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Abstract

Many-Body Quantum Information Dynamics

by

Thomas Schuster

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Norman Y. Yao, Chair

Quantum information has emerged as a unifying force in our understanding of large-scale
quantum mechanical systems. In quantum technologies, the precise dispersal of quantum
information enables computational advantages beyond those of any classical computer. In
quantum materials, spatial patterns in the quantum information of electrons give rise to topo-
logical phases, with exotic properties when these patterns are “cut” by a material boundary.
In more remarkable systems still, quantum information appears central to the unification of
quantum mechanics and gravity, one of the frontier open questions in our understanding of
the universe. At the same time, the emergence of quantum technologies and accompanying
theoretical developments have motivated a widespread interest in dynamical quantum phe-
nomena. In this thesis, I explore several questions at the interface of quantum information
and many-body quantum dynamics. Can dynamical many-body quantum systems real-
ize stable coherent quantum phenomena—for example, topological phases—beyond those of
static systems? How does quantum information move under many-body dynamics? How can
we characterize this movement, and what are its physical implications? And finally, what
are the best strategies to learn properties of unknown quantum dynamics from measure-
ments involving them? These inquiries are united by their pursuit to realize and understand
large-scale quantum mechanical phenomena in the world around us.
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to the Bloch sphere S2. The pre-image of any point in S2 is a closed loop in T 3.
There exist topologically non-trivial states, Hopf Insulators (HIs), in which the
pre-images of any two points on S2 are linked in T 3. HIs are characterized by
a non-zero Hopf invariant h equaling the linking number of the loops; pictured
schematically are three points on S2 and their pre-images in T 3 for both a HI
with h = 1 (left) and a trivial insulator with h = 0 (right). . . . . . . . . . . . 27

3.2 The proposed experimental set-up consists of dipolar molecules confined in a
three-dimensional optical lattice, with two sub-lattices A and B separated in
the z-direction. A combination of applied electric and magnetic fields and the
intensities of the lattice beams themselves set the molecules’ rotational axes along
the z-direction, and are tuned so that |J = 1,m = 0〉 excitations (depicted as z-
oriented molecules) on the A sub-lattice can ‘hop’ to |J = 1,m = 1〉 excitations
(depicted as molecules spinning in the xy-plane) on the B sub-lattice via the
dipolar interaction, while conserving energy. Adding space- and time-dependence
to these parameters leads to Floquet modulations µαv(t) of the on-site energies,
allowing further control over the hopping magnitudes. . . . . . . . . . . . . . . 29

3.3 (a) Hopf invariant h (left axis) and band gap Eg (right axis) as a function of
the staggered chemical potential µ = (µA − µB)/2, found by discretizing the
Floquet engineered dipolar Hamiltonian using 70 × 70 × 70 k-points, periodic
boundary conditions, and setting the nearest-neighbor inter-sublattice hopping
in the xy-plane to 1. The remaining plots show the energy spectrum with (100)
edge terminations. Black states indicate the bulk, red/blue indicate states local-
ized to the left/right edge respectively, and dashed lines the bulk band gap. (b)
Adiabatic edge termination over 20 sites. The conducting edge states are pro-
tected by the h = 1 topological invariant. (c) Sharp edge termination respecting
the J crystalline symmetry [Eq. (3.3)]. The edge states are now protected by
the symmetry. (d) Introducing terms that break the J symmetry gaps the edge
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4.1 Schematic geometry depicting a 3D optical lattice of polar molecules with two
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optical lattice. The level structure of the J = 0, 1 rotational states on the A
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4.2 The Hamiltonian of the Hopf insulator maps closed loops in the Brillouin zone
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−∆m=1(θ, φ), since the hopping
changes the total angular momentum of the system by ∆m = −1. Sublattice B
molecules are depicted as spinning to indicate their non-zero z-angular momentum
in the excited state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.4 Numerical evaluation of the Hopf invariant h for N × N × N discretizations
of momentum space (colored circles) and the band gap Eg (black diamonds; in
units of the nearest-neighbor hopping tnn) of the specified dipolar spin system as
a function of the strength λ of the Floquet driving (defined in the main text),
calculated with hopping range R = 8. The Hopf insulating phase (blue, right
shaded) is observed across a range of λ; outside this range the system transitions
to gapless (white) and trivial insulating (gray, left shaded) phases. . . . . . . . 46

4.5 Numerical evaluation of the Hopf invariant h for N × N × N discretizations
of momentum space (colored circles) and the band gap Eg (black diamonds; in
units of the nearest-neighbor hopping tnn) of the specified dipolar spin system as
a function of the vertical spacing b between sublattices (in units of the nearest-
neighbor spacing in the xy-plane), calculated with hopping range R = 8. The
Hopf insulating phase (blue, right shaded) is observed across a large range of b;
outside this range the system transitions to gapless (white) and trivial insulating
(gray, left shaded) phases. Note that the Floquet modulation breaks the geometric
symmetry b→ 1− b, and hence the spectrum is not symmetric about b = 0.5. . 48
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4.6 Spectra for the (100)-edge of the Hopf insulator along the diagonal ky = k, kz =
π + k, calculated from the effective Hamiltonian in Eq. (4.9). Color indicates
a mode’s mean x-position, from red/light gray (localized at left edge), to black
(bulk), to blue/dark gray (localized at right edge). Dashed lines mark the bulk
band gap. A sharp edge (open boundary conditions) respects the symmetry
Eq. (4.22) and leads to a gapless Dirac cone spectrum (far left). Adding a
symmetry-breaking perturbation – in this case, a chemical potential on the two
sites nearest the edge – gaps the Dirac cone (left center), demonstrating the
non-adiabatic edge modes’ lack of protection. In the adiabatic limit with edge
termination smoothed over ∼ 20 lattice sites, the edge spectrum is again gap-
less (right center). However, the Hopf invariant now protects the edge modes
against all smooth perturbations to edge, including a smoothed bump in the
chemical potential in the edge region (far right). For given transverse momenta
ky, kz, the spectrum is calculated by first Fourier transforming the Hamiltonian
along the y- and z-directions, and then performing exact diagonalization on the
remaining 1D Hamiltonian. Sharp/smooth edge spectra are calculated for a lat-
tice with 80/160 unit cells in the x-direction, and hoppings are truncated at a
range R = 8. As a check on the high-frequency approximation leading to the
effective Hamiltonian, Eq. (4.9), we also perform the same computation for the
exact Floquet Hamiltonian, HF = i log

(
T exp

(
−i
´ 2π/Ωxy

0
H(t) dt

))
, at driving

frequencies Ωxy = 25 tnn, Ωz = 600 tnn, and observe qualitatively identical edge
spectra. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.7 Schematic of the proposed experiment, highlighting the mechanisms for Floquet
modulation. The lattice (light gray waves) is formed by three standing waves
of laser light (beams not pictured). Stable electric field gradients are controlled
an electrode system of tungsten rods (dark gray cylinders) and transparent plate
electrodes (tan rectangles), while coils (brown spirals) generate a homogeneous
magnetic field [116]. The xy-Floquet modulation is generated by z-polarized
lasers forming a standing wave in the (x̂ ± ŷ)-directions (large orange arrows,
left and right; polarization in small black arrows), using the AC polarizability of
40K87Rb. The z-Floquet modulation is generated by a circularly-polarized laser
in the z-direction (large purple arrow, bottom; polarization in small black arrow),
which forms an intensity gradient along its direction of propagation due to the
natural transverse spreading of a Gaussian laser beam. . . . . . . . . . . . . . . 52
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4.8 Depiction of the two-component driving scheme used to implement the z-gradient
Floquet modulation. (a) One component is realized using circularly-polarized
(σ+) light tuned near, but off-resonant with the electronic transitions |X1Σ, v =
0, J = 1,mJ〉 → |b3Π0+ , v = 0, J = 2,mJ + 1〉, with detuning ∆ν. Here
X1Σ, v = 0 denotes the electronic ground state manifold of the molecule, and
b3Π0+ , v = 0 the relevant electronic excited state manifold. This induces energy
shifts in the electronic ground states of interest, |1, 0〉A and |1, 1〉B, proportional
to the AC polarizability α of 40K87Rb at the particular detuning. (b) AC polar-
izabilities under circularly polarized σ+ light as a function of the detuning ∆ν,
calculated from first principles. Red dotted lines label two detunings that are
oscillated between to achieve a step function Floquet modulation. Red arrows in-
dicate the corresponding polarizibilities. (c) Simplified depiction of the detuning
and resulting polarizibilities as a function of time t. In the dipolar simulations, we
use a higher parameter step function, Eq. (4.19), which allows greater flexibility
to optimize the band gap of the Hopf insulating phase. The AC light intensity
is held constant in time (not depicted). (d) The other component of modulation
consists of an electric field gradient δE oscillated in time according to the same
step function. The (DC) polarizibilities αE of the |1, 0〉A, |1, 1〉B states under this
field are constant in time. (e) The polarizibilities and field amplitudes in (c-d)
multiply to produce oscillating energy shifts µz (dotted purple) of the |1, 0〉A,
|1, 1〉B states. While each individual component of the z-gradient modulation
produces a different magnitude shift for each state owing to the states’ differ-
ing polarizibilities, the linear combination of both components can be chosen to
produce equal shifts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.1 Depiction of the Floquet Hopf insulator’s two topological invariants. (a) The
‘static’ Z invariant is the Hopf invariant of the Floquet Hamiltonian HF (k), cor-
responding to the linking number of the pre-images of two points (blue, red) on
the Bloch sphere. For nearby points, this equals the twisting of the Jacobian
(colored arrows) along a single pre-image. (b) The ‘Floquet’ Z2 invariant classi-
fies the micromotion operator Um(k, t) ∈ SU(2), and is similarly interpreted as
the Jacobian twisting (dashed black arrows) along a pre-image, with a reduced
classification due to the larger dimensionality. . . . . . . . . . . . . . . . . . . . 59
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5.2 (a) A point Hopf defect (black point) has quadratic dispersion, functioning as
a strand crossing that changes the linking number of any two eigenvectors’ pre-
images (red and blue). A loop Hopf defect (black loop) has linear dispersion, and
can occur along a former pre-image. The defect charge is defined on a surface
(gray, shaded) enclosing the defect. (b) Two Floquet evolutions with different
defect charges but the same topological invariants, which are connected by a
smooth deformation λ ∈ [0, 1] preserving the Floquet unitary’s band gaps. (c)
The deformation is a π rotation of the 3-sphere parameterized by (n, ξ). Images
of time-slices representing the initial 0-defect (yellow), π-defect (blue), trivial
Hopf invariant (gray), Hopf invariant 1 (red), are displayed before and after the
rotation. (d) During the deformation, the 0-defects (black outline) and π-defects
(solid black) become loops that link in the Brillouin zone, at which point their
individual charges are undefined. The total charge h0 + hπ is conserved, corre-
sponding to the static Z invariant. Arrows indicate increasing λ. . . . . . . . . 60

5.3 Numerical calculation of the Floquet invariant, static invariant, and 0/π-defect
charges (a) across a phase transition (hS, hF ) = (1, 0) → (0, 1) (κ = 0 → 1) (b)
along the smooth deformation exchanging defect charge. . . . . . . . . . . . . . 62

5.4 Quasienergy spectra of the Floquet unitary at various smooth boundaries between
Floquet Hopf insulator phases, solved via exact diagonalization (see Appendix A).
Quasienergies are colored according to their eigenstates’ average distance from
the edge region, from localized at the edge (red) to far from the edge (black).
(a) The boundary between (hS, hF ) = (0, 1) and the trivial phase (hS, hF ) =
(0, 0), features gapless edge modes across both band gaps despite the Floquet
Hamiltonian being trivial. (b) In contrast, we find no gapless edge modes between
phases with different topological defect charges (h0, hπ) = (1,−1) and (−1, 1), but
the same topological invariants (hS, hF ) = (0, 1 mod 2), demonstrating the Z2

classification of the Floquet invariant. (c,d) Two different boundaries between
the same two phases, (hS, hF ) = (2, 0) and the trivial phase (hS, hF ) = (0, 0),
featuring gapless edge modes across either the 0- or π-gap. . . . . . . . . . . . 65
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6.1 Schematic of waveguide array. a, Schematic of the waveguide array (di-
mensions not to scale). The experiment consists of three stages, occurring in
succession in the propagation direction, z. First light is injected (indicated by
the red arrow), split, and coupled into the vortex cores of the two lattices, each
of which then undergoes a braiding operation. In the interferometer stage, light
is extracted from the vortex cores and combined in a single waveguide at the cen-
ter. The left and right arms are used to measure the intensity of light from each
lattice after braiding. b, Depiction of one of the two lattices of the waveguide
array at a fixed z-slice during the braiding stage. The waveguides (filled circles)
are displaced from their honeycomb positions (empty circles) at an angle equal
to the phase of the Kekulé order parameter ∆r(z) (arrows, drawn parallel to the
displacements and colored according to their orientation). The order parameter
contains a vortex of charge −1 (central red square) near the lattice center. The
overall offset α of the order parameter’s phase is varied as a function of z and
can be interpreted as the angle between the central anti-vortex and a fictitious
vortex ‘at infinity’ (outer red square) that resides outside the waveguide array. 69

6.2 Experimentally measured vortex mode. Diffracted light measured at the
output facet of a waveguide array device containing only the injection and braid-
ing stages. Light stays largely confined to the vortex core, while excess light that
does not overlap with the vortex mode diffracts throughout the array. A color
bar is presented on the right, which indicates the light intensity at the output
facet on a relative scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.3 Interferometric measurement of Berry phase associated with braiding.
a, The experimentally observed contrast when the two lattices are braided in
the same direction (blue) or in opposite directions (red). The geometric phase
π picked up by light near the vortex core in the latter case is evidenced by the
near-zero contrast due to destructive interference. b-c, Diffracted light measured
at the output facet when the two lattices are braided in the same and opposite
directions, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7.1 Schematic of our 7-qubit scrambling circuit with Alice’s qubit, |ψ〉, as an in-
put. Alice’s information is scrambled throughout the entire system by maximally
scrambling Clifford circuits Û and Û∗. If the scrambling operations are performed
without errors, Bob will be able to teleport Alice’s qubit to himself (〈ϕ〉ψ = 1) by
a projective measurement. The underlay depicts an interpretation of the unitaries
Û and Û∗ as representing a two-sided black hole connected by a wormhole [160,
317, 449]; in the experiment, the two-sided black hole is modeled via multiple EPR
pairs as in [318]. The maximally scrambling nature of the black hole dynamics is
captured by Û and Û∗. The vertical lines indicate that qubit pairs {3, 4}, {2, 5},
and {6, 7} are initially prepared as EPR pairs, |EPR〉 = 1√

2
(|00〉+ |11〉). . . . . . 80
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7.2 (a) Circuit designed to demonstrate that a mismatch between Ûs and Ûd natu-
rally leads to the decay of the OTOC without enabling teleportation. Following
the Ûs = I operation, we perform three additional independent rotations RX ,
RY , and RZ on the qubits by angle θ. Accompanying data (orange) for the av-
eraged successful projective measurement (〈Pψ〉), averaged teleporation fidelity
(〈Fψ〉) and noise factor (N ) as a function of θ are depicted in panels (c-e). (b)
Circuit designed to probe the OTOC and teleportation fidelity as a function of
the scrambling parameter α with α = 0 representing no scrambling and α = 1
representing full scrambling. Accompanying data (purple) for 〈Pψ〉, 〈Fψ〉 and
N as a function of θ are depicted in panels (c-e). (c-e) For the mismatch cir-
cuit shown in (a), we find that the teleportation fidelity remains near its minimal
value, 〈Fψ〉 ∼ 0.5, for all θ, consistent with our expectation that scrambling is not
occurring. However, one observes that the OTOC (as measured via 〈Pψ〉) decays
to nearly zero, which would nominally suggest scrambling. This is precisely the
challenge with interpreting OTOC measurements as an indicator of scrambling in
noisy experiments. Finally, as expected, we observe that the noise parameter N
decays as the mismatch grows. For the tunable scrambling circuit shown in (b),
we find that the teleportation fidelity increases as we increase our scrambling pa-
rameter α. This increase in teleportation fidelity is accompanied by a decrease in
the OTOC (as measured via 〈Pψ〉), indicating that the OTOC’s decay is caused,
at least in part, by true scrambling dynamics. Finally, the noise parameter N
remains relatively constant because the complexity and therefore experimental er-
rors associated with implementing Û(α) are mostly α-independent. Dashed lines
represent theory curves that are obtained via numerical simulations of the circuit
assuming a one-parameter coherent error model (see Appendix for details). Error
bars indicating statistical uncertainties are smaller than the data points and are
omitted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7.3 (a) Teleportation fidelities (Fψ) for maximally scrambling (Ûs(α = 1)) and clas-
sically scrambling (Ûc) unitaries are presented for all teleported states as well as
all subsystems {3, 4}, {2, 5}, and {1, 6} that was used for the projective measure-
ment (indicated as different bar colors). In the case of the maximally scrambling
unitary, all basis states and all measurement Bell pairs lead to successful tele-
portation, demonstrating the full delocalization of Alice’s quantum state. In the
case of the classical scrambling unitary, we projectively measure on subsystem
{3, 4}. Only the z-basis states are successfully teleported. Data (for Ûs) averaged
over all six teleported states is shown in the final column. Data is depicted with
the same color scheme as in (b). b) Measurements of Pψ from the experiments
described in (a). The probabilities averaged over all basis states constitutes the
average experimental OTOC. Error bars indicate statistical uncertainties. . . . 84
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7.4 (a) Circuit diagram for our deterministic teleportation scheme that utilizes a
built in Grover’s search protocol. Ideally, this search finds the desired EPR state
with perfect fidelity; by adding in post-selection (purple box), we can quantify
the performance of the search. (b) Depicts the measured teleportation fidelity for
different initial states utilizing the Grover search protocol, both with and without
post-selection. The average fidelity without post-selection (orange) is 77(2)% and
with post-selection (purple) is 78(2)%. . . . . . . . . . . . . . . . . . . . . . . . 86

8.1 Superconducting qutrit processor. (a) Optical micrograph of the five-transmon
processor used in this experiment. Transmon circuits (light blue) couple to an
integrated Purcell-filter and readout bus (red) via individual linear resonators
(gold), enabling multiplexed state measurement. Exchange coupling between
nearest-neighbor transmons is mediated by resonators (purple), while microwave
drive lines (green) enable coherent driving of individual qubits. (b) Coherent
Rabi dynamics of a single qutrit induced by simultaneous microwave driving at
frequencies ω01 and ω12. Achievable Rabi frequencies are in the range of tens of
MHz, three orders of magnitude faster than decoherence timescales. (c) Exam-
ple single-shot readout records of an individual qutrit, generally achievable with
fidelities above 0.95. This is largely limited by decay during readout. . . . . . . 89

8.2 Two-qutrit EPR pair generation via the cross-resonance interaction (a) Nearest-
neighbor qutrits coupled by an exchange interaction can be entangled via the
cross-resonance effect, where one qutrit (the control) is microwave-driven at the
|0〉 ↔ |1〉 transition frequency of the other (the target). Resulting Rabi oscilla-
tions of the target qutrit exhibit a Rabi frequency dependent on the state of the
control qutrit. Here, we drive the control with a field whose amplitude is chosen
to make the Rabi frequencies corresponding to control states |0〉 and |2〉 identical,
resulting in a unitary operation which, after 125 ns, interchanges states |0〉 and
|1〉 of the target qutrit when the control qutrit is the |1〉 state. (b) When the
target qutrit is in the |2〉 state, the cross-resonance interaction is off-resonant and
does not affect the population. (c) Top: Sequence used to prepare an EPR pair
with two applications of the cross-resonance gate. π01

x represents be a rotation of
π about the x axis in the {|0〉 , |1〉} subspace of the qutrit. The number in the
circle for the two-qutrit gate represents the condition (state of the control qutrit)
for which a gate is applied on the target. Bottom: The density matrix (recon-
structed via state tomography) of the resulting EPR pair, with a state fidelity of
FEPR = 0.98± 0.002. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
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8.3 Quantum process tomography of the two-qutrit scrambling unitary. Results of
process tomography both experimental and ideal. Plotted is part of the Pauli
transfer matrix (where the horizontal axis only includes the single qutrit opera-
tors) which shows the unitary’s action on single-qutrit Pauli operators when the
unitary is a local gate (a), non-scrambling entangling gate (b) and the scrambling-
unitary (c), . This directly verifies the key characteristic of scrambling by Us,
that it maps all non-identity single-qutrit Pauli operators to two-qutrit operators. 99

8.4 Quantum teleportation circuit. Five-qutrit teleportation protocol used to test for
scrambling by the two-qutrit unitary Us, and its interpretation in the context of
black hole physics. (a) We begin with the first qutrit in a quantum state |ψ〉,
and prepare the remaining qutrits into two EPR pairs. The first qutrit Q1 is
‘scrambled’ with half of the first EPR pair by the unitary U , while the conjugate
U∗ is applied to Q3 and Q4. An EPR measurement on a pair of qutrits (Q2 and
Q3) exiting each of U , U∗ serves to teleport the initial quantum state to Q5 if
and only if U is scrambling. (b) In the context of the Hayden-Preskill thought
experiment, Q1 corresponds to Alice’s diary, which subsequently falls into a black
hole (Q2) that is maximally entangled with its past Hawking radiation (Q3), held
by an outside observer Bob. In the gravitational picture, this shared entanglement
functions similarly to a geometric wormhole between the black hole and its early
radiation. The black hole dynamics are modelled as a scrambling unitary U ,
followed by emission of a Hawking photon (Q2). Finally, Bob applies U∗ and
measures in the EPR basis to recover Alice’s diary. . . . . . . . . . . . . . . . . 101

8.5 Results of the five-qutrit teleportation protocol. (a) An expanded view of the
five-qutrit teleportation protocol in Fig. 8.2, showing the native operations used
to realize each portion of the protocol. (b) Measured teleportation fidelities for
twelve teleported states, which combine to give an unbiased estimate of the tele-
portation fidelity averaged over all single-qutrit pure states. An average fidelity
above 1/2 – the classical limit for teleportation of qutrits – verifies non-zero
quantum information scrambling by the maximally scrambling unitary, despite
the presence of experimental error. When the scrambling unitary is replaced with
an identity operation with same complexity as the scrambler, the average telepor-
tation state fidelity reduces to 1/3, the same as a random guess when one does
not have access to the input state. (c) Representation of each of the twelve recon-
structed density matrices after teleportation, expressed in the basis of Gell-Mann
matrices (λ0 − λ8) with dotted lines showing the ideal result. . . . . . . . . . . 103
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9.1 (a) Teleportation protocol, proceeding from bottom to top. To teleport, a subset
of the left qubits are measured in the Ôi basis, and operations V̂i = eigoiÔi/K

conditioned on the measurement results oi are performed on the right (purple).
(b) The protocol hosts two mechanisms of teleportation: peaked-size (red) and
gravitational (blue). The channel capacity of peaked-size teleportation decreases
with increasing time (dark to light red), while its fidelity decreases with decreas-
ing temperature (dark to light red, again). At high temperature and late times,
it is equivalent to teleportation in the HPR protocol (red diamond). Gravita-
tional teleportation occurs at low temperatures in systems dual to semiclassical
gravity (e.g. the SYK model), and exhibits the same channel capacity but higher
fidelity compared to peaked-size teleportation. Increasing the strength of stringy
corrections to the gravity theory interpolates between gravitational and peaked-
size teleportation. (c) The two mechanisms display distinct time profiles for the
teleportation fidelity at fixed coupling strength, g. In systems dual to gravity
(top), the fidelity features a single O(1) peak near the scrambling time (gravita-
tional, blue), and a late time revival (peaked-size, red) to a fidelity suppressed by
the two-point function Gβ [317]. In generic thermalizing systems (bottom), the
fidelity oscillates between 0 and Gβ with phase proportional to the operator size,
may subsequently decay if sizes become not peaked, and revives at late times. . 107

9.2 Numerical results for averaged operator size and teleportation fidelity of 1D, 2D,
and 0D RUCs. (a-b) In 1D and 2D, sizes grow ballistically in time, while the
size width grows with a slower power of t and matches predictions from the KPZ
universality class (Section 9.7). Because of the separation between the size and
size width, the teleportation fidelity for a single qubit exhibits an oscillatory
behavior at intermediate times, with nearly perfect maximum fidelity. At late
times, the teleportation fidelity saturates close to 1 for odd values of g/π, as
expected for any scrambling system (Section 9.6). (c) In 0D all-to-all coupled
RUCs, both the size and size width grow exponentially in time and obtaining
a large separation between them requires encoding the initial state into p-body
operators. With this encoding, the teleportation fidelity displays a distinct three-
regime profile for g � 1. In particular, as in 1D and 2D, peaked-size teleportation
succeeds (i) at early times, with an oscillating fidelity, and (ii) at late times,
where the fidelity saturates close to 1 (for odd g/π). Between these regimes, no
teleportation occurs because the size width has grown too large, gδS/N & 1. . 133

9.3 Probing operator size width in a 1D RUC. (top) The size width initially grows
as t1/2 and reaches a peak at the scrambling time t∗ ∼ N = 10000. (bottom)
We probe this behavior by measuring the teleportation fidelity of a single qubit
with a large coupling g = 57π ∼

√
N . The fidelity exhibits a distinct decay-

revival profile, controlled by whether the size width has exceeded the threshold
gδS/N ≈ 1: nearly perfect fidelity initially, power law decay towards a trivial
fidelity at intermediate times, and partial revival at late times. . . . . . . . . . 137
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9.4 Teleportation of multiple qubits in 0D RUCs. (a) Many-body teleportation fi-
delity, FEPR, as a function of time for teleporting n = 1, 3, 10 qubits with fixed
coupling strength (g = 177π). Compared to a single qubit, the decay-revival
profile for multiple qubits is shifted to earlier times, since multi-qubit operators
both have a larger size width and saturate the system size earlier. Moreover,
multi-qubit teleportation is not possible at late times, resulting in a trivial late-
time fidelity (Sec. 9.6). (b) Numerical results for the channel capacity nmax as
function of the number of coupled qubits K, which exhibit a clear linear scaling.
To determine the channel capacity, we compute the maximum per qubit fidelity
F

(1)
EPR for a fixed number of qubits, n, and couplings, K, while allowing the cou-

pling strength, g, and evolution time to vary. For fixed K, F (1)
EPR decreases as

the number of qubits n is increased, as depicted in the inset for K = 9000. The
channel capacity nmax is defined as the maximum number of qubits for which the
fidelity is above a fixed threshold (dashed line). . . . . . . . . . . . . . . . . . . 145

9.5 Schematic of the teleportation protocol from the bulk gravitational perspective
in AdS2, under both (a) semiclassical gravity, and (b) strong stringy corrections.
The TFD state corresponds to a two-sided black hole. Local quantum mechan-
ical operators, ψl/r, create or annihilate particles near the two boundaries, with
wavefunctions Ψl/r (red). The protocol begins by inserting a particle on the left
side, with wavefunction Ψl (red, bottom left), at time −t, which then falls to-
wards the interior of the geometry during time-evolution (red line). The two-sided
coupling, g

N

∑
i ψi,lψi,r, is then applied, producing a shock wave (blue) that in-

teracts with the in-falling particle [160, 317]. (a) In the semiclassical limit, the
shock wave shifts the position the in-falling particle outside of the right horizon
(dashed), which enables the particle to reemerge near the right boundary (red,
top right) [160, 317]. (b) When stringy effects are present, the scattering am-
plitude between the in-falling particle and the shock wave is modified according
to Eq. (9.100) [317, 437]. In the highly stringy limit and at early times, the
interaction results in an overall phase shift, θ = gGNAε(∆/2)εeεt [Eq. (9.102)].
The overlap between the in-falling particle and a particle at the right boundary is
nevertheless non-zero (red, top right), and is given by the unperturbed two-point
function, Gβ = i 〈ψlψr〉. [Note that stringy effects may also modify the initial
wavefunctions of Ψl/r, as we discuss in the context of Eq. (9.104).] . . . . . . . 154

9.6 One-sided implementation (right) of the original two-sided teleportation protocol
(left), derived using repeated applications of Eq. (9.9) [replacing U → UT for
convenience, compared to Fig. 12.1(a)]. Blue arrows denote the sequence of oper-
ations in the one-sided protocol, the green band marks the teleported qubit and
its corresponding component in the one-sided protocol, and the red band marks
the initial EPR state and its corresponding component. . . . . . . . . . . . . . 161
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9.7 (a) In the proposed analog Rydberg teleportation protocol, qubits are encoded in
a ground state |g〉 and a Rydberg state |r〉. Nearest-neighbor interactions (dark
blue) can be time-reversed, but next-nearest neighbor interactions (light blue)
cannot. (b) Numerical results comparing the average state teleportation fidelity
for single-qubit teleportation with perfectly reversed time-evolution (solid) with
the proposed, imperfect time-reversal (dashed). In particular, we implement the
one-sided protocol using N = 20 total spins; K = N − 1 ‘measured’ spins (i.e. all
except the spin encoding |ψ〉), whose single-qubit rotations are generated by Ôi =
Ẑi; and time evolution under the analog Rydberg Hamiltonian [Eq.(9.105)] with
parameters Ωi = .9, ∆i = −1.5, J0 = 1 (for all i). (c) Implementation of U
or U † in the digital protocol, consisting of alternating layers of controlled-phase
gates (horizontal black lines) between nearest neighbor atoms and single-qubit
rotations (red boxes). Here, qubits are encoded in two hyperfine ground states.
Insets show possible pulse sequences to implement the controlled-phase gate and
the single-qubit rotations [228]. The full TW protocol is obtained by inserting
this gate sequence (and its Hermitian conjugate) in place of U , U † in Fig. 9.6. . 163

9.8 Finite-size scaling of the Rydberg simulations (a) as a function of time with
g = π, and (b) as a function of coupling strength g with t = 12. The system
was evolved under the Rydberg Hamiltonian, Eq. (9.105), with the same system
parameters as in Fig. 9.7. At late times, the fidelity increases for larger systems
but decreases for larger values of g. This is consistent with our error analysis
in Section 9.6; in particular, we expect the error to scale as g2δS2/N2 and the
size distribution to approach a binomial distribution for which δS ∼ S/

√
N . In

contrast, at early times, smaller systems exhibit a larger fidelity not because of
the size width but because the acquired phase is ηdgS(t)/N , where ηdg is fixed
and S(t) is initially independent of size. The curves in (a) intersect near the
scrambling time due to the transition between the early and late time regimes. 165
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9.9 (a-b) Chain of atomic ions, with qubit states |0〉, |1〉 represented by hyperfine
ground states. The states are coupled by a pair of laser beams, one with individual
addressing (with strength g1, purple) and one applied globally (with strength g2).
Each beam is strongly detuned from an excited state |e〉 by an amount ∆. The
coherent beatnote between the beams, at frequency ω0, drives stimulated Raman
transitions between the qubit levels with an effective Rabi frequency g1g2/2∆,
and also modulates the Coulomb interaction between qubits to give rise to an
effective Ising interaction. (a) A two-qubit entangling gate, XXij(θ), (red) is
performed by addressing only ions i and j with the first beam. (b) Half of the
qubits are addressed, which leads to analog time-evolution under the Hamiltonian
Eq. (9.106) (blue) for all addressed spins. (c) Quantum circuit implementation
of the teleportation protocol at finite temperature. EPR pairs are formed using
two-qubit gates. The TFD state is then prepared via a QAOA approach by
iterating multiple times between two-qubit gates coupling the sides and analog
time-evolution on both sides individually [502, 533]. The state |ψ〉 is inserted
either by projectively measuring the designated qubit and preparing the state, or
by digitally swapping in an additional qubit (not shown). Finally, teleportation
is implemented using similar ingredients as well as feed-forward measurements
(purple dotted lines). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

10.1 Left: Size distributions for three classes of systems under unitary (blue) versus
open (red) dynamics. Rightward arrows denote growth in time to larger sizes,
ticks denote a fixed size, and downward arrows denote loss of probability at a given
size. Right: Qualitative depiction of open-system operator growth. In all cases,
operators lose normalization due to open dynamics (dark to light gray boxes).
In the latter two classes, operators are dominated by smaller size components
compared to unitary evolution (smaller boxes). . . . . . . . . . . . . . . . . . . 176

10.2 (a) Average operator size, S, and the Loschmidt echo fidelity, N , in a 1D RUC
with N = 200 (see Appendix E for details). The size grows ballistically with
quadratic corrections due to open-system dynamics (solid, data; dashed, theory).
Inset: The Loschmidt echo fidelity, N∗, when dS

dt
= 0.9dS

dt

∣∣
ε=0

, decays exponen-
tially in the inverse error rate, ε−1. (b) All-to-all RUC with N = 1500 (see
Appendix E for details). The size grows exponentially before plateauing to a
value which is independent of the system size. The decay rate of the Loschmidt
echo is independent of ε after plateauing (solid, data; dashed, theory). Inset: The
Loschmidt echo fidelity, N∗, when d logS

dt
= 0.9d logS

dt

∣∣
ε=0

, is constant with respect
to ε. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
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10.3 The OTOC as a function of time and space for an N = 12 one-dimensional spin
chain. (a) Operators that do not overlap the Hamiltonian exhibit an OTOC
which follows a ballistic light cone. (b) For an operator that overlaps with the
Hamiltonian, the OTOC at a given site i initially decays, before increasing at later
times. The specific OTOC we calculate takes the form, 1

4

∑
P 〈e−iH1tM̂eiH1tP̂ie

−iH2tM̂eiH2tP̂i〉/N (t),
where the forwards and backwards time-evolution are governed by two distinct
1D Hamiltonians, H1 = H2 + η δH (see Appendix E for details). . . . . . . . . 182

10.4 Protocol to measure the generating function, GS(µ), of the operator size distri-
bution. Gray qubits are initially random in the computational basis, |ψ〉 is an M̂
eigenstate, and each site is acted upon randomly by either the identity (gray) or
a non-identity Pauli operator (red) in each experimental shot. . . . . . . . . . . 184

11.1 Operator spreading in two types of CV scrambling. (a) In genuine scrambling,
an initial displacement operator time-evolves into a sum of many displacements,
spread throughout phase space. (b) In quasi scrambling, displacements may move
around phase space, but remain localized. . . . . . . . . . . . . . . . . . . . . . 190

11.2 The finite temperature frame potential measures the volume of unitary ensembles
(black dots) coarse-grained over a distance 1/

√
nth in phase space (red), where

nth is the number of photons in the thermal density matrix (proportional to the
temperature). This leads to different behavior for (a) sparsely-distributed ensem-
bles (high temperature) vs. (b) densely-distributed ensembles (low temperature).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

11.3 Schematic of the volume measured by the frame potential for two continuous
ensembles of displacement operators (grey). (a) For an ensemble with large widths
λ1, λ2 � 1/nth, it reproduces the traditional volume

√
λ1λ2. (b) If the ensemble

is narrow in some quadrature, say λ1 � 1/nth, it instead measures the ‘coarse-
grained’ volume

√
λ2/nth. Here nth is the number of photons in the thermal

density matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
11.4 The average OTOC measures the extent that an operator (grey) has spread out-

side a ball of distance 1/
√
n (black) in phase space, after coarse-graining over

scales 1/
√
nth (red). Here n is the width of the ensemble that the OTOC is

averaged over, and nth is the number of photons in the thermal density matrix. 200
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11.5 Time-evolution under the Henon-Heiles potential. (a) The initial (t = 0) wave
function is localized in the red circle with momentum shown by the red ar-
row. Coloring displays the probability density of the final state (t = 40tc),
with blue indicating zero probability. Black dashed lines indicate contours V =
2VC , VC , VC/2 of the potential, and time is measured in units of tc = rC/

√
2VC/m.

(b) The OTOC amplitude |Cw,v2 (α, β; t)|γ1〉|γ2〉 | for a two-mode coherent state
γ1 = 0.15rC + i

√
7VC/40 cos(10◦), γ2 = i

√
7VC/40 sin(10◦) and displacement

operators α = (1 − i)/4, β = (1 + i)/4 on modes v, w ∈ {1, 2}. The OTOC
decay for a different coherent state γ1 = 0.125rC + i0.375

√
VC cos(20◦), γ2 =

0.125rC + i0.375
√
VC sin(20◦) and displacements α = (1 − i)/2, β = (0.4 + 0.3i)

exhibits similar behavior (not shown). In contrast, the OTOC amplitude under
Gaussian dynamics does not decay (blue). . . . . . . . . . . . . . . . . . . . . . 204

11.6 Rough illustration of quasi scrambling and the quantum Liouville’s theorem.
While the global volume of an ensemble Dw

n (t) of time-evolved displacement op-
erators (yellow) remains fixed under time-evolution by a Gaussian unitary U(t),
the projected volume on the mode v (measured via an average over local dis-
placements; red), and the coarse-grained volume (roughly, the number of boxes
the ensemble occupies) may increase. . . . . . . . . . . . . . . . . . . . . . . . 206

11.7 (a) Increase of the mean and variance of the total squeezing rtotT for a single-mode
Gaussian circuit, with individual squeezings drawn from a uniform distribution
in [0, 1/2] (other distributions exhibit similar behavior). Each data point is cal-
culated from 2000 samples. At large T , the mean and variance are equal and
close to the theoretical prediction 1

2

∑T
t=1 〈r2

t 〉 = (1/24)T (black dashed line).
(b) Scaled probability density function of the log-normal distribution for ertotT

(mean/variance 1, 5, 10, 50, 100, from bottom to top). . . . . . . . . . . . . . . . 208
11.8 Schematic of the local random Gaussian circuit for 13 modes. The orange rectan-

gles are random two-mode passive linear optics (beamsplitters and phase shifters)
and the blue rectangles are random single-mode squeezers. The red dashed line
shows the lightcone of mode 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

11.9 Average OTOC in the random Gaussian circuit, for a thermal density matrix
nth = 5, as a function of both space (x-axis) and time (in units of 10, y-axis).
The butterfly velocity increases to its upper bound of 1 as the squeezing is in-
creased [R = 0, 0.2, 0.4, 0.6, 0.9, 2, from (a)-(f)]. Each average is obtained from
100 samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
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11.10Hydrodynamical description of the many-mode random Gaussian circuit. (a) The
total operator amplitude F increases exponentially in time, with growth exponent
proportional to the squeezing (R = 0, 0.1, · · · , 0.9, from red to blue). (b) The
variance in position 〈x2〉 grows linearly in time, indicating diffusive behavior. (c)
These combine to give a ballistic spread of the OTOC decay, with a squeezing-
dependent butterfly velocity vB. The black dashed curve is the hydrodynamical
prediction vB =

√
4DcR, the red dashed curve is the binomial analysis, and black

dots are numerics. Each average is obtained from 100 samples. . . . . . . . . . 211
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11.12(a) Average entanglement entropy h(t) across the center cut (black dots), and a
quadratic polynomial fit 0.1t + 0.001t2 (grey line). (b) Fluctuation w(t) of the
entanglement entropy (black dots), and a linear polynomial fit 0.014t (grey line).
Each point is obtained from 1000 independent samples for R = 0.2 and L = 400.
Error bars indicate standard-deviations. . . . . . . . . . . . . . . . . . . . . . . 213
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11.17(a) A two-mode Gaussian analog to the random SNAP gate circuit of Fig. 11.16,
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11.19Schematic of the teleportation-based protocol for robustly measuring CV scram-
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12.1 Schematic of time-ordered correlators (TOCs) and out-of-time-order correlators
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12.3 (a) Learning a weak “link” interaction (red line) in a 1D spin chain with otherwise
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12.4 Learning as a function of experimental error, in the “weak interaction” learning
task of Fig. 12.3(a). (a) Accuracy of binary SVM classification as in Fig. 12.3(a),
now with a coupling g, to an extrinsic cavity mode that is not time-reversed
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the trivial are smoothly exchanged via Eq. (A.10), without changing either band’s
quasienergy (dashed arrows). After this exchange, the original upper and lower
band are degenerate, and do not possess any nontrivial topology. (e) This allows
the quasienergy of all bands to be deformed continuously to zero, completing the
contraction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261



xxiv

A.2 Quasienergy spectra of the Floquet unitary for the (hS, hF ) = (0, 1) phase with
open boundary conditions, solved via exact diagonalization. Quasienergies are
colored according to their eigenstates’ average position, from left edge (blue) to
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D.2 Teleporting multiple qubits (n = 5) in 1D, where the input qubits are evenly
spaced in the system (N = 10000). (a) Teleportation is achieved with high
fidelity for t ≤ 1300 (Region I). This corresponds to the regime in which the
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above a fixed threshold, i.e. 1 − F

(1)
EPR ≤ 0.07 (dashed line). To determine this
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E.1 Operator growth in long-range interacting random unitary circuits under unitary
and open-system dynamics. (a) Power-law exponent α = 0.14. The average op-
erator size grows super-linearly under unitary dynamics (black), according to the
power-law [531], S ∼ t1/(2α−1). Under open-system dynamics (red), the average
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(black), now according to a shrunk exponential [531], S ∼ et

log2(1/α) . Under open-
system dynamics (red), the average operator size eventually plateaus, similar to
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the error rate, ε. The Loschmidt echo fidelity (i.e. the operator normalization)
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a time-evolved operators’ Pauli strings under unitary dynamics. Each endpoint
spreads ballistically in either direction, and the interior of the distribution is ap-
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Chapter 1

Introduction to Many-body quantum
information dynamics

Physics’ central concern is the movement of objects through space and time. In the world
around us, the objects we interact with are in fact collections of enormous numbers of more
elementary components. For example, a cup of water is composed of ∼1023 individual H2O
molecules. Many-body physics seeks to understand how collective properties of the larger
object arise from the object’s elementary components and the interactions between them.

