential that is
closer to the concept of polypharmacology involves specifi-
cally inhibiting CB1R and activating CB2R. Thus, the fu-
ture for CB1R pharmacotherapeutics can be predicted to
move from phytocannabinoid preparations to agonists and
antagonists that exhibit greater selectivity through one of
these strategies.
Also, CB2R is a key element of the ECS. It is highly

expressed in immune cells, and its activation limits
inflammation and associated tissue injury under multi-
ple pathologic conditions. Efficacy in preclinical models
of pain, neurodegenerative, cardiovascular, gastrointes-
tinal, liver, kidney, and lung diseases has been demon-
strated. Due to this enormous therapeutic potential, a
multitude of CB2R ligands has been developed that can
be categorized as eCBs and related fatty acid deriva-
tives, pCBs, or synthetic CB2R ligands. The majority of
these ligands include agonists, modulators, neutral an-
tagonists, inverse agonists, allosteric ligands, as well as
labeled chemical probes. Altogether, a large, structur-
ally diverse chemical space is covered. Generally, early
CB2R modulators are dual CB1R/CB2R agonists that
are mostly not quite “drug-like.” In contrast, recent
ligands often combine high potency for CB2R with fa-
vorable overall ADME profiles including low lipophilic-
ity, aqueous solubility, and favorable plasma protein
binding, which translate into excellent pharmacokinetic
profiles and consequently improved developability. To
overcome CB1R-driven psychotropic effects, two strategies
were followed: limiting exposure toward the periphery or
enhancing the selectivity over CB1R through excellent
structure activity relationship work in the lead optimiza-
tion phase, thus enabling clinical studies with more than
20 new molecular entities. First, trials focused on dis-
eases of the CNS and pain. Most recent ligands and clini-
cal studies focus on peripheral indications with a strong
inflammatory/immunomodulatory and/or fibrotic back-
ground. Three phytocannabinoids (THC, nabilone, and
cannabidiol) have been launched. Most advanced selec-
tive CB2R agonists are in phase 2 clinical trials. While
no CB2R-related toxicity issues have been reported from
clinical studies, the demonstration of target engagement
and the identification of best-suited human disease con-
dition(s) for the therapeutic use of CB2R modulators
still poses challenges for the development of CB2R-
based therapies. The generation of translational animal
models and a better understanding of CB2R and the
ECS in general will help unlock the receptor’s full thera-
peutic potential. Recently discovered high-quality labeled
chemical probes have enabled a better understanding of
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CB2R expression, mechanism of action, and translatabil-
ity of results toward the human situation. The in-depth
understanding of signaling bias as well as CB2R receptor
homo- and heterodimers might translate into different
functional properties and ultimately tailor-made CB2R
therapeutics. Deeper insights into drug-target binding
kinetics, their impact on receptor function, and, in par-
ticular, the recently reported structures of antagonist-
and agonist-bound CB2R and knowledge on allosterism
will facilitate rational drug design. Together with the
huge chemical space available to generate tailor-made
CB2R modulators, this will hopefully guide us to the
discovery of potent, effective, and safe medicines for in-
dications with a dire or even unmet need.
Finally, since the discovery of FAAH and MAGL many

compounds have been developed starting from inhibitors
of other known serine hydrolases to study enzyme activ-
ity, its regulation, and relevance in the pathophysiological
process. Over the years, different approaches have been
used to identify and synthesize new classes of single or
dual inhibitors, paying more and more attention to the
analysis of their selectivity, potency, and mechanism of
action. The development of selective FAAH and MAGL
inhibitors remains one of the major issues in drug discov-
ery, as also demonstrated by the large number of re-
search papers and review articles devoted to this topic.
The main interest in this field is to develop a therapeutic
alternative to the use of cannabinoid receptor agonists,
able to prevent or minimize serious psychotropic side
effects due to direct receptor activation. The possibility
to increase eCB tone by reducing degradation, and to
apply new multitarget strategies that include additional
receptors and enzymes, have boosted FAAH and MAGL
inhibition studies to generate therapeutics against pe-
ripheral and CNS-related pathologies. However, more
details seem to be necessary on 3D structure, catalytic
mechanism, and regulation of both hydrolases to design
effective inhibitors devoid of off-target activity. Novel in
silico approaches like computer-aided drug discovery
may be useful to reach this goal. In this context, it has
to be recalled the tragic use of BIA10-2474, a purported
FAAH inhibitor that killed one volunteer and led four
others to hospitalization in phase I clinical trials be-
cause of serious adverse neurologic events (Kerbrat
et al., 2016). This BIA 10-2474 disaster clearly reminds
us that accurate preclinical characterization of the bio-
chemical profile of any new chemical entity must be
performed, before claiming that a new selective drug
has been discovered, and especially before allowing its
use in clinical trials.
Overall, the same potentialities and limitations re-

vealed by accumulated evidence in so many studies
on CB1R, CB2R, FAAH, and MAGL are likely to apply
also to the more recently characterized elements of
the ECS and hopefully will be instructive to avoid
making the same mistakes. In particular, a better

appreciation of the 3D structure of the desired tar-
gets, also via cryo-electron microscopy (Hua et al.,
2020), and the application of powerful in silico tools
like CADD, virtual screening (Stasiulewicz et al.,
2022), and machine learning (Atz et al., 2023) hold
promise to shorten the path from the bench to the pa-
tient’s bed in drug discovery programs oriented to-
ward the ECS. This knowledge of structural details
will also help to decipher complex interactions be-
tween pCBs/eCBs and other bioactive lipids (e.g., eico-
sanoids and specialized pro-resolving mediators) that
are receiving increasing attention for their therapeu-
tic potential to treat human diseases (Maccarrone,
2023).
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