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Abstract 
 

Bogs, Bugs, Borgs, and Bacteriophages: Metagenomic and Biochemical 
Insights into the Enigmatic World of Extrachromosomal Genetic Elements 

by 
 

Basem Al-Shayeb 
 

Doctor of Philosophy in Microbiology 
 

University of California, Berkeley 
 

Professor Jillian F. Banfield, Chair 
Professor Jennifer A. Doudna, Chair 

 
 

As a Ph.D. Candidate and National Science Foundation Predoctoral Fellow at 
the University of California, Berkeley, working in the labs of Dr. Jillian Banfield and Dr. 
Jennifer Doudna, I have dedicated my Ph.D. to the discovery and investigation of novel 
extrachromosomal elements and tools for biotechnological applications through a 
combination of genomics and biochemistry. 

The first chapter of this thesis uncovers 10 new clades of the largest 
bacteriophages ever found across many ecosystems worldwide, with genome sizes 
rivaling those of the smallest bacteria. We found that the phages are not only equipped 
with a wide variety of features typically associated with life and cellular organisms such 
as ribosomal proteins, tRNA synthetases and initiation and elongation factors, but also 
some of the viruses intriguingly utilize alternative genetic codes to translate their 
proteins. Notably, I discovered that the huge phage genomes encode CRISPR-Cas 
systems that may be used for inter-viral warfare. Some of these are miniature, 
previously undescribed CRISPR-Cas systems that are about half of the size of Cas9. 
This work was published in Nature. 

The second chapter describes the analysis and testing of one of the novel 
phage CRISPR-Cas systems, CRISPR-CasΦ, that we have shown can indeed exclude 
mobile elements such as plasmids from infecting the same host cell despite their small 
size, and can be applicable for programmable genome editing in bacterial, plant, and 
mammalian cells as the most compact functional CRISPR-Cas systems to date, 
potentially circumventing cell delivery barriers exhibited with CRISPR-Cas9 gene 
editing. Intriguingly, the CRISPR-CasΦ system exhibited a previously undescribed 
consolidation of chemistries in a Cas nuclease as the RuvC active site mediated both 
double-stranded DNA cleavage and RNA processing in a metal-dependent manner. 
This work was published in Science.  

The third chapter examines the discovery of enigmatic giant linear 
extrachromosomal elements, which we refer to as “Borgs”, inhabiting archaea. These 
elements that are about 1 Mbp long were recovered from multiple environments and 
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may play a previously unrecognized role in controlling greenhouse gas emissions. Their 
genomes are represented in 2 uneven replichores, with inverted repeats >1.5kbp long 
on either end and dozens of tandem repeats throughout their genomes. They contain 
no obvious hallmarks of previously reported viruses or plasmids, and ~80% of their 
genes consist of novel and uncharacterized proteins. Our analysis of horizontal gene 
transfer suggests that many ribosomal, metabolic, and extracellular electron transfer 
genes and operons recently transferred from their hosts, including the nif operon for 
Nitrogen fixation and the MCR complex which was recently proposed to be involved in 
oxidation of methane. Evidence also suggests recent recombination events between 
different Borgs presumably within the same host cell. This work is currently in review at 
Nature. 

The fourth chapter describes an open-science effort for robust viral discovery 
computational pipelines driven by the COVID-19 pandemic. Working with a truly 
collaborative global team of bioinformaticians, this work describes the discovery of over 
100,000 species of viruses to which I have contributed novel huge phage genomes. 
This manuscript was published in Nature. 

The final chapter examines the discovery of thousands of viruses encoding 
CRISPR-Cas systems, many of which target competing cryptic mobile elements that 
are predicted to infect the same bacterial hosts. From genome-resolved metagenomics 
and bioinformatics-enabled phylogenetic insights to biochemistry, structural biology, 
and eukaryotic genome editing, I describe hundreds of novel hypercompact and 
divergent CRISPR-Cas systems, with special consideration towards the novel Casλ 
family. Casλ possesses an aberrant RNA structure reminiscent of a naturally-occurring 
sgRNA and processes its own crRNA at the 3’ end, unlike any previously described 
single-RNA CRISPR-Cas system. The tertiary structure determined via cryo-EM reveals 
the machinery for PAM recognition, hybrid assembly, and DNA cleavage. RNA-targeting 
systems on viruses lack crucial residues or accessory proteins that would, in their 
bacterial counterparts, result in acute abortive infection, suggesting a potential strategy 
for phage systems to maintain host viability while preventing superinfection. In addition 
to their streamlined nature that is advantageous for cellular delivery, hypercompact 
phage systems can produce efficient genome editing in endogenous genes in 
mammalian and plant cells on par with, or in some cases, exceeding gold-standard 
Cas12a editing, demonstrating significant utility for biotechnological applications. 
 

Overall, this dissertation describes the use of a combination of bioinformatics 
and biochemistry to shed light on gigantic bacterial viruses, the proteins they encode 
on their genomes, and elements such as Borgs which we are only beginning to 
understand. Huge phages and Borgs represent little-known biology, the platforms for 
which are distinct from previously known systems, and significantly broaden our overall 
understanding of “non-living” selfish genetic entities. The metagenomic discovery and 
biochemical and structural characterization of hypercompact CRISPR-Cas systems in 
addition to analyses of their genome editing utility in eukaryotic cells pave the road for 
efficacious delivery of treatments to human cells in the near future. 
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Introduction 
 

Bacteriophages (phages), viruses of bacteria, are considered distinct from cellular 
life due to their inability to conduct most biological processes required for reproduction. 
They are agents of ecosystem change because they prey upon specific bacterial 
populations, mediate lateral gene transfer, alter host metabolism, and redistribute 
bacterially-derived compounds via cell lysis (Breitbart et al., 2018; Emerson et al., 2018; 
Rascovan et al., 2016). They spread antibiotic resistance (Balcazar, 2014) and disperse 
pathogenicity factors that cause disease in humans and animals (Brown-Jaque et al., 
2018; Penadés et al., 2015). Some phages can even impact Earth’s climate as they 
decrease methane oxidation rates by infection and lysis of methane-oxidizing bacteria 
(Lee et al., 2021), and others with the critical subunit of MMO (Chen et al., 2020) likely 
increase the ability of their host bacteria to conserve energy during phage replication. 
Most knowledge about phages is based on laboratory-studied examples, the vast 
majority of which have genomes a few 10s of kbp in length. This motivated a more 
comprehensive analysis of microbial communities to evaluate the prevalence, diversity, 
and ecosystem distribution of phage with large genomes. This research expands our 
understanding of phage biodiversity and reveals the wide variety of ecosystems in which 
phage have genomes with sizes that rival those of small celled bacteria (Castelle et al., 
2018; Nakabachi et al., 2006; Pérez-Brocal et al., 2006). We postulate that these phages 
have evolved a distinct ‘life’ strategy that involves extensive interception and 
augmentation of host biology while they replicate their huge genomes. 

Akin to phages, other extra-chromosomal elements also have the capacity to 
impact global biogeochemical cycles. Methane (CH4) is a greenhouse gas roughly 30 
times more potent than carbon dioxide (CO2), and approximately 1 gigaton is produced 
annually by methanogenic (methane-producing) archaea that inhabit anoxic 
environments(Thauer et al., 2008). The efflux of methane into the atmosphere is mitigated 
by methane-oxidizing microorganisms (methanotrophs). In oxic environments, CH4 is 
consumed by aerobic bacteria that use a methane monooxygenase (MMO) and O2 as 
terminal electron acceptor(Hanson and Hanson, 1996), whereas in anoxic environments 
anaerobic methanotrophic archaea (ANME) use a reverse methanogenesis pathway to 
oxidize CH4, the key enzyme of which is methyl-CoM reductase (MCR)(Boetius et al., 
2000; Hallam et al., 2003). Some ANMEs rely on a syntrophic partner to couple CH4 
oxidation to the reduction of terminal electron acceptors, yet Methanoperedens (ANME-
2d, phylum Euryarchaeota) can directly couple CH4 oxidation to the reduction of iron, 
nitrate or manganese(Ettwig et al., 2016; Leu et al., 2020). In this thesis, we report the 
discovery of novel extrachromosomal elements (ECEs) that are inferred to replicate within 
Methanoperedens spp. Their numerous and diverse metabolism-relevant genes, huge 
size, and distinctive genome architecture distinguish these archaeal ECEs from all 
previously reported elements associated with archaea(Ausiannikava et al., 2018; Ng et 
al., 1998; Wang et al., 2015) and from bacteriophages, which typically have one or a few 
biogeochemically relevant genes(Anantharaman et al., 2014; Lindell et al., 2004). We 
hypothesize that these novel ECEs may substantially impact the capacity of 
Methanoperedens spp to oxidize methane. 
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CRISPR-Cas systems are adaptive immune systems present in 40% of bacteria 
and 85% of archaea to confer resistance against invading extrachromosomal elements 
such as plasmids or the aforementioned viruses (Makarova et al., 2019). While CRISPR-
Cas9 is undoubtedly the most well-known and utilized CRISPR-associated RNA-guided 
nuclease to date, there is an exceptionally high diversity of CRISPR-Cas systems that 
have been discovered in recent years. Early in my Ph.D., I attended a short introductory 
seminar that was, in some ways, the most pivotal twenty minutes in my graduate 
career. Dr Kimberley Seed described a type I-F system that was inserted into the 
genomes of a group of ICP1-related phages infecting Vibrio cholerae. She had reported 
these phages in 2013 (Seed et al., 2013). This motivated me to survey the abundance, 
as well as the sequence and biochemical diversity of CRISPR-Cas systems throughout 
the virosphere, which remained poorly understood. As a result, we reported the 
presence of CRISPR-Cas systems that were hijacked by several clades of huge as well 
as run-of-the-mill phages, where we posited their role in inter-viral warfare to abrogate 
superinfection, and validated systems found, sometimes exclusively, in bacteriophages 
as functional CRISPR-Cas systems within bacteria. Moreover, I studied several novel 
systems biochemically and structurally and established them as programmable gene 
editing tools in human and plant cells. With advantages in both vector-based delivery 
into cells and a wider range of targetable genomic sequences, these hypercompact 
systems provide a powerful addition to the CRISPR-Cas toolbox. 
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1.1 Abstract 
 
Phages typically have small genomes(Yuan and Gao, 2017) and depend on their bacterial 
hosts for replication(Breitbart et al., 2018). DNA sequenced from many diverse 
ecosystems revealed hundreds of phage genomes of >200 kbp, including a genome of 
735 kbp, the largest phage genome to date. Thirty-five genomes were manually curated 
to completion (circular and no gaps). Expanded genetic repertoires include diverse and 
new CRISPR-Cas systems, tRNAs, tRNA synthetases, tRNA modification enzymes, 
translation initiation, and elongation factors, and ribosomal proteins. Phage CRISPR-Cas 
systems have the capacity to silence host transcription factors and translational genes, 
potentially as part of a larger interaction network that intercepts translation to redirect 
biosynthesis to phage-encoded functions. In addition, some phages may repurpose 
bacterial CRISPR-Cas systems to eliminate competing phages. We phylogenetically 
define major clades of huge phage from human and other animal microbiomes, oceans, 
lakes, sediments, soils, and the built environment. We conclude that their large gene 
inventories reflect a conserved biological strategy, observed over a broad bacterial host 
range and across Earth’s ecosystems. 

N.B. All main figures for this manuscript can be found below in their dedicated section. 
All supplementary files (including figures and tables) can be found online with the 
published manuscript.  
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1.2 Introduction 

 
Bacteriophages (phages), viruses of bacteria, are considered distinct from cellular life due 
to their inability to conduct most biological processes required for reproduction. They are 
agents of ecosystem change because they prey upon specific bacterial populations, 
mediate lateral gene transfer, alter host metabolism, and redistribute bacterially-derived 
compounds via cell lysis(Breitbart et al., 2018; Emerson et al., 2018; Rascovan et al., 
2016). They spread antibiotic resistance(Balcazar, 2014) and disperse pathogenicity 
factors that cause disease in humans and animals(Brown-Jaque et al., 2018; Penadés et 
al., 2015). Most knowledge about phage is based on laboratory-studied examples, the 
vast majority of which have genomes a few 10s of kbp in length. Widely used isolation-
based methods select against large phage particles, and they can be excluded from 
phage concentrates obtained by passage through 100 nm or 200 nm filters(Yuan and 
Gao, 2017). In 2017, only 93 isolated phages with genomes of >200 kbp in length were 
published(Yuan and Gao, 2017). Sequencing of whole community DNA can uncover 
phage-derived fragments, yet large genomes can still escape detection due to 
fragmentation(Shkoporov and Hill, 2019). However, a new clade of human and animal-
associated megaphages was recently described based on genomes manually curated to 
completion from metagenomic datasets(Devoto et al., 2019). This finding motivated a 
more comprehensive analysis of microbial communities to evaluate the prevalence, 
diversity, and ecosystem distribution of phage with large genomes. Previously, phages 
with genomes >200 kbp have been referred to as “jumbo”(Yuan and Gao, 2017) or, in the 
case of >500 kbp, “megaphage”(Devoto et al., 2019). As the set reconstructed here span 
both size ranges we simply refer to them as “huge phage”. A graphical abstract provides 
an overview of our approach and main findings (Extended Data Figure 1). The research 
expands our understanding of phage biodiversity and reveals the wide variety of 
ecosystems in which phage have genomes with sizes that rival those of small celled 
bacteria(Castelle et al., 2018; Nakabachi et al., 2006; Pérez-Brocal et al., 2006). We 
postulate that these phages have evolved a distinct ‘life’ strategy that involves extensive 
interception and augmentation of host biology while they replicate their huge genomes.  

1.3 Results and Discussion  
 

Genome sizes and basic features  
 
We reconstructed 351 phage, 6 plasmid-like, and 4 sequences of unknown classification 
(Extended Data Figure 2). We excluded additional sequences inferred to be plasmids 
(see Methods), retaining only those encoding CRISPR-Cas loci. We included 3 phage 
sequences of ≤200 kbp in length due to the presence of CRISPR-Cas loci. Consistent 
with classification as phage, we identified a wide variety of phage-relevant genes, 
including those involved in lysis and encoding structural proteins, and documented other 
expected phage genomic features (SI). Some predicted proteins are large, up to 7,694 
amino acids in length; some were tentatively annotated as structural proteins. 175 phage 
sequences were circularized and 35 were manually curated to completion, in some cases 
by resolving complex repeat regions, revealing their encoded proteins (see Methods and 
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Table S1). The remaining genomes are likely incomplete, but some may be linear. 
Approximately 30% of genomes show clear GC skew indicative of bi-directional 
replication and 30% have patterns indicative of unidirectional replication (SI and 
Extended Data Figure 3)(Lobry, 1996). 
 
Our four largest complete, manually curated, and circularized phage genomes are 634, 
636, 642, and 735 kbp in length and represent the largest phage genomes reported to 
date. Previously, the largest circularized phage genome was 596 kbp in length(Paez-
Espino et al., 2016). The same prior study reported a circularized genome of 630 kbp in 
length, but this is an assembly artifact (SI). The problem of concatenation artifacts was 
sufficiently prominent in IMG/VR(Paez-Espino et al., 2017) that we did not include these 
data in further analyses. We used both complete and circularized genomes from our 
study and published phage genomes to depict a current view of the distribution of phage 
genome sizes (Methods). Without the huge phage reported here, the median genome size 
for complete phage is ~52 kbp (Figure 1A). Thus, sequences reported here substantially 
expand the inventory of phage with unusually large genomes (Figure 1B). 

Some of our reported genomes have very low coding density (nine <78%, see SI), 
probably due to the use of a genetic code different from the standard code (Methods). 
This phenomenon has been rarely noted in phages, but was reported for Lak 
phages(Devoto et al., 2019), and by Ivanova et al(Ivanova et al., 2014). In the current 
study, some genomes (mostly human/animal associated) appear to have reassigned the 
UAG (amber) stop codon to code for an amino acid (SI and Extended Data Figure 4).  
 
In only one case, we identified a sequence of >200 kbp that was classified as a prophage 
based on a transition into flanking bacterial genome sequence. However, around half of 
the genomes were not circularized, so their potential integration as prophage cannot be 
ruled out. The presence of integrases in some genomes is suggestive of a temperate 
lifestyle under some conditions. 
 
Hosts, diversity, and distribution 

An intriguing question relates to the evolutionary history of phages with huge genomes. 
Are they the result of recent genome expansion within clades of normal-sized phage or 
is a large inventory of genes an established, persistent strategy? To investigate this, we 
constructed phylogenetic trees for large terminase subunit (Figure 2) and major capsid 
(Extended Data Figure 5A) proteins using sequences in public databases as context 
(Methods). Many of the sequences from our phage genomes cluster together with high 
bootstrap support, defining clades. Analysis of the genome size information for database 
sequences shows that the public sequences that fall into these clades are from phages 
with genomes of at least 120 kbp in length. The largest clade, referred to here as 
Mahaphage (Maha being Sanskrit for huge), includes all of our biggest genomes as well 
as the 540 - 552 kbp Lak genomes from human and animal microbiomes(Devoto et al., 
2019). We identified nine other clusters of large phages, and refer to them using the words 
for “huge” in the languages of some authors of this publication. We acknowledge that the 
detailed tree topologies for different genes and datasets vary somewhat, but the 
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clustering is broadly supported by protein family and capsid analyses (Extended Data 
Figure 5A, B). The consistent grouping together of large phages into clades establishes 
that large genome size is a relatively stable trait. Within each clade, phages were sampled 
from a wide variety of environmental types (Figure 2), indicating diversification of these 
huge phages and their hosts across ecosystems. We also examined the environmental 
distribution of phages that are so closely related that their genomes can be aligned and 
found 20 cases where they occur in at least two distinct cohorts or habitat types (Table 
S2). 

To determine the extent to which bacterial host phylogeny correlates with phage clades, 
we identified some phage hosts using CRISPR spacer targeting from bacteria in the same 
or related samples and phylogenies of normally host-associated phage genes (see below; 
Table S3). We also tested the predictive value of bacterial taxonomic affiliations of the 
phage gene inventories (Methods) and found that in every case, CRISPR spacer targeting 
and phylogeny agreed with phylum-level taxonomic profiles. Consequently, we used 
taxonomic profiles to predict the bacterial host phylum for many phages (Table S4). The 
results establish the importance of Firmicutes and Proteobacteria as hosts (Extended 
Data Figure 2) (P = 2.5 x 10-5; n = 74; W = 606; one-sided Wilcoxon signed-rank test). 
The higher prevalence of Firmicutes huge phage in the human and animal gut compared 
to other environments reflects the potential host compositions of the microbiomes (P = 
9.3 x 10-7; n = 37; U = 238; one-sided Mann-Whitney U-test). Notably, the five genomes 
>634 kbp in length are all for phage predicted to replicate in Bacteroidetes, as do Lak 
phage(Devoto et al., 2019), and all cluster within Mahaphage. Overall, phages grouped 
together phylogenetically are predicted to replicate in bacteria of the same phylum 
(Figure 2). 

Metabolism, transcription, translation  

The phage genomes encode proteins predicted to localize to the bacterial membrane or 
cell surface. These may impact host susceptibility to infection by other phages (Table S5 
and SI). We identified almost all previously reported categories of genes suggested to 
augment host metabolism (SI). Many phages have genes involved in de novo biosynthesis 
of purines and pyrimidines, and the interconversion of nucleic and ribonucleic acids and 
nucleotide phosphorylation states. These gene sets are intriguingly similar to those of 
bacteria with very small cells and putative symbiotic lifestyles(Castelle et al., 2018) (Table 
S5). 
 
Notably, many phages have genes whose predicted functions are in transcription and 
translation (Table S6). Complete phage genomes encode up to 67 tRNAs, with 
sequences distinct from those of their hosts (Table S7). Generally, the number of tRNAs 
per genome increases with genome length (Figure 1) (Spearman’s ρ = 0.61; P = 4.5 x 10-

22; n = 201) . They have up to 15 tRNA synthetases per genome (Table S7), also distinct 
from but related to those of their hosts (Extended Data Figure 7A and SI). Phage may 
use these proteins to charge their own tRNA variants with host-derived amino acids. A 
subset of genomes have genes for tRNA modification and ligation of tRNAs cleaved by 
host defenses. 
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Many phages carry genes implicated in interception and redirection of host translation. 
These genes include initiation factors IF1 and IF3, as well as ribosomal proteins S4, S1, 
S21, and L7/L12 (ribosomal proteins were only recently reported in phage(Mizuno et al., 
2019) (Figure 3)). Both rpS1 and rpS21 are important for translation initiation in 
bacteria(Farwell et al., 1992; Sørensen et al., 1998; Van Duin and Wijnands, 1981), making 
them likely useful for the hijacking of host ribosomes. Further analysis of rpS21 proteins 
revealed N-terminal extensions rich in basic and aromatic residues important for RNA 
binding. We predict that these phage ribosomal proteins substitute for host 
proteins(Mizuno et al., 2019), and their extensions assist in competitive ribosome binding 
or preferential initiation of phage mRNAs. 
 
Because rpS1 is often studied in the context of Shine Dalgarno (SD) sequence recognition 
by the ribosome(Farwell et al., 1992; Sørensen et al., 1998), we predicted the ribosomal 
binding sites for each phage genome (Methods). While most phages have canonical SD 
sequences, huge phages from this study that carry possible rpS1s rarely have identifiable 
SD sequences (SI and Table S8). It is difficult to confirm "true" rpS1 proteins due to the 
ubiquity of the S1 domain, but this correlation with non-canonical SD sequences 
suggests a role in translation initiation, either on or off the ribosome. 
 
While assuming control of initiation may be the most logical step for phage redirection of 
host translation, efficiency of elongation and termination is necessary for robust infection 
and replication. Accordingly, we found many genes associated with the latter steps of 
translation in phage genomes. These include elongation factors G, Tu, and Ts, rpL7/12, 
and the processing enzyme peptide deformylase (PDF) (Figure 3), previously reported in 
phage genomes(Frank et al., 2013). We hypothesize that phage-encoded elongation 
factors maintain overall translation efficiency during infection, much like PDF’s prior 
predicted role in sustaining translation of necessary host photosynthetic proteins(Frank 
et al., 2013). Translation termination factors are also represented in our huge phage 
genomes, including release factor 1 and 2, ribosome recycling factor, as well as tmRNAs 
and small protein B (SmpB), which rescue ribosomes stalled on damaged transcripts and 
trigger the degradation of aberrant proteins. These tmRNAs are also used by phages to 
sense the physiological state of host cells and can induce lysis when the number of 
stalled ribosomes in the host is high(Janssen and Hayes, 2012). Interestingly, some large 
putative plasmids have analogous suites of translation-relevant genes (Table S5). 
 
CRISPR-Cas mediated interactions 

We identified most major types of CRISPR-Cas systems on phage, including Cas9-based 
Type II, the recently described Type V-I(Yan et al., 2019), new variants of Type V-U 
systems(Shmakov et al., 2017), and new subtypes of Type V-F (Harrington et al., 2018) 
(Extended Data Figure 8). The Class II systems (types II and V) are reported in phage for 
the first time. Most phage effector nucleases (for interference) have conserved catalytic 
residues, implying that they are functional (Supplementary Data File).  
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Unlike the well-described case of a phage with a CRISPR system(Seed et al., 2013), 
almost all phage CRISPR systems lack spacer acquisition machinery (Cas1, Cas2, and 
Cas4) and many lack recognizable genes for interference (Table S1 and Extended Data 
Figure 9). For example, two related phages have a Type I-C variant system lacking Cas1 
and Cas2 and have a helicase protein in lieu of Cas3. They also harbor a second system 
containing a new candidate ~750 aa Type V effector protein, Cas12J (Figure 4 and Table 
S1), that occurs proximal to CRISPR arrays.  

In some cases, phage lacking genes for interference and spacer integration have similar 
CRISPR repeats as their hosts (Figure 4C), and thus may utilize host Cas proteins. 
Alternatively, systems lacking an effector nuclease may repress transcription of the target 
sequences without cleavage(Luo et al., 2015; Stachler and Marchfelder, 2016). 
Alternatively, spacer-repeat guide RNAs may act in an RNAi-like mechanism to silence 
host CRISPR systems or nucleic acids to which they can hybridize. The phage-encoded 
CRISPR arrays are often compact (median 6 repeats per array; Extended Data Figure 
10). This range is substantially smaller than typically found in prokaryotic genomes (mean 
of 41 for Class I systems)(Toms and Barrangou, 2017). Some phage spacers target core 
structural and regulatory genes of other phages (Figure 4C, Table S10). Thus, phages 
apparently augment their hosts’ immune arsenal to prevent infection by competing 
phages. 

Some phage-encoded CRISPR loci have spacers that target bacteria in the same sample 
or in a sample from the same study. We suppose that the targeted bacteria are the hosts 
for these phages, an inference supported by other host prediction analyses (Table S4). 
Some loci with bacterial chromosome-targeting spacers encode Cas proteins that could 
cleave the host chromosome, whereas others do not. Targeting host genes could disable 
or alter their regulation, which may be advantageous during the phage infection cycle. 
Some phage CRISPR spacers target bacterial intergenic regions, possibly interfering with 
genome regulation by blocking promoters or silencing non-coding RNAs.  

Interesting examples of CRISPR targeting of bacterial chromosomes involve transcription 
and translation genes. For instance, one phage targets a σ70 in its host’s genome and 
encodes its own σ70 transcription factor (SI). Some huge phage genomes encode anti-
sigma factor-like proteins (AsiA), consistent with prior reports of σ70 hijacking by phage 
with AsiA(Brown and Hughes, 1995). In another example, a phage spacer targets the host 
glycyl tRNA synthetase, but the Cas14 effector lacks one of the required catalytic 
residues for cleavage, suggesting a role in repression (as a “dCas14”), rather than in 
cleavage (SI). 

Interestingly, we found no evidence of host-encoded spacers targeting any CRISPR-
bearing phage. However, phage CRISPR targeting of other phages that are also targeted 
by bacterial CRISPR (Figure 4C) suggested phage-host associations that were broadly 
confirmed by the phage taxonomic profile (Table S4). 
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Some large Pseudomonas phages encode Anti-CRISPRs(Bondy-Denomy et al., 2015; 
Pawluk et al., 2016) (Acr) and proteins that assemble a nucleus-like compartment 
segregating their replicating genomes from host defense and other bacterial 
systems(Chaikeeratisak et al., 2017a). We identified proteins encoded in huge phage 
genomes that cluster with AcrVA5, AcrVA2, AcrIIA7, and AcrIIA11 and may function as 
Acrs. Also identified were tubulin-homologs (PhuZ) and proteins (SI) that create a 
proteinaceous phage “nucleus”(Chaikeeratisak et al., 2017b). The phage nucleus was 
recently shown to protect the phage genome against host defense by physically blocking 
CRISPR-Cas degradation(Mendoza et al., 2018). 

1.4 Conclusions 
 

We show that phages with huge genomes are widespread across Earth’s ecosystems. 
We manually completed 35 genomes, distinguishing them from prophage, providing 
accurate genome lengths and complete inventories of genes, including those encoded in 
complex repeat regions that break automated assemblies. Even closely related phages 
have diversified across habitats. Host and phage migration could transfer genes relevant 
in medicine and agriculture (e.g., pathogenicity factors and antibiotic resistance, SI). 
Additional medical significance could involve direct or indirect activation of immune 
responses. For example, some phages directly stimulate IFN-g via a TLR9-dependent 
pathway and exacerbate colitis(Gogokhia et al., 2019). Huge phage may represent a 
reservoir of novel nucleic acid manipulation tools with applications in genome editing and 
might be harnessed to improve human and animal health. For instance, huge phage 
equipped with CRISPR-Cas systems might be tamed and used to modulate bacterial 
microbiome function or eliminate unwanted bacteria.  

The huge phages define massive clades, suggesting that a gene inventory comparable 
in size to those of many symbiotic bacteria is a conserved strategy for phage survival. 
Overall, their genes appear to redirect the host’s protein production capacity to favor 
phage genes by first intercepting the earliest steps of translation and then ensuring 
efficient protein production thereafter. These inferences are aligned with findings for 
some eukaryotic viruses, which control every phase of protein synthesis(Jaafar and Kieft, 
2019). Some acquired CRISPR-Cas systems with unusual compositions that may 
function to control host genes and eliminate competing phages.  

More broadly, huge phages represent little-known biology, the platforms for which are 
distinct from those of small phages and partially analogous to those of symbiotic bacteria, 
somewhat blurring the distinctions between life and non-life. Given phylogenetic 
evidence for large radiations of huge phages, we wonder if they are ancient and arose 
simultaneously with free-living cells, their symbionts, and other phages from a pre-life 
(protogenote) state(Woese, 1998) rather than appearing more recently via episodes of 
genome expansion. 
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Figures 

Figure 1: Distribution of phage genome sizes and tRNAs. A. Size distribution of 
circularized bacteriophage genomes from this study, Lak megaphage genomes reported 
recently from a subset of the same samples(Devoto et al., 2019), and reference sources. 
Reference genomes were collected from all complete RefSeq r92 dsDNA genomes and 
non-artifactual assemblies >200 kb from Páez-Espino(Paez-Espino et al., 2016). B. 
Histogram of the genome size distribution of phage with genomes >200 kb from this 
study, Lak, and reference genomes. Box and whisker plot of tRNA counts per genome 
from this study and Lak phage as a function of genome size (n = 201 individual phage 
genomes). The middle line for each box marks the median tRNA count for each size bin, 
the box marks the interquartile range, and the whiskers represent the maxima and 
minima.  