The field of many-body physics is built on two twin themes. First, the collective behavior
of the larger object is often much simpler than the sum of its components. For instance,
to describe the sloshing of water in the cup, one does not need to keep track of the motion
of each individual H2O molecule. This allows many-body physics to be tractable. Second,
the collective behavior is not easily predicted from the components. One cannot predict
whether water in the cup will be a liquid, rather than frozen or a vapor, from the properties
of a single H2O molecule. It is necessary to study large numbers of molecules interacting
together. This allows many-body physics to be interesting.

Traditionally, the study of many-body physics has centered on condensed matter systems,
corresponding to solids or liquids composed of innumerable atoms or molecules. For example,
a common question might be how the conductivity of a material changes as a function of
the temperature or the density of some impurity. Surprisingly, many of the phenomena
uncovered are intrinsically quantum mechanical. For instance, the reason that some materials
do not conduct electricity is because their electrons cannot move unless they each absorb a
minimum “quanta” of energy. More exotic phases of matter, such as superconductors, are
enabled by correlated quantum behavior between large numbers of electrons. The fact that
quantum mechanics—a theory to describe nature at the smallest of scales—underlies such
large-scale phenomena is fascinating. Theoretical frameworks such as quantum field theory
and the renormalization group allow us to understand these phenomena, and are amongst
the seminal achievements of physics in the latter twentieth century.

Nevertheless, the range of quantum phenomena accessible in condensed matter systems
is limited. To state it roughly, we can only realize certain quantum states and can only
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experiment on them in certain ways. The first restriction arises because condensed mat-
ter systems are usually in equilibrium with their environment. This means that they only
realize quantum states that do not change substantially in time. Even dynamical features
of these systems, such as their conductance, can often be understood via properties of a
time-independent equilibrium state. The second restriction arises because condensed matter
experiments mostly involve “larger objects”. The experimentalist typically has no ability to
probe the “elementary components” of the system, such as the individual electrons or atoms
or molecules.

The emergence of quantum technologies has broken both of these paradigms. The defining
feature of quantum technologies is their precise control over microscopic quantum compo-
nents. This precise control in turn allows them to realize a vast range of quantum states and
phenomena. The microscopic quantum components in quantum technologies can take many
forms. They might be atoms themselves [60], or the nuclear [76] or electronic [141] states
of the atoms, or junctions between superconducting materials [30], or electrons trapped at
material defects [424], and so on [23]. In all cases, the components are made to be almost
completely isolated from the rest of the world. The only (intended) exception is the control of
the experimenter themselves, which is usually provided through precise lasers or microwave
drives.

This technological breakthrough has paralleled a shift in the way we think about many-
body quantum systems. Conventionally, many-body physics has focused on the behavior of
so-called “local” quantities of a system, for example the electron density or energy density.
These are the properties that are directly accessible in everyday life as well as condensed
matter experiments. Over the last several decades, a confluence of scientific developments
and fundamental questions have led to a more abstract viewpoint. Instead of local quantities,
this viewpoint centers on the behavior of information—specifically, quantum information—
itself [376]. I list a few prominent contributors to this shift below. The work in this thesis
will touch on each of these topics.

• Topological phases of matter—Attempts to understand the experimental observations
of high-temperature superconductivity [27] and the fractional quantum Hall effect [467]
eventually led to the notion of topological phases of matter [488]. Conventional phases
of matter such as solids or liquids or gases are distinguished by how their local quantities
(in these cases, the atom or molecule density) behave in the system’s equilibrium state.
Topological phases of matter are distinguished by how quantum information behaves in
the equilibrium state. Topological phases display a number of remarkable and bizzare
phenomena that have re-drawn the boundaries of what was thought possible in many-
body quantum mechanics [488].

• Classical simulation of quantum systems—The study of physics is greatly assisted by
numerical simulations. However, simulating the behavior of a many-body quantum
system is in general exponentially difficult. Exact simulation methods can only incor-
porate small numbers (∼20-30) of elementary quantum components. To move beyond
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this, simulation algorithms must decide what information about the system to keep
track of and what to neglect. To decide this intelligently, we need to understand the
physics of information in many-body quantum systems, and how it connects to sys-
tem properties of interest. This line of research began with the development of tensor
network algorithms for equilibrium states in one-dimensional systems [490]. Extending
these methods to different physical settings [358, 521] and quantum dynamics [286,
489] are topics of vigorous interest.

• Equilibration in quantum systems—A standard lore in thermodynamics is that a system
loses memory of its initial state as information is exchanged with an environment. This
explains why many different initial states can evolve to a common equilibrium. How-
ever, this story is more subtle in the absence of an environment. In classical systems,
chaos serves to create an effective loss of memory. In quantum systems, the unitary na-
ture of time-evolution precludes such an understanding. Over the last decade, we have
learned that the equilibration of many-body quantum systems is instead intimately
entwined with the dynamics of quantum information. In particular, equilibration can
be understood as the dispersal of initially local quantum information into complex
non-local correlations [240, 384], which are effectively invisible to experimenters with
access to local quantities [395].

• Quantum gravity—Despite a half century of dedicated pursuit, the unification of quan-
tum mechanics and gravity remains elusive. In the 1990s, the AdS/CFT correspon-
dence provided a path forward: a precise mapping between certain theories of quantum
gravity and certain many-body quantum systems [313]. Over the last decade, it has
become clear that quantum information lies at the heart of this correspondence [196].
The structure of spacetime is encoded in the correlations of quantum information
within the many-body quantum system [409], and the motion of particles in spacetime
is governed by quantum information dynamics [249, 436].

• Quantum technologies and quantum computing—The precise manipulation of quantum
information is central to the future promise of quantum computing and other quan-
tum technologies. These endeavors intersect with many-body physics in eclectic ways.
For instance, one of the leading architectures for fault-tolerant quantum computing,
the surface code [69, 150], is directly inspired by a topological phase of matter [248].
The quest for quantum supremacy [30] has also accelerated interest in the classical
simulability of many-body quantum dynamics [11]. Finally, a primary near-term ap-
plication of quantum technologies is to simulate many-body quantum systems. Quan-
tum simulators can allow unprecedented experimental access to quantum information
properties [163, 224], which in turn feeds in to each of the research directions above.

In most of these cases, the tools of quantum information theory used are quite rudimentary.
The interest is in how these tools intersect with many-body physics.
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In this thesis, we will be specifically focused on the dynamics of many-body quantum
information. Indeed, many of the most exciting connections above—to quantum thermal-
ization, classical simulation, and quantum gravity—occur in a dynamical setting. Dynamics
are also natural for current quantum technologies, in which imperfect isolation and control
prevent easy access to many equilibrium quantum states [375]. Below, I list three broad
directions at the intersection of quantum information and many-body quantum dynamics
that motivate the works that follow. Of course, in real life, we accept insight and interest
where we find them, and the results are not quite so neatly categorized.

Our first direction concerns stable quantum phenomena in many-body dynamics. Specif-
ically, we will show that dynamics can provide both simpler realizations of static topological
phases, as well as allow the existence of new topological phenomena altogether. Our second
direction concerns the dynamics, or “scrambling”, of quantum information itself. We will
largely focus on how information at one time is stored in a system at later times. This no-
tion underlies wide-ranging connections across quantum chaos, thermodynamics, quantum
communication, the classical simulability of quantum systems, and quantum gravity. Our
third and final direction concerns the process of learning information about an unknown
quantum system from measurements involving it. We will show that there exist exponential
separations in the learnability of many-body quantum dynamics depending on the classes of
measurements that can be performed.

In more detail, the structure of the thesis is as follows.

• We first continue in the current Part with background material related to the results of
this thesis. In Ch. 2, we provide a rapid introduction to the basic elements of quantum
information theory, which will be instrumental to each of the Parts in the remainder
of the work. The remaining sections of this Chapter, Ch. 2.2, 2.3, and 2.4, contain
introductory material for Parts II, III, and IV, respectively. These introductions can be
read in sequence (i.e. in section order), or independently preceding their corresponding
Part. Ch. 2.2 contains a brief introduction to topological insulators; Ch. 2.3 to quantum
information dynamics; and Ch. 2.4 to aspects of quantum learning.

• In Part II, we present results on topological phenomena in quantum dynamics. We pri-
marily focus on topological insulators, which are some of the most widespread examples
of topological phases. In Ch. 3, we present a scheme to realize the hitherto unobserved
Hopf topological insulator using long-range dipolar interactions and strong periodic
driving. In Ch. 4, we provide extensive details on how this scheme can be implemented
in optical lattices of polar molecules, including novel polar molecule quantum simula-
tion techniques. In Ch. 5, we present an intrinsically dynamical extension of the Hopf
insulator—the “Floquet Hopf insulator”—which possesses a few particularly bizarre
properties that differ from all other Floquet topological insulators to date. In Ch. 6,
we turn away from topological insulators and present the experimental observation of
an analogue of non-Abelian braiding statistics in topological defect modes of dynamical
but non-interacting photons.
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• In Part III, we present results on quantum information dynamics in many-body sys-
tems. In Chs. 7 and 8, we present experimental measurements of quantum information
dynamics in trapped ion and superconducting quantum processors, respectively. For
the sake of this thesis, these experiments are notable for two reasons: (i) they rep-
resented a proof-of-principle demonstration of a novel “many-body” generalization of
quantum teleportation, and (ii) through teleportation, they achieved the first experi-
mental detection of quantum information dynamics that was robust to experimental
noise. In Ch. 9, we expand upon point (i) and present a generalized mechanism for
many-body teleportation in a protocol arising from quantum gravity. In Ch. 10, we ex-
pand upon point (ii) and provide a full account of how quantum information dynamics
are modified in the presence of noise. Finally, in Ch. 11, we extend the framework of
quantum information dynamics to continuous variable systems, and forge connections
between quantum chaos and information scrambling in this context.

• In Part IV, we present results on quantum learning. Specifically, we focus on learn-
ing properties of dynamical quantum processes. In Ch. 12, we show that various
properties of local strongly-interacting dynamics can be learned much more efficiently
with “out-of-time-order” experiments (introduced in Ch. 2.3), compared to conventional
time-ordered experiments. In Ch. 13, we present a theoretical framework that encap-
sulates this distinction, and prove that there exist tasks for which out-of-time-order
experiments provide an exponential advantage in the system size over time-ordered
experiments. As a corollary, this result rigorously establishes that quantum informa-
tion dynamics—i.e. the entire content of Part III—can in general only be efficiently
measured in experiments that involve reversed time-evolution.
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Chapter 2

Background on quantum information
and many-body physics

In this Chapter we give several brief introductions to concepts in quantum information
theory and many-body physics that will be essential to the remainder of the thesis. We
begin by introducing a small handful of basic concepts in quantum information theory,
then proceed to introduce topological phases, quantum information dynamics, and quantum
learning theory.

2.1 Quantum information theory
In this section, we quickly introduce the notions of entropy and mutual information,

quantum teleportation, and quantum complexity. For a more complete introduction to
quantum information we refer to the resources [353, 483, 494].

From classical to quantum information

We begin by defining two key concepts within classical information theory, and then
quickly progress to the quantum case. These concepts are the entropy and the mutual
information.

Consider a probability distribution p(x) defined over a discrete random variable x ∈ X .
The entropy seeks to quantify the amount of “uncertainty” or “surprise” in p(x). The Shannon
entropy is defined as:

S(p) = −
∑

x∈X

p(x) log(p(x)). (2.1)

We can interpret the quantity − log(p(x)) as a measure of the “surprise” associated with the
outcome x. Symbols with lower values of p(x) are less likely to occur, and thus associated with
a greater surprise when they do occur. The entropy can then be viewed as the expectation
value of the surprise.
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The choice of the functional form − log(p(x)) for the surprise initially appears quite
arbitrary. Could one have equally chosen any monotonically decreasing function of p(x), for
instance −p(x)? To some extent, the answer is yes. Choices that are monomials in p(x)
define the so-called Renyi entropies. Specifically, the α-order Renyi entropy is defined as:

S(α)(p) =
1

1− α log

(∑

x∈X

p(x)α

)
. (2.2)

In many cases, the Renyi entropies behave qualitatively similar to the Shannon entropy,
although for specific p(x) they can differ sharply. The Shannon entropy also obeys certain
properties (the “chain rule of conditional probability”) that the Renyi entropies lack, which
are important in certain situations. This will come up shortly when defining the mutual
information.

We now turn to probability distributions p(x, y) over multiple variables (in this case, two)
x ∈ X , y ∈ Y . We can define the entropy over both variables S(p(x, y)) as before. We can
also define the entropy of a single variable by ignoring the values of the other variable, e.g.
defining the probability distribution p(x) =

∑
y∈Y p(x, y) gives S(p(x)).

The mutual information seeks to quantify the amount of mutual dependence between the
two random variables. The mutual information is defined as:

I(X ,Y) = S(p(x)) + S(p(y))− S(p(x, y)). (2.3)

In keeping with its goal, the mutual information is zero when the probability distribution is
separable, p(x, y) = p1(x)p2(y). For two binary variables, the mutual information is maximal
for the probability distribution p(0, 0) = p(1, 1) = 1/2, p(0, 1) = p(0, 1) = 0, with value
I = log(2). A Renyi mutual information can be defined similarly (replacing all Shannon
entropies with Renyi entropies), however it is not guaranteed to be semi-positive. This poses
a serious conceptual problem, since a probability distribution could have “less” Renyi mutual
information than a separable distribution.

We now turn to quantum systems. The natural quantum analog of a random variable
with probability distribution p(x) is a density matrix ρ defined on a Hilbert space H. The
von Neumann entropy of ρ is defined as:

S(ρ) = −tr(ρ log(ρ)). (2.4)

We can similarly define the Renyi entropies:

S(α)(ρ) = − 1

1− αtr(ρ
α). (2.5)

These are simply the classical entropies associated with the probability distribution defined
by the eigenvalues of ρ.

Now consider a density matrix ρ defined on a tensor product Hilbert spaceH = HA⊗HB.
The quantum mutual information between subsystems A and B is defined as:

I(A,B) = SA + SB − SAB, (2.6)
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where we abbreviate SAB = S(ρ), SA = S(trB(ρ)), SA = S(trA(ρ)). Similar to the classical
case, the mutual information is zero for separable states ρ = ρA ⊗ ρB. Interestingly, the
maximal value of the quantum mutual information is 2 log(2), twice that of the classical
mutual information. This is achieved by the EPR state ρ = |EPR〉〈EPR|, with |EPR〉 =
(|00〉 + |11〉)/

√
2. The key difference here is that the entire quantum system can be pure

(entropy zero) even when each subsystem is maximally mixed (entropy maximal). This
cannot occur in classical systems.

Quantum teleportation

We have already seen one way in which quantum information differs from classical in-
formation, in that a quantum system can be pure even when its subsystems are maximally
mixed. We will now outline a much more stark example of the difference between quantum
and classical information: quantum teleportation [370].

To set the stage, consider the process of transferring classical information from some
location A to another location B. Under the laws of classical physics, the only way to perform
such a transfer is to physically “march” the information contained at location A to location B.
Here by “march” we mean that the information must physically traverse some path between
the two locations (i.e. to recover the information at some intermediate time within the
transfer, one would need access to physical locations along the path).

It turns out that to transfer quantum information from one location to another, one
only has to physically march classical information between them. The process by which this
occurs is known as quantum teleportation. It in fact requires one additional ingredient: an
entanglement resource shared between location A and location B before the transfer. In its
simplest form, this entanglement resource can be an EPR pair.

We now outline the prototypical quantum teleportation protocol for transferring a single
qubit [353]. We suppose that location A and B share an initial EPR pair |EPR〉, and that
the qubit is initially at location A in the state |ψ〉. The total system is thus in the state
|ψ〉⊗ |EPR〉, with the first two qubits located at A and the third qubit at B. To teleport the
first qubit from A to B, we first perform a Bell measurement on the two qubits at location
A. A Bell measurement has four possible outcomes {Pl |EPR〉}, where P ∈ {1, X, Y, Z} runs
over the single-qubit Pauli matrices and the subscript l denotes that P acts on the left qubit
of the EPR pair (i.e. the first qubit of the system). After performing the Bell measurement,
the measurement result P is communicated from location A to B, requiring two classical bits.
The state |ψ〉 is obtained on the third qubit upon applying the Pauli operation corresponding
to P . The reason this protocol succeeds is most easily understood using the diagrammatic
notation introduced in Ch. 9.

Quantum complexity

We conclude the Chapter with a brief discussion of quantum complexity (in reality, a
subject of its own). We will jump straight to quantum complexity and neglect the classical
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case.
Consider a quantum computer with a gate set G. For instance, the gate set might consist

of every possible single-qubit and two-qubit gate. If the system of interest has some notion
of locality, we might restrict these gates to be geometrically local. We could also restrict
that the gates respect a particular symmetry operation on the system.

We define the relative complexity [70, 353] C(|ψ〉 , |φ〉) of a quantum state |ψ〉 with respect
to a reference state |φ〉 as the minimal length of a gate sequence g1, . . . , gC ∈ G⊗C such that:

g1 · . . . · gC |φ〉 = |ψ〉 . (2.7)

The relative complexity defines a metric on the set of quantum states as long as the gate
set G is closed under gate inversion. This metric will be useful in characterizing topological
phases of many-body quantum systems in Ch. 2.2.

We can also define the quantum complexity of a computation. We consider a quantum
computer with n qubits, and we suppose that the qubits are always initialized in the state
|0〉⊗n and read out in the computational basis. In between initialization and read-out we
apply some unitary gate sequence drawn from G.

To define the computational complexity, suppose we would like to use the quantum com-
puter to evaluate a function f : X → Y for discrete sets X ,Y . That is, for each value of
x ∈ X we would like to construct a set of quantum gates g1(x), . . . , gC(x)(x) such that the
final measurement result provides the value of y. The quantum computational complexity of
an algorithm accomplishing this task is the maximum of the number of gates C(x) required
over the input value x. Since quantum measurements are inherently probabilistic, one of-
ten generalizes this setup to only require the quantum computation to succeed with high
probability.

In addition to the relative complexity and the computational complexity, in certain setups
we can also define a notion of query complexity. This is introduced in Ch. 13. Intuitively, it
counts the number of times that one needs to query some unknown state or process in order
to complete a given task.

2.2 Topological insulators
In this section we provide a rapid introduction to topological insulators [51]. We be-

gin by introducing two essential concepts in condensed matter physics, band theory and
tight-binding models. We then show that gapped band structures can possess topological
invariants, which we understand through the mathematical concept of homotopy. Finally,
we introduce the notion of stability to our classification, which leads to the seminal tenfold
way classification of topological insulators and superconductors.
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Band theory and tight-binding models

For the sake of brevity, we will skip past a continuum approach to band theory and begin
directly with tight-binding models. The extension of the below results to continuous real
space is underlied by Bloch’s theorem, we refer to Ref. [51] for a full treatment.

Consider a system composed of non-interacting fermions in a translation-invariant lattice
of potential wells. Suppose the potential wells are deep and the energy of the system is
low enough that the fermions can occupy only a few low-lying eigenstates (or orbitals) of
each potential well. This is known as the tight-binding limit. When the potential wells are
infinitely far away from one other, the single-particle Hamiltonian is simply a sum of the
individual well Hamiltonians:

Ĥ =
∑

r

Eαc
†
r,αcr,α, (2.8)

where c†r,α, cr,α are creation and annihilation operators for a fermion in orbital α of well
r. Here we index the orbitals by α = 1, . . . ,M , and the wells (i.e. lattice sites) by
r = (rx1 , . . . , rxd) ∈ Z

d. As the potential wells approach one another, the fermions are
increasingly able to tunnel between nearby wells. This introduces matrix elements of the
form:

tαβ∆rc
†
r+∆r,αcr,β, (2.9)

which allow a fermion in orbital β of well r to “hop” to orbital α of well r+ ∆r. Combining
the two, we find the tight-binding Hamiltonian:

Ĥ =
∑

r,∆r

∑

α,β

tαβ∆rc
†
r+∆r,αcr,β, (2.10)

where we include the individual well Hamiltonians using tαβ0 = Eαδα,β.
We can better analyze the tight-binding Hamiltonian by exploiting translation invariance

and Fourier transforming the fermion operators. Namely, we define the fermionic creation
and annihilation operators of momentum k via:

c†k,α =
∑

r

eik·rc†r,α, ck,α =
∑

r

e−ik·rcr,α. (2.11)

Note that the momentum is periodic on a d-torus with radius 2π in each direction, since r
is a vector of integers. Inserting these definitions into the tight-binding Hamiltonian gives:

Ĥ =
∑

k

∑

α,β

Hαβ(k)c†k,αck,β, (2.12)

where we have:
Hαβ(k) =

∑

∆r

eik·∆rtαβ∆r. (2.13)
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Diagonalizing the M ×M Hamiltonian matrix Hαβ(k),
∑

β

Hαβ(k)umβ (k) = εm(k)umα (k), (2.14)

gives M energy eigenvalues εm(k) that are continuous functions of the momentum k. We
refer to the mth eigenvalue as a “band” of the system. A band gap of size ∆ ≥ 0 between the
mth and (m+ 1)th band occurs when:

min
k

(εm+1(k))−max
k

(εm(k)) = ∆. (2.15)

An insulating state occurs when the chemical potential lies within such a band gap. In this
case, at temperatures that are small compared to the gap, the bands below the gap will be
fully filled while the bands above the gap will be fully empty. There is thus a finite energy
penalty ∼ ∆ associated with any excitation to the system. A conducting state occurs when
there is no such energy penalty; a small perturbation to the system can thus excite the
electrons into a non-zero total momentum state with only a infinitesimal energy penalty. It
is remarkable that this simple picture, involving only non-interacting fermions in an idealized
discrete lattice, already has the power to explain such a prominent property of materials in
the world around us.

Homotopy invariant of gapped band structures

The above discussion left one aspect of the band structure conspicuously absent: the
eigenvectors umβ (k). These eigenvectors encode how the orbital index of a fermion lying in
the mth changes with the momentum. (Oftentimes this index is instead formed by a spin
or sublattice of this system and goes by the alternate names “spin” or “pseudospin”.) If one
is in a perfect insulating state with bands either fully filled or fully empty, the eigenvectors
contain all of the information about the quantum state of the system.

For instance, suppose the chemical potential is zero and there are m bands with energies
below zero and M −m bands with energies above. The quantum state of the system corre-
sponds to filling the m bands and leaving the M −m bands empty. We would find the same
quantum state if we instead considered the “flattened” Hamiltonian:

Ĥflat(k) =
M∑

j=m+1

|um〉〈um| −
m∑

j=1

|um〉〈um| (2.16)

which has the same eigenvectors but a flat dispersion of −1 for the m filled bands and +1
for the M −m empty bands. Here we have changed notation to write the Hamiltonian in
first-quantized form in an M -dimensional Hilbert space.

Note that the above Hamiltonian is invariant under U(m) unitary rotations within the
filled bands and U(M −m) unitary rotations within the empty bands. The quantum state
of the topological insulator is therefore characterized by the map:

Hflat : T d → U(M)/(U(m)⊗ U(M −m)). (2.17)
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The latter group is known as a Grassmanian manifold. In two-band systems with one filled
band, the Grassmanian manifold simply corresponds to the Bloch sphere of the filled band,
U(2)/(U(1)⊗ U(1)) ∼= S2.

We are interested in universal characteristics of the above quantum state. The notion of
homotopy from mathematics provides precisely such a characteristic. Viewing the quantum
state as a map from the d-torus to the Grassmanian manifold as above, we say that two
quantum states are homotopy equivalent if their respective maps Hflat

1 (k) and Hflat
2 (k) can

be continuously deformed into one another, i.e. one can construct a continuous function
Hflat(k, λ) such that Hflat(k, 0) = Hflat

1 (k) and Hflat(k, 1) = Hflat
2 (k). For a given dimension-

ality, the homotopy equivalence relation defines a set of equivalence classes. The equivalence
class of a given insulator quantum state is a universal property of the state, in the sense that
it is robust to any continuous deformation of the Hamiltonian that does not close a bulk band
gap (since under such a deformation, the corresponding Hflat(k) transforms continuously).

The equivalence classes above define distinct topological insulator phases of matter. In
particular, the equivalence class of a product state defines the trivial insulator phase. Any
distinct equivalence class defines a non-trivial topological insulator. The number of equiva-
lence classes that we get will depend on the dimensionality and symmetries of the system.
(Symmetries can also be taken into account in the above definition by requiring that Hflat(k)
respect the symmetry.)

To illustrate these ideas, let us introduce the prototypical example of a topological in-
sulator, the so-called Chern insulator. The Chern insulator exists in two dimensions in the
absence of any symmetry. We will work in two-band systems for simplicity. In this setting,
the quantum state with one band filled is defined by the map |u〉 : T 2 → S2, where |u〉 (k)
is the lower eigenvector of H(k). The homotopy classes of this map are characterized by
the Chern invariant, C ∈ Z, which is an integer characterizing the “winding number” of the
2-torus about the 2-sphere. The simplest Chern insulator Hamiltonian is the Qi-Wu-Zhang
model [380],

H(kx, ky) = sin(kx)σx + sin(ky)σy + (u+ cos(kx) + cos(ky))σz. (2.18)

The Chern invariant of an arbitrary Hamiltonian can be calculated via C =
´
dkF(k),

where F is known as the Berry curvature,

F(k) = 〈∂kxu(k)|∂kyu(k)〉 − 〈∂kyu(k)|∂kxu(k)〉. (2.19)

Before proceeding, we comment on two crucial aspects of topological insulators. First, we
note that the chief physical signature of a non-trivial topological insulator is the presence of
gapless modes at the boundary between the topological insulator and a trivial state. These
can be intuitively understood when the boundary is smooth, i.e. when the Hamiltonian
interpolates slowly in real space from the topological insulator state to the trivial state. In
this case, the non-trivial homotopy classification indicates that the band gap of the Hamil-
tonian must close at some point within the interpolation. This gap closing corresponds to a
gapless mode on the boundary. The fact that the gapless boundary modes persist at sharp
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boundaries can be more rigorously understood from the viewpoint of topological quantum
field theory and mathematical index theorems [343].

Second, we note that this classification is robust to adding interactions as long as the
interaction strength V is weak compared to the band gap ∆. When this is the case, local
perturbations to the quantum state by the interactions are suppressed by ∼V/∆ and thus
small.

Tenfold way classification of topological insulators and
superconductors

In the homotopy treatment above, the classification of possible topological invariants
implicitly depends on the number of bands in the system. Is this physical? In fact it is
not, at least under the most general assumptions about the robustness of the topological
invariant. For example, consider a two-band insulator with one band filled and one band
empty. Now consider adding a small perturbation to the system that doubles the size of the
unit cell. The Brillouin zone is thus halved, and the original bands fold on top of themselves
to give two bands filled and two bands empty. If we wish for our topological invariants to be
robust to such small perturbations, they clearly cannot depend arbitrarily on the number of
bands.

A stronger condition holds if we allow for taking tensor products of the system of interest
with a trivial topological insulator (e.g. a single band Htriv = E

∑
i c
†
ic
i
i which we can take

to be either filled or empty). Under this procedure one can clearly extend the number of
filled and empty bands of the original system to be any number greater than the original.
If we desire robustness to this procedure, we should seek a topological invariant that is
independent of the number of bands.

The result of this pursuit is the seminal “tenfold way” classification of topological insu-
lators and superconductors [251, 425]. The full classification due to Kitaev utilizes a heavy
dose of mathematical K-theory and Clifford algebras [251]. The mathematical setup is a
rigorization of the previous paragraph: we consider an equivalence relation on the set of all
gapped band structures, in which two band structures are equivalent if they can be continu-
ously deformed into one another (without closing the band gap) after allowing for arbitrary
tensor products with trivial bands. The resulting equivalence classes each represent a dis-
tinct topological insulator, and the set of topological insulators possesses a group structure
via the tensor product. The classification depends only on the symmetry and dimensionality
of the system.

Owing to the stringent robustness requirements of the tenfold way classification, we
emphasize that there exist many classes of topological insulators that lie beyond its remit.
Notable examples include topological insulators that are protected by crystalline symmetries
of the system [154], and higher-order topological insulators where gapless surface states are
protected only at “hinges” of the surface [423]. The tenfold way classification also misses
topological insulators that are unstable to the addition of higher bands in the system, but
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which are robust in few-band systems. The most notable example of this latter case is
the Hopf insulator [335], which we will encounter in Section II. Finally, the introduction of
periodic driving to the system leads to the notion of Floquet topological insulators, which
we introduce in Ch. 5.

Quantum information perspective

From our description above, it is far from obvious how topological insulators are con-
nected to quantum information. The most direct connection relates to the notion of relative
complexity of quantum states, introduced in the previous chapter. Specifically, consider
introducing an equivalence relation on states where two states are equivalent if they have
relative complexity ∼ O(1) i.e. not scaling with the system size n. (To precisely define
this, we should properly consider sequences of states as a function of n [524], but we will
neglect this subtlety here.) Consider a gate set Glocal consisting of all geometrically local
gates. Roughly, we say that the ground state of a local Hamiltonian possesses topological
order if it is in a different equivalence class than product states, under the gate set Glocal. It
turns out that (most) topological insulators are trivial under this definition. The reason is
that the gate set Glocal does not need to conserve fermion number. Now consider instead a
gate set Glocal,U(1) consisting of all geometrically local gates that conserve fermion number.
It turns out that the topological insulators are each non-trivial under this definition. Since
their non-triviality relies on the presence of the fermion-conserving U(1) symmetry, we say
that topological insulators are an example of symmetry-protected topological phase.

2.3 Quantum information dynamics
In this section, we provide an introduction to a few of the developments in quantum in-

formation dynamics that have occupied the past decade. The developments that we discuss
largely originated in the study of quantum gravity, and center around quantities known as
out-of-time-order correlators (OTOCs). The OTOC had been studied previously in a few
different contexts (semiclassical physics, single-particle quantum chaos, and nuclear magnetic
resonance spectroscopy), yet its behavior and applications in many-body systems were only
understood recently. These applications span diverse sectors of physics, including quantum
chaos (Ch. 11), thermodynamics, classical simulation of quantum dynamics, quantum com-
munication (Chs. 7, 8, 9), error propagation in quantum simulators (Ch. 10) and quantum
gravity.

We begin in this section by motivating the OTOC through the context of classical
chaos [277]. We then provide an information-theoretic point of view of the OTOC in the
context of many-body systems [506]. From this viewpoint, we introduce the notion of opera-
tor size distributions [397], which provide a distinct probe of quantum information dynamics
that will be central to the results of Chs. 9 and 10.
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From classical chaos to out-of-time-order correlators

We begin in the setting of classical mechanics, and for concreteness consider a phase space
(x1, x2, x3, p1, p2, p3) equipped with Hamiltonian dynamics. If the system starts at position
x0 = (x1(0), x2(0), x3(0)) and is evolved by a time t, then we denote its new position by
x(t, x0), although we will often suppress the dependence on the initial condition. To ascertain
the sensitivity to initial conditions, we can compute the derivative of the first coordinate
x1(t) with respect to, say, the first coordinate of the initial condition x1(0), giving ∂x1(t)

∂x1(0)
.

For chaotic systems this quantity can exhibit exponential growth in t, with a growth rate
characterized by a so-called Lyapunov exponent. This is the classical chaos: the behavior of
the system at later times is exponentially sensitive to the choice of initial conditions.

To motivate a quantum generalization, we can write ∂x1(t)
∂x1(0)

= {x1(t), p1(0)}PB where the
right-hand side is the Poisson bracket. The quantum version of this quantity is naturally
1
i~ [x̂1(t), p̂1(0)], as was suggested in the seminal work of Larkin and Ovchinnikov [277]. No-
tice that this object is an operator; since it is convenient to have a single number which
captures the exponential growth of chaos, it is natural to take the expectation value of
the operator with respect to a state ρ as 1

i~ tr(ρ [x̂1(t), p̂1(0)]). Often ρ is chosen to be
a thermal state, although in this case the expectation value may fluctuate around zero.
To ameliorate this, the expectation value of the square of the commutator can be con-
sidered, namely − 1

~2 tr(ρ [x̂1(t), p̂1(0)]2). Expanding this out, there are terms of the form
− 1

~2 tr(ρ x̂1(t) p̂1(0) x̂1(t) p̂1(0)), which are indeed out-of-time-order: we start at time zero,
evolve to time t, evolve back to time zero, and evolve back to time t. It is this OTOC term
that gives the quantum analog of exponential growth.

More generally, in quantummany-body systems the preferred quantity is often tr(ρ [W (t), V (0)]2)
where ρ is a thermal state and W (0), V (0) are (initially) spatially local operators [250, 315].
Expanding out the commutator, we obtain the OTOC:

OTOC(t, ρ;V,W ) = tr(ρW (t)V (0)W (t)V (0)). (2.20)

The decay of the OTOC thus quantifies how much W (t) and V (0) fail to commute in the
Heisenberg picture. We should note that various re-definitions of the OTOC are possible
depending on how one “distributes” the density matrix ρ. For instance, in Ch. 9 we will
be naturally led to OTOCs of the form tr(ρ1/2W (t)V (0)ρ1/2W (t)V (0)) where ρ is equally
distributed at two locations in the trace. More general OTOCs are possible by taking the
times in W and V to have imaginary components. At most points in this thesis, we will
focus on OTOCs at infinite temperature, which corresponds to the density matrix ρ = 1/d
where d is the total Hilbert space dimension.

Out-of-time-order correlators in many-body systems

We begin with a technical aside to introduce the qudit Pauli operators. Consider a
collection of n qudits of local Hilbert space dimension q with an on-site Hilbert space {|j〉 |i =
0, . . . , q−1}. The qudit Pauli operators are unitary operators defined as follows. The “clock”
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Pauli operator Z is defined as Z |j〉 = exp(i2πj/q) |j〉. The “shift” Pauli operatorX is defined
as X |j〉 = |j + 1〉. The clock and shift operators commute up to a phase, ZX = ei2π/qXZ.
The total set of q2 Pauli operators are obtained as multiples of the clock and shift operators
of the form ZaXb with a, b = 0, . . . , q− 1. These form a complete operator basis for a single
qudit.

In systems of many qudits, it is natural to consider Pauli string operators R̂ =
⊗n

i=1 R̂i,
corresponding to tensor products of Pauli operators R̂i on each qudit. The set of Pauli
strings forms a complete operator basis of the many-qudit system.

Consider the OTOC between two (initial) Pauli operators W , V . We can decompose the
time-evolved operator as a sum of Pauli strings,

W (t) =
∑

R

cRR̂, (2.21)

where the coefficients squared are normalized to unity, 1 = tr(W †W )/d =
∑

R |cR|2. Now
insert this decomposition into the infinite temperature OTOC:

OTOC =
1

d
tr(W (t)VW †(t)V †)

=
1

d

∑

R,R′

cR′c
∗
Rtr(R

′V R†V †)

=
1

d

∑

R

|cR|2tr(RV R†V †)

=
∑

R

|cR|2 · eiωRV ,

(2.22)

where ωRV quantifies how much the Pauli operators V and R do not commute, RV =
eiωRV V R. The OTOC is equal to the expectation value of eiωRV over the distribution of
Pauli strings in W (t).

Now consider averaging the OTOC over a complete basis of Pauli operators V on a qudit
j. We use the identity:

1

q

∑

V

V̂jÂV̂
†
j = trj(Â)⊗ 1j (2.23)

where Â is a many-qudit operator. This identity holds whenever V is summed over a complete
single-qudit basis of operators (i.e. a “one-design”). We obtain:

1

q2

∑

V

OTOC(V,W ) =
1

q2

1

d

∑

R

|cR|2
∑

V

tr(RVjR†V †j )

=
∑

R

|cR|2δR̂j ,1j .
(2.24)

We thus arrive at the most intuitive interpretation of the OTOC, as quantifying the probabil-
ity that a Pauli string drawn fromW (t) does not have support on qudit j. This interpretation
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only holds precisely when the OTOC is averaged over a complete basis of operators V on
qudit j. For fixed V , it will hold approximately if the Pauli strings inW (t) that have support
on j have roughly equal probability to contain each non-identity qudit-j Pauli operator (up
to some constant shift due to the fact that V is non-identity).

There is also a nice interpretation of the OTOC as a mutual information between two
time-slices of the quantum dynamics [518]. To define this mutual information, we consider
an initial state where every qudit is in an EPR pair with a reference system. We then act
unitary time dynamics on the first half of these EPR pairs. After the time dynamics are
applied, the first half of qudits correspond to the “final state” while the second half of qudits
correspond to the “initial state”. (To understand this, note that if we project the second half
into a many-body state |ψ∗〉, the first half are in the state U |ψ〉. Hence our terminology.
The complex conjugation is a subtlety related to EPR pairs, see Ch. 9.)

We would like to understand how local information in the initial state is stored in the
final state. Specifically, consider partitioning the initial state into a local subsystem A of nA
qudits and its complement B, and partitioning the final state into a local subsystem D of
nD qudits and its complement C. Note that B and C are extensive. We will now show that
the average of the OTOC over Pauli operators W on subsystem A and Pauli operators V
on subsystem D is equal (up to a constant) to the second order Renyi mutual information
between subsystems A and C.

The second order Renyi mutual information is defined as:

2I
(2)(A,C) = 2−S

(2)(AC)+S(2)(A)+S(2)(C) =
tr(ρ2

AC)

tr(ρ2
A)tr(ρ2

C)
= dAdCtr(ρ2

AC). (2.25)

We can re-express the trace in terms of an average OTOC by using the identity Eq. (2.23),
generalized to arbitrary subsystems. This is most easily seen in the diagrammatic notation
that we introduce in Ch. 9. Referring therein for an introduction, here we simply state the
result:

(2.26)
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We thus arrive at:

I(2)(A,C) = 2nA + log

[
1

d2
Ad

2
D

∑

W,V

OTOC(W,V )

]
, (2.27)

which is our final result.
We can check the limits of this equation as follows. For trivial dynamics the average

OTOC is one, thus the logarithm is zero and the mutual information is maximal. This keeps
with our expectation: if the system has not scrambled, the initial information contained in A
lies entirely in C at later times (since A is in C). On the other hand, consider fully scrambling
time dynamics in which every non-identity time-evolved operator W (t) has probability one
to have support on every site. In this case, the OTOC averaged over V is zero when W 6= 1

and one when W = 1. Since W has probability 1/d2
A to be the identity, the average OTOC

is 1/d2
A. The logarithm thus takes value −2nA = log(1/d2

A) and the mutual information is
zero. This again keeps with our expectation: if the system has fully scrambled, the initial
information cannot be recovered unless we have access to every site of the system.

Operator size distributions

In bosonic qudit systems, we define the size of a Pauli string as its number of non-identity
elements [397]. For instance, the Pauli string 1⊗X ⊗1⊗1⊗Z ⊗X ⊗1 has size 3. A more
general operator can be written as a sum of Pauli strings, R:

Q(t) =
∑

R

cR(t)R, (2.28)

and possesses a corresponding size distribution [379, 397]:

P (S) =
∑

S[R]=S

|cR(t)|2. (2.29)

The distribution is normalized to 1 if Q is unitary,

∑

S

P (S) =
∑

R

|cR(t)|2 =
1

d

∑

R

|cR(t)|2tr(R†R) =
1

d
tr(Q†Q) = 1. (2.30)

One can naturally characterize the size distribution via its moments—for instance, the av-
erage size, S ≡∑S P (S)S, and the size width, δS = S2 − (S)2.

We note that the operator size distribution probes fundamentally distinct properties of
quantum information dynamics compared to the OTOC. As a simple proof-of-point example,
consider a two-qubit system and the operators W1(t) = X ⊗ 1 + 1 ⊗ X and W2(t) =
1 ⊗ 1 + X ⊗ X. The operators W1 and W2 clearly have the same OTOCs as long as
V is a single-qudit operator. The operators W1 and W2 also clearly have different size
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distributions, P1(S) = δS,1 and P2(S) = (δS,0 + δS,2)/2. Roughly speaking, the OTOC
probes the probability that an operator has support on the qudit that V acts on. The size
distribution probes correlations in the operators’ support across all qudits.

Finally, we note that we can introduce a corresponding size superoperator S{·} defined
by its action of Pauli strings S{R̂} = S[R̂]R̂. The size superoperator can be neatly expressed
as a sum of single-qudit Pauli operations as follows:

S{·} = N(·)− 1

q2

n∑

i=1

∑

P

P̂i(·)P̂ †i , (2.31)

where P is summed over the single-qudit Pauli operators. This can be verified using the
identity 1

q2

∑
P P̂ Q̂P̂

† = δQ,1Q̂ for Pauli operator Q. Writing R̂ =
⊗

i R̂i and applying this
identity for each i, we obtain a sum of N−S[R̂] copies of R̂ from the right term in the above
equation. The subtraction from N then gives the size.

2.4 Quantum learning theory
The fundamental goal of all physical experiments is to learn properties of a system from

measurements on it. Most generally, quantum learning is the study of how best to achieve
this goal when some aspect of the process is quantum.

In this thesis, we will focus on the scenario where the unknown system itself is quantum,
e.g. either an unknown quantum state or quantum process. We suppose that there is some
property of the quantum state that we wish to learn, and we would like to know how well
various strategies to learn this property succeed. Here, a strategy consists of both the choice
of what measurements to perform on the quantum system, as well as how to process those
measurement outcomes. The former aspect is particularly interesting in quantum systems
owing to the non-commutativity of physical observables: we cannot learn everything about a
quantum system from a single measurement on it. The latter aspect opens up the possibility
of quantum advantage in learning, if a quantum computer can assist our ability to process
the experimental outcomes. Whether this occurs has yet to be seen, outside of the case of
“quantum memories” which we discuss at the end of this Chapter.

