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Learning when effort matters: neural dynamics
underlying updating and adaptation to changes in
performance efficacy
Ivan Grahek *, Romy Frömer , Mahalia Prater Fahey , Amitai Shenhav

Department of Cognitive, Linguistic, & Psychological Sciences, Carney Institute for Brain Science, Brown University, Box 1821, Providence, RI 02912, United States

*Corresponding author: Department of Cognitive, Linguistic, & Psychological Sciences, Carney Institute for Brain Science, Brown University, Providence, RI 02912,
United States. Email: ivan_grahek@brown.edu

To determine how much cognitive control to invest in a task, people need to consider whether exerting control matters for obtaining
rewards. In particular, they need to account for the efficacy of their performance—the degree to which rewards are determined by
performance or by independent factors. Yet it remains unclear how people learn about their performance efficacy in an environment.
Here we combined computational modeling with measures of task performance and EEG, to provide a mechanistic account of how
people (i) learn and update efficacy expectations in a changing environment and (ii) proactively adjust control allocation based on
current efficacy expectations. Across 2 studies, subjects performed an incentivized cognitive control task while their performance
efficacy (the likelihood that rewards are performance-contingent or random) varied over time. We show that people update their
efficacy beliefs based on prediction errors—leveraging similar neural and computational substrates as those that underpin reward
learning—and adjust how much control they allocate according to these beliefs. Using computational modeling, we show that these
control adjustments reflect changes in information processing, rather than the speed–accuracy tradeoff. These findings demonstrate
the neurocomputational mechanism through which people learn how worthwhile their cognitive control is.

Key words: motivation; cognitive control; learning; performance efficacy; EEG.

Introduction
Cognitive control is critical for achieving most goals, but
it is effortful (Botvinick and Cohen 2014; Shenhav et al.
2017). To decide how to invest control into a task (e.g.
writing an essay for a competition), a person must weigh
these effort costs against the potential benefits of a given
type and amount of control (Manohar et al. 2015; Verguts
et al. 2015; Kool and Botvinick 2018). One aspect of these
benefits is the significance of the expected outcomes,
both positive (e.g. a monetary prize, social acclaim) and
negative (e.g. lost revenue, social derision) (Atkinson et al.
1966; Leng et al. 2021). An equally important aspect of the
expected benefits of control is the extent to which control
matters for achieving good outcomes and avoiding bad
ones (Shenhav et al. 2021; Frömer, Lin, et al. 2021a). This
can in turn be decomposed into the extent to which
higher levels of control translate into better perfor-
mance (e.g. whether writing a good essay will require
substantial or only minimal control resources; control
efficacy) and the extent to which better performance
translates into better outcomes (e.g. whether prizes are
determined by the strength of an essay or by arbitrary
or even biased metrics unrelated to essay writing
performance; performance efficacy). Whereas studies
have increasingly characterized the ways in which
control allocation is influenced by expected outcomes

(e.g. Parro et al. 2018; Leng et al. 2021) and the expected
efficacy of control (e.g. as a function of task difficulty;
Krebs et al. 2012; Vassena et al. 2014; Chiu and Egner
2019), much less is known about how people estimate
and adjust to the perceived efficacy of their performance
in a given environment.

We recently showed that when participants are explic-
itly instructed about how efficacious their performance
will be on an upcoming trial, they exhibit behavioral
and neural responses consistent with increased con-
trol (Frömer, Lin, et al. 2021a). We had participants per-
form a standard cognitive control task (Stroop) for poten-
tial monetary rewards, and we varied whether obtaining
those rewards was contingent on performing well on
the task (high performance efficacy) or whether those
rewards were determined at random (low efficacy). We
showed that people allocate more control when they
expect to have high compared to low efficacy, reflected
in higher amplitudes of an EEG index of proactive con-
trol (the contingent negative variation [CNV]) and in
improved behavioral performance. These results demon-
strate that participants leverage expectations about the
extent to which their performance matters when decid-
ing how much cognitive effort to invest in a task. How-
ever, in this work, participants were explicitly cued with
the level of performance efficacy to expect on a given
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trial, and those predictive cues retained the same mean-
ing across the session. Thus, how it is that people learn
these efficacy expectations in environments where con-
tingencies are not instructed, and how they dynami-
cally update their expectations as contingencies change,
remains unanswered.

Outside of the domain of cognitive control, a relevant
line of work has examined how people learn about the
factors that determine future outcomes when selecting
between potential courses of action. In particular, work
in this area has shown that people are able to learn
about and update their expectations of the likelihood
that a given action will generate a given outcome
(action–outcome contingency; Dickinson and Balleine
1995; Moscarello and Hartley 2017; Ly et al. 2019).
People preferentially, and more vigorously, select actions
that reliably lead to desired outcomes (i.e. the more
contingent those outcomes are on the action in question;
Liljeholm et al. 2011; Manohar et al. 2017), and work
in both animals (Balleine and O’Doherty 2010) and
humans (Norton and Liljeholm 2020; Dorfman et al.
2021; Ligneul et al. 2022; Morris et al. 2022) has helped to
characterize the neural systems that support this process
of learning and action selection. However, given the focus
on discrete actions and their immediate relationship
with outcomes, research into these action–outcome
contingencies is unable to capture key aspects that
are unique to selection of control states. Most notably,
cognitive control signals (e.g. attention to one or more
features of the environment) are multidimensional;
not immediately observable by either the participant
or experimenter; and their relationship with potential
outcomes is intermediated by the many-to-many rela-
tionship between control states and task performance
(Ritz et al. 2022). While there has been research into
how people learn to adjust cognitive control signals
based on changes in their task environment, here again
work has focused on how people adapt to changes in
outcomes (e.g. Otto and Daw 2019; Bustamante et al.
2021) and changes in the relationship between control
and performance (with increasing task difficulty; Bugg
et al. 2011; Nigbur et al. 2015; Bejjani et al. 2018; Jiang
et al. 2020). The mechanisms by which people learn about
the relationship between performance and outcomes
(performance efficacy), and how they adjust their control
allocation accordingly, remain largely unexplored.

Here, we seek to fill this gap by studying the mech-
anisms through which expectations of performance
efficacy are formed, updated, and used to guide control
allocation. To do so, we extend our previous approach
(Frömer, Lin, et al. 2021a)—which studied how behavioral
and neural correlates of control allocation vary when
performance efficacy is explicitly cued—to examine how
participants learn and adapt their control under condi-
tions where efficacy was un-cued (having to instead be
learned from feedback) and was gradually varied across
a wide range of potential efficacy values over the course
of the session. We use computational reinforcement

learning models to show that expected efficacy can
be learned from feedback through iterative updating
based on weighted prediction errors (Sutton and Barto
2018), and use model-based single-trial EEG analyses to
show that these efficacy prediction errors modulate a
canonical neural marker of reward-based learning and
behavioral adjustment (Fischer and Ullsperger 2013).
We further provide evidence that efficacy estimates
learned in this way are used to guide the allocation of
control—in our EEG study and a second behavioral study,
participants tended to perform better when efficacy was
higher. We also provide evidence that a neural marker
of control allocation (Schevernels et al. 2014) tends to
increase with increasing model-based efficacy estimates.
Using a drift diffusion model (DDM; Ratcliff and McKoon
2008; Wiecki et al. 2013), in Study 2, we further show
that the performance improvements related to increased
performance efficacy reflect facilitation of task-related
information processing (reflected in increased drift
rates), rather than changes in the speed–accuracy
tradeoff (i.e. thresholds). Taken together, these results
show that efficacy estimates can be learned and updated
based on feedback, leveraging general cognitive and
neural mechanisms of predictive inference.