 

Figure 2: Phylogenetic reconstruction of huge phage evolutionary history. Phage 
phylogeny was reconstructed using large terminase sequences from this study and 
similar matches from all RefSeq r92 proteins. The tree also includes large terminase 
sequences from complete RefSeq phage, the Lak megaphage clade(Devoto et al., 2019) 
and non-artifactual phage genomes that are >200 kbp from(Paez-Espino et al., 2016). 
Huge phage clades identified in this study were independently corroborated with a 



 

 

10 

 

phylogenetic reconstruction of major capsid genes (Extended Data Figure 5A) and 
protein clustering (Extended Data Figure 5B). The tree was rooted using 13 eukaryotic 
Herpesvirus terminases. The inner to outer rings display the presence of CRISPR-Cas 
from this study, host phylum, environmental sampling type, and genome size. Host 
phylum and genome size were not included for RefSeq protein database matches where 
the sequence may be integrated prophage or part of organismal genome projects. 
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Figure 3: A model for phage interception and redirection of host translational 
systems. Potential mechanisms for how phage-encoded capacities could function to 
redirect the host’s translational system to produce phage proteins (bacterial components 
in blue, phage in red). No huge phage has all translation related genes, but many have 
tRNAs and tRNA synthetases (see Table S6). Phage proteins with up to 6 ribosomal 
protein S1 domains occur in a few genomes. The S1 binds mRNA to bring it into the site 
on the ribosome where it is decoded(Subramanian, 1983). Phage ribosomal protein S21 
might promote translation initiation of phage mRNAs, and many sequences have N-
terminal extensions that may be involved in binding RNA (dashed blue line in ribosome 
insert, PDB: 6BU8(Loveland and Korostelev, 2018), analyzed with UCSF 
Chimera(Pettersen et al., 2004). Many other proteins of the translational apparatus are 
encoded by huge phage, belonging to all steps of the translation cycle. 
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Figure 4: Phage and bacterial CRISPR interaction dynamics. A. Cell diagram of 
bacterium-phage and phage-phage interactions involving CRISPR targeting during 
superinfection. Arrows indicate CRISPR-Cas targeting of the prophage and phage 
genomes. Phage names indicate related groups delineated via whole genome alignment. 
We only included CRISPR interactions from samples of subjects of the same human 
cohort. B. Maximum likelihood phylogenetic tree of Cas12 subtypes a-i. Phage-encoded 
Cas12i and Cas12J, the new effector, are outlined in red, with bacterial-encoded proteins 
in blue. Bootstrap values >90 are shown on the branches (circles). Cas14 and Type V-U 
trees are provided separately (Figure S11). C. Top panel shows the alignment of the 
consensus repeats from the A9 phage array and predicted host bacterial arrays. Bottom 
panel is an interaction network showing targeting of bacterial- (blue) and phage- (red) 
encoded CRISPR spacers. Number of edges indicate number of spacers from the array 
with targets to the smaller node. Solid edges denote spacer targets with no or 1 
mismatch, and dashed edges denote 2-3 mismatches (to account for degeneration in 
old-end phage spacers, diversity in different subjects, or phage mutation to avoid 
targeting). 
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Extended Data 

Extended Data Figure 1: Graphical abstract describing the approach and main 
findings of this study. 
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Extended Data Figure 2: Ecosystems with phage genomes and plasmid-like 
sequences >200 kb. Genomes grouped by sampling site type. Each box represents a 
phage genome or plasmid-like sequence , and boxes are horizontally arranged in order 
of decreasing genome size. Size range for each site type is listed to the right. Colors 
indicate putative host phylum based on genome taxonomic profile, with confirmation by 
CRISPR spacer targeting (X) or information system gene phylogenetic analyses (+).  
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Extended Data Figure 3: Examples of phage genomes that display GC skew 
indicative of bidirectional replication. Some have a pattern strongly indicative of bi-
directional replication (origin-to-terminus) typically found in bacteria, as shown in the first 
two panels (however, the origin may not correspond to the start of the genome). Others 
have skew suggestive of unidirectional replication (bottom panel). 
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Extended Data Figure 4: Example of phage alternative coding. Comparisons of gene 
predictions for a region with genes of clearly predicted function in 
M05_PHAGE_COMPLETE_32_3. Top: the standard (code 11) genetic code. Middle: both 
TAG and TAA repurposed (code 6). Bottom: with just TAG repurposed (code 16). Overall, 
analysis of well annotated genes supported code 16 as the best choice (TAG -> X, as X 
could not be clearly resolved based on sequence alignments with related proteins). 
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Extended Data Figure 5: Phage phylogenetic and protein-cluster relationships. A. 
Phage phylogenetic tree based on the major capsid protein. Outer ring shows genome 
length; bars in red are for genomes reconstructed and reported in this study and bars in 
blue are for database genomes. The next ring indicates environment of origin, see Figure 
2 for key. The inner ring indicates phylum of host (black indicates unknown), see Figure 
2 for key. Superimposed colors indicate named clades comprised of huge phage that 
were identified in the terminase tree. B. Hierarchical clustering dendrogram of phage 
genomes based on jaccard distance between the presence or absence profiles of protein 
families, performed using an average linkage method. Outermost ring shows phage 
genome length, next ring shows environment of origin, then predicted phylum affiliation 
of bacterial hosts. For color key see Figure 2. Superimposed colors indicate named 
clades comprised of huge phage that were identified in the terminase tree. The clustering 
supports the phylogenetic analyses shown in Figure 2 and Extended Data Figure 5A.  
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Extended Data Figure 6: Phage and plasmid protein clustering network. Network 
analysis using vContact2 and Cytoscape(Smoot et al., 2011) based on the number of 
shared protein clusters between the genomes in this study (red), RefSeq prokaryotic virus 
(blue) genomes, and 400 randomly sampled plasmid sequences (yellow) from RefSeq. 
Each node represents a genome and each edge is the hypergeometric similarity (>30) 
between genomes based on shared protein clusters. This analysis was used to help 
distinguish between the classification of genomes as phage, plasmid, or unknown.  
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Extended Data Figure 7: tRNA synthetase phylogenetic analysis. A. Aminoacyl 
tRNA synthetases were detected in many huge phage reported in this study (Table S6). 
This figure shows the phylogenetic sub-tree for glutamate-tRNA synthetase sequences 
from phage (red text and indicated by small triangles) that place within or close to those 
from Bacteroidetes hosts is shown as an example. Bacterial sequences from public 
databases are indicated by black text and those from metagenomes from which huge 
phage genomes were reconstructed are indicated by blue text. Colored circles indicate 
the predicted phylum of the bacterial host for each phage. B. Phylogenetic tree of 
phage encoded ribosomal protein S21 and the top refseq hits for each protein, 
constructed using IQTREE.  
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Extended Data Figure 8: Phylogenetic trees of Cas14, Type V-U, and Cas9. A. 
Phylogenetic tree for Cas14 and Type V-U. B. Phylogenetic tree for Cas9. 

 

 

Extended Data Figure 9: Variant Type I CRISPR-Cas system and Cas4-like 
proteins found in huge phage genomes. A. Locus architecture for Type-I-var CRISPR 
phage. An interesting type I system identified in huge phage lacks Cas6 but harbors 
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Cas5, most similar to the Cas5d protein from type I-C, which acts as the pre-crRNA 
endonuclease (a role commonly reserved for Cas6). The proposed active site residues 
of Cas5d are to some extent different in the Cas5 of this system, though this may still 
confer processing activity, since this change is also observed for other Cas6 homologs. 
B. Phylogenetic tree of Superfamily 1-6 helicases, including Cas3 and the unidentified 
helicase in the Type I-C variant system. C. Phylogenetic tree of Cas4, Cas4-like 
proteins from the phage and plasmid genomes reported here, and the top 50 RefSeq 
hits to the Cas4-like proteins. Cas4-like genes from this study are denoted with red 
circles. 
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Extended Data Figure 10: Distribution of phage and plasmid-encoded CRISPR 
array sizes. The indicated count is the number of recovered repeats.  

 

1.5 Methods 
 
Ecosystem sampling  

Metagenomic datasets were acquired from human fecal and oral samples, fecal samples 
from other animals, freshwater lakes and rivers, marine ecosystems, sediments, hot 
springs, soils, deep subsurface habitats, and the built environment (Extended Data 
Figure 2). Genome sequences that were clearly not bacterial, archaeal, archaeal virus, 
eukaryotic or eukaryotic virus were classified as phage, plasmid-like or mobile genetic 
elements of uncertain nature based on their gene inventories (see Supplementary 
Information, SI). De novo assembled fragments close to or >200 kbp in length were 
tested for circularization and a subset selected for manual verification and curation to 
completion. 
 
Phage and plasmid genome identification 
 
Datasets generated in the current study, those from prior research conducted by our 
team, the Tara Oceans microbiomes(Karsenti et al., 2011), and the Global Oceans Virome 
(GOV)(Roux et al., 2016) were searched for sequence assemblies that could have derived 
from phage with genomes of >200 kbp in length. Read assembly, gene prediction, and 
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initial gene annotation followed standard methods reported previously(Bushnell, 2016; 
Edgar, 2015; Joshi and Fass, 2011; Nurk et al., 2017; Peng et al., 2012). 
 
Phage candidates were initially found by retrieving sequences that were not assigned to 
a genome and had no clear taxonomic profile at the domain level. Taxonomic profiles 
were determined through a voting scheme, where there had to be a winner taxonomy 
>50% votes at each taxonomic rank based on UniProt and ggKbase 
(ggkbase.berkeley.edu) database protein annotations(Raveh-Sadka et al., 2015). Phage 
were further narrowed down by identifying sequences with a high number of hypothetical 
protein annotations and/or the presence of phage specific genes, e.g., capsid, tail, 
terminase, spike, holin, portal, and baseplate. All candidate phage sequences were 
checked throughout to distinguish putative prophage from phage. Prophage were 
identified based on a clear transition into genome with a high fraction of confident 
functional predictions, often associated with core metabolic functions, and much higher 
similarity to bacterial genomes. Plasmids were distinguished from phage based on 
matches to plasmid partitioning and conjugative transfer genes. Those that did not have 
phage specific genes were assigned using phylogenetic tree placement using recA, polA, 
polB, dnaE, and the DNA sliding clamp loader gene. Phage and placement assignments 
were further verified using a network of protein clustering with proteins from RefSeq 
prokaryotic viruses and 400 randomly sampled plasmids >200 kb using 
vContact2(Bolduc et al., 2017) (Extended Data Figure 6). 
 
Phage and plasmid genome manual curation  
 
All scaffolds classified were tested for end overlaps indicative of circularization. 
Assembled sequences that could be perfectly circularized were considered potentially 
“complete”. Erroneous concatenated sequence assemblies were initially flagged by 
searching for direct repeats >5 kb using Vmatch(Kurtz, 2003). Potentially concatenated 
sequence assemblies were manually checked for multiple large repeating sequences 
using the dotplot and RepeatFinder features in Geneious v9. Sequences were corrected 
and removed from further analysis if the corrected length was <200 kbp. 

 
A subset of the phage sequences were selected for manual curation, with the goal of 
finishing (replacing all Ns at scaffolding gaps or local misassemblies by the correct 
nucleotide sequences and circularization). Curation generally followed methods 
described previously(Devoto et al., 2019). In brief, reads from the appropriate dataset 
were mapped using Bowtie2 v2.3.4.1(Langmead and Salzberg, 2012) to the de novo 
assembled sequences. Unplaced mate pairs of mapped reads were retained with 
shrinksam (github.com/bcthomas/shrinksam). Mappings were manually checked 
throughout to identify local misassemblies using Geneious v9. N-filled gaps or 
misassembly corrections made use of unplaced paired reads, in some cases using reads 
relocated from sites where they were mis-mapped. In such cases, mis-mappings were 
identified based on much larger than expected paired read distances, high polymorphism 
densities, backwards mapping of one read pair, or any combination of these. Similarly, 
ends were extended using unplaced or incorrectly placed paired reads until 
circularization could be established. In some cases, extended ends were used to recruit 
new scaffolds that were then added to the assembly. The accuracy of all extensions and 
local assembly changes were verified in a subsequent phase of read mapping. In many 
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cases, assemblies were terminated or internally corrupted by the presence of repeated 
sequences. In these cases, blocks of repeated sequence as well as unique flanking 
sequence were identified. Reads were then manually relocated, respecting paired read 
placement rules and unique flanking sequences. After gap closure, circularization, and 
verification of accuracy throughout, end overlap was eliminated, genes were predicted, 
and the start moved to an intergenic region, in some cases suspected to be origin based 
on a combination of coverage trends and GC skew(Brown et al., 2016). Finally, the 
sequences were checked to identify any repeated sequences that could have led to an 
incorrect path choice because the repeated regions were larger than the distance 
spanned by paired reads. This step also ruled out artifactual long phage sequences 
generated by end to end repeats of smaller phage, which occur in previously described 
datasets(Devoto et al., 2019). 
 
Structural and functional annotation 
Following identification and curation of phage genomes, coding sequences (CDS) and 
Shine-Dalgarno ribosomal binding site (RBS) motifs were predicted with prodigal using 
genetic code 11 (-m -g 11 -p single). The resulting CDS were annotated as previously 
described by searching against UniProt, UniRef100, and KEGG(Wrighton et al., 2014). 
Functional annotations were further assigned by searching proteins against PFAM 
r32(Finn et al., 2014), TIGRFAMS r15(Haft et al., 2013), Virus Orthologous Groups r90 
(VOG) (vogdb.org), and Prokaryotic Virus Orthologous Groups(Grazziotin et al., 2017) 
(pVOG). tRNAs were identified with tRNAscan-SE 2.0(Lowe and Eddy, 1997) using the 
bacterial model. tmRNAs were assigned using ARAGORN v1.2.38(Laslett and Canback, 
2004) with the bacterial/plant genetic code.  
 
Clustering of the CDS into families was achieved using a two-step procedure. A first 
protein clustering was done using the fast and sensitive protein sequence searching 
software MMseqs(Hauser et al., 2016). An all-vs.-all sequences search was performed 
using e-value: 1 x 10-3, sensitivity: 7.5 and coverage: 0.5. A sequence similarity network 
was built based on the pairwise similarities and the greedy set cover algorithm from 
MMseqs was performed to define protein subclusters. The resulting subclusters were 
defined as subfamilies. In order to test for distant homology, we grouped subfamilies into 
protein families using an HMM-HMM comparison. The proteins of each subfamily with at 
least two protein members were aligned using the result2msa parameter of MMseqs, and 
from the multiple sequence alignments HMM profiles were built using the 
HHpred(Remmert et al., 2011) suite. The subfamilies were then compared to each other 
using HHblits from the HHpred suite (with parameters -v 0 -p 50 -z 4 -Z 32000 -B 0 -b 0). 
For subfamilies with probability scores of ≥ 95% and coverage ≥ 0.50, a similarity score 
(probability ⨉ coverage) was used as weights of the input network in the final clustering 
using the Markov clustering algorithm(Enright et al., 2002), with 2.0 as the inflation 
parameter. These clusters were defined as the protein families. Protein sequences were 
functionally annotated based on their best hmmsearch match (version 3.1) (E-value cut-
off 1 x 10-3) against an HMM database constructed based on orthologous groups defined 
by the KEGG database(Kanehisa et al., 2016) (downloaded on June 10, 2015). Domains 
were predicted using the same hmmsearch procedure against the PFAM r31 
database(Finn et al., 2014). The domain architecture of each protein sequence was 
predicted using the DAMA software(Bernardes et al., 2016) (default parameters). 
SIGNALP(Petersen et al., 2011) (version 4.1) (parameters: -f short -t gram+) and 
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PSORT(Peabody et al., 2016) v3 (parameters: --long --positive) were used to predict the 
putative cellular localization of the proteins. Prediction of transmembrane helices in 
proteins was performed using TMHMM(Krogh et al., 2001) (version 2.0) (default 
parameters). Hairpins (palindromes, based on identical overlapping repeats in the forward 
and reverse directions) were identified using the Geneious Repeat Finder and located 
dataset-wide using Vmatch(Kurtz, 2003). Repeats >25 bp with 100% similarity were 
tabulated. 
 
Reference genomes for size comparisons 
RefSeq r92 genomes were recovered by using the NCBI Virus portal and selecting only 
complete dsDNA genomes with bacterial hosts. Genomes from(Paez-Espino et al., 2016) 
were downloaded from IMG/VR and only sequence assemblies labeled “circular” with 
predicted bacterial hosts were retained. Given the presence of sequences in IMG/VR that 
are based on erroneous concatenations, we only considered sequences from this source 
that are >200 kb, but a subset of these were removed as artifactual sequences.  
 
Alternative genetic codes 
In cases where gene prediction using the standard bacterial code (code 11) resulted in 
seemingly anomalously low coding densities, potential alternative genetic codes were 
investigated. In addition to making a prediction using the Fast and Accurate genetic Code 
Inference and Logo(Dutilh et al., 2011) (FACIL) web server, we identified genes with well 
defined functions (e.g., polymerase, nuclease) and determined the stop codons 
terminating genes that were shorter than expected. We then re-predicted genes using 
GLIMMER3 v1.5(Delcher et al., 1999) and prodigal with TAG not interpreted as a stop 
codon. Other combinations of repurposed stop codons were evaluated, and candidate 
codes (e.g., code 6, with only one stop codon) were ruled out due to unlikely gene fusion 
predictions. 
 
Large terminase subunit and major capsid phylogenetic analysis 
The large terminase subunit phylogenetic tree was constructed by recovering large 
terminases from the aforementioned protein clustering and annotation pipeline. CDS that 
matched with > 30 bitscore against PFAM, TIGRFAMS, VOG, and pVOG were retained. 
Any CDS that had a hit to large terminase, regardless of bitscore, was searched using 
HHblits(Steinegger et al.) against the uniclust30_2018_08 database. The resulting 
alignment was then further searched against the PDB70 database. Remaining CDS that 
clustered in protein families with a large terminase HMM were also included after manual 
verification. Detected large terminases were manually verified using the 
HHPred(Steinegger et al.) and jPred(Cole et al., 2008) webservers. Large terminases from 
the > 200 kbp(Paez-Espino et al., 2016) phage genomes and all >200 kbp complete 
dsDNA phage genomes from RefSeq r92 were also included by protein family clustering 
with the phage CDS from this study. The resulting terminases were clustered at 95% 
amino acid identity (AAI) to reduce redundancy using CD-HIT (Huang et al., 2010). Smaller 
phage genomes were included by searching the resulting CDS set against the full RefSeq 
protein database and retaining the top 10 best hits. Those hits that had no large terminase 
match against PFAM, TIGRFAMS, VOG, or pVOG were removed from further 
consideration and the remaining set was clustered at 90% AAI. The final set of large 
terminase CDS that were >100 aa were aligned using MAFFT(Katoh and Standley, 2013) 
v7.407 (--localpair --maxiterate 1000), and poorly aligned sequences were removed and 
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the resulting set was realigned. The phylogenetic tree was inferred using IQTREE v1.6.6 
using automatic model selection(Nguyen et al., 2015). The phylogenetic tree of major 
capsid protein (MCP) genes was constructed by retrieving all MCPs annotated by 
combining the PFAM annotations of protein families and direct annotations by PFAM, 
TIGRFAMS, VOG, and pVOG. Reference MCP gene sequences were collected using the 
same strategy and sources as for the large terminase subunit tree. The resulting set were 
further screened by searching against PFAM, TIGRFAMS, VOG, and pVOG and removing 
matches that had no large terminase match regardless of bitscore. The final set of major 
capsid sequences were aligned with MAFFT(--localpair --maxiterate 1000) and the 
phylogenetic tree was constructed using IQTREE with automatic model selection and 
1000 bootstrap replicates.  
 
Whole genome scale clustering 
To identify phage genomes that were closely related at the whole genome level we 
compared sequences using whole genome alignments. The goal of this analysis was to 
further corroborate the identified phylogenetic clades and test for the presence of very 
similar phages in different habitats and environments. Genomes grouped together in the 
primary clusters from dRep v2(Olm et al., 2017) were evaluated for genome alignment 
using Mauve(Darling et al., 2004) within Geneious v9. 
 
CRISPR-Cas Locus and target detection 
Phage and host encoded CRISPR loci (repeats and spacers) were identified using a 
combination of MinCED (github.com/ctSkennerton/minced) and CRISPRDetect(Biswas 
et al., 2016). A custom database of Cas genes was built by collecting Cas gene 
sequences from(Burstein et al., 2017; Harrington et al., 2018; Makarova et al., 2015; 
Shmakov et al., 2015; Smargon et al., 2017; Yan et al., 2018, 2019) and built with MAFFT 
(--localpair --maxiterate 1000) and hmmbuild. CDS from this study were searched against 
the HMM database using hmmsearch with e-value < 1 x 10-5. Matches were checked 
using a combination of hmmscan and BLAST searches against the NCBI nr database and 
manually verified by identifying co-located CRISPR arrays and Cas genes. Spacers 
extracted from between repeats of the CRISPR locus were compared to sequences 
assemblies from the same site using BLASTN-short(Altschul et al., 1990) Matches with 
alignment length >24 bp and ≤1 mismatch were retained and targets were classified as 
bacterial, phage, or other. CRISPR arrays that had at least one ≤1 mismatch, were further 
searched for more spacer matches in the target sequence by finding more hits with ≤3 
mismatches.  
 
Host identification 
The phylum affiliations of bacterial hosts for phage and plasmid-like sequences were 
predicted by considering the UniProt taxonomic profiles of every CDS for each phage 
genome. The phylum level matches for each phage genome were summed and the 
phylum with the most hits was considered as the potential host phylum. However, only 
cases where this phylum that had 3x as many counts as the next most counted phylum 
were assigned as the tentative phage host phylum. Phage hosts were further assigned 
and verified using the aforementioned CRISPR targeting strategy with the phage and 
plasmid-like genomes as targets. CRISPR arrays were predicted on all sequence 
assemblies from the same site that each phage genome was reconstructed. Sequence 
assemblies containing spacers with a match of length >24 bp and ≤1 mismatch. In the 
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case of phage, the match was used to infer a phage-host relationship. In all cases, the 
predicted host phylum based on taxonomic profiling and CRISPR targeting were in 
complete agreement. Similarly, the phyla of hosts were predicted based on phylogenetic 
analysis of phage genes also found in host genomes (e.g., involved in translation and 
nucleotide reactions). Inferences based on computed taxonomic profiles and 
phylogenetic trees were also in complete agreement. 
 
Phage encoded tRNA synthetase trees 
Phylogenetic trees were constructed for phage encoded tRNA synthetase, ribosomal, 
and initiation factor protein sequences using a set of the closest reference sequences 
from NCBI and bacterial genomes from the current study. The tRNA synthetases were 
identified based on annotation of genes via the standard ggKbase pipeline (see above), 
and confirmed by HMMs with datasets from TIGRFAMs. For each type of tRNA 
synthetase, references were selected by comparing all the corresponding genes of this 
type against NCBI nr using DIAMOND v0.9.24(Buchfink et al., 2015), their top 100 hits 
were clustered by CD-HIT with 90% similarity threshold(Huang et al., 2010). The 
phylogenetic tree of each tRNA synthetase was constructed using RAxML 
v8.0.26(Stamatakis, 2014) with the PROTGAMMALG model. 
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CRISPR-Cas systems are found widely in prokaryotes where they provide adaptive 
immunity against virus infection and plasmid transformation. We describe a minimal 
functional CRISPR-Cas system, comprising a single ~70 kilodalton protein, CasΦ, and 
a CRISPR array, encoded exclusively in the genomes of huge bacteriophages. CasΦ 
employs a single active site for both CRISPR RNA (crRNA) processing and crRNA-
guided DNA cutting to target foreign nucleic acids. This hypercompact system is active 
in vitro and in human and plant cells with expanded target recognition capabilities 
relative to other CRISPR-Cas proteins. Useful for genome editing and DNA detection 
but with a molecular weight half that of Cas9 and Cas12a genome-editing enzymes, 
CasΦ offers advantages for cellular delivery that expand the genome editing toolbox.   
 

N.B. All main figures for this manuscript can be found below in their dedicated section. 
All supplementary files (including figures and tables) can be found online with the 
published manuscript.  



 

 

30 

 

 

2.2 Introduction 
 

Competition between viruses and their host microbes fostered the evolution of 
CRISPR-Cas systems that employ nucleases and non-coding CRISPR RNAs (crRNAs) 
to target foreign nucleic acids by complementary base pairing (Barrangou et al., 2007). 
Processing of CRISPR array transcripts, consisting of repeats and spacer sequences 
acquired from viruses or other mobile genetic elements (MGEs) (McGinn and Marraffini, 
2019), generates mature crRNAs that guide Cas proteins (Hille et al., 2018) to detect 
and destroy previously encountered viruses. Although found almost exclusively in 
microbial genomes, the recent discovery of ubiquitous huge bacteriophages (viruses of 
bacteria) revealed the surprising prevalence of CRISPR-Cas systems encoded in their 
genomes (Al-Shayeb et al., 2020). These systems notably lack CRISPR spacer 
acquisition machinery (Cas1, Cas2 and Cas4 proteins) and generally harbor compact 
CRISPR arrays (median: 5 spacers per array), some of which target the genes of 
competing phages or phage hosts. CasΦ (Cas12j) is a family of Cas proteins encoded 
in the Biggiephage clade (Al-Shayeb et al., 2020). CasΦ contains a C-terminal RuvC 
domain with remote homology to that of the TnpB nuclease superfamily from which 
type V CRISPR-Cas proteins are thought to have evolved (Al-Shayeb et al., 2020; 
Shmakov et al., 2017) (fig. S1). However, CasΦ shares <7% amino acid identity with 
other type V CRISPR-Cas proteins and is most closely related to a TnpB group distinct 
from miniature type V (Cas14) proteins (Fig. 1A). 

 

 
2.3 Results and Discussion  

CasΦ’s unusually small size of ~70-80 kDa, about half the size of the Cas9 and 
Cas12a (Fig. 1B), and its lack of co-occurring genes raised the question of whether 
CasΦ functions as a bona fide CRISPR-Cas system. We investigated three divergent 
CasΦ orthologs from metagenomic assemblies (fig. S2), hereafter referred to as CasΦ-
1, CasΦ-2 and CasΦ-3. To examine CasΦ’s ability to recognize and target DNA in 
bacterial cells, we tested whether CasΦ could protect Escherichia coli from plasmid 
transformation. CRISPR–Cas systems target DNA sequences following or preceding a 
2–5 base pair (bp) Protospacer Adjacent Motif (PAM) for self-versus-non-self 
discrimination (Gleditzsch et al., 2019). To determine whether CasΦ uses a PAM, we 
transformed a library of plasmids containing randomized regions adjacent to crRNA-
complementary target sites, thereby depleting plasmids harboring functional PAMs. 
This revealed the crRNA-guided double-strand DNA (dsDNA) targeting capability of 
CasΦ and minimal T-rich PAM sequences, including 5′-TBN-3′ PAMs (where B is G, T, 
or C) depleted for CasΦ-2 (Fig. 1C).   

We next used the E. coli expression system and plasmid interference assay to 
determine the components required for CRISPR-CasΦ system function. RNA-
sequencing analysis revealed transcription of the casΦ gene and the reduced CRISPR 
array but no evidence of other non-coding RNA such as a trans-activating CRISPR RNA 
(tracrRNA) within the locus (Fig. 1D). In addition, CasΦ activity could be readily 
reprogrammed to target other plasmid sequences by altering the guide RNA (fig. S3). 
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These findings suggest that in its native environment, CasΦ is a functional phage 
protein and bona fide CRISPR-Cas effector capable of cleaving crRNA-complementary 
DNA such as other phage (Fig. 1E). Furthermore, these results demonstrate that this 
single-RNA system is much more compact than other active CRISPR-Cas systems (Fig. 
1F). 

We next investigated the DNA recognition and cleavage requirements of CasΦ 
in vitro. RNA-seq revealed that the crRNA spacer, which is complementary to DNA 
targets, is 14-20 nucleotides (nt) long (Fig. 1D). Incubation of purified CasΦ (fig. S4) with 
crRNAs of different spacer sizes along with supercoiled plasmid or linear dsDNA 
revealed that DNA cleavage requires the presence of a cognate PAM and a spacer of ≥ 
14 nt (Fig. 2A; fig. S5A). Analysis of the cleavage products showed that CasΦ generated 
staggered 5′-overhangs of 8-12 nt (Fig. 2B, C; fig. S5B, C), similar to the staggered 
DNA cuts observed for other type V CRISPR-Cas enzymes including Cas12a and CasX 
(Liu et al., 2019a; Zetsche et al., 2015). We also observed that CasΦ-2 and CasΦ-3 
were more active in vitro than CasΦ-1, and the non-target strand (NTS) was cleaved 
faster than the target-strand (TS) within the RuvC active site (Fig. 2D; figs. S6A, S7; 
Supplementary Text). Furthermore, CasΦ was found to cleave ssDNA but not ssRNA in 
cis and in trans (fig. S6B, S8), suggesting that CasΦ may also target ssDNA MGEs or 
ssDNA intermediates. The trans-cleavage activity of CasΦ, observed only upon DNA 
recognition in cis (fig. S8), coupled with a minimal PAM requirement (Fig. 1C), may be 
useful for broader nucleic acid detection as previously demonstrated for type V and 
type VI Cas proteins (Chen et al., 2018; East-Seletsky et al., 2016; Gootenberg et al., 
2017).  
 CRISPR-CasΦ systems must produce mature crRNA to guide foreign DNA 
cleavage. Other type V CRISPR-Cas proteins process pre-crRNAs using an internal 
active site distinct from the RuvC domain (Fonfara et al., 2016) or by recruiting 
Ribonuclease III to cleave a pre-crRNA:tracrRNA duplex (Burstein et al., 2017; 
Harrington et al., 2018; Shmakov et al., 2015; Yan et al., 2019). The absence of a 
detectable tracrRNA for CasΦ hinted that CasΦ may catalyze crRNA maturation on its 
own. To test this possibility, we incubated purified CasΦ with substrates designed to 
mimic the pre-crRNA structure (Fig. 3A). Reaction products corresponding to a 26-29 
nt-long repeat and 20 nt spacer sequence of the crRNA were observed only in the 
presence of wild type CasΦ, corroborated by RNA-seq analysis of native loci (Figs. 1D; 
3A, C; fig. S9). In control experiments, we found that pre-crRNA processing is strictly 
magnesium-dependent (Fig. 3B; fig. S9), which is different from other CRISPR-Cas RNA 
processing reactions and suggested a distinct cleavage mechanism. Notably, the RuvC 
domain requires magnesium to cleave DNA (Nowotny, 2009), and some RuvC domains 
have been reported to have endoribonucleolytic activity (Yan et al., 2019). Based on 
these observations, we tested CasΦ containing a RuvC-inactivating mutation and found 
it to be incapable of processing pre-crRNAs (Fig. 3B; fig. S9A, B). Both wild-type and 
catalytically inactivated CasΦ proteins bind crRNA, and their reconstituted complexes 
with pre-crRNA have similar elution profiles from a size exclusion column, suggesting 
no pre-crRNA binding or protein stability defect resulting from the RuvC mutation (fig. 
S10).  

We hypothesized that if the RuvC domain is responsible for pre-crRNA 
processing, the products should contain 5′-phosphate and 2′- and 3′-hydroxyl moieties 
as observed in RNAs generated by the RuvC-related RNase HI enzymes (Nowotny, 
2009). In contrast, other type V CRISPR-Cas enzymes process pre-crRNA by metal-
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independent acid-base catalysis in an active site distinct from the RuvC, generating 2′-
3′-cyclic phosphate crRNA termini, as observed for Cas12a (Swarts et al., 2017). 
Phosphatase treatment of CasΦ-generated crRNA followed by denaturing acrylamide 
gel analysis showed no change in the crRNA migration, distinct from the change in 
mobility detected for crRNA generated by Cas12a (Fig. 3C; fig. S9C). This result implies 
that no 2′-3′-cyclic phosphate was formed during the reaction catalyzed by CasΦ, in 
contrast to the acid-base catalyzed processing reaction by Cas12a (Fig. 3C, D). 
Together, these data demonstrate that CasΦ uses a single RuvC active site for both 
pre-crRNA processing and DNA cleavage. 

The versatility and programmability of CRISPR-Cas systems for genome editing 
in virtually any organism have sparked a revolution in biotechnology and fundamental 
research (Knott and Doudna, 2018). To investigate whether CasΦ can be harnessed for 
human genome editing, we performed a gene disruption assay (Liu et al., 2019a) using 
CasΦ co-expressed with a crRNA in HEK293 cells (Fig. 4A). We found that CasΦ-2 and 
CasΦ-3, can induce targeted disruption of a genomically integrated EGFP gene (Fig. 
4A; fig. S11). In one case, CasΦ-2 with an individual guide RNA was able to edit up to 
33% of cells (Fig. 4A), comparable to levels initially reported for CRISPR–Cas9, 
CRISPR–Cas12a, and CRISPR–CasX (Liu et al., 2019a; Mali et al., 2013; Zetsche et al., 
2015). We next tested if CasΦ-2 can be delivered as RNPs into plant protoplasts to edit 
the endogenous Arabidopsis thaliana PDS3 gene (Fig. 4B; fig. S12). Next generation 
sequencing revealed that CasΦ-2 introduces primarily 8-10 bp deletions (Fig. 4B), 
consistent with the cleavage pattern observed in vitro (Fig. 2C). The small size of CasΦ 
in combination with its minimal PAM requirement will be particularly advantageous for 
both vector-based delivery into cells and a wider range of targetable genomic 
sequences, providing a powerful addition to the CRISPR-Cas toolbox. 

 
Supplementary Text 
 

To assess the role of the RuvC domain in DNA cleavage, the active site was 
mutated (D371A, D394A, or D413A) to produce a deactivated CasΦ variant (dCasΦ) 
that did not cleave dsDNA, ssDNA or ssRNA in vitro (fig. S6A, B). When expressed in E. 
coli along with crRNA, dCasΦ could not prevent transformation of a crRNA-
complementary plasmid, consistent with a requirement for RuvC-catalyzed DNA cutting 
(fig. S3). This observation, together with the delayed cleavage of the TS after NTS 
cleavage (Fig. 2D; fig. S7), suggests that CasΦ cleaves each strand sequentially within 
the RuvC active site. Sequential strand cleavage is consistent with the dsDNA cutting 
mechanism of the type V CRISPR-Cas proteins (Cofsky et al., 2020; Swarts and Jinek, 
2019) that share closest evolutionary origin with CasΦ. 