The above definition is quite broad, and spans a number of distinct physical scenarios. A
common theme is to minimize the experimental resources (e.g. the total time or number of
experiments) required for a given learning task. For instance, the field of quantum metrology
represents a particular example of quantum learning in which one wants to learn the value
of some continuous parameter (e.g. a magnetic field) as precisely as possible, often in as
little time as possible [128]. As another example, given a quantum state ρ and a set of
observables {Ôi}, one can wonder how many experiments are necessary in order to estimate
the expectation value of every Ôi in the state [217]. As a third example, suppose we have a
quantum state ρ(x) that depends on some continuous vector of parameters x. We can now
ask how many experiments are required to estimate the expectation value of an observable
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Ô for all values of x [218]. Tasks such as these are already crucial in quantum technologies
such as quantum sensing and quantum device characterization, and one can imagine they will
become more widespread as quantum technology continues to progress. Quantum learning
theory seeks to uncover common patterns and themes in the difficulty of, and solutions to,
such problems.

In this thesis, we will be predominantly occupied with the class of questions: How much
information do experiments of a type A contain about a property B? Clearly, certain types
of experiments are much better for learning certain properties than others. For instance,
if one wished to distinguish between the two single-qubit quantum states |0〉 and |1〉, an
experiment that measures the qubit in the Z-basis will succeed while an experiment that
measures in the X-basis will not. Thus, we will be particularly interested in these questions
in the context of broad classes of measurement strategies, where each class encompasses
many choices of, for example, the measurement basis. We will also focus on learning tasks
in many-body systems, and analyze the scaling of the number of experiments required with
the system size. Specifically, in Chs. 12 and 13, we will establish that certain features of
many-body quantum dynamics can be efficiently learned in experiments that involve reversed
time-evolution, but are exponentially difficult to learn with experiments that do not.

With this endpoint in mind, in this section we provide a brief introduction to a few
relevant tools in quantum learning theory. We begin with an introduction to the Fisher
information, which quantifies the amount of information that an entity B contains about
a continuous entity A [242]. The Fisher information is ubiquitous throughout (classical)
statistics as well as quantum learning theory, and will be utilized in Ch. 12. We then turn to
a quite different context, and introduce the setting of a few notable no-go theorems recently
proven in learning with a quantum memory [10, 95, 96, 219]. The results in Ch. 13 will
borrow much of these techniques, albeit for a quite different learning task.

Quantifying learnability via the Fisher information

Suppose we have access to a random variable x drawn from a probability distribution
p(x|J). Here J is a fixed unknown parameter of the probability distribution. For example,
we could image that x is given by some deterministic function of J plus a small amount
of Gaussian noise, p(x|J) = f(J) +N (0, σ), where N (µ, σ) is a Gaussian distribution with
mean µ and standard deviation σ. In the context of quantum mechanics, we could also
imagine that we have a quantum state ρ(J) parameterized by J , and would like to learn the
value of J from measurements on ρ(J). A measurement of an observable X̂ gives eigenvalue
x with probability:

p(x) = 〈x| ρ(J) |x〉 . (2.32)

The classical Fisher information quantifies how information a single draw of x contains
about the parameter J . The classical Fisher information is defined as [242]:

I(J) = E
[
(∂J log(p(x|J)))2] =

∑

x

(∂Jp(x|J))2

p(x|J)
. (2.33)
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When the probability distribution depends strongly on J , the squared derivative will be
larger and the Fisher information will be greater. The classical Fisher information derives
its power from the associated Cramer-Rao bound, which lower bounds the variance in any
unbiased estimate Jest of J based on a single draw of x. We have:

var(Jest) ≥
1

I(J)
. (2.34)

A higher Fisher information allows a lower variance in Jest, and hence a more precise estimate.
In multi-parameter estimation scenarios, the relevant quantity is the Fisher information

matrix [242]:

Iij(J) = E
[
(∂Ji log(p(x|J)))

(
∂Jj log(p(x|J))

)]
=
∑

x

∂Jip(x|J)∂Jjp(x|J)

p(x|J)
. (2.35)

The associated Cramer-Rao bound involves the matrix inverse:

var(Ji,est) ≥
(
I(J)−1

)
ii
, (2.36)

Notably, the quantity on the RHS can be much greater than the reciprocal single-variable
Fisher information 1/Iii(J). This is because uncertainty in the parameters j 6= i can inhibit
our ability to estimate the parameter i.

Although it will not be used in the results of this thesis, there is also a quantum gener-
alization of the Fisher information, defined for a density matrix ρ(J). The quantum Fisher
information matrix takes the form [300]:

Iij(J) = 2
∑

λ,λ′

Re
{
〈λ| ∂Jiρ |λ′〉 〈λ′| ∂Jjρ |λ〉

}

λ+ λ′
. (2.37)

Restricted to a single variable, the quantum Fisher information is equal to the maximum of
the classical Fisher information over the choice of measurement basis. There is also an asso-
ciated Cramer-Rao bound for the quantum Fisher information much like the classical Fisher
information. In the multi-parameter case, there are subtleties surrounding the achievability
of the quantum Cramer-Rao bound due to the non-commutativity of quantum observables.

Exponential separations in quantum learning

An exciting recent line of progress in quantum learning theory is the development of
rigorous proofs regarding when learning is and is not possible. Many recent results in this
direction have focused on separation between learning with and without a quantum mem-
ory [10, 95, 96, 219]. In particular, it has been shown that there exist properties of quantum
systems that are exponentially difficult to learn given only a single copy of the system.
However, these same properties become easy to learn (i.e. learnable in either constant or
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polynomial time) if one has the ability to perform joint measurements on multiple copies of
the system. The additional copies are viewed as being stored from previous experiments in
a “quantum memory”.

In Ch. 13, we establish a new separation in quantum learning theory, between learning
a quantum process with or without access to its time-reverse. In so doing, we will utilize
(and indeed, substantially extend) some of the proof techniques developed for learning with
quantum memories. We therefore provide here a brief introduction and intuition for learning
with a quantum memory. For brevity, we focus on a single, particularly relevant learning
task [10, 96].

The learning task we consider is as follows. Suppose one is given oracle access to either
(i) an unknown state ρ = |ψ〉〈ψ| drawn uniformly randomly from the set of n-qubit states,
or (ii) a maximally mixed state ρ = 1/d, where d = 2n. In case (i), the same state |ψ〉
is provided in each subsequent query to the oracle. The goal is to distinguish whether the
quantum state is drawn from (i) or (ii), i.e. whether the state is pure or maximally mixed.

This question is easily answered if one can perform joint measurements on two copies of
the unknown state. One simply measures the SWAP operator S between the two copies. In
case (i), the state |ψ〉 ⊗ |ψ〉 is an eigenstate of S:

S(|ψ〉 ⊗ |ψ〉) = +(|ψ〉 ⊗ |ψ〉), (2.38)

and thus returns measurement outcome +1 in every instance. In case (ii), the maximally
mixed state returns +1 and −1 with near equal probability in the large n limit (for n = 1, it
returns −1 one quarter of the time, corresponding to a single singlet state and three triplet
states; at higher n the ratio of symmetric to asymmetric states approaches 1). Cases (i) and
(ii) can thus be distinguished in O(1) queries.

We would like to know whether it is still possible to distinguish the two states if one has
access to only a single copy of the unknown quantum state at a time. The result, that it is
exponentially difficult in n to distinguish between case (i) and (ii), is established in Refs. [10,
96]. Here we provide intuition for this result by considering a simple setup where one can
only measure a single experimental observable in each repetition of the experiment. We then
introduce the significantly more general setup considered in Refs. [10, 96].

How can one distinguish a single copy of a pure state from the maximally mixed state?
This task would be easy if we knew what basis the pure state was in. For example, if the
pure state lied in the computational basis, e.g. |ψ〉 = |0011010001〉, then we could simply
measure any qubit in the Z-basis. If the measurement provided the same outcome every
time (i.e. the expectation value obeyed | 〈Zi〉 | = 1) then we have case (i); if not, then case
(ii). The difficulty of distinguishing (i) and (ii) thus lies in our inability to correctly guess
the basis of the unknown pure state.

To illustrate this a bit more concretely, suppose we choose to measure some non-identity
Pauli observable M̂ . What is the expectation value of M̂ in the given random pure state?
Well, the average expectation value is zero, using properties of state one-design:ˆ

dψ 〈ψ| M̂ |ψ〉 =
1

d
tr(M̂) = 0, (2.39)
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since the Pauli operators have zero trace. But this is not too helpful, in principle the average
expectation value could be small but its absolute value could be large. We would like to know
what is the probability Pε that the absolute value of 〈ψ| M̂ |ψ〉 is greater than some constant
ε. Let’s consider the second moment, evaluated using properties of a state two-design:
ˆ
dψ 〈ψ| M̂ |ψ〉2 =

1

d(d+ 1)

[
tr(M̂ ⊗ M̂) + tr((M̂ ⊗ M̂)Ŝ)

]
=

1

d(d+ 1)
tr(M̂2) =

1

d+ 1
.

(2.40)
The second moment is suppressed by Hilbert space dimension d = 2n, and so is exponentially
small in the number of qubits. Further, we can use the second moment to upper bound
the probability Pε via Markov’s inequality: Pε ≤ 1/(ε2d). Therefore our probability of
choosing a successful observable M̂ is exponentially small, and so (in this restricted setup)
it is exponentially difficult to distinguish case (i) and (ii).

The setups considered in Refs. [10, 96] are much broader than this. There are two impor-
tant generalizations. First, the measurements are allowed to be any POVM. For example,
one could imagine measuring all n qubits in the Z-basis and obtaining a full bit-string from
each measurement result. Second, the entire protocol is allowed to be adaptive. That is, the
measurement basis in a given round of the protocol is allowed to depend on the measure-
ment results of all previous rounds. Remarkably, even within these near-maximally generous
assumptions, it is possible to prove that cases (i) and (ii) cannot be distinguished without
exponentially many queries to the unknown quantum state. The proof requires a substan-
tial amount of technical machinery, relating to unitary designs, Weingarten functions, and
properties of the permutation group.

In Ch. 13, we will prove an exponential separation in learning quantum processes for
the general setup above, i.e. allowing adaptive POVMs. There is actually one additional
generalization that we allow: partial measurements, in between successive applications of the
quantum process of interest. This ingredient was disallowed in previous works; our expanded
proof techniques allow us to include it.
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Part II

Topology in Dynamical Quantum
Phenomena
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Chapter 3

Realizing Hopf insulators in dipolar spin
systems

In this Part, we address topological phenomena in dynamical quantum systems. As in-
troduced in Ch. 2.2, static topological phases are characterized by ground states that cannot
be transformed into product states under any finite-depth unitary circuit (perhaps restricted
to obey a symmetry). This leads to a host of interesting static quantum phenomena, such
as robust gapless edge modes and excitations with exotic braiding statistics.

Dynamics will play two different roles in this Part. In Chs. 3, 4, and 6, we will use
dynamics to enable novel realizations of essentially static quantum phenomena. In Ch. 5,
we discuss instead how dynamics (specifically, in the form of periodic driving) can induce
entirely new, intrinsically-dynamical phases of matter.

We begin in this Chapter with our first example of how dynamical phenomena—specifically,
high-frequency periodic driving—can enable simpler realizations of static topological phe-
nomena. Our specific topic of interest will be the so-called Hopf topological insulator [132,
243, 299, 335]. We recall from Ch. 2.2 that the interplay between a system’s symmetries and
dimensionality leads to a rich landscape of topological insulators [156, 191, 237, 260, 334,
403, 460, 525], captured by the so-called ‘Tenfold Way’ classification [251, 425]. The Hopf
insulator (HI) represents a topological insulator phase of matter beyond this classification.
Existing in three dimensions in the absence of any time-reversal or particle-hole symmetries,
the Tenfold Way predicts that no topological state can exist, yet the Hopf Insulator features
an insulating bulk and conducting edges protected by an integer-valued Z topological invari-
ant. The apparent contradiction is avoided in two ways. First, HIs are weak TIs, meaning
they only exist in two-band models, and the addition of further non-interacting bands can
destroy the topology. Weak TIs are not captured by the Tenfold Way. Second, the Z topo-
logical invariant is not the usual Chern number, but is instead a linking number familiar
from knot theory and deriving from a relation to the Hopf map [212, 335].

Despite a recent resurgence of interest in HIs [7, 19, 130, 131, 132, 206, 207, 215, 243, 244,
299, 335, 428, 456, 469, 479, 509], fundamental difficulties have led to only a few proposals
for their physical implementation [132]. There are three main barriers to implementing HIs
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Figure 3.1: Three-dimensional two-band systems implement maps from the Brillouin zone
T 3 to the Bloch sphere S2. The pre-image of any point in S2 is a closed loop in T 3. There
exist topologically non-trivial states, Hopf Insulators (HIs), in which the pre-images of any
two points on S2 are linked in T 3. HIs are characterized by a non-zero Hopf invariant h
equaling the linking number of the loops; pictured schematically are three points on S2 and
their pre-images in T 3 for both a HI with h = 1 (left) and a trivial insulator with h = 0
(right).

in any tight-binding model of (say) electrons hopping on a lattice. First, the necessity of
having precisely two bands rules out many material implementations. Second, as we will see,
the nature of the non-zero linking number invariant requires a delicate structure in reciprocal
space, meaning real-space interactions must be specified to large distances. Third, a strong
spin-orbit coupling is required between the two bands.

In this Chapter, we demonstrate that these barriers may be overcome by implementing
HIs in lattices of driven, dipolar-interacting spins. Electron ‘hopping’ can be replaced by
transitions between rotational eigenstates, which are much easier to create and control; the
long range of the dipole-dipole interaction then naturally realizes the long-distance hoppings.
The two bands can be created from two sub-lattices, and different spin orientations can lead
the hoppings to have a complex phase structure able to simulate a strong spin-orbit coupling.
Further, we demonstrate that the key experimental signatures of HIs, gapless edge states, are
present at any smooth (adiabatic) termination of our model and are robust to all smooth per-
turbations. This is in support of previous theoretical arguments for topologically-protected
gapless modes at smooth boundaries, where translational-invariance and, as a consequence,
the two-band picture are preserved. Nevertheless, we show that gapless edge states may
persist at judiciously-chosen sharp (non-adiabatic) edges, owing to a crystalline symmetry
that stabilizes the Hopf insulator to higher bands. This connects recent work predicting this
‘crystalline-symmetric Hopf insulator’ with past numerical findings, which similarly observed
gapless modes at sharp edges. In Ch. 4, we will provide a specific experimental blueprint
for implementing our proposal using ultracold polar molecules of 40K87Rb. Due to the close
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relation between this Chapter and Ch. 4, we postpone a discussion and outlook regarding
our results until the end of Ch. 4.

3.1 Model Hamiltonian
The Hopf Insulator (HI) can be understood by considering the three-dimensional two-

band system at half filling described by the Hamiltonian

Ĥ(k) =
3∑

i=1

ni(k)σ̂i (3.1)

with Pauli matrices σ̂i. The bulk of the system is assumed gapped, requiring |n(k)| > 0.
Eq. (3.1) defines a map from the three-torus T 3 — the Brillouin zone in which the wavevectors
k reside—to the Bloch sphere S2 describing the possible states of the two-band system. The
pre-image of any point on S2 is then a closed loop in T 3. Restricting attention to the case
in which the system has zero Chern number across any two-dimensional slice through the
three-torus, the linking number of any two of these loops (necessarily an integer) is equal to
the Hopf invariant of the map [212]:

h = − 1

4π

ˆ
BZ

d3k
∑

ijk

εijkAi∂jAk (3.2)

with εijk the Levi-Civita symbol, ∂i = ∂/∂ki, and Ai (k) = −i〈uk|∂i|uk〉 the Berry connection
for eigenstate |uk〉. Changing h requires the gap to close. The h = 0 state, in which all loops
are unlinked, is a trivial insulator, and so for ni(k) such that h > 0 the system is in a
topologically non-trivial state: the Hopf insulator [334, 335]. This Z topological invariant is
fundamentally distinct from the Chern number appearing in the Tenfold Way. The situation
is shown schematically in Fig. 3.1. The HI is a weak TI, meaning that mixing with further
non-interacting bands can destroy the topology.

Recently [299], it was realized that if the system obeys a certain crystalline symmetry,

J −1Ĥ (k)J = −Ĥ (k)∗ , (3.3)

where JJ ∗ = −1, the HI is promoted to a strong TI characterized by a Z2 invariant (an
example of a topological crystalline insulator, TCI) [299]. In two-band models at half-filling
this symmetry is always present, with any half-filled two-band Hamiltonian obeying Eq. (3.3)
with J = σ̂y. In systems with more than two bands it can be viewed as the composition of
inversion and particle-hole symmetries.

Our implementation of the Hopf Insulator is based on the following Hamiltonian:

Ĥeff =
1

2

∑

v,r6=0

∑

αβ

tαβr â†v+r,αâv,β + H.c.
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Figure 3.2: The proposed experimental set-up consists of dipolar molecules confined in a
three-dimensional optical lattice, with two sub-lattices A and B separated in the z-direction.
A combination of applied electric and magnetic fields and the intensities of the lattice beams
themselves set the molecules’ rotational axes along the z-direction, and are tuned so that
|J = 1,m = 0〉 excitations (depicted as z-oriented molecules) on the A sub-lattice can ‘hop’
to |J = 1,m = 1〉 excitations (depicted as molecules spinning in the xy-plane) on the B
sub-lattice via the dipolar interaction, while conserving energy. Adding space- and time-
dependence to these parameters leads to Floquet modulations µαv(t) of the on-site energies,
allowing further control over the hopping magnitudes.
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+
∑

v

∑

α

µαâ†v,αâv,α (3.4)

where a†v,α creates a hard-core boson at lattice site v and sub-lattice α ∈ {A,B}. We
adopt a bosonic rather than fermionic description, permitted by the single-particle nature
of the HI, as we will model the hopping of electrons between sites with the exchange of
angular momentum eigenstates. The sum over positions r indicates the presence of long-
range hoppings necessary to realize the delicate k-space structure needed for all loop pre-
images to link. The model has two sub-lattices, which will form the two bands. Both intra-
and inter-sub-lattice hoppings are present, tαβr , as well as a sub-lattice-dependent chemical
potential µα.

3.2 Realizing the Hopf insulator
We propose an implementation of the Hamiltonian of Eq. (3.4), which can naturally

be realized in three dimensional lattices of dipolar interacting spins. Our proposal can
be realized in a number of experimental platforms, ranging from highly-magnetic neutral
atoms such Erbium and Dysprosium [13, 149, 305, 465] to strongly-coupled solid-state spin
defects [41, 85, 270] to Rydberg-dressed atom tweezer arrays [52, 285, 523]. Here, we focus
on ultra-cold polar molecules trapped in a three-dimensional optical lattice (Fig. 3.2), where
tunable strong dipolar interactions have already been experimentally demonstrated [205,
507]. Recent progress has led to the development of numerous molecular species for such
set-ups [103, 129, 185, 331, 351, 364, 413, 455, 468]. To demonstrate that this proposal
is accessible in near-term experiments, we provide a detailed, quantitative blueprint for its
implementation in the specific case of 40K87Rb [15, 16, 337, 351, 359, 507] in Ch. 4.

The basic geometry of the setup we envision is a three-dimensional optical lattice gener-
ated using four pairs of counter-propagating beams: two pairs forming the xy-lattice and two
pairs forming the A and B sub-lattices in the z-direction (Fig. 3.2). We assume the molecules
completely fill the lattice, and each molecule is well-localized to its site by a deep confining
potential. Rather than having molecules physically hop between lattice sites, we instead uti-
lize the molecules’ rotational degrees of freedom to simulate hard-core bosonic excitations.
At lowest order, these rotational states are governed by the Hamiltonian Ĥrot = ∆Ĵ2, where
Ĵ is the total angular momentum operator with eigenstates |J,mJ〉. The energies of these
eigenstates are lifted by intrinsic hyperfine interactions, as well as tunable extrinsic effects
resulting from applied electric and magnetic fields and incident laser light. These extrinsic
effects set the molecules’ quantization axes and enable a direct modulation of the rotational
energy levels, and hence the two sub-lattices.

Focusing on the four lowest-energy rotational eigenstates, we define two distinct hard-core
bosonic degrees of freedom. On the A-sub-lattice we utilize {|0A〉 = |0, 0〉A, |1A〉 = |1, 0〉A},
while on the B-sub-lattice we utilize {|0B〉 = |0, 0〉B, |1B〉 = |1, 1〉B}, as illustrated in Fig. 3.2.
These hard-core bosons interact with one another via a dipolar interaction, which gives rise
to the effective hoppings:
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tAAr = −CAA 3 cos2(θ)− 1

R3

tBBr = CBB 3 cos2(θ)− 1

R3

tABr =
(
tBA−r

)∗
= −CAB cos(θ) sin(θ)

R3
eiφ

(3.5)

where {R, θ, φ} defines the separation of molecules in spherical polar co-ordinates, and
CAA, CBB, and CAB are positive constants. Details are provided in Ch. 4. This particu-
lar choice of rotational states ensures that the inter-sub-lattice hopping tABr is induced solely
by the ∆mJ = −1 term, which immediately gives rise to a hopping phase ∝ eiφ1. This
choice, motivated by the model of Ref. [334], locks the intra-sub-lattice components of the
Hamiltonian nx,y(k) to the momenta kx, ky. As illustrated in Ch. 4, this locking naturally
achieves the Hopf requirement that all Bloch sphere pre-images link.

We further enhance the relative strength of next-nearest neighbor hopping with a simple
Floquet engineering strategy. The basic principle is that, by periodically modulating the
on-site chemical potentials µαv (t) inhomogeneously at frequencies, ~Ω, significantly higher
than the energy of the dipolar interaction, the time-averaged behavior emulates that of a
different time-independent Hamiltonian. In this effective Hamiltonian, sites that oscillate
out-of-phase with one other will have the hopping between them suppressed, while hoppings
between sites oscillating in-phase remain unaffected. Although the Floquet modulation µαv (t)
necessarily varies with the lattice site v, we choose it such that effective hoppings remain
translationally-invariant. Specifically, we take the Floquet modulation to be a checkerboard
pattern in the xy-plane, such that next-nearest-neighbor hoppings (even rx + ry, in-phase)
are enhanced relative to nearest-neighbour hoppings (odd rx + ry, out-of-phase).

Additionally, although the slow decay of the 1/R3 dipole-dipole interaction is helpful
in establishing the next-nearest neighbor interactions in the xy-plane that are necessary to
realize the HI, our numerical studies indicate that the same interactions cause unnecessary
long-range couplings in the z-direction. To address this, we utilize an additional, second
patterning of the previous Floquet engineering strategy, which truncates the dipolar inter-
action to effectively nearest-neighbor in the z-direction [281]. This patterning is guaranteed
to operate independently of the previous Floquet engineering patterning if their modulation
frequencies are well-separated in scale; we verify this quantitatively in Ch. 4.

By this process we are able to identify parameters in Eq. (3.4) that realize the Hopf
insulating phase, h = 1, with band gaps as large as Eg & 0.26 tnn (in units of the nearest-
neighbor hopping), as well as gapless transitions between the Hopf and trivial insulating
phases (see Ch. 4). Utilizing the ∆mJ = +1 component of the dipolar interaction (as
opposed to the ∆mJ = −1 component) leads instead to the phase h = −1; higher linking
numbers are in principle possible, but require an even more delicate structure in k-space.

1Intriguingly, we note that this exact same hopping in two-dimensions can give rise to Chern insulating
physics, both in the prototypical Qi-Wu-Zhang model for the Chern insulator [380] as well as in positionally
disordered systems [9].
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Figure 3.3: (a) Hopf invariant h (left axis) and band gap Eg (right axis) as a function of the
staggered chemical potential µ = (µA− µB)/2, found by discretizing the Floquet engineered
dipolar Hamiltonian using 70× 70× 70 k-points, periodic boundary conditions, and setting
the nearest-neighbor inter-sublattice hopping in the xy-plane to 1. The remaining plots show
the energy spectrum with (100) edge terminations. Black states indicate the bulk, red/blue
indicate states localized to the left/right edge respectively, and dashed lines the bulk band
gap. (b) Adiabatic edge termination over 20 sites. The conducting edge states are protected
by the h = 1 topological invariant. (c) Sharp edge termination respecting the J crystalline
symmetry [Eq. (3.3)]. The edge states are now protected by the symmetry. (d) Introducing
terms that break the J symmetry gaps the edge states.
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Before concluding, we detail the separation of scales required for Eqs. (3.4) and (3.5)
to govern the low-energy dynamics of the polar molecular system. First, we work in the
natural experimental regime where the dipolar interaction strength is significantly smaller
than the energy splittings between the rotational states within the J = 1 manifold. The
external fields should be tuned such that the splitting between the |0A〉 and |1A〉 states is
resonant with the |0B〉 and |1B〉 states, and far detuned from all other rotational transitions.
Conservation of energy then dictates that the dipolar interaction can only induce transitions
within our prescribed hard-core bosonic doublets. Details on how this level scheme can be
precisely realized in the specific case of polar molecular quantum simulation based upon
40K87Rb can be found in Ch. 4. Here, we note only that the orientation of the spins is fixed
via applied fields oriented in the z-direction, and that the degeneracy between the |1, 0〉 and
|1, 1〉 states, as well as the sub-lattice symmetry between the A and B planes, is broken by
using different intensities of light to form each sub-lattice. Our scheme naturally leads to a
separation of energy scales t � δ � ∆, where t is the dipolar interaction strength (∼100
Hz), δ is the splitting within the J = 1 manifold (∼5 kHz), and ∆ is the splitting between
the J = 0 and J = 1 sectors (∼2 GHz).

3.3 Band structure and edge physics
In Fig. 3.3 we show the band structure found by exact diagonalization of the dipolar

Hamiltonian [Eqs. (3.4) and (3.5)] after applying our Floquet engineering strategy (see
Ch. 4). We assume periodic boundary conditions in the y- and z-directions (crystal momenta
ky and kz are therefore good quantum numbers) but a finite length in the x-direction. We
also truncate the hopping range to |r| ≤ 8 sites for numerical feasibility; increasing the
truncation range does not qualitatively affect the results. Fig. 3.3(b) shows the result of a
smooth adiabatic termination over twenty lattice sites. The bulk (black) is gapped, but the
edges (red and blue) host conducting states, which we found to be stable for any sizable
bulk gap. This is the Hopf insulator: the adiabatic termination approximately preserves
translational-invariance, leading to the survival of the two-band picture. Since the Hopf
invariant is trivial outside the system and unity inside, gapless edge states result at the
interface.

Fig. 3.3(c) shows the result of an abrupt termination of the edge. Lacking adiabaticity,
the band picture is expected to break down; since the HI exists only for two-band models, we
would then not expect topologically-protected edge states. Remarkably, however, edge states
are again present. In fact, a serendipitous choice of edge-termination plane (100) has lead
to the bulk J symmetry surviving at the edge, and these edge states are a manifestation
of the resulting strong Z2 invariant (which does not require a two-band model). To see
this ‘accidental’ symmetry, note that open boundary conditions are equivalent to an infinite
potential barrier Ĥedge = ρσ̂zδx, ρ→∞ at the system’s edge, where σ̂z acts on the sub-lattice
degrees of freedom. In momentum space, this corresponds to real couplings between different
kx, Ĥk,k′

edge = ρσ̂zδky ,k′yδkz ,k′z , which is easily seen to obey Eq. (3.3). Nearly any perturbation to
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naive open boundary conditions – for instance a small potential γ σ̂zδx−1 on the site nearest
the edge – breaks the J symmetry and gaps the edge states [Fig. 3.3(d)]. We predict that this
same mechanism is responsible for stabilizing the edge states at sharp boundaries observed
in previous numerical studies of the HI [131, 335]. All of these edge mode structures can be
probed experimentally via molecular gas microscopy [117, 321] by exciting individual edge
spins and observing the extent to which the excitation remains localized on the edge (see
Ch. 4 for further details).
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Chapter 4

Floquet engineering ultracold polar
molecules to simulate topological
insulators

In Ch. 3, we demonstrated that the band structure of the Hopf topological insulator
could be naturally realized in lattice of driven dipolar-interacting spins. In this Chapter,
we present a quantitative near-term experimental blueprint for realizing this proposal in
lattice-trapped ultracold polar molecules. Our proposal includes novel methods to (i) realize
maximally strong spin-orbit coupling, and (ii) precisely modulate the interactions’ spatial
profile, which we hope may be of broader use in polar molecule quantum simulation.

The rich internal structure of ultracold polar molecules has led to intense interest for their
use in a wide range of applications, ranging from quantum simulation and computation,
to ultracold chemistry and precision measurement [34, 42, 103, 129, 185, 221, 267, 331,
351, 352, 364, 412, 413, 421, 455, 468]. Understanding and controlling this structure has
led to the development of a host of techniques enabling the preparation and manipulation
of rovibrational states in polar molecules [15, 16, 26, 125, 337, 338, 349, 351, 359, 507].
From the perspective of quantum simulation, polar molecules enjoy a unique advantage
compared to their neutral atom cousins, owing to the presence of strong, anisotropic, long-
range dipolar interactions; these interactions have proven useful for theoretical proposals
aiming to realize a number of exotic phases, including disordered quantum magnets [170, 204,
511], Weyl semimetals [452] and fractional Chern insulators [511, 513]. Motivated, in part,
by these prospects, the last decade has seen tremendous experimental progress, advancing
from rovibrational ground state cooling [351] to the recent realization of a Fermi degenerate
molecular gas [125]. Moreover, from a geometric perspective, molecules can either be loaded
into optical lattices [337] or optical tweezer arrays [26]. As in other quantum simulation
platforms, Floquet engineering [79, 281]—high-frequency, periodic time-modulation—can
further sculpt the molecules’ interaction, broadening the scope of accessible phases [280,
327].

In this Chapter, we leverage these ingredients to provide an explicit experimental blueprint
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for realizing the Hopf insulator in polar molecules. As described in Ch. 3, realizing the Hopf
insulator requires two essential ingredients: 1) the presence of long-range hoppings and
2) strong spin-orbit coupling, manifested in hoppings whose phase is spatially anisotropic.
In Ch. 3, we predict that combining the dipolar interaction with Floquet engineering [79,
281] can naturally give rise to the Hopf insulator in interacting spin systems. In the present
Chapter, we build upon this result by providing a quantitative blueprint using lattice-trapped
ultracold polar molecules, focusing for concreteness on 40K87Rb [15, 16, 337, 351, 359, 507].

Our approach takes advantage of the full toolset of controls developed for polar molecu-
lar systems. In particular, we envision a deep, three-dimensional optical lattice, so that the
molecules’ rotational motion constitutes the fundamental degrees of freedom in the system.
Rotational excitations are exchanged between lattice sites via the dipolar interaction, which
simulates the hopping of hardcore bosons on the lattice. The two band, or ‘spin’, degrees
of freedom of the Hopf insulator are formed from two sublattices, distinguished from each
other by the lattice light itself—different intensity light forming the two sublattices induces
different level structures in the trapped molecules, according to the molecules’ polarizabil-
ity [349]. In contrast to prior studies [368, 511, 513], we utilize this polarizability to isolate
the ∆m = ±1 angular-momentum-changing component of the dipolar interaction, which pre-
cisely induces the requisite spin-orbit coupling of the Hopf insulator [335]. To complete our
construction, we demonstrate that Floquet engineering can be implemented using amplitudes
of applied laser light and DC electric fields which are easily accessible in current generation
experiments; moreover, we show that this engineering can tune the system’s hoppings into
the Hopf insulating phase with large band gaps & 0.26 tnn (in units of the nearest-neighbor
hopping, tnn), enabling easier experimental observation. Finally, a particularly simple way
to achieve the requisite rotational level structure (Fig. 4.1) is to utilize circularly-polarized
optical radiation in conjunction of the molecule’s AC polarizability. To this end, in order to
demonstrate quantitative feasibility, we provide the first detailed calculations of the relevant
circular polarizabilities for 40K87Rb.

Direct experimental verification of the Hopf insulator is most simply achieved through
spectroscopy of its gapless edge modes. In Ch. 3, we demonstrate that these edge modes are
robust at any smooth boundary of the Hopf insulating phase, while for sharp boundaries their
presence or absence signifies the existence of an underlying crystalline symmetry [299]. We
will show that all three of these qualitatively distinct boundary spectra can be manufactured
and probed in ultracold polar molecule simulations. Since the Hopf insulator’s edge behavior
is a direct result of it being outside the conventional tenfold way, this serves as a direct
experimental probe of the Hopf insulator’s unique topological classification.

The Chapter is organized as follows. We begin with an overview of the Hopf insulator,
with a specific focus on the requirements—a two band system, and long-range, spin-orbit
coupled hoppings. We then turn to the setting of our proposal, outlining precisely how the
rotational excitations of polar molecules can simulate spin-orbit coupled particles hopping
on a lattice. Next, we demonstrate how particular patterns of Floquet driving can provide
tremendous control over these hoppings, and numerically verify that these can be used to
tune the system into a large band-gap, Hopf insulator phase. We present the edge modes
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of the polar molecular Hopf Hamiltonian, and show that they display three qualitatively
distinct spectra dependent on the lattice termination. Finally, we conclude by providing a
detailed description of all aspects of the proposal’s implementation in a three dimensional
optical lattice of 40K87Rb.

4.1 Physical requirements for realizing Hopf insulators
We begin with an introduction to the Hopf insulator, seeking to motivate the connection

between the linking number interpretation of the Hopf invariant and the long-range spin-orbit
coupling required for its physical realization.

The Hopf insulator is a particular type of topological insulator [156, 191, 237, 260, 334,
403, 460, 525], a class of phases of matter most notable for exhibiting conducting surface
states despite an insulating bulk. They are differentiated from conventional insulators by
a non-zero topological invariant associated with their underlying spin-orbit-coupled band
structure; moreover, their surface states are unusually robust to the detrimental effects of
impurities. Their organization was first captured via the so-called ten-fold way classifica-
tion [251, 425], and consists of a wide landscape of phases dependent on a system’s dimen-
sionality and symmetries. Nevertheless, more recent work has exposed topological insulators
that exist beyond this classification framework; notable examples include topological crys-
talline insulators [154], higher-order topological insulators [423], and our insulator of interest,
the Hopf insulator [130, 131, 132, 243, 299, 335, 520].

The Hopf insulator exists in three-dimensions in the absence of any symmetries, for
which the ten-fold way classification [251, 425] would nominally predict only an ordinary
insulator. In our context, it will consist of hard-core boson degrees of freedom hopping on a
three-dimensional lattice (although one is accustomed to thinking of topological insulators in
terms of fermions, their single-particle nature also enables a hard-core bosonic realization).
The bosons come in two ‘pseudospins’, A and B, which will form the two bands of the system.
These may be formed from physical spins, but are not required to be—in our realization,
they will correspond to two sublattices of the three-dimensional lattice. In real space, the
Hopf insulator Hamiltonian takes the generic form

Heff =
1

2

∑

v,r6=0,
α,β

[
tαβr a†v+r,αav,β + h.c.

]
+
∑

v,α

µαa†v,αav,α, (4.1)

where a†v,α is the creation operator for a hard-core boson at lattice site v of pseudospin
α ∈ {A,B}. The Hamiltonian consists of both pseudospin-preserving (tAAr and tBBr ) and
pseudospin-flipping (tABr and tBAr ) hoppings, as well as a pseudospin-dependent chemical
potential µα.

The topology of the Hopf insulator is most easily seen in its momentum-space representa-
tion, governed by the two-by-two matrix Hαβ(k) =

∑
r t̃
αβ
r eik·r +µαδαβ. This is conveniently

decomposed as H(k) = n0(k)1+ n(k) ·σ, where the Pauli matrices σ act on the pseudospin
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Figure 4.1: Schematic geometry depicting a 3D optical lattice of polar molecules with two
layered sublattices A and B. Orbital motion of the molecules is frozen by the optical lattice.
The level structure of the J = 0, 1 rotational states on the A (left) and B (right) sublattices.
The purple highlighted states form the hard-core bosonic doublet for each sublattice, and
their energy splitting ∆ is tuned by external fields to be degenerate between sublattices.
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Figure 4.2: The Hamiltonian of the Hopf insulator maps closed loops in the Brillouin zone
to points on the Bloch sphere, with the unique property that any two loops have linking
number equal to the Hopf invariant. The above loops are solved for using the proposed
experimental dipolar spin Hamiltonian specified in the text – their linking provides a visual
verification of the Hopf insulating phase. The n̂ = x̂, ŷ pre-images (blue, black tubes) are 90◦

rotations of each other about the kz-axis (vertical black line) due to the spin-orbit coupled
hopping tABr ∼ eiφ.

degrees of freedom, which form the two bands of the Hopf insulator, and the condition that
the bands are gapped requires |n(k)| > 0. We can view this Hamiltonian as a map that
takes vectors k in the Brillouin zone to points n̂ ≡ n/|n| on the Bloch sphere. To see the
Hopf insulator’s topology, consider the pre-images of two different Bloch sphere points n̂, n̂′

in the Brillouin zone, i.e. the set of momenta k such that n̂(k) = n̂, or n̂(k) = n̂′. Since
the Brillouin zone is three-dimensional—one dimension higher than the Bloch sphere—these
pre-images are generically 1D loops in the Brillouin zone. The Hopf invariant h of the
Hamiltonian H(k) is precisely equal to the linking number of these two loops, for any choice
of n̂, n̂′ [Fig. 4.2(a)]. The invariant can be calculated from the Bloch Hamiltonian via the
Chern-Simons form [335]:

h =

ˆ
BZ

d3k jµ(k)Aµ(k), (4.2)

where jµ(k) = 1
8π
εµνλn̂ · (∂kν n̂×∂kλn̂) is the Berry curvature and Aµ(k) its associated vector

potential.
The linking number interpretation leads to two observations, one which explains the

need for long-range hoppings and the other which justifies the required form of spin-orbit
coupling. First, the rapid variation in n(k) required for pre-image linking necessitates the
presence of strong long-range hoppings, which contribute oscillations ∼ eik·r to n(k), at a
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frequency proportional to their range r. Specifically, no nearest neighbor Hamiltonian is
known for the Hopf insulator; the prototypical Hopf insulator Hamiltonian [335] features as
far as next-next-nearest neighbor hoppings. Second, pre-image linking by definition requires
a strong coupling between the pseudospin degree of freedom and the momentum, much as
is true for other topological insulators. Inspired by the model of Ref. [335], in this work we
realize a specific form of this spin-orbit coupling, generated via pseudospin-flipping hoppings
with a direction-dependent phase tABr ∼ eiφ, where φ is the azimuthal angle of the hopping
displacement r (Fig. 4.3). This form of hopping locks the nx, ny components of pseudospin to
the kx, ky components of the momentum, such that the pre-image of, e.g. n̂ = x̂, is exactly a
90 degree rotation about the kz-axis of the pre-image of n̂ = ŷ. As illustrated in Fig. 4.2, this
simple correspondence leads naturally to linking of the two pre-images. While this simple
argument applies only to pre-images related by 90 or 180 degree rotations about the z-axis
(due to the cubic lattice symmetry), this is in fact sufficient: in a gapped model, the linking
number is constant for all pairs of pre-images. We note that this same phase profile of the
hoppings is also present in two-dimensional realizations of Chern insulating physics, both in
the prototypical Qi-Wu-Zhang model [380] as well as in positionally disordered systems [9]

In the following two sections, we demonstrate that systems of dipolar interacting spins
provide a natural ground to realize both of these key ingredients. We begin by describing
how a particular configuration of the spins’ level structures leads to the effective hard-core
boson Hamiltonian of Eq. (4.1), including the desired spin-orbit coupling tABr ∼ eiφ. We
then augment the bare dipolar hoppings with a Floquet engineering scheme, which serves to
decrease the relative strength of nearest-neighbor hoppings and provides useful experimental
parameters for tuning into the Hopf insulating phase.

4.2 The Dipolar Hamiltonian
We now turn to the setting of our proposal. We envision a three-dimensional optical

lattice filled with ultracold polar molecules. We work in the deep lattice limit, so that the
molecules themselves do not hop between lattice sites, and the molecules’ rotational states
form the fundamental degrees of freedom of our system [508]. As shown in Fig. 4.1, the
lattice is formed by alternating planes of two-dimensional square lattices, stacked in the
z-direction. These form two sublattices, A and B, which will play the role of the pseudospin
in the Hopf insulator.

The molecules are most strongly governed by the rotational Hamiltonian Hrot = ∆J2,
with eigenstates |J,mJ〉 indexed by their orbital (J) and magnetic (mJ) angular momentum
quantum numbers, which have energies E = ∆J(J + 1) and wavefunctions described by
the spherical harmonic functions1. While naturally organized into degenerate manifolds of
each J , the mJ eigenstates are split by both intrinsic hyperfine interactions and tunable
extrinsic effects resulting from electric fields, magnetic fields and incident laser light. These

1In the presence of external fields, which slightly mix the rotational eigenstates, we use |J,mJ〉 to refer
to the state adiabatically connected to the associated rotational eigenstate.
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extrinsic effects (which set the molecules’ quantization axis, i.e. ẑ in Fig. 4.1) enable a direct
modulation of the rotational states’ energies in both space (to distinguish between the A
and B sublattices) and time (to implement Floquet engineering).

