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A novel mutation P112H in the TARDBP gene
associated with frontotemporal lobar degeneration
without motor neuron disease and abundant
neuritic amyloid plaques
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Jens Wiltfang4, William W Seeley1,5, Bruce L Miller1, Giovanni Coppola3 and Lea Tenenholz Grinberg1,5*
Abstract

Introduction: Although TDP-43 is the main constituent of the ubiquitinated cytoplasmic inclusions in the most
common forms of frontotemporal lobar degeneration, TARDBP mutations are not a common cause of familial
frontotemporal dementia, especially in the absence of motor neuron disease.

Results: We describe a pedigree presenting with a complex autosomal dominant disease, with a heterogeneous
clinical phenotype, comprising unspecified dementia, parkinsonism, frontotemporal dementia and motor neuron
disease. Genetic analyses identified a novel P112H TARDBP double variation located in exon 3 coding for the first
RNA recognition motif of the protein (RRM1). This double mutation is probably pathogenic based on
neuropathological findings, in silico prediction analysis and exome sequencing. The two autopsied siblings
described here presented with frontotemporal dementia involving multiple cognitive domains and behavior but
lacking symptoms of motor neuron disease throughout the disease course. The siblings presented with strikingly
similar, although atypical, neuropathological features, including an unclassifiable TDP-43 inclusion pattern, a high
burden of tau-negative β-amyloid neuritic plaques with an AD-like biochemical profile, and an unclassifiable
4-repeat tauopathy. The co-occurrence of multiple protein inclusions points to a pathogenic mechanism that
facilitates misfolded protein interaction and aggregation or a loss of TDP-43 function that somehow impairs protein
clearance.

Conclusions: TARDBP mutation screening should be considered in familial frontotemporal dementia cases, even
without signs or symptoms of motor neuron disease, especially when other more frequent causes of genetic
frontotemporal dementia (i.e. GRN, C9ORF72, MAPT) have been excluded and when family history is complex and
includes parkinsonism, motor neuron disease and frontotemporal dementia. Further investigations in this family
may provide insight into the physiological functions of TARDBP.
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Introduction
The clinical term frontotemporal dementia (FTD) encom-
passes three canonical clinical presentations: a behavioral
variant (bvFTD) and two language syndromes: semantic
dementia and progressive nonfluent aphasia [1]. A per-
centage of the cases feature concomitant motor neuron
disease (MND). Conversely, about 15% of patients with
amyotrophic lateral sclerosis (ALS), a subtype of MND,
show variable cognitive impairment from mild executive
dysfunction to definite FTD [2]. These conditions are
referred to as FTD-MND or MND-FTD according to
the initial presentation. The 43-kDa transactive response
(TAR)-DNA-binding protein (TARDBP; MIM# 605078)
was identified in 2006 as the primary constituent of the
ubiquitin-positive and tau-negative neuronal and glial in-
clusions found in brains of patients with frontotemporal
lobar degeneration (FTLD-TDP) and ALS, suggesting a
common pathogenesis in these disorders [3-5]. About
40% of patients with FTLD-TDP have a family history of
dementia or psychiatric disease [6-8]. A hexanucleotide
repeat expansion in the noncoding region of the gene
C9ORF72 and mutations in the progranulin gene (GRN)
are the most common known genetic causes of FTLD-
TDP. Although TARDBP mutations account for less
than 5% of familial ALS (FALS) and some sporadic ALS
cases [9-16], previous studies failed to find evidence
for a significant genetic role of TARDBP mutations in
FTLD [17-20]. Most of the few FTD cases in which
TARDBP mutations have been identified manifest a
heterogeneous phenotype, but always with a significant
MND component: MND-FTD [21], MND-FTD with ex-
trapyramidal symptoms [22-24], MND with supra-
nuclear palsy [22] and FTD-MND [25]. The association
of TARDBP mutations with pure FTD is less robust: less
than 15 cases have been reported [26-31] and only three
received neuropathological confirmation [28-30].
Here, we report the clinical, neuroimaging and neuro-

pathologic characteristics of a kindred with a novel P112H
TARDBP mutation presenting with frontotemporal de-
mentia without motor neuron disease and featuring TDP-
43-positive inclusions, tau-negative abundant β-amyloid
neuritic plaques and atypical 4R-tauopathy.

Materials and methods
Ethics, consent and permissions
All steps of the investigation, including approval for gen-
etic testing, were approved by UCSF institutional review
board. Written informed consent was obtained from pa-
tients or surrogates.