Materials and methods
Study 1
Participants

We recruited 41 participants with normal or corrected-
to-normal vision from the Brown University subject pool.
One participant was excluded due to technical issues.
The final data set included 40 participants (24 females,
16 males; median age = 19). Participants gave informed
consent and were compensated with course credits or a
fixed payoff of $20. In addition, they received up to $5
bonus that depended on their task performance ($3.25 on
average). The research protocol was approved by Brown
University’s Institutional Review Board.

Experimental design

In the main task, taking approximately 45 min, partic-
ipants performed 288 Stroop trials (Fig. 1A). Each trial
started with the presentation of a cue (gray circle) that
remained on the screen throughout the trial. After a
period of 1,500 ms, a Stroop stimulus was superimposed
until a response was made or 1,000 ms elapsed, at which
time it was sequentially replaced with 2 types of feed-
back presented for 1,000 ms each. Each trial onset was
preceded by a fixation cross (randomly jittered between
1,000 and 1,500 ms). Participants responded to the ink
color of the Stroop stimulus (red, green, blue, or yel-
low) by pressing one of 4 keyboard keys (D, F, J, and K).
Stimuli were either color words same as the ink color
(congruent, n = 108), or different (incongruent, n = 108),
or a string of letters “XXXXX” (neutral, n = 72). Feedback
informed them whether they obtained a reward (reward,
“$50c” or no reward, “$0c”) and whether the reward they
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Fig. 1. Manipulating expected efficacy and assessing learning in Study 1. A) Trial Schematic. On each trial, participants saw a cue (gray circle), predicting
the onset of a Stroop stimulus (target), and were then sequentially presented with reward and efficacy feedback. On half of the trials, efficacy feedback
was presented first, and on the other half, reward feedback was presented first. Every 2–4 trials, participants were subsequently asked to estimate their
current efficacy level (“How much do you think your rewards currently depend on your performance?”) or reward rate (“How often do you think you
are currently being rewarded?”). B) Efficacy manipulation. We let the probability of performance-based versus random feedback continuously drift over
the course of the experiment (inversed for one half of the sample). Arrows mark time points with low and high efficacy, respectively. When efficacy was
low, rewards were more likely to be random, whereas when efficacy was high, rewards were more likely to be performance-based.

received depended on their performance (performance-
based feedback, a button graphic) or not (random feed-
back, a dice graphic). In order to earn rewards in the
performance-based case, participants had to be both
accurate and respond within an individually calibrated
response deadline (see details below). The order of the 2
types of feedback was pseudo-randomized with half of
the trials showing reward feedback first and the other
half efficacy feedback. Every 2–4 trials the feedback was
followed by a probe of efficacy (“How much do you think
your rewards currently depend on your performance?”)
or reward rate (“How often do you think you are currently
being rewarded?”) to which participants responded on a
visual analog scale ranging from 0 to 100. The number
and timing of the probes were randomized per subject
resulting in a median of 45 efficacy probes (SD = 3.38) and
47 reward probes (SD = 2.81).

Efficacy (performance-based or random rewards) on
each trial was sampled from a binomial distribution
with probabilities ranging between 0.1 and 0.9 that
drifted over the course of the experiment and were
predetermined (Fig. 1B). In order to ensure that the
performance-based and random trials did not differ in
reward rate, reward feedback for the random trials was
sampled from the moving window of the reward feedback
of the previous 10 performance-based trials. At the
beginning of the experiment, a window with 8 rewards
and 2 no rewards was used to reflect the pre-calibrated
reward rate (details below), and this moving window was
then updated after every trial. Thus, reward rate was
not experimentally manipulated in the experiment and
remained constant. We confirmed that reward rate was
matched across performance-based and random trials
by comparing reward probability between these trial

types (b = 0.01; 95% credible intervals [CrI] [−0.07, 0.10];
Pb>0 = 0.38).

Prior to the main task, participants performed several
practice phases of the Stroop task (∼15 min). First, they
practiced the mappings between colors and keyboard
keys (80 trials). Then, they completed a short practice
of the Stroop task with written feedback (“correct” or
“incorrect”) on each trial (30 trials). Participants then
completed 100 more of such trials during which we indi-
vidually calibrated the reaction time deadline such that
participants yielded approximately 80% reward rate. The
reaction time calibration started from a fixed deadline
of 750 ms and increased or decreased this threshold in
order to ensure that participants earn rewards on 80%
of trials (i.e. that they are both accurate and below the
deadline). The deadline obtained in this way (M = 796 ms;
SD = 73 ms) was used in the main experiment and was
not further adjusted. In the final practice, phase partici-
pants were introduced to the 2 types of feedback which
they would see in the main experiment (30 trials).

The experimental task was implemented in Psy-
chophysics Toolbox (Brainard 1997; Pelli 1997; Kleiner
et al. 2007) for Matlab (MathWorks Inc.) and presented on
a 23-inch screen with a 1,920 × 1,080 resolution. All of the
stimuli were presented centrally while the participants
were seated 80 cm away from the screen.

Psychophysiological recording and preprocessing

EEG data were recorded at a sampling rate of 500 Hz from
64 Ag/AgCl electrodes mounted in an electrode cap (ECI
Inc.), referenced against Cz, using Brain Vision Recorder
(Brain Products, München, Germany). Vertical and hori-
zontal ocular activity was recorded from below both eyes
(IO1, IO2) and the outer canthi (LO1, LO2), respectively.
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Impedances were kept below 10 kΩ. Offline, data were
processed using custom-made Matlab scripts (Frömer
et al. 2018) employing EEGlab functions (Delorme and
Makeig 2004). Data were re-referenced to average ref-
erence and ocular artifacts were corrected using brain
electric source analyses (Ille et al. 2002) based on sepa-
rately recorded prototypical eye movements. The cleaned
continuous EEG was then low pass filtered at 40 Hz
and segmented into epochs around cue onset (−200 to
1,500 ms), stimulus onset, and both efficacy and reward
feedback (−200 to 800 ms). Baselines were corrected to
the average of each 200 ms pre-stimulus interval. Seg-
ments containing artifacts, values exceeding ±150 μV or
gradients larger than 50 μV, were excluded from further
analyses.

Single trial event-related potentials (ERPs) were then
exported for further analyses in R (R Core Team 2020).
The late CNV was quantified between 1,000 and 1,500 ms
post neutral cue onset (Schevernels et al. 2014; Frömer
et al. 2016; Frömer, Lin, et al. 2021a) as the average activity
over 9 fronto-central electrodes (Fz, F1, F2, FCz, FC1, FC2,
Cz, C1, and C2). The P3b was quantified between 350 and
500 ms (Fischer and Ullsperger 2013) for both reward and
efficacy feedback and calculated as the averaged activity
over 9 centroparietal electrodes (Pz, P1, P2, POz, PO1, PO2,
CPz, CP1, and CP2).