 
2.4 Conclusions 

Three other well-characterized Cas enzymes Cas9, Cas12a, and CasX, use one 
(Cas12a and CasX) or two active sites (Cas9) for DNA cutting and rely on a separate 
active site (Cas12a) or additional factors (CasX and Cas9) for crRNA processing (Fig. 
4C). The finding that a single RuvC active site in CasΦ is capable of crRNA processing 
and DNA cutting suggests that size limitations of phage genomes, possibly in 
combination with large population sizes and higher mutation rates in phages compared 
to prokaryotes (Duffy et al., 2008; Lee and Marx, 2012; Lynch, 2006), led to a 
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consolidation of chemistries within one catalytic center. Such compact proteins may be 
particularly amenable to engineering and laboratory evolution to create new 
functionalities for genome manipulation, and highlight huge phages as an exciting 
forefront for discovery and biotechnological applications for human health.   
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2.5 Figures 
Fig. 1. CasΦ is a bona fide CRISPR-Cas system from huge phages. (A) Maximum 
Likelihood phylogenetic tree of type V effector proteins and respective predicted 
ancestral TnpB nucleases. Bootstrap and approximate likelihood-ratio test values ≥ 90 
are denoted on the branches with black circles. (B) Illustrations of genomic CRISPR-
Cas loci of CasΦ, Cas14, and systems previously employed in genome editing 
applications. (C) Graphical representation of the PAM depletion assay and the resulting 
PAMs for three CasΦ orthologs. (D) RNA-sequencing results (left) mapped onto the 
native genomic loci of CasΦ orthologs and their upstream and downstream non-coding 
regions as cloned with reduced CRISPR-arrays into expression plasmids. Enlarged view 
of RNA mapped onto the first repeat-spacer pair (right). (E) Schematic of the 
hypothesized function of Biggiephage-encoded CasΦ in an instance of superinfection 
of its host. CasΦ may be used by the huge phage to eliminate competing mobile 
genetic elements. (F) Predicted molecular weights of the ribonucleoprotein (RNP) 
complexes of small CRISPR-Cas effectors and those functional in editing of mammalian 
cells. 
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Fig. 2. CasΦ cleaves DNA. (A) Supercoiled plasmid cleavage assay testing CasΦ RNPs 
reconstituted with crRNAs of different spacer lengths. (B) Cleavage assay targeting 
dsDNA oligo-duplices for mapping of the cleavage structure. (C) Scheme illustrating the 
cleavage pattern. (D) NTS and TS DNA cleavage efficiency (n = 3 each, mean ± s.d.). 
Data is shown in fig. S7B. 
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Fig. 3. CasΦ processes pre-crRNA within the RuvC active site. (A) pre-crRNA 
substrates and processing sites (red triangles) as derived from the OH-ladder in panel 
C. (B) Pre-crRNA processing assay for CasΦ-1 and CasΦ-2 in dependence of Mg2+ and 
RuvC active site residue variation (D371A and D394A) (n = 3 each, mean ± s.d.; t = 60 
min). Data is shown in fig. S9B. (C) Left and middle: Alkaline hydrolysis ladder (OH) of 
the pre-crRNA substrate. Right: PNK-phosphatase treatment of the CasΦ and 
Acidaminococcus sp. Cas12a cleavage products. (D) Graphical representation of the 
mature crRNA termini chemistry of CasΦ and Cas12a and PNK-phosphorylase 
treatment outcomes. 
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Fig. 4. CasΦ is functional for genome editing. (A) Experimental workflow of the GFP 
disruption assay (left) and GFP disruption using CasΦ-2 and CasΦ-3 and a non-
targeting (NT) guide as a negative control (n = 3 each, mean ± s.d.). (B) Experimental 
workflow of CasΦ-2 RNP-mediated genome-editing in A. thaliana mesophyll 
protoplasts (left) and amplicon sequencing data (right) showing the most frequent 
deletions for gRNA33 in the targeted region (blue) within the AtPDS3 gene. (C) Scheme 
illustrating the differences in RNA processing and DNA cutting for Cas9, Cas12a, CasX, 
and CasΦ. 
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2.6 Methods 
 

Metagenomic assemblies, genome curation, and CRISPR-CasΦ detection 
Metagenomic sequencing data was assembled using previously described 

methods (Al-Shayeb et al., 2020). Coding sequences (CDS) were predicted from 
sequence assemblies using prodigal with genetic code 11 (-m -g 11 -p single) and (-m -
g 11 -p meta) and preliminary annotations and phage genome curations were 
performed as previously described (Al-Shayeb et al., 2020). Bowtie2 v2.3.4.1 was used 
to map reads to the de novo assembled sequences, and we retained unplaced mate 
pairs of mapped reads with shrinksam (github.com/bcthomas/shrinksam). N-filled gaps 
and local misassemblies were identified and corrected, and unplaced or incorrectly 
placed paired reads allowed extension of contig ends. Local assembly changes and 
extensions were verified with further read mapping. A database of CasΦ sequences 
from (Al-Shayeb et al., 2020) was generated using MAFFT v7.407 and hmmbuild. CDS 
from new assemblies were searched against the HMM database using hmmsearch with 
e-value < 1 x 10-5 and added to the database upon verification.  
 
Phylogenetic analysis of type V systems 

Cas protein sequences were collected from (Al-Shayeb et al., 2020; Burstein et 
al., 2017; Harrington et al., 2018; Makarova et al., 2019; Shmakov et al., 2015; Yan et 
al., 2019) and representatives from the TnpB superfamily were collected from 
(Makarova et al., 2019) and top BLAST hits from RefSeq. The resulting set was 
clustered at 90% amino acid identity to reduce redundancy. A new alignment of CasΦ 
with the resulting sequence set was generated using MAFFT LINSI with 1000 iterations 
and filtered to remove columns composed of gaps in 95% of sequences. Poorly aligned 
sequences were removed and the resulting set was realigned. The phylogenetic tree 
was inferred using IQTREE v1.6.6 using automatic model selection and 1000 
bootstraps. 
 
crRNA sequence analysis 

CRISPR-RNA (crRNA) repeats from Phage-encoded CRISPR loci were identified 
using MinCED (github.com/ctSkennerton/minced) and CRISPRDetect. The repeats 
were compared by generating pairwise similarity scores using the Needleman-Wunsch 
algorithm followed by EMBOSS Needle. A heatmap was built using the similarity score 
matrix and hierarchical clustering produced dendrograms that were overlaid onto the 
heatmap to delineate different clusters of repeats.  
 
Generation of plasmids 

CasΦ loci, including an additional E. coli RBS upstream of casΦ, were ordered 
as G-blocks from Integrated DNA Technologies (IDT) and cloned using Golden Gate 
assembly (GG) under the control of a tetracycline-inducible promoter for RNA seq and 
PAM depletion plasmid interference experiments. Perfect repeat-spacer units of the by 
metagenomics identified CRISPR-arrays were reduced to a single repeat-spacer-repeat 
unit, amenable to stuffer-spacer exchange by GG-assembly (AarI-restriction sites). 
Subsequently, CasΦ gene sequences were subcloned by GG-assembly into pRSFDuet-
1 (Novagen) within MCSI without tags for efficiency of transformation plasmid 
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interference assays, or fused to a C-terminal hexa-histidine tag for protein purification. 
For plasmid interference assays, mini-CRISPR arrays (repeat-spacer-repeat, or repeat-
spacer-HDV ribozyme) amenable to stuffer-spacer exchange by GG-assembly (AarI-
restriction sites) were cloned into MCS II of pRSFDuet. For genome editing experiments 
in human cells, casΦ genes were ordered as G-blocks from IDT encoding codon 
optimized genes for expression in human cells. G-blocks were cloned via GG-assembly 
into the vector backbone of pBLO62.5, downstream fused to two SV40 NLSs via a GSG 
linker encoding sequence. The guide encoding sequence of pBLO62.5 was exchanged 
to encode for a single CRISPR-repeat of the respective homologue, followed by a 20 bp 
stuffer spacer sequence amenable to GG-assembly exchange using the restriction 
enzyme SapI. For production of NLS tagged CasΦ for in planta genome editing, E. coli 
codon optimized casΦ was cloned using GG assembly into MCSI of pRSFDuet-1 
(Novagen) downstream fused to two SV40 NLS sequences and a hexa-histidine tag. A 
list of plasmids and a brief description is given in table S1. Plasmid sequences and 
maps will be made available on addgene. To reprogram the CasΦ vectors to target 
different loci, stuffer-spacer were exchanged via GG-assembly to encode the guide for 
the selected target site (guide spacer sequences are listed in table S2). Mutations in the 
casΦ genes were introduced by GG-assembly to create dcasΦ genes.  
 
PAM depletion DNA interference assay  

PAM depletion assays were performed with both, CasΦ plasmids that either 
carried the whole CasΦ locus as derived from metagenomics (pPP049, pPP056 and 
pPP062), or with plasmids that contained only the casΦ gene and a mini CRISPR 
(pPP097, pPP102 and pPP107). Assays were performed as three individual biological 
replicates. Plasmids containing casΦ and mini CRISPRs were transformed into E. coli 
BL21(DE3) (NEB) and constructs containing CasΦ genomic loci were transformed into 
E. coli DH5α (QB3-Macrolab, UC Berkeley). Subsequently, electrocompetent cells were 
prepared by ice cold H20 and 10 % glycerol washing. A plasmid library was constructed 
with 8 randomized nucleotides upstream (5’) end of the target sequence (kind gift of 
Hannah Spinner). Competent cells were transformed in triplicate by electroporation with 
200 ng library plasmids (0.1 mm electroporation cuvettes (Bio-Rad) on a Micropulser 
electroporator (Bio-Rad)). After a two-hour recovery period, cells were plated on 
selective media and colony forming units were determined to ensure appropriate 
coverage of all possible combinations of the randomized 5’ PAM region. Strains were 
grown at 25 °C for 48 hours on media containing appropriate antibiotics (either 100 
µg/mL carbenicillin and 34 µg/mL chloramphenicol, or 100 µg/mL carbenicillin and 50 
µg/mL kanamycin) and 0.05 mM isopropyl-β-D-thiogalactopyranoside (IPTG), or 200 
nM anhydrotetracycline (aTc), depending on the vector to ensure propagation of 
plasmids and CasΦ effector production. Subsequently, propagated plasmids were 
isolated using a QIAprep Spin Miniprep Kit (Qiagen). 
 
PAM depletion sequencing analysis  

Amplicon sequencing of the targeted plasmid was used to identify PAM motifs 
that are preferentially depleted. Sequencing reads were mapped to the respective 
plasmids and PAM randomized regions were extracted. The abundance of each 
possible 8 nucleotide combination was counted from the aligned reads and normalized 
to the total reads for each sample. Enriched PAMs were computed by calculating the 
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log ratio compared to the abundance in the control plasmids, and were used to 
produce sequence logos.  
 
RNA preparation for RNAseq 

Plasmids containing CasΦ loci were transformed into chemically competent E. 
coli DH5α (QB3-Macrolab, UC Berkeley). Preparations were performed as three 
individual biological replicates. Single colonies were picked to inoculate 5 mL starter 
cultures (LB, 34 µg/mL chloramphenicol) which were incubated at 37 °C shaking 
vigorously overnight. The next morning, main cultures were inoculated 1:100 (LB, 34 
µg/mL chloramphenicol) and locus expression was induced with 200 nM aTc for 24 h at 
16 °C. Cells were harvested by centrifugation, resuspended in lysis buffer (20 mM 
Hepes-Na pH 7.5 RT, 200 mM NaCl) and lysed using glass beads (0.1 mm glass beads, 
4x 30 s vortex at 4 °C, interspaced by 30 s cool-down on ice). 200 µL cell lysis 
supernatant were transferred into Trizol for RNA extraction according to the 
manufacturer's protocol (Ambion). 10 µg RNA were treated with 20 units of T4-PNK 
(NEB) for 6 h at 37 °C for 2′-3′-dephosphorylation. Subsequently, 1 mM ATP was 
added and the sample was incubated for 1 h at 37 °C for 5′-phosphorylation before 
heat inactivation at 65 °C for 20 min and subsequent Trizol purification.  
 
RNA analysis by RNAseq 

cDNA libraries were prepared using the RealSeq-AC miRNA library kit illumina 
sequencing (somagenics). cDNA libraries were subjected to Illumina MiSeq sequencing, 
and raw sequencing data was processed to remove adapters and sequencing artifacts, 
and high-quality reads were maintained. The resulting reads were mapped to their 
respective plasmids to determine the CRISPR locus expression and crRNA processing, 
and coverage was calculated at each region. 
 
Efficiency of transformation plasmid interference assay 

CasΦ vectors were transformed into chemically competent E. coli BL21(DE3) 
(NEB). Individual colonies for biological replicates were picked to inoculate three 5 mL 
(LB, Kanamycin 50 µg/mL) starter cultures to prepare electrocompetent cells the 
following day. 50 mL (LB, Kanamycin 50 µg/mL) main cultures were inoculated 1:100 
and grown vigorously shaking at 37 °C to an OD600 of 0.3. Subsequently, the cultures 
were cooled to room temperature and casΦ expression was induced with 0.2 mM IPTG. 
Cultures were grown to an OD600 of 0.6-0.7 at 25 °C, before preparation of 
electrocompetent cells by repeated ice-cold H20 and 10% glycerol washes. Cells were 
resuspended in 250 µL 10% glycerol. 90 µL aliquots were flash frozen in liquid nitrogen 
and stored at -80 °C. The next day, 80 µL competent cells were combined with 3.2 µL 
plasmid (20 ng/µL pUC19 target plasmid, or 20 ng/µL pYTK001 control plasmid), 
incubated for 30 min on ice and split into three individual 25 µL transformation 
reactions. After electroporation in 0.1 mm electroporation cuvettes (Bio-Rad) on a 
Micropulser electroporator (Bio-Rad), cells were recovered in 1 mL recovery medium 
(Lucigen) supplemented with 0.2 mM IPTG, shaking at 37 °C for one hour. 
Subsequently, 10-fold dilution series were prepared and 5 µL of the respective dilution 
steps were spot-plated on LB-Agar containing the appropriate antibiotics. Plates were 
incubated overnight at 37 °C and colonies were counted the following day to determine 
the transformation efficiency. To assess the transformation efficiency, the mean and 
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standard deviations were calculated from the cell forming units per ng transformed 
plasmids for the electroporation triplicates.   
 
Protein production and purification 

CasΦ overexpression vectors were transformed into chemically competent E. 
coli BL21(DE3)-Star (QB3-Macrolab, UC Berkeley) and incubated overnight at 37 °C on 
LB-Kan agar plates (50 µg/mL Kanamycin). Single colonies were picked to inoculate 80 
mL (LB, Kanamycin 50 μg/mL) starter cultures which were incubated at 37 °C shaking 
vigorously overnight. The next day, 1.5 L TB-Kan medium (50 µg/mL Kanamycin) were 
inoculated with 40 mL starter culture and grown at 37 °C to an OD600 of 0.6, cooled 
down on ice for 15 min and gene expression was subsequently induced with 0.5 mM 
IPTG followed by incubation overnight at 16 °C. Cells were harvested by centrifugation 
and resuspended in wash buffer (50 mM HEPES-Na pH 7.5 RT, 1 M NaCl, 20 mM 
imidazole, 5 % glycerol and 0.5 mM TCEP), subsequently lysed by sonication, followed 
by lysate clarification by centrifugation. The soluble fraction was loaded on a 5 mL Ni-
NTA Superflow Cartridge (Qiagen) pre-equilibrated in wash buffer. Bound proteins were 
washed with 20 column volumes (CV) wash buffer and subsequently eluted in 5 CV 
elution buffer (50 mM HEPES-Na pH 7.5 RT, 500 mM NaCl, 500 mM imidazole, 5 % 
glycerol and 0.5 mM TCEP). The eluted proteins were concentrated to 1 mL before 
injection into a HiLoad 16/600 Superdex 200pg column (GE Healthcare) pre-
equilibrated in size-exclusion chromatography buffer (20 mM HEPES-Na pH 7.5 RT, 
500 mM NaCl, 5 % glycerol and 0.5 mM TCEP). Peak fractions were concentrated to 1 
mL and concentrations were determined using a NanoDrop 8000 Spectrophotometer 
(Thermo Scientific). Proteins were purified at a constant temperature of 4 °C and 
concentrated proteins were kept on ice to prevent aggregation, snap frozen in liquid 
nitrogen and stored at -80 °C. AsCas12a was purified as previously described (Knott et 
al., 2019).    
 
In vitro cleavage assays - spacer tiling 

Plasmid targets were cloned by GG-assembly of spacer 2, found in the CRISPR-
array of CasΦ-1, downstream to a cognate 5’-TTA PAM, or non-cognate 5’-CCA PAM 
into pYTK095 (Target sequences are given in table S3). Supercoiled plasmids were 
prepared by propagation of the plasmid overnight at 37 °C in E. coli Mach1 (QB3-
Macrolab, UC Berkeley) in LB and Carbenicillin (100 µg/mL) and subsequent 
preparation using a Qiagen Miniprep kit (Qiagen). Linear DNA targets were prepared by 
PCR from the plasmid target. crRNA guides were ordered as synthetic RNA oligos from 
IDT (table S4), dissolved in DEPC H20 and heated for 3 min at 95 °C before cool down 
at RT. Active RNP complexes were assembled at a concentration of 1.25 µM by mixing 
protein and crRNA (IDT) in a 1:1 molar ratio in cleavage buffer (10 mM Hepes-K pH 7.5 
RT, 150 mM KCl, 5 mM MgCl2, 0.5 mM TCEP) and incubation at RT for 30 min. 
Cleavage reactions were initiated by addition of DNA (10 nM) to preformed RNP (1 µM) 
in reaction buffer (10 mM Hepes-K pH 7.5 RT, 150 mM KCl, 5 mM MgCl2, 0.5 mM 
TCEP). The reactions were incubated at 37 °C, quenched with 50 mM EDTA and stored 
in liquid nitrogen. Samples were thawed and treated with 0.8 units proteinase K (NEB) 
for 20 min at 37 °C. Loading dye was added (Gel Loading Dye Purple 6X, NEB) and 
samples were analyzed by electrophoresis on a 1% agarose gel and stained with SYBR 
Safe (Thermo Fisher Scientific). For comparison to cleavage products, supercoiled 
plasmids were digested with PciI (NEB) for linearization and Nt.BstNBI (NEB) for 
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plasmid nicking and open circle formation. Comparable cleavage assays under varied 
conditions (n ≥ 3) showed consistent results. 
 
In vitro cleavage assays - radiolabeled nucleic acids 

Active CasΦ RNP complexes were assembled in a 1:1.2 molar ratio by diluting 
CasΦ protein to 4 µM and crRNA (IDT) to 5 µM in RNP assembly buffer (20 mM HEPES-
Na pH 7.5 RT, 300 mM KCl, 10 mM MgCl2, 20 % glycerol, 1 mM TCEP) and incubation 
for 30 min at RT. Substrates were 5′-end-labelled using T4-PNK (NEB) in the presence 
of 32P-γ-ATP (Substrate sequences are given in table S3). Oligo-duplex targets were 
generated by combining 32P-labelled and unlabelled complementary oligonucleotides in 
a 1:1.5 molar ratio. Oligos were hybridized to a DNA-duplex concentration of 50 nM in 
hybridization buffer (10 mM Tris-Cl pH 7.5 RT, 150 mM KCl), by heating for 5 min to 95 
°C and a slow cool down to RT in a heating block. Cleavage reactions were initiated by 
combining 200 nM RNP with 2 nM substrate in reaction buffer (10 mM HEPES-Na pH 
7.5 RT, 150 mM KCl, 5 mM MgCl2, 10 % glycerol, 0.5 mM TCEP) and subsequently 
incubated at 37 °C. For trans-cleavage assays, guide complementary activator 
substrates were diluted in oligonucleotide hybridization buffer (10 mM Tris pH 7.8 RT, 
150 mM KCl) to a concentration of 4 µM, heated to 95 °C for 5 min, and subsequently 
cooled down at RT to allow duplex formation for double stranded activator substrates. 
Cleavage reactions were set up by combining 200 nM RNP with 100 nM activator 
substrate and incubation for 10 min at RT before addition of 2 nM ssDNA, or ssRNA, 
trans cleavage substrates. Reactions were stopped by addition of two volumes 
formamide loading buffer (96 % formamide, 100 µg/mL bromophenol blue, 50 µg/mL 
xylene cyanol, 10 mM EDTA, 50 µg/mL heparin), heated to 95 °C for 5 min, and cooled 
down on ice before separation on a 12.5 % denaturing urea-PAGE. Gels were dried for 
4 h at 80 °C before phosphor-imaging visualization using an Amersham Typhoon 
scanner (GE Healthcare). Technical replicates (n ≥ 2) and comparable cleavage assays 
under varied conditions (n ≥ 3) of biological replicates (n ≥ 2) showed consistent results. 
Bands were quantified using ImageQuant TL (GE) and cleaved substrate was calculated 
from the intensity relative to the intensity observed at t = 0 min. Curves were fit to a 
One-Phase-Decay model in Prism 8 (graphpad) to derive the rate of cleavage. 
 
In vitro pre-crRNA processing assay 

Pre-crRNA substrates were 5′-end-labelled using T4-PNK (NEB) in the presence 
of 32P-γ-ATP (Substrate sequences are given in table S3). Processing reactions were 
initiated by combining 50 nM CasΦ with 1 nM substrate in pre-crRNA processing buffer 
(10 mM Tris pH 8 RT, 200 mM KCl, 5 mM MgCl2 or 25 mM EDTA, 10 % glycerol, 1 mM 
DTT) and subsequently incubated at 37 °C. Substrate hydrolysis ladders were prepared 
using the alkaline hydrolysis buffer according to the manufacturer's protocol (Ambion). 
10 µL of the processing reaction products were treated with 10 units T4-PNK (NEB) for 
1 h at 37 °C in the absence of ATP for termini chemistry analysis. Reactions were 
stopped by addition of two volumes formamide loading buffer (96 % formamide, 100 
µg/mL bromophenol blue, 50 µg/mL xylene cyanol, 10 mM EDTA, 50 µg/mL heparin), 
heated to 95 °C for 3 min, and cooled down on ice before separation on a 12.5 %, or 20 
%, denaturing urea-PAGE. Gels were dried for 4 h at 80 °C before phosphor-imaging 
visualization using an Amersham Typhoon scanner (GE Healthcare). Technical 
replicates (n ≥ 3) and comparable cleavage assays under varied conditions (n ≥ 3) of 
biological replicates (n ≥ 2) showed consistent results. Bands were quantified using 
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ImageQuant TL (GE) and processed RNA was calculated from the intensity at t = 60 min 
relative to the intensity observed at t = 0 min. 
 
 
Analytical size exclusion chromatography 

500 µL sample (5-10 µM protein, RNA, or reconstituted RNPs) were injected 
onto a S200 XK10/300 size exclusion chromatography (SEC) column (GE Healthcare) 
pre-equilibrated in SEC buffer (20 mM HEPES-Cl pH 7.5 RT, 250 mM KCl, 5 mM MgCl2, 
5 % glycerol and 0.5 mM TCEP). Prior to SEC, CasΦ RNP complexes were assembled 
by incubating CasΦ protein and pre-crRNA for 1 h in 2X pre-crRNA processing buffer 
(20 mM Tris pH 8 RT, 400 mM KCl, 10 mM MgCl2, 20 % glycerol, 2 mM DTT). 
 
Genome editing in human cells 

The GFP HEK293 reporter cells were generated via lentiviral integration as 
previously described (Richardson et al., 2016). Cells were routinely tested for absence 
of mycoplasma using the MycoAlert Mycoplasma Detection Kit (Lonza), according to 
the manufacturer’s protocol. GFP HEK293 reporter cells were seeded into 96-well 
plates and transfected at 60-70% confluency the next day according to the 
manufacturer’s protocol with lipofectamine 3000 (Life Technologies) and 200 ng of 
plasmid DNA encoding the CasΦ gRNA and CasΦ–P2A–PAC fusion. As a comparison 
control, 200 ng of plasmid DNA encoding the SpyCas9 sgRNA and SpyCas9–P2A–PAC 
fusion was transfected identically, with target sequences adjusted for PAM differences. 
24 hours post-transfection, successfully transfected cells were selected for by adding 
1.5 μg/mL puromycin to the cell culture media for 72 hours. Cells were passaged 
regularly to maintain sub-confluent conditions and then analyzed on an Attune NxT 
Flow Cytometer with an autosampler. Cells were analyzed on the flow cytometer after 
10 days to allow for clearance of GFP from cells. 
 
Protoplast isolation and transfection 

A. thaliana plants (Col-0 ecotype) were grown with 12 h light/12  h dark 
photoperiod under low light (75 μE m-2 s-1) and mesophyll protoplasts were isolated 
from leaves of 4-week-old plants as described previously (Yoo et al., 2007) . In brief, A. 
thaliana leaves were cut into 0.5-1 mm stripes with sharp razor blades and submerged 
in enzyme solution (20 mM MES pH 5.7, 0.4 M mannitol, 20 mM KCl, 1.5% cellulase 
R10, 0.4% macerozyme R10, enzymes from Yakult Pharmaceutical Ind. Co., Ltd., 
Japan). The leaf stripes in enzyme solution were vacuum infiltrated for 30 min in dark 
and then incubated in dark for 3 h at room temperature. The protoplasts were released 
during this incubation. After the incubation, the enzyme/protoplast solution was diluted 
with equal volume of W5 solution (2 mM MES pH 5.7, 154 mM NaCl, 125 mM CaCl2, 5 
mM KCl), and filtered through 70-μm nylon mesh (Carolina Biological Supplies, cat 
65222N) into round bottom tubes. Protoplasts were collected by centrifuging the flow-
through at 100 g for 2 min at 4 °C. Supernatant was removed and protoplasts (pellet) 
were resuspended in W5 solution at 2 x 105 cells/ml. Resuspended protoplasts were 
kept on ice for 30 min for resting. During the resting, the protoplasts were re-collected 
at the bottom of tubes by gravity. Then the supernatant was removed as much as 
possible and the protoplasts were resuspended with MMG solution (4 mM MES PH 5.7, 
0.4 M mannitol, 15 mM MgCl2) to the same volume (2 x 105 cells/ml). Sterile and RNase-
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free reagents were used for protoplast isolation. Active CasΦ-2 RNP complexes were 
reconstituted by diluting CasΦ-2-NLS protein, purified as described above, to 4 µM and 
gRNA to 5 µM in RNP assembly buffer as described above and incubated for 30 min at 
RT. 26 µL of 4 µM RNP were first added to a round-bottom 2 mL tube. Then 200 µL of 
protoplasts (at 2 x 105 cells/mL) were added to the tube. 2 µL of 5 µg/µL salmon sperm 
DNA was added and mixed gently by tapping the tube 3-4 times. Then, 228 µL of fresh, 
sterile and RNase free PEG-CaCl2 solution (40% PEG4000, 0.2 M mannitol, 100 mM 
CaCl2) was added to the protoplast-RNP mixture and mixed well by gently tapping 
tubes. The protoplasts with PEG solution were incubated at room temperature for 10 
min, then 880 µL of W5 solution was added and mixed with the protoplasts by inverting 
the tube 2-3 times to stop the transfection. Protoplasts were harvested by 
centrifugation at 100 rcf for 2 min, resuspended in 1 mL WI solution (4 mM MES pH 5.7, 
0.5 M mannitol, 20 mM KCl) and plated into 6-well plates pre-coated with 5% calf 
serum. The lids of the 6-well plates were closed to begin the incubation of the 
protoplasts. For control samples, 10 µg of HBT-sGFP plasmid (ABRC stock CD3-911) 
were added to 200 µl protoplasts and followed the same transfection and plating 
procedure as stated above. For the initial RNP screening experiment, the protoplasts 
were incubated at RT for 12 h, then moved to 37 °C for 2.5 h. Then, the protoplasts 
were moved back to room temperature and incubated for a total duration of 36 h. For 
the independent experiment where gRNA28, gRNA31 and gRNA33 were tested, the 
protoplasts were incubated at RT for 12 hours, then moved to 37 °C for 2.5 h. Then, the 
protoplasts were moved back to room temperature and incubated for a total duration of 
48 h. At the end of the incubations, the protoplasts were collected by a first 
centrifugation at 100 rcf for 2-3 min. Keeping the pellet, the supernatant was moved to 
another tube and went through another centrifugation at 3000 rcf for 3 min to collect 
any residue protoplasts. Pellets from these two centrifugations were combined and 
flash frozen for further analysis. 

Amplicon sequencing 

DNAs of protoplast samples were extracted using the Qiagen DNeasy plant mini 
kit. Amplicons were obtained by two rounds of PCR (2-step PCR). Amplification primers 
for the first round of PCR were designed to have the 3′ part of primer with sequences 
flanking a 200-300 bp fragment of the AtPDS3 gene around the guide RNA of interest. 
The 5′ part of the primer contained sequences to be bound by common sequencing 
primers (for reading paired-end reads, read 1 and read 2). The primers were designed 
so that the gRNA sequence started from within 100 bp from the beginning of read 1. 
The first round of PCR was done with Phusion High-Fidelity Polymerase (ThermoFisher 
cat F530N). Half of all DNA from a protoplast transfection sample was used as the 
template, and 25 cycles of amplification were done for the first round. Then the reaction 
was cleaned by 1x Ampure XP beads (Beckman Coulter A63881). The elution from the 
cleanup was used as the template for the second round of PCR by Phusion High-
Fidelity Polymerase with 12 cycles. The second round of PCR was designed so that 
indices were added to each sample. The samples were then purified by 0.8-1 X Ampure 
beads for 1-2 rounds until no primer dimers were seen, with fragments below 200 bp 
considered primer dimers. Then amplicons were sent for paired-end 150 bp next 
generation sequencing. 

Amplicon sequencing result analysis 
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Reads were first quality- and adaptor-trimmed with trim-galore (version 0.4.4), 
then mapped to the AtPDS3 genomic region. Sorted and indexed bam files were used 
as input files for further analysis by the CrispRvariants R package. Each mutation 
pattern with corresponding reads counts were exported by the CrispRvariants R 
package. After assessing all control samples, a criterion to classify reads containing 
deletion was established: only reads with ≥ 3 bp deletion of same pattern (deletion of 
same size starting with same location) with ≥ 100 reads counts from a sample were 
counted into the reads number with deletion. This criterion was established due to the 
fact that 1 bp indels and occasionally 2 bp deletions were observed with reads number 
>100 in control samples. Larger deletions were also observed at very low frequencies in 
control samples. These observations indicate that occasional PCR inaccuracy and low-
quality sequencing in a small fraction of reads can result in the deletion patterns with 
corresponding read number ranges as stated above in control samples. These stringent 
criteria were employed so that the counted deletion signals were true signals indicating 
editing events, though it is possible that CasΦ-2 might be able to create 1-2 bp 
deletions at lower frequency. 
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3.1 Abstract 
 

Anaerobic methane oxidation exerts a key control on greenhouse gas 
emissions(Wallenius et al., 2021), yet factors that modulate the activity of microorganisms 
performing this function remain little explored. In studying groundwater, sediments, and 
wetland soil where methane production and oxidation occur, we discovered 
extraordinarily large, diverse DNA sequences that primarily encode hypothetical proteins. 
Four curated, complete genomes are linear, up to ~1 Mbp in length and share genome 
organization, including replichore structure, long inverted terminal repeats, and genome-
wide unique perfect tandem direct repeats that are intergenic or generate amino acid 
repeats. We infer that these are highly divergent archaeal extrachromosomal elements 
with a distinct evolutionary origin. Gene sequence similarity, phylogeny, and local 
divergence of sequence composition indicate that many of their genes were assimilated 
from methane-oxidizing Methanoperedens archaea. We refer to these elements as 
“Borgs”. We identified at least 19 different Borg types coexisting with Methanoperedens 
spp. in four distinct ecosystems. Borgs provide methane-oxidizing Methanoperedens 
archaea access to genes involved in redox reactions and energy generation (e.g., clusters 
of multiheme cytochromes, methyl coenzyme M reductase) and response to changing 
environmental conditions. Thus, Borgs could play previously unrecognized roles in the 
metabolism of a group of archaea known to modulate greenhouse gas emissions. 
 