Clinical and imaging investigation
The proband was submitted to comprehensive clinical
and familial history, neurological examination and formal
standardized neuropsychological assessment at enrollment
and, annually for additional two years at the University of
California, San Francisco – Memory and Aging Center
(UCSF-MAC). The clinical evaluation included a semi-
structured history and physical examination by a behavioral
neurologist, a caregiver interview by a nurse, a standardized
battery of cognitive tests administered by a neuropsych-
ologist and a structural 3.0 T brain MRI including T1, T2
and FLAIR acquisitions. Proband was also submitted
to Positron emission tomography (PET) images with 18 F-
FDG PET and 11C-PIB. Patient 2 was evaluated postmor-
tem, via informant by a semi-structured interview includ-
ing a series of questionnaires covering several cognitive
domains. In addition, we conducted a review of extensive
past medical records made available by other centers.

Genetics
TARDBP Sanger sequencing was performed using stand-
ard protocols. The effect of the sequence variants was esti-
mated using three prediction tools: PolyPhen −2 (http://
genetics.bwh.harvard.edu/pph/) [32], SIFT (Sorting Into-
lerant From Tolerant, http://sift.jcvi.org/www/SIFT_BLink_
submit.html) [33] and SNAP (http://rostlab.org/services/
snap/) [34]. The novelty of the variants was assessed by
searching the dbSNP138 (http://www.ncbi.nlm.nih.gov/
SNP/), 1000 Genomes Project (www.1000genomes.org) and
ESP (evs.gs.washington.edu/EVS) databases.
C9ORF72 repeat expansion mutations were determined

using the repeat-primed PCR reaction as described in
DeJesus-Hernandez et al. [35]. PCR products were run on
an ABI3730 DNA Analyzer and analyzed using the Peak
Scanner Software. The characteristic “saw-tooth” pattern
is indicative of the presence of a repeat expansion.
Whole-exome sequencing was performed on the DNA

of the proband using the TruSeq DNA Sample Prep Kit
(Illumina, San Diego, CA) for exome capture and the
Illumina Genome Analyzer HiSeq2500 as sequencing plat-
form and a 100 bp, paired-end sequencing protocol. The
reads were aligned to the National Center for Biotechnol-
ogy Information human reference genome (GRCh37/hg19).

Neuropathological assessment
Neuropathological assessment of both cases was per-
formed at the UCSF Neurodegenerative Disease Brain
Bank. Brains were procured within 10 hours post-mortem.
The brain from the proband was cut into 8–10 mm-thick
coronal slabs that were alternately fixed in 10% neutral
buffered formalin for 72 h or rapidly frozen. For patient 2,
the right hemisphere was immersion-fixed in 10% neutral
buffered formalin and the left hemisphere was slabbed and
frozen. Twenty-three tissue blocks covering dementia-
related regions of interest were dissected from the fixed
slabs. Basic and immunohistochemical stains were applied
following standard diagnostic procedures developed for pa-
tients with dementia [3,36-38]. Selected areas were stained

http://genetics.bwh.harvard.edu/pph/
http://genetics.bwh.harvard.edu/pph/
http://sift.jcvi.org/www/SIFT_BLink_submit.html
http://sift.jcvi.org/www/SIFT_BLink_submit.html
http://rostlab.org/services/snap/
http://rostlab.org/services/snap/
http://www.ncbi.nlm.nih.gov/SNP/
http://www.ncbi.nlm.nih.gov/SNP/
http://www.1000genomes.org
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using the Gallyas silver method and immunostained for β-
amyloid (1:2000, 4G8, Covance, NJ); hyperphosphorylated-
tau (1:500, CP-13, gift of Peter Davies, NY), α-synuclein
(1:500, LB509, Invitrogen, CA), Anti-Nucleoporin p62
(1:250, BD Biosciences San Jose, CA), TDP-43 (1:500,
ProteinTech Group, IL). Table 1 depicts the staining and
immunostaining performed per brain region. All immu-
nohistochemical runs included positive control sections.
Final diagnoses were achieved at a diagnostic consensus
conference.