Learning models and statistical analyses
Learning models

Participants provided their subjective estimates of effi-
cacy and reward every 4–8 trials (a total of 45 estimates),
and we sought to fit a learning model to these estimates
to be able to predict trial-by-trial adjustments in per-
formance and neural markers of learning and cognitive
control allocation. In order to obtain trial-by-trial esti-
mates of efficacy and reward rate, we fitted 2 temporal
difference learning models (Gläscher et al. 2010; Sutton
and Barto 2018) to the continuous subjective estimates of
efficacy and reward rate (Rutledge et al. 2014; Eldar et al.
2016; Nagase et al. 2018). The first model (1 learning rate
efficacy model) assumed that the estimate of efficacy
for the next trial (Et+1) depended on the current efficacy
estimate (Et) and the prediction error (δt) weighted by a
constant learning rate (α):

Et+1 = Et + α ∗ δt

Where 0 ≤ α ≤ 1, and the prediction error is calculated
as the difference between the contingency feedback on
the current trial (et) and the efficacy estimate on that
trial: δt = et − Et. The model started from an initial
value (free parameter) and updated the model-based
efficacy estimate based on the binary efficacy feedback
on each trial. For example, assuming a learning rate of
0.5 and the initial value of 0.5, the model would update
the initial estimate following efficacy feedback signaling
performance-based (et = 1) to 0.75. If on the next trial

contingency feedback was random (et+1 = 0), the model-
based efficacy estimate would drop to 0.6. The model
was fitted separately to the subjective estimates of
efficacy with only the learning rate as a free parameter.
The second model (2 learning rates efficacy model)
was the same as the first model, but it included 2
learning rates: one learning rate for learning from the
performance-based feedback, and another for learning
from the random feedback. Finally, as a baseline, we also
included the intercept model, which did not update the
efficacy estimate throughout the experiment but just
assumed that the estimate took one constant value.
Importantly, the same models were fitted to obtain the
model-based estimates of reward on each trial (1 learning
rate reward model and the 2 learning rate reward
model). These models were fitted using trial-by-trial
reward feedback and the subjective estimates of reward.
The models were fit hierarchically to the data using
maximum likelihood estimation (using mfit (https://
github.com/sjgershm/mfit). To calculate the likelihood of
each data point, model-based estimates (0–1 range) were
compared to the subjective efficacy estimates (range
normalized to 0–1 range for each participant). Likelihood
was evaluated on trials which included a subjective
estimate, as the likelihood that the difference between
the model-based and the empirical estimate comes from
a Gaussian distribution centered on 0 with a variance
that was fitted as a free parameter for each subject. This
variance parameter served as the noise in the estimates.
Likelihoods were log transformed, summed, and then
maximized using the fmincon function in MATLAB.

We performed a parameter recovery study to show
that the most complex model (the 2 learning rates model)
can be successfully recovered. We simulated a dataset
with the same number of trials and subjective efficacy
or reward probes as in the actual experiment. We used
the efficacy drifts presented to the actual subjects (half
of the simulated subjects saw one drift, and half its
inverse), and we used the reward feedback sequences of
2 actual subjects from our experiment. We simulated 200
agents which learned both efficacy and reward with the
noise parameter fixed to 0.2, intercept fixed to 0.5, and
the positive and negative learning rates sampled from
a uniform distribution ranging from 0.001 to 0.5. These
parameters were matched based on the range of values
obtained from the empirical fits to our data. As shown
in Supplementary Fig. S1, we were able to very reliably
recover the simulated parameters for both efficacy and
reward rate learning.

Statistical analyses

The efficacy and reward rate estimates obtained through
fitting the learning model were then used to analyze the
behavioral and EEG data. To this end, we fitted Bayesian
multilevel regressions to predict subjective estimates of
efficacy and reward rates, reaction times, accuracy, as
well as the CNV and P3b amplitudes. Subjective esti-
mates of efficacy and reward rate were regressed onto
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efficacy or reward feedback. Reaction times and accura-
cies were regressed onto trial-by-trial model-based esti-
mates of efficacy and reward rate, as well as trial-by-
trial CNV amplitude, while controlling for congruency.
The P3b amplitudes were analyzed in 2 ways: with trial-
by-trial model-based estimates of efficacy and reward
rate and current feedback as predictors, and with model-
based prediction errors and learning rates for each feed-
back type. CNV amplitudes were regressed onto trial-by-
trial model-based estimates of efficacy. All of the fitted
models controlled for the influence of the reward rate
estimates. Parallel analyses were done to predict the P3b
in response to reward feedback, while controlling for the
efficacy estimates.

The regression models were fitted in R with the brms
package (Bürkner 2016), which relies on the probabilis-
tic programming language Stan (Carpenter et al. 2016)
to implement Markov Chain Monte Carlo (MCMC) algo-
rithms and estimate posterior distributions of model
parameters. The analyses were done based on the recom-
mendations for Bayesian multilevel modeling using brms
(Bürkner 2016; Bürkner 2017; Nalborczyk and Bürkner
2019). The fitted models included constant and varying
effects (also known as fixed and random) with weakly
informative priors (except for the behavioral and CNV
analyses, see below for details) for the intercept and the
slopes of fixed effects and the likelihoods appropriate
for the modeled data (Ex-Gaussian for reaction times,
Bernoulli for accuracy, and Gaussian for the subjective
estimates and the EEG amplitudes). The fitted models
included all of the fixed effects as varying effects. All
of the continuous predictors in the model were centered
and the categorical predictors were contrast coded. Four
MCMC simulations (“chains”; 20,000 iterations; 19,000
warmup) were run to estimate the parameters of each
of the fitted models. The convergence of the models
was confirmed by examining trace plots, autocorrela-
tion, and variance between chains (Gelman and Rubin
1992). After convergence was confirmed, we analyzed
the posterior distributions of the parameters of interest
and summarized them by reporting the means of the
distribution for the given parameter (b) and the 95% CrI
of the posterior distributions of that model. We report
the proportion of the posterior samples on the relevant
side of 0 (e.g. Pb<0 = 0.9), which represents the probability
that the estimate is below or above 0. We also report
Bayes factors (BFs) calculated using the Savage–Dickey
method (Wagenmakers et al. 2010). We report the BFs
in support of the alternative hypothesis against the null
(BF10), except for the analyses of accurate RT, accuracies,
and CNV amplitude in which we have informative priors
based on our previous study (Frömer, Lin, et al. 2021a),
and in which case we support the evidence in favor of
the null (BF01).

To compare the positive and negative learning rates,
we fitted a model in which the learning rates were
predicted by the learning rate type (Kruschke 2013).
In this model, we used Gaussian distributions (mean,

standard deviation) as priors (intercept: (0.5,0.5); slopes:
(0,0.5)).

We fitted 2 separate models to predict the subjective
estimates of efficacy and reward rate based on previous
feedbacks. At each timepoint, the estimates were pre-
dicted by the current, and previous 4 feedbacks. The feed-
back on each of the trials (performance-based vs. random
or reward vs. no reward) was entered as a constant effect
and the models also included the intercept as a varying
effect. As the subjective estimates could vary between 0
and 1, we used Gaussian distributions (intercept: (0.5,0.2);
slopes: (0,0.2)) as priors.

For predicting the P3b amplitude in response to the
onset of the efficacy feedback, we fitted 2 models.
First, we fitted a model which included the model-
based estimate of efficacy (prior to observing the
current feedback), the actual feedback, and the inter-
action between the expected efficacy and the observed
efficacy feedback. Additionally, we controlled for the
reward rate estimate. Second, we fitted separate models
which included the model-based prediction errors,
the influence of the between-subject learning rates,
and their interaction with the prediction errors, while
controlling for the estimate of the reward rate. In this
analysis, the learning rates (one for feedback type for
each subject) were mean-centered within subjects, and
thus, any effect of the learning rates is driven by the
difference between the random and the performance-
based learning rate. For these models, we selected
wide Gaussian priors (intercept: (5,3); slopes (0,3)). The
same logic in building models was applied for the
analyses of the reward feedback. In these analyses, we
focused on the reward feedback processing and how it
interacted with the model-based estimates of reward
rates, while controlling for the model-based estimates
of efficacy. We analyzed only the trials with correct
responses for both the efficacy and the reward feedback
analyses.

To test the influence of efficacy on the late CNV,
we fitted a model which predicted the CNV based on
the model-based efficacy estimates, while controlling for
the effect of the reward rate estimates. Drawing on the
results of our previous study (Frömer, Lin, et al. 2021a),
this model included Gaussian priors for the intercept
(−0.16, 1.59) and the efficacy (−0.30, 0.73) and reward
(0,0.73) slopes.