N.B. All main figures for this manuscript can be found below in their dedicated section. 
All supplementary files (including figures and tables) can be found online with the 
published manuscript. 
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3.2 Introduction 
 

Of all of Earth’s biogeochemical cycles, the methane cycle may be most tightly linked to 
climate. Methane (CH4) is a greenhouse gas roughly 30 times more potent than carbon 
dioxide (CO2), and approximately 1 gigaton is produced annually by methanogenic 
(methane-producing) archaea that inhabit anoxic environments(Thauer et al., 2008). The 
efflux of methane into the atmosphere is mitigated by methane-oxidizing microorganisms 
(methanotrophs). In oxic environments CH4 is consumed by aerobic bacteria that use a 
methane monooxygenase (MMO) and O2 as terminal electron acceptor(Hanson and 
Hanson, 1996), whereas in anoxic environments anaerobic methanotrophic archaea 
(ANME) use a reverse methanogenesis pathway to oxidize CH4, the key enzyme of which 
is methyl-CoM reductase (MCR)(Boetius et al., 2000; Hallam et al., 2003). Some ANMEs 
rely on a syntrophic partner to couple CH4 oxidation to the reduction of terminal electron 
acceptors, yet Methanoperedens (ANME-2d, phylum Euryarchaeota) can directly couple 
CH4 oxidation to the reduction of iron, nitrate or manganese(Ettwig et al., 2016; Leu et 
al., 2020). Some phenomena have been suggested to modulate methane oxidation rates. 
For example, some phages can decrease methane oxidation rates by infection and lysis 
of methane-oxidizing bacteria(Lee et al., 2021), and others with the critical subunit of 
MMO(Chen et al., 2020) likely increase the ability of their host bacteria to conserve energy 
during phage replication. Here, we report the discovery of novel extrachromosomal 
elements (ECEs) that are inferred to replicate within Methanoperedens spp. Their 
numerous and diverse metabolism-relevant genes, huge size, and distinctive genome 
architecture distinguish these archaeal ECEs from all previously reported elements 
associated with archaea(Ausiannikava et al., 2018; Ng et al., 1998; Wang et al., 2015) and 
from bacteriophages, which typically have one or a few biogeochemically relevant 
genes(Anantharaman et al., 2014; Lindell et al., 2004). We hypothesize that these novel 
ECEs may substantially impact the capacity of Methanoperedens spp to oxidize 
methane. 
 

3.3 Results and Discussion 
Genome Structure and Features 

By analysis of whole-community metagenomic data from wetland soils in CA (Fig. 
S1), we discovered enigmatic genetic elements, the genomes for three of which were 
carefully manually curated to completion (methods). From sediment samples from the 
Rifle, CO aquifer(Hug et al., 2015), we recovered partial genomes from a single population 
related to those from the wetland soils; the sequences were combined and manually 
curated to ultimately yield a fourth complete genome (methods). All four curated 
genomes are linear and terminated by >1 kbp inverted repeats. The genome sizes range 
from 661,708 to 918,293 kbp (Fig. 1A; Table 1; Table S1). Prominent features of all 
genomes are 25 - 54 regions composed of perfect tandem direct repeats (Fig. 1B; Table 
S2) that are novel (Fig. S2) and occur in both intergenic regions and in genes where they 
usually introduce perfect amino acid repeats (Table S2). All genomes have two 
replichores of unequal lengths and initiate replication at the chromosome ends (Fig S3). 
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Each replichore carries essentially all genes on one strand (Fig. 1A). Although the majority 
of genes are novel, ~21% of the predicted proteins have best matches to proteins of 
Archaea (Fig. S4A), and the vast majority of these have best matches to proteins of 
Methanoperedens spp. (Fig. S4B). Notably, the GC contents of the four genomes are 
~10% lower than those of previously reported and coexisting Methanoperedens species 
(Fig. 2A). We rule out the possibility that these sequences represent genomes of novel 
Archaea, as they lack almost all of the single-copy genes found in archaeal genomes and 
sets of ribosomal proteins that are present even in obligate symbionts (Figs. S5, S6A, 
Tables S3-S6). There are no additional sequences in the datasets that could comprise 
additional portions of these genomes. Thus, they are clearly neither part of 
Methanoperedens spp. genomes nor parts of the genomes of other archaea. 

The sequences are much more abundant in deep, anoxic soil samples (Fig. S7A, 
B). Abundances of Methanoperedens spp. and some ECEs are tightly correlated over a 
set of 50 different wetland soil samples. This observation supports other indications that 
these ECEs associate with Methenoperedens and suggests that specific ECEs have 
distinct Methanoperedens sp. hosts (Fig. 2B). This is true for one ECE whose abundances 
correlate reasonably well with a specific host group, where ECE : Methanoperedens spp. 
abundance ratios range from 2:1 to 8:1. Given their up to ~1 Mbp length, there may be 
more ECE DNA in some host cells than host DNA. 
 A few percent of the genes in the genomes have locally elevated GC contents that 
approach, and in some cases match, those of coexisting Methanoperedens spp (Fig. 1B). 
This, and the very high similarity of some protein sequences to those of 
Methanoperedens spp, indicates that these genes were acquired by lateral gene transfer 
from Methanoperedens spp. Other genes with best matches to Methanoperedens spp 
genes have lower GC contents (closer to those of these ECEs at ~33%), suggesting that 
their DNA composition has partly or completely ameliorated since acquisition(Lawrence 
and Ochman, 1997). 

Archaeal ECEs include viruses(Hua et al., 2019), plasmids(DasSarma et al., 2009), 
and mini-chromosomes, sometimes also referred to as megaplasmids(Ausiannikava et 
al., 2018; Ng et al., 1998; Wang et al., 2015). The genomes reported here are much larger 
than those of all known archaeal viruses, some of which have small, linear 
genomes(Wang et al., 2015), and at least three are larger than any known 
bacteriophage(Al-Shayeb et al., 2020). These linear elements are larger than all of the 
reported circular plasmids that affiliate with halophiles, methanogens, and archaeal 
thermophiles. We did not detect genes for plasmid partitioning or conjugative systems, 
rRNA loci, or encoded viral proteins (Suppl Table S3), and the genomes were markedly 
different from recently reported Methanoperedens spp plasmids(Schoelmerich et al., 
2022). The distinctly lower GC content and variable copy number argue against their 
classification as archaeal minichromosomes(Hall et al., 2022; Wang et al., 2015). Thus, 
we cannot confidently classify the ECEs as viruses, plasmids, or minichromosomes. 
Moreover, the protein family profiles are quite distinct from those of archaeal and 
bacterial ECEs (Fig. 2D, Fig. S5). Some bacterial megaplasmids have been reported to 
be very large and linear, but they typically encode few or no essential genes(Medema et 
al., 2010), and if they contain repeats, they are interspaced (i.e., not 
tandem)(Wagenknecht et al., 2010). Each distinctive feature of the ECEs has been 
reported in microbial genomes, plasmids, or viruses, but the combination of these 
features in these huge ECEs is unique. Thus, we conclude that the genomes represent 
novel archaeal ECEs that occur in association with, but not as part of, Methanoperedens 
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spp genomes. We refer to these as Borgs, a name that reflects their propensity to 
assimilate genes from organisms, most notably Methanoperedens spp. 
Using criteria based on the features of the four complete Borgs, we searched for 
additional Borgs in our metagenomic datasets from a wide diversity of environment types. 
From the wetland soil, we constructed bins for 11 additional Borgs, some of which 
exceed 1 Mbp in length (Table 1, Table S1). Other Borgs were sampled from the Rifle, 
CO aquifer, discharge from an abandoned Corona mercury mine in Napa County, CA, 
and from shallow riverbed pore fluids in the East River, CO. In total, we recovered genome 
bins for 19 different Borgs, each of which was assigned a color-based name. 
Interestingly, we found no Borgs in some samples, despite the presence of 
Methanoperedens spp at very high abundance levels (Fig. S7). Thus, it appears that these 
ECEs do not associate with all Methanoperedens spp. 

Pairs of the four complete Borg genomes (Purple, Black, Sky, and Lilac) and three 
fragments of the Orange Borg are alignable over much of their lengths (Fig 1A). The Rose 
and Sky Borg genomes are also largely syntenous and were reconstructed from different 
samples that contain these Borgs at very different abundance levels. Intriguingly, despite 
only sharing <50% average nucleotide identity across most of their genomes, the 
genomes have multiple regions that share 100% nucleotide identity, one of which is ~11 
kbp in length (Fig S8B, C). This suggests that these two Borgs recombined, indicating 
that they recently co-existed within the same host cell. 
  
Borg gene inventories 

Many Borg genomes encode mobile element defense systems, including RNA-
targeting type III-A CRISPR-Cas systems that lack spacer acquisition machinery, a 
feature previously noted in huge bacterial viruses(Al-Shayeb et al., 2020). An Orange Borg 
CRISPR spacer targets a gene in a mobile region in a coexisting Methanoperedens spp 
(Fig. S8D), further supporting the conclusion that Methanoperedens spp are the Borg 
hosts. 

The four complete genomes and almost all of the near-complete and partial 
genomes encode ribosomal protein L11 (rpL11), and some have one or two other 
ribosomal proteins (Fig. S7A). The rpL11 protein sequences form a group that places 
phylogenetically sibling to those of Methanoperedens spp (Fig. S9), further reinforcing 
the link between Borgs and Methanoperedens spp. Four additional rpL11 sequences 
were identified on short contigs from the wetland group with the Borg sequences and 
likely represent additional Borgs (Table S1). The topology of the rpL11 tree, and similar 
topologies observed for phylogenetic trees constructed using other ribosomal proteins, 
MCR proteins, electron transfer flavoproteins, and aconitase, may indicate the presence 
of translation-related genes in the Borg ancestor (Fig. S7A; Fig. S9). 

The most highly represented Borg genes are glycosyltransferases, genes involved 
in DNA and RNA manipulation, transport, energy, and the cell surface (PEGA and S-layer 
proteins). Also prevalent are many membrane-associated proteins of unknown function 
that may impact the membrane profile of their host (Fig. 2C). At least seven Borgs carry 
a nifHDK operon for nitrogen fixation, also predicted in Methanoperedens spp genomes, 
and may augment their host’s influence on nitrogen cycling (Fig. 1B, Fig. S10, Table S6). 
Potentially related to survival under resource limitation are genes in at least 10 Borg 
genomes for synthesis of the carbon storage compound polyhydroxyalkanoate, a 
capacity also predicted for Methanoperedens spp.(Liu et al., 2019b). Other stress-related 
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genes encode tellurium resistance proteins that do not occur in Methanoperedens spp. 
genomes (Table S5). Intriguingly, all Borgs carry large FtsZ-tubulin homologs that may 
be involved in cell division, and proteins with the TEP1-like TROVE domain protein that 
also do not occur in Methanoperedens spp. genomes (Table S5). These may form a 
complex similar to Telomerase, Ro, or Vault ribonucleoproteins, although their function 
remains unclear(Berger et al., 2009). Several Borgs encode two genes of the TCA cycle 
(citrate synthase and aconitase, Fig. S10C). 

Many Borg genes are predicted to play roles in redox and respiratory reactions. 
The Black Borg encodes cfbB and cfbC, genes involved in biosynthesis of F430, the 
cofactor for methyl-coenzyme M reductase (MCR), the central enzyme involved in 
methane oxidation by Methanoperedens spp. The similarity in GC content of Borg cfbB 
and cfbC and protein sequences of coexisting Methanoperedens spp. suggests that 
these genes were acquired from Methanoperedens spp. recently. The Blue and Olive 
Borgs encode cofE (coenzyme F420:L-glutamate ligase), which is involved in the 
biosynthesis of a precursor for F420. The Blue and Pink Borgs have an electron bifurcating 
complex (Fig. S10B) that includes D-Lactate dehydrogenase. Eight Borgs encode genes 
for biosynthesis of tetrahydromethanopterin, a coenzyme used in methanogenesis, and 
ferredoxin proteins which may serve as electron carriers. The Green and Sky Borgs also 
encode 5,6,7,8-tetrahydromethanopterin hydro-lyase (Fae), an enzyme responsible for 
formaldehyde detoxification and involved in pentose-phosphate synthesis. Also identified 
were genes encoding carbon monoxide dehydrogenase (CODH), plastocyanin, 
cupredoxins, and many multiheme cytochromes (MHC). These results indicate 
substantial Borg potential to augment the energy conservation by Methanoperedens spp. 
This is especially apparent for the Lilac Borg. 
  
Lilac Borgs' potential to augment Methanoperedens spp. function 

We analyzed the genes of the complete Lilac Borg genome in detail as, unlike the 
other Borgs, the Lilac Borg co-occurs with a single group of Methanoperedens spp. that 
likely represent the host (Fig. 3, Table S7). Remarkably, this Borg genome encodes an 
MCR complex, which is central to methanogenesis and reverse methanogenesis. The 
mcrBDGA cluster shares high (75-88%) amino acid sequence identity with that of the 
coexisting Methanoperedens spp. genome. This complex is also encoded by a fragment 
of the Steel Borg. For both the Lilac and Steel Borgs, the GC content of the region 
encoding this operon is elevated relative to the average Borg values. Methanoperedens 
spp. pass electrons from methane oxidation to terminal electron acceptors (Fe3+, NO3

- or 
Mn4+) via MHC(Cai et al., 2018; McGlynn et al., 2015; Scheller et al., 2016). The Lilac Borg 
genome encodes 16 MHCs with up to 32 heme-binding motifs within one protein. By 
analogy with experiments showing that cyanophages with a photosystem gene increase 
host fitness, we suggest that MHC genes may increase the capacity of Methanoperedens 
spp. to oxidize methane(Chen et al., 2020; Lindell et al., 2005). However, this needs to 
be tested experimentally. Membrane-bound and extracellular MHC may diversify the 
range of Methanoperedens spp. extracellular electron acceptors. 

The Lilac Borg encodes a functional NiFe CODH, but this is fragmented in some 
genomes. Other genes for the acetyl-CoA decarbonylase/synthase complex are present 
only in Methanoperedens spp. The CODH is located in proximity to a cytochrome b and 
cytochrome c, so electrons from CO oxidation could be passed to an extracellular 
terminal acceptor such as Fe3+ in an energetically downhill reaction. This would allow the 
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removal of toxic CO and may contribute to the formation of a proton gradient that can be 
harnessed for energy conservation. 

The Lilac Borg has a gene resembling the gamma subunit of ethylbenzene 
dehydrogenase (EBDH), which is involved in transferring electrons liberated from the 
hydroxylation of ethylbenzene and propylbenzene(Heider et al., 2016). This EBDH-like 
protein is located extracellularly, and given heme binding and cohesin domains, it may 
be involved in electron transfer and attachment. 
         Although the Lilac Borg lacks genes for a nitrate reductase, it encodes a probable 
hydroxylamine reductase (Hcp) that may scavenge toxic NO and hydroxylamine 
byproducts of Methanoperedens spp. nitrate metabolism. As the hcp gene was not 
identified in coexisting Methanoperedens spp, the Borg gene may protect 
Methanoperedens spp. from nitrosative stress. Proteins such as H2O2-forming NADH 
oxidase (Nox) and superoxide dismutase (SOD) may protect against reactive oxygen 
species. An alkylhydroperoxidase, two probable disulfide reductases, and a 
bacterioferritin all may detoxify the H2O2 byproduct of Nox and SOD. The Lilac Borg also 
encodes genes that likely augment osmotic stress tolerance. This Borg, but not 
Methanoperedens spp., provides genes to make Nε-acetyl-β-lysine as an osmolyte. An 
aspartate aminotransferase links the tricarboxylic acid cycle and amino acid synthesis, 
producing glutamate that can be used for the production of the osmolyte β-glutamate. 
More importantly, perhaps, it has recently been established that a bacterial homolog of 
this single enzyme can produce methane from methylamine(Wang et al., 2021), raising 
the possibility of methane cycling within the Borg - Methanoperedens spp. system. 

The Lilac Borg has three large clusters of genes. The first may be involved in cell 
wall modification, as it encodes large membrane-integral proteins with up to 17 
transmembrane domains, proteins for polysaccharide synthesis, glycosyltransferases, 
and likely carbohydrate-active proteins. The second contains key metabolic valves that 
connect gluconeogenesis with mannose metabolism for the production of glycans. One 
gene, fructose 1,6-bisphosphatase (FBP), was not identified in the Methanoperedens 
spp. genomes and may regulate carbon flow from gluconeogenesis to mannose 
metabolism. In between these clusters are 12 genes with PEGA domains with similarity 
to S-layer proteins. Cell surface proteins, along with these PEGA proteins, account for 
~13% of all Lilac Borg genes. We conclude that functionalities related to cell wall 
architecture and modification are key to the impact of these extrachromosomal elements 
on their host, perhaps triggering cell wall modification for adaptation to changing 
environmental conditions (Fig. 3). 
 

3.4 Conclusions 
Borgs are enigmatic extrachromosomal elements that can approach (and likely exceed) 
1 Mbp in length (Table 1). We can neither prove that they are archaeal viruses or plasmids 
or mini-chromosomes, nor can we prove that they are not. Although they may ultimately 
be classified as megaplasmids, they are clearly different from anything that has been 
reported previously.  It is fascinating to ponder their possible evolutionary origins. Borg 
homologous recombination may indicate movement among hosts, thus their possible 
roles as gene transfer agents. It has been noted that Methanoperedens spp. have been 
particularly open to gene acquisition from diverse bacteria and archaea(Leu et al., 2020), 
and Borgs may have contributed to this. The existence of Borgs encoding MCR 
demonstrates for the first time that MCR and MCR-like proteins for metabolism of 
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methane and short-chain hydrocarbons can exist on extrachromosomal elements and 
thus could potentially be dispersed across lineages, as is inferred to have occurred 
several times over the course of archaeal evolution(Boyd et al., 2019; Hua et al., 2019). 
Borgs carry numerous metabolic genes, some of which produce variants of 
Methanoperedens spp. proteins that could have distinct biophysical and biochemical 
properties. Assuming that these genes either augment Methanoperedens spp. energy 
metabolism or extend the conditions under which they can function, Borgs may have far-
reaching biogeochemical consequences, with important and unanticipated climate 
implications. 
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3.5 Figures 
 

Table 1: Manually curated complete and draft genomes for the best sampled Borgs. 
Length is the genome length. Longest is the size of the largest genome fragment. Status 
indicates degree of genome completeness: complete genomes have been corrected and 
fully verified throughout. GC is the genome-wide average GC content. For details for 
these and less abundant examples, see Table S1. 
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Figure 1: Borgs share overall genomic features. (A) Genome replichores (arrows) and 
coding strands (black bars) for aligned pairs of the four complete (Black, Purple, Sky and 
Lilac) and one near-complete (Orange) Borg. Blocks of sequence with identifiable 
similarity are shown in between each pair (colored graphs linked by lines, y-axes show 
similarity). (B) Genome overviews showing the distribution of three or more perfect 
tandem direct repeats (gold rods) along the complete genomes. Insets provide examples 
of local elevated GC content associated with certain gene clusters and within gene and 
intergenic tandem direct repeats (gold arrows). 
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Figure 2: Borg and Methanoperedens spp. genomic features and abundance 
patterns. A. The average genome GC contents of Borgs and Methanoperedens spp. are 
distinct. B. Groups of related Methanoperedens spp. (rows) correlate with groups of 
Borgs (columns) across a set of 50 samples. Asterisks indicate Pearson correlations 
above 0.92 with FDR-corrected p-values below 2.0E-20 that suggest that Brown, Green, 
Orange, Beige and Ochre Borgs associate with one group of Methanoperedens spp., 
Olive, Cyan, Gold, Apricot and Rose with a second group, and Black with a third group.  
C. Frequency of genes in different functional groups in the four complete Borg genomes. 
D. Comparison of the protein family composition of Borgs and Methanoperedens spp. 
Clustering based on shared protein family content highlights groups of Borg-specific 
protein families (blue shading) and protein families shared with their hosts (orange 
shading). The full clustering, including diverse archaeal mobile elements, is shown in 
Figure S6. 
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Figure 3: Cell cartoon illustrating capacities inferred to be provided to 
Methanoperedens spp. by the coexisting Lilac Borg. Like all Borgs, this Borg lacks 
the capacity for independent existence, and we infer that it replicates within host 
Methanoperedens spp. cells. Borg-specific proteins (red circles) are those that were not 
identified in the genome of coexisting Methanoperedens spp. Borg-encoded capacities 
are grouped into the major categories of energy metabolism (including the MCR complex 
involved in methane oxidation), extracellular electron transfer (including multiheme 
cytochromes, MHC) involved in electron transport to external electron acceptors), central 
carbon metabolism (including genes that enable production of polyhydroxybutyrate, 
PHB), and stress response/defense (including production of compatible solutes). Locus 
codes are listed in Table S7. 
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 EXTENDED DATA 

Figure S1. Geochemical profiles of the permanently moist and organic-rich wetland 
soils. (A) The concentrations of total carbon, nitrogen as well as (B) iron and manganese 
in wetland soils. Deeper soils, where these extrachromosomal elements are most 
abundant, are somewhat depleted in carbon, iron and manganese compared to shallow 
soils. Error bars denote SD. 

  

(A)                                                               (B) 
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Figure S2. Sets of three or more perfect tandem direct repeats (TDR) are a 
characteristic feature of the Borg genomes. Up to 54 instances occur in the four 
complete Borg genomes, with, on average, one repeat every 12 (Lilac) - 31 (Sky) kbp. 
These repeat regions fragment assemblies and cause local assembly errors, which we 
resolved by manual curation (Methods). Within the TDR regions of the four curated, 
complete genomes, the unit repeats occur up to 20 times and unit repeats are up to 54 
bps in length (Table S2). Between54 and 64% of these perfect TDRs are encoded in 
intergenic regions, although part or all of the first repeat may occur within the C- terminus 
of a protein-coding gene. When the TDRs occur within proteins, the unit lengths are 
almost always divisible by 3, so they introduce perfect amino acid repeats. TDR 
sequences within a single Borg genome are almost always unique. Repeat sequence 
comparison from the four complete curated Borgs highlights the novelty of almost all 
TDR sequences (both within and across genomes). 
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Figure S3. All genomes have two replichores of unequal lengths. GC skew (grey plots) 
and cumulative GC skew (green lines) across the four complete Borg genomes, all of 
which end in long inverted terminal repeats (1.4 - 2.7 kbp in length). The cumulative GC 
skew plots indicate replication is initiated in these terminal repeats (red lines). Blue lines 
mark the predicted replication termini. The red and blue lines define two replichores of 
unequal length that correspond almost completely to distinct coding strands (almost all 
genes on the +ve strand of the large replichore and on the -ve strand of the small 
replichore). 
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Figure S4. Taxonomic profiles of the four complete Borg genomes. A. In all cases, 
the majority of proteins have no similarity to proteins in the reference database 
(“Unknown”; e-value of >0.0001). For the cases where a protein has an identifiable hit 
(blue and red bars in A), the plots in B. show the taxonomy of the organisms in which 
those hits were identified. Only cases where the same organism accounted for hits for 
>0.5% of genes are shown. The results clearly indicate that the vast majority of cases 
where proteins have identifiable matches involve matches to proteins of 
Methanoperedens (gold bars) 
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Figure S5: The clustering based on protein family content demonstrates that the 
Methanoperedens, Borgs, archaeal viruses and plasmids/minichromosomes are 
distinct from each other. (A) Colored blocks indicate presence of each protein family in 
the corresponding genome. The blue highlight at the top indicates the Methanoperedens 
(top) and Borg (bottom) protein family profiles. For details see Fig. 2D. We note that 
archaeal plasmids are highly undersampled. If Borgs are ultimately classified as plasmids, 
they dramatically expand the known characteristics (e.g., size, linear genomes) and 
diversity of archaeal plasmids. (B) Borg protein inventories (purple highlight) compared 
to giant linear bacterial plasmids. (C) Protein families occurring in more than 5 genomes 
of Borgs and giant linear bacterial plasmids. Few protein families are shared between Borgs 
and linear plasmids in bacteria beyond methyltransferases, histidine kinases, and other 
enzymes unrelated to replication. (D) Average Nucleotide Identity of different 
Methanoperedens species that coexist with Borgs (red) and previously reported genomes 
(gray) and the 95% species threshold shown with a dashed line. 
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Figure S6: (A) The array of single-copy archaeal ribosomal genes (columns) vs. Borg 
(blue) and Methanoperedens (gold) genomes illustrating that although Borgs often have 
rpL11 and occasionally, other ribosomal proteins, they do not have the gene inventory 
needed to construct ribosomes. (B) Left; Dendrogram of hierarchical clustering of all-vs-
all pearson correlation values between all Borgs and Methanoperedens from the wetland. 
Right; Maximum Likelihood Phylogeny of concatenated ribosomal proteins from 
Methanoperedens species that do and do not coexist with Borgs and previously reported 
genomes. We found no data indicating the presence of Borgs in samples containing 
previously reported Methanoperedens genomes. We searched for Borgs in the samples 
highlighted in blue using the same methods used to detect Borgs in this study and 
concluded that they do not contain Borgs. A subset of the Borg-free samples contain 
Methanoperedens at very high abundance levels. 
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Figure S7: Abundance and distribution of Borgs and Methanoperedens spp in the 
wetland soil and Rifle aquifer. A.  Relative abundances of Methanoperedens spp. and 
Borgs in samples collected over time and arrayed by sample collection depth from the 
wetland soils, sediments and groundwater. The absolute abundances of Borgs are far 
greater in the deeper compared to shallower soils B. Although some Borgs can 
substantially exceed all the combined abundance of Methanoperedens spp, no Borgs 
were detected in some Methanoperedens-bearing samples. “W” indicates that the 
sample was pumped groundwater. 
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Figure S8: (A) Genome-to-genome comparisons provide evidence for recombination 
between two of the mostly closely related Borgs, Sky and Rose. These Borgs share only 
moderate overall genomic nucleic acid identity although, as is the case for other Borgs 
(Figure 1A), have blocks of partially alignable sequence throughout their genomes. 
Notable, and indicating recent homologous recombination, are 100% identical regions of 
up to ~11 kbp in length (B). Although not fully manually curated to completion, the 
relevant Rose Borg genome regions were carefully checked by inspection of the mapped 
reads to rule out chimeric assembly that could otherwise explain perfect identity with the 
Sky Borg sequence (Sky is one of the four curated complete genomes). (C) Read 
coverages over the Rose and Sky genomes are consistent throughout, with the regions 
in B noted with green boxes (D) Diagram illustrating the organization of the Type III-A 
CRISPR-Cas system variant (lacking acquisition machinery and Csm6) in the Orange 
Borg. One spacer from the CRISPR array targets a small protein with a ribbon-helix-helix 
motif, a common transcriptional regulator in archaeal mobile elements, in a mobile region 
of a Methanoperedens genome bin from the same wetland site. 
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Figure S9: The Borg ribosomal sequences form monophyletic groups that cluster 
adjacent to those from Methanoperedens. Phylogenetic tree constructed using the 
protein sequences for (A) ribosomal protein L11 (rpL11), (B) Ribosomal protein S2 (C) 
Ribosomal protein 3ae. 
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Figure S10: Phylogenetic trees for key Borg genes with functional predictions showing 
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that the protein sequences (blue) cluster sister to or within those from Methanoperedens 
(gold), with GC contents that approach those of Methanoperedens. (A) MCR_A, _B, _D, 
_G. (B) ETF Alpha, Beta. (C) Aconitase. (D) NifH and NifDK trees with alignments showing 
conservation of cysteine motifs that are involved in the attachment of the P-clusters. 

 (A)  
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 Methods 
 

Sampling and creation of metagenomic datasets 
We analyzed sequences from sediments of an aquifer in Rifle, Colorado that were 
retrieved from cores from depths of 5 and 6 m below the surface(Hug et al., 2015) in 
July 2011, and cell concentrates from pumped groundwater from the same aquifer 
collected at a time of elevated O2 concentration in May 2013. Discharge from the 
Corona Mine, Napa County, California was sampled in December, 2019. Shallow pore 
water was collected from the riverbed at the East River, Crested Butte, Colorado 
sampled in August 2016. Soil was sampled from depth intervals between 1 cm to 1 m 
from a permanently moist wetland located in Lake County, California. Wetland soils 
were sampled in late October and early November of 2017, 2018 and 2019. DNA was 
extracted from each sample (DNeasy PowerSoil Pro) and submitted for Illumina 
sequencing (150 bp or 250 bp reads) at the QB3 facility, University of California, 
Berkeley. Reads were adapter and quality trimmed using BBduk(Bushnell, 2014a) and 
sickle(Joshi and Sickle, 2011). Filtered reads were assembled using IDBA-UD(Peng et 
al., 2012) and MEGAHIT, gene predictions were established using Prodigal(Hyatt et al., 
2010) and USEARCH(Edgar, 2010) was used for initial annotations(Edgar, 2010; Joshi 
and Sickle, 2011; Li et al., 2015; Peng et al., 2012). Functional predictions and 
predictions of tRNAs followed previously reported methods(Al-Shayeb et al., 2020). 
  
Genome identification, binning, and curation 
Hundreds of kbp de novo assembled sequences were identified to be of interest as 
potential novel extrachromosomal elements first based on their taxonomic profile. The 
taxonomic profiles were determined through a voting scheme in which the taxonomy is 
assigned at the species to domain level (Bacteria, Archaea, Eukaryotes, no Domain) by 
comparison with a sequence database (protein annotations in the UniProt and 
ggKbase: https://ggkbase.berkeley.edu/) when the same taxonomic assignment 
received >50% votes. Assembled sequences selected for further analysis had no 
taxonomic profile, even at the Domain level. The majority of contigs of interest had 
more genes with similarity to those of archaea of the genus Methanoperedens spp. than 
to any other genus (see Fig. S4). The second feature of interest was dominance by 
hypothetical proteins yet absence of genes that would indicate identification as phage 
or viruses or plasmids. 
  
These initially identified large fragments were manually curated to remove scaffolding 
gaps and local assembly errors, to extend and join contigs with the same profile, GC, 
and coverage, and then to extend the near-complete sequences fully into their long 
terminal repeats. The last step required reassignment of reads mapped at one end and 
at double depth to both ends. The fully extended sequences had no unplaced reads 
extending outwards, despite genome-wide deep coverage. Given this, and the absence 
of any fragments that could potentially be part of a larger genome, it was concluded 
that sequences represented linear genomes. 
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In more detail, our curation method involved mapping of reads to the de novo 
fragments and extension within gaps and at termini using previously unplaced reads 
that we added based on overlap or by the relocation of misplaced reads (these could 
often be identified based on improper paired reads distances and/or wrong orientation). 
Local assembly errors were sought by visualization of the reads mapped throughout the 
assembly and identified based on imperfect read support, or where a subset of reads 
was partly discrepant and discrepancies involved sequences that were shared by 
tandem direct repeats of the same region (i.e., the tandem direct repeat regions were 
collapsed during assembly). De novo assembled sequences often ended in tandem 
direct repeat regions because repeats fragment assemblies. To resolve local assembly 
errors, gaps were inserted and reads relocated to generate the sequence required to fill 
the gaps. This ensured comprehensive essentially perfect agreement between reads 
and the final consensus sequence. In some cases, the tandem direct repeat regions 
had greater than the expected depth of mapped reads and no reads spanned the 
flanking unique sequences. In these cases, the repeat number was approximated to 
achieve the expected read depth, but some arrays may be larger than shown. GC skew 
and cumulative GC skew were calculated using iRep(Brown et al., 2016) for the fully 
manually curated complete genomes and the patterns were used to identify the origins 
and terminus of replication. The pattern of use of coding strands for genes (predicted in 
Bacterial Code 11) was compared to these origin and terminus predictions to resolve 
genome organization. The curated sequences were searched for perfect repeats of 
lengths ≥ 50 nucleotides using Repeat Finder in Geneious. When repeat sequences 
overlapped, the unit of direct repeat was identified and the length of that repeat, 
number of repeats, location (within gene vs. intergenic), and genome position were 
tabulated. Once the features characteristic of the extrachromosomal elements of 
interest had been determined, we sought related elements. Sequences of interest were 
identified based on (1) credible partial alignment with the complete sequences, (2) no 
Domain level profile, (3) GC content 30 - 35%, (4) regions with three or more direct 
tandem repeats scattered throughout the genome fragment and (5) more best hits to 
Methanoperedens spp. proteins than to proteins from any other organisms. If scaffolds 
met criterion (1) they were immediately classified as targets. If they met most or all of 
the other criteria and had similar coverage values, they were binned together with other 
scaffolds from the same sample with these features. Often, ends of some of the contigs 
in the same bin overlapped perfectly and could be joined, increasing confidence in the 
bin quality. Genome sequences were aligned to each other using Mauve(Darling et al., 
2010). Where anomalously high (perfect) sequence identity suggestive of recent 
recombination was detected between Borgs, reads mapped to the region were 
visualized to verify that the assembly was correct (i.e., not chimeric; also see 
information in the extended data). 
Genome fragments were phylogenetically profiled to establish relatedness to sequences 
in public databases. Sequences were classified as having no detectable hit if the protein 
had no similar database sequence with an e-value of <0.0001. 
  