Analysis of truncated ß-amyloid peptide species
Amyloid was extracted from middle frontal cortex of
both patients using a buffer containing 0.1% SDS, 1.0%
Nonidet P-40 and 0.5% sodium deoxycholate to prepare
the detergent-soluble fraction. The samples were separa-
ted by SDS-PAGE in the presence of urea and analyzed by
immunoblot with the monoclonal antibody 6E10. On
immunoblots, this antibody recognizes N-terminal ß-
Table 1 Staining and immunostaining peformed, per brain re

Region H&E Gallyas

Frontal pole, medial x

Anterior orbital gyrus x

Anterior middle cingulate cortex x

Middle front gyrus x x

Inferior frontal gyrus x

Ventral striatum x

Inferior temporal gyrus x x

Amygdala x

Insula/Putamen x

Globus Pallidus x

Superior frontal sulcus x

Hippocampus/entorhinal cortex x

Superior temporal gyrus x

Sensorimotor cortex x

Thalamus x

Angular gyrus x x

Posterior cingulate cortex x

Calcarine cortex x

Cerebellum including the dentate nucleus x

Rostral midbrain x

Caudal midbrain x

Rostral pons x

Caudal pons x

Medulla oblongata x

Spinal cord (4 levels) x

A-beta: immunohistochemistry against beta-amyloid; a-syn: immunohistochemistry
B: bilateral; Gallyas: Gallyas silver staining; H & E: Hematoxylin and eosin staining; p
hemispheres on index patient; TDP-43: immunohistochemistry against protein TDP-
amyloid variants from Aβ(1-42/1-X) to Aβ(5-42/5-X)
[39]. The pattern of Aß variants was compared to two
patients with a primary diagnosis of Alzheimer’s disease
(AD) who lacked comorbidities.

Results
Case report: patient 1 (proband)
The proband (III-19) (Figure 1) was a 71-year-old, right-
handed woman with 12 years of formal education, who
was first evaluated at the UCSF-MAC in 2008, four years
prior to her death. She had a longstanding history of
hypertension, depression and anxiety, and a left-sided
Bell’s palsy. She presented a 4-year history of progressive
decline in episodic memory and personal conduct. She
had also occasional word-finding difficulties with pre-
served comprehension, and had become less organized
and unable to multitask. The family noticed a decline in
personal grooming, apathy, hoarding (primarily food),
and impulsive financial decisions.
gion
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x R
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against alpha-synuclein; p-tau: immunohistochemistry against phospho-tau;
62: immunohistochemistry against protein p62; R: right hemisphere; R*: both
43.



Figure 1 Simplified pedigree. For simplification, the number of siblings is depicted inside the diamond shape in generation III representing the
number of siblings indicated inside. Circle: female; square: male; diagonal lines: deceased; open symbols: unaffected; ALS: amyotrophic lateral
sclerosis. FTD: frontotemporal dementia. PDD: Parkinson’s disease with dementia; “d”: age at death.
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On examination, she presented with a low amplitude
postural tremor, left facial weakness with oculobuccal
synkinesis, and absent deep tendon reflexes at both
ankles. The remaining neurological examination was
unremarkable. On neuropsychological evaluation, the
patient scored 29/30 on the Mini-Mental State exam-
ination (MMSE) [40]. A complete neuropsychological
battery revealed impaired performance on confrontation
naming, semantic fluency, and abstract reasoning (Table 2).
Visuospatial/visuoconstructive skills, verbal and visual epi-
sodic memory, and most aspects of executive functioning
were intact. Qualitatively, conversational speech was not-
able for several word-finding pauses. In addition, she
exhibited mild impulsivity, as she began many of the tasks
before instructed. Routine laboratory parameters ruled out
treatable causes of dementia. CSF analysis revealed an
Aβ1-42 level of 595 pg/ml (normal > 500 pg/ml) and a tau
of 337 pg/ml (normal < 350 pg/ml) with a phosphorylated
tau of 46 pg/ml (normal < 60 pg/ml). Structural brain MRI
revealed no significant vascular lesions and moderate-to-
severe atrophy affecting the hippocampus, anterior tem-
poral lobe, insula, and lateral fronto-parietal neocortex,
strikingly more pronounced in the right hemisphere
(Figure 2). PET imaging with Pittsburgh Compound B
(PIB) was borderline positive for amyloid deposition
(Figure 2). At this point, the working diagnosis was right
hemisphere predominant Alzheimer’s disease (AD). One
year after the first visit she became more apathetic
and less concerned about her grooming and house-
keeping. She developed disinhibited and repetitive
behaviors, interrupted other people during conversations,
and spoke to strangers about her medical history. She
began eating vanilla ice cream at every meal. She also had
a significant decline in language with more frequent
word-finding difficulties and visuospatial and executive
impairment. She got lost in familiar places and had occa-
sional visual illusions such as mistaking small objects
for birds. At this point, neurologic examination was
unchanged from previous evaluation. Her MMSE score
was a 27/30. Neuropsychological testing revealed signifi-
cant declines in verbal memory, visual memory, confron-
tation naming, single object word comprehension, and
semantic fluency. She was unable to complete one of the
tasks because she did not understand the instructions
(Stroop Interference). In contrast, her visuospatial/visuo-
constructive skills remained intact (Table 2). A new brain
MRI showed more pronounced atrophy following the
same pattern described before (Figure 2b). Atypical FTD
was added to the differential diagnosis.
Over the following year, her functional impairment