We now aim to use these rotational states to realize an effective Hamiltonian of hard-core
bosons, as in Eq. (4.1). We focus on the lowest four rotational eigenstates (i.e. the J = 0, 1
manifolds), and use these to define two distinct hard-core bosonic degrees of freedom. On
the A-sublattice we form a hard-core boson from the doublet {|0A〉 = |0, 0〉A , |1A〉 = |1, 0〉A},
while on the B-sublattice we utilize {|0B〉 = |0, 0〉B , |1B〉 = |1, 1〉B}, as illustrated in Fig. 4.1.
The hard-core bosons interact with each other through the dipolar interaction [72]:

H ij
dd =

−
√

6

4πε0r3

2∑

∆mJ=−2

C2
−∆mJ

(θ, φ)T 2
∆mJ

(d(i),d(j)), (4.3)

where (r, θ, φ) parameterizes the separation of the interacting molecules i and j in spheri-
cal coordinates, and we compress unit and sublattice indices into a single index i = v, α.
The dipole moment operator d(i) = (d

(i)
− , d

(i)
z d

(i)
+ ) is a rank-1 spherical tensor acting on the

rotational states of the molecule i, whose three components change the molecule’s mag-
netic quantum number by (−1, 0,+1) respectively. The spherical harmonics C2

−∆m(θ, φ)
capture the spatial dependence of the interaction, and are accompanied by the correspond-
ing component of T 2

∆m, the unique rank-2 spherical tensor generated from the dipole op-
erators d(i), d(j). Explicitly, we have T 2

±2 = d
(i)
± d

(j)
± , T 2

±1 = (d
(i)
± d

(j)
z + d

(i)
z d

(j)
± )/
√

2, T 2
0 =

(d
(i)
± d

(j)
∓ + 2d

(i)
z d

(j)
z + d

(i)
∓ d

(j)
± )/
√

6.
A few remarks are in order. First, we will assume that the dipolar interaction strength

is significantly weaker than the energy splittings within the J = 1 manifold. Second, we
will tune the splitting between the |0A〉 and |1A〉 states to be resonant with that of the |0B〉
and |1B〉 states (Fig. 4.1). Conservation of energy then dictates that the dipolar interaction
can only induce transitions within our prescribed hard-core bosonic doublets, i.e. those that
preserve boson number. These transitions take the form of hoppings in the bosonic Hamil-
tonian, tij = 〈0i, 1j|H ij

dd |1i, 0j〉. These hoppings may occur either within a sublattice (tAAr

and tBBr ) or across sublattices (tABr ). With the prescribed geometry and level structure, we
have:

tAAr = − d2
00

4πε0

3 cos2(θ)− 1

r3

tBBr =
d2

01

8πε0

3 cos2(θ)− 1

r3

tABr = (tBA−r )∗ = −3 d00d01

4
√

2πε0

cos(θ) sin(θ)

r3
eiφ,

(4.4)

where (r, θ, φ) parameterizes the displacement between sites in spherical coordinates, equal to
r for intra-sublattice hoppings and r+b ẑ for inter-sublattice hoppings (where b is the vertical
distance between A and B planes), and d00, d01 are the dipole moments d00 = 〈1, 0| dz |0, 0〉
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Figure 4.3: Depiction of the inter-sublattice ‘hopping’ |0, 0〉A |1, 1〉B → |1, 0〉A |0, 0〉B, in
which a hard-core bosonic excitation on sublattice B hops to sublattice A. This is induced
by the dipolar interaction, and occurs with a hopping matrix element tABr ∼ eiφ with phase
equal to the azimuthal angle φ between the dipoles. This phase profile arises from the
spherical harmonic C2

−∆m=1(θ, φ), since the hopping changes the total angular momentum of
the system by ∆m = −1. Sublattice B molecules are depicted as spinning to indicate their
non-zero z-angular momentum in the excited state.

and d01 = 〈1,±1| d± |0, 0〉. Our choice of rotational states guarantees that the inter-sublattice
hopping, tABr , arises solely from the ∆mJ = +1 term in Hdd, which gives rise to a hopping
phase tABr ∼ eiφ via the C2

−1 spherical harmonic. As illustrated in Fig. 4.2, this naturally leads
to linking between the Bloch sphere pre-images. Finally, variations in the energy splitting
between sublattices naturally appear as effective chemical potentials µα, completing the
realization of the Hamiltonian Eq. (4.1).

4.3 Floquet engineering
While the dipolar interaction elegantly realizes the requisite spin-orbit coupling, relatively

strong nearest neighbor hopping as well as the slow asymptotic decay of the 1/R3 power-
law preclude numerical observation of Hopf insulating behavior. To this end, we utilize
Floquet engineering to two effects: first, to decrease ‘odd’ hoppings in the xy-plane (those
with odd rx + ry) and second, to truncate the dipolar power-law in the z-direction [281].
We achieve each effect by adding spatio-temporal dependence to the chemical potential
µαv(t), and oscillating each µαv(t) at timescales much faster than the hopping. Under certain
conditions (specified below), this leads to an effective time-independent Hamiltonian of the
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same form as Eq. (4.1), but with modified hoppings

tαβr → βαβr tαβr , (4.5)

where the damping coefficients, βαβr , are determined by the specific profiles of the oscillated
chemical potentials, µαv(t). In what follows, we first derive this relation explicitly [Eq. (4.12)],
and then introduce two Floquet engineering schemes [i.e. explicit profiles for the spatio-
temporal dependence of µαv(t)] that achieve the hopping modifications described above.

Overview of Floquet engineering

We begin with a broad introduction to Floquet engineering using a time-dependent chem-
ical potential, following Ref. [281] but modified to include sublattices and complex hoppings.
We consider a time-dependent Hamiltonian of the form Eq. (4.1) where the chemical poten-
tial µαv(t) now varies with the lattice site v as well as periodically in time t, with a period T .
To calculate the effect of the driving, we move into a rotating frame, defining the unitary

U(t) = exp

[
− i
ˆ t

0

dt′
1

2

∑

v,α

µαv(t)σzr

]
, (4.6)

and the rotated wavefunction
|Ψ′(t)〉 = U †(t) |Ψ(t)〉 , (4.7)

whose time-evolution is governed by the Hamiltonian

H ′(t) =U †(t)H(t)U(t)− iU †(t)U̇(t)

=
1

2

∑

v,r6=0,
α,β

(
exp

[
− i
ˆ t

0

dt′ (µαv+r(t
′)− µβv(t′))

]
×

tαβr a†v+r,αav,β + h.c.
)
.

(4.8)

At high-frequencies, 1/T � |tαβr |, the rotated Hamiltonian is well-approximated by re-
placing all quantities by their average over a single period. This gives an effective time-
independent Hamiltonian

Heff =
1

2

∑

v,r6=0,
α,β

[
βαβv+r,v t

αβ
r a†v+r,αav,β + h.c.

]

+
∑

v,α

µαv a
†
v,αav,α,

(4.9)

with a static chemical potential

µαv =
1

T

ˆ T

0

dt µαv(t), (4.10)
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and hoppings suppressed by the dampings

βαβv+r,v =
1

T

ˆ T

0

dt exp

[
− i
ˆ t

0

dt′ (µαv+r(t
′)− µβv(t′))

]

=
1

T

ˆ T

0

dt

(
cos

[ˆ t

0

dt′ (µαv+r(t
′)− µβv(t′))

]

− i sin

[ ˆ t

0

dt′ (µαv+r(t
′)− µβv(t′))

])
.

(4.11)

For convenience, we will always choose µαv(t) to be an even function of t, in which case the
imaginary part of the damping vanishes and we have

βαβv+r,v =
1

T

ˆ T

0

dt cos

[ ˆ t

0

dt′ (µαv+r(t
′)− µβv(t′))

]
. (4.12)

In this case, the dampings modulate only the hoppings’ magnitudes, and not their phase.
Since the modulation is generically inhomogeneous, care must be taken to ensure that the

dampings are in fact translation invariant, βαβv+r,v = βαβr , if one desires translation invariance
in the effective Hamiltonian. This constraint requires that cos

[ ´ t
0
dt′ (µαv+r(t

′)− µβv(t′))
]
be

independent of v. For intra-sublattice hoppings (α = β), there are two ways to achieve
this: 1) with a ‘gradient’ modulation, where µαv(t) is linear in v, and 2) with an ‘even-
odd’ modulation µαv(t) = µα(−1)sxvx+syvy+szvz , si ∈ {0, 1}. (The latter is possible because
we restrict to the cosine term of Eq. (4.11), which is even in µ and thus requires only the
absolute value of µαv+r(t

′) − µαv(t′) to be independent of v.) For inter-sublattice hoppings
(α 6= β), this constraint additionally requires that the sublattices’ modulations differ only
by a position-independent function of time, namely

µAv (t) = µv(t)

µBv (t) = µv(t) + µSL(t).
(4.13)

These lead to damping coefficients

βAAr = βBBr =
1

T

ˆ T

0

dt cos

[ˆ t

0

dt′ (µv+r(t
′)− µv(t′))

]

βABr =
1

T

ˆ T

0

dt cos

[ˆ t

0

dt′ (µv+r(t
′)− µv(t′)− µSL(t′))

] (4.14)

for the intra- and inter-sublattice hoppings. We must also ensure that µαv is translation
invariant, which requires only that the average modulation is the same in each unit cell v.

Even-odd modulation in xy-plane

The first scheme for Floquet engineering serves to suppress the strength of nearest neigh-
bor hoppings relative to next nearest neighbor hoppings in the xy-plane. The modulation



CHAPTER 4. FLOQUET ENGINEERING ULTRACOLD POLAR MOLECULES TO
SIMULATE TOPOLOGICAL INSULATORS 45

takes the form of the even-odd modulation previously mentioned, with sx = sy = 1, sz = 0.
Specifically, we take

µxyv (t) =
1

2
(−1)vx+vyΩxygxy cos(Ωxy t)

µxySL(t) = ΩxygxySL cos(Ωxy t),
(4.15)

where frequency Ωxy is 2π times the inverse period, and gxy and gxySL are parameters to
be tuned. Performing the integral inside Eq. (4.14) and using 1

T

´ T
0
dt cos

[
g sin(2πt/T )

]
=

1
2π

´ 2π

0
dx cos

[
g sin(x)

]
= J0(g) gives damping coefficients

βxy,AAr =

{
J0(gxy) rx + ry = odd
1 rx + ry = even

βxy,ABr =

{
J0(gxy + gxySL) rx + ry = odd
J0(gxySL) rx + ry = even,

(4.16)

where J0(g) is a Bessel function of the first kind. We see that ‘odd’ distance hoppings
(including nearest neighbor, rx + ry = 1) are reduced relative to ‘even’ hoppings (including
next-nearest [rx = ry = 1] and next-next-nearest neighbor [rx = 2, ry = 0, and vice versa.]
hoppings, both with rx+ry = 2). The parameters gxy and gxySL give independent control over
the ratio of even to odd hoppings for both inter- and intra-sublattice hoppings.

Truncation in the z-direction

The second use of Floquet modulation is to truncate hoppings from power law to short
ranged in the z-direction [281]. Unlike the previous xy-modulation, we do not have an intu-
itive explanation for why one needs such a truncation. Nevertheless, we observe numerically
that it is necessary for realizing the Hopf insulator phase. We take µzv(t) to be a gradient in
the z-direction,

µzv(t) = vzΩ
zgz(Ωzt)

µzSL(t) = ΩzgzSL(Ωzt)
(4.17)

with frequency Ωz in time. This gives dampings

βz,AAr =
1

2π

ˆ 2π

0

dx cos

[
rz

ˆ x

0

dx′ gz(x′)

]

βz,ABr =
1

2π

ˆ 2π

0

dx cos

[ ˆ x

0

dx′ [rzg
z(x′)− gzSL(x′)]

]
.

(4.18)

These can be evaluated numerically once the functions gz(Ωzt), g
z
SL(Ωzt) are chosen. Ref. [281]

showed that the modulation can be tuned to give hoppings that are effectively nearest-
neighbor in the z-direction, at the cost of some loss of magnitude of the nearest-neighbor
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Figure 4.4: Numerical evaluation of the Hopf invariant h for N × N × N discretizations
of momentum space (colored circles) and the band gap Eg (black diamonds; in units of
the nearest-neighbor hopping tnn) of the specified dipolar spin system as a function of the
strength λ of the Floquet driving (defined in the main text), calculated with hopping range
R = 8. The Hopf insulating phase (blue, right shaded) is observed across a range of λ;
outside this range the system transitions to gapless (white) and trivial insulating (gray, left
shaded) phases.

(|rz| = 1) hopping. For experimental simplicity, we take the modulations to be piecewise
constant in time:

µzA,v(Ωzt)

Ωz

=





(2g1 + 2)vz 0 < Ωzt ≤ φ1/2

(2g2 + 2)vz φ1 < Ωzt ≤ φ2/2

(2g3 + 2)vz φ2 < Ωzt ≤ π/2

−µzA,v(π − Ωzt) + 4vz π/2 < Ωzt ≤ π

−µzA,v(2π − Ωzt) π < Ωzt ≤ 2π

µzB,v(Ωzt)

Ωz

=





2g1vz + 2gSL1 0 < Ωzt ≤ φ1/2

2g2vz + 2gSL2 φ1 < Ωzt ≤ φ2/2

2g3vz + 2gSL3 φ2 < Ωzt ≤ π/2

−µzB,v(π − Ωzt) π/2 < Ωzt ≤ π

−µzB,v(2π − Ωzt) π < Ωzt ≤ 2π.

(4.19)

Note that µzA,v(Ωzt) is even about π, guaranteeing that damping coefficients are real-valued
[see Eq. (4.12)]. The parameters gi, gSLi can be tuned to achieve the desired hopping trun-
cation.
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Combining the two modulations

We now show that both of the above schemes can be implemented simultaneously, by
choosing the frequencies of each to be well-separated. Specifically, we take the modulation
to be the sum of two components,

µαr (t) = µxy,αr (t) + µz,αr (t), (4.20)

where µxy,αr (t) is periodic with frequency Ωxy and µz,αr (t) with frequency Ωz, and the fre-
quencies satisfy either Ωxy � Ωz or Ωxy � Ωz. Under this assumption, the dampings βαβv

factorize into a product of the two individual damping coefficients defined in Eqs. (4.16) and
(4.18),

βαβv = βxy,αβv βz,αβv , (4.21)

as desired. We verify that this assumption holds quantitatively in Fig. 4.6.

4.4 Numerical verification of the Hopf insulating phase
We now turn to a numerical exploration of the single particle bandstructures supported in

our dipolar Floquet system. By tuning the geometric and Floquet engineering parameters, we
find transitions from topologically trivial bandstructures to the Hopf insulator and identify
parameter regimes where the Hopf insulator’s band gap can be as large as Eg & 0.26tnn (see
Figs. 4.4, 4.5). This occurs with a spacing a = 0.99 between adjacent planes of the same
sublattice in the z-direction (in units of the nearest-neighbor spacing in the xy-plane), a
spacing b = 0.66 between adjacent planes of the opposite sublattice, a staggered chemical
potential µA − µB = 2.28 (in units of the nearest-neighbor hopping in the xy-plane), and
Floquet engineering parameters gxy = 1.2, gxySL = 0.1, g1 = −0.6, g2 = 0.1, g3 = 1.1, gSL1 =
0.7, gSL2 = −0.4, gSL3 = 1.6, φ1 = 0.2, φ2 = 1.8. These optimal parameters were found
to optimize the Hopf insulating band gap via the basin-hopping optimization algorithm, a
stochastic optimization algorithm that works well in rugged, high-dimensional optimization
landscapes. [474, 477]. It consists of alternating steps of i) performing local optimization
to find a nearby local minima in the nearby energy landscape (i.e. the ‘basin’), and ii)
randomized ‘hopping’ to more distant basins, whose local minima are then computed by
repeating the first step. The Floquet engineering amplitudes are quite robust and can be
varied together (replacing g → λg for all amplitudes defined above) by ∼ 25% about their
optimal values while preserving Hopf insulating behavior (Fig. 4.4). The staggered chemical
potential can be varied by ∼20% (see Ch. 3). Performing similar calculations for the lattice
parameters, we find that the intra-sublattice distance is also relatively robust and can be
varied between 0.5− 0.9 (Fig. 4.5), while the z-lattice spacing is slightly more sensitive, and
should be kept within 0.92 − 1.08 in units of the x/y-lattice spacing (note that the most
natural value, 1, lies well-within this range).

We compute the momentum-space Bloch Hamiltonian by summing the Floquet engi-
neered dipolar hoppings defined in Eqs. (4.4, 4.14, 4.18). To truncate the infinite sum over
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Figure 4.5: Numerical evaluation of the Hopf invariant h for N × N × N discretizations
of momentum space (colored circles) and the band gap Eg (black diamonds; in units of
the nearest-neighbor hopping tnn) of the specified dipolar spin system as a function of the
vertical spacing b between sublattices (in units of the nearest-neighbor spacing in the xy-
plane), calculated with hopping range R = 8. The Hopf insulating phase (blue, right shaded)
is observed across a large range of b; outside this range the system transitions to gapless
(white) and trivial insulating (gray, left shaded) phases. Note that the Floquet modulation
breaks the geometric symmetry b→ 1− b, and hence the spectrum is not symmetric about
b = 0.5.

hopping distance, we only including hoppings to sites at most R unit cells away in each
direction, i.e. |rµ| ≤ R for each µ = {x, y, z}. The Hopf invariant is computed by evaluating
the integral Eq. (4.2) on an N ×N ×N grid in momentum space, solving ∇×A(k) = j(k)
in the inverse Fourier domain to obtain the Berry connection [335]. The computed invari-
ant converges quickly to 1 as the discretization N becomes large, e.g. h − 1 ≈ 10−6 at
N = 70, R = 4 (see also Figs. 4.5, 4.4). We also see quick convergence of the band gap when
increasing R, observing quantitative agreement within 10% for all 4 ≤ R ≤ 32 and within
1% for all 8 ≤ R ≤ 32.

4.5 Edge modes of the dipolar Floquet Hopf insulator
In addition to its linking number invariant, the Hopf insulator’s edge modes represent

one of its key signatures, and crucially, one which can be experimentally probed. Up to now,
these edge modes are only expected to appear at boundaries that are smooth at the scale
of the lattice length, which act as a continuous variation of the two-band momentum-space
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Hamiltonian H(k) across the boundary region. In this case, the Hopf insulator’s nontrivial
homotopy classification requires a gap closing in any edge between the Hopf insulator and
the trivial insulator. Nevertheless, gapless edge modes have been observed numerically for
‘sharp’ boundaries (i.e. open boundary conditions) [335] and moreover, for the (001)-edge,
were even shown to be robust to certain perturbations [131].

Meanwhile, recent work [299] has shown that the Hopf insulator’s classification can be
stabilized to higher bands by a certain crystalline symmetry,

JH(k)∗J−1 = −H(k), (4.22)

where JJ∗ = −1, although its classification is reduced to a Z2 invariant for band number
greater than 2. This symmetry is in fact automatically satisfied in translationally-invariant
two band systems (taking J = σy), and can generally be viewed as the composition of
inversion and particle-hole symmetries.

Interestingly, we observe that—despite involving inversion symmetry—this crystalline
symmetry is also obeyed at the edge of a two-band system, in the specific case of a sharp
boundary (open boundary conditions). To see this, note that open boundary conditions
are equivalent to an infinite delta function potential barrier at the edge of the system,
Hedge = ρσzδz, ρ → ∞, where σz acts on the sublattice degrees of freedom. In momentum
space, this potential induces real all-to-all couplings between different values of kz, Hk,k′

edge =
ρσzδkx,k′xδky ,k′y . This is now easily seen to obey Eq. (4.22) with J = σy.

This observation suggests that the edge modes previously observed at sharp boundaries of
the Hopf insulator are in fact protected by this ‘unintentional’ crystalline symmetry, and are
therefore not robust to perturbations that break the symmetry. To test this, we solve for the
(100)-edge modes of the dipolar Hopf insulator via exact diagonalization for three different
edge terminations: sharp, sharp with a symmetry-breaking perturbation, and adiabatic. We
observe three qualitatively distinct spectra [Fig. 4.6(a-c)]. The sharp edge hosts a linear
energy degeneracy, consistent with previous studies [131, 335]. To break the crystalline
symmetry, we add a site-dependent chemical potential µv1 localized on the two unit cells v
nearest the edge. This perturbation gaps the edge mode, supporting our conjecture that the
sharp edge modes of the Hopf insulator are in fact crystalline-symmetry-protected2.

Finally, we consider smooth boundaries between the Hopf insulator and the trivial in-
sulator. To construct smooth boundaries, we take the hoppings to be constant throughout
the lattice, while an x-dependent staggered chemical potential µxσz tunes the Hamiltonian
between the trivial phase at each end of the lattice and the Hopf insulating phase in the
center. This interpolation occurs smoothly over two ‘edge regions’ on either side of the Hopf
insulating phase, consisting of ∼ 20 lattice sites each. Shown in Fig. 4.6(c), these smooth
edges also feature gapless edge modes. Importantly, the gaplessness of these edge modes
is robust to any smooth perturbation to the lattice, including a ‘smoothed’ version of the
site-dependent chemical potential that was observed to gap the sharp edge mode [Fig. 4.6(d)].

2We hypothesize that the robustness of the (001)-edge modes [131] are artifacts of a similar stabilizing
crystalline symmetry, perhaps related to the discrete rotation symmetry kx → ky, ky → −kx, nx → ny, ny →
−nx of the model studied, but do not study this here.
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Figure 4.6: Spectra for the (100)-edge of the Hopf insulator along the diagonal ky =
k, kz = π + k, calculated from the effective Hamiltonian in Eq. (4.9). Color indicates a
mode’s mean x-position, from red/light gray (localized at left edge), to black (bulk), to
blue/dark gray (localized at right edge). Dashed lines mark the bulk band gap. A sharp
edge (open boundary conditions) respects the symmetry Eq. (4.22) and leads to a gapless
Dirac cone spectrum (far left). Adding a symmetry-breaking perturbation – in this case,
a chemical potential on the two sites nearest the edge – gaps the Dirac cone (left center),
demonstrating the non-adiabatic edge modes’ lack of protection. In the adiabatic limit with
edge termination smoothed over ∼ 20 lattice sites, the edge spectrum is again gapless (right
center). However, the Hopf invariant now protects the edge modes against all smooth per-
turbations to edge, including a smoothed bump in the chemical potential in the edge region
(far right). For given transverse momenta ky, kz, the spectrum is calculated by first Fourier
transforming the Hamiltonian along the y- and z-directions, and then performing exact di-
agonalization on the remaining 1D Hamiltonian. Sharp/smooth edge spectra are calculated
for a lattice with 80/160 unit cells in the x-direction, and hoppings are truncated at a range
R = 8. As a check on the high-frequency approximation leading to the effective Hamilto-
nian, Eq. (4.9), we also perform the same computation for the exact Floquet Hamiltonian,
HF = i log

(
T exp

(
−i
´ 2π/Ωxy

0
H(t) dt

))
, at driving frequencies Ωxy = 25 tnn, Ωz = 600 tnn,

and observe qualitatively identical edge spectra.
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4.6 Experimental proposal
We now turn to our central result: a detailed blueprint for realizing the dipolar Hopf

insulator using ultracold polar molecules. An explosion of recent experimental progress has
led to the development of numerous possible molecular species [185, 331, 351, 364, 455], but
for concreteness (and to demonstrate that the requisite separation of energy scales can be
quantitatively realized), here we focus on 40K87Rb [15, 16, 337, 351, 359, 507].

We begin with the geometry and rotational level diagram illustrated in Fig. 4.1. The
3D optical lattice is generated using four pairs of counter propagating beams, two forming
the xy-lattice and two forming the A and B sublattices in the z-direction. For experimental
convenience, we envision the two sublattices to be formed by beams with orthogonal linear
polarizations of light. In this case a birefringent mirror can control the relative phase between
the two reflected beams, which in turn determines the separation between sublattices.

To realize the rotational level diagrams of Fig. 4.1, we first propose to tune the rotational
states |1, 0〉 and |1, 1〉 of all molecules to be approximately degenerate using applied DC
electric and magnetic fields, oriented in the z-direction with amplitudes 1650 V/m and -490 G
respectively3. The degeneracy between the |1, 0〉 and |1, 1〉 states, and, in turn, the sublattice
symmetry between the A and B planes, can then be broken by using different intensities of
light to form each sublattice. Owing to the AC polarizability of 40K87Rb, the lattice beams
not only trap the molecules in the designated geometry, but also induce mJ -dependent shifts
in the molecules’ rotational states proportional to the beams’ intensities [349]. The individual
intensities, IA and IB, can therefore be tuned such that the transitions |1, 0〉A ↔ |0, 0〉A
and |1, 1〉B ↔ |0, 0〉B are near-resonant with each other, yet off-resonant with all other
transitions. Specifically, we calculate that x-polarized light with intensities IA =0.43 kW/cm2

and IB =0.54 kW/cm2 leads to the desired near-resonance, with an energy gap δ ∼ 5 kHz
to the nearest rotational state outside the prescribed doublets. Energy levels are calculated
as in Ref. [349], and we assume the x- and y-lattices are formed with z-polarized light of
intensity .5 kW/cm2. The molecule 40K87Rb has a rotational splitting ∆ = 2.2 GHz and a
measured dipolar interaction strength t ∼ 50 Hz when trapped in a 3D optical lattice with
1064nm light [507]. This scheme therefore naturally leads to the desired separation of energy
scales t� δ � ∆.

Energy levels in hand, let us turn to the implementation of the Floquet modulations
(Fig. 4.7). To realize the xy-plane modulation, we can again rely upon the AC polarizability,
using a two-dimensional intensity-modulated standing wave to directly tune the molecules’
energy levels non-uniformly in both space and time. The energy shifts of the |1, 0〉A and
|1, 1〉B states can be made equal [necessary to ensure the modulation is of the form of
Eq. (4.13)] by tuning the polar angle of the light’s polarization to θ = .96 rad, owing to
the anisotropic polarizability of 40K87Rb [349]. An additional stationary standing wave on
the even sites can cancel the site-dependent non-zero average of the modulation, preserv-

3The presence of the DC electric field mixes the |0, 0〉 and |1, 0〉 states, and gives rise to additional long-
range density-density interactions in the hard-core boson model [513]. We may neglect these in our study
of the single-particle physics of the Hopf insulator.
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ε̂ = ẑ

ε̂ = x̂ + iŷ

Figure 4.7: Schematic of the proposed experiment, highlighting the mechanisms for Floquet
modulation. The lattice (light gray waves) is formed by three standing waves of laser light
(beams not pictured). Stable electric field gradients are controlled an electrode system of
tungsten rods (dark gray cylinders) and transparent plate electrodes (tan rectangles), while
coils (brown spirals) generate a homogeneous magnetic field [116]. The xy-Floquet modu-
lation is generated by z-polarized lasers forming a standing wave in the (x̂ ± ŷ)-directions
(large orange arrows, left and right; polarization in small black arrows), using the AC polar-
izability of 40K87Rb. The z-Floquet modulation is generated by a circularly-polarized laser
in the z-direction (large purple arrow, bottom; polarization in small black arrow), which
forms an intensity gradient along its direction of propagation due to the natural transverse
spreading of a Gaussian laser beam.
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ing translation invariance of the effective chemical potential. At a modulation frequency,
Ωxy ∼ 500 Hz, much greater than the dipolar interaction strength, tnn ∼ 50 Hz, the optimal
modulation strength gxy = 1.2 requires an intensity ∼ 10−2 kW/cm2. An additional space-
independent modulation of the two beams enables a difference between the two sublattices’
modulations, achieving a nonzero gxySL.

This method does not work for the z-gradient Floquet modulation, as a z-gradient in the
light’s intensity is necessarily accompanied by a polarization in the orthogonal xy-plane. In
addition to shifting the molecules’ energy levels, such a polarization would also induce mix-
ing between rotational states, contaminating the desired hopping phase structure. Rather,
we propose to achieve the z-gradient Floquet modulation by combining two independent
sources of modulation [Fig. 4.8(c-e)]. First, we apply an oscillating electric field gradient of
order δE/δz ∼ 1 kV/cm2. This gradient alone is not sufficient to realize the modulation
of Eq. (4.13), because it shifts the energies of the the |1, 0〉A and |1, 1〉B states differently,
owing to their different polarizability. We therefore combine this with a circularly-polarized
beam tuned near, but off-resonant with, the 3Π0+ electronic excited state of 40K87Rb, which
shifts the energy levels of the low-lying rotation states of interest via the AC Stark shift
[Fig. 4.8(a-c)]. We imagine the beam to be traveling in the z-direction, with the natural
transverse spreading of the beam along its propagation axis giving rise to a z-gradient in
intensity δI(z)/δz ∼ I(z)/z [514]. To this end, we perform calculations of the AC polariz-
abilities of 40K87Rb with circularly-polarized light as a function of detuning from the b3Π0+

state [Fig. 4.8(b)] using experimentally adjusted potential energy curves [22, 366] as well
as parallel and perpendicular electronic polarizabilities [349], which we expand on in detail
in the following section. For σ+ light, the polarizabilities have poles at the resonant tran-
sition frequency to the excited J = 2 state, which allows the corresponding energy shifts
to be precisely controlled by the detuning over a large range. Modulating the detuning
about resonance (as a step function, to avoid any resonance-induced decay) precisely real-
izes the desired Floquet modulation. Quantitatively, we find that detunings ∆ν ∼ 1 GHz
lead to AC polarizibilities α/h ∼ 1 kHz/(W/cm2), which in turn requires intensity gradients
δI/δz ∼ 5 W/(µm cm2) to achieve the optimal Floquet parameters at modulation frequency
Ωz ∼ 5 kHz � Ωxy. At a distance z ∼ 100µm, the desired intensity gradient is thereby
achieved with a modest intensity I ∼ .5 kW/cm2 and power P ∼ I(z)× z2 ∼ 50 mW [514].

We do not expect our proposed Floquet modulations to introduce substantial heating to
the molecular system for a number of reasons. First, the modulations occur at a frequency
significantly faster than the Hamiltonian energy scales, which exponentially suppresses many-
body energy absorption [5]. Second, since the Hopf insulator’s topology is characterized via
its single-particle band structure, one only needs to excite a small number of molecules at any
given time. At this single-particle level, the primary concern turns to heating from parametric
processes associated with the laser intensity modulation. In this case, one can again utilize
a separation of energy scales, by choosing the frequencies of the Floquet modulation to be
far removed from any trap resonances (i.e. the trap frequency and its harmonics) such that
no parametric heating will take place [348, 349]. Typical values of the trap frequency for
40K87Rb experiments are ∼20 kHz with a quality factor ∼20 [348]; resonances are therefore
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easily avoided both in our simple order-of-magnitude estimate, Ωz ∼ 5 kHz and Ωxy ∼ 500
Hz, as well as our more quantitative estimate in Fig. 4.6, using Ωz = 600tnn ≈ 30 kHz and
Ωxy = 25tnn ≈ 1.25 kHz.

The edge modes of the dipolar Hopf insulator can be probed experimentally via molecular
gas microscopy [117, 321]. Here, a tightly-focused beam applied near the edge induces local
differences in the molecules’ rotational splittings, enabling one to spectroscopically address
and excite individual dipolar spins. The extent to which such an excitation remains localized
on the edge during subsequent dynamics can be read out using spin-resolved molecular gas
microscopy. For polar molecules separated by a distance of 1µm, single-molecule addressing
of the |0, 0〉 → |1, 0〉 transition has been estimated to require a beam of radius 1µm and a
reasonable power 10µW [117]. The width of the edge region, typically large due to a wide
harmonic confining potential, can be tuned via a number of recently developed techniques,
including: box potentials [164], additional ‘wall’ potentials [541], or optical tweezers [301],
allowing one to realize the three scenarios depicted in Fig. 4.6.

4.7 Details on AC polarizabilities for z-direction
modulation

To effectively implement the Floquet modulation along z-direction, we use circularly
polarized light tuned near a narrow transition, which allows light shifts to be precisely
controlled by the detuning from the transition. Specifying to the molecule 40K87Rb, we
choose the dipole-forbidden transition |X1Σ+, v = 0, J = 1,mJ〉 → |b3Π0+ , v = 0, J =
2,mJ + 1〉 with 1028.7 nm [255] σ+ light where mJ = 0 for the A sublattice and 1 for the B
sublattice. With relatively weak laser intensity (on the order of W/cm2), the light shift can
be characterized by the AC polarizability of the molecular state of interest. The polarizability
is calculated from two different contributions. The first and more important contribution
comes from the resonant transition which has a strong dependence on the detuning, and the
second contribution comes from all other transitions that has negligible dependence on the
detuning in the range we are interested in. Here we assume the detuning is much larger
than the spacings between |X1Σ+, v = 0, J = 1,mJ〉 states with mJ = 0 and ±1, and these
spacings are much larger than the light shifts.

To characterize the contributions from the resonant transition, we follow the recipe in
Refs. [64, 263, 443]. The generally complex dynamic polarizability for alkali-metal molecule
in a rovibrational state of the ground X1Σ+ potential is given by

α(hν, ε̂) =

1

ε0c

∑

f

Ef − Ei − ihγf/2
(Ef − Ei − ihγf/2)2 − (hν)2

|〈f |dR̂ · ε̂|i〉|2 (4.23)

ε̂ and ν are the polarization vector and the frequency of the light, respectively, c is the speed
of light, ε0 is the electric constant, R̂ is the orientation of the interatomic axis, and d is the
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Figure 4.8: Depiction of the two-component driving scheme used to implement the z-
gradient Floquet modulation. (a) One component is realized using circularly-polarized (σ+)
light tuned near, but off-resonant with the electronic transitions |X1Σ, v = 0, J = 1,mJ〉 →
|b3Π0+ , v = 0, J = 2,mJ + 1〉, with detuning ∆ν. Here X1Σ, v = 0 denotes the electronic
ground state manifold of the molecule, and b3Π0+ , v = 0 the relevant electronic excited state
manifold. This induces energy shifts in the electronic ground states of interest, |1, 0〉A and
|1, 1〉B, proportional to the AC polarizability α of 40K87Rb at the particular detuning. (b)
AC polarizabilities under circularly polarized σ+ light as a function of the detuning ∆ν, cal-
culated from first principles. Red dotted lines label two detunings that are oscillated between
to achieve a step function Floquet modulation. Red arrows indicate the corresponding polar-
izibilities. (c) Simplified depiction of the detuning and resulting polarizibilities as a function
of time t. In the dipolar simulations, we use a higher parameter step function, Eq. (4.19),
which allows greater flexibility to optimize the band gap of the Hopf insulating phase. The
AC light intensity is held constant in time (not depicted). (d) The other component of
modulation consists of an electric field gradient δE oscillated in time according to the same
step function. The (DC) polarizibilities αE of the |1, 0〉A, |1, 1〉B states under this field are
constant in time. (e) The polarizibilities and field amplitudes in (c-d) multiply to produce
oscillating energy shifts µz (dotted purple) of the |1, 0〉A, |1, 1〉B states. While each individual
component of the z-gradient modulation produces a different magnitude shift for each state
owing to the states’ differing polarizibilities, the linear combination of both components can
be chosen to produce equal shifts.
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dipole operator. i denotes the rovibrational state |i〉 of interest with energy Ei in the ground
X1Σ+ potential, and the summation over f denotes the summation over all rovibrational
states |f〉 other than i with energies Ef in all electronic potentials, and γf describe the
natural linewidths of |f〉.

When the laser frequency is very close to the narrow dipole-forbidden transition, the
most significant contribution comes from that transition which has a pole at the resonant
frequency and weakens as the inverse function of the detuning. We treat all transitions from
|X1Σ+, v = 0, J = 1,mJ〉 to rovibrational states in the b3Π0+ potential using Eq. (4.23).
The largest contribution by far comes from the transition to the excited v = 0 state due
to the similarity of its radial wavefunction to the ones in the ground potential. We use the
experimentally adjusted potential energy curves for both the excited b3Π0+ state [22] and
the ground X1Σ+ state [366], and a spin-orbit modified transition dipole moment between
them [264]. Since the natural linewidths of the lowest rovibrational states in the b3Π0+

potential are much smaller (on the order of kHz [255]) then the detunings we are interested
in (on the order of GHz), we take γf = 0.

The background contributions from all other transitions have negligible frequency depen-
dence close to the 1028.7 nm transition due to the large detunings from the corresponding
excited states. Thus we treat the background polarizabilities as constants throughout the
detuning range. We use the method in Ref. [265] with experimentally determined elec-
tronic parallel and perpendicular polarizabilities [349] to calculate the background polar-
izabilities at 1064 nm and assume them to be the same near the 1028.7 nm transition.
More specifically, we use α‖/h = 10.0(3) × 10−5 MHz/(W/cm2) and α⊥/h = 3.3(1) × 10−5

MHz/(W/cm2) determined for the wavelength of 1064 nm and obtain the background polar-
izabilities αbg,|1,0〉/h = 4.64×10−5 MHz/(W/cm2) and αbg,|1,1〉/h = 5.98×10−5 MHz/(W/cm2)
for σ+ polarization.

Finally, we add the two parts together to arrive at the total AC polarizabilities shown in
Fig. 4.8(b).

4.8 Discussion and outlook
There has recently been a burst of theoretical interest in Hopf insulators and their possible

extensions, including non-hermitian generalizations [206], the survival of topology under
quantum quenches [215], crystal symmetries [19, 299], and generalizations to periodically-
driven Floquet systems [207, 428]. These ideas motivate the possibility of experimentally
realizing the Hopf insulator phase, which would allow one to test the above predictions, and,
more tantalizingly, could probe regimes of Hopf insulating physics that are much harder
for theory to handle. For instance, we have proposed using the presence of a gapless edge
mode at a smooth boundary, probed by spectroscopy, as a robust experimental diagnostic
of the Hopf insulating phase. Recent work suggests that at the (001)-edge this mode should
feature a nonzero Chern number associated with an unusual bulk-to-boundary flow of Berry
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curvature [19]; numerous techniques to measure the Chern number have been developed [12,
377, 456, 497], which may allow one to detect this physics.

Our blueprint may also provide a basis from which to realize the various extensions of
the Hopf insulator. In our proposal, we have already seen that polar molecules can realize
certain crystalline symmetry-protected extensions of the Hopf insulator [19, 299], which can
be detected independently from the ordinary (non-crystalline) Hopf insulator by looking
at sharp edge terminations that respect the crystalline symmetry. Polar molecules might
also be used to realize driven extensions of the Hopf insulator, for instance, the Floquet
Hopf insulator [428]. Here, one subjects the system to periodic driving at a time-scale
comparable to the hopping time, which can lead to a new Floquet Hopf insulating phase,
characterized by a Z×Z2 pair of topological invariants that underlie an even richer spectrum
of edge mode behavior than in the non-driven case. The Floquet Hopf insulator can be
realized by strobing a flat band static Hopf insulator with periodic π/2-pulses of a staggered
chemical potential [428]—the latter would be easily realized via a ∼100 Hz oscillation of the
lattice light intensity. Realizing a sufficiently flat band Hopf insulator is a less trivial task,
but the bandwidth could be optimized via standard optimization techniques depending on
the specific set of available experimental parameters. More speculatively, a flat band Hopf
insulator might also be a natural launching ground into many-body generalizations of the
Hopf phase (much as a flat band Chern insulator is a key ingredient for the fractional Chern
insulator [50]), which are thus far unexplored territory.

Finally, the protocol outlined here and in Ch. 3 makes use of the high tunability and intri-
cate real- and momentum-space structures afforded by recent advances in the manipulation
of interacting dipolar molecules [323, 471]. Looking forward, the same approach suggests
many promising avenues for realizing other exotic states presently residing at the forefront
of theory [9, 180, 380, 390, 478, 532]. For instance, our use of a sublattice-dependent lat-
tice light intensity to realize (pseudo)spin-orbit coupling via the ∆m = 1 component of the
dipolar interaction may prove fruitful in realizing other topological phases as well. As a sim-
ple example to demonstrate wider applicability, the exact same form of spin-orbit coupling
(tABr ∼ eiφ) in 2D gives rise to Chern insulating physics [380]. In polar molecule setups
limited by the ability to fill only a (random) fraction of the full set of lattice sites, the Chern
insulator might therefore provide a disorder-robust [9] stepping stone to realizing the Hopf
insulator. We have also provided implementations of two independent Floquet engineering
schemes: an even-odd patterning utilizing the molecules’ AC polarizability under lattice
light, and a truncation of the power-law dipolar interaction in the z-direction via a single
circularly-polarized Gaussian laser beam. Floquet engineering has proven critical in other
quantum simulation platforms, and these techniques may serve as building blocks for its use
in polar molecules.
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Chapter 5

Floquet Hopf insulators

In this Chapter, we introduce our first and only example of an intrinsically-dynamical
phase of matter. We name this phase the “Floquet Hopf insulator”. The Floquet Hopf insula-
tor represents an extension of the Hopf insulator considered in Chs. 3 and 4 to periodically-
driven, or Floquet, systems. Unlike the Hopf insulator realized in Chs. 3 and 4, the Floquet
Hopf insulator cannot, even in principle, be realized in any static Hamiltonian.

The Floquet Hopf insulator follows in the footsteps of many other recent examples of
intrinsically-dynamical phases [100, 245, 247, 259, 290, 310, 328, 461, 526]. In particular, we
will show that it represents a particularly unique instance of the so-called Floquet topological
insulators (FTIs): non-interacting, driven phases of matter, whose physical properties are
characterized by a set of underlying quantized topological invariants [31, 90, 153, 183, 254,
297, 346, 388, 404, 407]. Unlike their non-driven counterparts, the topology of FTIs arises
directly from the unitary time-evolution, leading to robustly protected gapless edge modes
even when the stroboscopic time-evolution is topologically trivial.