For predicting reaction times and accuracy, we fitted
models which included congruency (Facilitation: differ-
ence between neutral and congruent trials; Interference:
difference between incongruent and neutral trials) and
the model-based efficacy estimates, while controlling for
the reward rate estimates. We used Gaussian distribu-
tions as informative priors based on our previous study
(Frömer, Lin, et al. 2021a), for both the reaction times
(intercept: (624, 58.69); facilitation (15.54, 21.93), inter-
ference (61.12, 37.49); efficacy (−10.26, 19.51); reward
(0, 19.51)) and accuracy(Note that the prior distribu-
tions are set in log-odds.) analyses (intercept: (2.11, 0.81);
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facilitation (−0.45, 0.64), interference (−0.53, 0.81); effi-
cacy (0.09, 0.32); reward (0, 0.32)).

To investigate how the late CNV influences the behav-
ior, we fitted 2 models in which we predicted the reaction
times and accuracy based on the CNV amplitude. The
prior distributions for these models were weakly infor-
mative Gaussian distributions for predicting both the
reaction times (intercept: (650, 200); slope: (0, 50)) and
accuracy (intercept: (0.7, 0.2); slope: (0, 0.2)).

To visualize the topographies of the relevant ERP
effects, we fitted the relevant models to all 64 channels
and then plotted the posterior estimates of the effects
of interest at each electrode (cf. Frömer, Nassar, et al.
2021b).

Study 2
Participants

We recruited 87 participants residing in the United States
from Prolific—an online platform for data collection. Par-
ticipants had normal or corrected-to-normal vision and
gave informed consents. They were compensated with
a fixed payoff of $8 per hour (median completion time
of 74 minutes) plus a monetary bonus based on points
earned during the task ($1 on average). The research pro-
tocol was approved by Brown University’s Institutional
Review Board.

We a priori excluded participants who did not pass
attention checks (N = 8) or who took substantially longer
than the average participant to complete the study (N = 2
participants who took over 130 min), suggesting that
they did not sustain attention to the experiment over
that time. We fit our learning models to data from the
remaining 77 subjects and then excluded participants
whose performance suggested inattention to the over-
all task (based on accuracies <70% across all trials—
including the trials in which performance efficacy was
low, N = 6) or inattention to the task feedbacks and effi-
cacy probes (based on low learning rates (N = 19), and
one subject with no variance in responses to reward
probes). To identify participants with exceedingly low
learning rates, we submitted all positive and negative
efficacy learning rates to unsupervised Gaussian mix-
ture models (as implemented in the Mclust package;
(Scrucca et al. 2016) to determine the best fitting number
and shape of clusters (model comparison via Bayesian
information criterion (BIC)). This procedure identified 4
clusters of subjects with different overall learning rates
(Supplementary Fig. S2B and C), and we excluded sub-
jects from the first cluster as they all had very low
learning rates relative to the other participants (both
learning rates <0.03). The subjects excluded based on
low learning rates were most likely not paying attention
to efficacy feedback or were always giving very similar
responses to the efficacy probes (Supplementary Fig. S3).
The final sample included 51 participants (31 females, 20
males; median age = 29).

Experimental design

In order to better understand the computational mech-
anisms that lead to improved behavioral performance in

high efficacy states (Study 1), we wanted to fit a DDM
(Ratcliff and McKoon 2008) to our behavioral data. If peo-
ple allocate more attention when they think they have
high performance efficacy, this should be observed as an
increase in the drift rate (speed of evidence accumula-
tion). However, Study 1 included a tight respond deadline
for earning a reward, making it more challenging to fit
the DDM. To avoid this issue, in Study 2, we adjusted the
task to a free response paradigm which allowed us to
investigate drift rate and threshold adjustments (cf. Leng
et al. 2021). We used this design to test the hypothesis
that higher efficacy estimates should predict increased
drift rates.

Instead of single trials, participants now completed
288 intervals during which they could respond to as
many trials (congruent and incongruent, removing the
neutral condition) as they wished within a fixed time
window (randomly selected between 2,000, 3,000, or
4,000 ms). Apart from this, the structure of the task
remained the same: participants saw a fixation cross
(1,000, 1,500, or 2,000 ms), then completed as many trials
as they wished during a fixed interval, followed by the
feedback (1,500 ms) on how many points they earned and
whether this was based on their performance or awarded
to them based on random chance. Note that participants
now received continuous reward feedback (10 points per
correct response instead of the binary reward-no reward
in Study 1). For example, if participants completed 4 trials
correctly and 2 trials incorrectly within a performance-
based interval they would receive 40 points and see
feedback informing them that the points were based on
their performance. To determine the number of points
on random intervals, the same yoking procedure as in
Study 1 was employed, ensuring that the amount of
reward was matched between performance-based and
random intervals (reward amounts on random intervals
were sampled from the moving average window of the
past 10 performance-based intervals). We confirmed that
the yoking procedure was successful by comparing the
reward amounts on the 2 interval types (b = 0.00; 95%
CrI [−0.00, 0.02]; Pb > 0 = 0.16). As in Study 1, participants
were probed every 2–4 intervals to estimate either how
much they thought their rewards depended on their
performance, or how often they were rewarded. We again
implemented an efficacy drift (modified, but comparable
to the drift in Study 1; Supplementary Fig. S2A), now
across the 288 intervals of the task.

We gamified the task in order to make it more
appealing for the participants. Instead of the Stroop
task, we used a picture-word interference task in which
4 gray-scaled images of fruit (apple, pear, lemon, and
peach) were overlaid by those fruit words. Participants
responded to the image, while ignoring the word, by
pressing one of the 4 corresponding keys. They first
practiced this task and then were introduced with a cover
story telling them that they are in the garden and need
to water the fruit in little patches by pressing the correct
keys. They were instructed that they will be moving
through a garden and that in some patches watering
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will directly translate into how many points they will
be earning, while in the others that will not be the case
(the efficacy drift). The experiment was implemented
in Psiturk (Gureckis et al. 2016) and the participants
performed the task on their own computers and were
required to have a keyboard.

Learning models, DDM, and statistical analyses
Learning models

We fitted the same set of learning models as in Study
1, performed model comparison, and got the interval-
by-interval model-based estimates of performance effi-
cacy and reward. Note that in this version of the task,
participants earned points in each interval, unlike the
binary rewards (reward vs. no reward) in Study 1. This
meant that the reward learning model learned reward
magnitudes rather than reward probabilities. However,
model fitting and the further analyses were the same as
in Study 1.

Statistical analyses

We fitted the same Bayesian multilevel models as in
Study 1 to predict the influence of previous efficacy
feedbacks on the subjective efficacy estimates, as well
as the influence of the model-based efficacy estimates
on reaction times and accuracies. For the analyses of the
subjective efficacy estimates, we used the same priors
as in Study 1. For the analyses of the reaction times and
accuracies, we used the posterior distributions obtained
in Study 1 as the informative priors for the congruency,
efficacy, and reward effects. The reaction times and accu-
racy models also controlled for the effects of the average
congruency level in the interval and the interval length.

Drift diffusion model

This model decomposes participant’s behavior into drift
rate (the speed of evidence accumulation) and response
threshold (the level of caution), allowing us to investigate
which of these 2 components is affected by the efficacy
estimates. We fitted the model using Bayesian hierarchi-
cal estimation as implemented in the HDDM package
(Wiecki et al. 2013). The fitted model included the main
effects of efficacy and reward rate estimates onto both
drift rate and threshold and included the effect of con-
gruency on the drift rate. The responses were coded as
correct or incorrect, and trials with reaction times below
250 ms were excluded. All of the effects were allowed to
vary across subjects, and we ran 5 MCMC chains (12,000
iterations; 10,000 warmup). We confirmed convergence
by examining trace plots and variance between chains.