worsened, and she needed help with finances and cooking.
She required prompting for personal hygiene and attended
a daycare center. She became disoriented, restless, and
agitated; had difficulties in naming common objects and
following conversations; and both short and long-term
memory were impaired. She endorsed visual hallucina-
tions that improved after taking Quetiapine. She also
tended to use her left hand less than before and there was
a noticeable decrease in her left arm swing. On exam, she
showed some motor stereotypies and compulsions. There



Table 2 Longitudinal neuropsychological and functional assessments of the index patient

Maximum score 1st evaluation (2008) 2nd evaluation (2009) 3rd evaluation (2010)

Global cognition

MMSE 30 29 27 7

Memory

CVLT trials 9-9-9-9 5-8-9-9 6-7-7-7 NA-

CVLT inmediate recall (30”) 9 9 4 -

CVLT delayed recall (10’) 9 9 3 -

CVLT recognition 9 9 9 -

Modified Rey-Osterrieth figure recall 17 10 4 -

Language

BNT 15 11 8 -

PPVT-R 16 14 12

Visuospatial

Modified Rey-Osterrieth figure copy 17 16 16 -

VOSP (Number location) 10 9 9 -

Face matching 12 12 9 -

Executive function

Digit span forward - 6 6 -

Digit span backward - 7 7 -

Modified trials - 29” 39” -

Stroop interference - 49 - -

Semantic verbal fluency - 14 9 -

Phonemic verbal fluency - 13 13 -

Figure design fluency - 8 8 -

Functional assessment

Barthel index 100 100 75 30

CDR total (Sum of boxes) 3 (18) 1 (5.5) 1 (6) 3 (18)

BNT: Boston Naming Test; CDR: Clinical Dementia Rating Scale; CVLT: California Verbal Learning Test; MMSE: Mini-Mental State Examination; PPVT-R: Peabody Picture
Vocabulary Test Revised; VOSP: Visual Object and Space Perception Battery.
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was no muscle weakness, spasticity, or fasciculation sug-
gestive of MND. A neuropsychological evaluation was
attempted, but was limited due to poor comprehension.
Her MMSE score had declined to 7/30. Clinical differen-
tial diagnosis remained AD vs. atypical FTD. She died
from emaciation four years after the first visit.

Neuropathology
The fresh brain weighed 837 grams. Gross examination
revealed severe generalized atrophy, worse on the right
side and sparing the occipital lobe. Ventral rootlets of
the spinal cord were normal. Substantia nigra was pale.
Hematoxylin and eosin (H & E) staining showed right
greater than left pronounced superficial microvacuola-
tion, astrogliosis and neuronal loss, especially in anterior
orbital and middle frontal gyri, hippocampal formation,
inferior temporal gyrus and parietal regions. Immuno-
histochemical analysis showed frequent TDP-43 neuronal
cytoplasmic inclusions (NCI), with crescentic, round, skein-
like and granular types in ventral frontal, anterior cingulate,
inferior temporal, and mesial temporal regions; ventral
striatum; midbrain tectum; substantia nigra; and inferior
olive. In addition, scarce neuronal intranuclear inclusions
were observed in affected cortical areas. Short threads
accompanied the NCI. TDP-43 pathology was found in all
cortical layers. Due to the admixture of neuronal cytoplas-
mic inclusion subtypes seen in FTLD-TDP type A and
type B, presence of type A threads, but involvement of all
cortical layers (type B), the pattern of TDP-43 inclusions
is unclassifiable [37] (Figure 3). Although a very small
number (two in total at the thoracic level of the spinal
cord) of skein-like inclusions were found in lower
motor neurons, producing the neuropathological diagnosis
of motor neuron disease, no striking motor neuron loss or
corticospinal tract degeneration were seen, which may ex-
plain the lack of typical clinical motor neuron symptoms.
Interestingly, frequent β-amyloid neuritic plaques were
found in several cortical and subcortical areas consistent