To motivate the uniqueness of the Floquet Hopf insulator phase, we must first describe
a common pattern in the classification of Floquet topological insulators thus far, which
relates their topological invariants to those of static topological insulators with the same
dimension and symmetries. Namely, a given FTI is found to possess all the invariants of its
static counterpart, plus one additional invariant of identical classification. Intuitively, this
is understood by extending the bulk-boundary correspondence to Floquet systems: under
periodic modulation, the energy—now, quasienergy—becomes defined only modulo 2π (in
units of the driving frequency) and thus an additional and identically classified edge mode
emerges, associated with the bulk gap at quasienergy π. This result has been established
rigorously in systems described by K-theory [404], and explored at great length in the context
of specific symmetries and dimensionality [31, 90, 153, 254, 346, 407]. Nevertheless, one could
wonder whether these arguments leave room for more unique topology in Floquet phases that
escape this stringent bulk-boundary correspondence.

The Floquet Hopf insulator breaks this classification pattern: we will show in this Chapter
that it is characterized by two distinct topological invariants: a ‘static’ Z invariant, and a
uniquely Floquet Z2 invariant. The Z invariant of our system is precisely the Hopf invariant of
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Figure 5.1: Depiction of the Floquet Hopf insulator’s two topological invariants. (a) The
‘static’ Z invariant is the Hopf invariant of the Floquet Hamiltonian HF (k), corresponding
to the linking number of the pre-images of two points (blue, red) on the Bloch sphere. For
nearby points, this equals the twisting of the Jacobian (colored arrows) along a single pre-
image. (b) The ‘Floquet’ Z2 invariant classifies the micromotion operator Um(k, t) ∈ SU(2),
and is similarly interpreted as the Jacobian twisting (dashed black arrows) along a pre-image,
with a reduced classification due to the larger dimensionality.

the static Hopf insulator. The Z2 invariant replaces the expected additional integer invariant,
and characterizes the same topology that underlies the Witten anomaly in (3+1)D SU(2)
gauge theories [39, 143, 157, 498, 499]. In our context, it can be understood both as a twisting
number extension of the Hopf invariant, as well as in terms of gapless topological defects of
the Floquet evolution. These ‘Hopf’ defects may smoothly exchange even amounts of their
topological charge, which leads to the reduced Z2 classification. Physically, the difference
in invariants creates an atypical bulk-boundary correspondence, where gapless edge modes
are topologically protected but may occur at either 0- or π-quasienergy, depending on non-
universal properties of the boundary. In the remainder of this Chapter, we outline this physics
in full detail. We begin with a brief summary of the homotopy classification of Floquet
topological insulators generally (extending the homotopy classification of static topological
insulators described in Ch. 2.2), and then proceed to the Floquet Hopf insulator.
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Figure 5.2: (a) A point Hopf defect (black point) has quadratic dispersion, functioning
as a strand crossing that changes the linking number of any two eigenvectors’ pre-images
(red and blue). A loop Hopf defect (black loop) has linear dispersion, and can occur along
a former pre-image. The defect charge is defined on a surface (gray, shaded) enclosing the
defect. (b) Two Floquet evolutions with different defect charges but the same topological
invariants, which are connected by a smooth deformation λ ∈ [0, 1] preserving the Floquet
unitary’s band gaps. (c) The deformation is a π rotation of the 3-sphere parameterized by
(n, ξ). Images of time-slices representing the initial 0-defect (yellow), π-defect (blue), trivial
Hopf invariant (gray), Hopf invariant 1 (red), are displayed before and after the rotation.
(d) During the deformation, the 0-defects (black outline) and π-defects (solid black) become
loops that link in the Brillouin zone, at which point their individual charges are undefined.
The total charge h0 + hπ is conserved, corresponding to the static Z invariant. Arrows
indicate increasing λ.

5.1 Floquet topological insulators
We are concerned with non-interacting systems governed by a space- and time-periodic

Hamiltonian, written in momentum-space as H(k, t) = H(k, t + T ), where H(k, t) is a
matrix acting on the internal degrees of freedom that form the two bands of the system.
Time-evolution is captured by the unitary operator U(k, t) = T

(
e−i

´ t
0 H(k,t′)dt′

)
, 0 ≤ t < T .

Much like static insulators, one can view these unitaries in terms of the band-structures
composed by their eigenvectors and eigenphases. For a two-band unitary we write

U(k, t) = eiφ |z〉〈z|+ eiφ
′ |z′〉〈z′| , (5.1)

where φ(′)(k, t), |z(′)(k, t)〉 depend on time as well as momentum, and the quasienergies
φ(′)(k, t) are periodic.
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Floquet topological insulators are Floquet-Bloch systems where the unitary is gapped
at time T . The Floquet unitary, U(k, T ), is equivalently described by the fictitious, time-
independent Floquet Hamiltonian, HF (k) = −i log(U(k, T ))/T . Similar to static TIs, two
FTIs are in the same phase if one can smoothly interpolate between them without closing the
gaps of the Floquet unitary. Focusing on systems with two gaps for simplicity, recent work
has shown that—in all settings with non-driven analogues (i.e. in the absence of explicitly
Floquet symmetries, e.g. time-glide symmetry [336])—such FTIs are characterized by two
topological invariants, each with the same classification as a static TI of the same dimension
and symmetries [31, 90, 153, 254, 336, 346, 404, 407].

Here, we note a finer distinction in the classification of FTIs with fixed band number.
We decompose the unitary evolution into two components: the evolution over a full pe-
riod, captured by the Floquet unitary U(k, T ), and that within a period, captured by the
micromotion unitary, Um(k, t) ≡ U(k, t)

[
U(k, T )

]−t/T . From this decomposition, one sees
that the classification factorizes into two, potentially distinct, invariants: a ‘static’ invariant
classifying the Floquet Hamiltonian HF (k), and an intrisically Floquet invariant classify-
ing the micromotion operator Um(k, t). In d space dimensions, the former classifies maps
from the dD Brillouin zone to the set of gapped Hamiltonians, identical to the scheme for
static TIs. The Floquet invariant classifies maps from the (d+1)D Floquet Brillouin zone,
parameterized by (k, t), to SU(n), for an n-band system without symmetries [407]. These
invariants are identical in all cases previously considered. However, for systems with fixed
band number they may differ.

5.2 Homotopy classification of Floquet Hopf insulator
We now introduce the Floquet Hopf insulator, a three-dimensional Floquet-Bloch system

with two bands and no symmetries. The static invariant is the Hopf invariant of the Floquet
Hamiltonian, which we briefly review. The gapped two-band Hamiltonian HF (k) = n(k) ·σ
maps the 3D Brillouin zone to the Bloch sphere S2. Neglecting “weak” lower-dimensional
invariants [244, 335], such maps are classified by the homotopy group π3(S2) = Z, thus pos-
sessing an integer topological invariant—the Hopf invariant. Expressed in terms of the eigen-
vectors |z(k, T )〉 of the Floquet unitary, it takes the form hS = 1

2

´
d3k εijkAiFjk, defining

the Berry connection Ai = −i
4π

(〈z〉 ∂iz−〈∂iz〉 z) and curvature Fjk = −i
4π

(〈∂jz〉 ∂kz−〈∂kz〉 ∂jz),
and where |z(k, T )〉 is related to the Bloch sphere n(k) by n(k) = 〈z(k, T )|σ |z(k, T )〉.

The Hopf invariant has an intriguing visual interpretation as a linking number. To
elaborate, consider the pre-image of any n′ on the Bloch sphere, i.e. the set of all k that are
mapped to n′ by n(k). This is generically a 1D loop in the Brillouin zone. The topology of
the HI enters when one considers two such pre-images. In the HI phase, any two pre-images
are linked, with a linking number equal to the Hopf invariant. Intriguingly, this linking can
be equivalently viewed as a twisting of the Jacobian of n(k) along a single pre-image [243,
372] (Fig. 5.1).
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Figure 5.3: Numerical calculation of the Floquet invariant, static invariant, and 0/π-defect
charges (a) across a phase transition (hS, hF ) = (1, 0) → (0, 1) (κ = 0 → 1) (b) along the
smooth deformation exchanging defect charge.

We now turn to the Floquet invariant. The micromotion operator maps the 4D Floquet
Brillouin zone to SU(2), isomorphic to the 3-sphere S3. Again neglecting weak invariants,
this is classified by the group π4(S3) = Z2: a parity invariant, different from the integer Hopf
invariant! This invariant was previously studied as the foundation of the Witten anomaly
in SU(2) gauge theories, where a formula for it was introduced [499]. In terms of the
micromotion operator’s eigenvectors |zm(k, t)〉 and their relative eigenphase ∆φm(k, t), we
find (see Appendix A)

hF =
1

4π

ˆ
dt d3k εijkl ∂i∆φm(k, t)Aj Fkl mod 2, (5.2)

where the Berry connection and curvature are defined analogous to the non-driven case, now
over space-time indices {kx, ky, kz, t}. The Floquet invariant also relates to the Jacobian
twisting along a 1D pre-image, now in (3+1)D (Fig. 5.1). The higher dimensionality leads
to the reduced Z2 classification [372].

Combining the two invariants, we conclude that the Floquet Hopf insulator has a Z×Z2

classification. A system with arbitrary (hS, hF ) can be generated by strobing two flat band
Hamiltonians according to

H(hS ,hF )(k, t) =

{
2π
T
HhS−hF (k) 0 ≤ t < T/2

− π
T
HhS(k) T/2 ≤ t < T

, (5.3)

where Hh(k) has Hopf invariant h and energies ±1. To verify the static invariant, note
that the Floquet unitary is given by U(k, T ) = −eiπ2HhS , whose bands correctly have Hopf
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invariant hS. The Floquet invariant is also verified (see Appendix A): schematically, the
contributions of the two halves of the evolution subtract, giving Floquet invariant hS −
(hS − hF ) = hF mod 2.

5.3 Interpretation via topological defects and edge
physics

It is illuminating to discuss how the Floquet Hopf insulator fits in the context of Ref. [346].
Here one again views the evolution in terms of bands, with particular attention to fixed
time-slices. If the unitary U(k, t) is gapped at time t, one may define an instantaneous
static topological invariant C(t) from its bands, exactly as one defines the static invariant
of the Floquet unitary at time t = T . This invariant must be constant throughout each
gapped region of the evolution, and can only change at times containing gapless points.
Such points are topological defects of the evolution, and possess a defect charge equal to the
total change in C(t) across the defect. They come in two varieties, 0- and π-defects, labelled
by the quasienergy at which the gap closes. The total charges of the 0- and π-defects are
locally conserved, and are thereby identified as the topological invariants of the evolution.
For example, in the Floquet Chern insulator [407] the instantaneous Chern number changes
at gapless Weyl points [478], and the integer charges of the 0- and π-Weyl points comprise
a Z× Z classification [346].

Like other topological defects, Hopf topological defects possess an integer charge h0/π

equal to the change in the instantaneous Hopf invariant across the defect. Two types of
Hopf defect exist, each depicted in Fig. 5.2(a). The first occurs a single gapless point with a
quadratic energy degeneracy. Interestingly, the Hopf invariant may also change across loops
of gapless points, with linear degeneracy. The loops feature a Weyl cone [478] at each point,
with the frame of the Weyl cone rotating by 2π∆h about the loop [299].

How does conservation of the two integer defect charges reconcile with the correct Z×Z2

classification? The answer lies in a smooth deformation that exchanges even charge between
the 0- and π-defects, such that (h0, hπ)→ (h0 − 2, hπ + 2). This process has no analogue in
previously studied FTIs and keeps both band gaps of the Floquet unitary open, establishing
the two configurations as the same phase. The total charge h0+hπ is conserved in this process,
while the individual charge hπ is only conserved mod 2. This suggests the identifications

hS = h0 + hπ ∈ Z
hF = hπ mod 2 ∈ Z2.

(5.4)

The former follows from the definition of defect charge: the invariant at t = T equals the sum
of all changes to it throughout the evolution. We explicitly describe the above deformation
for the specific case of (h0, hπ) = (1,−1)→ (−1, 1), finding a continuous family of evolutions
U(k, t;λ) with defect charges (1,−1) at λ = 0 and (−1, 1) at λ = 1 [Fig. 5.2(b)]. Recall
that SU(2) is topologically equivalent to the 3-sphere via the parameterization U(k, t) =
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ξ(k, t)1 + in(k, t) · σ, ξ2 + n(k)2 = 1. The deformation acts as a time-dependent rotation
of U(k, t) in the ξnz-plane: U(k, t;λ) = Rξnz [λθ(t)]{U(k, t)}, where the rotation angle λθ(t)
interpolates from 0 at t = 0 to λπ at times after the earliest defect.

To observe that this interpolates between the two configurations without closing the
Floquet gap, we examine five regions of the λ = 0, 1 evolutions [Fig. 5.2(c)]. Throughout
the deformation, the early and late gapped regions remain gapped with trivial topology.
The middle region at λ = 1 is gapped with eigenvectors that can be smoothly deformed to
−n, which has the same Hopf invariant as the eigenvectors n at λ = 01. Critically, this
equivalence does not hold for TIs described by K-theory (e.g. the Chern insulator). Finally,
the deformation interchanges the location of the 0- and π- defects. Since the intermediate
invariant is unchanged, the defect charges are flipped by the deformation.

What allows the seemingly-conserved defect charges to change? Recall how defect charge
is rigorously defined: one encloses the defect with a surface of gapped points, and computes
the static topological invariant of the surface’s eigenvectors [346]. As shown in Fig. 5.2(d),
during the deformation the defects become loops of gapless points. At some value of λ, the
0- and π-defect loops link such that it is impossible to separately enclose each defect, causing
the individual defect charges to be undefined. This defect linking arises directly from the
linking of the HI (see Appendix A). After linking, the defects again have well-defined charges,
which may differ from their initial values.

We compute the invariants and defect charges numerically in two scenarios (Fig. 5.3).
Across a phase transition (hS, hF ) = (1, 0) → (0, 1), both the invariants and defect charges
change, following Eq. (5.4). In contrast, along the smooth deformation, the invariants remain
robustly quantized while the defects exchange charge (see Appendix A).

Like its static counterpart [131, 335], the Floquet Hopf insulator features gapless edge
modes at smooth boundaries between phases with different topological invariants (Fig. 5.4).
An unusual situation occurs at boundaries where the static invariant changes, but the defect
charge parities do not. Here, a gap closing is protected by the change in invariant, but may
occur at either 0- or π-quasienergy, depending on details of the edge region. The anomalous
Z × Z2 classification is precisely what allows this ambiguity: since the defect charges are
only defined up to parity, neither quasienergy individually requires a gap closing, despite the
change in topological invariant.

5.4 Discussion and outlook
At the highest level, the Floquet Hopf insulator demonstrates that the extension of static

quantum phases of matter to driven systems is not always as simple as might be expected.
In the context of topological physics, its most notable feature is the bizarre process by which
edge modes can be exchanged between different band gaps, but never eliminated entirely.

1This follows from Eq. (3), since Fjk and Ai are each third-order in n̂, making the Hopf invariant
sixth-order, and thus even, in n̂. The former follow from Fjk = 1

8π n̂ · (∂jn̂× ∂kn̂) and ∂jAk − ∂kAj = Fjk.
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Figure 5.4: Quasienergy spectra of the Floquet unitary at various smooth boundaries
between Floquet Hopf insulator phases, solved via exact diagonalization (see Appendix A).
Quasienergies are colored according to their eigenstates’ average distance from the edge
region, from localized at the edge (red) to far from the edge (black). (a) The boundary
between (hS, hF ) = (0, 1) and the trivial phase (hS, hF ) = (0, 0), features gapless edge
modes across both band gaps despite the Floquet Hamiltonian being trivial. (b) In contrast,
we find no gapless edge modes between phases with different topological defect charges
(h0, hπ) = (1,−1) and (−1, 1), but the same topological invariants (hS, hF ) = (0, 1 mod 2),
demonstrating the Z2 classification of the Floquet invariant. (c,d) Two different boundaries
between the same two phases, (hS, hF ) = (2, 0) and the trivial phase (hS, hF ) = (0, 0),
featuring gapless edge modes across either the 0- or π-gap.
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Multiple open questions remain regarding the extent to which the Floquet Hopf insu-
lator physics is observable in realistic physical systems. Many of these are common to all
Floquet topological insulators [406]; for instance, concerning the robustness of the phase to
interactions and, relatedly, the tendency of interacting systems to thermalize at late times.
Experimental input may become essential to addressing these questions. To this end, the
proposals in Chs. 3 and 4 to realize the static Hopf insulator may provide a first step towards
a Floquet generalization. Specifically, we note that any realization of the static HI provides
a direct path to realizing the Floquet Hopf insulator, using the stroboscopic construction
of Eq. (5.3). For example, strobing a Hamiltonian with Hopf invariant 1 with a trivial
Hamiltonian realizes the phase hS = 0, hF = 1. Time-evolving under a trivial Hamiltonian
is straightforward: for instance, if the two bands arise from two sublattices, stroboscopic
trivial time-evolution can be achieved by modulating the chemical potential on only a single
sublattice. As a specific example, in the case of ultracold dipolar molecules [26, 117, 125,
338], a staggered chemical potential between two different spatial sublattices can be achieved
by using different intensities of light. As in Ch. 4, recent advances in the context of KRb
experiments [26, 117] suggest that the most interesting physical feature of Floquet Hopf
insulator—its edge modes—can be probed using molecular gas microscopy.
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Chapter 6

Braiding photonic topological zero
modes

In this Chapter, we present the experimental realization of a non-interacting analogue
of one of the longest sought features of topological phases: non-Abelian braiding. The
experiment consists of 2-dimensional arrays of 1-dimensional photonic waveguides; classical
light traveling through the waveguides will disperse across the waveguide array in a manner
precisely analogous to quantum particles dispersing in (2+1)-dimensional spacetime. We will
show that topologically-protected bound states in the waveguide array acquire a non-Abelian
geometric (Pancharatnam-Berry) phase when braided around one another.

We begin this Chapter with a brief review of non-Abelian braiding and its importance in
topological phases and topological quantum computing. Even before doing so, we preempt
our results by noting that the non-Abelian braiding realized herein lacks certain hallmark
associated with non-Abelian braiding in condensed matter settings. For one, the physics we
consider does not require long-range entanglement between the bound modes being braided,
and is (relatedly) not robust to the presence of interactions. Essentially, the entangled
superpositions that lead to non-Abelian braiding in condensed matter systems are replaced
here by unentangled superpositions that feature similar braiding properties. In addition,
the braiding operations we find will realize a more restricted “gate set” than is found in
non-Abelian braiding in condensed matter settings.

We also remark that in some ways, the presence of dynamics in this Chapter comes “by
accident”. Photonic systems are useful for our purposes due to their high tunability and
inherent non-interacting nature. The same non-interacting nature then leads naturally to
non-equilibrium physics, as there are no interactions to induce thermalization.

6.1 Overview of non-Abelian braiding
Quantum particles were long thought to fall into one of two classes: fermions or bosons.

The two classes are distinguished by the effect on the many-particle wavefunction of ex-
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changing any pair of such particles: for fermions, the wavefunction acquires a minus sign,
whereas for bosons it does not. It was later understood [282] that, while these are indeed the
only two possibilities in three or more spatial dimensions, the 2D case admits a remarkable
generalization of the concept of bosons and fermions known as anyons [492, 493]. Mathemat-
ically, it is useful to think of anyons in (2+1)-dimensional spacetime, where their exchanges
are viewed as “braids" [152, 347, 500] in which the particles’ worldlines are wound around
one another. In general, exchanging two anyons (i.e. performing a single braid) can yield
any phase between 0 (bosons) and π (fermions) [282]. Even more strikingly, in certain sce-
narios the phase acquired after performing a series of exchanges can depend on the order in
which the exchanges occurred [152, 500]. Aside from its fundamental scientific importance,
this “non-Abelian" braiding of anyons has attracted substantial interest in the condensed
matter physics and quantum information communities as it can be used as a basis for robust
quantum information processing [151, 253, 347].

Anyons have been theoretically predicted to arise in a variety of topological phases of
matter, for example in fractional quantum Hall systems [29, 193], where they can exist
as deconfined quasiparticle excitations, and in topological superconductors, where Majo-
rana bound states nucleate at topological defects such as domain walls and vortices. New
mechanisms for the realization of anyons have been proposed in non-interacting systems
as well [306, 462], and have been discussed as a possible route for the realization of high
magnetic permeability materials for photonic applications [462]. Despite substantial effort
and progress [4, 25, 86, 239, 344, 495], as of yet there has been no conclusive experimental
evidence of anyonic braiding, Abelian or non-Abelian.

Perhaps counterintuitively, the non-Abelian phases acquired upon braiding Majorana
bound states in superconductors can be understood from the viewpoint of non-interacting
particles, wherein the single-particle Schrödinger equation describes particles as waves. In
this picture, the braiding phases are geometric phases [53, 54, 363] arising from the adiabatic
variation of the phase texture of the bound-state wavefunctions as the vortices are wound
around one another [225]. Therefore, non-Abelian braiding in its simplest incarnation can be
viewed as a universal wave phenomenon accessible beyond electronic systems. This implies
that it can be realized experimentally in the context of photonics, where a wide range of
topological phenomena have been predicted and observed recently [189, 190, 360, 388, 482].
In fact, non-Abelian gauge fields have recently been observed in a photonic device [510],
suggesting the possibility of photonic braiding. In general, photonic topological devices
(as well as those in other bosonic systems) are expected to have entirely complementary
applications to their condensed matter analogues.

In the remainder of this Chapter, we report on the measurement of the geometric phase
arising from braiding topological defects in an array of photonic waveguides, fabricated
using the femtosecond direct laser-writing technique [124, 453]. Our experiment utilizes
classical light, which corresponds to a quantum coherent state of photons, consisting of a
superposition of photon number states. Following the theoretical proposal of Ref. [222], we
realize topological defects as vortices in a vector field that encodes the displacements of each
waveguide in the array. The vortices realized in our experiment bind localized topological



CHAPTER 6. BRAIDING PHOTONIC TOPOLOGICAL ZERO MODES 69

z

Injection
Braiding

Interferometer
(3.5 cm)

(5.0 cm)

(1.5 cm)

a

α
b

Figure 6.1: Schematic of waveguide array. a, Schematic of the waveguide array (di-
mensions not to scale). The experiment consists of three stages, occurring in succession in
the propagation direction, z. First light is injected (indicated by the red arrow), split, and
coupled into the vortex cores of the two lattices, each of which then undergoes a braiding
operation. In the interferometer stage, light is extracted from the vortex cores and com-
bined in a single waveguide at the center. The left and right arms are used to measure the
intensity of light from each lattice after braiding. b, Depiction of one of the two lattices
of the waveguide array at a fixed z-slice during the braiding stage. The waveguides (filled
circles) are displaced from their honeycomb positions (empty circles) at an angle equal to
the phase of the Kekulé order parameter ∆r(z) (arrows, drawn parallel to the displacements
and colored according to their orientation). The order parameter contains a vortex of charge
−1 (central red square) near the lattice center. The overall offset α of the order parameter’s
phase is varied as a function of z and can be interpreted as the angle between the central
anti-vortex and a fictitious vortex ‘at infinity’ (outer red square) that resides outside the
waveguide array.
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modes whose single-particle wavefunctions are identical to those of Majorana bound states
in a 2D topological superconductor (Note however that the model we realize is in symmetry
class BDI, while the topological superconductor is in class D [98]; thus the two systems have
important fundamental differences). Consequently, at the non-interacting level the effect
of braiding these vortices is the same as what is expected for Majorana bound states. We
experimentally realize such vortices in the waveguide array and measure the effect of braiding
one such vortex with a second that resides outside the array at an effectively infinite distance
from the first. In order to eliminate the effect of dynamical phases, a 180◦ braiding operation
is performed in two adjacent arrays, each with a vortex at its center. If the sense of rotation
of the two arrays is the same (opposite), the relative phase at the core is found to be
0 (π). This observation matches the theoretically predicted geometric phase, providing a
clear signature of braiding. The presence of the non-zero geometric phase here implies that
braiding operations performed using such zero modes is non-Abelian, as shown explicitly in
Ref. [222].

6.2 Photonic tight-binding model
We arrange the waveguides in a near-honeycomb lattice, with each waveguide displaced

from its honeycomb position r = (x, y) by an r- and z-dependent amount ur(z). The
diffraction of light through this waveguide array is governed by the paraxial wave equation

i∂zψ(r, z) = − 1

2k0

∇2
rψ(r, z)− k0∆n(r)

n0

ψ(r, z), (6.1)

where ψ(r, z) is the envelope function of the electric field E(r, z) = ψ(r, z)ei(k0z−ωt)x̂, k0 =
2πn0/λ is the wavenumber within the medium, λ is the wavelength of light, ∇2

r is the
Laplacian in the transverse (x, y) plane, and ω = 2πc/λ. Here n0 is the refractive index of
the ambient glass and ∆n is the refractive index relative to n0, which acts as the potential in
equation 6.1. Since the displacements are small compared to the lattice spacing a (|u| ≤ .25a)
and vary slowly in the z-direction, the propagation of light through the waveguide array can
also be described by a coupled-mode (i.e. tight-binding) equation:

i∂zcr(z) =
∑

〈r′〉

[t+ δtr,r′(z)]cr′(z) (6.2)

where cr(z) denotes the amplitude of light in waveguide r, and the z-dependent hopping
modification δtr,r′ arises from the change in waveguide separation due to the displacements
ur,ur′ . Identical to electrons in graphene, the two sublattices of the honeycomb lattice give
rise to two energy bands in the spectrum, which touch at two gapless “Dirac” points at crystal
momenta K± = (±4π/(3

√
3a), 0).

As shown in Fig. 6.1, we choose the displacements ur = (uxr , u
y
r) corresponding to a Kekulé

distortion [214, 222] controlled by the complex order parameter ∆r(z). The magnitude of
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the order parameter determines the displacement amplitude, while its phase controls the
displacement angle according to arg(uxr + iuyr) = K+ ·r+arg(∆r). When ∆r(z) is constant in
space, the Kekulé distortion couples the two Dirac cones, leading to a band gap proportional
to |∆| in the energy spectrum.

6.3 Vortices and braiding
Our work concerns order parameters that vary both throughout the lattice and in the

z-direction. In particular, we focus on vortex configurations of the order parameter, ∆r =
|∆| exp(i[α + qv arg(r− rv)]), where the phase of ∆r winds by 2πqv about the vortex center
rv for a vortex of charge qv. For qv = ±1, such vortices are known to bind a single mid-gap
photonic mode, localized near the vortex core [214, 222, 227]. The presence of this mode is
protected by the nontrivial topology of the vortex configuration, as well as the time-reversal
and chiral symmetries of the system [457]. (Here, chiral symmetry arises in the effective
coupled mode equation due to the bipartite coupling between the two sublattices of the
honeycomb lattice, similar to graphene [432].)

A system with multiple vortices carries a bound mode at each vortex. Away from the
vortex centers, the order parameter varies slowly compared to the lattice scale, and the
system remains gapped. This opens up the possibility of braiding the vortex modes as
functions of z: if braiding is executed adiabatically in z, light bound in a vortex mode will
not disperse into the gapped bulk.

Braiding has two effects on a vortex: moving its center rv, and altering the offset α in the
local order-parameter phase. The latter arises due to the inherent nonlocality of vortices—
as two vortices braid, each one changes its location in the space-dependent phase field of
the other. The first vortex therefore experiences an effective offset α + qv,2 arg(rv,1 − rv,2),
which increases or decreases depending on the handedness of the braid and the charge of the
second vortex. The effect of braiding on light trapped in the vortex mode is captured by the
offset-dependence of the vortex-mode wavefunction cvr(rv, α). Specifically, the wavefunction
is double-valued in the offset,

cvr(rv, α + 2π) = −cvr(rv, α), (6.3)

signifying that light trapped in the vortex mode gains a geometric phase of π (i.e. a minus
sign) after a full 2π braid.

The double-valueness of the wavefunction is reminiscent of Majorana wavefunctions at
vortices in p + ip superconductors [225, 387] or at superconductor-TI interfaces [155]. In
fact, the parametric dependence on α of the photonic zero-mode wavefunction is identical
to the dependence of the Majorana wavefunction on the phase of the superconducting order
parameter [222]. However, since the underlying Hilbert space of the photonic system is
bosonic, a single photonic zero mode has a well-defined notion of parity: an even or an
odd number of photons can occupy it. In contrast, only a pair of Majorana zero modes
has a well-defined (fermionic) parity. This crucial difference implies that braiding photonic
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Figure 6.2: Experimentally measured vortex mode. Diffracted light measured at the
output facet of a waveguide array device containing only the injection and braiding stages.
Light stays largely confined to the vortex core, while excess light that does not overlap with
the vortex mode diffracts throughout the array. A color bar is presented on the right, which
indicates the light intensity at the output facet on a relative scale.

zero modes can implement only a subset of the possible operations realizable by braiding
Majorana zero modes [222]. Nevertheless, the braiding are non-Abelian in both cases.

6.4 Observation of geometric phase induced by braiding
In this work, we provide a robust verification of the geometric phase π gained by the

photonic vortex modes under a 2π rotation of the order parameter α. We detect this phase
by performing two ‘on-chip’ interferometry experiments, in which we interfere light from two
vortex modes that have undergone different rotations of α. In each experiment, we fabricate
a waveguide array containing two disconnected Kekulé-distorted honeycomb lattices, which
constitute the ‘left’ and ‘right’ arms of an interferometer [see Fig. 6.1(a)]. The left and right
lattices are initially identical and contain a single vortex in the Kekulé order parameter.
As z increases, the offset α of each lattice’s order parameter is monotonically increased, or
decreased, by π. The first experiment serves as a control, with α → α + π in an identical
sense of rotation in both lattices. In the language of braiding, this increase of α can be
interpreted as braiding a vortex ‘at infinity’ counterclockwise around each lattice by an angle
π [as indicated in Fig. 6.1(b)]. Since the left and right lattices are identical throughout, light
trapped in the left vortex mode should gain the same phase as light trapped in the right (both
dynamical and geometric phases), and they should interfere constructively after braiding.

The second experiment serves to detect the geometric phase from a 2π rotation of α.
Here the left lattice undergoes a rotation α→ α+ π, while the right undergoes α→ α− π.
This is analogous to braiding a vortex at infinity 180◦ counterclockwise about the left lattice,
but clockwise about the right. Although the final left and right lattices are identical, the
paths they have traversed differ by a 2π rotation of α, and the relative phase gained by light
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propagating through the two vortex modes will differ according to the geometric phase of
this process. We note that, in theory, chiral symmetry pins the energy of the vortex mode
precisely to the middle of the band gap [214, 222, 227], such that, despite their different
z-evolutions, light in the left and right lattices is expected to gain the same dynamical phase
during braiding. In practice, however, the waveguide lattice does not strictly realize chiral
symmetry due to evanescent couplings between next-nearest-neighbor waveguides. Never-
theless, the effect of this chiral symmetry breaking is small as the next-nearest-neighbor
couplings are suppressed exponentially relative to the nearest-neighbor couplings that pre-
serve chiral symmetry. The accumulated dynamical phase is thus expected to be small.
The symmetric braiding protocol proposed here further aids in the suppression of dynamical
phases by ensuring that the path length of light through the waveguides in each arm of the
interferometer is as similar as possible.

The entire experimental waveguide array consists of three stages, occurring in succession
as a function of z [see Fig. 6.1(a)]. The total length of the sample is 10 cm and the full width
at half maximum of the major and minor axes of the waveguides are 8.91 and 5.83 µm,
respectively. The first stage prepares the light to be coupled in-phase into the vortex modes
of the left and right lattices. This is done using an ‘on-chip’ Y-junction beam-splitter [226].
We first precisely couple light from a tunable-wavelength laser through a lens-tipped fiber
into a single waveguide at the input facet of the sample. We then split this waveguide into
two in a symmetric manner, such that both waveguides trap light of nearly equal amplitude
and phase. The two waveguides are subsequently guided to the center of the vortex cores of
the left and right lattices.

The middle stage contains the braiding operation, and begins by abruptly initializing
all other waveguides in each lattice. Light traveling in the waveguides of the first stage
enters each lattice through a single waveguide near each vortex core, setting the initial
condition for the braiding process. The portion of the input light that overlaps with the
vortex mode remains localized in the mode, while the rest diffracts throughout the lattice.
After initialization, the waveguide displacements are smoothly varied in z to produce the
desired change in order parameter for the experiment being performed. We emphasize that
the individual waveguides move little during this process: each waveguide only undergoes
rotation of its displacement angle from the undistorted honeycomb position.

In Fig. 6.2, we show the experimental output of a waveguide array containing only these
first two stages. As expected, a high fraction of the light is localized near each vortex core,
indicating that the initialization stage succeeded and the braiding process was performed
sufficiently adiabatically. We also observe a nonzero intensity in nearly all waveguides of
both lattices, indicating that light not bound to the vortex modes has diffracted throughout
each lattice.

To detect the phase of the vortex mode light after braiding, we add a third, interferometric
stage to the waveguide array [226], depicted in Fig. 6.1(a). The left and right lattices are
abruptly terminated except for one waveguide each, chosen for its high overlap with the
final vortex-mode wavefunction. Light localized in the left and right vortex modes continues
to propagate through the remaining two waveguides. The intensity and phase of these
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waveguides’ light are proportional to those of the respective vortex modes after braiding. In
order to read out the waveguides’ relative phase, we first split each waveguide symmetrically
into two, similar to the first stage. The two innermost waveguides of the left-right pair
are then combined into a single waveguide, while the two outermost remain separate. The
waveguide combination performs the interferometry: if the two input arms are in phase, they
will excite the symmetric bound mode of the combined waveguide; if they are out of phase,
they will not overlap the bound mode and thus the light will diffract away. The combined
waveguide intensity IC thus indicates the intensity of in-phase light. The outermost left and
right waveguide intensities IL and IR measure the waveguide intensities before combination.

Results of both experiments including the final stage are shown in Fig. 6.3. As an-
ticipated, braiding the left and right vortices in the same direction results in a combined
waveguide with higher intensity than the individual left and right waveguides, indicating
constructive interference. On the other hand, braiding the left and right vortices in oppo-
site directions results in nearly zero combined waveguide intensity, indicating near-complete
destructive interference and therefore a relative phase of π between the left and right vortex
modes. To quantify these results, we define the contrast η as the ratio between the com-
bined waveguide intensity and the sum of the individual left and right waveguide intensities,
η = IC/(IL + IR). In the ideal case, the contrast achieves the upper bound 1 for perfect
constructive interference and the lower bound (IL + IR − 2

√
ILIR)/[2(IL + IR)] for perfect

destructive interference. As plotted in Fig. 6.3(a), the experimentally observed contrast is
indeed near 1 when braiding is performed in the same direction for both lattices, and is close
to zero (the lower bound for symmetric intensities, IL = IR) when it is performed in opposite
directions. Numerical simulations carried out using a split-step beam propagation method
[195] conform to these predictions.

We verify that this phase difference arises as a geometric, rather than a dynamical,
phase by demonstrating that the interference is insensitive to the wavelength of light used.
The wavelength sets the ‘time’ scale in the paraxial equation, equation 6.2, so that different-
wavelength light acquires different dynamical phases during propagation [184]. If the relative
phase between the left and right waveguides arose as a dynamical phase, we would expect it
to oscillate as the wavelength of light was varied rather than being quantized at π. Instead, as
shown in Fig. 6.3, we observe quite consistent, non-oscillatory values of η for both experiments
over a large range of wavelengths, 1450–1650 nm. The principal sources of error/noise are
interference from imperfectly in-coupled light in the braiding stage as well as diffracted light
in the interferometric stage. We note that the random error is significantly lower in the
sample in which we observe the π phase associated with braiding [red points in Fig. 6.3(a)]
compared to the ‘control’ sample in which we do not [blue points in Fig. 6.3(a)]. The
measured η values when the two vortices are braided in equal and opposite directions are
1.055± 0.247 and 0.053± 0.037, respectively. This indicates that the relative phase is fixed
to π and supports its identification as a geometric phase.
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Figure 6.3: Interferometric measurement of Berry phase associated with braiding.
a, The experimentally observed contrast when the two lattices are braided in the same
direction (blue) or in opposite directions (red). The geometric phase π picked up by light
near the vortex core in the latter case is evidenced by the near-zero contrast due to destructive
interference. b-c, Diffracted light measured at the output facet when the two lattices are
braided in the same and opposite directions, respectively.
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6.5 Methods
We fabricated the waveguides using femtosecond direct laser writing technique. Using

a 800 nm Titanium:sapphire laser and amplifier system (Coherent:RegA 9000 with pulse
duration 270 fs, repetition rate 250 kHz, and pulse energy 820 nJ), we wrote the waveguides
in a borosilicate glass (Corning Eagle XG borosilicate glass) with refractive index n0 = 1.473
at λ = 1550 nm. The shape and size of the focal volume were controlled by first sending
the laser writing beam through a beam-shaping cylindrical telescope and then focusing it
inside the glass chip using a ×50, aberration-corrected microscope objective (NA = 0.55).
The waveguides were fabricated by translating the glass chip through the focal volume of
the laser beam using a high-precision three-axis Aerotech motion stage (model ABL20020).

Experiments are performed by butt-coupling a single-mode optical fibre to waveguides
at the input facet of the chip, which subsequently couples light into the waveguide ar-
ray. A tunable mid-infrared diode laser (Agilent 8164B), which can be tuned through the
1,450âĂŞ1,650 nm wavelength range, was used as an input light source. After a total prop-
agation distance of 10 cm within the array, the diffracted light is observed at the output
facet from the waveguide array using a 0.2 NA microscope objective lens and a near-infrared
InGaAs camera (ICI systems).

6.6 Discussion and outlook
In summary, we have used a photonic lattice of evanescently-coupled waveguides to di-

rectly measure the braiding of vortices. The π phase that we observe here directly implies
that non-Abelian braiding operations can be carried out. In a similar spirit to Chs. 3 and 4,
the results of this Chapter highlight the potential of dynamical quantum systems to real-
ize long-sought static topological phenomena. However, as we noted in Ch. 5, the stability
of such phenomena to interactions is often much weaker in dynamical compared to statics
settings.

Using similar ideas to those here, we note that non-Abelian braiding can in principle be
realized in any platforms governed by classical wave equations, such as systems of acoustic
phonons, or polariton condensates. We also hope that our work motivates the exploration
of non-Abelian braiding physics in interacting bosonic systems (via optical nonlinearity or
mediation by Rydberg atoms, for example), as well as the search for applications beyond
robust quantum information processing.
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Part III

Many-Body Quantum Information
Dynamics
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Chapter 7

Verified quantum information scrambling
on a trapped ion quantum processor

In Part II, we studied how periodically-driven dynamics can provide new avenues to
stabilize quantum states with interesting quantum information properties (i.e. topological
phases of matter). In this Part, we turn to the dynamics of quantum information itself. As
discussed in Ch. 2.3, we will be particularly interested in how initially local information is
stored within a quantum system after time-evolution.

The works contained in this Part seek to address a few broad questions regarding quantum
information dynamics. How do quantum information dynamics differ across different “types”
of many-body quantum systems? (Chs. 10 and 11) How can one measure these dynamics in
laboratory experiments? (Chs. 7, 8, 9 and 10) And finally, what can we use our knowledge
of quantum information dynamics for? (Chs. 9 and 10, as well as Chs. 12 and 13 in Part IV)
A flood of recent works over the past decade (including, in small measure, those contained in
this Part) have to a substantial degree answered the first two questions. The third question
remains an exciting open direction in the years to come.

In this and the following Chapter, we present two experimental measurements of quan-
tum information scrambling. These experiments seek to address a crucial question: How can
experimental measurements distinguish the effects of scrambling from the effects of experi-
mental noise and decoherence? For example, the most common probe of scrambling are out-
of-time-ordered correlators (OTOC’s) [277, 315, 436], which take the form 〈V̂ †Ŵ †(t)V̂ Ŵ (t)〉,
where V̂ and Ŵ are unitary operators acting on separate subsystems. As scrambling pro-
ceeds, Ŵ (t) becomes increasingly nonlocal, causing the OTOC to decay [398], which is taken
as an experimental indication of scrambling [163, 289, 325, 486].

However, it is difficult to distinguish between information scrambling and extrinsic de-
coherence in the OTOC’s temporal decay. For example, non-unitary time-evolution arising
from depolarization or classical noise processes naturally lead the OTOC to decay, even in
the absence of quantum scrambling. A similar decay can also originate from even slight
mismatches between the purported forward and backwards time-evolution of Ŵ (t) [163,
450, 518]. While full quantum tomography can in principle distinguish scrambling from
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decoherence and experimental noise, this requires a number of measurements that scales
exponentially with system size and is thus impractical.

In this and the following Chapter, we implement a quantum circuit that provides a pos-
itive test for the scrambling features of a given unitary process [517, 518]. This approach
utilizes many-body dynamics to conditionally teleport a quantum state through the circuit,
providing an unambiguous litmus test for scrambling while projecting potential circuit errors
into an ancillary observable. The quantum circuit implementing this teleportation was origi-
nated in the context of the black hole information paradox [201, 361]. Its discovery suggested
a resolution to the paradox where quantum information that has crossed the event horizon
can be retrieved assuming that the dynamics of the black hole are both unitary and scram-
bling [160, 317, 449]. These experiments thus also serve as proof-of-principle demonstrations
of this “many-body” teleportation.

In this Chapter, we implement the many-body teleportation circuit on a 7-qubit ion
trap quantum computer. The teleportation circuit involves a tunable 3-qubit unitary oper-
ation; the teleportation fidelity probes the scrambling dynamics of the unitary. Measured
teleportation fidelities are typically ∼ 80%, and enable us to experimentally bound the
scrambling-induced decay of the corresponding OTOC measurement.