Correlation Analyses 
Reads from each sample were aligned to each Methanoperedens and Borg genome. 
Alignments were performed using bbmap.sh(Bushnell, 2014b) using the following 
parameters: editfilter=5, minid=0.96, idfilter=0.97, ambiguous=random. The number of 
reads aligning to each genome was then parsed into a matrix and the correlation 
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between abundance patterns for Methanoperedens and Borg genomes was then 
calculated using Pearson correlation metric as implemented in scipy(Virtanen et al., 
2020). Correlation between a Methanoperedens genome and Borg genome was 
deemed significant if the Pearson correlation between the two genomes was higher 
than 0.92 
  
CRISPR-Cas analysis 
Borg and Methanoperedens-encoded CRISPR repeats and spacers were identified 
using CRISPRDetect(Biswas et al., 2016). The coding sequences from this study were 
searched against Cas gene sequences reported from previous studies(Makarova et al., 
2019) using hmmsearch with E < 1 × 10−5 to identify the full locus. Matches were 
checked using a combination of hmmscan and BLAST searches against the NCBI nr 
database and manually verified by identifying colocated CRISPR arrays and Cas genes. 
Spacers extracted from between repeats of the CRISPR locus were compared to 
sequence assemblies from the sites where Borgs were identified using BLASTN-
short(Altschul et al., 1990). Matches with alignment length >24 bp and ≤1 mismatch 
were retained and targets were classified as bacteria, phage or other. CRISPR arrays 
that had ≤1 mismatch, were further searched for more spacer matches in the target 
sequence by finding more hits with ≤3 mismatches. 
  
Protein and gene content analysis 
After the identification and curation of Borg genomes and accumulation of usearch 
annotations for coding sequences, functional annotations were further assigned by 
searching against PFAM r32, KEGG, pVOG. Transmembrane regions in proteins were 
predicted with TMHMM. All Methanoperedens genomes and genome assemblies as 
well as 1153 archaeal viruses and extrachromosomal elements were downloaded from 
the NCBI RefSeq database. Open reading frames were predicted using Prodigal, and all 
proteins from Borg genomes and the reconstructed ECE database were clustered into 
protein families and compared across genomes as previously described(Al-Shayeb et 
al., 2020). Briefly, the coding sequences were clustered into families using a two-step 
procedure; first an all-versus-all sequence search was performed using an E-value cut-
off of 1 × 10−3, sensitivity of 7.5 and coverage of 0.5, and a sequence similarity 
network was built on the basis of the pairwise similarities and the greedy set cover 
algorithm to define protein subclusters. The resulting subclusters were grouped into 
protein families using a comparison of hidden Markov models (HMMs). For subfamilies 
with probability scores of at least 95% and coverage at least 0.50, a similarity score 
(probability × coverage) was used as weight of the input network in the final clustering 
using the Markov clustering algorithm, with 2.0 as the inflation parameter. These 
clusters were defined as the protein families. 
  
Functional annotation 
Genes of interest were further verified and compared using NCBI’s conserved domain 
search and InterproScan(McWilliam et al., 2013) to identify conserved motifs within the 
amino acid sequence. Multiheme cytochromes were identified based on ≥3 CxxCH 
motifs within one gene. The cellular localization of proteins was predicted with Psort 
(v3.0.3) using archaea as organism type. Proteins were compared using blastp and 
aligned using MAFFT v.7.407(Katoh and Standley, 2013) to visualize homologous 
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regions and check conserved amino acid residues that constitute the active site or are 
required for cofactor/ligand binding. 
  
Phylogenetic trees 
For each gene, references were compiled by BLASTing the corresponding gene against 
the NCBI nr database, and their top 50 hits clustered by CD-HIT using a 90% similarity 
threshold(Huang et al., 2010). The final set of genes was aligned using MAFFT v.7.407 
and a phylogenetic tree was inferred using IQTREE v.1.6.6 using automatic model 
selection(Nguyen et al., 2015) and visualized using iTOL(Letunic and Bork, 2007). 
Synteny plots were generated using Mauve(Darling et al., 2004), and gene clusters 
through Adobe Illustrator and ggenes.
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4.1 Abstract 

Public databases contain a planetary collection of nucleic acid sequences, but their 
systematic exploration has been inhibited by a lack of efficient methods for searching 
this corpus, now exceeding multiple petabases and growing exponentially (Leinonen et 
al., 2011). We developed a cloud computing infrastructure, Serratus, to enable ultra-
high throughput sequence alignment at the petabase scale. We searched 5.7 million 
biologically diverse samples (10.2 petabases) for the hallmark gene RNA dependent 
RNA polymerase, identifying well over 105 novel RNA viruses and thereby expanding 
the number of known species by roughly an order of magnitude. We characterised 
novel viruses related to coronaviruses, hepatitis δ virus, and huge phages respectively 
and explored their environmental reservoirs. To catalyse the ongoing revolution of viral 
discovery, we established a free and comprehensive database of these data and tools. 
Expanding the known sequence diversity of viruses can reveal the evolutionary origins 
of emerging pathogens and improve pathogen surveillance for the anticipation and 
mitigation of future pandemics. 
 
N.B. All main figures for this manuscript can be found below in their dedicated section. 
All supplementary files (including figures and tables) can be found online with the 
published manuscript. 
  



 

 

 

 

83 

 

4.2 Introduction 

Viral zoonotic disease has had a major impact on human health over the past century, 
notably the 1918 Spanish influenza, AIDS, SARS, Ebola, and COVID-19. There are an 
estimated 3×105 mammalian virus species from which infectious diseases in humans 
may arise (Anthony et al., 2013), of which only a fraction is currently known. Global 
surveillance of virus diversity is required for improved prediction and prevention of 
future epidemics and is the focus of international consortia and hundreds of research 
laboratories (Carroll et al., 2018; Johnson et al., 2020). 

Pioneering works expanding Earth’s virome have each uncovered thousands of novel 
viruses, with the rate of virus discovery increasing exponentially and driven largely by 
the increased availability of high-throughput sequencing (Camarillo-Guerrero et al., 
2021; Chen et al., 2021; Mitchell et al., 2020; Nayfach et al., 2021a; Shi et al., 2018; 
Wahba et al., 2020; Wolf et al., 2020). Sequence analysis remains computationally 
expensive, in particular the assembly of short reads into contigs, limiting the breadth of 
samples analysed. Here, we propose an alternative alignment-based strategy which is 
significantly cheaper than assembly and enables processing of massive datasets. 

Petabases (1×1015 bases) of sequencing data are freely available in public databases 
such as the Sequence Read Archive (SRA) (Leinonen et al., 2011) where viral nucleic 
acids are often captured incidental to the goals of the original studies (Moore et al., 
2011). To catalyse global virus discovery, we developed the Serratus cloud computing 
infrastructure for ultra-high throughput sequence alignment, screening 5.7 million 
ecologically diverse sequencing libraries or 10.2 petabases of data. 
Identification of Earth’s virome is a fundamental step in preparing for the next 
pandemic. We lay the foundations for years of future research by enabling direct access 
to 883,502 RNA dependent RNA polymerase (RdRP) containing sequences, including 
the RdRP from 132,260 novel RNA viruses (sequences with >10% divergence from a 
known RdRP), including nine novel coronaviruses. Altogether this captures the 
collective efforts of over a decade of sequencing studies in a free repository, available 
at https://serratus.io. 

4.3 Results and Discussion 
Accessing the planetary virome 

Serratus is a free, open-source cloud-computing infrastructure optimised for petabase-
scale sequence alignment against a set of query sequences. Using Serratus, we aligned 
in excess of one million short-read sequencing datasets per day for under 1 US cent 
per dataset (Extended Figure 1). We used a widely available commercial computing 
service to deploy up to 22,250 virtual CPUs simultaneously (see Methods), leveraging 
SRA data mirrored onto cloud platforms as part of the NIH STRIDES initiative. 

Our search space spans data deposited over 13 years from every continent and ocean, 
and all kingdoms of life (Figure 1). We applied Serratus in two of many possible 
configurations. First, to identify libraries containing known or closely related viruses we 
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searched 3,837,755 (ca. May 2020) public RNA-seq, meta-genome, meta-
transcriptome, and meta-virome datasets (termed sequencing runs) against a 
nucleotide pangenome of all coronavirus sequences and reference vertebrate viruses. 
We then aligned 5,686,715 runs (ca. January 2021) against all known viral RdRP amino 
acid sequences using a specially-optimised version of DIAMOND v2 (Buchfink et al., 
2021), Methods), completing this search within 11 days, for a cost of 23,980 USD (Figure 1a 
and Methods). 

Previous approaches for identifying sequences across the entire SRA rely on pre-
computed indexes (Karasikov et al., 2020; Katz et al., 2021) requiring exact substring or 
hash-based matches which limits sensitivity to diverged sequences (Extended Figure 
1f). Pre-assembled reads (e.g. NCBI Transcriptome Shotgun Assembly database) 
enable efficient alignment-based searches (Shi et al., 2018), but are currently available 
only for a small fraction of the SRA. Serratus aligns a query of up to hundreds of Mb 
against unassembled libraries, achieving greater sensitivity to diverged viruses 
compared to substring (k-mer) indexes while using far less computational resources 
than de novo assembly (Figure 1g and Methods). 

A sketch of RNA dependent RNA polymerase 

Viral RdRP is a hallmark gene of RNA viruses which lack a DNA stage of replication 
(Koonin and Dolja, 2014). We identified RdRP by a well-conserved amino acid sub-
sequence we call the “palmprint”. Palmprints are delineated by three essential motifs 
which together form the catalytic core in the RdRP structure (Figure 2 and (Babaian and 
Edgar, 2021)). We constructed species-like operational taxonomic units (sOTUs) by 
clustering palmprints at a threshold of 90% amino-acid identity, chosen to approximate 
taxonomic species (Babaian and Edgar, 2021). 

3,376,880 (59.38%) sequencing runs contained ≥ 1 reads mapping to the RdRP query 
(E-value ≤1e-4). We assembled RdRP aligned reads from each library (and their mate-
pairs when available), yielding 4,261,616 “microassembly” contigs. 881,167 (20.7%) 
contained a high-confidence palmprint identified by Palmscan (false discovery rate = 
0.001, (Babaian and Edgar, 2021)), representing 260,808 unique palmprints. Applying 
Palmscan to reference databases, (Wolf et al., 2018, 2020) we obtained 45,824 unique 
palmprints, which clustered into 15,016 known sOTUs. If a newly acquired palmprint 
aligned to a known palmprint at ≥90% identity, it was assigned membership to that 
reference sOTU, otherwise it was designated novel. We clustered novel palmprints at 
90% identity, obtaining 131,957 novel sOTUs, representing an increase of known RNA 
viruses by a factor ~9.8. Clustering novel palmprints at genus-like 75% and family-like 
40% thresholds yielded 78,485 and 3,599 novel OTUs, representing increases of 8.0x 
and 1.9x, respectively (Figure 2b). 

We extracted host, geospatial, and temporal metadata for each biological sample when 
available (Figure 1c), noting that the majority (88%) of novel RdRP sOTUs were 
observed from metagenomic or environmental runs, where accurate host inference is 
challenging. Mapping observations of virus marker genes across time and space 
suggests ecological niches for these viruses, while improved characterisation of 
sequence diversity can improve PCR primer design for in situ virus identification. 
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We estimate that ~1% of sOTUs are endogenous virus elements (EVEs), i.e. viral RdRPs 
which have serendipitously reverse-transcribed into a host germline. We did not 
attempt to systematically distinguish EVEs from virus RdRPs, noting that EVEs with 
intact catalytic motifs are likely to be recent insertions which can serve as a 
representative sequence for related exogenous viruses. Most (60.5%) recovered 
palmprints were found in exactly one run (singletons), and are observed within the 
expected frequency range predicted by extrapolating from more abundant sequences 
(Figure 2b). 

The abundance distribution of distinct palmprints is consistent with log-log-linear for 
each year from 2015 to 2020 (Extended Figure 2e), and over time, singletons are 
confirmed by subsequent runs at an approximately constant rate (Extended Figure 2g). 
The majority of novel viruses will be singletons until the diversity represented by the 
search query and the fraction of the planetary virome sampled in the SRA both 
approach saturation. Extrapolating one year forward, when the SRA is expected to 
double in size, we project 430,000 (95% CI [330K, 561K]) additional unique palmprints 
will be identified by running Serratus with its current query (Figure 2b). 

RNA viruses have highly divergent sequences, even within the conserved RdRP (Koonin 
and Dolja, 2014). Amino acid sequence alignment can recover the majority of RdRP 
short reads above 60% identity, but sensitivity falls as sequences diverge further 
(Extended Figure 2f). Subsequent microassembly fragmentation can in part account for 
the decreased abundance of novel sOTU below 60% identity (Figure 2b), thus the 
sensitivity to highly diverged (<50% identity) RdRP sequences is limited in the present 
study. Saturation of virus discovery within the SRA is far from complete, even if data-
growth rates are ignored. Intensive search for so called highly diverged or ”dark” 
viruses (Obbard et al., 2020), in combination with iterative re-analysis (conceptually 
similar to PSI-BLAST (Altschul et al., 1997)) are likely to yield further expansion of the 
known virome. 

The total number of virus species is estimated to be 108 to 1012 (Koonin et al., 2020), 
thus our data captured at most 0.1% of the global virome. However, if exponential data 
growth combined with increased search sensitivity continues, we are at the cusp of 
identifying a significant fraction of Earth’s total genetic diversity with tools such as 
Serratus. 

Expanding the scope of Coronaviridae 

The SARS-CoV-2 pandemic has significantly impacted human society. We further 
exemplify the potential of Serratus for virus discovery with Coronaviridae (CoV), 
including a recently proposed sub-family (Bukhari et al., 2018) which contains a CoV-
like virus, Microhyla alphaletovirus 1 (MLeV), in the frog Microhyla fissipes, and Pacific 
salmon nidovirus (PsNV) described in the endangered Oncorhynchus tshawytscha 
(Mordecai et al., 2019). 

First, we identified 52,772 runs containing ≥10 CoV-aligned reads or ≥2 CoV k-mers 
(32-mer, (Katz et al., 2021)). These runs were de novo assembled with a new version of 
synteny-informed SPAdes called coronaSPAdes (discussed in a companion manuscript 
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(Meleshko et al., 2021)). This yielded 11,120 identifiable CoV contigs which we 
annotated for a comprehensive assemblage of Coronaviridae in the SRA (see Methods 
for discussion). With this training data we defined a scoring function to predict 
subsequent success of assembly (Extended Figure 3b). 

CoV and neighbouring palmprints comprise 70 sOTUs, 44 of which are described in 
public databases. 17 CoV sOTUs contained partial RdRP (inclusive of full palmprint) 
from an amplicon-based virus discovery study not yet publicly deposited (Tao et al., 
2020). The remaining 9 sOTUs are novel viruses, with protein domains consistent with a 
CoV or CoV-like genome organisation (Extended Figure 4). 

We operationally designate MLeV, PsNV and the nine novel viruses broadly as group E, 
noting that all were found in samples from non-mammalian aquatic vertebrates (Figure 
3). Notably, Ambystoma mexicanum (axolotl) nidovirus (AmexNV) was assembled in 18 
runs, 11 of which yielded common ~19 kb contigs. Easing the criteria of requiring an 
RdRP match in a contig, 28/44 (63.6%) of the runs from the associated studies were 
AmexNV positive (Tsai et al., 2020). Consistent assembly breakpoints in AmexNV, PsNV 
and similar viruses suggests that the viral genomes of this clade of CoV-like viruses are 
organised in at least two segments, one containing ORF1ab with RdRP, and a shorter 
segment containing a lamin-associated domain protein, spike and N’ accessory genes 
(Figure 3). An assembly gap with common breakpoints is present in the published PsNV 
genome (Mordecai et al., 2019). Together these seven monophyletic species possibly 
represent a distinct clade of segmented CoV-like nidoviruses, although molecular 
validation of this hypothesis is required. 

 While our manuscript was under review, public transcriptome screening by Miller et al. 
(Miller et al., 2021), identified three group E CoV sequences not included in our sOTU 
analysis. One CoV+ library had failed at the alignment step, and microassembly from 
two others yielded incomplete palmprint sub-sequences, thus lacking the required 
specificity for the systematic palmprint classification. A high sensitivity re-analysis of 
microassemblies for any group E RdRP sequence fragment captured the two missing 
Miller et al. CoV, and found another approximately 25 putative-novel CoV species from 
53 fragmented contigs (Supplementary Table 1e). 

In addition to identifying genetic diversity within CoV, we cross-referenced CoV+ library 
meta-data to identify possible zoonoses and vectors of transmission. Discordant 
libraries, one in which a CoV is identified and the viral expected host (Mukherjee et al., 
2021) does not match the sequencing library source taxa, were rare, accounting for 
only 0.92% of cases (Supplementary Table 1f). 

An important limitation for these analyses is that the nucleic acid reads do not prove 
viral infection has occurred in the nominal host species. For example, we identified five 
libraries in which a porcine, avian or bat coronavirus were found in plant samples. The 
parsimonious explanation is that CoV was present in faeces/fertiliser originating from a 
mammalian or avian host applied to these plants. However, this exemplifies a merit of 
exhaustive search in identifying transmission vectors and for monitoring the geo-
temporal distribution of viruses. 
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Rapid expansion into the viral unknowns 

The global mortality from viral hepatitis exceeds that of HIV/AIDS, tuberculosis or 
malaria (Stanaway et al., 2016). Hepatitis δ virus (HDV) has a small circular RNA 
genome (~1.7 knt) which folds into a rod-like shape and encodes three genes: a delta 
antigen protein, and two self-cleaving ribozymes (drbz) (Taylor, 2020). 

Prior to 2018, HDV was the sole known member of its genus; 13 drbz-containing 
members have since been characterised (Bergner et al., 2021; Chang et al., 2019; 
Iwamoto et al., 2021; Paraskevopoulou et al., 2020; Szirovicza et al., 2020; Wille et al., 
2018), and recently a second class of ribozyme (known as hammerhead or hhrbz) 
characteristic of plant viroids was identified in delta-like viruses we refer to as epsilon 
viruses (de la Peña et al., 2021). By sequence search for the delta antigen protein and 
ribozymes, we identified 14 delta viruses, 39 epsilon viruses and 311 enigmatic 
sequences with deltavirus-like synteny we term zeta viruses (Figure 4, Extended Figure 
5). The evolutionary histories of these mammalian delta viruses are explored further in a 
companion paper (Bergner et al., 2021). 

The zeta virus circular genomes are highly compressed, ranging from 324-789 nt and 
predicted to fold into rod-like structures. They contain a hhrbz in each orientation and 
encode two ORFs, one sense and one anti-sense. Both ORFs generally lack stop 
codons and encompass the entire genome, potentially producing an endless tandem-
repeat of antigen. The atypical coiled-coil domain of the HDV antigen (Zuccola et al., 
1998) is conserved in the antigens of new delta and epsilon viruses, whereas epsilon 
and zeta genomes show analogous hhrbzs (Extended Figure 6), supporting that these 
sequences may share common ancestry. These abundant elements may help to solve a 
long-standing question about the origins of circular RNA subviral agents in higher 
eukaryotes (Extended Figure 6), historically regarded as molecular fossils of a prebiotic 
RNA world (Flores et al., 2014). 

To evaluate the feasibility of applying Serratus in the context of microbiome research, 
we sought to locate bacteriophages related to recently reported huge phages (Al-
Shayeb et al., 2020), searching for terminase amino acid sequences. Targeted 
assembly of 287 high-scoring runs returned 252 terminase-containing contigs ≥140 
kbp. Phylogenetics of these sequences resolved new groups of phages with large 
genomes (Figure 4e). While most phages were from a single animal genus, we identified 
closely related phages crossing animal orders, including related phages in a human 
from Bangladesh (ERR866585) and groups of cats (PRJEB9357) and dogs 
(PRJEB34360) from England, sampled 5 years apart. Similarly, we recovered two ~554 
kbp Lak megaphage genomes (among the largest animal microbiome phages reported 
to date) that are extremely closely related to sequences previously reported from pigs, 
baboons and humans (Extended Figure 7) (Devoto et al., 2019). These two genomes 
were circularised and manually curated to completion. The large carrying capacity of 
such phages and broad distribution underlines their potential for extensive lateral gene 
transfer amongst animal microbiomes and modification of host bacterial function. The 
newly-recovered sequences substantially expand and augment the inventory of phages 
with genomes whose length range overlaps with those of bacteria. 
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4.4 Conclusions 

Since the completion of the human genome, growth of DNA sequencing databases has 
outpaced Moore’s Law. Serratus provides rapid and focused access to genomic 
sequences captured over more than a decade by the global research community which 
would otherwise be inaccessible in practice. This work and further extensions of 
petabase scale genomics (Bradley et al.; Karasikov et al., 2020; Katz et al., 2021) are 
shaping a new era in computational biology, enabling expansive gene discovery, 
pathogen surveillance, and pangenomic evolutionary analyses. 

Optimal translation of such massive datasets into meaningful biomedical advances 
requires free and open collaboration amongst scientists (Baker et al., 2020). The current 
pandemic underscores the need for prompt, unrestricted and transparent data sharing. 
With these goals in mind, we deposited 7.3 terabytes of virus alignments and 
assemblies into an open-access database which can be explored via a graphical web 
interface at https://serratus.io or programmatically through the Tantalus R package and 
its PostgreSQL interface. 

The “metagenomics revolution” of virus discovery is accelerating (Nayfach et al., 2021a; 
Wolf et al., 2020). Innovative fields such as high-throughput viromics (Letko et al., 
2020a) can leverage vast collections of virus sequences to inform policies that predict 
and mitigate emerging pandemics (Letko et al., 2020b). Combining ecoinformatics with 
virus, host, and geotemporal metadata offers a proof of concept for a global pathogen 
surveillance network, arising as a byproduct of centralised and open data sharing. 

Human population growth and encroachment on animal habitats is bringing more 
species into proximity, leading to increased rate of zoonosis (Anthony et al., 2013) and 
accelerating the Anthropocene mass extinction (Chase et al., 2020). While Serratus 
enhances our capability to chronicle the full genetic diversity of our planet, the genetic 
diversity of the biosphere is diminishing. Thus investment in collection and curation of 
biologically diverse samples, with emphasis on geographically under-represented 
regions, has never been more pressing. If not for the conservation of endangered 
species, then to better conserve our own. 

4.5 Figures 
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Figure 1: Searching the planetary virome 

a Total bases searched from the 5,686,715 SRA sequencing runs analysed in the viral 
RdRP search grouped by sample taxonomy, where available (see Extended Figures 1 
and 3, and Supplementary Table 1). 8,871/15,016 (59%) of known RdRP species-like 
operational taxonomic units (sOTUs) were observed in the SRA, and 131,957 unique 
and novel RdRP sOTUs were identified (see Extended Figure 2). sOTUs identified in 
multiple taxonomic groups are counted in each group separately, numbers shown 
indicate the number of novel sOTUs in each group. b Release dates of the runs 
included in the analysis reflecting the growth rate of available data. c Sample locations 
for 635,656 RdRP-containing contigs (27.8% of samples lacked geographic metadata). 
The high density of RdRP seen in North America, Western Europe and Eastern Asia 
reflects the substantial acquisition bias for samples originating from these regions. 
Interactive RdRP map is available at https://serratus.io/geo. 
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Figure 2: RNA dependent RNA Polymerase in the Sequence Read Archive 

a The RdRP palmprint is the protein sequence spanning three well-conserved sequence 
motifs (A, B, and C), including intervening variable regions, exemplified within full-length 
poliovirus RdRP structure with essential aspartic acid residues(*) (pdb: 1RA6 
(Thompson and Peersen, 2004)). Conservation was calculated from RdRP alignment 
in(Wolf et al., 2018), trimmed to the poliovirus sequence; motif sequence logos are 
shown below. b Per-phylum histogram of amino acid identity of novel species-like 
operational taxonomic units (sOTUs) aligned to the NCBI non-redundant protein 
database and Extended Figure 3c shows per-order distribution. inlay Preston plot and 
linear regression of palmprint abundances indicates that singleton palmprints (i.e., 
observed in exactly one run) occur within 95% confidence intervals of the value 
predicted by extrapolation from high-abundance palmprints (linear regression applied 
to log-transformed data), and this distribution is consistent through time (Extended 
Figure 2). 
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Figure 3: Expanding Coronaviridae 

a Phylogram for group E sequences. Six viruses were similar to PsNV in Ambystoma 
mexicanum (axolotl; AmexNV), Puntigrus tetrazona (tiger barb; PtetNV), Hippocampus 
kuda (seahorse; HkudNV), Syngnathus typhle (broad-nosed pipefish; StypNV), Takifugu 
pardalis (fugu fish; TparNV), and the Acanthemblemaria sp. (blenny; AcaNV). More 
distant members identified were in Hypomesus transpacificus (the endangered delta 
smelt; HtraNV), Silurus sp. (catfish) SilNV, and Monopterus albus (asian swamp eel) 
MalbNV. b Unrooted phylogram for Coronaviridae annotated with genera (Greek letters) 
and group E CoV-like nidoviruses (see also Extended Figure 4). Maximum likelihood 
tree generated by clustering the RdRP amino acid sequences at 97% identity to show 
sub-species variability. c Genome structure of AmexNV and the contigs recovered from 
group E CoV-like viruses annotated with hidden-Markov model matches. AmexNV 
contigs contain an identical 129 nt trailing sequence (Tr). All the putatively segmented 
CoV-like are monophyletic with PsNV. A gap in the PsNV reference sequence (Mordecai 
et al., 2019) is shown with circles, overlapping the common contig ends seen in these 
viruses. 
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Figure 4: Expanding deltaviruses and huge phages 

a Genome structure for the Marmota monax Delta virus (MmonDV) and a DV-like 
genome detected in an environmental dataset each containing a negative-sense delta-
antigen (δAg) ORF; two delta ribozymes (dvrbz); and characteristic rod-like folding, 
where each line shows the predicted base-pairing within the RNA genome, coloured by 
base-pairing confidence score (p-num) (Zuker, 2003). b Similar genome structure for the 
Sulabanus spp. Epsilon virus-like (SulaEV) and an EV-like genome from an 
environmental dataset each containing a negative-sense epsilon-antigen (δAg) ORF; 
two hammerhead ribozymes (hhrbz); and rod-like folding. c Example of the compact 
genome structure of a Zeta virus-like from an environmental dataset containing two 
predicted zeta-antigen (ζAg+/-, protein alignment is shown in the outer circles) ORFs 
without stop codons; two hhrbz overlapping with the ORFs; and rod-like folding. 
Further novel genomes are shown in Extended Figures 5 and 6. d Maximum-likelihood 
phylogenetic tree of DVs derived from a delta-antigen protein alignment with bootstrap 
values. Two divergent environmental DV could not yet be placed. e Tree showing huge 
phage clade expansion. Black dots indicate branches with bootstrap values >90. Outer 
ring indicates genome or genome fragment length: gray are sequences from (Al-Shayeb 
et al., 2020) and reference sequences, shadings indicate previously defined clades of 
phages with very large genomes (200-735 kbp). The Kabirphages (light purple) are 
shown in expanded view in Extended Figure 7. 
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4.6 Methods 

1.1 Serratus alignment architecture 
Serratus (v0.3.0) (https://github.com/ababaian/serratus) is an open-source cloud-
infrastructure designed for ultra-high throughput sequence alignment against a query 
sequence or pangenome (Extended Figure 1). Serratus compute costs are dependent 
on search parameters (expanded discussion available: 
https://github.com/ababaian/serratus/wiki/pangenome_design). The nucleotide 
vertebrate viral pangenome search (bowtie2, database size: 79.8 Mb) reached 
processing rates of 1.29 million SRA runs in 24-hours at a cost of $0.0062 US dollars 
per dataset (Extended Figure 1). The translated-nucleotide RdRP search (DIAMOND 
(Buchfink et al., 2021), database size: 7.1 Mb) reached processing rates exceeding 0.5 
million SRA runs in 12-hours at a cost of $0.0042 per dataset. All 5,686,715 runs 
analysed in the RdRP search were completed within 11 days for a total cost of $23,980 
or ~$2,350 per petabase. For a detailed breakdown of Serratus project costs and 
recommendations for managing cloud-computing costs, see Serratus wiki: 
https://github.com/ababaian/serratus/wiki/budget. Tutorials on how to find particular 
novel viruses using Serratus data is available at https://github.com/ababaian/serratus 
/wiki/Find_novel_viruses. 
1.1.1 Computing cluster architecture 
The processing of each sequencing library is split into three modules dl (download), 
align, and merge. The dl module acquires compressed data (.sra format) via prefetch 
(v2.10.4), from the Amazon Web Services (AWS) Simple Storage Service (S3) mirror of 
the Sequence Read Archive (SRA), decompresses to FASTQ with fastq-dump (v2.10.4), 
and splits the data into chunks of 1 million reads or read-pairs (fq-blocks) into a 
temporary S3 cache bucket. To mitigate excessive disk usage caused by a few large 
datasets, a total limit of 100 million reads per dataset was imposed. The align module 
reads individual fq-blocks and aligns to an indexed database of user-provided query 
sequences using either bowtie2 (v2.4.1,--very-sensitive-local) (Langmead and Salzberg, 
2012) for nucleotide search, or DIAMOND (v2.0.6 development version, --mmap-target-
index --target-indexed --masking 0 --mid-sensitive -s 1 -c1 -p1 -k1 -b 0.75 ) (Buchfink 
et al., 2021) for translated-protein search. Finally, the merge module concatenates the 
aligned blocks into a single output file (.bam for nucleotide, or .pro for protein) and 
generates alignment statistics with a Python script (see Summarizer below). 

1.1.2 Computing resource allocation 
Each component is launched from a separate AWS autoscaling group with its own 
launch template, allowing the user to tailor instance requirements per task. This enabled 
us to minimise the use of costly block storage during compute-bound tasks such as 
alignment. We used the following Spot instance types; dl: 250GB SSD block storage, 
8vCPUs, 32GB RAM (r5.xlarge) ~1300 instances; align: 10GB SSD block storage, 
8vCPUs, 8GB RAM (c5.xlarge) ~4,300 instances; merge: 150GB SSD block storage, 
4vCPUs, 4GB RAM (c5.large) ~60 instances. Users should note that it may be 
necessary to submit a service ticket to access more than the default EC2 instance limit. 
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AWS Elastic Compute Cloud (EC2) instances have higher network bandwidth (up to 
1.25 GB/s) than block storage bandwidth (250 MB/s). To exploit this, we used S3 
buckets as a data buffering and streaming system to transfer data between instances 
following methods developed in a previous cloud architecture 
(https://github.com/FredHutch/sra-pipeline). This, combined with splitting of FASTQ 
files into individual blocks, effectively eliminated file input/output (i/o) as a bottleneck, 
since the available i/o is multiplied per running instance (conceptually analogous to a 
RAID0 configuration or a Hadoop distributed filesystem (Schatz, 2009)). 
Using S3 as a buffer also allowed us to decouple the input and output of each module. 
S3 storage is cheap enough that in the event of unexpected issues (e.g., exceeding 
EC2 quotas) we could resolve system problems in realtime and resume data 
processing. For example, shutting down the align modules to hotfix a genome indexing 
problem without having to re-run the dl modules, or if an alignment instance is killed by 
a Spot termination, only that block needs to be reprocessed instead of the entire 
sequencing run. 