Figure 2 Magnetic resonance imaging (MRI) of index patient. (a) T1 axial sequences, showing prominent atrophy, right predominant,
affecting frontal, temporal, insular and parietal lobes, present in the first evaluation (4 years after clinical onset). (b) Similar but more pronounced
findings one year later. Positron emission tomography (PET) images of the proband. 18 F-FDG PET (c) showed pronounced hypometabolism in
the right frontal, temporal and parietal cortex, while Aβ-PET (11C-PIB, d) showed elevated cortical retention bilaterally. MRI images are shown in
radiological orientation and PET images in neurological orientation SUVR – standardized uptake value ratio (t- = 30-60 min, normalized to mean
activity in the pons); DVR – Distribution Volume Ratio (0–90 min, Logan graphical analysis, reference region = cerebellum gray matter).
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with Thal amyloid plaque stage 4 [41]. Phospho-tau im-
munohistochemistry was negative for dystrophic neurites
within the plaques, and neurofibrillary tangles were re-
stricted to the entorhinal cortex (Braak I) [36], correspon-
ding to a low burden of AD neuropathological change
(Figure 4). Phospho-tau immunohistochemistry, however,
disclosed a 4R-only atypical tauopathy, restricted to hippo-
campal formation and featuring threads, glial cytoplasmic
inclusions, and neuronal pretangles (Figure 5). Despite the
asymmetric atrophy pattern, the TDP-43-, phospho-tau-
and β-amyloid-positive inclusion burdens were similar on
both sides, on a semi-quantitative assessment.

Case report: patient 2
This patient (III-21 – Figure 1) (brother of patient 1)
was a 64-year-old, right-handed man with 12 years of
formal education, who presented at age 62 with promin-
ent behavioral changes, abrupt disinterest in hygiene and
depression. He had a previous history of alcohol abuse,
however he was able to work productively and keep a



Figure 3 Pathological TDP-43 inclusions in the index and patient 2. (a) inferior temporal gyrus shows abundant neuronal cytoplasmic
inclusions, some threads and intranuclear inclusions (* and insert). (b) orbitofrontal cortex of the same patient showing similar features. (c) ventral
striatum of patient 2 depicting neuronal cytoplasmic inclusions and few threads. (d) inferior temporal gyrus of patient 2. The neuronal cytoplasmic
inclusions present in different shapes, either compact (arrow) or granular (arrowhead) in nature. Inclusions are found throughout the cortical
layers. Scale bars: 10 μm.
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clean apartment until his first symptom onset, which
was followed by a precipitous decline. His family first
noticed changes in behavior when he started to make
disturbing phone calls to one of his sisters that included
suicidal warnings. The patient became apathetic and
withdrawn and had short-term memory loss. He was
admitted to a psychiatric ward for a few weeks and got a
Figure 4 Histopathological features of the proband and patient 2. Rig
column (b, e), immunostaining for phospho-tau (CP-13), and left column (c
plaques including cored plaques in angular gyrus. The plaques are negativ
Despite the lack of phospho-tau, the silver staining confirm the plaques’ ne
gyrus of patient 2. Scale bars: 40 μm.
diagnosis of depression and probable unspecified de-
mentia. Over the next year, the family noticed language
decline with word-finding difficulties; his speech was
slow and had prolonged response latency. He experi-
enced anxiety, decreased energy, and irritability, but
there was no report of hallucinations or delusions. Table
manners declined. Neurologic examination revealed mild
ht column (a, d) immunostaining for beta-amyloid (4G8), middle
, f) Gallays silver staining. (a, b) proband showing abundant neuritic
e for phospho-tau, in contrast to those seen in Alzheimer’s disease.
uritic nature (c). (d-f) The same features are seen in the middle frontal