7.1 Hayden-Preskill recovery protocol
The intuition behind our approach lies in a re-interpretation of the black hole information

paradox, depicted schematically in Fig. 7.1. Let us suppose that an observer (Alice) throws
a secret quantum state into a black hole. Is it then possible for an outside observer (Bob) to
reconstruct this state by collecting the Hawking radiation emitted at a later time? Assuming
the dynamics of the black hole can be modeled as a random unitary operation Û , it has been
shown that Bob must wait for at least half of the lifetime of the black hole to reliably
recover Alice’s quantum state [361]. But what if Bob possesses a quantum memory that was
previously entangled with the black hole? In this case, it was shown that the decoding of
Alice’s quantum state could be performed by collecting only a few Hawking quanta [202].

To this end, an explicit decoding protocol has been recently proposed [517, 518], which
enables Bob to decode Alice’s state using only his quantum memory, an ancillary EPR
(Einstein-Podolsky-Rosen) pair, and knowledge of the effective black hole unitary Û [318].
The protocol requires Bob to apply Û∗, the complex conjugate of the black hole’s evolution
operator, to his own quantum memory and one half of the ancillary EPR pair. Following
this, Bob performs a projective EPR measurement on the emitted Hawking radiation and
the corresponding subsystem of his own quantum memory. This projective measurement
plays the role of teleporting Alice’s secret quantum state to the reference qubit in Bob’s
ancillary EPR pair. The successful decoding of Alice’s quantum information is possible due
to the maximally scrambling dynamics of the black hole, which ensure that the information
about Alice’s secret state is distributed, almost immediately, throughout the entire black
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Figure 7.1: Schematic of our 7-qubit scrambling circuit with Alice’s qubit, |ψ〉, as an input.
Alice’s information is scrambled throughout the entire system by maximally scrambling
Clifford circuits Û and Û∗. If the scrambling operations are performed without errors, Bob
will be able to teleport Alice’s qubit to himself (〈ϕ〉ψ = 1) by a projective measurement.
The underlay depicts an interpretation of the unitaries Û and Û∗ as representing a two-sided
black hole connected by a wormhole [160, 317, 449]; in the experiment, the two-sided black
hole is modeled via multiple EPR pairs as in [318]. The maximally scrambling nature of the
black hole dynamics is captured by Û and Û∗. The vertical lines indicate that qubit pairs
{3, 4}, {2, 5}, and {6, 7} are initially prepared as EPR pairs, |EPR〉 = 1√

2
(|00〉+ |11〉).
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hole [202, 213]. Thus, the fidelity of quantum teleportation provides a fail-safe diagnostic
for true quantum information scrambling.

Unlike a direct measurement of OTOCs, this protocol can explicitly distinguish scram-
bling from either decoherence or a mismatch between forward and backward time-evolution
(i.e. the encoding and decoding unitaries: Û and Û∗). Moreover, the success probability of
Bob’s projective measurement represents an independent measure of the average experimen-
tal value of the OTOC, which includes the effects of both noise and decoherence [518]. By
comparing the teleportation fidelity and the success probability, one can quantitatively and
unambiguously bound the amount of quantum scrambling in the unitary operation Û .

7.2 Distinguishing quantum information scrambling
from noise

We experimentally implement the above teleportation protocol on a 7−qubit fully-connected
quantum computer [126] using a family of 3-qubit scrambling unitaries Ûs. Our quantum
computer is realized with a crystal of trapped atomic 171Yb+ion qubits, defined by the hy-
perfine “clock" states, as described in Appendix B. We confine nine ions in the linear ion
trap and use the nearly equally-spaced middle seven ions for the circuit. We can drive single
qubit gates on any of the seven qubits with a typical fidelity of 99.0(5)% and entangling
two-qubit gates on any pair of qubits with a typical fidelity of 98.5(5)% (see Appendix B).
Projective measurements of the qubits in any basis are performed with standard fluores-
cence techniques [356], with a qubit readout fidelity of 99.4(1)%. In combination, EPR state
preparation and measurement can be performed with a fidelity of 98(1)% and are generated
by a compiler that pieces together native, one- and two-qubit gates to produce the desired
gates in a modular fashion [126].

A schematic of the experiment is depicted in Fig. 7.1. The first qubit is prepared in
a designated single-qubit state |ψ〉 and acts as Alice’s secret quantum state. We initialize
6 additional qubits in 3 non-adjacent EPR pairs, |EPR〉 = 1√

2
(|00〉 + |11〉). Two of these

pairs correspond to the black hole entangled with Bob’s quantum memory, and the third
corresponds to Bob’s ancillary EPR pair. We perform a scrambling unitary Ûs on Alice’s
qubit and the two black hole qubits, and the decoding unitary Ûd = Û∗s on the two quantum
memory qubits and one ancilla qubit. The explicit form of these unitaries and their decom-
positions into two-qubit gates is detailed in Appendix B. We complete the decoding protocol
by projectively measuring any designated pair of qubits – a chosen Hawking-radiated qubit
and Bob’s complement of it – onto an EPR pair. In the absence of decoherence and errors,
the probability Pψ of a successful projective measurement is directly related to the OTOC
by:

Pψ =

ˆ
dφ

ˆ
dÔH

〈
Ô†AÔ

†
H(t)ÔAÔH(t)

〉
, (7.1)

where ÔA ≡ |ψ〉〈ψ|φ acts on Alice’s qubit,
´
dφ
´
dÔH denotes an average over single-qubit
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quantum states φ and local unitary operators ÔH acting on the Hawking-radiated qubit, and
ÔH(t) = Û †s ÔHÛs. If the EPR projection is successful, the decoding of Alice’s quantum state
can be quantified via the teleportation fidelity: Fψ = | 〈ϕ〉ψ|2, where |ϕ〉 is the final state of
the ancillary qubit. To characterize the nature of different scrambling unitaries, we repeat
this protocol for initial states |ψ〉 ∈ {|0x〉 , |1x〉 , |0y〉 , |1y〉 , |0z〉 , |1z〉}, where |0(1)α〉 denotes
the positive (negative) eigenstate of the Pauli operator σα.

We begin by illustrating the challenge associated with interpreting conventional OTOC
experimental measurements [163, 289, 325, 486]. In particular, we perform a control ex-
periment with a non-scrambling unitary in the presence of deliberate experimental errors
(Fig. 7.2a): specifically, we take Ûs to be the identity operation, and introduce single-qubit
rotational errors (parameterized by strength θ) following the operation of Ûs, but not the
decoding operation Ûd, creating a mismatch between forward and backward time-evolution.
To allow for a fair comparison with the case of maximally scrambling unitaries, we implement
the identity operator as a combination of one- and two- qubit gates of comparable complexity
(and total number). As we increase the size of the mismatch error, we see that the average
OTOC (as measured by Pψ) decays, consistent with the expected sensitivity of the OTOC
to experimental noise (Fig. 7.2). Crucially however, the decoding fidelity remains constant
near 50%, the expected fidelity for an unknown qubit state, confirming that no scrambling
has taken place.

Taken together, the measured teleportation fidelity (Fψ) and the average OTOC (Pψ)
enables us to quantify the error-induced decay via an effective noise factor [518],

N ≡ dA [(dA + 1) 〈FψPψ〉 − 〈Pψ〉] , (7.2)

where dA is the dimension of Alice’s quantum state (in our case, dA = 2) and the average
is performed over all initial states ψ. Note that N = 1 in the ideal case and N = 0.25
(e.g. 1/d2

A) in the fully decohered case. To this end, the decay of this noise factor from unity
indicates the presence of error-induced OTOC decay in our quantum circuit. As expected,
the observed N decreases with increasing mismatch (Fig. 7.2e), reflecting the deliberate
error-induced decay of the OTOC, despite the lack of any quantum scrambling dynamics.
Moreover, the measured value of N ∼ 0.60 − 0.75 at zero-mismatch (θ = 0) reflects the
inherent errors in the experiment, which are expected from the many gates comprising the
EPR preparation, unitary operation, and EPR measurement.

With the control experiment in hand, we now characterize information scrambling for
a family of unitary operators Ûs(α) that continuously interpolate (Fig. 7.2b) between the
identity operator (α = 0) and a maximally scrambling unitary (α = 1), as described in
Appendix B. The gate decomposition of the Ûs(α) operation varies only in single-qubit ro-
tations about the z-axis, which are performed classically with negligible error. Similar to
the previous case, we observe the average OTOC to decay as the scrambling parameter,
α, is tuned from 0 to 1, as shown in Fig. 7.2c. However, unlike the case of the deliberate
mismatch-error in Fig. 7.2a, the OTOC decay is accompanied by an increase in the decod-
ing teleportation fidelity, indicating the presence of true quantum information scrambling.
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Figure 7.2: (a) Circuit designed to demonstrate that a mismatch between Ûs and Ûd naturally
leads to the decay of the OTOC without enabling teleportation. Following the Ûs = I
operation, we perform three additional independent rotations RX , RY , and RZ on the qubits
by angle θ. Accompanying data (orange) for the averaged successful projective measurement
(〈Pψ〉), averaged teleporation fidelity (〈Fψ〉) and noise factor (N ) as a function of θ are
depicted in panels (c-e). (b) Circuit designed to probe the OTOC and teleportation fidelity
as a function of the scrambling parameter α with α = 0 representing no scrambling and
α = 1 representing full scrambling. Accompanying data (purple) for 〈Pψ〉, 〈Fψ〉 and N as
a function of θ are depicted in panels (c-e). (c-e) For the mismatch circuit shown in (a),
we find that the teleportation fidelity remains near its minimal value, 〈Fψ〉 ∼ 0.5, for all θ,
consistent with our expectation that scrambling is not occurring. However, one observes that
the OTOC (as measured via 〈Pψ〉) decays to nearly zero, which would nominally suggest
scrambling. This is precisely the challenge with interpreting OTOC measurements as an
indicator of scrambling in noisy experiments. Finally, as expected, we observe that the noise
parameter N decays as the mismatch grows. For the tunable scrambling circuit shown in
(b), we find that the teleportation fidelity increases as we increase our scrambling parameter
α. This increase in teleportation fidelity is accompanied by a decrease in the OTOC (as
measured via 〈Pψ〉), indicating that the OTOC’s decay is caused, at least in part, by true
scrambling dynamics. Finally, the noise parameter N remains relatively constant because
the complexity and therefore experimental errors associated with implementing Û(α) are
mostly α-independent. Dashed lines represent theory curves that are obtained via numerical
simulations of the circuit assuming a one-parameter coherent error model (see Appendix for
details). Error bars indicating statistical uncertainties are smaller than the data points and
are omitted.
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Figure 7.3: (a) Teleportation fidelities (Fψ) for maximally scrambling (Ûs(α = 1)) and
classically scrambling (Ûc) unitaries are presented for all teleported states as well as all sub-
systems {3, 4}, {2, 5}, and {1, 6} that was used for the projective measurement (indicated as
different bar colors). In the case of the maximally scrambling unitary, all basis states and all
measurement Bell pairs lead to successful teleportation, demonstrating the full delocaliza-
tion of Alice’s quantum state. In the case of the classical scrambling unitary, we projectively
measure on subsystem {3, 4}. Only the z-basis states are successfully teleported. Data (for
Ûs) averaged over all six teleported states is shown in the final column. Data is depicted with
the same color scheme as in (b). b) Measurements of Pψ from the experiments described
in (a). The probabilities averaged over all basis states constitutes the average experimental
OTOC. Error bars indicate statistical uncertainties.

Measurement of a relatively constant noise factor confirms that the experimental error does
not depend strongly on the parameter α and thus cannot fully account for the decay of the
OTOC. In our system, the error scales with the number and type of gates, which are constant
across the interpolation.

Using our experimentally measured noise factor N , we can bound the true, scrambling-
induced decay of the OTOC for error-free time-evolution via the unitaries Ûs(α). Assuming
that extrinsic decoherence is negligible (i.e. that coherent errors dominate the experiment),
we find that the ideal average OTOC can upper-bounded by [518]: 4〈Pψ〉2/N 2. Therefore,
we can experimentally upper-bound the value of the OTOC for the maximally scrambling
unitary, Ûs(α = 1), by approximately 0.47(2).

7.3 Dependence on Hawking-radiated qubit and initial
state

In order to demonstrate that our scrambling unitaries are indeed delocalizing information
across the entire system, we show that teleportation succeeds independent of the chosen
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subsystem partition. To do this, we select three different pairs of qubits to be projectively
measured in the final decoding step, corresponding to the three qubits acted upon by the
scrambling unitary Ûs. Decoding succeeds with a fidelity of 70 − 80% for all projectively
measured pairs and all initial states (Fig. 7.3). By contrast, the same protocol applied to the
non-scrambling identity operator results in a nontrivial decoding fidelity for only a single pair,
in which case the entire protocol reduces to the standard setup for quantum teleportation
(Fig. 7.3). Taken together, these measurements demonstrate the full delocalization of Alice’s
initially local information (the secret qubit state) via the maximally scrambling unitary Ûs.

Intriguingly, time-evolution that is not maximally scrambling may nevertheless scram-
ble some subset of information. For example, in strongly disordered systems, localization
can lead to the scrambling of phase information but not the scrambling of population [345];
this situation would correspond to a sort of “classical scrambler” wherein teleportation only
occurs for z-basis states. Such classical scramblers may provide insight into connections be-
tween quantum and classical chaos; moreover, measurements of state- and unitary-dependent
scrambling may help to more precisely diagnose errors in digital many-body quantum sim-
ulations. To this end, we implement a classical scrambling unitary, Ûc, that completely
delocalizes phase, but not population, information: [Ûc, σ

i
z] = 0 for all qubits i. This com-

mutation implies that no measurement on a black hole qubit can distinguish the initial state
|ψ〉 of Alice’s qubit from the phase-reversed state σz |ψ〉, so that perfect teleportation is
possible only for the classical eigenstates |0z〉, |1z〉 (see Appendix B for details), as observed
in Fig. 7.3.

Thus far, our decoding protocols have all been probabilistic: they rely upon an EPR pro-
jective measurement to teleport the unknown quantum state. While the success probability
of this EPR projection enables us to quantify the error-induced decay of the OTOC, one
can also implement a deterministic version of the decoding protocol [517, 518] (Fig. 7.4a).
The intuition behind this deterministic decoder is to perform a search for the EPR pair
through an implementation of Grover’s search algorithm [179] instead of post-selecting on a
projective measurement. Scrambling remains the focus of this version; while the determin-
istic decoding fidelity can be lower bounded by 4-point OTOCs, their precise measurement
actually corresponds to certain averages of higher-point OTOCs (in our case of a qubit input,
8-point OTOCs). Such higher-point OTOCs [436] can serve as more fine-grained measures
of chaos beyond four-point OTOCs [187], have applications as probes of unitary 4-designs
and may be able to diagnose higher-moments of quantum randomness [399]. Within the
Grover-search variant of our decoding protocol, three states are deterministically decoded
with an average fidelity of 77(2)% (Fig. 7.4b). Finally, we perform a further variation of
this protocol that reintroduces a projective measurement as a means to purify errors from
the experiment. Here, the same three initial states were decoded with an average fidelity
of 78(2)% (Fig. 7.4b). That this purification leads to the same teleportation fidelity despite
the additional gate depth (Fig. 4a, purple box) suggests that the fidelity of the EPR Grover
search is roughly 85%. To demonstrate the generality of our approach, these Grover-based
protocols were performed with a different class of maximally scrambling unitaries than the
previous probabilistic protocol, as described in Appendix B.
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Figure 7.4: (a) Circuit diagram for our deterministic teleportation scheme that utilizes a
built in Grover’s search protocol. Ideally, this search finds the desired EPR state with perfect
fidelity; by adding in post-selection (purple box), we can quantify the performance of the
search. (b) Depicts the measured teleportation fidelity for different initial states utilizing the
Grover search protocol, both with and without post-selection. The average fidelity without
post-selection (orange) is 77(2)% and with post-selection (purple) is 78(2)%.

7.4 Discussion and outlook
Our work opens the door to a number of intriguing future directions, many of which

are explored later in this dissertation. First, by experimentally scaling to larger circuits,
one should be able to study the scrambling dynamics of many-body quantum systems of
interest (e.g. Hamiltonian systems), complementary to the Clifford scramblers studied here.
Indeed, see Ch. 9 for an in-depth exploration of teleportation across wide classes of many-
body dynamics in a closely related quantum circuit. Second, while we have focused on the
challenges of distinguishing between scrambling and decoherence in this work, our protocol
suggests that scrambling circuits may provide a near-term method to benchmark and verify
large-scale quantum simulations [105]. In particular, by probing the teleportation fidelity as a
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function of both input state complexity and circuit, one can imagine identifying certain many-
body noise mechanisms that would be invisible to typical single- and two-qubit randomized
benchmarking methods. To do so requires a precise knowledge of how experimental noise
affects teleportation and scrambling dynamics more generally. We provide the latter in
Ch. 10, and the former in Ch. 9. Finally, it has recently been speculated that quantum
simulations can become a natural way to probe the physics of quantum gravity [446]. These
arguments hinge on the holographic principle, which suggests that any bulk quantum gravity
phenomena can in fact be encoded on the boundary of a quantum mechanical system. To
this end, it would be intriguing to modify our teleportation experiment to send a probe qubit
into the interior of a black hole before retrieving it via a dynamical back-reaction, thereby
providing a way to probe the interior geometry of a black hole. Such an experiment is at
the heart of the teleportation protocol studied in Ch. 9.
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Chapter 8

Quantum information scrambling on a
qutrit superconducting quantum
processor

In this Chapter, we present an experimental measurement of quantum information scram-
bling in a quite different physical system: a superconducting qutrit processor. As in the pre-
vious Chapter, we utilize a particular quantum teleportation circuit [517, 518] to robustly
characterize the scrambling dynamics in the presence of experimental noise. In this Chapter
we also verify that the experimental dynamics through an alternative method: quantum
process tomography. This method takes advantage of the fast cycle times of superconduct-
ing platforms to provide a complete characterization of the dynamics. However, unlike the
teleportation circuit, it is not scalable to larger system sizes.

The work in this Chapter also serves a dual purpose: as the first demonstration of
qutrit-based superconducting quantum processor. Indeed, while the majority of current
generation quantum processors are based on qubits, qutrit-based (and more generally qudit-
based [307]) systems have long been known to exhibit significant advantages in the context
of quantum technology: they have been touted for their small code-sizes in the context of
quantum error correction [87], high-fidelity magic state distillation [88], and more robust
quantum cryptography protocols [47, 75]. To date, advantages of individual qutrits have
been explored experimentally in fundamental tests of quantum mechanics [276] and in certain
quantum information protocols [119, 147, 272, 400], while entanglement between qutrits has
been demonstrated in probabilistic photonic systems [223, 308]. A qutrit platform capable
of implementing deterministic high-fidelity gates would be a powerful tool for both quantum
simulation and information processing.

In what follows, we present a prototypical multi-qutrit processor based on superconduct-
ing transmon circuits (Fig. 8.1), and—as a proof-of-principle demonstration—use it to (i)
perform a maximally-scrambling two-qutrit unitary and (ii) verify its scrambling behavior
using a five-qutrit quantum teleportation circuit. The superconducting qutrit processor we
develop here features long coherence times; multiplexed readout of individual qutrits; fast,
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Figure 8.1: Superconducting qutrit processor. (a) Optical micrograph of the five-transmon
processor used in this experiment. Transmon circuits (light blue) couple to an integrated
Purcell-filter and readout bus (red) via individual linear resonators (gold), enabling multi-
plexed state measurement. Exchange coupling between nearest-neighbor transmons is medi-
ated by resonators (purple), while microwave drive lines (green) enable coherent driving of
individual qubits. (b) Coherent Rabi dynamics of a single qutrit induced by simultaneous
microwave driving at frequencies ω01 and ω12. Achievable Rabi frequencies are in the range
of tens of MHz, three orders of magnitude faster than decoherence timescales. (c) Example
single-shot readout records of an individual qutrit, generally achievable with fidelities above
0.95. This is largely limited by decay during readout.

high-fidelity single-qutrit operations; and two types of two-qutrit gates for generating entan-
glement. Using this gateset on our processor, we construct a maximally scrambling qutrit
unitary and characterize it using quantum process tomography. Finally, to demonstrate the
ability of our platform to perform genuine multi-qutrit algorithms, we perform a five-qutrit
teleportation protocol which serves as an additional verification of genuine two-qutrit scram-
bling behavior. This protocol is inspired by the Hayden-Preskill variant of the black-hole
information paradox [202, 517]. While we have chosen quantum scrambling as a demonstra-
tion of our processor, our work—the first realization of a multi-qutrit algorithm—opens the
door more broadly to the experimental study of quantum information processing utilizing
qutrit-based logic.

8.1 Qutrit superconducting quantum processor
Nearly all current quantum processors are based on collections of the simplest possible

quantum system: qubits, consisting of two states per site. In contrast, qudits – featuring
d > 2 states – can store an exponentially greater amount of information compared to qubits
and can therefore, in certain cases, implement quantum algorithms using smaller systems and
fewer multi-site entangling gates [80, 169]. In cavity QED experiments, continuous variable
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quantum information has been encoded [342, 422], protected [355] and entangled [162] in
linear cavity modes, by coupling them to an artificial non-linear atom. Encoding discrete
quantum information in an intrinsically non-linear system has the advantage that energy
transitions have distinct frequencies that can be driven individually and with faster gates.

For qutrit systems specifically, many quantum information protocols have been proposed
that would yield a significant advantage over qubits [33, 47, 75, 87, 88]. Qutrits have been
successfully realized in various physical degrees of freedom including the polarization state of
multiple photons [275], spin S = 1 states of solid-state defect centers [137], hyperfine states in
trapped atoms and ions [411, 433] and the lowest energy states of an anharmonic oscillator in
superconducting circuits [56]. However, no platform to date has executed ternary quantum
circuits, and a universal two-qutrit gate has not yet been demonstrated.

Our superconducting qutrit processor features eight transmons [258, 426] connected in
a nearest-neighbor ring geometry (Fig. 8.1a) of which we use five (denoted Q1, . . . , Q5) to
realize quantum circuits. Each transmon encodes a single qutrit and is coupled both to
a dedicated microwave control line (for performing gates, Fig. 8.1b) and its own readout
resonator (for state measurement, Fig. 8.1c). Transmons are quantum nonlinear oscillators
that can be operated as qubits, using only their two lowest-lying energy states |0〉 and |1〉.
While their higher energy states (|2〉, |3〉, etc.) in principle enable transmons to be operated
as higher-dimensional qutrits or qudits [56] , the experimental implementation of multi-qutrit
algorithms is challenging due to a lack of two-qutrit entangling gates and increased noise
associated with the higher transmon states.

High-fidelity single-qutrit operations

In order to implement high-fidelity single-qutrit operations in transmons, one must over-
come multiple sources of noise and coherent errors that are naturally introduced upon in-
cluding the |2〉 state of transmon in the computational subspace. The primary such sources
include:

(i) Relaxation due to spontaneous emission—Energy relaxation or T1 processes in trans-
mon qubits cause unwanted, incoherent transitions from the |1〉 state to the |0〉 state, and
arise from lossy interfaces or electromagnetic channels. For transmon qutrits, the addition
of the |2〉 state introduces another decay channel, from |2〉 → |1〉1. Due to bosonic enhance-
ment, in which the spontaneous emission rate scales linearly with photon number, the time
constant associated with |2〉 → |1〉 decay is roughly half that of the |1〉 → |0〉 transition.

To address this, we use a high-quality fabrication process and careful microwave engi-
neering to minimize the effects of energy relaxation. The fabrication recipe, detailed in Ap-
pendix C, is optimized to remove lossy oxide layers at the substrate-metal and metal-metal
interfaces through three separate buffered-oxide etches and an ion-mill step. In addition,
finite-element simulations are used to identify and mitigate each loss channel associated

1In principle, one would also have to consider the transition from |2〉 → |0〉, but this channel is largely
suppressed, due to parity, in transmons.
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with microwave radiation. Specific mitigation strategies include: an integrated, broadband
Purcell filter suppressing leakage into the readout bus (Fig. 8.1a); readout and bus resonator
geometries designed to shift the frequencies of lossy higher modes away from those of qutrits
and resonators of band; and extensive wire-bonding connecting the ground planes on either
sides of the readout bus, coupling resonators, readout resonators, and control lines. As a
results of these techniques, the average T1 times on the chip are 56.0±10 µs for the |1〉 → |0〉
transition, and 34.8± 4 µs for the |2〉 → |1〉 transition.

(ii) Dephasing due to the charge-sensitivity of higher transmon levels—The transmon
was originally developed to reduce the dependence of energy levels on offset charge noise.
While typical values of transmon parameters (i.e. the Josephson energy EJ and the charging
energy EC) result in low charge-noise sensitivity in the qubit subspace, the charge dispersion
increases rapidly with increasing energy levels [258, 369]. For qutrits specifically, the charge
dispersion of the |2〉 state is at least an order of magnitude greater than that of the |1〉 state,
resulting in a charge-limited dephasing time ten times lower than that of the qubit subspace.

To mitigate charge noise in the |2〉 state, we tune the transmon parameters even further
than typical into the “transmon regime”: specifically, we choose a ratio of Josephson and
charging energies EJ/EC ≈ 73 (typically, this ratio is near 50 for transmon qubits [40,
235, 414]). This reduces the charge dispersion of the |2〉 and |1〉 states to 12 kHz and 250
Hz, respectively. As a result, we realize dephasing times, averaged over the five qutrits, of
T ∗2 = (39± 21) µs [(14± 5) µs] for the |0〉 → |1〉 [|1〉 → |2〉] transitions, which can be further
extended with a Hahn-echo to T2,echo = (61.2± 11) µs [(28± 5) µs].

(iii) Increased cross-talk due to frequency crowding— If pulses, intended to apply unitary
operations on a single qutrit, are not well localized in space to the desired qutrit, they can
induce unintended unitary operations on nearby qutrits. This ‘cross-talk’ is increasingly
troublesome when including the |2〉 state, as the frequency spectrum of state transitions
becomes more crowded due to the inclusion of the |1〉 → |2〉 transition frequencies.

On our processor, we find significant cross-talk between the microwave drive lines for
most transmons. When driving Rabi oscillations on a given qutrit, this cross-talk has two
unwanted effects:

1. All other qutrits are off-resonantly driven. Depending on the relative frequencies be-
tween the qutrits, this can manifest either as an unwanted shift in state populations
or as an AC Stark shift.

2. Microwave fields leaking onto neighboring qutrit(s) will result in an unwanted cross-
resonance interaction, making the desired Rabi frequency dependent on the state of
the neighboring qutrit(s) [394].

For a given drive frequency, our cross-talk can be characterized in terms of a five-by-five
complex-valued matrix C(ω), which relates the field amplitudes o(ω) seen by each of the
five qutrits to the input field amplitudes i(ω) on each drive line: o(ω) = C(ω)i(ω). While
this cross-talk matrix strongly depends on frequency, it does not exhibit any nonlinearity at
the powers used in the experiment. Therefore, we compensate for the cross-talk by inverting
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the matrix C(ω) at each frequency to yield linear combinations of drive lines which result in
non-zero fields only at a single qutrit.

To measure the cross-talk matrix C(ω) of our system, we drive two control lines simul-
taneously, and, for each pair of driven control lines, determine the relative amplitudes and
phases of driving that cancel the resulting field at each qutrit on the chip. Depending on
the relative frequencies between the drive field and the qutrit transition, we use either an
AC Stark shift or a Rabi oscillation as the diagnostic of an unwanted microwave field. This
measurement is repeated for each of ten drive frequencies of interest (i.e. the |0〉 ↔ |1〉
and |1〉 ↔ |2〉 transition frequencies of all five qutrits), each pair of lines, and each qutrit.
While this method proved effective for our system, it can become prohibitively measurement-
intensive for future processors with hundreds of qudits. Looking forward, in order to scale
to such systems it will be crucial to pinpoint and mitigate the source of this cross-talk at
the hardware level.

With the above three issues—relaxation, dephasing, and cross-talk—taken care of, we
now turn to our realization of high-fidelity single-qutrit gates. In qutrits, these require the
combination of a microwave pulse (to perform the rotation in the relevant subspace) and a
virtual phase-gate. This phase gate is necessary because a microwave field that addresses,
e.g. the |0〉 → |1〉 transition, also generates a relative phase ei(φG+φD) |2〉 on the idling
state, where φG is the geometric (Berry) phase associated with the rotation in the {|0〉 , |1〉}
subspace and φD is the dynamical phase due to the AC Stark shift of the idling |2〉 state.
These phases represent logical Z errors in the computational subspace, which we measure
and correct.

Single-qutrit gates in our system are performed within 30 ns (see Appendix C for the
universal set of gates used in our experiment). We characterize them by performing qubit-
based randomized benchmarking in two different qubit subspaces [378]. These yield fidelities
on par with state-of-the-art qubit processors: f01 = 0.9997±0.0001 and f12 = 0.9994±0.0001
for gates within the {|0〉 , |1〉} and {|1〉 , |2〉} subspace, respectively. While this benchmarking
method demonstrates that single-qutrit coherence is no longer a major bottleneck for high-
fidelity operations, it should be noted that this method is not sensitive to certain sources
of errors, including phase errors in the idle state and multi-qutrit errors. In the future,
a full characterization of qutrit operations will require the development of genuine qutrit
randomized benchmarking protocols.

Multiplexed, individual qutrit readout is performed dispersively via a linear readout res-
onator coupled to each transmon. As shown in Fig. 8.1c, with a suitable choice of the readout
frequency and amplitude all three states of the transmon can be resolved in a single shot.
Averaged over all qutrits, our readout fidelity is Favg = 0.96 ± .02. In ensemble measure-
ments (e.g. when performing tomography), we can correct for this readout imperfection by
storing a ‘confusion matrix’ Mij of the conditional probabilities to measure a state |i〉 given
an actual state |j〉. Applying its inverse to the measurement results allows one to infer the
actual state populations.
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Two-qutrit entanglement

Having outlined our implementation of high-fidelity single-qutrit operations, we next
demonstrate two methods for generating controllable two-qutrit entangling gates in our sys-
tem: the first based on the cross-resonance interaction [102, 394], and the second based on
the longitudinal, or cross-Kerr, interaction. Both of these operate on neighboring qutrits,
giving our full eight-qutrit processor an effective ring geometry; restricting to five qutrits,
this reduces to a linear geometry. The two types of interaction give rise to two distinct forms
of entangling gates: the cross-resonance interaction leads (up to a phase) to a conditional
subspace rotation, while the cross-Kerr interaction leads to a controlled-SUM gate—the qudit
analogue of the controlled-NOT gate. We now describe both of these gates in detail.

Cross-resonance gate—The cross-resonance interaction has been used extensively in su-
perconducting qubit systems to generate high-fidelity controlled-NOT gates [234, 236, 435].
The origin of the interaction is a weak transverse coupling between two qubits that are highly
off-resonant such that the coupling is almost negligible. When one of the two systems (the
control) is driven at the frequency of the other (the target), the combination of the coupling
and the drive induces Rabi oscillations on the target qubit, with a Rabi frequency that de-
pends on the state of the control qubit. This results in two Rabi frequencies, ω0 and ω1, for
the two control qubit states, |0〉 and |1〉, both of which also depend on the drive power. This
interaction is naturally described by the Hamiltonian

Hqubit
cr = ω0 |0〉〈0| ⊗ σx + ω1 |1〉〈1| ⊗ σx. (8.1)

Higher-order deviations from this Hamiltonian can largely be mitigated with dynamical
decoupling, local rotations, or pulse shaping. This Hamiltonian is locally equivalent to a
σz ⊗ σx interaction, and periodically entangles and disentangles qubits at a rate ∆ω =
|ω0 − ω1|. When the two oscillations are completely out of phase (t∆ω = π), the resulting
unitary

UCNOT = |0〉〈0| ⊗ I + |1〉〈1| ⊗ σx (8.2)

is locally equivalent to a controlled-NOT gate.
On our chip, the cross-resonance interaction arises from the static capacitive coupling

between neighboring transmons. To extend the cross-resonance gate to qutrit systems, we
must consider how this interaction behaves in the full two-qutrit Hilbert space. We will show
that we can realize a similar gate to that of qubit systems, where we swap the |0〉 and |1〉
populations of the target qutrit conditional on the control qutrit being in the |1〉 state.

The dynamics of the two-qutrit cross-resonance interaction are shown in Fig. 8.2(a-b).
Compared to qubits, we have two additional considerations: the effect of the cross-resonance
drive on the |2〉 state of the target qutrit, and the Rabi oscillations induced on the target
qutrit by the |2〉 state of the control qutrit. The first effect results in an overall phase being
applied to the |2〉 state of the target via the AC Stark shift (Fig. 8.2b), since the effective
Rabi drive is off-resonant with the |0〉 , |1〉 → |2〉 transitions of the target qutrit (in contrast
to the |0〉 → |1〉 transition, with which it is resonant). The second effect extends the qubit
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Figure 8.2: Two-qutrit EPR pair generation via the cross-resonance interaction (a) Nearest-
neighbor qutrits coupled by an exchange interaction can be entangled via the cross-resonance
effect, where one qutrit (the control) is microwave-driven at the |0〉 ↔ |1〉 transition frequency
of the other (the target). Resulting Rabi oscillations of the target qutrit exhibit a Rabi
frequency dependent on the state of the control qutrit. Here, we drive the control with a
field whose amplitude is chosen to make the Rabi frequencies corresponding to control states
|0〉 and |2〉 identical, resulting in a unitary operation which, after 125 ns, interchanges states
|0〉 and |1〉 of the target qutrit when the control qutrit is the |1〉 state. (b) When the target
qutrit is in the |2〉 state, the cross-resonance interaction is off-resonant and does not affect
the population. (c) Top: Sequence used to prepare an EPR pair with two applications of
the cross-resonance gate. π01

x represents be a rotation of π about the x axis in the {|0〉 , |1〉}
subspace of the qutrit. The number in the circle for the two-qutrit gate represents the
condition (state of the control qutrit) for which a gate is applied on the target. Bottom:
The density matrix (reconstructed via state tomography) of the resulting EPR pair, with a
state fidelity of FEPR = 0.98± 0.002.
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cross-resonance Hamiltonian to qutrits according to

Hqutrit
cr = ω0 |0〉〈0| ⊗ π01

x + ω1 |1〉〈1| ⊗ π01
x

+ω2 |2〉〈2| ⊗ π01
x , (8.3)

where we have added the (drive-dependent) frequency ω2, which induces Rabi oscillations
in the target qutrit when the control qutrit is in the |2〉 state. In the above Hamiltonian,
π01
x is the 3 × 3 Gell-Mann matrix that swaps the |0〉 and |1〉 states, and does nothing to

the |2〉 state. We emphasize that this model for the interactions, while physically motivated
and consistent with our experimental observations, is only approximate. Much like for the
two-qubit cross-resonance gate [312, 466], further study is needed to develop a precise model
of the dynamics.

The qutrit cross-resonance interaction Eq. (8.3) involves three distinct Rabi frequencies,
corresponding to the three states of the control qutrit (Fig. 8.2a). At low drive power, these
frequencies scale linearly with the drive amplitude, while at higher powers the dependence
becomes nonlinear. We utilize this nonlinearity to choose a drive power such that two of the
Rabi frequencies are equal, ω0 = ω2. Next, similar to the qubit implementation, we choose
the gate time tg according to tg|ω0 − ω1| = π. Up to state-dependent phases, this gives rise
to a conditional-π gate (also known as a generalized controlled-X gate [133]):

UCπ = (|0〉〈0|+ |2〉〈2|)⊗ I
+ |1〉〈1| ⊗ (|0〉〈1|+ |1〉〈0|+ |2〉〈2|). (8.4)

Our experiment features a frequency difference ω0 − ω1 = 4 MHz and a corresponding gate
time tg = 125 ns. During this gate, simultaneously with the cross-resonance drive applied
to the control qutrit, we apply a concurrent drive to the target qutrit which ensures that
it ends up in a computational basis state at tg. This target drive, with Rabi frequencies in
the tens of MHz, has the additional benefit of suppressing dephasing in the target qutrit’s
{|0〉 , |1〉} subspace during the gate [146].

In order to benchmark the performance of the conditional-π gate, we use two applications
of the gate to create a maximally entangled two-qutrit EPR pair:

|EPR〉 =
|00〉+ |11〉+ |22〉√

3
. (8.5)

We measure the success of EPR preparation using qutrit state tomography [56], enabled by
our high-fidelity local qutrit pulses and qutrit readout. From this we reconstruct the density
matrix of our final state (Fig. 8.2c) and compute an EPR fidelity of FEPR = 0.98 ± 0.002,
which we observe to be mostly limited by decoherence.

Finally, while the conditional-π gate is fast and capable of generating high-fidelity en-
tangled states, it acts only in a two-qubit subspace of the full two-qutrit Hilbert space.
Consequently, despite the conditional-π gate being universal for qutrit computation when
combined with arbitrary single qutrit gates [134], implementing general two-qutrit unitaries
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Q1/Q2 Q2/Q3 Q3/Q4 Q4/Q5

α11 -279 -138 -276 -262
α12 160 158 -631 -495
α21 -528 -335 243 -528
α22 -743 -342 -748 -708

Table 8.1: Measured cross-Kerr interaction strengths between nearest-neighbor pairs of trans-
mons, in units of kHz.

will require a high number of such gates. This can be undesirable given the finite error
associated with each gate. To address this, in what follows we introduce a second qutrit
entangling gate, the controlled-SUM gate, which we will implement via the cross-Kerr in-
teraction instead of the cross-resonance interaction. Ultimately, we will use both gates to
perform the full five-qutrit teleportation protocol, applying the conditional-π gate to EPR
preparation/measurement and the more powerful controlled-SUM gate to a complex two-
qutrit scrambling operation.

Cross-Kerr gate—As neighboring qutrits in our processor are capacitively coupled to
one another, they are subject to an “always-on” cross-Kerr entangling interaction, which we
harness to perform controlled-phase and controlled-SUM gates (the two are locally equiva-
lent). The always-on cross-Kerr interaction, analogous to the familiar dispersive interaction
between a qubit and cavity, is modeled by the dispersive cross-Kerr Hamiltonian

HcK = α11 |11〉〈11|+ α12 |12〉〈12|+ (8.6)
α21 |21〉〈21|+ α22 |22〉〈22| ,

where we work in a rotating frame that cancels the Hamiltonian’s action on the |0j〉 , |j0〉
states. The cross-Kerr coefficients αij represent the rate at which phases accumulate on the
|ij〉 state during idling. Their values are sensitive to both the magnitude of the capacitive
coupling between transmons as well as the transmon spectra. While in principle one could
design a processor with pre-specified values of αij, this is impractical given current technology
because the transmon spectra depend on the critical current of their Josephson junction,
which cannot be precisely set in fabrication [269]. To maintain robustness against such
variability, we therefore design the cross-Kerr gate to work regardless of the particular values
of the coefficients. For reference, these values for our particular processor are shown in
Table C.2.

We will now demonstrate how to combine a generic cross-Kerr Hamiltonian with single-
qutrit rotations to form a controlled-SUM gate. The foundation of our construction is the
local equivalence between the controlled-SUM gate:

UCSUM =
d∑

n=1

|n〉〈n| ⊗Xn (8.7)
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and the controlled-phase gate UCφ:

UCφ =
d∑

n=1

|n〉〈n| ⊗ Zn, (8.8)

which we will soon show is achievable via the cross-Kerr interaction. Here

X =
d∑

j=1

|j + 1〉〈j| , Z =
d∑

j=1

ei2πj/d |j〉〈j| (8.9)

are the generators of the set of qudit Pauli operators. The two gates are related via conju-
gation by a single-qutrit Hadamard H gate:

(I ⊗H†)UCφ(I ⊗H) = UCSUM, (8.10)

which, as for qubits, interchanges the Pauli X and Z operators. This realization also easily
generalizes to slight modifications of the controlled-SUM gate: one can realize instead a
controlled-MINUS gate by inverting the Hadamard, and one can interchange the control and
the target qudits by switching which qudit is Hadamard conjugated.

Specifying to qutrits, the controlled-phase gate UCφ imparts a phase 2π/3 to the |11〉,
|22〉 states and the opposite phase −2π/3 to the |12〉, |21〉 states. We have developed two
methods for implementing this gate via the cross-Kerr interaction. The first, described in
what follows, is conceptually simpler and uses only four single-qutrit pulses, but is prone
to local dephasing and to errors arising from a nonzero cross-Kerr interaction with qutrits
outside the target-control pair. The second method addresses these errors via dynamical
decoupling in the specific context of the five-qutrit teleportation protocol, and is described
in conjunction with the protocol in Section 8.2.

The essential concept behind these constructions is to intersperse time-evolution under
the native cross-Kerr Hamiltonian with single-qutrit pulses exchanging the |1〉 and |2〉 states.
The simplest construction uses four segments of cross-Kerr evolution. Denoting a swap pulse
on qutrit q as π12

x,q, the total pulse sequence is given by the decomposition:

UCφ = e−iTAHcK · Π12
0 · e−iTBHcK

· Π12
1 · e−iTCHcK · Π12

0 · e−iTDHcK · Π12
1 ,

(8.11)

where TA, TB, TC , TD denote the time durations of each segment of cross-Kerr evolution.
To determine these times from the interaction coefficients, note that each evolution segment
serves to add a phase φij = αijT to the |ij〉 state (here, i, j ∈ {1, 2}), while the swap pulses
interchange the indices 1↔ 2 on the acted upon qutrit. Our choice of swap gates guarantees
that each state spends exactly one segment under each interaction coefficient, and returns
to itself at the end of the gate. The unitary thus amounts to a phase applied to each state
equal to a linear combination of the four evolution times, with the transformation matrix
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determined by the interaction coefficients. For generic interaction coefficients this linear
transformation from interaction times to applied phases is full rank, which guarantees that
the method can in principle generate any combination of two-qutrit phases.