1.1.3 Work queue and scheduling 
The Serratus scheduler node controls the number of desired instances to be created for 
each component of the workflow, based on the available work queue. We implemented 
a pull-based work queue. Upon boot-up each instance launches a number of worker 
threads equal to the number of CPU available. Each worker independently manages 
itself via a boot script, and queries the scheduler for available tasks. Upon completion 
of the task, the worker updates the scheduler of the result: success, or fail, and queries 
for a new task. Under ideal conditions, this allows for a worst-case response rate in the 
hundreds of milliseconds, keeping cluster throughput high. Each task typically lasts 
several minutes depending on the pangenome. 
The scheduler itself was implemented using Postgres (for persistence and concurrency) 
and Flask (to pool connections and translate REST queries into SQL). The Flask layer 
allowed us to scale the cluster past the number of simultaneous sessions manageable 
by a single Postgres instance. The work queue can also be managed manually by the 
user, to perform operations such as re-attempt downloading of an SRA accession upon 
a failure or to pause an operation while debugging. Up to 300,000 SRA jobs can be 
processed in the work queue per batch process. 
The system is designed to be fully self-scaling. An “autoscaling controller” was 
implemented which scales-in or scales-out the desired number of instances per task 
every five minutes based on the work queue. As a backstop, when all workers on an 
instance fail to receive work instructions from the scheduler, the instance self shuts-
down. Finally a “job cleaner” component checks the active jobs against currently 
running instances. If an instance has disappeared due to SPOT termination or manual 
shutdown, it resets the job allowing it to be processed up by the next available 
instance. 
To monitor cluster performance in real-time, we used Prometheus (v2.5.0) and node 
exporter to retrieve CPU, disk, memory, and networking statistics from each instance, 
to expose performance information about the work queue, and Python exporter to 
export information from the Flask server. This allowed us to identify and diagnose 
performance problems within minutes to avoid costly overruns. 
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1.1.4 Generating viral summary reports 
We define a viral pangenome as the entire collection of reference sequences belonging 
to a taxonomic viral family, which may contain both full-length genomes and sequence 
fragments such as those obtained by RdRP amplicon sequencing. 
We developed a Summarizer module written in Python to provide a compact, human- 
and machine-readable synopsis of the alignments generated for each SRA dataset. The 
method was implemented in Serratus_summarizer.py for nucleotide alignment and 
Serratus_psummarizer.py for amino acid alignments. Reports generated by the 
Summarizer are text files with three sections described in detail online 
(https://github.com/ababaian/serratus/wiki/.summary-Reports). In brief, each contains a 
header section with alignment meta-data and one-line summaries for each virus family 
pangenome, reference sequence and gene respectively, with gene summaries provided 
for protein alignments only. 
For each summary line we include descriptive statistics gathered from the alignment 
data such as the number of aligned reads, estimated read depth, mean alignment 
identity, and coverage, i.e. the distribution of reads across each reference sequence or 
pangenome. Coverage is measured by dividing a reference sequence into 25 equal bins 
and depicted as an ASCII text string of 25 symbols, one per bin; for example 
oaooomoUU:oWWUUWOWamWAAUW. Each symbol represents log2(n + 1) where n is 
the number of reads aligned to a bin in this order _.:uwaomUWAOM^. Thus, ‘_’ 
indicates no reads, ‘.’ exactly one read, ‘:’ two reads, ‘u’ 3-4 reads, ‘w’ 5-7 reads and 
so on; ‘^’ represents >213 = 8,192 reads in the bin. For a pangenome, alignments to its 
reference sequences are projected onto a corresponding set of 25 bins. For a complete 
genome, the projected pangenome bin number 1,2,...,25 is the same as the reference 
sequence bin number. For a fragment, a bin is projected onto the pangenome bin 
implied by the alignment of the fragment to a complete genome. For example, if the 
start of a fragment aligns half way into a complete genome, bin 1 of the fragment is 
projected to bin floor(25/2) = 12 of the pangenome. The introduction of pangenome 
bins was motivated by the observation that bowtie2 selects an alignment at random 
when there are two or more top-scoring alignments, which tends to distribute coverage 
over several reference sequences when a single viral genome is present in the reads. 
Coverage of a single reference genome may therefore be fragmented, and binning to a 
pangenome better assesses coverage over a putative viral genome in the reads while 
retaining pangenome sequence diversity for detection. 

1.1.5 Identification of viral families within a sequencing dataset 
The Summarizer implements a binary classifier predicting the presence or absence of 
each virus family in the query based on pangenome-aligned short reads. For a given 
family F, the classifier reports a score in the range [0,100] with the goal of assigning a 
high score to a dataset if it contains F and a low score if it does not. Setting a threshold 
on the score divides datasets into disjoint subsets representing predicted positive and 
negative detections of family F. The choice of threshold implies a trade-off between 
false positives and false negatives. Sorting by decreasing score ranks datasets in 
decreasing order of confidence that F is present in the reads. 
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Naively, a natural measure of the presence of a virus family is the number of alignments 
to its reference sequences. However, alignments may be induced by non-homologous 
sequence similarity, for example low-complexity sequence. 
The score for a family was therefore designed to reflect the overall coverage of a 
pangenome because coverage across all or most of a pangenome is more likely to 
reflect true homology, i.e. the presence of a related virus. Ideally, coverage would be 
measured individually for each base in the reference sequence, but this could add 
undesirable overhead in compute time and memory for a process which is executed in 
the Linux alignment pipe (FASTQ decompression → aligner → Summarizer → alignment 
file compression). Coverage was therefore measured by binning as described above, 
which can be implemented with minimal overhead. 
A virus that is present in the reads with coverage too low to enable an assembly may 
have less practical value than an assembled genome. Also, genomes with lower identity 
to previously known sequences will tend to contain more novel biological information 
than genomes with high identity and will tend to have fewer alignments highly diverged 
segments. With these considerations in mind, the classifier was designed to give higher 
scores when coverage is high, read depth is high, and/or identity is low. This was 
accomplished as follows. Let H be the number of bins with at least 8 alignments to F, 
and L be the number of bins with from 1 to 7 alignments. Let S be the mean alignment 
percentage identity, and define the identity weight w = (S/100)-3, which is designed to 
give higher weight to lower identities, noting that w is close to one when identity is 
close to 100% and increases rapidly at lower identities. The classification score for 
family F is calculated as ZF = max(w(4H + L)),100). By construction, ZF has a maximum of 
100 when coverage is consistently high across a pangenome, and is also high when 
identity is low and coverage is moderate, which may reflect high read depth but many 
false negative alignments due to low identity. Thus, ZF is greater than zero when there is 
at least one alignment to F and assigns higher scores to SRA datasets which are more 
likely to support successful assembly of a virus belonging to F. 

1.1.6 Sensitivity to novel viruses as a function of identity 
We aimed to assess the sensitivity of our pipeline as a function of sequence identity by 
asking what fraction of novel viruses is detected at increasingly low identities compared 
to the reference sequences used for the search. Several variables other than identity 
affect sensitivity, including read length, whether reads are mate-paired, sequencing 
error rate, coverage bias, and presence of other similar viruses which may cause some 
variants to be unreported in the contigs. Coverage bias can render a virus with high 
average read depth undetectable, in particular if the query is RdRP-only and the RdRP 
gene has low coverage or is absent from the reads. Successful detection might be 
defined in different ways, depending on the goals of the search; e.g. a single local 
alignment of a reference to a read (maximising sensitivity, but not always useful in 
practice); a micro-assembled palmprint; a full assembly contig that contains a complete 
palmprint or otherwise classifiable fragment of a marker gene; or an assembly of a 
complete genome. We assessed alignment sensitivity of bowtie2 --very-sensitive-local 
and Serratus-optimised DIAMOND (Buchfink et al., 2015) as a function of identity by 
simulating typical examples in representative scenario: unpaired reads of length 100 
with a base call error rate of 1%. We manually selected test-reference pairs of RefSeq 
complete Ribovirus genomes at RdRP aa identities 100%, 95% ... 20%, generating 
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simulated length-100 reads at uniformly-distributed random locations in the test 
genome with a mean coverage of 1000x. For bowtie2, the complete reference genome 
was used as a reference; for DIAMOND the reference was the translated amino acid 
sequence of the RdRP gene (400aa), which was identified by aligning to the Wolf18 
dataset. These choices model the coronavirus pan-genome used as a bowtie2 query 
and the rdrp1 protein reference used as a DIAMOND query, respectively. Sensitivity 
was assessed as the fraction of reads aligned to the reference. With bowtie2, the 
number of unmapped reads reflects a combination of lack of alignment sensitivity and 
divergence in gene content as some regions of the genome may lack homology to the 
reference. With DIAMOND, the number of unmapped reads reflects a combination of 
lack of alignment sensitivity and the fraction of the genome which is not RdRP, which 
varies by genome length 1g. They show that the fraction of aligned reads by bowtie2 
drops to around 2% to 4% at 90% RdRP aa identity, and maps no reads for most of 
the lower identity test-reference pairs. DIAMOND maps around 5% to 10% of reads 
down to 50% RdRP aa identity, then less than 1% at lower identities; around 30% to 
35% is the lower limit of practical detection. 

1.2 Defining viral pangenomes and the SRA search space 

1.2.1 Nucleotide search pangenomes 
To create a collection of viral pangenomes, a comprehensive set of complete and 
partial genomes representing the genetic diversity of each viral family, we used two 
approaches. 
For Coronaviridae, we combined all RefSeq (n = 64) and GenBank (n = 37,451) records 
matching the NCBI Nucleotide (Coordinators and NCBI Resource Coordinators, 2012) 
server query "txid11118[Organism:exp]" (date accessed: June 1st 2020). Sequences 
<200 nt were excluded as well as sequences identified to contain non-CoV 
contaminants during preliminary testing (such as plasmid DNA or ribosomal RNA 
fragments). Remaining sequences were clustered at 99% identity with UCLUST 
(USEARCH:v11.0.667) (Edgar, 2010) and masked by Dustmasker (ncbi-blast:2.10.0) ( --
window 30 and --window 64) (Morgulis et al., 2006). The final query contained 10,101 
CoV sequences (accessions in Supplementary Table 1a, masked coordinates in 
Supplementary Table 1b). SeqKit (v.0.15) was used for working with fasta files (Shen et 
al., 2016). 
For all other vertebrate viral family pangenomes, RefSeq sequences (n = 2,849) were 
downloaded from the NCBI Nucleotide server with the query "Viruses[Organism] AND 
srcdb refseq[PROP] NOT wgs[PROP] NOT cellular organisms[ORGN] NOT AC 
000001:AC 999999[PACC] AND ("vhost human"[Filter] AND "vhost vertebrates"[Filter])" 
(date accessed: May 17th 2020). Retroviruses (n = 80) were excluded as preliminary 
testing yielded excessive numbers of alignments to transcribed endogenous 
retroviruses. Each sequence was annotated with its taxonomic family according to its 
RefSeq record; those for which no family was assigned by RefSeq (n = 81) were 
designated as “unknown”. 
The collection of these pangenomes was termed cov3m, and was the nucleotide 
sequence reference used for this study. 
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1.2.2 Amino acid viral RNA-dependent RNA polymerase search panproteome 
For the translated-nucleotide search of viral RNA-dependent RNA polymerase (RdRP; 
hereinafter viral RdRP is implied) we combined sequences from several sources. 1) The 
‘wolf18‘ collection is a curated snapshot (ca. 2018) of RdRP from GenBank ( (Wolf et al., 
2018) accessed: ftp://ftp.ncbi.nlm.nih.gov/pub/wolf/_suppl/rnavir18/RNAvirome.S2.afa) 
2) The ‘wolf20‘ collection is RdRPs from assembled from marine metagenomes ( 
accessed: ftp://ftp.ncbi.nlm.nih.gov/pub/wolf/_suppl/yangshan/gb_rdrp.afa) 3) All viral 
GenBank protein sequences were aligned with DIAMOND --ultra-sensitive against the 
combined ‘wolf18‘ and ‘wolf20‘ sequences (E-value <1e-6). These produced local 
alignments which contained truncated RdRP, so each RdRP-containing GenBank 
sequence was then re-aligned to the ‘wolf18’ and ‘wolf20’ collection to “trim” them to 
‘wolf‘ RdRP boundaries. 4) The above algorithm was also applied to all viral GenBank 
nucleotide records to capture additional RdRP not annotated as such by GenBank . A 
region of HCV capsid protein shares similarity to HCV RdRP, sequences annotated as 
HCV-capsid were therefore removed. Eight novel coronavirus RdRP sequences 
identified in a pilot experiment were added manually. The combined RdRP sequences 
from the above collections were clustered (UCLUST) at 90% amino acid identity and 
the resulting representative sequences (centroids, N = 14 653) used as the rdrp1 search 
query. 
In addition, we added Deltavirus antigen proteins from NC 001653, M21012, X60193, 
L22063, AF018077, AJ584848, AJ584847, AJ584844, AJ584849, MT649207, 
MT649208, MT649206, NC 040845, NC 040729, MN031240, MN031239, MK962760, 
MK962759, and eight additional homologs we identified in a pilot experiment. 

1.2.3 SRA search space and queries 
To run Serratus, a target list of SRA run accessions is required. We defined eleven (not-
mutually exclusive) queries as our search space which were named human, mouse, 
mammal, vertebrate, invertebrate, eukaryotes, prokaryotes/others, bat (including 
genomic sequences), virome, metagenome and mammalian genome (Supplementary 
Table 1c). Our search was restricted to Illumina sequencing technologies and to RNA-
seq, meta-genomic, and meta-transcriptome library types for these organisms (except 
for mammalian genome query which was genome or exome). Prior to each Serratus 
deployment, target lists were depleted of accessions already analysed. Reprocessing of 
a failed accession was attempted at least twice. In total, we aligned 
3,837,755/4,059,695 (94.5%) of the runs in our nucleotide-pangenome search (ca. May 
2020) and 5,686,715/5,780,800 (98.37%) of the runs in our translated-nucleotide RdRP 
search (ca. January 2021). 

1.3 User interfaces for the Serratus databases 
We implemented an on-going, multi-tiered release policy for code and data generated 
by this study, as follows. All code, electronic notebooks and raw data is immediately 
available at https://github.com/ababaian/serratus and on the s3://serratus -public/ 
bucket, respectively. Upon completion of a project milestone, a structured data release 
is issued containing raw data into our viral data warehouse s3://lovelywater/. For 
example, the .bam nucleotide alignment files from 3.84 million SRA runs are stored in 
s3://lovelywater/bam/X.bam; the protein .summary files are in 
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s3://lovelywater/psummary/X.psummary, where X is a SRA run accession. These FAIR 
and structured releases enable downstream and third-party programmatic access to 
the data. 
Summary files for every searched SRA dataset are parsed into a publicly accessible 
AWS Relational Database (RDS) instance which can be queried remotely via any 
PostgreSQL client. This enables users and programs to perform complex operations 
such as retrieving summaries and meta-data for all SRA runs matching a given 
reference sequence with above a given classifier score threshold. For example, one can 
query for all records containing at least 20 aligned reads to Hepatitis Delta Virus (NC 
001653.2) and the associated host taxonomy for the corresponding SRA datasets: 

SELECT sequence_accession, run_id, tax_id, n_reads 
FROM nsequence 
JOIN srarun ON (nsequence.run_id = srarun.run) WHERE n_reads >= 20 

For users unfamiliar with SQL, we developed Tantalus (https://github.com/serratus-
bio/tantalus, an R programming-language package which directly interfaces the 
Serratus PostgreSQL database to retrieve summary information as data-frames. 
Tantalus also offers functions to explore and visualise the data. 
Finally, the Serratus data can be explored via a graphical web interface by accession, 
virus, or viral family at https://serratus.io/explorer. Under the hood, we developed a 
REST API to query the database from the website. The website uses React+D3.js to 
serve graphical reports with an overview of viral families found in each SRA accession 
matching a user query. 
All four data access interfaces are under ongoing development, receiving community 
feedback via their respective GitHub issue trackers to facilitate the translation of this 
data collection into an effective viral discovery resource. Documentation for data 
access methods is available at https://serratus.io/access. 

1.3.1 Geocoding BioSamples 
To generate the map in Figure 1c, we parsed and extracted geographic information 
from all 16 million BioSample XML submissions. Geographic information is either in the 
form of coordinates (latitude/longitude) or freeform text (e.g. “France”, “Great Lakes”). 
For each BioSample, coordinate extraction was attempted using regular expressions. If 
that failed, text extraction was attempted using a manually curated list of keywords that 
capture BioSample attribute names likely to contain geographic information. If that 
failed, then we were unable to extract geographic information for that BioSample. 
Geocoding the text to coordinates was done using Amazon Location Service on a 
reduced set of distinct filtered text values (52,028 distinct values from 2,760,241 
BioSamples with potential geographic text). BioSamples with geocoded coordinates 
were combined with BioSamples with submitted coordinate information to form a set of 
5,325,523 geospatial BioSamples. This is then cross-referenced with our subset of SRA 
accessions with an RdRP match to generate the figure. 
All intermediate and resulting data from this step is stored on the SQL database 
described in 1.3. Development work is public at https://github.com/serratus-
bio/biosample-sql. 
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1.4 Viral alignment, assembly and annotation 
Upon identification of CoV reads in a run from alignment, we assembled 52,772 runs 
containing at ≥ 10 reads which aligned to our CoV pan-genome or ≥ 2 reads with CoV-
positive k-mers. (Katz et al., 2021). 11,120 of the resulting assemblies contained 
identifiable CoV contigs, of which only 4,179 (37.58%) contained full-length CoV RdRP 
(Supplementary Table 1d). The discrepancy between alignment-positive, assembly-
positive and RdRP-positive libraries arises due random sampling of viral reads and 
assembly fragmentation. In this respect, alignment or k-mer based methods are more 
sensitive than assembly in detecting for the presence of low-abundance viruses 
(genome coverage <1) with high identity to a reference sequence. Scoring libraries for 
genome-coverage and depth is a good predictor of ultimate assembly success 
(Extended Figure 3) thus, it can be used to efficiently prioritise computationally 
expensive assembly in the future, as has been previously demonstrated for large-scale 
SRA alignment-analyses (Levi et al., 2018). 

1.4.1 DIAMOND optimisation and output 
To optimise DIAMOND (Buchfink et al., 2021) for small (< 10 Mb) databases such as the 
RdRP search database, we built a probabilistic hash set which stores 8-bit hash values 
for the database seeds, using SIMD instructions for fast probing. This index is loaded 
as a memory mapped file to be shared among processes and allows us to filter the 
query reads for seeds contained in the database, thus omitting the full construction of 
the query seed table. We also eliminated the overhead of building seed distribution 
histograms that is normally required to allocate memory and construct the query table 
in a single pass over the data using a deque-like data structure. In addition, query reads 
were not masked for simple repeats, as the search database is already masked. These 
features are available starting from DIAMOND v2.0.8 with the command line flags --
target-indexed --masking 0. In a benchmark of 4 sets of 1 million reads from a bat 
metagenome (ERR2756788), the implemented optimisation produced a speed-up of 
x1.47 and reduced memory use by 64%, compared to the public unmodified DIAMOND 
v2.0.6, using our optimised set of parameters in both cases (see 1.1.1). Together, the 
optimised parameters and implementation reduced DIAMOND runtime against RdRP-
search from 197.96s (s.d = 0.18s), to 21.29s (s.d=0.23s) per million reads, a speed-up 
of a factor of 9.3. This effectively reduced the computational cost of translated-
nucleotide search for Serratus from $0.03, to $0.0042 per library. 
DIAMOND output files (we label .pro) were specified with the command -f 6 qseqid 
qstart qend qlen qstrand sseqid sstart send slen pident evalue cigar qseq_translated 
full_qseq full_qseq_mate. 
1.4.2 coronaSPAdes 
RNA viral genome assembly faces several distinct challenges stemming from technical 
and biological bias in sequencing data. During library preparation, reverse transcription 
introduces 50 end coverage bias, and GC-content skew and secondary structures lead 
to unequal PCR amplification (Hunt et al., 2015). Technical bias is confounded by 
biological complexity such as intra-sample sequence variation due to transcript 
isoforms and/or to presence of multiple strains. 
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To address the assembly challenges specific to RNA viruses, we developed 
coronaSPAdes (v3.15.3), described in detail in a companion manuscript (Meleshko et 
al., 2021). In brief, rnaviralSPAdes and the more specialized variant, coronaSPAdes, 
combines algorithms and methods from several previous approaches based on 
metaSPAdes(Nurk et al., 2017), rnaSPAdes (Bushmanova et al., 2019) and 
metaviralSPAdes (Antipov et al., 2020) with a HMMPathExtension step. coronaSPAdes 
constructs an assembly graph from a RNA-sequencing dataset (transcriptome, meta-
transcriptome, and meta-virome are supported), removing expected sequencing 
artifacts such as low-complexity (poly-A / poly-T) tips, edges, single-strand chimeric 
loops or double-strand hairpins (Bushmanova et al., 2019) and subspecies-bases 
variation (Antipov et al., 2020). 
To deal with possible misassemblies and high-covered sequencing artefacts, a 
secondary HMMPathExtension step is performed to leverage orthogonal information 
about the expected viral genome. Protein domains are identified on all assembly graphs 
using a set of viral hidden Markov models (HMMs), and similar to biosyntheticSPAdes 
(Meleshko et al., 2019), HMMPathExtension attempts to find paths on the assembly 
graph which pass through significant HMM matches in order. 
coronaSPAdes is bundled with the Pfam SARS-CoV-2 set of HMMs, although these 
may be substituted by the user. This latter feature of coronaSPAdes was utilized for 
HDV assembly, where the HMM model of HDAg, the Hepatitis Delta Antigen, was used 
instead of Pfam SARS-CoV-2 set. Note that despite the name, the HMMs from this set 
are quite general, modeling domains found in all coronavirus genera in addition to 
RdRP, which is found in many RNA virus families. Hits from these HMMs cover most 
bases in most known coronavirus genomes, enabling the recovery of strain mixtures 
and splice variants. 

1.4.3 Micro-assembly of RdRP-aligned reads 
Reads aligned by DIAMOND in the translated-nucleotide RdRP search are stored in the 
.pro alignment file. All sets of mapped reads (3,379,127 runs) were extracted, and each 
non-empty set was assembled with rnaviralSPAdes (v3.15.3) using default parameters. 
This process is referred to as “micro-assembly” since a collection of DIAMOND hits is 
orders of magnitude smaller than the original SRA accession (40±534 KB compressed 
size, ranging from a single read up to 53 MB). Then bowtie2 (Langmead and Salzberg, 
2012) (default parameters) was used to align the DIAMOND read hits of an accession 
back to the micro-assembled contigs of that accession. Palmscan (v1.0.0 -rdrp -hicon) 
(Babaian and Edgar, 2021) was run on microassembled contigs, resulting in high-
confidence palmprints for 337,344 contigs. Finally mosdepth (v0.3.1) (Pedersen and 
Quinlan, 2018) was used to calculate a coverage pileup for each palmprint hit region 
within micro-assembled contigs. 

1.4.4 Classification of assembled RdRP sequences 
Our methods for RdRP classification are described and validated in a companion paper 
18. Briefly, we defined a barcode sequence, the polymerase palmprint (PP), as a ~100 aa 
segment of the RdRP palm sub-domain delineated by well-conserved catalytic motifs. 
We implemented an algorithm, palmscan, to identify palmprint sequences and 
discriminate RdRPs from reverse transcriptases. The combined set of RdRP palmprints 
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from public databases and our assemblies were classified by clustering into operational 
taxonomic units (OTUs) at 90%, 75% and 40% identity, giving species-like, genus-like 
and family-like clusters (sOTUs, gOTUs and fOTUs), respectively. Tentative taxonomy 
of novel OTUs was assigned by aligning to palmprints of named viruses and taking a 
consensus of the top hits above the identity threshold for each rank. 

1.4.5 Quality control of assembled RdRP sequences 
Our goal was to identity novel viral RdRP sequences and novel sOTUs in SRA libraries. 
From this perspective, we considered the following to be erroneous to varying degrees: 
sequences which are (a) not polymerases, (b) not viral, (c) with differences due to 
experimental artefacts, or (d) with sufficient differences to cause a spurious inference of 
a novel sOTU. We categorised potential sources of such errors and implemented 
quality control procedures to identify and mitigate them, as follows. 
Point errors are single-letter substitution and indel errors which may be caused by PCR 
or sequencing per se. Random point errors are not reproduced in multiple non-PCR 
duplicate reads and are unlikely to assemble because such errors almost always induce 
identifiable structures in the assembly graph (tips and bubbles) which are pruned during 
graph simplification. In rare cases, a contig may contain a read with random point 
errors. Such contigs will have low coverage ~1, and we therefore recorded coverage as 
a QC metric and assessed whether low-coverage assemblies were anomalous 
compared to high-coverage assemblies by measures such as the frequencies with 
which they are reproduced in multiple libraries compared to exactly one library, finding 
no noticeable difference when coverage is low. 
Chimeras of polymerases from different species could arise from PCR amplification or 
assembly. We used the UCHIME2 (usearch v8.0.1623) algorithm (Edgar) to screen 
assembled palmprint sequences, finding no high-scoring putative chimeras. Mosaic 
sequences formed by joining a polymerase to unrelated sequence would either have an 
intact palmprint, in which case the mosaic would be irrelevant to our analysis, or would 
be rejected by Palmscan due to the lack of delimiting motifs. 
Reverse transcriptases (RTs) are homologous to RdRP. Retroviral insertions into host 
genomes induce ubiquitous sequence similarity between host genomes and viral RdRP. 
Palmscan was designed to discriminate RdRP from sequences of RT origin. Testing on 
a large decoy set of non-RdRP sequences with recognisable sequence similarity 
showed that the Palmscan false discovery rate for RdRP identification is 0.001. We 
estimated the probability of false positives matches in unrelated sequence by 
generating sufficient random nucleotide and amino acid sequences to show that the 
expected number of false positive palmprint identifications is zero in a dataset of 
comparable size to our assemblies. We also regard the low observed frequency of 
palmprints in DNA WGS data (in 2.6 Pbp or 25.8% of reads, accounted for 100 known 
palmprints and 95 novel palmprints or 0.13% of the total identified) as a de facto 
confirmation of the low probability false positives in unrelated sequence. 
Endogenous viral elements (EVEs, i.e. insertions of viral sequence into host genomes 
which are potentially degraded and non-functional) cannot be distinguished from viral 
genomes on the basis of the palmprint sequence alone. To assess the frequency of 
EVEs in our data, we re-assembled 890 randomly-chosen libraries yielding one or more 
palmprints using all reads, extracted the 23 530 resulting contigs with a positive 
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palmprint hit by palmscan, and classified them using Virsorter2 (v2.1) (Guo et al., 2021). 
Of these contigs, 11,914 were classified as viral, confirming the palmscan identification; 
49 as Viridiplantae (green plants); 46 as Metazoa; 25 as Fungi and the remainder were 
unclassified. Thus, 120/12034 = 1% of the classified contigs were predicted as non-
viral, suggesting that the frequency of EVEs in the reported palmprints is ~1%. 

1.4.6 Annotation of CoV assemblies 
Accurate annotation of CoV genomes is challenging due to ribosomal frameshifts and 
polyproteins which are cleaved into maturation proteins (Thiel et al., 2003), and thus 
previously-annotated viral genomes offer a guide to accurate gene-calls and protein 
functional predictions. However, while many of the viral genomes we were likely to 
recover would be similar to previously-annotated genomes in Refseq or GenBank, we 
anticipated that many of the genomes would be taxonomically distant from any 
available reference. To address these constraints, we developed an annotation pipeline 
called DARTH (version maul) which leverages both reference-based and ab initio 
annotation approaches. 
In brief, DARTH consists of the following phases: standardise the ordering and 
orientation of assembly contigs using conserved domain alignments, perform 
reference-based annotation of the contigs, annotate RNA secondary structure, ab initio 
gene-calling, generate files for aiding assembly and annotation diagnostics, and 
generate a master annotation file. It is important to put the contigs in the “expected” 
orientation and ordering to facilitate comparative analysis of synteny and as a 
requirement for genome deposition. To perform this standardisation, DARTH generates 
the six-frame translation of the contigs using the transeq (v EMBOSS:6.6.0.0) (Rice et 
al., 2000) and uses HMMER3 (v3.3.2) (Eddy, 2011) to search the translations for Pfam 
domain models specific to CoV 64. DARTH compares the Pfam accessions from the 
HMMER alignment to the NCBI SARS-CoV-2 reference genome (NCBI Nucleotide 
accession NC_045512.2) to determine the correct ordering and orientation, and 
produces an updated assembly FASTA file. DARTH performs reference-based 
annotation using VADR (v1.1) (Schäffer et al., 2020), which provides a set of genome 
models for all CoV RefSeq genomes (Nawrocki). VADR provides annotations of gene 
coordinates, polyprotein cleavage sites, and functional annotation of all proteins. 
DARTH supplements the VADR annotation by using Infernal (Nawrocki and Eddy, 2013) 
to scan the contigs against the SARS-CoV-2 Rfam release which provides updated 
models of CoV 50 and 30 untranslated regions (UTRs) along with stem-loop structures 
associated with programmed ribosomal frame-shifts. While VADR provides reference-
based gene-calling, DARTH also provides ab initio gene-calling by using FragGeneScan 
(v1.31) (Rho et al., 2010), a frameshift-aware gene caller. DARTH also generates 
auxiliary files which are useful for assembly quality and annotation diagnostics, such as 
indexed BAM files created with SAMtools (v1.7) (Li et al., 2009) representing self-
alignment of the trimmed reads to the canonicalized assembly using bowtie2, and 
variant-calls using bcftools from SAMtools. DARTH generates these files so that the can 
be easily loaded into a genome browser such as JBrowse (Buels et al., 2016) or IGV 
(Robinson et al., 2017). As the final step DARTH generates a single Generic Feature 
Format (GFF) 3.0 file (Reeves et al., 2008) containing combined set of annotation 
information described above, ready for use in a genome browser, or for submitting the 
annotation and sequence to a genome repository. 



 

 

 

 

105 

1.4.7 Phage assembly 
Each metagenomic dataset was individually de novo-assembled using MEGAHIT (v 
1.2.9) (Li et al., 2016), and filtered to remove contigs smaller than 1 kbp in size. ORFs 
were then predicted on all contigs using Prodigal (v2.6.3) (Hyatt et al., 2012) with the 
following parameters: -m -p meta. Predicted ORFs were initially annotated using 
USEARCH to search all predicted ORFs against UniProt (The UniProt Consortium and 
The UniProt Consortium, 2017), UniRef90 and KEGG (Altman et al., 2013). Sequencing 
coverage of each contig was calculated by mapping raw reads back to assemblies 
using bowtie2 (Langmead and Salzberg, 2012). Terminase sequences from Al-Shayeb 
et al. (Al-Shayeb et al., 2020) were clustered at 90% amino acid identity to reduce 
redundancy using CD-HIT (v4.8.1) (Li et al., 2012), and HMM models were built with 
hmmbuild (from the HMMER3 suite (Eddy, 2011)) from the resulting set. Terminases in 
the assemblies from Serratus were identified using hmmsearch, retaining 
representatives from contigs greater than 140 kbp in size. Some examples of prophage 
and large phages that did not co-cluster with the sequences from Al-Shayeb et al., were 
also recovered because they were also present in a sample that contained the 
expected large phages. The terminases were aligned using MAFFT (v.7.407) and filtered 
by TrimAL (v1.14) to remove columns comprised of more than 50% gaps, or 90% gaps, 
or using the automatic gappyout setting to retain the most conserved residues. 
Maximum likelihood trees were built from the resulting alignments using IQTREE 
(v.1.6.6) (Nguyen et al., 2015). 