Figure 5 Atypical 4R-tauopathy of the proband and patient 2. Left column (a, c) immunostaining for 4R-tau, and right column (b, d),
immunostaining for 3R-tau. All sections are from entorhinal cortex. (a and b) proband showing 4R-tau glial inclusions, threads and few neuronal
tangles in entorhinal cortex (a); only a neurofibrillary tangles (arrow) is 3R-tau-positive pathology in the same area (b). The same features are seen
in patient 2 (c, d) to a lesser extent. Scale bars: 10 μm.
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limitation of upgaze, mild paratonia in extremities and
tandem gait difficulties. His neuropsychological evalu-
ation was interpreted with caution due to failed effort
measures and variable effort throughout. He scored
20/30 on the MMSE (missing 5 points for orientation,
3 for recall, 1 point for command and 1 point for penta-
gon copy). He had impaired performance in confrontation
naming (11 of 15 on the Boston Naming Test with
multiple semantic paraphasic errors), verbal memory
(Hopkins Verbal Learning Test –Revised (HVLT-R):
up to 14 items on learning trials, 2 on delayed recall,
8 on recognition with 7 false positives), visual memory,
and abstract reasoning (Similarities and Judgment). His
simple attention was intact (digit forward: 8), as was his
semantic fluency (18 animals in one minute), reading
sections on the Boston Diagnostic Aphasia Exam, and
calculations. Behaviorally, he was moderately impulsive.
Routine laboratory parameters ruled out treatable causes
of dementia. He was treated with Sertraline, Donepezil
and Memantine. He received a working diagnosis of prob-
able bvFTD. At age 64, he became incontinent of urine
and stool and developed motor problems, characterized
by frequent falls and a shuffling gait. No signs of MND
were detected. He was admitted into a full nursing
care facility and became bedbound. Over time, he could
not respond even to simple questions, but he still could
recognize familiar faces. General decline followed. He
died of pneumonia approximately three years after initial
symptoms.
Neuropathology
The fresh brain weighed 1,043 grams. Gross examination
showed mild generalized atrophy and mild substantia
nigra pigment loss. Hematoxylin and eosin (H & E) stain-
ing showed mild to moderate microvacuolation and astro-
gliosis in frontal and temporal lobes. Significant neuronal
loss was seen only in substantia nigra. TDP-43 immuno-
staining revealed a similar but lower TDP-43 inclusion
burden than in proband. TDP-43 pathology was seen in
middle frontal gyrus, inferior temporal gyrus and entorhi-
nal cortex, substantia nigra and inferior olive (Figure 3). A
single skein-like, TDP-43 inclusion was found at the thor-
acic level of the spinal cord. As in the proband, β-amyloid
immunohistochemistry revealed abundant neuritic pla-
ques devoid of phospho-tau in several cortical areas and
hippocampus consistent with Thal amyloid plaque stage 2
[41]) (Figure 4). Few neurofibrillary tangles were restricted
to the entorhinal cortex, warranting a Braak stage I [36].
Immunohistochemistry for phospho-tau also revealed
atypical 4R- tauopathy restricted to the hippocampal for-
mation, similar to what was seen in the patient’s sister
(Figure 5).

Family history
Figure 1 depicts a simplified pedigree. The proband is
the index case (III-19) and had four siblings, one of
whom is patient 2 (III-21). One sister (III-20) died at age
61 of dementia with parkinsonism diagnosed in her late
50s. She was not submitted to postmortem exam. Their
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mother died at age 83 of congestive heart failure and
had cognitive decline that began in her mid-70s, although
a formal diagnosis was not available. Their father (II-6)
died at age 54 of an accident. A paternal uncle (II-2) and
cousin (III-2) had ALS. Two paternal twin aunts (II-3 and
II-4) had unspecified dementia. Another paternal uncle
(II-5) developed Parkinson’s disease and dementia with
onset at his mid-70s dying at age 85. Two cousins, sons of
II-3 (not shown in the figure), developed neurodegenera-
tive disease beginning in their late 60s: the first was diag-
nosed with possible progressive supranuclear palsy, and
the second with a “Pick’s-like” dementia.

Genetic analysis
Proband and patient 2 carried no mutations in GRN and
MAPT (tested with Sanger sequencing) nor a pathologic
expansion in C9ORF72 (tested with repeat-primed PCR).
Exome sequencing data were obtained and additional genes
known to be involved in neurodegeneration (APP, PSEN1,
PSEN2, FUS, TARDBP) were examined. Average coverage
from exome data was good with at least 70% positions cov-
ered at 10x. Both patients had a double contiguous variant
at codon 112 of the TARDBP gene in exon 3. At the gen-
omic level, this mutation is observed as a C >A (position
11076997 on chromosome 1, genome build GRCh37/hg19)
and A >T (position 11076998) transition at codon 112 that
changes from CCA to CAT, giving rise to a missense
mutation that at the protein level represents a proline to
histidine change (p.[P112H]). These variants have not been
described previously and were not present in online se-
quence variant databases (dbSNP138 (http://www.ncbi.nlm.
nih.gov/SNP/), 1000 Genomes Project (www.1000genomes.
org) and ESP (evs.gs.washington.edu/EVS) databases). An
A >G change (position 11076998, rs373324166), resulting
in a synonymous change (p.P112=) was reported in the ESP
database, with a frequency of 1/13,005 alleles. Analysis of a
daughter of an affected member of this family as well as
exome sequencing in the proband confirmed that both
variants in TARDBP were on the same chromosome (100%
of coding sequence of TARDBP covered at least 10X). Ex-
ome sequencing revealed no pathogenic variants in other
genes associated with FTD and AD (PSEN1, PSEN2, APP,
MAPT, FUS). Non-coding or synonymous variants were
identified in MAPT, PSEN1, PSEN2, and FUS (Additional
file 1: Table S1), all present in the dbSNP database.
The P112H substitution is in the first RNA recognition

motif of the protein (RRM1) [42]. Multiple computational
Table 3 Predicted protein conformational changes due to p.P

PolyPhen-2 SIFT

Prediction Scorea Prediction

Probably damaging 0.999 Affects protein function
aThe lower score, the more benign the substitution. bThe higher score, the more tolera
cThe higher the percentage, the greater the confidence of the prediction.
approaches for in silico prediction of the pathogenicity
all predict a deleterious effect of the amino acid change
(Table 3).