With our particular interaction coefficients, this controlled-phase gate implementation
takes a total time ∼1.5 µs for each of the qutrit pairs (Q1, Q2) and (Q3, Q4). We characterize
the performance of the full controlled-SUM gate via quantum process tomography on the
full two-qutrit subspace (Fig. 8.3b) and achieve a fidelity of 0.889, primarily limited by
decoherence occurring throughout the cross-Kerr time evolution.

Combined with the single-qutrit control demonstrated in the previous section, each of
the conditional-π gate and the conditional-SUM gate enable universal quantum computation
on our qutrit processor [134]. Having both gates on hand provides additional flexibility in
gate compilation as the different entangling gates may be more adept in different scenarios.

8.2 Qutrit quantum information scrambling
We now turn to proof-of-principle experiments demonstrating the capabilities of our qutrit

processor, specifically by demonstrating and verifying quantum scrambling. We will demon-
strate the implementation of a two-qutrit scrambling unitary, and verify that it scrambles
using a five-qutrit quantum teleportation algorithm. Quantum scrambling, loosely defined
as the delocalization of initially local operators induced by many-body time dynamics, is
an area of active current research; it is likely that quantum simulations performed on fu-
ture processors will deepen our understanding of this phenomenon and many-body quan-
tum dynamics more generally. To date, experimental realizations of scrambling have been
performed with qubits; however, many interesting scrambling-related phenomena occur in
higher-dimensional systems; see, e.g., [182, 341, 540]. Using quantum scrambling to demon-
strate the capabilities of our processor thus also represents a step towards such simulations
of these high-dimensional composite systems.

Specifically, we implement a simple Clifford scrambling unitary Us, which effects the
following permutation of the nine two-qutrit computational basis states [518]:

Us |m,n〉 = |2m+ n,m+ n〉 . (8.12)

As described in Ref. [518], the scrambling behavior of this unitary can be seen in the effect
it has on the single-qutrit Pauli operators X and Z:

U (Z ⊗ I)U † = Z ⊗ Z2 (8.13)
U (I ⊗ Z)U † = Z2 ⊗ Z2 (8.14)
U (X ⊗ I)U † = X2 ⊗X (8.15)
U (X ⊗ I)U † = X ⊗X. (8.16)

Each single-qutrit Pauli operator is transformed into a two-qutrit operator, as required by
scrambling. Additionally, the transformations above show that Us is also a Clifford scrambler,
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Figure 8.3: Quantum process tomography of the two-qutrit scrambling unitary. Results
of process tomography both experimental and ideal. Plotted is part of the Pauli transfer
matrix (where the horizontal axis only includes the single qutrit operators) which shows
the unitary’s action on single-qutrit Pauli operators when the unitary is a local gate (a),
non-scrambling entangling gate (b) and the scrambling-unitary (c), . This directly verifies
the key characteristic of scrambling by Us, that it maps all non-identity single-qutrit Pauli
operators to two-qutrit operators.

i.e. a scrambling unitary which is a member of the Clifford group: this is evidenced by the
fact that the action of Us on Pauli operators is closed.

For a bit of context, we note that scrambling is not possible in a two-qubit system: there
is no unitary operation that completely delocalizes all single-qubit operators. A system of
two qutrits is the smallest bipartite system in which maximal scrambling is possible.

In the next two sections, we verify the maximally-scrambling nature of our implemen-
tation in two ways: (i) explicitly through quantum process tomography, and (ii) through a
five-qutrit teleportation protocol inspired by quantum gravitational physics.

Verifying scrambling through quantum process tomography

On our processor, the scrambling unitary Us is constructed by applying two controlled-
SUM gates in sequence, switching the control and target qubit between the two (Fig. 8.3c).
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In order to fully characterize our implementation of the scrambling unitary Us we perform
full quantum process tomography. For a two-qutrit unitary, this is a highly measurement-
intensive procedure, which entails reconstructing, via two-qutrit state tomography, a 9 × 9
output density matrix for a complete set of 81 input states. This requires millions of mea-
surements – each involving state preparation, application of Us, and state measurement (in a
different basis) – with the precise number of repetitions determined by the desired statistical
uncertainty. For experimental platforms with a duty cycle in the Hz range (e.g. trapped
ions) this procedure would be prohibitively long; in contrast, superconducting circuits can
reach repetition rates up to ∼ 100 kHz, such that the full process matrix can be measured
in approximately 1 hour. This gives superconducting platform the unique ability to not
only quantify the process fidelity of the implemented scrambling unitary but also to measure
precisely how it scrambles.

We implement the scrambling unitary using two sequential controlled-SUM gates based
on the cross-Kerr gate described in the previous section. In Fig. 8.3c, we depict the results
of quantum process tomography on our implementation. Through this tomography, we find
that the fidelity of the scrambling operation on our hardware is 0.875, with two dominant
error mechanisms: (i) dephasing and (ii) amplitude-damping during the cross-Kerr evolution.

Quantum process tomography also allows us to directly visualize the entire action of the
unitary via its effect on local operators; i.e., we can directly visualize (Fig. 8.3) the relations
(13)-(16). In particular, in Fig. 8.3c we can verify explicitly that Us transforms all single-
qutrit operators into fully two-qutrit operators – the definition of a maximally scrambling
unitary. We can also verify that it does so as a Clifford unitary, i.e. all Pauli operators are
transformed into different Pauli operators. For comparison, we also illustrate the quantum
process maps, both theoretical and experimental, of a single-qutrit unitary that does not
delocalize any information (Fig. 8.3a), as well as a controlled-SUM gate, which is entangling
but not fully scrambling (Fig. 8.3b). In the former, we verify that no single-qutrit operators
are delocalized, while in the latter we observe that all single-qutrit operators are delocalized
except for Z(†) ⊗ I and I ⊗X(†), which commute with the controlled-SUM gate.

Verifying scrambling through quantum teleportation

While process tomography provides an elegant and exhaustive way to “image” scrambling
performed by our two-qutrit unitary, such an approach is infeasible for verifying scrambling
in larger systems, as the number of required measurements scales exponentially with system
size. As an example of a protocol which can circumvent this difficulty, and thus could be
used on larger quantum processors, we turn to a teleportation protocol that quantifies the
scrambling behavior of a unitary by using scrambling to enable the teleportation of quantum
states [274, 517, 518]. Compared to tomography, a downside of the teleportation protocol
is that it is limited as an essentially ‘one-parameter’ diagnostic of scrambling: it quantifies
the average amount that operators on a given qutrit are transformed to have support on an
additional qutrit. It does so via an average of OTOCs [163, 213, 277, 284, 289, 315, 398, 436,
486] associated with the unitary over local operators; in this context, maximal scrambling
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Figure 8.4: Quantum teleportation circuit. Five-qutrit teleportation protocol used to test
for scrambling by the two-qutrit unitary Us, and its interpretation in the context of black
hole physics. (a) We begin with the first qutrit in a quantum state |ψ〉, and prepare the
remaining qutrits into two EPR pairs. The first qutrit Q1 is ‘scrambled’ with half of the
first EPR pair by the unitary U , while the conjugate U∗ is applied to Q3 and Q4. An EPR
measurement on a pair of qutrits (Q2 and Q3) exiting each of U , U∗ serves to teleport the
initial quantum state to Q5 if and only if U is scrambling. (b) In the context of the Hayden-
Preskill thought experiment, Q1 corresponds to Alice’s diary, which subsequently falls into
a black hole (Q2) that is maximally entangled with its past Hawking radiation (Q3), held
by an outside observer Bob. In the gravitational picture, this shared entanglement functions
similarly to a geometric wormhole between the black hole and its early radiation. The black
hole dynamics are modelled as a scrambling unitary U , followed by emission of a Hawking
photon (Q2). Finally, Bob applies U∗ and measures in the EPR basis to recover Alice’s diary.
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by Us is captured by the fact that the average OTOC decays to its minimum allowed value
(1/9 for a two-qutrit system) [518]. Crucially, the protocol is constructed in such a way that
faithful teleportation of a quantum state |ψ〉 requires quantum information scrambling to
occur, as well as the absence of experimental errors. The teleportation fidelity can then in
turn be used to upper-bound the OTOC, even in the face of such errors.

As shown in Fig. 8.2, the verification protocol requires both the scrambling unitary, Us,
and its time-reversal, U∗s , to be performed in parallel on separate pairs of qutrits. The qutrit
pairs undergoing these two time-evolutions are initially highly correlated: two qutrits out
of the four (one from each pair) begin as a maximally entangled EPR pair. After applying
Us, U

∗
s , the probability of measuring this same pair in the EPR state decreases to 1/9 – the

same value as in a maximally mixed state – due to scrambling with the additional qutrits.
However, simply observing this decrease is not enough to robustly demonstrate scrambling,
since the same decrease could also have resulted from deterioration of the EPR pair under
experimental decoherence.

Here, teleportation comes to our aid: we place one of the remaining two qutrits (Q1, the
‘input’) in an arbitrary pure single-qutrit state |ψ〉, and the other (Q4) in an EPR pair with
a fifth qutrit (Q5, the ‘output’). In the absence of experimental error, maximally scrambling
dynamics guarantee that whenever Q2 and Q3 happen to be measured in their initial EPR
state, the state |ψ〉 of Q1 is teleported to Q5. Unlike measuring a low EPR probability, high-
fidelity teleportation can only arise from quantum information scrambling, not as a result of
decoherence, making the teleportation fidelity a robust diagnostic of information scrambling
[517, 518]. Furthermore, while experimental error will lead to a decay of the teleportation
fidelity from unity, any measured fidelity above the classical limit (0.5 for qutrits) places
a non-trivial upper-bound on the averaged OTOCs, and thus the scrambling behavior, of
Us [518].

This association between scrambling and teleportation originated in black hole physics,
and the teleportation protocol explored here is in fact inherited directly from this context. Its
most straightforward interpretation is based on the Hayden-Preskill variant of the black hole
information paradox [202, 517], as outlined in Fig. 8.2. Here, one pictures an observer Alice
who has dropped a ‘diary’ consisting of the quantum state |ψ〉 into a black hole. Meanwhile,
an outside observer Bob wonders whether this information is recoverable, as opposed to being
irreversibly destroyed by the black hole. In seminal works [202, 517], it was shown that if
(i) the black hole’s dynamics are approximated as a fully scrambling quantum unitary Us
and (ii) Bob possesses a large resource of entanglement with the black hole (e.g. a collection
of its early Hawking radiation), then the state |ψ〉 can in fact be recovered via quantum
operations on any few degrees of freedom emitted from the black hole (e.g. one additional
Hawking photon).

In the gravitational picture, the shared entanglement between the black hole and its early
radiation functions similarly to a geometric wormhole between the two systems. Indeed, in
a close variant of this protocol, teleportation has a precise interpretation as Alice’s state
traversing a two-sided wormhole, in the specific case where the unitary corresponds to time-
evolution under many-body dynamics with a holographic gravity dual [71, 160, 317]. Quite
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Figure 8.5: Results of the five-qutrit teleportation protocol. (a) An expanded view of the
five-qutrit teleportation protocol in Fig. 8.2, showing the native operations used to realize
each portion of the protocol. (b) Measured teleportation fidelities for twelve teleported
states, which combine to give an unbiased estimate of the teleportation fidelity averaged
over all single-qutrit pure states. An average fidelity above 1/2 – the classical limit for
teleportation of qutrits – verifies non-zero quantum information scrambling by the maximally
scrambling unitary, despite the presence of experimental error. When the scrambling unitary
is replaced with an identity operation with same complexity as the scrambler, the average
teleportation state fidelity reduces to 1/3, the same as a random guess when one does not
have access to the input state. (c) Representation of each of the twelve reconstructed
density matrices after teleportation, expressed in the basis of Gell-Mann matrices (λ0 − λ8)
with dotted lines showing the ideal result.

surprisingly, recent work has revealed that the same protocol also features a more generic,
non-gravitational mechanism for teleportation, which displays remarkably similar features to
gravitational teleportation but is based only on the spreading of operators [429, 517]. This
second form of teleportation encapsulates the physics observed here.

Experimentally, the teleportation protocol requires three essential ingredients: initial
preparation of EPR pairs, implementation of Us and U∗s , and measurement in the EPR ba-
sis. We have discussed our implementation of the first two of these ingredients in previous
sections. As our architecture only natively allows for computational-basis measurements, we
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realize the EPR measurement on Q2 and Q3 by performing the EPR creation sequence in
reverse, which transforms |EPR〉 to the computational basis state |00〉. We then measure
all five qutrits in the computational basis and use the measurements outcomes showing Q2

and Q3 in |00〉 as a herald for successful teleportation. We verify success by tomograph-
ically reconstructing the quantum state of Q5 after EPR measurement (by inserting state
tomography pulses on Q5 before the final measurement), represented by the density matrix
ρout.

All three of the steps described above work particularly well on pairs of qutrits in “iso-
lation”, i.e. when the pair’s neighboring qutrits are left in their ground states. However,
this is necessarily not the setting of any five-qutrit quantum circuit, including the telepor-
tation protocol. Here, we have to contend with the “always-on” nature of the cross-Kerr
interaction, which leads to unwanted entangling dynamics between all neighboring qutrit
pairs, even as we attempt to perform our quantum gates. To combat these unwanted inter-
actions, we develop a novel set of dynamical decoupling sequences optimized for qutrits (see
Appendix C).

We perform teleportation of twelve different single-qutrit quantum states |ψ〉, correspond-
ing to all possible eigenstates of single-qutrit Pauli operators, i.e. three eigenstates each for
X,Z,XZ,XZ2 (the remaining Pauli operators are either inverses of these or the identity).
We calculate the teleportation fidelity from the reconstructed density matrix of the output
qubit as Fψ = 〈ψ| ρout |ψ〉. Our chosen set of states is known as a ‘state 2-design’, which
guarantees that the average teleportation fidelity Favg = (1/12)

∑
ψ Fψ measured for these

twelve sampled states is in fact equal to the average teleportation fidelity over all possible
states [399, 518]. Furthermore, this average teleportation fidelity in fact allows us to upper
bound the average OTOCs associated with the implemented unitary by (4F − 1)−2, without
making any assumptions about the nature of the noise affecting our quantum processor [518].

The results of teleportation for two different choices of unitary dynamics are shown in
Fig. 8.5. First, as a control, we perform the protocol with the identity operation in place of
Us. To ensure that the two have similar magnitudes and modes of experimental error, we
implement the identity with precisely the same number and type of gates as the maximally
scrambling unitary; the two differ only in the magnitude of certain software-defined phase
gates. Since the identity operator does not scramble quantum information, we observe trivial
teleportation fidelities Fψ ≈ 1/3 for all input states (Fig. 8.5b). Indeed, using quantum state
tomography we verify that the final state of qubit Q5 is near maximally mixed regardless of
input state.

Finally, we perform the teleportation protocol with the maximally scrambling unitary Us,
which in theory should allow for perfect teleportation of any input quantum state. In contrast
to the identity operation, we observe that all but one of the input states are teleported with
fidelity Fψ > 1/2, with an average fidelity of Favg = 0.568 ± 0.001. This allows us to
experimentally upper bound the averaged OTOC by 0.618± 0.004. This marks a significant
decay from its non-scrambling value of unity and verifies that our platform is capable of
coherently simulating multi-qutrit scrambling dynamics.
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8.3 Discussion and outlook
As in the previous Chapter, our work serves as a robust proof-of-principle measurement

of quantum information scrambling dynamics, and opens the door to many larger-scale ex-
plorations of many-body scrambling in future works. In addition, our works suggested a
number of intriguing future directions specific to qutrit quantum processors. First, our plat-
form opens the door to exploring the potential advantages of ternary quantum logic, including
a more efficient decomposition of the Toffoli gate [169] as well as magic state distillation pro-
tocols that outperform conventional qubit-based strategies in terms of both error-threshold
and yield [88]. Second, the dynamical decoupling techniques introduced here naturally apply
to other spin-1 systems including solid-state defect centers and multi-level atomic, molecular
and trapped ion systems [99, 433]. Third, one can imagine further enlarging the qudit di-
mension by further leveraging the intrinsic anharmonicity of transmons [162, 342], enabling
the study of many-body phases and entanglement dynamics in higher-spin quantum sys-
tems [362]. Fourth, building upon recent excitement surrounding quantum supremacy pro-
tocols using pseudorandom quantum circuit sampling [30], it would be natural to investigate
analogous qudit-based protocols, where supremacy might be achieved using a substantially
smaller number of elements. Finally, we note that the quantum teleportation experiment
performed can be interpreted as an implementation of quantum error-correction. In this
language, the teleportation protocol is equivalent to a three-qutrit quantum error-correcting
code, which protects information from the erasure of any one of the three qutrits [107]. Ex-
ploring other forms of error-correction in qudit-based processors is a natural extension of our
work.
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Chapter 9

Many-body quantum teleportation via
operator spreading in the traversable
wormhole protocol

In this Chapter, we present a new mechanism for quantum teleportation using many-
body quantum information dynamics. This teleportation represents a moderate extension
of the teleportation considered in Chs. 7 and 8. Nonetheless, we will demonstrate that it
features much greater power both as a quantum communication tool—e.g. it can teleport
more qubits, for more types of scrambling dynamics—and as an experimental protocol for
probing quantum information dynamics.

As introduced in Ch. 2, quantum teleportation leverages entanglement to transmit quan-
tum information between distant locations [45, 48, 357, 391, 393]. Typically, one thinks
about teleportation in the context of a few, well-controlled degrees of freedom. For example,
two distant observers might share a pair of maximally entangled qubits (i.e. an Einstein-
Podolski-Rosen (EPR) pair [353]), enabling a measurement by one observer to teleport an
unknown quantum state to the other.

Recently, a confluence of seminal results has unveiled several novel instances of telepor-
tation in strongly-interacting, many-body systems [38, 61, 71, 159, 160, 274, 314, 317, 350,
517, 518]. The circuit in Chs. 7 and 8 represents one example. Similar to conventional quan-
tum teleportation, these protocols utilize shared entanglement as well as measurement and
classical communication. However, they differ from conventional quantum teleportation in a
few key aspects. Most notably, prior to teleportation, the initial quantum state is scrambled
by the application of a many-body unitary. At first glance, this coexistence of scrambling—
broadly speaking, the increasing complexity of initially simple quantum information under
many-body time dynamics [213, 315, 398, 431, 436]—and teleportation might seem counter-
intuitive. Indeed, one often thinks of teleportation as a directed quantum channel moving
information between two specific locations; in contrast, scrambling disperses quantum infor-
mation across all of the degrees of freedom in a system. As discussed in Ch. 7, the most
natural way to reconcile these two perspectives is through the language of quantum error
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Figure 9.1: (a) Teleportation protocol, proceeding from bottom to top. To teleport, a
subset of the left qubits are measured in the Ôi basis, and operations V̂i = eigoiÔi/K condi-
tioned on the measurement results oi are performed on the right (purple). (b) The protocol
hosts two mechanisms of teleportation: peaked-size (red) and gravitational (blue). The
channel capacity of peaked-size teleportation decreases with increasing time (dark to light
red), while its fidelity decreases with decreasing temperature (dark to light red, again). At
high temperature and late times, it is equivalent to teleportation in the HPR protocol (red
diamond). Gravitational teleportation occurs at low temperatures in systems dual to semi-
classical gravity (e.g. the SYK model), and exhibits the same channel capacity but higher
fidelity compared to peaked-size teleportation. Increasing the strength of stringy corrections
to the gravity theory interpolates between gravitational and peaked-size teleportation. (c)
The two mechanisms display distinct time profiles for the teleportation fidelity at fixed cou-
pling strength, g. In systems dual to gravity (top), the fidelity features a single O(1) peak
near the scrambling time (gravitational, blue), and a late time revival (peaked-size, red) to
a fidelity suppressed by the two-point function Gβ [317]. In generic thermalizing systems
(bottom), the fidelity oscillates between 0 and Gβ with phase proportional to the operator
size, may subsequently decay if sizes become not peaked, and revives at late times.

correction [202]: by encoding, via scrambling, one observer’s local information into non-local
correlations across a many-body system, one can in fact teleport this information with access
only to any few of the system’s qubits.

The most notable example of many-body teleportation is the so-called traversable worm-
hole (TW) protocol, discovered in the context of quantum gravity [38, 71, 159, 160, 317,
350]. From the bulk gravitational perspective, this protocol consists of a particle traveling
from one side of a wormhole geometry to the other; the wormhole is rendered traversable by
the application of a coupling between the two sides. In the boundary theory, the wormhole
geometry corresponds to a highly entangled thermofield double (TFD) state shared between
two copies of a many-body system, and the coupling is implemented via measurement and
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feed-forward operations [Fig. 12.1(a)]. Crucially, for this bulk-boundary correspondence to
hold, the Hamiltonian describing the boundary system must exhibit “coherent”, gravitational
scrambling dynamics—this is realized, most notably, in the Sachdev-Ye-Kitaev (SYK) model
at low temperatures [249, 316].

Interestingly, recent work has uncovered a number of instances of many-body telepor-
tation without gravitational dynamics. For example, teleportation in the TW protocol was
recently demonstrated analytically in the SYK model at high temperatures [159], and nu-
merically in chaotic spin chains at late times [71, 350]; in both cases, the microscopic mech-
anism for teleportation remains an outstanding puzzle. In addition to the TW protocol,
the many-body teleportation protocol in Chs. 7 and 8 was introduced in the context of the
Hayden-Preskill variant of the black hole information paradox [202, 517]. This so-called
Hayden-Preskill recovery (HPR) protocol allows for many-body teleportation via generic
scrambling dynamics, including as we saw, Clifford scrambling unitaries. Although the two
protocols bear some structural similarity, the HPR protocol is exponentially less efficient
for teleporting multiple qubits. To this end, understanding the precise relationship between
these protocols remains an essential open question.

In this Chapter, we present a unified framework for many-body teleportation from the
perspective of the growth of operators under scrambling time-evolution. Most significantly,
this framework leads to the identification of a new teleportation mechanism—dubbed peaked-
size teleportation—which succeeds for a wide variety of physical systems and encapsulates all
known examples of many-body teleportation outside of the gravitational regime. We empha-
size that peaked-size teleportation represents a distinct teleportation mechanism compared
to “gravitational” teleportation. Although the same TW protocol can host either mecha-
nism, the features of peaked-size teleportation differ markedly from those of gravitational
teleportation [Fig. 12.1(c), Table I]. Crucially, this distinction implies that the TW protocol
can act as a litmus test for identifying intrinsically gravitational dynamics. More broadly,
our results pave the way towards utilizing the TW protocol as a powerful experimental tool
for characterizing the growth of operators in strongly interacting systems.

9.1 Summary of results
Due to the excessive length of this Chapter, we begin by providing a technical overview of

our main results and the organization of the remaining Chapter. This summary is intended
to introduce the overarching concepts of our work, such that the remaining sections are
self-contained and can be read according to individual preference. A more detailed, section-
by-section guide to the reader is included at the end of this summary.

In Section 9.2, we begin with a general description of the TW protocol [Fig. 1(a)]. In
this protocol, locally encoded quantum information is inserted into one side of an entangled
thermofield double (TFD) state and teleported to the other side through a combination of
(i) unitary evolution of each side individually, and (ii) a simple two-sided coupling that acts
on a large subsystem of each side. The coupling is quite flexible in form, and corresponds to
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unitary evolution, eigV , under a two-sided interaction

V =
1

K

K∑

i=1

Oi,lO
∗
i,r, (9.1)

where {Oi} are any set of K local, non-identity operators applied to the left (l) and right (r)
side of the system. This coupling can be performed as either a quantum gate, or through local
measurements of Oi on the left side, followed by classical communication and feed-forward
operations on the right side [Fig. 1(a)].

In Section 9.3, we discuss the general requirements for successful teleportation in the
TW circuit. In particular, we relate the teleportation fidelity to the following correlation
functions of the two-sided system [317]:

CQ(t) ≡ 〈TFD|Qr(−t)eigVQl(t) |TFD〉 (9.2)

where Q(±t) is a time-evolved operator initially acting on the qubit(s) to be teleported. Our
analysis leads to two conditions on these correlators that, when combined, are necessary and
sufficient for teleportation to succeed with unit fidelity:

1. The magnitudes of the correlators must be maximal for every Q.

2. The phases of the correlators must be the same for every Q.

Here, Q runs over a complete basis of operators on the qubits to be teleported. We show
that Condition 1 is naturally satisfied, even without the coupling V , if the TFD state is at
infinite temperature, in which case it reduces to an extensive set of maximally entangled
EPR pairs. On the other hand, Condition 2 requires that the coupling acts non-trivially on
the operators Q.

In Section 9.4, we describe the relation between the coupling, V , and the growth of time-
evolved operators, Q(t). For the purposes of teleportation, this growth is characterized by
the size distribution of the operators [379, 381, 397], which provides a finer-grained measure
of quantum information scrambling compared to more conventional quantities such as out-
of-time-ordered correlators (OTOCs) [277, 315, 436]. Specifically, writing Q(t) as a sum over
Pauli strings, Q(t) =

∑
R cR(t)R, we define the size distribution as:

P (S) =
∑

S[R]=S

|cR(t)|2, (9.3)

where the sum is over Pauli strings, R, of size, S (equal to the string’s number of non-identity
components). By probing correlations between the two sides of the doubled Hilbert space,
the coupling V directly measures the operator size [379].

In Section 9.5, we introduce the peaked-size mechanism for many-body teleportation.
This mechanism is possible whenever the size distributions of time-evolved operators, Q(t),
are tightly peaked about their average size. In this scenario, the exponentiated coupling,
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eigV , applies approximately the same phase, proportional to the size, to each coefficient, cR,
and therefore to the entire operator, Q(t). We show that these applied phases are sufficient
to align the correlators’ phases for all operators Q, thereby achieving Condition 2. We also
demonstrate that the magnitudes of the correlators are unchanged by the coupling when
size distributions are tightly peaked. This implies that peaked-size teleportation achieves
perfect fidelity at infinite temperature, where Condition 1 is automatically satisfied; at finite
temperature, peaked-size teleportation can still occur, but with a reduced fidelity (Table I).

In Sections 9.6-9.7, we analyze examples of peaked-size teleportation across a wide
variety of interacting, many-body dynamics. We demonstrate that the capabilities of peaked-
size teleportation—most notably, the fidelity and the number of qubits that can be sent (i.e.
the channel capacity)—depend on the temperature, coupling strength, evolution time, and
the specific scrambling dynamics of the model under study (Table I).

More specifically, in Section 9.6, we provide general arguments that all scrambling
systems exhibit peaked-size teleportation at late times, after the system’s scrambling time
(t & ts). In this regime, operators have become fully delocalized across the system, so that
their size distributions are peaked about a typical, extensive value. We also show that late
time peaked-size teleportation is limited to transmitting only a single qubit.

In Section 9.7, we show that many scrambling quantum systems also feature peaked-
size teleportation at intermediate times, i.e. after the local thermalization time but before
the scrambling time (tth . t . ts). We begin with ergodic short-range interacting systems
in ≥1D, which we show naturally possess peaked-size distributions due to thermalization
within the bulk of a time-evolved operator’s light cone. In contrast, the size distributions of
operators in all-to-all coupled (0D) systems are not intrinsically peaked; nevertheless, peaked
sizes can be engineered by non-locally encoding the quantum information before insertion
into the teleportation circuit. Interestingly, in both of these classes of dynamics, we find that
multiple (∼ O(K)) qubits can be teleported simultaneously via the peaked-size mechanism,
in contrast with the unit channel capacity of late time teleportation. We substantiate these
claims through extensive numerical and analytic studies on a variety of physical models:
random unitary circuits (RUCs) in dimensions d = 0, 1, and 2 [340], the SYK model, and
(in Section 9.9) experimentally relevant spin chain Hamiltonians [52].

In Section 9.8, we discuss the interplay between peaked-size and gravitational telepor-
tation. Notably, we expect gravitational teleportation to occur only at low temperatures,
where certain quantum mechanical models (e.g. the SYK model) are known to possess a
dual description in terms of conformal matter coupled to gravitational dynamics. From the
perspective of operator growth, the unique feature of gravitational teleportation is the pres-
ence of non-trivial phase winding in a variant of the size distribution [71]. Crucially, this
effect enables gravitational teleportation to satisfy Condition 1, and thereby achieve high
teleportation fidelity at low temperatures, in sharp contrast with peaked-size teleportation
(Table I).

Intriguingly, while it may seem that there is a sharp distinction between peaked-size
and gravitational teleportation, we find that this is not always this case. In particular, we
show that varying the temperature of the SYK model provides a continuous interpolation
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Model Teleportation
mechanism

Protocol
parameters

Maximum per
qubit fidelity

Channel
capacity

All scrambling systems at late times
(Refs. [317, 517], Section 9.6) peaked-size g = π mod 2π ∼ Gβ 1 qubit

≥ 1D RUCs & chaotic spin systems
(Sections 9.5,9.7,9.9) peaked-size ηdgS(t)/N = π mod 2π ∼ Gβ ∼ K qubits

0D RUCs, with encoding
(Section 9.7) peaked-size ηdgS(t)/N = π mod 2π ∼ 1 ∼ K qubits

High-T SYK, with encoding
(Ref. [159], Sections 9.7) peaked-size ηdgS(t)/N = π mod 2π ∼ 1 ∼ K qubits

Low-T SYK / AdS2 gravity
(Refs. [71, 159, 160, 317], Fig. 12.1) gravitational get/N ∼ 1 (SYK)

gGNe
t ∼ 1 (AdS2)

∼ 1 ∼ K qubits

AdS2 gravity with strong stringy
corrections, with encoding
(Section 9.8)

peaked-size gS(t)/N ∼ π mod 2π ∼ Gβ —

Table 9.1: Summary of our expectations for teleportation in a variety of physical models.
For each model, we specify the associated teleportation mechanism, the optimal value of
the coupling strength g, the optimal teleportation fidelity, and the channel capacity. Here
Gβ is the imaginary time two-point function (Section 9.5), S(t) is the size of a time-evolved
operator, K is the number of measured qubits [Fig. 12.1(a)], ηd = 1/(1−1/d2) is an order one
constant determined by the local qudit dimension d [Sec. 9.4], and GN is Newton’s constant.
We refer to the Summary of Results and the cited sections for further details.

between gravitational teleportation at low temperature and peaked-size teleportation at
high temperature. In the dual picture, perturbing away from the low temperature limit
corresponds to adding stringy corrections to the gravity theory [181, 316, 437]. Following this
intuition, we show that teleportation in a gravity theory with strong stringy corrections [317]
bears a remarkable qualitative similarity to peaked-size teleportation, thus providing a first
step towards a bulk understanding of this phenomenon.

Finally, in Section 9.9, we discuss experimental applications of the TW protocol for
probing many-body dynamics. In particular, we demonstrate that the protocol can function
as a diagnostic tool for scrambling dynamics in near-term quantum simulators, enabling one
to starkly distinguish between generic thermalizing systems and gravitational dynamics. To
this end, we provide detailed blueprints for realizing the protocol in two complementary
experimental platforms—Rydberg atom arrays [52, 174, 273, 311, 319, 496] and trapped
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ions [35, 59, 91, 158, 333]. Specifically, the observation of a high teleportation fidelity at low
temperatures would be a tantalizing experimental indicator of gravitational scrambling dy-
namics. In addition, gravitational dynamics exhibit unique qualitative features as a function
of both evolution time and protocol parameters [Fig. 12.1(c), Table 9.1]. More broadly, our
analysis suggests that the TW protocol can provide insights into many-body dynamics out-
side the gravitational regime. In particular, we demonstrate that the fidelity of peaked-size
teleportation probes higher moments of operator size distributions [381].

Guide to the reader—Considering the wide scope of results presented in this work, we
encourage readers to skip to sections that align with their specific interests and refer to the
above summary for context. To this end, we highlight below the nature of each section and
provide recommendations for readers of different backgrounds. Sections 9.2-9.4 introduce
the formal tools and derivations necessary for rigorously understanding our results. These
sections will be of interest to readers with a background in quantum information who wish to
understand the precise connection between teleportation and operator sizes. Sections 9.5-9.7
introduce peaked-size teleportation and analyze its realization in several example systems.
Since many these systems are experimentally accessible, these sections will be most relevant
to members of the quantum simulation and many-body physics communities. Section 9.8
focuses on the interplay of peaked-size teleportation and gravitational physics, both in the
SYK model and from a bulk gravitational perspective. For brevity, background material on
gravitational physics is relegated to references, making this section best suited for experts at
the intersection of quantum information and quantum gravity. Finally, Section 9.9 contains a
summary of the experimental signatures of the TW protocol, detailed blueprints for Rydberg
atom and trapped ion implementations, and a discussion of the protocol’s behavior under
experimental error. This section will be of interest to AMO experimentalists and all readers
interested in near-term realizations of many-body quantum teleportation [375].

Relation to previous works

To further elaborate on the broad context of our results, a brief summary of the relevant
prior studies and their relation to our work is provided as follows.

Gravitational teleportation in the TW protocol—Traversable wormhole teleportation was
originally introduced in Refs. [160, 317] in the context of gravitational physics, where it was
realized that a coupling of the form V enables a traversable channel between the boundaries
of a two-sided black hole. The explicit quantum mechanical circuit implementing this tele-
portation [Fig. 12.1(a)] was later introduced in Refs. [71, 159], alongside exact calculations
for the teleportation fidelity in the large-q SYK model [159]. While the emphasis of our work
is not on the bulk interpretation of gravitational teleportation—indeed, the peaked-size tele-
portation mechanism is intended to contrast with the gravitational mechanism—it will be
helpful to recall the main results from the gravitational perspective.

We focus on the specific case of two-dimensional anti-de Sitter space, which is the bulk
dual of the SYK model at low temperatures [252, 317]. In the simplest case (ignoring
gravitational backreaction), the two-sided correlator, Eq. 9.2, can be explicitly calculated
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and is given by [317]:

CQ(t) =

(
1

2− g ∆O

22∆O+1GNe2πt/β

)2∆Q

. (9.4)

Here, GN is Newton’s constant, β = 1/T is the inverse temperature of the black hole, ∆O is
the conformal dimension of the coupling operators Oi [Eq. (9.1)], and ∆Q is the conformal
dimension of the operator Q. In the context of the SYK model, GN is inversely proportional
to the number of Majorana fermions, N , and the black hole temperature is equal to the
temperature of the TFD state [159, 317].

For our purposes, the most notable feature of the correlator is that it exhibits a sharp
peak at time t ≈ GN log(g) [Fig. 12.1(c)], corresponding to the moment a particle inserted on
one side of the black hole emerges on the other side. While in the above formula [Eq. (9.4)],
the correlator diverges at this time, in the large-q SYK model, this divergence is regularized
and the correlator peaks at its maximal value of unity [159]. Thus, at time t ≈ GN log(g),
the correlator satisfies Condition 1 for successful teleportation; in Ref. [159], it was shown
that Condition 2 is also satisfied for certain conformal dimensions of the operators Q. In
combination, this leads to unit teleportation fidelity.

Another notable feature of gravitational teleportation is the ability to teleport multiple
qubits simultaneously, as discussed in Ref. [317]. In the gravitational picture, multi-qubit
teleportation has an intuitive explanation: particles corresponding to different qubits pass
through the black hole in parallel, without interacting with one another. However, for
sufficiently many qubits, the effects of gravitational backreaction become important, leading
to a predicted channel capacity of O(K).

HPR teleportation—An independent, but closely related, set of protocols for many-body
teleportation was introduced in Ref. [517] for the recovery of information in the Hayden-
Preskill thought experiment [202]. Unlike previous works on traversable wormholes, in
Ref. [517] teleportation succeeds for any fully scrambling unitary dynamics (i.e. at late times,
t & ts), with no reliance on gravitational physics. However, the channel capacity of HPR
teleportation is fundamentally limited: multi-qubit teleportation requires a protocol whose
circuit depth grows exponentially in the number of qubits to be teleported [517].

In Appendix D.2, we show that a deterministic variant of the HPR protocol (for single-
qubit teleportation) is in fact equal to the TW protocol in Fig. 12.1(a), restricted to infinite
temperature and with a particular choice of the coupling operators, Oi. Furthermore, in Sec-
tion 9.6 we show that teleportation at late times via the peaked-size mechanism is equivalent
to this variant of HPR teleportation. However, peaked-size teleportation is more powerful
than HPR teleportation in the sense that: (i) it succeeds for a much larger class of couplings,
V , (ii) it can succeed at intermediate times, and (iii) at such times, it is capable of sending
multiple qubits with no change in the protocol’s complexity, an exponential improvement
over the HPR protocol.

Previous many-body teleportation experiments—Many-body quantum teleportation has
recently been demonstrated in both trapped ion [274] and superconducting qutrit [61] exper-
iments. Both Refs. [61, 274] implement a probabilistic variant of the HPR protocol, which
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differs slightly from the TW protocol, while Ref. [274] also implements the deterministic
variant discussed above. In all cases, the scrambling dynamics, U , are generated by digital
quantum gates acting on a small number of qubits. Teleportation is performed for a single
qubit and a fully scrambling unitary, placing the experiments in the same physical regime
as late-time, peaked-size teleportation.

Our work demonstrates that experiments in the TW protocol at intermediate times can
access new regimes of many-body quantum teleportation, with the potential to provide more
information about the scrambling dynamics under study. Most notably, such experiments
can distinguish between teleportation in generic many-body systems (via the peaked-size
mechanism) versus systems with a gravity dual (via the gravitational mechanism), which is
not possible in the HPR protocol.

SYK teleportation in the TW protocol—In Ref. [159], the two-sided correlator of the
TW protocol [Eq. (9.2)] was calculated exactly for the large-q SYK model (defined in Sec-
tion 9.7). As anticipated in Ref. [317], the correlator at low temperatures—where the model
is dual to gravity—agrees with the gravitational result [Eq. (9.4)] up to the previously men-
tioned regularization. More surprisingly, it was shown that teleportation with unit fidelity
is also possible at high temperatures—where the model is not dual to gravity. As we will
see in Section 9.7, all features of high temperature teleportation in the SYK model are in
precise agreement with the peaked-size mechanism; our work thus provides a microscopic
understanding for this previously unexplained result.

Gravity in the lab—Ref. [71] discusses various instances of teleportation in the TW pro-
tocol. The authors distinguish two teleportation mechanisms: (i) an “operator transfer”
mechanism, which occurs at intermediate times in gravitational systems and is capable of
teleporting multiple qubits, and (ii) a “state transfer” mechanism, which occurs at late times
in all scrambling systems, and is capable of sending only a single qubit. Moreover, they intro-
duce a microscopic interpretation for the teleportation mechanism in gravitational systems,
termed “size winding”, which we connect to in Section 9.8.

In our terminology, the first teleportation mechanism corresponds to gravitational tele-
portation, while the second mechanism corresponds to peaked-size teleportation at late
times1. In our work, we provide a microscopic interpretation for late time teleportation
(i.e. the peaked-size mechanism) and demonstrate that it is equivalent to teleportation in
the HPR protocol. In addition, we demonstrate that peaked-size teleportation is a more
general phenomenon that also occurs at intermediate times in many systems, where we show
that it is capable of teleporting multiple qubits.

In a follow-up work, Ref. [350], whose pre-print was posted concurrently with that of
this work, the same authors elaborate on their previous results and provide more detailed
examples and calculations. These agree with our own results in areas of overlap.

1The terminology of Ref. [71] can be understood using our two Conditions for teleportation. Specifically,
operator transfer corresponds to situations that satisfy Condition 1, but not necessarily Condition 2, as
occurs in gravitational teleportation [see Eq. (9.4)]. State transfer corresponds to situations that satisfy
both Conditions.
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9.2 Introduction to diagrammatic notation
We begin by introducing a diagrammatic “tensor network” notation for depicting the tele-

portation circuit. Adapted from Ref. [517], this notation provides a precise visual framework
for analyzing teleportation in Section 9.3 and will be convenient for deriving rigorous results
on the teleportation fidelity in Section 9.5.

To begin, we represent a quantum ket |ψ〉 and bra 〈ψ| as:

(9.5)

Note that time proceeds upwards—an initial state |ψ〉 terminates the bottom of a leg, while
a final projection 〈ψ| terminates the top. Similarly, much as in Fig. 12.1(a), we represent an
operator, for instance the many-body unitary U , as a box with input (bottom) and output
(top) legs:

(9.6)

Here we have decomposed the input and output into two subsystems, A and its complement
for the input, C and its complement for the output, in reference to the teleportation protocol.
Specifically, comparing to Fig. 12.1(a), subsystem A consists of the qubits supporting the
input state |ψ〉, while subsystem C consists of the coupled qubits.

The diagrammatic notation is particularly useful when working with EPR states. The
EPR state on two qubits is defined as |EPR〉 = (|00〉 + |11〉)/

√
2; for a system of N d-

dimensional qudits, this is generalized to 1√
dN

∑dN

i=1 |i〉l |i〉
∗
r. Here {i} is an arbitrary dN -

dimensional basis, ∗ denotes time-reversal (i.e. complex conjugation), and l and r denote
the left and right system, respectively. In the diagrammatic notation, we represent this as:

(9.7)

We have again decomposed each system into two subsystems, A and its complement, Ā, for
convenience (subsystem A is chosen to be identical between the left and right sides). Each
dot represents a normalization factor given by the inverse square root of the subsystem’s
dimension.