1.4.8 Deploying the assembly and annotation workflow 
The Serratus search for known or closely related viruses identified 37,131 libraries 
(14,304 by nucleotide and 23,898 by amino acid) as potentially positive for CoV (score 
≥20 and ≥10 reads). To supplement this search we also employed a recently developed 
index of the SRA called STAT with which identified an additional 18,584 SRA datasets 
not in the defined SRA search space. The STAT BigQuery (accessed June 24th 2020) 
was: WHERE tax id=11118 AND total count >1. 
We used AWS Batch to launch thousands of assemblies of NCBI accessions 
simultaneously. The workflow consists of four standard parts: a job queue, a job 
definition, a compute environment, and finally, the jobs themselves. A CloudFormation 
template (https://gitlab.pasteur.fr/rchikhi_pasteur/serratus-batch-assembly/-
/blob/10934001/template/template.yaml) was created for building all parts of the cloud 
infrastructure from the command line. The job definition specifies a Docker image, and 
asks for 8 virtual CPUs (vCPUs, corresponding to threads) and 60 GB of memory per 
job, corresponding to a reasonable allocation for coronaSPAdes. The compute 
environment is the most involved component. We set it to run jobs on cost-effective 
Spot instances (optimal setting) with an additional cost-optimization strategy 
(SPOT_CAPACITY_OPTIMIZED setting), and allowing up to 40,000 vCPUs total. In 
addition, the compute environment specifies a launch template which, on each 
instance, i) automatically mounts an exclusive 1 TB EBS volume, allowing sufficient disk 
space for several concurrent assemblies, and ii) downloads the 5.4 GB CheckV (v0.6.0) 
(Nayfach et al., 2021b) database, to avoid bloating the Docker image. 
The peak AWS usage of our Batch infrastructure was ~28,000 vCPUs, performing 
~3,500 assemblies simultaneously. A total of 46,861 accessions out of 55,715 were 
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assembled in a single day. They were then analysed by two methods to detect putative 
CoV contigs. The first method is CheckV, followed selecting contigs associated to 
known CoV genomes. The second method is a custom script 
(https://gitlab.pasteur.fr/rchikhi_pasteur/serratus-batch-assembly/-
/blob/10934001/stats/bgc_parse_and_extract.py) that parses coronaSPAdes BGC 
candidates and keeps contigs containing CoV domain(s). For each accession, we kept 
the set of contigs obtained by the first method (CheckV) if it is non-empty, and 
otherwise we kept the set of contigs from the second method (BGC). 
A majority (76%) of the assemblies were discarded for one of the following reasons: i) 
no CoV contigs were found by either filtering method, ii) reads were too short to be 
assembled, iii) Batch job or SRA download failed, or iv) coronaSPAdes ran out of 
memory. A total of 11,120 assemblies were considered for further analysis. 
The average cost of assembly was between $0.30-$0.40 per library, varying depending 
on library-type (RNA-seq versus metagenomic). This places an estimate of 46-95 fold 
higher cost for assembly alone compared to a cost of $0.0042 or $0.0065 for an 
alignment based search. 

1.5 Taxonomic and phylogenetic analyses 

1.5.1 Taxonomy prediction for coronavirus genomes 
We developed a module, SerraTax, to predict taxonomy for CoV genomes and 
assemblies (https://github.com/ababaian/serratus/tree1f92d7e4/containers/serratax). 
SerraTax was designed with the following requirements in mind: provide taxonomy 
predictions for fragmented and partial assemblies in addition to complete genomes; 
report best-estimate predictions balancing over-classification and under-classification 
(too many and too few ranks, respectively); and assign an NCBI Taxonomy Database 
(Schoch et al., 2020) identifier (TaxID). 
Assigning a best-fit TaxID was not supported by any previously published taxonomy 
prediction software to the best of our knowledge; this requires assignment to 
intermediate ranks such as sub-genus and ranks below species (commonly called 
strains, but these ranks are not named in the Taxonomy database), and to unclassified 
taxa, e.g. TaxID 2724161, unclassified Buldecovirus, in cases where the genome is 
predicted to fall inside a named clade but outside all named taxa within that clade. 
SerraTax uses a reference database containing domain sequences with TaxIDs. This 
database was constructed as follows. Records annotated as CoV were downloaded 
from UniProt (The UniProt Consortium and The UniProt Consortium, 2017), and chain 
sequences were extracted. Each chain name, e.g. Helicase, was considered to be a 
separate domain. Chains were aligned to all complete coronavirus genomes in 
GenBank using UBLAST (usearch: v11.0.667) to expand the repertoire of domain 
sequences. The reference sequences were clustered using UCLUST (Edgar, 2010) at 
97% sequence identity to reduce redundancy. 
For a given query genome, open reading frames (ORFs) are extracted using the getorf 
(EMBOSS:6.6.0) software (Rice et al., 2000). ORFs are aligned to the domain references 
and the top 16 reference sequences for each domain are combined with the best-
matching query ORF. For each domain, a multiple alignment of the top 16 matches plus 
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query ORF is constructed on the fly by MUSCLE (v3.8.31(Edgar, 2004)) and a 
neighbour-joining tree is inferred from the alignment, also using MUSCLE. Finally, a 
consensus prediction is derived from the placement of the ORF in the domain trees. 
Thus, the presence of a single domain in the assembly suffices to enable a prediction; if 
more domains are present they are combined into a consensus. 

1.5.2 Taxonomic assignment by phylogenetic placement 
To generate an alternate taxonomic annotation of an assembled genome, we created a 
pipeline based on phylogenetic placement, SerraPlace. 
To perform phylogenetic placement, a reference phylogenetic tree is required. To this 
end, we collected 823 reference amino acid RdRP sequences, spanning all 
Coronaviridae. To this set we added an outgroup RdRP sequence from the Torovirus 
family (NC 007447). We clustered the sequences to 99% identity using USEARCH 
((Edgar, 2010) UCLUST algorithm, v11.0.667), resulting in 546 centroid sequences. 
Subsequently we performed multiple sequence alignment on the clustered sequences 
using MUSCLE. We then performed maximum likelihood tree inference using RAxML-
NG ((Kozlov et al., 2019) ‘PROTGTR+FO+G4’, v0.9.0), resulting in our reference tree. 
To apply SerraPlace to a given genome, we first use HMMER ((Eddy, 2011), v3.3) to 
generate a reference HMM, based on the reference alignment. We then split each 
contig into ORFs using esl-translate, and use hmmsearch (p-value cutoff 0.01) and 
seqtk (commit 7c04ce7) to identify those query ORFs that align with sufficient quality to 
the previously generated reference HMM. All ORFs that pass this test are considered 
valid input sequences for phylogenetic placement. This produces a set of likely 
placement locations on the tree, with an associated likelihood weight. We then use 
Gappa (v0.6.1,(Czech et al., 2020)) to assign taxonomic information to each query, 
using the taxonomic information for the reference sequences. Gappa assigns taxonomy 
by first labeling the interior nodes of the reference tree by a consensus of the taxonomic 
labels of all descendant leaves of that node. If 66% of leaves share the same taxonomic 
label up to some level, then the internal node is assigned that label. Then, the likelihood 
weight associated with each sequence is assigned to the labels of internal nodes of the 
reference tree, according to where the query was placed. 
From this result, we select that taxonomic label that accumulated the highest total 
likelihood weight as the taxonomic label of a sequence. Note that multiple ORFs of the 
same genome may result in a taxonomic label, in which case, we select the longest 
sequence as the source of the taxonomic assignment of the genome. 

1.5.3 Phylogenetic inference 
We performed phylogenetic inferences using a custom snakemake (v6.6.0) pipeline 
(available at https://github.com/lczech/nidhoggr), using ParGenes (v1.1.2)(Morel et al., 
2019). ParGenes is a tree search orchestrator, combining ModelTestNG (v0.1.3) 
(Darriba et al., 2020)and RAxML-NG, and enabling higher levels of parallelisation for a 
given tree search. 
To infer the maximum likelihood phylogenetic trees, we performed a tree search 
comprising 100 distinct starting trees (50 random, 50 parsimony), as well as 1000 
bootstrap searches. We used ModelTest-NG to automatically select the best 
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evolutionary model for the given data. The pipeline also automatically produces 
versions of the best maximum likelihood tree annotated with Felsenstein’s Bootstrap 
(Felsenstein, 1985) support values, and Transfer Bootstrap Expectation values (Lemoine 
et al., 2018). 
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5.1 Abstract 
 

CRISPR-Cas systems protect microbes from viral infection using an adaptive RNA-
guided mechanism that recognizes and cuts foreign genetic material. Using genome-
resolved metagenomics, we find that these systems are also encoded in diverse 
classes of bacteriophages, where they occur as divergent and hypercompact anti-viral 
systems. More than 6000 bacteriophages, <1% of all phages examined, encode 
CRISPR systems spanning both Class 1 and 2, including all six of the known CRISPR-
Cas types. Many of these systems target competing mobile elements predicted to 
infect the same bacterial hosts, and RNA-targeting systems often lack crucial 
components that would, in their bacterial counterparts, result in acute abortive 
infection, suggesting alternate targeting outcomes or complementation by host factors. 
We describe multiple new Cas9-like protein families and 44 families related to type V 
CRISPR-Cas systems that occur on phage genomes and provide the first biochemical 
and structural insights into the Casλ family. Casλ recognizes double-stranded DNA 
using a unique structured crRNA reminiscent of engineered sgRNA and generated by 3’ 
end cleavage, unlike any previously described single-RNA CRISPR-Cas system. The 
Casλ-RNA-DNA structure determined by cryo-electron microscopy reveals a compact 
architecture capable of robust RNA-guided DNA cutting. Despite its significant 
divergence in sequence, domain organization and crRNA production, Casλ possesses a 
bi-lobed structure reminiscent of Cas9 and Cas12, exemplifying the convergent 
evolution of RNA-guided enzymes. Remarkably, Casλ induces efficient genome editing 
of endogenous genes in mammalian, Arabidopsis, and hexaploid wheat cells on par 
with, or in some cases, exceeding Cas12a-mediated genome editing. 
 
 
 
N.B. All main figures for this manuscript can be found below in their dedicated section. 
All supplementary files (including figures and tables) can be found online with the 
published manuscript. 
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5.2 Introduction 
 

CRISPR-Cas systems confer resistance in prokaryotes against invading extra-
chromosomal elements including viruses and plasmids (Barrangou et al., 2007). To 
generate immunological memory, microbes capture fragments of foreign genetic 
elements and incorporate them into their genomic CRISPR array using the Cas1-Cas2 
integrase. Subsequent transcription of the array creates CRISPR RNAs (crRNAs) that 
bind to and direct CRISPR-associated (Cas) nucleases to target complementary nucleic 
acids. These systems comprise two classes, each with three different types, defined by 
the architectures of their nuclease effector modules involved in crRNA processing and 
DNA or RNA interference. 

Reports of CRISPR-Cas loci encoded in bacteriophages (phage) that infect 
Vibrio cholera (O’Hara et al., 2017; Seed et al., 2013) or in huge phage genomes 
reconstructed from microbial community DNA sequences (Al-Shayeb et al., 2020) 
hinted at a wider distribution of phage-encoded CRISPR systems that might play as-
yet-unknown roles in prokaryotic biology. These observations motivated us to perform 
a comprehensive study of the abundance, distribution, and diversity of CRISPR-Cas 
systems encoded throughout the virosphere and to begin to explore the biochemical 
activity of novel systems.  

Here we report the widespread occurrence of diverse as well as compact 
CRISPR-Cas systems encoded in phage genomes identified by metagenomic analysis 
of microbial samples isolated from soil, aquatic, human and animal microbiomes, 
demonstrating an unexpected biological reservoir of anti-viral machinery within 
infectious agents. Phage-encoded CRISPR-Cas systems include members of all six 
CRISPR types (types I-VI) as defined by bacterially-encoded examples. We found 
evidence for new or alternative modes of nucleic acid interference involving phage-
encoded type I, III, IV, and VI systems. In addition, the phage and phage-like sequences 
result in a severalfold expansion of CRISPR-Cas9 and -Cas12 enzymes belonging to 
the type II and type V families that are widely deployed for genome editing applications. 
Casλ, the most divergent of the phage-encoded type V enzymes identified in this study, 
was found to have robust biochemical activity as an RNA-guided double-stranded DNA 
cutter. Its cryo-EM-determined molecular structure explains its use of a natural single-
guide RNA for DNA binding, and cell-based experiments demonstrated robust 
endogenous genome editing activity in plant and mammalian cells. The compact 
architecture of Casλ and other phage-encoded CRISPR-Cas proteins holds significant 
promise for vector-based and direct delivery into cells for wide-ranging 
biotechnological applications. 
 

5.3 Results and Discussion 
 
A wide diversity of phages across many bacterial phyla encode divergent CRISPR-
Cas systems 
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Using genome-resolved metagenomics, we analyzed over 660 Gigabasepairs of 
assembled genomic DNA from both environmental and animal-associated microbiomes 
to reveal a surprising diversity of over 6000 CRISPR-encoding phages (Fig. 1A). Our 
analysis of publicly available phage genomes revealed that CRISPR-Cas systems occur 
in only 0.3% of Genbank-recorded phages, 0.8% of complete RefSeq-recorded 
phages, and 0.4% of IMG-VR-recorded phages, making them exceptionally rare 
compared to their abundance in prokaryotic genomes where they occur in 40% of 
bacteria and 85% of archaea. The majority of CRISPR-containing phages formed 
distinct clusters relative to reference genomes based on their protein repertoire. At least 
two phages harboring CRISPR arrays were alternatively coded such that the TAG stop 
codon was recoded to glutamine. Although circularized CRISPR-encoding phages 
included huge phages such as a >620 kbp megaphage (Fig. 1B), most had a genome 
size close to the average of 52 kbp. Rather than being constrained to a specific 
bacterial phylum, CRISPR-encoding phages are predicted to predate most major 
bacterial phyla including Firmicutes, Proteobacteria, Bacteroidetes, and Actinobacteria 
(Fig. 1C). Notably, however, relatively few phages encode complete CRISPR-Cas 
systems. Fewer than 10% of CRISPR-encoding phages were found to contain 
machinery for the acquisition of new spacer sequences into their CRISPR arrays, 
consistent with observations in huge phages (Al-Shayeb et al., 2020). Many phages 
encode CRISPR arrays, but few include Cas effectors encoded nearby (Fig. 1C). In such 
situations, phages may produce their own guide RNAs but hijack the Cas effectors 
provided by their hosts.  Consistent with this possibility, >50 phages encode only the 
Cas1-Cas2 integrase used for the acquisition of new spacers, but no other Cas 
enzymes. In some cases, phage-encoded Cas1 contained a fusion to another protein 
such as reverse transcriptase, suggesting the possibility of the acquisition of RNA 
protospacers into the phage array. 
 
Phage-encoded RNA-targeting CRISPR-Cas systems are rare  

Out of the thousands of phage-encoded CRISPR-Cas loci identified in this 
study, only 27 represent known RNA-targeting systems. Some of these are type III 
systems associated with CRISPR arrays targeting vital or highly abundant RNA 
transcripts of other mobile elements (Fig. 2). In typical Type III systems, the Cas10 
protein converts ATP into a cyclic oligoadenylate (cOA) product, which allosterically 
activates an auxiliary Csm6 ribonuclease (Niewoehner et al. 2017). The activated Csm6 
amplifies the immune response by degrading RNA transcripts indiscriminately, thereby 
destroying the invasive transcriptome or inducing host cell dormancy or death, aborting 
the phage infectious cycle (Jiang et al., 2016; Kazlauskiene et al., 2017; Koonin and 
Zhang, 2017; Niewoehner et al., 2017). Interestingly, in huge phage-encoded type III 
systems, the Cas10 subunit contains multiple mutations consistent with an inability to 
produce cOA (Fig. S1) and Csm6 or a related CARF-domain ribonuclease is absent. 
Notably, the key residues for DNA cleavage in the Cas10 HD domain, and for RNA 
cleavage in Cas7 remain intact (Fig S1, S2). Unless the cOA production and Csm6 
RNase functionalities are complemented by orthogonal type III systems from the host 
genome, this suggests that the type III phage systems may be capable of targeting and 
cis-cleavage of key RNA transcripts and genomic DNA of competing mobile elements 
to interfere with their infectious cycle, but circumventing the abortive infection 
mechanism activated by cOA signaling and subsequent trans-cleavage of transcripts in 
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the host cell, which may deplete the CRISPR phage population itself and inadvertently 
provide herd immunity to uninfected bacteria.  

In addition to type III systems, we found the first examples of phage-encoded 
type VI (Cas13) ribonucleases, most of which belong to the Cas13b and the relatively 
small Cas13d superfamilies. Analogously to the findings above with type III systems in 
abortive infection, the lack of signature csx27 and csx28 proteins, which are 
transmembrane factors that enhance abortive infection mechanisms (VanderWal et al., 
2021), may indicate the absence of an abortive infection pathway unless supplemented 
by the host. 
 
Miniature single-effector CRISPR-Cas systems are enriched in phage genomes 

Class 2 CRISPR-Cas systems, including types II, V, and VI, generally employ 
single subunit RNA-guided, nucleic acid-targeting interference enzymes.  In addition to 
new Cas9 (a, b, c) and Cas12 (a, b, c, f, i) enzyme variants, we identified miniature 
CRISPR-associated nucleases in phages harboring both HNH and RuvC catalytic 
domains characteristic of Cas9 and Cas12. These miniature nucleases constitute 
phylogenetically distinct clades denoted as types II-X, -Y, and -Z (Fig. 1C). These 
systems lack the Cas1, Cas2, or Csn2 sequence acquisition machinery (Fig. 1C) and 
have distinct domain organizations compared to previously studied Cas9 orthologs with 
significant deletions across the proteins in comparison.  

Furthermore, we observed that bacteriophage genomes harbor an unusual 
enrichment of hypercompact type V effectors (Fig. 1B, D), including hundreds of 
variants comprising 44 protein families that are evolutionarily distant from previously 
reported and experimentally validated miniature type V CRISPR-Cas nucleases 
including Cas12f and CasΦ (Fig. 1E). Evolutionary analysis suggests that distinct type V 
nuclease subtypes may have evolved multiple times from separate transposon-
encoded TnpB families, which have recently been shown to be RNA-guided nucleases 
themselves (Karvelis et al., 2021), and we observe that TnpB is also widely encoded on 
phages. 
 CRISPR arrays associated with the Type V families contained spacer sequences 
targeting competing double-stranded DNA (dsDNA)-based extrachromosomal elements 
that are predicted to infect the same host (Fig. 2). We found that in multiple related 
Biggiephages, miniature type V families including Casμ and CasΦ co-occurred with a 
Type I system that we term Type I-X, bearing similarities to Type I-C CRISPR systems 
but featuring a distinct helicase in place of the processive nuclease Cas3. Biggiephage 
genomes were recovered over a four-year timespan, and remained identical save for 
their CRISPR arrays, which were nevertheless remarkably similar over time (Fig. S3). 
While we were unable to validate DNA cleavage by this system, it is possible that 
double-stranded DNA binding silences the expression of target genes (Fig. S4). In some 
cases, the arrays of the type I-X system target the same circular extrachromosomal 
element, albeit with distinct spacers, as the array associated with co-occurring type V 
systems. One such cryptic element harbored restriction enzymes and retron-based 
anti-phage defense systems that could limit Biggiephage infectivity, underscoring the 
dynamic nature of the evolutionary arms race between mobile elements in competition 
for host resources. 
 We also found the first type IV systems encoded in lytic phage genomes. Type 
IV systems are predominantly found on plasmids, where their mechanisms of action are 
poorly understood and they sometimes lack a CRISPR array (Pinilla-Redondo et al., 
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2020). We report a Type IV subtype that lacks the DinG hallmark gene and encodes in 
its place a CysH-like protein bearing limited similarity to non-CRISPR associated CysH 
phosphoadenosine 5'-phosphosulfate reductases. Remarkably, the CRISPR array 
associated with this type IV-F system and a neighboring type V targets the type V Cas 
gene encoded in a competing cyanophage (Fig. 2). 

 
Casλ is a divergent phage-specific CRISPR-Cas enzyme with a unique guide RNA 

A distinctive phage-encoded enzyme family, Casλ, exists within huge 
bacteriophages that are evolutionarily linked to the recently reported Mahaphage clade 
(Al-Shayeb et al., 2020). This family of 33 compact homologs exhibited such sequence 
divergence that it had negligible sequence identity (<5%) to, and clustered separately 
from, type V and type II enzymes (Fig. S5). The protein is not encoded along with any 
other Cas proteins, and the RuvC nuclease was not immediately identifiable from the 
sequence. Difficulty in aligning this system to reported enzymes via remote homology 
(Fig S5) further suggested that a direct evolutionary relationship with known Cas 
superfamilies was questionable. CRISPR arrays associated with Casλ contain spacer 
sequences complementary to double-stranded DNA (dsDNA)-based extrachromosomal 
elements predicted to infect the same Bacteroidetes host (Fig. 2). These observations 
implied that Casλ may be targeting dsDNA in native contexts of the host similarly to 
Cas9 or Cas12 systems. 

In any CRISPR-Cas system, processing of CRISPR array transcripts, consisting 
of repeats and spacer sequences acquired from previously encountered mobile genetic 
elements (MGEs) (McGinn and Marraffini, 2019), is essential to generating mature 
crRNAs that guide Cas proteins (Hille et al., 2018) to destroy foreign viruses. Similarly to 
the distinct nature of the protein, the Casλ crRNA is predicted to form an elongated 
hairpin secondary structure not previously observed in guide RNAs associated with 
Cas12 (Fig. 3A). Despite their divergent nucleotide sequences, crRNAs retain a similar 
predicted hairpin structure across the protein family (Fig. S5B). Furthermore, Casλ 
crRNAs contain conserved sequences at their 5’ and 3’ ends and in the center of the 
RNA (Fig. 3B). The overall sequence divergence of the protein, its putative RuvC 
domain, and the encoded crRNA prompted us to further analyze this protein family.  
 
RuvC-mediated crRNA processing in the spacer region by Casλ 

The lack of a detectable tracrRNA encoded within the genomic locus begged 
the question of how this aberrant RNA, akin to a naturally occurring crRNA-tracrRNA 
hybrid, may be processed by the CRISPR-Cas system or host factors to produce 
mature crRNA. Using radiolabeled precursor crRNAs as substrates, we first tested 
whether purified Casλ protein catalyzes RNA cleavage. Surprisingly, analytical 
denaturing gel electrophoresis showed that pre-crRNAs are cut by Casλ in the spacer 
region as opposed to the 5’ end of the RNA, where cutting has been observed in all 
self-processing single-effector systems analyzed previously (Fig. 3C, D, S6). The Casλ-
induced pre-crRNA processing yields a crRNA spacer sequence that is complementary 
to DNA target sites 14-17 nucleotides (nt) in length. 

The fact that Casλ can process its own pre-crRNA obviates the need for 
Ribonuclease III or other host factors required for the function of most known Cas9 and 
Cas12 family members. While some CRISPR-Cas proteins process pre-crRNAs using 
an internal active site distinct from the RuvC domain (Fonfara et al., 2016) or by 
recruiting Ribonuclease III to cleave a pre-crRNA:tracrRNA duplex (Deltcheva et al., 
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2011), phage-encoded Casλ, like phage-encoded CasΦ, processes pre-crRNA using its 
RuvC active site. We thus tested Mg2+ dependence and showed that Casλ is indeed 
reliant on the presence of Mg2+ and thus, by extension, the RuvC active site for crRNA 
maturation (Fig. 3D). 

CRISPR–Cas systems target DNA sequences following or preceding a 2–5 base 
pair (bp) Protospacer Adjacent Motif (PAM) for self-versus-non-self discrimination 
(Westra et al., 2013). We determined the sequence requirements for DNA targeting by 
Casλ by depleting plasmids harboring functional PAMs. This revealed the crRNA-
guided double-strand DNA (dsDNA) targeting capability of Casλ and the lack of 
requirement for additional RNA components (Fig. S7). Casλ with GFP-targeting guides 
showed a reduction in colony-forming units (as a proxy for cell viability) of multiple 
orders of magnitude, in comparison to negative control of Casλ with a non-targeting 
guide (Fig. 3E).  

Incubation of purified Casλ with crRNAs along with linear dsDNA target 
generated cleavage products with surprisingly pronounced staggered 5′-overhangs of 
11–16 nt (Fig. 3F, 3G). Type V CRISPR-Cas enzymes such as Cas12a have also been 
observed to generate staggered overhangs, albeit smaller. Furthermore, the non-target 
strand (NTS) was cleaved faster than the target strand (TS) within the RuvC active site 
over a 2-hour time period (Fig. 3H). 
 
Casλ induces genome editing in endogenous genes in human and plant cells  

The development of single-effector CRISPR-Cas systems for editing eukaryotic 
cells has revolutionized genome engineering (Jinek et al., 2012). However, the large 
sizes of Cas9 and Cas12a enzymes can inhibit delivery into many cell types for which 
hypercompact genome editors with favorable kinetics imply great promise as an 
alternative. We conducted a head-to-head comparison of insertion and deletion 
efficiencies using Casλ and Cas12a ribonucleoproteins (RNPs) with identical guide RNA 
spacers targeting sequences recognizing VEGF and EMX1 genes in HEK293T cells. 
Despite their miniature size, Casλ RNPs generated promising genome-editing 
outcomes compared to Cas12a, and in at least one case, exceeded Cas12a indel 
percentages (Fig. 4A). Extending these experiments to Arabidopsis thaliana, we 
confirmed that Casλ exhibited editing efficiencies of up to 18% at the endogenous 
PDS3 gene (Fig. 4B), notably higher than observed previously using CasΦ (Pausch & Al-
Shayeb et al., 2020). Furthermore, we were able to achieve editing in the endogenous 
disease resistance gene Snn5 in hexaploid wheat protoplasts, where six concurrent 
edits were required for successful editing (Fig. 4C). Next-generation sequencing 
revealed indel profiles in both mammalian and plant cells exhibited large deletions (Fig. 
4D, Fig. S8), consistent with the staggered cuts observed in vitro at the PAM distal 
region.  
 
Casλ protein structure explains recognition and interference mechanisms 

CryoEM maps of a Casλ-crRNA-dsDNA ternary complex revealed a bi-lobed 
architecture analogous to Cas9 and Cas12 enzymes (Fig. 5A, B, S9, S10A). The 3 Å 
resolution structure revealed the shape and domain organization of the protein and the 
structure of the guide RNA (Fig. 5A-D, S9, Table S1). Notably, the RuvC domain, which 
in Casλ spans half the protein, is split into four parts within the sequence, likely 
hindering reliable alignment and clustering with reported Cas12 systems (Fig. 5D). The 
REC I and REC II domains are also segmented in the protein sequence, with the PAM-
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interacting domain wedged within REC I as opposed to the N terminus of the protein as 
seen in CasΦ and other type V systems. Unlike CasΦ, Casλ contains a Target Strand 
Loading (TSL) domain that likely functions to bind the Target Strand, in a position 
analogous to the “Nuc” domain that was incorrectly hypothesized in other type V 
CRISPR–Cas enzymes to be a second nuclease domain responsible for DNA cleavage 
(Liu et al., 2019a). Casλ also exhibits a distinct structure in the REC I domain compared 
to CasΦ (Fig. S10B). 

The crRNA assumes an unexpected shape that blankets the protein, with a 
divergent recognition lobe in Casλ that binds to distinct sequences and structural 
features of the guide RNA (Fig. 5C). Specifically, we observed possible interactions 
between primarily polar or charged residues within the REC II domain in Casλ with the 
conserved motifs of the crRNA hairpin (Fig. 3A, 3B, 5C). These residues are conserved 
across the protein family and likely interact either directly with the RNA nucleobases 
(Q452, N510), or with the RNA phosphate backbone to stabilize the guide (S451, K596, 
E444, N445, K503, Y619) (Fig. 5C). 

CRISPR–Cas proteins initiate the unwinding of target double-stranded DNA 
through PAM recognition. In Casλ, this is achieved via interactions with the OBD, REC I, 
and a five α-helical bundle referred to as the PAM-interacting domain; PID. Residues 
within the three domains interact with the sugar-phosphate backbone of the target DNA 
(Fig. 5B) and, in some cases such as residue N102, interact directly with the 
nucleobases. The interaction between N102 and nucleobase G(-1) may explain the 
preference for purines in this position as opposed to pyrimidines since a pyrimidine 
substitution would result in a base that is too distant from the interacting asparagine. In 
examining the aftermath of cis-cleavage of DNA, we found that Casλ had a very low 
level of ssDNA or ssRNA cleavage in trans upon DNA recognition in cis (Fig. S7). 
Incubation of the Casλ protein with non-cognate guides from other orthologs within the 
protein family replicated the ssDNA trans cleavage effect despite differences in their 
sequence (Fig 5E, S7), confirming that guides within the Casλ family may be 
interchangeable, unlike Cas9. Single mismatches across the ssDNA target revealed that 
the seed region of the target DNA (1-5) and the region extending from bases 7-13 are 
required to match the spacer sequence of the guide RNA for efficient cleavage (Fig. 5F). 
Investigation of positions that possibly interact with the DNA in these regions (Fig. 5G) 
or the corresponding RNA revealed conserved residues in REC, OBD, PID, and RuvC 
domains that may account for the complex’s intolerance to target mismatches, and, 
therefore, the possibility of relatively high fidelity in the context of gene editing. Overall, 
the domains within Casλ exhibit unexpected segmentation and rearrangement 
compared to known type V systems, and our structural understanding of Casλ provides 
a starting point for the future design of variants with expanded target space and 
improved specificity.  
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5.4 Conclusions 
CRISPR-Cas systems are rarely found on viral genomes. Nevertheless, analysis 

of CRISPR-encoding phages demonstrated unexpected sequence and biochemical 
diversity across CRISPR-Cas types in both classes. Spacer sequences associated with 
CRISPR arrays in phages show significant complementarity to double-stranded DNA 
(dsDNA)-based viruses and extrachromosomal elements predicted to infect the same 
hosts, further elucidating the broad strategy of phages to protect their hosts against 
superinfection by competing elements. We also find that phage genomes may harbor 
CRISPR-Cas systems of all six known types. However, the absence of components 
related to abortive infection in RNA-targeting systems, the absence of a processive 
nuclease in some type I systems, and the presence of CysH in type IV systems, suggest 
some alternate outcomes to nucleic acid-targeting within a host cell compared to well-
studied mechanisms. The analysis of known systems that are well-studied in a 
microbial cell context, within the context of phage predation, allows us to explore 
different possibilities and outcomes of phage variants. The targeting of abundant or 
essential transcripts of competing phages, such as phage tail proteins or transposases, 
by RNA-targeting CRISPR-Cas systems without inducing abortive infection, suggests a 
strategy to avoid self-destruction of transcripts of the CRISPR-encoding phage or 
induction of a dormant state in the host that may be disadvantageous to the phage 
lifecycle. In this biological context, phages may be using the RNA-targeting system in a 
way that best suit their needs. The lack of a Cas3 nuclease in the type I system 
targeting plasmid-like elements suggests a gene silencing mechanism that precludes 
DNA cutting to augment the activity of the co-occurring type Casµ system in the same 
genome. The observation that the targeted plasmid-like elements harbor restriction 
enzymes and retron-based anti-phage defense systems that could limit the infectivity of 
the CRISPR-encoding phage, combined with the targeting of a CRISPR-encoding 
phage by another phage encoding type IV and V CRISPR-Cas systems, underscores 
the dynamic nature of the evolutionary arms race between mobile elements in 
competition for host resources. 