Results
Study 1
To investigate how efficacy estimates are learned,
and how they affect control allocation, in Study 1 we
recorded EEG while 40 participants performed a modified
version of the Stroop task (Fig. 1A). Across trials, we
varied whether reward outcomes ($0.50 vs. $0.00) were

determined by a participant’s performance on a given
trial (responding accurately and below a pre-determined
response time criterion; i.e. performance-based trials) or
whether those outcomes were determined independent
of performance (based on a weighted coin flip; i.e.
random trials). Over the course of the session, we
gradually varied the likelihood that a given trial would
be performance-based or random such that, at some
points in the experiment, most trials were performance-
based (high efficacy level), and at other points, most
trials had random outcomes (low efficacy level) (Fig. 1B).
Importantly, unlike in our previous study (Frömer,
Lin, et al. 2021a), participants were not told whether
a given trial would be performance-based (maximal
efficacy) or random (minimal efficacy), but instead had
to estimate their current efficacy level based on recent
trial feedback, which indicated both the reward outcome
($0.50 vs. $0.00) and how that outcome was determined
(performance-based [button symbol] vs. random [dice
symbol]). We held reward rate constant across both
feedback types by yoking reward rate on random trials
to the reward rate on performance-based trials and
counter-balanced the time-course of the gradual change
in efficacy (see Methods for details). To capture changes
in efficacy expectations over the course of the session,
we probed participants every 4–8 trials (averaging 44.3
probes per participant) to report their current estimates
of efficacy. These efficacy probes were interleaved with
probes asking participants to estimate the current
reward rate, serving as foils and for control analyses.

Participants dynamically update efficacy expectations
based on feedback

To determine whether and how participants learned
their current efficacy levels, we first analyzed the influ-
ence of previous efficacy feedback (whether outcomes
on a given previous trial had been performance-based
or random) on one’s current subjective estimates of
efficacy. We found very strong evidence that participants
adjusted their subjective efficacy upward or downward
depending on whether the most recent trial was
performance-based or random (b = 0.14; 95% CrI [0.12,
0.16]; Pb < 0 = 0; BF10 > 100) and that this remained true
(but to diminishing degrees) up to 5 trials back (all
Pb < 0 < 0.01; Fig. 2A; Supplementary Table S1). This effect
of feedback on efficacy estimates was present only for
the efficacy feedback, while reward feedback did not
predict the subjective estimates of efficacy (Fig. 2A).
These results suggest that participants were dynamically
updating their efficacy estimates based on efficacy
feedback.

This pattern of learning was accounted for by a
standard reinforcement learning (RL) algorithm, the
delta-rule, according to which efficacy estimates are
updated in proportion to the prediction error between
the expected efficacy and the efficacy feedback on a
given trial (i.e. whether a given outcome was deter-
mined by performance or not) (Sutton and Barto 2018).

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac215#supplementary-data
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Fig. 2. Efficacy learning is captured by a reinforcement learning model with separate learning rates for performance-based and random feedback in
Study 1. A) Efficacy estimates track recent efficacy feedback. Regression weights for the influence of the current (t) and previous contingent versus
random feedback, as well as reward feedback, on the subjective efficacy estimate. Error bars represent 50% and 95% highest density intervals. B) A
separate learning rate model captures efficacy learning best. BICs of fitted intercept-only model and one learning rate model relative to two learning
rate models are plotted for each participant and favor the two learning rate model. C) Learning rate biases vary between participants. Positive and
negative learning rate estimates are plotted for all participants (left). Points below the diagonal indicate higher learning rates for performance-based
compared to random feedback, and points above the opposite. Example learning trajectories for two participants (right). Subjective and model-based
efficacy estimates, and a running average of the previous 5 efficacy feedbacks, for a participant with a higher learning rate for the contingent compared
to random feedback (upper) and a participant with the reverse bias (lower).

Interestingly, consistent with studies of reward learning
(Niv et al. 2012; Collins and Frank 2014; Lefebvre et al.
2017; Chambon et al. 2020; Garrett and Daw 2020), we
found that the RL model that best accounted for our
data allowed efficacy estimates to be updated differently
from trials that were more efficacious than expected
(Performance-Based feedback) than from trials that
were less efficacious than expected (Random feedback),
by having separate learning rates scaling prediction
errors in the 2 cases. Even when accounting for model
complexity, this Two Learning Rate Efficacy model
outperformed a One Learning Rate Efficacy model as well
as a baseline model that fits a single constant efficacy
estimate and no learning (Intercept Model) (Fig. 2B).
We were able to successfully recover the parameters
of this model from a simulated dataset matched
to our data (see Methods and Supplementary Fig. S1).
We found that the 2 learning rates for this best-fit
model varied across the group (Fig. 2C) but did not

find that one was consistently higher than the other
(b = 0.02; 95% CrI [−0.04, 0.08]; Pb < 0 = 0.260; BF01 = 13.55;
Supplementary Fig. S4), despite most participants (80%)
tending to learn more from performance-based than
random trials. Finally, model-based efficacy estimates
were strongly related to the raw subjective estimates on
trials on which participants reported efficacy (b = 0.77;
95% CrI [0.62, 0.91]; Pb < 0 < 0.001; BF01 > 100; R2 = 0.50),
demonstrating that the model successfully captured
the raw estimates. Taken together, these results show
that participants dynamically updated their expected
efficacy based on trial-by-trial feedback and that they
did so differentially based on whether the trial was
more or less efficacious than expected. The fitted
models further enable us to generate trial-by-trial
estimates of expected efficacy and efficacy prediction
errors, which we use in model-based analyses of
behavior and neural activity below. Note that in all
the following analyses, we control for reward estimates
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obtained from models fit to reward feedback (for details
see below).

The feedback-related P3b indexes updating of efficacy
expectations

To investigate the neural mechanism underlying feedback-
based learning of efficacy, we probed the centroparietal
P3b ERP component (Fig. 3A), an established neural
correlate of prediction-error based learning (Fischer and
Ullsperger 2013; Nassar et al. 2019). If the P3b indexes
feedback-based updating of efficacy predictions, as it
does for reward predictions, we would expect this ERP
to demonstrate several key markers of such a learning
signal. First, we would expect the P3b to reflect the extent
to which efficacy feedback (performance-based vs. ran-
dom) deviates from the current level of expected efficacy.
In other words, the P3b should track the magnitude of
the unsigned efficacy prediction error (PE) on a given
trial. We tested this by examining how the amplitude
of the P3b to a given type of efficacy feedback varied
with model-based estimates of the participant’s efficacy
expectation on that trial, while holding the expected
reward rate constant (see Section 2 for the details of the
experimental design and the statistical models). If the
P3b signaled efficacy PE, then its amplitude should scale
inversely with the expected probability of a given type
of feedback (i.e. how unexpected that feedback is), thus
correlating negatively with expected efficacy on trials
providing performance-based feedback and correlating
positively with expected efficacy on trials providing
random feedback. In addition to overall higher P3b
to performance-based compared to random feedback
(b = 0.86; 95% CrI [0.42, 1.31]; Pb < 0 = 0; BF10 = 30.86;
Fig. 3B), we found exactly this predicted interaction
between feedback type and expected efficacy (b = −2.40;
95% CrI [−4.07, −0.74]; Pb > 0 = 0; BF10 = 24.40; Fig. 3B;
Supplementary Fig. S5A; Supplementary Table S2), with
the P3b amplitude decreasing with model-based esti-
mates of expected efficacy on performance-based
trials (b = −1.49; 95% CrI [−2.72, −0.27]; Pb > 0 = 0.03;
BF10 = 1.52) and increasing numerically, but not robustly
with expected efficacy on random trials (b = 0.91; 95%
CrI [−0.34, 2.21]; Pb < 0 = 0.12; BF10 = 0.44). Accordingly,
when we regressed P3b amplitude on our model-based
estimates of trial-to-trial efficacy PE, we found a positive
relationship (b = 1.25; 95% CrI [0.35, 2.15]; Pb < 0 = 0.01;
BF10 = 5.84; Fig. 3C-left; Supplementary Table S2).