Analysis of truncated ß-amyloid peptide species
One-dimensional separation revealed different forms of
ß-amyloid that were tentatively identified as Aß -(1–42),
(2–42), and (3pyro-42) according to their electrophoretic
mobility (Figure 6). In both AD cases, Aß (1–42) was
the predominant detergent-soluble species, followed by
Aß (3pyro-42) and Aß (2–42). Interestingly, the proband
showed a similar pattern to the AD cases, whereas Aβ
peptides were below the detection sensitivity of direct
immunoblotting in patient 2, probably reflecting the lower
AD burden seen in this case (Figure 6).

Discussion
This study identified a family presenting with an auto-
somal dominant complex P112H TARDBP double vari-
ation located in exon 3 with variable clinical phenotype
ranging from a pure frontotemporal dementia to pure
ALS. The two autopsied siblings described here presented
with FTD involving multiple cognitive domains and be-
havior but lacking clinical symptoms of motor neuron
disease. Age at onset was in early 60s, and the working
diagnoses were bvFTD and AD in the proband and
bvFTD in patient 2.
TARDBP mutations are a well-recognized cause of

ALS, MND-FTD and FTD-MND, but the association
with FTD without MND is less robust. In a series of 252
FTD and corticobasal syndrome patients screened for
TARDBP mutations, only 1.9% of the cases were posi-
tive. Such cases presented late onset and slow disease
progression. In the positive cases, family history of de-
mentia was variable suggesting incomplete penetrance
[26]. Unfortunately, none of these cases was submitted
to postmortem exam. Smaller studies showed an age at
onset ranging from 35 to 78 years [21,23,25,27-31,43].
The phenotype of TARDBP mutations has also been
expanded to include Parkinson’s disease and complex
atypical parkinsonism [44-46]. Although the patients de-
scribed here lacked MND, close relatives presented a wide
range of clinical phenotypes including dementia with
parkinsonism, progressive supranuclear palsy and ALS.
However, detailed clinical information, genetic testing
and neuropathological exam for the relatives are not avail-
able. Interestingly, variable clinical phenotype including
112H TARDBP mutation

SNAP

Scoreb Prediction Expected accuracyc

0.01 Non-neutral 87%

ted the change is expected to be. Scores <0.05 are predicted to be deleterious.

http://www.ncbi.nlm.nih.gov/SNP/
http://www.ncbi.nlm.nih.gov/SNP/
http://www.1000genomes.org
http://www.1000genomes.org


Figure 6 Comparison of Aß patterns between different human
brain samples. The relative abundance of different variants of Aß in
detergent preparations from human temporal lobe samples was
analyzed by urea-SDS-PAGE/immunoblot. For comparison, the
indicated synthetic Aß peptides were loaded (S). P2, P1, AD1, AD2
temporal lobe samples from proband (P1), patient 2 (P2) and two
Alzheimer’s disease (AD1 and AD2) patients. Aß immunoblots of the
detergent fractions probed with mAb 6E10. 5 μg of total protein of
each sample was loaded.
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dementia, atypical parkinsonism (CBD-like or PSP-
like) and/or ALS is typical in Sardinian families with
the TARDBP p.A382T founder mutation [22,44].
Some evidence suggests that the more common