We further establish that phage genomes are a natural reservoir of novel miniature 
single-effector CRISPR-Cas systems such as DNA targeting type II and type V systems, and 
refer to these systems using greek nomenclature, such as Casµ, CasΩ, and Casλ, 
extending the tradition established by phage-encoded CasΦ. In contrast to the multi-
subunit class 1 systems (namely type I and type III)  being the most prevalent CRISPR-
Cas systems in prokaryotic genomes (Makarova et al., 2019), we find a remarkable 
abundance of miniature class 2 systems on phages. As phages are known to be 
relatively fast-evolving with relatively significant genome size limitations compared to 
prokaryotes, they may be a potential incubator in which divergent or hypercompact 
systems emerge. Some systems such as Casλ bear such sequence-level divergence 
that they cluster separately from Cas12 and Cas9 systems using our methods, 
indicating that a direct evolutionary relationship with known Cas superfamilies is 
unclear. This suggests that distinct type V nuclease subtypes such as Casλ may have 
evolved multiple times, perhaps within phage genomes, from distinct transposon-
encoded TnpB families, which have recently been shown to be RNA-guided nucleases 
themselves (Karvelis et al., 2021). We observed very minimal collateral cleavage of 
ssDNA and RNA supplied in trans, which was exhibited only for some targets, but not 
endogenous ones, suggesting that Casλ may have minimal ability to target single-
stranded MGE intermediates. Despite being from very different clades of phages, with 
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CasΦ originally found in Biggiephages and Casλ in Mahaphages, likely originating from 
different ancestral protein families, and having divergent sequence and domain 
organizations, we observe a convergent evolution of Cas12-like structure, possibly on 
the phage genomes. Interestingly, both phage-encoded Casλ and CasΦ process their 
own pre-crRNA, particularly relying on the same RuvC active site used for DNA 
cleavage for crRNA maturation which has not been observed in other prokaryotic-borne 
CRISPR-Cas proteins, albeit with distinct protein sequences and structures. In both 
cases, if the phages encode their own Cas variants without reliance on host factors, this 
may provide some benefit by eliminating the possibility that the ongoing evolution of an 
essential host protein will render it incompatible with phage-encoded antiviral systems. 

The bi-lobed CryoEM structure of the Casλ-crRNA-dsDNA complex analogous 
to Cas9 and Cas12 enzymes exhibits an interesting case of convergent evolution of 
RNA-guided effectors despite extreme sequence divergence and distinct ancestral 
protein families. The domain architecture exhibits unexpected segmentation and 
rearrangement compared to known type V systems, with the RECI, RECII, OBD, RuvC, 
and TSL domains are all is split at the sequence level into multiple parts, and the unique 
organization of the PAM interacting domain and REC I explain the difficulty in 
accurately aligning Casλ to reported enzymes, despite overall structural similarity.  

In addition to their streamlined nature that is advantageous for cellular delivery 
(Fig. S12), hypercompact phage systems such as Casλ can induce remarkably efficient 
genome editing of endogenous genes in mammalian, Arabidopsis, and wheat cells on 
par with, or in some cases, exceeding Cas12a-mediated genome editing, showing that 
there isn’t necessarily a tradeoff between Cas effector size and molecular function or 
utility in mammalian cells 
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5.5 Figures 
 

Figure 1. Diversity of Phages, Hosts, and Class 2 CRISPR-Cas systems across 
viruses. (A) Protein-clustering network analysis based on the number of shared protein 
clusters between the CRISPR-encoding phages in this study and RefSeq phages. Each 
node represents a genome and each edge is the hypergeometric similarity between 
genomes based on shared protein clusters. (B) Genome size distribution of circularized 
CRISPR phages from this study (n=152). (C) A heat map showing the number of 
CRISPR phage genomes containing each CRISPR type with respect to major bacterial 
phyla. ‘Unknown’ indicates CRISPR phages that could not be assigned to any of the 
known types. (D) Maximum likelihood phylogenetic tree of phage and bacterial encoded 
type II nucleases and respective predicted ancestral IscB nucleases. Bootstrap and 
approximate likelihood-ratio test values ≥ 50 are denoted on the branches. Bottom 
illustration of genomic CRISPR-Cas loci of type II and representative type V systems 
previously employed in genome editing applications. (E) Maximum likelihood 
phylogenetic tree of phage and previously reported bacterially-encoded type V 
nucleases and respective predicted ancestral TnpB nucleases. (F) Maximum likelihood 
phylogenetic tree of phage and previously reported bacterially- encoded type VI 
nucleases. 
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Figure 2. Mobile genetic element targeting by diverse mechanisms in various phyla 
to abrogate superinfection. Graphical illustrations of representative phage CRISPR 
loci harboring novel subtypes and their proposed mechanisms and functions as 
determined via spacer targeting and protein sequence analysis. Special consideration is 
given to phages carrying multiple loci.  
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Figure 3. Casλ processes its own crRNA and cleaves dsDNA. (A) Casλ repeats 
uniquely display highly conserved nucleotide sequences at the 5’, 3’, and center of the 
RNA (B) Casλ1 from Huge Mahaphages displays a unique crRNA hairpin compared to 
known Cas12 enyzmes, and is reminiscent of stem loop 1 of the engineered SpyCas9 
single gRNA (sgRNA). (C) 5’ radiolabelling of crRNAs indicate that Casλ1 uniquely 
processes its own crRNA in the spacer region (or 5‘ end). OH-ladder enables the pre-
crRNA processing sites (red triangles) to be derived. (D) Processing of the Repeat-
Spacer-Repeat pre-crRNA substrate occurs similarly to (C) in the spacer region, and 
does not occur in the absence of Mg2+, indicating a role for the RuvC in the processing 
mechanism. (E) Casλ with targeting or non-targeting guides validate its capacity to 
cleave DNA flanking experimentally determined PAMs in E. coli. (F) Cleavage assay 
targeting dsDNA for mapping of the cleavage structure. (G) Efficiency and kinetics of 
DNA cleavage of NTS and TS (n = 3 each, mean ± s.d.) (H) Scheme illustrating the DNA 
cleavage pattern 
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Figure 4. Casλ is functional for editing of endogenous genes in human, 
Arabidopsis, and wheat cells with large deletion profiles. (A) Indel efficiency 
using Casλ and Cas12a RNPs with identical spacers targeting VEGF and EMX1 genes 
in HEK293T cells, and a schematic of the model of DNA cleavage outcomes following 
DNA cleavage by Casλ. (B) Indel efficiencies in Arabidopsis thaliana protoplasts 
showing significantly higher levels of editing than previously achieved by CasΦ for the 
same PDS3 gene, and (C) in wheat protoplasts targeting the disease resistance gene 
Snn5. (D) Indel profiles generated by Casλ RNP administration show primarily large 
deletions, and little change without Casλ. 
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Figure 5. (A) Cryo-EM maps of the Casλ- guide RNA- DNA complex. The target strand 
is shown in cyan and the non-target strand is shown in magenta. (B) Cylinder 
representation of the Casλ–gRNA–DNA complex in two 90°-rotated orientations. 
Disordered linkers are shown as dotted lines. Insets highlight residues responsible for 
PAM recognition. Hydrogen bonds are shown as dashed lines. (C) Model of guide RNA–
target DNA complex, with insets highlighting residues interacting with the RNA. (D) 
Schematic of the domain organization of Casλ. (E) Casλ  can still cleave ssDNA in trans 
with guide RNAs consisting of non-cognate repeats that are divergent at the sequence 
level. Hierarchical clustering dendrogram of different repeats with their predicted 
secondary structures. (F) Fluorescence output using oligonucleotide activators with 
mismatches at each respective position along the target DNA. (G) Close-up views of the 
residues responsible for recognition of the seed and low mismatch tolerance regions 
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5.6 Methods 
 

Phylogenetic analysis 
Cas protein sequences and representatives from the TnpB superfamily were collected 
and the resulting set was clustered at 90% amino acid identity to reduce redundancy. A 
new alignment of Casλ with the resulting sequence set was generated using MAFFT 
with 1000 iterations and filtered to remove columns composed of gaps in 95% of 
sequences. The phylogenetic tree was inferred using IQTREE v1.6.6 using automatic 
model selection and 1000 bootstraps. 
 
crRNA sequence analysis  
CRISPR-RNA (crRNA) repeats from Phage-encoded CRISPR loci were identified using 
MinCED (github.com/ctSkennerton/minced). The repeats were compared by generating 
pairwise similarity scores using the Needleman-Wunsch algorithm. A heatmap was built 
using the similarity score matrix and hierarchical clustering produced dendrograms that 
were overlaid onto the heatmap to delineate different clusters of repeats.  
 
PAM depletion analysis 
PAM depletion assays were performed with both, Casλ plasmids that either carried the 
whole Casλ locus as derived from metagenomics (pPP049, pPP056 and pPP062), or 
with plasmids that contained only the casL gene and a mini CRISPR (pPP097, pPP102 
and pPP107). Assays were performed as three individual biological replicates. Plasmids 
containing casL and mini CRISPRs were transformed into E. coli BL21(DE3) (NEB) and 
constructs containing Casλ genomic loci were transformed into E. coli DH5α (QB3-
Macrolab, UC Berkeley). Subsequently, electrocompetent cells were prepared by ice 
cold H20 and 10 % glycerol washing. A plasmid library was constructed with 8 
randomized nucleotides upstream (5’) end of the target sequence. Competent cells 
were transformed in triplicate by electroporation with 200 ng library plasmids (0.1 mm 
electroporation cuvettes (Bio-Rad) on a Micropulser electroporator (Bio-Rad)). After a 
two-hour recovery period, cells were plated on selective media and colony forming 
units were determined to ensure appropriate coverage of all possible combinations of 
the randomized 5’ PAM region. Strains were grown at 25 °C for 48 hours on media 
containing appropriate antibiotics (either 100 µg/mL carbenicillin and 34 µg/mL 
chloramphenicol, or 100 µg/mL carbenicillin and 50 µg/mL kanamycin) and 0.05 mM 
isopropyl-β-D-thiogalactopyranoside (IPTG), or 200 nM anhydrotetracycline (aTc), 
depending on the vector to ensure propagation of plasmids and Casλ effector 
production. Subsequently, propagated plasmids were isolated using a QIAprep Spin 
Miniprep Kit (Qiagen). 
 
PAM depletion sequencing analysis  
Amplicon sequencing of the targeted plasmid was used to identify PAM motifs that are 
preferentially depleted. Sequencing reads were mapped to the respective plasmids and 
PAM randomized regions were extracted. The abundance of each possible 8 nucleotide 
combination was counted from the aligned reads and normalized to the total reads for 
each sample. Enriched PAMs were computed by calculating the log ratio compared to 
the abundance in the control plasmids, and were used to produce sequence logos. 
 



 

 

 

 

127 

Programmable DNA targeting 
A flp recombination assay was performed in E. coli to eliminate the Kanamycin 
resistance cassette from E. coli strains that contain GFP and RFP expression cassettes 
integrated into the genome. Individual colonies of the E. coliΔKan were picked to  
inoculate three 5 mL (LB) starter cultures to prepare electrocompetent cells the 
following day. 100 mL (LB) main cultures were inoculated from the starter cultures and 
grown vigorously shaking at 37 °C to an OD600 of 0.6-0.7 before preparation of 
electrocompetent cells by repeated ice-cold H20 and 10% glycerol washes. Cells were 
resuspended in 10% glycerol and 50µL aliquots were flash frozen in liquid nitrogen and 
stored at -80 °C. Casλ vectors were generated containing codon optimized Casλ1 gene 
and a guide comprised of its cognate repeat element and selections of spacers 
targeting the GFP DNA within the resulting E. coliΔKan strain (pBAS41, pBAS42, 
pBAS43, pBAS44)  were subcloned from pBAS12. Casλ vectors containing Casλ1 and 
a guide composed of a non-cognate repeat unit from Casλ2 and a GFP-targeting 
spacer (TAGCATCACCTTCACCCTCTCCACGGACAG) guide were also subcloned to 
form pBAS40. The Casλ vectors and Casλ vectors with a non-targeting guide control 
plasmid were transformed into 25 µL of electrocompetent cells with 100 ng of plasmid 
via electroporation in 0.1 mm electroporation cuvettes (Bio-Rad) on a Micropulser 
electroporator (Bio-Rad), cells were recovered in 1 mL recovery medium (Lucigen) 
shaking at 37 °C for one hour. 10-fold dilution series were then prepared and 3.5 μL of 
the respective dilutions were spot-plated on LB-Agar containing the appropriate 
antibiotics and IPTG inducer. Plates were incubated overnight at 37 °C and colonies 
were counted the following day to determine the transformation efficiency. To assess 
the transformation efficiency, the mean and standard deviations were calculated from 
the cell forming units per ng transformed plasmids for the electroporation triplicates. 
The experiment showed marked reduction of GFP E. coli using Casλ vectors with their 
cognate guides (pBAS44) in comparison to the non-targeting control, indicating a 
double-stranded DNA break at the target region. The growth of primarily RFP-positive/ 
GFP-negative colonies under blue light further supports the ability to confer targeted 
programmable genome editing to result in strains lacking GFP production. Growth 
inhibition using Casλ vectors with guides from a separate Casλ ortholog (pBAS40), with 
colonies observed expressing primarily RFP and no GFP, also indicate that Casλ 
orthologs may function using guides from related CRISPR-Cas systems to confer 
editing in cells, with a precise ablation of GFP production. This can be further expanded 
to HEK293T mammalian cells with integrated GFP, which indicate activity in mammalian 
cells. The sickly phenotype of E. coli colonies that have grown in both cases even in 
undiluted samples is also indicative of possible trans-cleavage of nucleic acids (RNA or 
DNA), which can be used for diagnostic purposes by providing a sample containing the 
target nucleic acid with the Casλ RNP and a single-stranded DNA fluorophore-
quencher (ssDNA-FQ) reporter or RNA fluorophore-quencher (ssRNA-FQ) reporter 
molecule, generating a strong fluorescence signal in the presence of the target nucleic 
acid compared to a markedly lower fluorescence signal in its absence. 
 
Protein Purification 
Casλ overexpression vectors containing a His-Tag were transformed into chemically 
competent E. coli BL21(DE3)-Star (QB3-Macrolab, UC Berkeley) and incubated 
overnight at 37°C on LB-Kan agar plates (50 µg/mL Kanamycin). Single colonies were 
picked to inoculate 50 mL (LB, Kanamycin 50 μg/mL) starter cultures which were 
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incubated at 37 °C shaking vigorously overnight. The following day, 2 750 mL TB-Kan 
media (50 µg/mL Kanamycin) were inoculated with 40 mL starter culture and grown at 
37 °C to an OD600 of 0.6, cooled down on ice, and gene expression was subsequently 
induced with 0.5 mM IPTG followed by incubation overnight at 16 °C.  
The cells were harvested by centrifugation and resuspended in low salt buffer, and then 
subsequently lysed by sonication. The soluble fraction was loaded on a 5 mL Ni-NTA 
Superflow Cartridge (Qiagen) pre-equilibrated in wash buffer. Bound proteins were 
washed with 20 column volumes (CV) wash buffer and subsequently eluted in 5 CV 
elution buffer (50 mM HEPES-Na pH 7.5 RT, 500 mM NaCl, 500 mM imidazole, 5 % 
glycerol, and 0.5 mM TCEP). The eluted proteins were concentrated to 1 mL before 
injection into a HiLoad 16/600 Superdex 200pg column (GE Healthcare) pre-
equilibrated in size-exclusion chromatography buffer (20 mM HEPES-Na pH 7.5 RT, 
500 mM NaCl, 5 % glycerol, and 0.5 mM TCEP). Peak fractions were concentrated to 1 
mL and concentrations were determined using a NanoDrop 8000 Spectrophotometer 
(Thermo Scientific). Proteins were purified at a constant temperature of 4 °C and 
concentrated proteins were kept on ice to prevent aggregation, snap-frozen in liquid 
nitrogen, and stored at -80 °C. SDS-PAGE gel electrophoresis of Casλ at varying 
stages of protein purification showed a protein size in line with computationally 
predicted values of ~70-85 kDa. 
 
Pre-crRNA processing assays 
The reactions were carried out in RNA cleavage buffer containing 20 mM Tris-Cl (pH 7.5 
at 37°C), 150 mM KCl, 5 mM MgCl2, 1 mM TCEP, and 5% (v/v) glycerol. Pre-crRNA 
substrates were 5′-radiolabeled with T4 PNK (NEB) in the presence of gamma 32P-ATP. 
In a typical pre-crRNA processing reaction, the concentrations of Casλ and 32P-labeled 
pre-crRNA substrates were 100 nM and 3 nM, respectively. Reactions were incubated 
at 37°C, and an aliquot of each reaction was quenched with 2x Quench Buffer (94% 
(v/v) formamide, 30 mM EDTA, 400 μg/mL heparin, 0.2% SDS, and 0.025% (w/v) 
bromophenol blue) at 0, 1, 5, 15, 30, and 60 min. RNA hydrolysis ladders were prepared 
by incubating RNA probes in 1X RNA Alkaline Hydrolysis Buffer (Invitrogen) at 95°C 
before the addition of 2x Quench Buffer. Quenched reactions were incubated at 95°C 
for 3 min, and products were then resolved by denaturing PAGE (10% or 20% 
acrylamide:bis-acrylamide 19:1, 7 M urea, 1X TBE). Gels were dried (3 hr, 80°C) on a 
Model 583 Gel Dryer (Bio-Rad) and exposed to a phosphor screen. Phosphor screens 
were imaged on an Amersham Typhoon phosphorimager (GE Healthcare). For assays in 
an EDTA-containing buffer, 25 mM EDTA was substituted for 5 mM MgCl2. 

In vitro cleavage assays - radiolabeled nucleic acids 

crRNA oligonucleotides were manufactured synthetically and dissolved in DEPC-
treated ddH20 to a concentration of 0.5 mM. Subsequently, the crRNA was heated to 
65 °C for 3 min and allowed to cool down to room temperature. Casλ RNP complexes 
were reconstituted at a concentration of 10 μM by incubation of 10 μM Casλ and 12 μM 
crRNA for 10 min at RT in 2x cleavage buffer (20 mM Hepes-Na pH 7.5, 300 mM KCl, 
10 mM MgCl2, 20 % glycerol, 1 mM TCEP). RNPs were aliquoted to a volume of 10 μL, 
flash-frozen in liquid nitrogen, and stored at −80 °C. RNP aliquots were thawed on ice 
before experimental use. Substrates were 5′-end-labelled using T4-PNK (NEB) in the 
presence of 32P-γ-ATP. Oligonucleotide-duplex targets were generated by combining 
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32P-labelled and unlabelled complementary oligonucleotides in a 1:1.5 molar ratio. 
Oligos were hybridized to a DNA-duplex concentration of 50 nM in hybridization buffer 
(10 mM Hepes-Na pH 7.5 RT, 150 mM NaCl), by heating for 5 min to 95 °C and a slow 
cool down to RT in a heating block. Cleavage reactions were initiated by combining 200 
nM RNP with 2 nM substrate in CB buffer and subsequently incubated at 37 °C. 
Reactions were stopped by the addition of two volumes of formamide loading buffer (96 
% formamide, 100 μg/mL bromophenol blue, 50 μg/mL xylene cyanol, 10 mM EDTA, 50 
μg/mL heparin), heated to 95 °C for 5 min, and cooled down on ice before separation 
on a 12.5 % denaturing urea-PAGE. Gels were dried for 4 h at 80°C before phosphor-
imaging visualization using an Amersham Typhoon scanner, v2.0.0.6 firmware version 
208 (GE Healthcare). Bands were quantified using ImageQuant TL 8.1 (Cytivia) and the 
cleaved fraction was calculated as the product intensity sum divided by the combined 
substrate and product intensity sum. Curves were fitted to a One-Phase-Decay model 
to derive the rate of cleavage. 
 
Fluorophore quencher and DNA mismatch tolerance assay 
DNA oligo activators were ordered from IDT to contain mismatches at each respective 
position, (A->C, T->G, C->A, G->T). Casλ RNPs were prepared as described above. 
Reactions were started by combining 100 nM RNP (100 nM Casλ, 120 nM crRNA), 100 
nM DNase Alert (IDT) FQ probe, with and without activator ssDNA and with the addition 
of a non-targeting guide or activator control in cleavage buffer in a 384 well flat bottom 
black polystyrene assay plate (#3820, Corning). Three replicates for each reaction were 
monitored (λex: 530 nm; λex: 590 nm) in a Cytation 5 plate reader (BioTek, software 
Gen v3.04) at 37 °C every 1.5 min for the activator titration experiment. For the FQ-
mismatch-assay, 2 nM activator oligonucleotides were used in singlicates. The data 
were background-subtracted using the mean values of the measurements taken for 
three no-activator controls at the respective time point.  
 
Mammalian Genome Editing 
RNPs were formed in the SF nucleofection buffer with 100pmol protein & 120pmol 
crRNA in up to 10uL (10uM concentration) for 10’ at RT. 78 pmol (1uL) of IDT Cas12a 
electroporation enhancer was then added. HEK293T cells were added in a 10uL SF 
nucleofection buffer at 200,000 cells per nucleofection. 21uL reactions were loaded into 
cuvettes. Pulse code used was DS-150. Cells were grown in duplicate from each 
nucleofection in 24-well plates. gDNA was collected after 72 hours in Quick Extract. 
PCR1 was performed followed by bead clean-up to remove primers and submitted for 
PCR2, bead clean up, and iSeq. 
 
Plant Genome Editing 
Guides were designed to target the PDS3 gene in plant protoplasts, incubated with 
protein as described for in vitro assays, and 10uM of RNP was transfected onto 
Arabidopsis protoplasts as previously described. 
 
Ternary complex reconstitution for cryo-EM.  
Casλ was produced as described above. crRNA (rBAS80) was ordered as a synthetic 
RNA oligonucleotide from IDT and dissolved in DEPC-treated ddH2O to a concentration 
of 0.5mM. Subsequently, the crRNA was heated to 65 °C for 3 min and cooled down to 
RT to allow for hairpin formation. DNA oligonucleotides (dBAS608, dBAS609) were 
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designed to contain a non complementary protospacer segment to produce ‘bubbled’ 
substrates and facilitate rapid R-loop formation during ternary complex reconstitution. 
Oligonucleotides were ordered from and synthesized by IDT. DNA oligonucleotides were 
combined in a 1:1.2 molar ratio (target strand:nontarget strand) and annealed to form a 
DNA duplex in hybridization buffer (10mM Hepes-Na pH 7.5 RT, 150mM NaCl) by heating 
for 5min at 95 °C and a subsequent slow cool down in a thermocycler.  
 
Prior to reconstitution, thawed Casλ protein was incubated with crRNA in 1:1.1 ratio for 
10 min at room temperature, and the DNA duplex was added. The ternary complex was 
reconstituted with the final Casλ : crRNA : TS : NTS strands stoichiometry of 1 : 1.1 : 1.2 
: 1.44, for another 10 min at RT, and further injected into a Superdex 200 prep grade 
10/300 column (GE Healthcare) pre-equilibrated in low salt buffer (10mM Hepes-Na pH 
7.5, 150mM NaCl) at 4 °C to separate complexes from excess nucleic acids. Peak 
fractions were pooled and concentrated down to ~20 uM with a centrifugal filter device 
(Millipore 10 kDa Mw cutoff), as measured by absorbance at 260 nm with  NanoDrop 
8000 Spectrophotometer (Thermo Scientific), and kept on ice before plunge-freezing. 
 
Electron microscopy grid preparation and data collection. 
The resulting sample was frozen using FEI Vitrobot Mark IV, cooled to 8 °C at 100% 
humidity. 1.2/1.3 300 mesh UltrAuFoil gold grids (Electron Microscopy Sciences 
#Q350AR13A), were glow discharged at 15 mA for 25 s using PELCO easyGLOW. Total 
volume of 4 uL sample was applied to the grid and immediately blotted for 5 s with a blot 
force of 8 units. Micrographs were collected on a Talos Arctica operated at 200 kV and 
x36,000 magnification (1.115 A pixel size), in the super-resolution setting of K3 Direct 
Electron Detector. Cryo-EM data was collected using SerialEM v.3.8.7 software. Images 
were obtained in a series of exposures generated by the microscope stage and beam 
shifts. 
 
Single-particle cryo-EM data processing and 3D volume reconstruction. 
In total, 2795 movies were collected with a defocus range of -0.8 to -2.2 um. Data 
processing was further performed in cryoSPARC v3.2.0. Movies were corrected for 
beam-induced motion using patch motion, and CTF parameters were calculated using 
patch CTF. Two rounds of Topaz training were applied to the data to enrich the amounts 
of Casλ ternary complex particles picked as follows. In the first round, as a result of initial 
curation, a subset of 562 micrographs with seemingly best ice quality and CTF fit were 
selected. Further, 3931 particles were manually picked and submitted to Topaz particle 
training. The resulting Topaz model was used to pick particles from the micrographs, and 
a total of 153,537 particles were extracted with bin factor 2, and applied to 2D 
classification. Following the selection of the best classes, 113,638 particles were used 
for ab initio reconstruction with three classes. The 55,587 particles constituting the best 
class in terms of resolution and resemblance to an RNP were subject to non-uniform map 
refinement, and an initial complex map was obtained. In the second round, the latter 
particles were used to train a new Topaz model. Following the second round of curation, 
a total of 1931 micrographs were selected, and the new Topaz model was applied to pick 
and extract the particles. In total, 884,595 particles were subject to a round of 2D 
classification. After excluding a minor subset of classes, a total of 874,119 particles were 
selected and submitted to ab initio reconstruction with three classes. Three resulting 
maps and all particles were applied to a round of heterogeneous refinement. Particles 
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constituting the best class in terms of resolution were subject to the remove duplicates 
procedure, and further to non-uniform map refinement. As a result, a 2.99 A map 
reconstructed from a total of 369,389 particles was obtained. This map was further used 
for model building. 
 
Model building and refinement. 
The initial model of the Casλ protein was obtained with the AlphaFold program. The 
predicted model was split into two parts (eventually constituting REC and Nuc lobes), 
and each was docked independently into the map with the fitmap tool in ChimeraX. The 
dsDNA and crRNA models were built de novo. The combined ternary complex model 
was refined using the real-space refinement and rigid body fit tools in Coot v0.9.4.1. 
Finally, the model was subject to a round of real_space_refine tool in Phenix v 1.19.2-
4158-000, using secondary structure, Ramachandran, and rotamer restraints. 
 
Data deposition and figure preparation.  
Cryo-EM maps and model coordinates were deposited to the EMDB (code EMD-
NNNNN) and PDB (code NNNN). The structure figures were generated in UCSF 
ChimeraX v1.2.5. Cryo-EM map σ levels were calculated as: map level/root mean 
square deviation from zero. The orientation distribution plots were either obtained from 
CryoSPARC or generated using pyem csparc2star.py and star2bild.py programs. Map 
versus model Fourier shell correlation (FSC) graphs were calculated in Mtriage, as 
implemented in Phenix. Gold standard FSC plot was generated in cryoSPARC. 
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6 Contributed work 
 
 
6.1 Summary 
 

Throughout my time at Berkeley, I have had the pleasure of collaborating with 
colleagues and providing insights or preliminary data for their projects, or helped 
generate interesting ideas, hypotheses, and valuable computational and intellectual 
contributions for fellow lab members that have instigated fulfilling collaborations. These 
projects revolved around the biology of CRISPR-Cas and antiCRISPR systems, host-
phage interactions, structural biology of phage proteins, or regional wastewater 
surveillance and analysis of SARS-CoV-2 viral strains. The latter included the 
collaborative development and testing of economical methods for coronavirus 
surveillance that can be developed in-house. As a result, I am a co-author on the 
following manuscripts at the conclusion of this PhD. 
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7 Concluding Remarks 
 

We show that phages with huge genomes are widespread across Earth’s 
ecosystems. We manually completed 35 genomes, distinguishing them from prophage, 
providing accurate genome lengths and complete inventories of genes, including those 
encoded in complex repeat regions that break automated assemblies. Even closely 
related phages have diversified across habitats. Host and phage migration could transfer 
genes relevant in medicine and agriculture (e.g., pathogenicity factors and antibiotic 
resistance, SI). Additional medical significance could involve direct or indirect activation 
of immune responses. For example, some phages directly stimulate IFN-g via a TLR9-
dependent pathway and exacerbate colitis(Gogokhia et al., 2019). Huge phage may 
represent a reservoir of novel nucleic acid manipulation tools with applications in genome 
editing and might be harnessed to improve human and animal health. For instance, huge 
phages equipped with CRISPR-Cas systems might be tamed and used to modulate 
bacterial microbiome function or eliminate unwanted bacteria.  

The huge phages define massive clades, suggesting that a gene inventory 
comparable in size to those of many symbiotic bacteria is a conserved strategy for phage 
survival. Overall, their genes appear to redirect the host’s protein production capacity to 
favor phage genes by first intercepting the earliest steps of translation and then ensuring 
efficient protein production thereafter. These inferences are aligned with findings for 
some eukaryotic viruses, which control every phase of protein synthesis(Jaafar and Kieft, 
2019). Some acquired CRISPR-Cas systems with unusual compositions that may 
function to control host genes and eliminate competing phages.  

More broadly, huge phages represent little-known biology, the platforms for which 
are distinct from those of small phages and partially analogous to those of symbiotic 
bacteria, somewhat blurring the distinctions between life and non-life. Given phylogenetic 
evidence for large radiations of huge phages, we wonder if they are ancient and arose 
simultaneously with free-living cells, their symbionts, and other phages from a pre-life 
(protogenote) state (Woese, 1998) rather than appearing more recently via episodes of 
genome expansion. 
 

Three well-characterized Cas enzymes Cas9, Cas12a, and CasX, use one 
(Cas12a and CasX) or two active sites (Cas9) for DNA cutting and rely on a separate 
active site (Cas12a) or additional factors (CasX and Cas9) for crRNA processing (Fig. 
4C). The finding that a single RuvC active site in Chapter 2’s CasΦ from huge phages is 
capable of crRNA processing and DNA cutting suggests that size limitations of phage 
genomes, possibly in combination with large population sizes and higher mutation rates 
in phages compared to prokaryotes (Duffy et al., 2008; Lee and Marx, 2012; Lynch, 
2006), led to a consolidation of chemistries within one catalytic center. Further work in 
Chapter 5 shows that such compact proteins may be particularly amenable to 
engineering and laboratory evolution to create new functionalities for genome 
manipulation, and highlight phages as an exciting forefront for discovery and 
biotechnological applications for human health.   
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Chapter 3’s Borgs are enigmatic extrachromosomal elements that can approach 
(and likely exceed) 1 Mbp in length. We can neither prove that they are archaeal viruses 
or plasmids or mini-chromosomes, nor can we prove that they are not. Although they 
may ultimately be classified as megaplasmids, they are clearly different from anything 
that has been reported previously. It is fascinating to ponder their possible evolutionary 
origins. Borg homologous recombination may indicate movement among hosts, thus 
their possible roles as gene transfer agents. It has been noted that Methanoperedens 
spp. have been particularly open to gene acquisition from diverse bacteria and 
archaea(Leu et al., 2020), and Borgs may have contributed to this. The existence of Borgs 
encoding MCR demonstrates for the first time that MCR and MCR-like proteins for 
metabolism of methane and short-chain hydrocarbons can exist on extrachromosomal 
elements and thus could potentially be dispersed across lineages, as is inferred to have 
occurred several times over the course of archaeal evolution(Boyd et al., 2019; Hua et 
al., 2019). Borgs carry numerous metabolic genes, some of which produce variants of 
Methanoperedens spp. proteins that could have distinct biophysical and biochemical 
properties. Assuming that these genes either augment Methanoperedens spp. energy 
metabolism or extend the conditions under which they can function, Borgs may have far-
reaching biogeochemical consequences, with important and unanticipated climate 
implications. 

Since the completion of the human genome, growth of DNA sequencing 
databases has outpaced Moore’s Law. Chapter 4’s Serratus provides rapid and 
focused access to genomic sequences captured over more than a decade by the global 
research community which would otherwise be inaccessible in practice. This work and 
further extensions of petabase scale genomics 15, 16, 44 are shaping a new era in 
computational biology, enabling expansive gene discovery, pathogen surveillance, and 
pangenomic evolutionary analyses.
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