In addition to tracking efficacy PEs, the second key
prediction for the P3b if it indexes efficacy learning is
that it should track the extent to which PEs are used
to update estimates of efficacy (i.e. the learning rate).
In the current study, we found that participants dif-
fered in their learning rates for the 2 forms of efficacy
feedback (performance-based vs. random), providing us
with a unique opportunity to perform a within-subject
test of whether the P3b tracked differences in learning
rate across these 2 conditions. Specifically, we could

test whether a given subject’s P3b was greater in the
feedback condition for which they demonstrated a higher
learning rate. We found only suggestive evidence for such
an effect, with the P3b numerically but not robustly
higher for the within-subject feedback condition with
the higher learning rate (b = 2.00; 95% CrI [−2.21, 6.04];
Pb < 0 = 0.17; BF = 1.08; Fig. 3C-right). While, theoretically,
prediction error and learning rate might also interact in
predicting the P3b amplitude, we did not observe such
an interaction here. This finding is in line with previous
work on reward processing (Fischer and Ullsperger 2013),
which has found additive effects of prediction errors and
learning rate on P3b.

The CNV indexes control allocation based on updated
expectations of efficacy

Thus far, our findings suggest that participants dynami-
cally updated expectations of their performance efficacy
based on feedback, and that the P3b played a role in
prediction error-based updating of these expectations.
Next, we tested the prediction that learned efficacy esti-
mates determine the expected benefits of control and
thus influence how much control is allocated (Shen-
hav et al. 2013). We have previously shown that people
exert more control when expecting their performance to
be more rather than less efficacious on the upcoming
trial (Frömer, Lin, et al. 2021a). This was reflected in
better behavioral performance and higher amplitudes
of the CNV (Fig. 4B-left)—a slow negative fronto-central
waveform preceding target onset, which is increasingly
negative as the amount of control allocated in prepara-
tion for the task increases (Grent-‘t-Jong and Woldorff
2007; Schevernels et al. 2014). Here, we used the same
marker of control, but, unlike in our previous study, effi-
cacy expectations were (i) learned rather than explicitly
instructed; (ii) varied over time rather than having a
fixed association with a cue; and (iii) varied continu-
ously across the range of efficacy probabilities rather
than alternating between maximal and minimal efficacy.
We were therefore interested in testing whether these
dynamically varying expectations of efficacy, as esti-
mated by our model, would still exert the same influence
on behavior and neural activity.

Consistent with our predictions and our previ-
ous findings, participants tended to perform bet-
ter when they expected performance to be more
efficacious, responding faster on correct trials with
increasing model-based estimates of efficacy (Fig. 4A;
Supplementary Fig. S6A; Supplementary Table S3). This
finding replicates the performance effects we observed
using instructed cues, albeit with only modest evidence
(b = −16.00; 95% CrI [−34.91, 2.96]; Pb > 0 = 0.05; BF01 = 1.68).
Like in our previous studies, faster responding was
not explained by a change in speed–accuracy trade-
off, as accuracy did not decrease with increasing
efficacy (b = 0.12; 95% CrI [−0.20, 0.44]; Pb>0 = 0.23;
BF01 = 1.99; Supplementary Fig. S6A). These analyses
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Fig. 3. P3b reflects dynamically changing efficacy estimates during processing of efficacy feedback in Study 1. A) ERP average for the P3b locked to the
onset of the efficacy feedback separately for performance-based and random feedback. The gray area shows the time window used for quantifying the
P3b. B) LMM predicted P3b amplitudes are plotted for performance-based and random feedback as a function of efficacy estimates. The topography shows
the interaction of efficacy estimate with efficacy feedback in the P3b time window. C) Predicted (centered) effects of unsigned prediction errors (left)
and model-based learning rates (right) on the P3b. Shaded error bars represent 95% confidence intervals. Topographies display fixed-effects estimates.

controlled for the standard behavioral effects related
to Stroop congruency (i.e. slower and less accurate
responding for incongruent relative to congruent trials;
Supplementary Fig. S7), as well as for the reward rate
estimates.

If the CNV provides an index of control allocation
based on current incentive expectations, it should
both reflect one’s latest efficacy estimate and predict
performance on the upcoming trial. Our findings support
both predictions. Regressing single-trial CNV amplitude
onto model-based efficacy estimates, and controlling
for expectations of reward (discussed below), we found
that CNV amplitudes had a positive relationship are
more negative.) with the current efficacy expectations

(b = −0.35; 95% CrI [−0.85, 0.16]; Pb > 0 = 0.09; BF10 = 2.73;
Fig. 4B-right; Supplementary Fig. S5B; Supplementary
Table S4). (Note that the CNV is a negative component,
and thus higher CNV amplitudes - i.e., more control
allocation - are more negative.) However, this effect
was weaker than in the previous experiment with cued
efficacy levels, which is to be expected given that in
this experiment participants had to learn their efficacy
levels. As with the behavioral finding above, this result
provides evidence consistent with our previous CNV
finding using instructed cues. We further replicate our
earlier finding (Frömer, Lin, et al. 2021a) that larger
CNV amplitude in turn predicted better performance
on the upcoming trial, with participants responding
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Fig. 4. Efficacy estimates influence allocation of control and behavior in Study 1. A) Higher efficacy predicts faster accurate responses. B) CNV increases
with higher efficacy. Left: Grand-average ERP for high and low efficacy estimates (median split used for plotting). The shaded area marks the time
window used for CNV quantification. Time 0 corresponds to the onset of the neutral cue. Right: Predicted CNV amplitudes as a function of efficacy
estimates. The topography shows the fixed effect of the efficacy estimate from the fitted linear model. C, D) Larger CNV amplitude predicts better
performance. Predicted accurate RT (C) and accuracy (D) as a function of efficacy estimates. Shaded error bars indicate 95% confidence intervals.

faster (b = 11.41; 95% CrI [8.09, 14.72]; Pb < 0 = 0; BF10 > 100;
Fig. 4C; Supplementary Table S5) and more accurately
(b = −0.07; 95% CrI [−0.12, −0.01]; Pb > 0 = 0.01; BF10 = 3.14;
Fig. 4D; Supplementary Table S5) as CNV increased.

Parallel learning of efficacy and reward rate

We held the amount of reward at stake constant over
the course of the experiment, but the frequency of
reward (reward rate) varied over the course of the
session based on a participant’s recent performance,
and participants were sporadically probed for esti-
mates of their reward rate (interleaved with trials
that were followed by efficacy probes). Our efficacy
manipulation explicitly controlled for this variability
by yoking random-outcome feedback to a participant’s
recent reward rate (see Methods for details). However,
this additional source of variability also provided an

opportunity to examine additional mechanisms of
learning and adaptation in our task. As in the case
of efficacy estimates, reward rate estimates were
robustly predicted by reward feedback on previous trials
(Supplementary Table S1; Supplementary Fig. S8A), and
this reward rate learning process was well captured
by a two learning rate reward rate model (Garrett
and Daw 2020; Supplementary Fig. S8B and C), with
the model-based estimates successfully predicting the
reported subjective estimates (b = 0.82; 95% CrI[0.60,
1.02]; Pb < 0 < 0.001; BF01 > 100; R2 = 0.58; Supplementary
Fig. S8B and C). Updates to these reward rate esti-
mates were reflected in P3b modulations of (unsigned)
reward prediction errors and associated learning rates
(Fischer and Ullsperger 2013; Supplementary Fig. S9;
Supplementary Table S6). This pattern of results pro-
vides additional evidence that efficacy learning involves
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similar neural and computational mechanisms as
reward-based learning.