TARDBP mutations, located at the C-terminal glycine-
rich domain, disturb TDP-43 association with other
heterogeneous ribonucleoproteins (hnRNPs) and, ultim-
ately, TDP-43 solubility and proneness to aggregation. At
variance with most TARDBP mutations, the P112H
TARDBP double variation described here is found in
exon 3, encoding the first RNA-binding motif of TDP-43
(RRM1) and outside the C-terminal tail of the protein.
The pathogenic mechanism of mutations in the RRM1
domain is likely to be different. RRM1 single amino acid
substitutions may disrupt RNA binding and alter TDP-43
dynamics in the nucleus by decreasing TDP-43 presence
in the nucleoplasm [47,48]. The Alzheimer Disease and
Frontotemporal Dementia Mutation Database (http://www.
molgen.ua.ac.be/admutations/) contains two TARDBP se-
quence variants affecting the RRM1 domain. Both were de-
scribed in sporadic ALS patients; the p.Lys137 is probably a
non-pathogenic synonymous substitution [49], whereas
the D169G is likely pathogenic [11]. Although the TARDBP
variant described here cannot conclusively be considered
pathogenic based on genetic evidence alone, evidence
points to a high possibility as i) it is a predicted-deleterious
amino acid change, ii) it presents in two siblings with
similar clinical and neuropathological features, who are
not carrying pathogenic variants in seven additional genes
previously associated with neurodegenerative dementia.
Clinical and genetic follow-up in additional family mem-
bers will further clarify the role of this substitution in
causing disease and the effect of a double mutation in the
same chromossome.
The two siblings presented with strikingly similar,

although atypical, neuropathological features, including
an unclassifiable pattern of TDP-43 inclusions. Phenotyp-
ically, both cases presented with disorientation, marked
behavioral changes, psychiatric symptoms, and impulsiv-
ity. Neuropsychological characteristics included impaired
episodic memory, confrontation naming, and abstract rea-
soning. In contrast, simple attention remained intact
despite disorientation. Although both cases showed a high
burden of neuritic plaques, the neuronal component of
the neuritic plaques was negative for phospho-tau and
AD-type tau pathology was negligible, suggesting that ra-
ther of having a coincidental Alzheimer’s disease (that re-
quires both neuritic plaques and phospho-tau pathology),
it is possible that Aβ pathology in this family is part of the
same process leading to TDP-43 pathology. In this sense,
a previous study suggests that TDP-43 aggregation may
be triggered by Aβ, independently of tau pathology [50].
Intriguingly, the proband has a beta-amyloid pattern simi-
lar to AD, despite the lack of accompanying substantial
AD-type tau inclusions. N-truncated Aß species were
reported to account for more than 60% of the Aß peptides
in early and later stages of human AD amyloid pathology.
Thus, N-truncated forms of Aß ending at residue Ala
(42), were proposed to be of particular importance in
the development of AD neuropathology [51], and
remains to be clarified why these two patients did not
developed AD-like tau pathology. Finally, atypical 4R-
tauopathy was present in both cases, although restric-
ted to the entorhinal/hippocampal complex. It is unclear
whether this tau accumulation played into the clinical
phenotype.
To the best of our knowledge, there are only three

previous reports of autopsy-verified FTD patients with
TARDBP mutations without MND [28-30]. In one of
them the clinical phenotype was behavioral variant FTD
(bvFTD) and underlying pathology was FTLD-TDP type
B [29]; the second case displayed a complex clinical
phenotype with unclassifiable FTLD-TDP pathology be-
cause of predominant subcortical (striatum and brain-
stem) pathology [30]. The third case showed a complex
proteinopathy with TDP-43, tau and alpha-synuclein
deposits in a patient presenting with a clinical diagnosis
of semantic variant primary progressive aphasia [28].
Concerning association with a specific FTLD-TDP type
in TARDBP mutation cases, the usual clinical association
with ALS would predict a most probable association
with type B pathology, but further studies are required
to determine if TARDBP mutation cases usually fit into
one of these FTLD-TDP types or constitute another
type. Altogether, the co-occurrence of different proteino-
pathies in our cases (TDP-43, ß-amyloid and 4-repeat

http://www.molgen.ua.ac.be/admutations/
http://www.molgen.ua.ac.be/admutations/
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tau) and that described by Gelpi et al. [28] (TDP-43, tau
and alpha-synuclein) points to a pathogenic mechanism
that facilitates misfolded protein interaction and ag-
gregation or a loss of TDP-43 function that somehow
impairs protein clearance.
Conclusions
Despite being rare, TARDBP mutation screening should
be considered even in FTD cases without signs or symp-
toms of MND, especially when other more frequent
cause of genetic FTD (i.e. GRN, C9ORF72, MAPT) have
been excluded and when family history is complex com-
prising parkinsonism, motor neuron disease and fronto-
temporal dementia. Further investigations in this family
may provide insight into the physiological functions of
TARDBP.
Additional file

Additional file 1: Table S1. Variants identified in APP (average position
coverage at 10x across the entire gene: 88%), PSEN1 (76%), PSEN2 (70%), FUS
(92%), TARDBP (72%, also sequenced with Sanger), GRN (Sanger sequenced)
and MAPT (Sanger sequenced).
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