Study 2
Learned efficacy modulates control over information
processing

Our findings suggest that people rely on domain-
general mechanisms to learn about their performance
efficacy in a given environment and use these learned
estimates of efficacy to optimize performance on their
task. Specifically, in Study 1, we found that higher
levels of learned efficacy are associated with faster
responses, albeit with modest evidence (b = −16.00; 95%
CrI [−34.91, 2.96]; Pb > 0 = 0.05; BF01 = 1.68). We also found
that this speeding occurred on correct but not incorrect
trials, suggesting that these performance adjustments
reflected attentional control rather than adjustments
to speed–accuracy tradeoffs. However, these findings
remain only suggestive in the absence of a formal model,
and the presence of a stringent response deadline in this
study (individually calibrated for each subject during
the practice phase to ensure the reward rate of 80%;
M = 796 ms; SD = 73 ms) presented an obstacle to fitting
our behavioral data to such a model without additional
assumptions (e.g. regarding the form of a collapsing
threshold).

To provide further support for our proposal that
learned efficacy influences control over information
processing, we ran an additional behavioral study (Study
2). Participants in this study (N = 51) performed a web-
based version of the task in Study 1, with the biggest
modification being that the Stroop trials (now using
picture-word rather than color-word interference) were
performed over the course of short self-paced time inter-
vals rather than trial-by-trial as in Study 1. Specifically,
participants were given limited time windows (2–4 s) to
complete as many Stroop trials as they wanted to and
were rewarded at the end of each interval (cf. Leng et al.
2021). When rewards were performance-based, partici-
pants received a number of points exactly proportional
to the number of correct responses they gave during
that window. When rewards were random, the number
of points was unrelated to performance on that interval
but (as in Study 1) was yoked to their performance in
previous performance-contingent intervals. Following
our approach in Study 1, we varied the likelihood of
a given interval being performance-based or random
over the course of the session (Supplementary Fig. S2A),
and sporadically probed participants for their subjective
estimates of expected efficacy and reward rate. While in
most respects very similar to the paradigm in Study 1,
one noteworthy feature of this self-paced design is that
it resulted in a less stringent deadline for responding,
thus producing reaction time patterns more typical of
free-response paradigms for which the traditional (fixed-
threshold) DDM was designed. Note that because this
was an online sample we also employed additional cutoff
criteria to exclude inattentive participants, as detailed in

the Methods section and Supplementary Figs. S2B and C
and S3.

Replicating the learning patterns observed in Study 1,
subjective estimates of efficacy in Study 2 reflected a
running average over recent efficacy feedback (b = 0.18;
95% CrI [0.16, 0.20]; Pb < 0 = 0; BF10 > 100). This effect was
again weighted towards the most recent feedback but
still present up to 5 intervals back (all Pb < 0 < 0.01; Fig. 5A,
Supplementary Fig. S10, and Supplementary Table S7).
As in Study 1, this learning pattern was best captured
by an RL algorithm with 2 learning rates (Fig. 5B) and
positive and negative efficacy learning rates did not
significantly differ from one another on average (b = 0.03;
95% CrI [−0.03, 0.08]; Pb < 0 = 0.260; BF01 = 11.74; Fig. 5C). As
in Study 1, the model-based efficacy estimates success-
fully predicted the raw subjective estimates on intervals
on which participants reported their efficacy beliefs
(b = 0.86; 95% CrI [0.81, 0.90]; Pb < 0 < 0.001; BF01 > 100;
R2 = 0.60), and the same was true for the model-based
reward estimates predicting the subjective reward
estimates (b = 1.00; 95% CrI[0.95, 1.04]; Pb < 0 < 0.001;
BF01 > 100; R2 = 0.66).

Critically, we once again found that higher model-
based estimates of efficacy predicted better performance
on the upcoming interval. Participants responded
faster (b = −10.25; 95% CrI [−19.86, −0.20]; Pb > 0 = 0.02;
BF01 = 2.33) and more accurately (b = 0.23; 95% CrI [0.03,
0.43]; Pb > 0 = 0.01; BF01 > 100) with increasing model-
based efficacy estimates (Fig. 5D, Supplementary Fig. S6B,
and Supplementary Table S8). To formally test whether
these behavioral patterns reflected adjustments in infor-
mation processing (i.e. the rate of evidence accumulation
once the stimuli appeared) or instead reflected adjust-
ments in speed–accuracy tradeoffs (i.e. the threshold for
responding), we fit these data with the hierarchical drift
diffusion model (HDDM; Wiecki et al. 2013). We tested
whether model-based efficacy estimates predicted trial-
by-trial changes in drift rate, threshold, or both, while
controlling for influences of expected reward rate on
those same DDM parameters. We found that higher levels
of expected efficacy were associated with higher drift
rates (b = 0.07; 95% CrI [0.14, 0.43]; Pb < 0 = 0.00) but were
uncorrelated with threshold levels (b = −0.00; 95% CrI
[−0.04, 0.04]; Pb < 0 = 0.74) (Fig. 5E). Expected reward rate
was not correlated with either drift rate or threshold
(Supplementary Table S9). These results suggest that
participants responded to changes in performance
efficacy by adjusting their attention to the task, rather
than simply adjusting their response threshold (i.e.
becoming more or less impulsive).

Discussion
To evaluate the expected benefits of investing cognitive
control into a task, people need to consider whether this
control is necessary and/or sufficient for achieving their
desired outcome (i.e. whether these efforts are worth-
while). A critical determinant of the worthwhileness
of control is performance efficacy, the extent to which
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Fig. 5. Efficacy is learned in the same way in a modified task and influences a behavioral marker of control allocation. A) Regression weights for
the influence of previous feedback type (efficacy and reward) on the subjective efficacy estimate. Error bars represent 50% and 95% highest density
intervals. B) Two learning rate model captures efficacy learning best. Differences in BICs between the two learning rate model, and the intercept-only and
one learning rate models. C) Efficacy learning rates. Positive and negative efficacy learning rates for each participant. D) Higher model-based efficacy
estimates predict better behavioral performance. Higher efficacy estimates reduce reaction times (left) and improve accuracy (right). E) Higher model-
based efficacy estimates predict increased allocation of attention. Parameter estimates from the DDM. Higher efficacy estimates increase drift rates,
but not response caution (thresholds).

performance on a control-demanding task matters
for outcome attainment versus those outcomes being
determined by performance-unrelated factors. However,
the mechanisms through which people estimate the
efficacy of their performance based on previous expe-
rience are largely unknown. Here, we identified the
computational and neural mechanism through which
efficacy is learned and used to guide the allocation of
cognitive control. Across 2 experiments, we found that
participants dynamically updated expectations of the
efficacy of their task performance (i.e. the likelihood that
this performance will determine reward attainment)
and used those expectations to adjust how much
control they allocated. The feedback-based updating of
efficacy was well captured by a prediction error-based
learning algorithm. Model-based estimates of efficacy
and efficacy prediction errors were encoded by canonical
neural signatures of effort allocation and belief updating,
respectively. Importantly, these findings cannot be

explained by variability in reward, as reward rate was
held constant across efficacy levels, and the subjective
reward rate was controlled for statistically. Further, our
model-based analyses revealed that people allocated
more control when they learned that they had more
efficacy, extending our previous findings on instructed
efficacy (Frömer, Lin, et al. 2021a). Taken together, our
results uncover the mechanism through which efficacy
estimates are learned and used to inform mental effort
investment within a given task environment.

Previous research has characterized the learning algo-
rithms people use to learn the reward value of differ-
ent states and actions in their environment (Gläscher
et al. 2010; Sutton and Barto 2018). Recent theoreti-
cal (Jiang et al. 2014; Lieder et al. 2018; Verbeke and
Verguts 2019) and empirical (Bejjani et al. 2018; Otto
and Daw 2019; Jiang et al. 2020; Bustamante et al. 2021)
work has extended this research to show how similar
algorithms guide learning and adaptation of cognitive
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control under varying rewards and task demands within
a given task environment. Our findings extend this work
further in several ways. First, we show that people lever-
age weighted prediction errors when learning about the
efficacy of task performance, independently of potential
reward and task difficulty. Second, we show that they
update their efficacy expectations differently depending
on whether performance was more efficacious or less
efficacious than they expected, demonstrating a striking
parallel with dual learning rate models that have been
found to prevail in research on reward learning (Collins
and Frank 2013; Lefebvre et al. 2017; Garrett and Daw
2020), including in our own reward rate data (Supplemen-
tary Fig. S9). Third, we show that participants dynam-
ically adjust their control allocation based on learned
efficacy, just as they do for learned rewards and task
demands (Bugg et al. 2011; Jiang et al. 2014; Lieder et al.
2018).

Our neural findings build further on past research on
learning and control adaptation. The P3b component has
been shown to track prediction error-based learning from
action-relevant outcome values (Fischer and Ullsperger
2013; Nassar et al. 2019; Lohse et al. 2020). Here we show
that this neural marker tracks learning about efficacy
in the same way as it tracks learning about rewards.
We found increased P3b amplitudes when people experi-
enced feedback about outcome contingencies that was
less expected given their current estimate of efficacy
(e.g. expecting low efficacy, but getting performance-
contingent feedback), relative to when these contingen-
cies were more expected (e.g. expecting low efficacy and
getting random feedback). Our additional finding that
P3b amplitude was overall larger for efficacy compared to
no efficacy feedback demonstrates that our participants
were not just tracking the frequency of the 2 types of
feedback, as would be predicted by an oddball account.
Instead this finding suggests that they were actively
learning from the feedback.

Extending previous findings on cueing efficacy and/or
reward (Schevernels et al. 2014; Frömer, Lin, et al. 2021a),
our CNV and behavioral results further show that partic-
ipants used these learned efficacy estimates to calibrate
their effort and their performance. Notably, unlike in
previous work, our study shows effort-related changes
in CNV amplitude entirely divorced from perceptual
cues, providing evidence that this activity truly reflects
adjustments in control, rather than reactive processing
of features associated with the cue. Taken together,
our findings suggest that similar neural mechanisms
underlie learning and control adaptation in response to
variability in one’s efficacy in a task environment, as they
do in response to variability in expected rewards (Otto
and Daw 2019; Leng et al. 2021). By fitting behavioral
data from this task to a DDM (Study 2), we were
able to further demonstrate that participants were
adapting to changes in expected efficacy by enhancing
the processing of stimuli (i.e. increasing their rate of
evidence accumulation)—potentially via attentional

control mechanisms—rather than by adjusting their
threshold for responding. This particular pattern of
control adjustments was predicted for the current task
because performance-contingent rewards depended on
responses being both fast and accurate (as in Frömer, Lin,
et al. 2021a), but future work should test the prediction
that different control adjustments should emerge under
different performance contingencies (cf. Leng et al. 2021;
Ritz et al. 2022).

Our findings build on previous research on how people
learn about controllability of their environment. Studies
have examined the neural and computational mecha-
nisms by which humans and other animals learn about
the contingencies between an action and its associated
outcome and demonstrated that these learned action–
outcome contingencies influence which actions are
selected and how vigorously they are enacted (Dickinson
and Balleine 1995; Liljeholm et al. 2011; Manohar et al.
2017; Moscarello and Hartley 2017; Ly et al. 2019). Our
work extends this research into the domain of cognitive
control, where the contingencies between actions (i.e.
control adjustments) and outcomes (e.g. reward) depend
both on whether control adjustments predicts better
performance and whether better performance predicts
better outcomes (Shenhav et al. 2021). Learning control-
outcome contingencies therefore requires learning about
how control states map onto performance (control effi-
cacy) as well as how performance maps onto outcomes
(performance efficacy). By describing the mechanisms
by which people solve the latter part of this learning
problem and demonstrating that these are comparable
to those engaged during action–outcome learning, our
study lays critical groundwork for better understanding
the links between selection of actions and control states.

Our efficacy-updating results are a reminder that
many aspects of feedback are reflected in prediction
error signals (Langdon et al. 2018; Frömer, Nassar, et al.
2021b). In the present study, we intentionally separated
feedback about reward and efficacy to isolate the
cognitive and neural learning mechanisms associated
with each. In doing so, we have taken an important first
step towards understanding the updating mechanisms
underlying each. Further work is needed to understand
how these are inferred in more naturalistic settings, in
which different forms of feedback are often multiplexed,
containing information about the values of actions that
were taken as well as about the features and structure
of the environment (cf. Dorfman et al. 2019, 2021).

Another distinct element of more complex naturalistic
environments is that the same feedback can be used
to evaluate multiple targets, including internal ones,
such as the selected response and its predicted outcome,
and external ones, such as the source of feedback/en-
vironment (Carlebach and Yeung 2020). Consistent with
such multi-level prediction error signals, recent work
has shown that the seemingly consistent relationship
between the P3b and behavioral adaptation (Yeung and
Sanfey 2004; Chase et al. 2011; Fischer and Ullsperger

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac215#supplementary-data
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2013) in fact depends on the context in which a prediction
error occurred (Nassar et al. 2019). Reinforcement learn-
ing, and predictive inference more generally, have been
proposed to not only support the selection of individual
actions but also extended sequences of actions and
control signals (Holroyd and Yeung 2012; Lieder et al.
2018). In addition to the evaluation of overt actions and
the related feedback, neural signatures of feedback-
based learning could also reflect the evaluations of
covert actions, such as the intensity of cognitive control
signals. Given the many potential causes a given outcome
can have, and the flexibility that people have in how they
use the feedback, it is easy to see how feedback could
be misattributed and lead to inaccurate beliefs about
performance efficacy. Such beliefs about environmental
statistics can drive changes in feedback processing
and behavioral adaptation, above and beyond the true
statistics (Schiffer et al. 2017), and are thus of particular
importance for understanding some of the cognitive
symptoms of mental disorders.

Understanding how efficacy estimates develop based
on previous experiences is crucial for understanding why
people differ in how much cognitive control they allocate
in different situations (Shenhav et al. 2021). People differ
in their beliefs about how much control they have over
their environments (Leotti et al. 2010; Moscarello and
Hartley 2017), and in their ability to estimate their
efficacy (Cohen et al. 2020). Further, many mental
disorders, including depression and schizophrenia, have
been linked with one’s estimates of their ability to control
potential outcomes in their environment, including
through allocation of control (Huys and Dayan 2009;
Maier and Seligman 2016). We recently proposed that
such changes can drive impairments of motivation and
control in those populations (Grahek et al. 2019). As
we show in this study, when people have learned to
expect low efficacy, they will allocate less cognitive
control, which can manifest as apparent control deficits.
The experimental and modeling approach taken in
our study helps uncover a more fine-grained view
of how components of motivation are learned and
used to support the allocation of cognitive resources.
In this way, our study takes a first step towards a
better computational and neural account of efficacy
learning, which can aid the understanding of individual
differences in the willingness to exert mental effort,
as well as the development of interventions aimed at
teaching individuals when these efforts truly matter.
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