To see the utility of the diagrammatic notation, recall that a fundamental property of
the EPR state is that an operator acting on the left side is equivalent to its transpose acting
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on the right:

Ol |EPR〉 =
1√
dN

∑

i,j

Oij |i〉l |j∗〉r

=
1√
dN

∑

i,j

OT
ij |j〉l |i∗〉r = OT

r |EPR〉
(9.8)

where the middle equality swaps the i, j indices of the sum. In diagrammatic notation, this
becomes simply

(9.9)

i.e. the operator O “slides” from the left to right side of the EPR pairs, with its input and
output indices correspondingly transposed. Similarly, expectation values in the EPR state
can be easily computed in terms of the trace of (one-sided) operators, e.g.

(9.10)

where the final equality follows from 〈EPR|BlA
T
l |EPR〉 = (1/dN)

∑
ij 〈i∗|j∗〉 〈i|BAT |j〉 =

(1/dN)
∑

i 〈i|BAT |i〉.
The EPR state is closely related to the thermofield double (TFD) state,

|TFD〉 ≡
∑

i

e−βEi/2 |Ei〉l |E∗i 〉r /tr(e−βH)1/2. (9.11)

Here H is a time-reversal symmetric Hamiltonian, H = H∗, with eigenstates |Ei〉, and
eigenvalues Ei. The TFD state is parameterized by an effective “temperature” 1/β. At
infinite effective temperature (β = 0), the TFD and EPR states are equal. At finite tem-
perature, the TFD state is obtained by applying the square root of the density matrix,
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ρ1/2 ≡ e−βH/2/tr(e−βH)1/2, to either side of the EPR state, which we represent as:

(9.12)

For the finite temperature TFD state, the analog of Eq. (9.9) holds only for operators
that commute with the Hamiltonian. Most notably, such operators include the time-evolution
operator, U = e−iHt, which thus obeys:

(9.13)

Eq. (9.13) also holds for backwards time-evolution, replacing U → U †, UT → U∗. We
note that for time-reversal symmetric Hamiltonians, U = UT . In this case, combining
Eqs. (9.13, 9.9), we have the useful identity:

Ol(t) |TFD〉 = OT
r (−t) |TFD〉 . (9.14)

Applying Eq. (9.10), we can again express ‘two-sided’ expectation values in the TFD state
in terms of ‘one-sided’ correlation functions, e.g.

〈TFD|Al(t)Br(t
′) |TFD〉 = tr(ρ1/2AT (−t)ρ1/2B(t′)). (9.15)

Let us now re-draw the full teleportation protocol in Fig. 12.1(a) using the diagrammatic
notation:

(9.16)
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This circuit proceeds as follows: (i) prepare the TFD state, (ii) insert the state |ψ〉 on
subsystem A of the left side, (iii) time-evolve the two sides by U , U∗, (iv) couple the two
sides via the unitary operator eigV , with V as in Eq. (9.1), (v) evolve the right side by UT ,
(vi) apply a ‘decoding’ operator D, and (vii) measure the output state of subsystem A on
the right side. Compared to Fig. 12.1(a), we have made two modifications. First, we have
replaced the measurement and classical communication with a quantum coupling eigV , as
described in Section 9.1. Second, we now include a simple decoding operator, D, applied at
the end of the circuit before state recovery. We will find that D = Y ⊗ . . .⊗ Y for peaked-
size teleportation of a multi-qubit subsystem, where Y is the single-qubit Pauli Y operator
(Section 9.5).

Finally, we note that a straightforward application of Eq. (9.13) allows us to re-express
the circuit as

(9.17)

This equivalent version of the protocol was introduced in Refs. [71, 159] and will be more
convenient for analysis from here on.

9.3 General requirements for successful teleportation
We now introduce heuristic arguments for when teleportation succeeds in this protocol.

This will culminate in the two requirements for teleportation listed in Section 9.1. In Sec-
tion 9.5, we derive these conditions more formally by providing exact relations between the
two-sided correlators in Eq. (9.2) and the teleportation fidelity.

We begin with the protocol in Eq. (9.17). To proceed, we insert a resolution of the
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identity 1 =
∑

φ |φ〉〈φ| on the “swapped out” subsystem A (the output of U †l )
2:

(9.18)

This reformulation makes it clear that teleportation depends on the action of the coupling
on states of the form QA,l(t) |TFD〉, where QA = |ψ〉〈φ| and3 QA(t) ≡ UQAU

†.
Teleportation succeeds when the coupling “transfers” |ψ(t)〉〈φ(t)| from the left to right

side of the TFD state. More precisely, the following identity, if true for all operators QA on
A, would guarantee successful teleportation for all states:

(9.19)

Here θQ is an overall phase and we represent conjugation by the decoding operator as Q̃A ≡
D†QAD. One can verify this explicitly by plugging the RHS of the above equality into
Eq. (9.18): the topmost applications of DUT and U∗D† cancel, leaving QA → |ψ〉〈φ| as the
topmost operator on the right side, i.e. subsystem A is in the state |ψ〉.

To quantify whether this equality holds, we measure the inner product between the two
2At infinite temperature, using Eq. (9.9), |φ〉 can be understood as the counterpart of |ψ〉, to be teleported

from right to left instead of left to right. To see this, use Eqs. (9.9, 9.13) to re-expess 〈φ|l U
†
l → U†l |φ〉r, and

apply DlU
†
l after coupling to recover |φ〉.

3Traditionally, this would be considered reverse time-evolution, and denoted QA(−t). For brevity, we
have flipped the sign of t throughout the text.
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states4:

(9.20)

This is precisely the two-sided correlation function introduced in Eq. (9.2), now modified to
include the decoding operator. In particular, if the correlation function is maximal for all
operators QA, then Eq. (9.19) holds and teleportation succeeds with perfect fidelity for all
initial states.

In practice, it is sufficient to evaluate the correlators for a complete basis of operators
on subsystem A (e.g. the Pauli operators). In this case, we now have two requirements
on the operator correlators, as listed in Section 9.1: (i) all correlators must have maximal
magnitude, i.e. equal to 1, and (ii) all correlators must have the same phase—if two operators
both individually obey Eq. (9.19) but with different phases, their sum will not.

At infinite temperature, owing to Eq. (9.9), we will see that the first requirement is
satisfied even in the absence of the coupling, for any symmetric or antisymmetric operator.
To satisfy the second requirement, the role of the coupling eigV must be to apply a QA-
dependent overall phase. In the following section, we analyze the action of the coupling and
show precisely when such an overall phase occurs.

9.4 Connection to operator size
In this section, we outline the connection between the coupling V and the operator size

when V is acted on states of the form:

QA,l(t) |TFD〉 = QA,l(t)ρ
1/2
l |EPR〉 . (9.21)

This connection was discovered in a number of previous works, focusing primarily on a
specific bilinear coupling in fermionic systems [71, 294, 295, 350, 379, 397, 445]. In the

4For simplicity of notation and consistency with previous works [159, 160, 317], from here on we have
assumed that the unitary is symmetric, UT = U, U† = U∗.
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following, we introduce this connection in the context of bosonic systems and argue that it
applies to a good approximation for any generic, local couplings. From this, we then show
that the action of the exponentiated coupling, eigV , is particularly simple—it applies an
overall phase—whenever operator size distributions are tightly peaked.

Coupling measures size

In bosonic qudit systems, we define the size of a Pauli string as its number of non-identity
elements [397]. For instance, the Pauli string

1⊗X ⊗ 1⊗ 1⊗ Z ⊗X ⊗ 1 (9.22)

has size 3. A more general operator can be written as a sum of Pauli strings, R:

QA(t)ρ1/2 =
∑

R

cR(t)R, (9.23)

and possesses a corresponding size distribution [379, 397]5:

P (S) =
∑

S[R]=S

|cR(t)|2. (9.24)

The distribution is normalized to 1 if QA is unitary,
∑

S

P (S) =
∑

R

|cR(t)|2 = tr(Q†AQAρ) = 1. (9.25)

One can naturally characterize the size distribution via its moments—for instance, the av-
erage size, S[QA(t)ρ1/2] ≡ ∑S P (S)S (when context is clear, we denote this simply as S),
and the size width, δS.

We will now show that the coupling V approximately measures the operator size, in the
sense that it acts on states of the form Eq. (9.21) as:

V QA,l(t) |TFD〉 ≈ dN/2
∑

R

(
1− ηd

S[R]

N

)
cR(t)Rl |EPR〉 , (9.26)

where ηd ≡ 1/(1− 1/d2) is an order one constant determined by the local qudit dimension,
d. Expectation values of V thus measure the average size, while higher powers of V measure
higher moments of the size distribution [379, 397]. In particular, the exponentiated coupling
in the teleportation protocol applies a size-dependent phase to each Pauli string of QA(t)ρ1/2:

eigVQA,l(t) |TFD〉 ≈ dN/2

eig
∑

R

e−iηdgS[R]/NcR(t)Rl |EPR〉 , (9.27)

5We note that, at finite temperature, the coefficients cR(t) will generally be complex. Their phases thus
carry information beyond that captured by the size distribution, which we discuss in Section 9.8.
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We derive this connection by first introducing an exact measure of operator size in bosonic
qudit systems, generalizing previous measures for Majorana fermionic systems [379, 397].
We then argue that successively more generic couplings display approximately the same
behavior, when acted on time-evolved operators in generic many-body scrambling dynamics.

In bosonic qudit systems, we find that the operator size is precisely measured by a sum
of individual EPR projectors on each qudit i:

Vs =
1

N

N∑

i=1

PEPR,i =
1

Nd2

N∑

i=1

∑

Pi

Pi,lP
∗
i,r, (9.28)

where d is the local qudit dimension, N is the number of qudits, and Pi form a complete
basis of single-qudit operators (e.g. for qubits Pi ∈ {1, X, Y, Z}). To see this, let us first
analyze the action of a single EPR projector, PEPR,i. Writing a given Pauli string as a tensor
product of single-qudit Paulis, R =

⊗N
j=1Rj, we find

PEPR,iRl |EPR〉 = δRi,1Rl |EPR〉 , (9.29)

using Eq. (9.10) and tri(Ri)/di = δRi,1. A single EPR projector thus acts as a binary variable,
giving eigenvalue 1 or 0 if a given Pauli string is, or is not, the identity on the designated
qudit. The full coupling is a sum of these binary variables over all qudits and therefore
counts the total number of non-identity elements in the Pauli string, i.e. the operator size.
Its eigenvectors are the states Rl |EPR〉 with eigenvalues 1− S[R]/N , as in Eq. (9.26).

We now turn to more general local couplings. First, as a trivial but useful modification,
we can remove the identity operators from Vs, since these are not included our original
definition of the coupling, V [Eq. (9.1)]. These constitute a fraction 1/d2 of the complete
basis, Pi, summed in Eq. (9.28). Removing these terms renormalizes the eigenvalues of the
coupling:

(
1

N(d2 − 1)

N∑

i=1

∑

Pi 6=1

Pi,lP
∗
i,r

)
Rl |EPR〉

=

[
1− ηd

S[R]

N

]
Rl |EPR〉 ,

(9.30)

which now match those quoted in Eq. (9.26). Note that the left side sum is now overN(d2−1)
non-identity operators and normalized accordingly.

Second, we consider omitting some of the non-identity Pi at each site. Intuitively, under
thermalizing dynamics, if an operator has spread to some qudit i it should not matter which
Pauli operator we use to probe the operator’s presence. For example, for qubits, we could
omit the Oj = Xi, Yi couplings and keep only Oj = Zi. A random Pauli string has equal
probability to commute with Zi as it would with Xi and Yi; thus, coupling using only Zi
operators is sufficient for measuring a thermalized operator’s size.
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Third, we expect even more general couplings, composed of Oi that are local but not nec-
essarily Pauli operators, to behave similarly. Specifically, each individual coupling, Oi,lOi,r,
will asymptote to two different expectation values before and after the time-evolved operator
has spread to the support of Oi. Before, the coupling will maintain its expectation value in
the unperturbed TFD state, tr(Oiρ

1/2O†iρ
1/2). After, the spread of QA(t) will disrupt the

two-sided correlations in the TFD state that give rise to this initial expectation value, and
the coupling will instead asymptote to its value in two thermal states, tr(Oiρ) · tr(Oiρ). As
before, the sum of many terms, each behaving as above, leads to an approximate measure
of operator size.

Lastly, we consider the case where the coupling is restricted to act only on some subsystem
C, consisting of K qudits6. The coupling now measures the number of non-identity elements
of a Pauli string within C—we denote this as the K-size, SK , of the Pauli string. The
eigenvalues of the coupling are the same as those in Eq. (9.30), with the replacement S/N →
SK/K. For a typical Pauli operator, we expect the K-size distribution of an operator to be
similar to its full size distribution when K is large and the coupled qubits are distributed
randomly. In particular, in this scenario we expect the averageK-size, SK , to be proportional
to the average size, S,

SK
K
≈ S
N
. (9.31)

For simplicity, we will make this substitution in the remainder of the work. However, if C is
a spatially local subsystem (instead of a random subsystem), then this replacement will be
modified depending on the spatial extent of the operator.

As a final remark, we note that the operator size distribution is directly related to out-
of-time-order correlators (OTOCs), a more familiar quantity for probing operator growth
[277, 315, 436]. In particular, the average size is equal to a sum of OTOCs between QA and
Oi [379, 397],

(9.32)

using Eqs. (9.9-9.15). Higher moments of the size distribution can also be probed by OTOCs,
now between QA and various products of the Oi, e.g. OiOj for the size width. We discuss

6For simplicity, this assumes that there is a single coupling per qudit in C.
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these relations further, paying particular attention to subtleties that arise at finite temper-
ature, in Section 9.8.

Peaked-size distributions

The exponentiated coupling [Eq. (9.27)] has a particularly action when the size distribu-
tion of QA(t)ρ1/2 is tightly peaked about its average size. In this regime, each Pauli string
gains approximately the same phase, and so the action of the coupling reduces to applying
a QA-dependent overall phase,

eigVQA,l(t) |TFD〉 ≈ eig〈V 〉QQA,l(t) |TFD〉 , (9.33)

where the applied phase is proportional to the average K-size [see Eq. (9.30, 9.31)],

g 〈V 〉Q = g 〈TFD|Q†A,l(t)V QA,l(t) |TFD〉

≈ g − ηdg
SK [QA(t)ρ1/2]

K
,

(9.34)

defining ηd ≡ 1/(1− 1/d2) for convenience.
Corrections to this behavior are controlled by higher moments of the size distribution.

Focusing on the overlap of the coupled and uncoupled states, the leading order correction is
equal to the K-size variance, δS2

K/K
2 = 〈V 2〉Q − 〈V 〉

2
Q, multiplied by g2:

〈
eigV

〉
Q

=

〈
1 + igV − 1

2
g2V 2 + . . .

〉

Q

=

(
1 + ig 〈V 〉Q −

1

2
g2 〈V 〉2Q + . . .

)

− 1

2
g2

(〈
V 2
〉
Q
− 〈V 〉2Q

)
+ . . .

= exp

(
ig 〈V 〉Q

)
− 1

2
(ηdg)2δS2

K/K
2 + . . .

(9.35)

The K-size variance receives contributions from two sources: the variance of the full size
distribution, δS2, and a statistical error from sampling only K of N qubits for the K-size.
If the K qubits are distributed randomly, these errors scale as δSK ∼ δS · (K/N) and
δSK ∼

√SK ≈
√
SK/N , respectively (see Appendix D.6 for a detailed derivation of the

latter). These are small compared to the average K-size whenever δS � S and 1� SK .
In Appendix D.1, we go beyond these leading order corrections and provide quantita-

tive bounds on when the peaked-size approximation in Eq. (9.33) is valid. In general, we
can strictly prove that this approximation holds whenever there is a parametric separation
between an asymptotic size width, defined in the appendix, and the average size.
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9.5 Peaked-size teleportation
Having established general conditions for successful teleportation (Section 9.3) as well

as the connection between the coupling in the TW protocol and operator size distributions
(Section 9.4), we are now ready to introduce the peaked-size mechanism for teleportation. In
this section, we first demonstrate peaked-size teleportation in its simplest context: telepor-
tation of a single qubit at infinite temperature. We then show that the fidelity of peaked-size
teleportation is necessarily suppressed at finite temperature. For ease of reading, we relegate
rigorous results supporting each of the above arguments to the end of the section. We turn
to specific physical systems realizing peaked-size teleportation in the following sections: in
Section 9.6 we show that peaked-size teleportation of a single qubit occurs in all scrambling
systems at late times, while in Section 9.7 we show that peaked-size teleportation of multiple
qubits occurs in certain systems at intermediate times.

Single-qubit teleportation

To analyze teleportation of a single qubit, we turn to the two-sided correlators in Eq. (9.20),
with QA ∈ {1, X, Y, Z} running over the single-qubit Pauli operators. We recall that the
requirements for teleportation are for all CQ to have (i) maximal magnitude and (ii) the
same phase.

The first requirement is naturally satisfied at infinite temperature even before coupling
and decoding but the second requirement is not. In particular, the four correlators with
D = 1, g = 0 are:

QA CQ
1 +1
X +1
Y −1
Z +1
(D = 1)
(g = 0)

where the left entries are qubit operators, QA, and the right entries are the correlators, CQ.
The correlators have maximal magnitude because each operator can be transferred perfectly
from left to right using Eq. (9.9). However, the Y operator picks up an overall minus sign
during this process, since Y T = −Y , and so the correlator phases are not aligned. One can
verify the resulting teleportation fidelity is indeed trivial. Our goal will be to show that the
action of the coupling in Eq. (9.33), as well as a simple decoding operation, are sufficient to
align the four phases.

To begin, we assume that all time-evolved Pauli operators have a tightly peaked size
distribution and that the average size S is the same for all non-identity operators. From
Eqs. (9.33-9.34), we have that the coupling applies a total phase difference ηdgS/N between
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the thermofield double state (the identity operator; size zero) and all perturbed states (time-
evolved Pauli operators; size S). Our table of correlator phases is thus modified to:

QA CQ
1 +1
X +1
Y −1
Z +1
(D = 1)
(g = 0)

−→

QA CQ
1 e−iηdgS/N

X +1
Y −1
Z +1

(D = 1)
(g 6= 0)

We again do not achieve perfect phase alignment. However, we can now correct the mis-
aligned phases using the decoding operator, D = Y . This applies an additional minus sign
to the X and Z correlators:

QA CQ
1 +1
X +1
Y −1
Z +1
(D = 1)
(g = 0)

−→

QA CQ
1 e−iηdgS/N

X +1
Y −1
Z +1

(D = 1)
(g 6= 0)

−→

QA CQ
1 e−iηdgS/N

X −1
Y −1
Z −1

(D = Y )
(g 6= 0)

The correlator phases are now aligned whenever

ηdg
S
N

= π mod 2π, (9.36)

leading to perfect teleportation at these values.

Peaked-size teleportation at finite temperature

There are two important modifications to peaked-size teleportation at finite temperature.
First, the relevant notion of operator size is modified [379]. In particular, in the peaked-size
regime, the difference in phase applied between the identity and non-identity Pauli operators
is modified to

S[QA(t)]→ S[QA(t)ρ1/2]− S[ρ1/2]. (9.37)

Second, the maximal fidelity of peaked-size teleportation is reduced at finite temperature.
In particular, when sizes are tightly peaked, the two-sided correlators factorize into a constant
magnitude multipled by an overall phase:

CQ = 〈TFD| Q̃†A,rQA,l |TFD〉 ei(g−ηdgSK [QA(t)ρ1/2]/K)

= Gβ(QA) · eiθQ
(9.38)
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where θQ combines the effects of transposition, coupling, and decoding, and the correlator
magnitude corresponds to an imaginary-time Green’s function,

Gβ(QA) ≡ tr(Q†A ρ
1/2QA ρ

1/2) ≤ 1. (9.39)

This Green’s function is unity at infinite temperature and generically decreases at finite

temperatures, due to the reduced entanglement of the TFD state. This violates the maximal
magnitude requirement for teleportation, and therefore leads to a corresponding decrease in
the teleportation fidelity.

The astute reader will recall that finite temperature teleportation is known to succeed
with O(1) fidelities (i.e. higher than Gβ) in theories with a gravity dual [159, 160, 317]; this
is a signature of physics outside the peaked-size regime, which we connect to in Section 9.8.

Rigorous expressions for teleportation fidelity

We now derive formal expressions of the teleportation fidelity for n teleported qubits as
a function of the correlator phases. To do so, we consider a variant of the protocol where
instead of teleporting a quantum state we attempt to distill an EPR pair:

(9.40)

Here state insertion is replaced by swapping in one “half” of an EPR pair with a reference
subsystem R (far right) into subsystem A of the left side. When subsystem A is teleported
from left to right, the circuit results in an EPR pair between the reference subsystem R and
subsystem A of the right (top arrows). The fidelity of EPR distillation is precisely related to
the average fidelity of state teleportation [518], FEPR = [(dA+1)〈Fψ〉−1]/dA, where dA = 2n

is the dimension of subsystem A when teleporting n qubits.
We calculate the teleportation fidelity by Pauli decomposing the SWAP operator as
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SWAP =
∑

QA
QA ⊗Q†A/dA. This gives:

.

(9.41)

where the third equality utilizes the diagrammatic identities Eqs. (9.9, 9.10), and the fourth
equality inserts the identity, 1 = DrUrU

†
rD
†
r, in the center of the right side (recall our

notation Q̃1/2 = D†Q1/2D). Writing the rightmost diagram as an equation, we have:

FEPR =
1

d4
A

∑

Q1,Q2

〈TFD|Q†2,l(t) e−igV Q̃2,r(−t)

× Q̃†1,r(−t) eigV Q1,l(t) |TFD〉 .
(9.42)

Similar expressions for teleportation of quantum states are contained in Appendix D.3.
In general, the teleportation fidelity and two-sided correlators are related only by a lower

bound,7

FEPR ≥
∣∣∣∣

1

d2
A

∑

QA

CQ

∣∣∣∣
2

. (9.43)

This is obtained diagrammatically by inserting the projector, |TFD〉〈TFD|, into the center
7Under special circumstances, namely large-N models, one may be able to factorize the above expression

in terms of correlators of the form Eq. (9.20) [159].
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of Eq. (9.41):

(9.44)

A similar bound was obtained in Ref. [71, 350], conditional on certain assumptions about
operators’ size distributions.

At infinite temperature in the peaked-size regime, we have CQ = eiθQ and the fidelity is
equal to the lower bound:

FEPR =
1

d4
A

∑

Q1,Q2

ei(θQ1
−θQ2

) =

∣∣∣∣
1

d2
A

∑

QA

eiθQ
∣∣∣∣
2

. (9.45)

The sum is over d2
A terms, and is unity only when all the operators’ phases are the same.

In the case of a single-qubit teleportation at infinite temperature in the peaked-size regime,
plugging the final table of Section 9.5 into the above equation gives a fidelity:

FEPR =
5

8
− 3

8
cos(ηdgS/N), (9.46)

which oscillates between trivial fidelity (FEPR = 1/4) and unity as a function of the operators’
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size. At finite temperature in the peaked-size regime, we instead find

FEPR =
1

d4
A

∑

Q1,Q2

ei(θQ1
−θQ2

)tr(Q†2Q1 ρ
1/2Q†1Q2 ρ

1/2)

≤ 1

d4
A

∑

Q1,Q2

tr(Q†2Q1 ρ
1/2Q†1Q2 ρ

1/2)

=
1

d2
A

∑

QA

tr(QA ρ
1/2Q†A ρ

1/2)

=
1

d2
A

∑

QA

Gβ(QA).

(9.47)

where the maximum fidelity is again achieved when the correlator phases align. However, its
value is now less than unity, and instead is equal to a sum of various imaginary time Green’s
functions, i.e. the correlator magnitudes [Section 9.5, Eq. (9.39)].

9.6 Peaked-size teleportation at late times
We now introduce the simplest physical example of peaked-size teleportation: telepor-

tation in any scrambling system at late times (after the scrambling time). There are two
distinguishing features of this regime: (i) the circuit can only teleport a single qubit, i.e.
the channel capacity is one, and (ii) as for all peaked-size teleportation, the teleportation
fidelity is suppressed at low temperatures. We also demonstrate that this regime of peaked-
size teleportation, as well as the full quantum circuit implementing the TW protocol, are
equivalent to HPR teleportation of a single qubit. In Section 9.7, we will demonstrate that
the single-qubit late time channel capacity can be overcome at intermediate times in many
scrambling systems.

Teleportation at late times

At late times, the dynamics of a scrambling system can be approximated by a Haar
random unitary8 [202, 399]. In this case, each time-evolved operator, QA(t), becomes a sum
of random Pauli strings, each with probability 1/d2 to be the identity at any individual site.
As a result, time-evolved operators have an average size,

S ≈ (1− 1/d2)N, (9.48)
8This approximation is modified in systems with a conserved quantity. Size distributions in such systems

have been considered in Refs. [246, 384, 385]; at late times (after conserved quantities have diffused across
the entire system), they are expected to be similar to size distributions without a conserved quantity, up to
corrections ∼ 1/N .
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and a size width,
δS ∼

√
N, (9.49)

where the scaling is based on the central limit theorem. The K-size distribution takes the
same form, replacing N with K, and is tightly peaked as long as K is large (specifically,
gδSK/K ≈ g/

√
K � 1).

For simplicity, we will focus on late time teleportation at infinite temperature; finite
temperature modifications follow according to Section 9.5. Using Eqs. (9.33-9.34), we find
that the coupling applies a relative phase eig between the identity operator (size zero) and
all non-identity Pauli operators (size above) [317]:

eigV |EPR〉 = eig |EPR〉
eigVQA,l(t) |EPR〉 = QA,l(t) |EPR〉 .

(9.50)

The lack of an applied phase for non-identity Pauli operators corresponds to the vanishing
of 〈V 〉Q at late times, when OTOCs have decayed to zero [see Eq. (9.34)]. From Section 9.5,
we see that whenever

g = π mod 2π, (9.51)
single-qubit teleportation succeeds.

A brief argument shows that late time teleportion of higher dimensional quantum states
is not possible. Consider teleportation of a d-dimensional qudit, with a basis of states |i〉,
i = 0, . . . , d−1. The qudit Pauli operators are generated by the ‘clock’ and ‘shift’ operators:
Z |i〉 = eiω |i〉, with ω = 2π/d, andX |i〉 = |i+ 1〉. The two generators obey the commutation
relation, XZ = e−iωZX. After transposition, each Pauli operator, XpZq, becomes

(XpZq)T = ZT,qXT,p = ZqX−p = e−ipqωX−pZq. (9.52)

Meanwhile, late time dynamics ensure that the coupling applies an overall phase only to the
identity operator. For teleportation to be successful, we would therefore require a decoding
operation, D, that acts as DX−pZqD† ∼ XpZq. Suppose there was such a unitary operator9,
and consider its action on the generators: DXD† = X−1 and DZD† = Z. The above action
implies that commuting the two generators gives a different phase before and after decoding:
DXZD† = e−iωDZXD† = e−iωZX−1 and DXZD† = X−1Z = e+iωZX−1. This is a
contradiction whenever e+iω 6= e−iω, i.e. whenever d > 2.

Equivalence to HPR protocol

We now turn to the equivalence between peaked-size teleportation and teleportation
in the HPR protocol. The latter was originally introduced to recover information in the
Hayden-Preskill thought experiment [202, 517], and is reviewed in detail in Appendix D.2.

9The astute reader may note that this operation is in fact implemented by the anti-unitary operator,
D |i〉 = |−i mod d〉∗. However, if one decomposes state insertion in terms of Pauli operators as |ψ〉〈φ| =∑
QA

cQQA (see Section 9.3), one desires that the entire operator |ψ〉〈φ| be transferred from left to right for
all possible 〈φ|. The preceding anti-unitary operator will complex conjugate the coefficients cQ, thus spoiling
teleportation for any 〈φ| where these are complex.
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Here, we restrict our attention to teleportation in the deterministic variant of the protocol,
of a single qubit at infinite temperature [274, 517]. The protocol takes the form:

(9.53)

where PEPR projects onto an EPR pair between subsystems C on the left and right sides.
The equivalence between this protocol and the TW protocol [Eq. (9.16)] is manifest, with

the only difference being the locality of the coupling. Specifically, the HPR coupling is of
the same general form as the TW coupling [Eq. (9.1)]:

gV ≡ πPEPR =
π

d2
C

∑

PC

PC,l P
∗
C,r, (9.54)

where the sum is over of a complete basis of d2
C Pauli operators on C. However, the op-

erators PC are typically non-local across C, whereas the coupling considered in the TW
protocol was restricted to local operators. As a consequence, the HPR coupling functions as
a binary variable measuring whether or not an operator has support on subsystem C (see
Section 9.4). In contrast, the TW coupling measures the operator size within C, which takes
an approximately continuous range of values when C is large. Crucially, at late times under
scrambling dynamics, the effect of both couplings will be the same: to apply an overall phase
to non-identity operators.

A few additional remarks are in order. First, while the leading order effect of the HPR
and TW couplings is the same, they lead to different finite-size corrections. In particular, in
a fully scrambled system, the variance in the phases applied by the HPR coupling is equal
to the probability of a random Pauli string not having support on C, which is suppressed
exponentially in the size of C, i.e. 1/d2

C . On the other hand, the variance in phases applied by
the TW coupling is suppressed only polynomially, by ∼ g2δS2

K/K
2 ∼ g2SK/K2 ∼ g2/K [see

Eq. (9.49) and the discussion below Eq. (9.35)]. These enhanced phase fluctuations are rele-
vant for finite-size implementations of the TW protocol, as discussed further in Section 9.9.

Second, it has previously been shown that an extended version of the HPR protocol
allows for teleportation of multiple qubits at late times [517]. Because of the equivalence
between the protocols, this extension would also allow for multi-qubit teleportation via the
peaked-size mechanism. However, the enhanced channel capacity comes with a trade-off:
the circuit complexity (measured by the number of applications of the unitary U) grows
exponentially in the number of qubits to be teleported. As we will see in the following
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Figure 9.2: Numerical results for averaged operator size and teleportation fidelity of 1D,
2D, and 0D RUCs. (a-b) In 1D and 2D, sizes grow ballistically in time, while the size width
grows with a slower power of t and matches predictions from the KPZ universality class
(Section 9.7). Because of the separation between the size and size width, the teleportation
fidelity for a single qubit exhibits an oscillatory behavior at intermediate times, with nearly
perfect maximum fidelity. At late times, the teleportation fidelity saturates close to 1 for
odd values of g/π, as expected for any scrambling system (Section 9.6). (c) In 0D all-to-
all coupled RUCs, both the size and size width grow exponentially in time and obtaining
a large separation between them requires encoding the initial state into p-body operators.
With this encoding, the teleportation fidelity displays a distinct three-regime profile for
g � 1. In particular, as in 1D and 2D, peaked-size teleportation succeeds (i) at early times,
with an oscillating fidelity, and (ii) at late times, where the fidelity saturates close to 1 (for
odd g/π). Between these regimes, no teleportation occurs because the size width has grown
too large, gδS/N & 1.

section, this limitation can be overcome by peaked-size teleportation in the TW protocol at
intermediate times, owing to the locality of the TW coupling.

9.7 Peaked-size teleportation at intermediate times
We now turn to analyzing the behavior of peaked-size teleportation at intermediate times,

i.e. before the scrambling time. In this regime, multiple qubits can be teleported given a
certain condition on the growth of time-evolved operators, namely when the overlap of the
operators’ support is sufficiently small.
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We explicitly demonstrate that this condition is satisfied, and multi-qubit teleporation is
possible, in a wide variety of physical systems at infinite temperature. These include random
unitary circuits (RUCs) in ≥1D, for which peaked sizes naturally occur due to local ther-
malization within each operator’s light cone, and time-evolved operators are non-overlapping
due to spatial locality. More surprisingly, we show that multi-qubit peaked-size teleportation
can also be achieved in ‘fast scrambling’, all-to-all coupled systems, including 0D random
unitary circuits and the SYK model (at infinite temperature) [202, 431]. In this case, op-
erators are not spatially separated at any nonzero time; nonetheless, the overlap of their
size distributions remains probabilistically small at sufficiently early times. Furthermore,
we demonstrate that while size distributions of local operators are generically not tightly
peaked in all-to-all systems, peaked size distributions can be engineered in the TW protocol
by encoding one’s initial state into large p-body operators.

Finally, we consider the channel capacity—i.e. the maximum number of qubits that can be
teleported (allowing both g and t to vary)—of peaked-size teleportation in all-to-all coupled
systems. This is an essential question for comparing the capabilities of peaked-size telepor-
tation with those of gravitational teleportation in traversable wormholes [317]. Remarkably,
we provide analytic and numerical evidence that the channel capacity of peaked-size tele-
portation in 0D RUCs, a quite simple microscopic system, is asymptotically equivalent to
that of the gravitational mechanism! Namely, the number of qubits n that can be teleported
scales with the number of couplings in the protocol, n ∼ K.

Multi-qubit teleportation: additive operator sizes

We begin with a few simple examples of multi-qubit teleportation to build intuition.
First, consider a unitary U that factorizes as U = U1 ⊗ · · · ⊗ Un, where each Ui acts on a
disjoint subsystem. If we insert n qubits individually into the n different subsystems, then the
entire protocol decouples into n independent channels and there is no restriction on sending
multiple qubits. This trivial example relies on the fact that U does not scramble information
across the entire system but only within each disjoint subsystem. We see that full scrambling
of information by U in fact inhibits the teleportation protocol’s channel capacity (considered
for a fixed set of qubits and dynamics).

A similar situation occurs even when the dynamics are not factorizable, as long as the tele-
ported qubits are in causally separated regions. For example, consider a (D ≥ 1)-dimensional
system with short-range interactions, where the inserted qubits are spatially separated. At
intermediate times, the time-evolved qubit operators will have support within a local ‘light
cone’ about their initial location, but will continue to act on disjoint subsystems. This
scenario is therefore no different from the previous example and multi-qubit teleportation
remains possible, as long as (i) the size distributions of each operator is tightly peaked, (ii)
the coupling V has support within each qubit’s light cone, and (iii) the light cones of each
qubit are non-overlapping. This final requirement constrains the number of qubits that can
be sent at a given time t. In particular, the light cone of each operator will have a radius vBt
where vB is the butterfly velocity. The maximum number of non-overlapping light cones—
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equal to the total number of qubits n that can be teleported—is therefore n . N/(vBt)
D,

where N is the total system volume.
More formally, we can analyze the success of n-qubit teleportation using the two-sided

correlators, CQ. We are concerned with n-qubit operators Q(t) = Q1(t) . . . Qn(t), where
each Qi ∈ {I,X, Y, Z} is a single-qubit Pauli on the ith teleported qubit. We work at infinite
temperature and assume that sizes are tightly peaked. Teleportation therefore succeeds
whenever all correlators have the same phase.

Inspired by the example of n decoupled protocols, we will take the decoding operator to
be the tensor product, D = Y ⊗. . .⊗Y . The combination of transposition and conjugation by
D thus applies a minus sign to every single-qubit non-identity Pauli operator. An additional
phase is applied by coupling proportional to the size of each operator. For example, for
n = 2 qubits, we have:

QA CQ
1⊗ 1 1
Q1 ⊗ 1 −1× e−iηdgS1/N

1⊗Q2 −1× e−iηdgS2/N

Q1 ⊗Q2 (−1)2 × e−iηdgS12/N

where Si and Sij are shorthand for S[Qi(t)] and S[Qi(t)Qj(t)]. In order for all correlators
to have the same phase, we require that ηdgS1/N = ηdgS2/N = π mod 2π, and that the
operator sizes add, such that e−iηdgS12/N ≈ e−iηdg(S1+S2)/N = ei(π+π) = 1.

This requirements generalize straightforwardly to n qubits. Specifically, teleportation
succeeds whenever the single-qubit operator sizes obey ηdgSi/N = π mod 2π and the multi-
qubit operator sizes add under operator multiplication:

S[Q1(t)Q2(t) . . . Qn(t)]

≈ S[Q1(t)] + S[Q2(t)] + . . .+ S[Qn(t)].
(9.55)

This latter requirement implies that the phases applied by the coupling, eigV , factorize, and
allows the n qubits to be teleported ‘in parallel’ as in the previous simple examples.

The size addition requirement naturally bounds the channel capacity in terms of the
number of couplings, K. Specifically, the K-size takes integer values between 1 and K.
However, the requirement that all three single-qubit Pauli operators have the same K-size
increases the minimum K-size to 2. From Eq. (9.55), this implies that an n-qubit operator
has a K-size of at least 2n, which is only possible if

2n ≤ K. (9.56)

Indeed, this strict upper bound can also be understood from an information theoretic per-
spective: teleporting n qubits requires an increase of 2n in the mutual information between
the left and right sides of the system. Each of the K classical bits sent from left to right in
Fig. 12.1(a) increases the mutual information by at most 1, so at least 2n bits are required.
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≥1D random unitary circuits

As a first concrete example of intermediate time peaked-size teleportation, we consider a
random unitary circuit (RUC) applied to a lattice of N qubits in one or higher dimensions.
At each time step, pairs of neighboring qubits are evolved via independent Haar random
unitaries arranged in a ‘brick-layer’ fashion, with periodic boundary conditions [Fig. 9.2(a,b)].
Operator growth in such systems has been studied at great length, and is believed to be a
good model for many aspects of information scrambling under Hamiltonian dynamics [246,
292, 340, 385, 439, 476]. We extend these previous studies by demonstrating new results
on the behavior of the operator size width—i.e. power-law scaling at intermediate times
and suppression at late times—which we show can be detected by the teleportation fidelity
(Fig. 9.3).

A key property of Haar random unitary circuits is that the expectation values of many
circuit quantities can be computed by replacing the Haar random unitaries with randomly
chosen Clifford unitaries, thereby enabling efficient classical simulation [122, 340]. Generally,
this equivalence holds for any quantity that contains no more than two copies each of U and
U † (e.g. the Renyi-2 entropy, or the OTOC); however, for systems of qubits, this property
holds for up to three copies [271, 484, 534]. From Eq. (9.42), we see that the teleportation
fidelity contains three copies of U and U †, so the average fidelity is efficiently simulable10.
Moreover, by definition, the size distributions of operators under Clifford dynamics are per-
fectly tightly-peaked, since a Pauli operator QA evolved under a Clifford unitary remains a
single Pauli string. Hence, the teleportation fidelity can be computed using the simplified
expression given in Eq. (9.45).

In more detail, we calculate the average EPR fidelity for teleporting n qubits through the
following procedure. First, we choose a particular realization of U by sampling each 2-qubit
unitary from a uniform distribution of 2-qubit Clifford unitaries. Second, we determine the
K-size of UQAU

† for each n-qubit Pauli operator, QA, or, if n is large, for a random subset
of these operators; such simulations can be performed efficiently with a time cost that scales
linearly with the circuit depth. Third, we compute the fidelity for a given coupling g using
Eq. (9.45), with the phases θQ = ηdgSK/K + πS[QA(0)], where the latter term captures the
fact that decoding and transposition apply a minus sign for each non-identity element of the
initial QA. Finally, we average the EPR fidelity over multiple realizations of U .

The results of these simulations for n = 1 qubit in 1D and 2D are shown in Fig. 9.2(a,b).
As expected, the average operator size grows ballistically, S ∝ tD, until the operator’s light
cone reaches the edge of the system, at which point the size saturates to 3/4N . While
the behavior of the size width is more complex, in both dimensionalities it grows more
slowly than the average size. This implies that the size distribution is tightly-peaked and
the teleportation fidelity can be approximated by F = 5

8
− 3

8
cos(ηdgS/N) [Eq. (9.46)].

We verify that the time profile of the fidelity follows this prediction, and nearly perfect
fidelity is achieved when ηdgS/N = π mod 2π. In Appendix D.5, we also demonstrate that

10For higher-dimensional qudits, while we cannot efficiently simulate the teleportation fidelity, we can still
calculate the correlators Eq. (9.20), which lower bound the fidelity via Eq. (9.43).
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ηdgδS/N = 1

Figure 9.3: Probing operator size width in a 1D RUC. (top) The size width initially grows
as t1/2 and reaches a peak at the scrambling time t∗ ∼ N = 10000. (bottom) We probe
this behavior by measuring the teleportation fidelity of a single qubit with a large coupling
g = 57π ∼

√
N . The fidelity exhibits a distinct decay-revival profile, controlled by whether

the size width has exceeded the threshold gδS/N ≈ 1: nearly perfect fidelity initially, power
law decay towards a trivial fidelity at intermediate times, and partial revival at late times.

teleportation of n > 1 qubits is also possible at intermediate times, as long as their light
cones do not overlap.

Probing the size width—Let us now turn to the time profile of the size width, which
exhibits a peak near the scrambling time in both 1D and 2D. Qualitatively, this behavior
arises from fact that the size width receives contributions from two sources: the interior of
the light cone, and the boundary of the light cone. Within the light cone, we expect a ≥1D
system with a small local Hilbert space to ‘locally thermalize’ as the operator spreads. This
implies that the bulk’s contribution to the size width scales as δSbulk ∝

√
S ∝ tD/2 and

saturates at the scrambling time. Second, the size width also receives contributions from the
light cone’s boundary, which has not yet thermalized. At late times, the boundary of the
light cone reaches the edge of the system and these additional contributions subside, leading
to the peak in the size width at the scrambling time.

To quantify these effects, we note that the growth of operators in ≥1D RUCs is predicted
to fall in the KardarâĂŞParisiâĂŞZhang (KPZ) universality class [238, 340]. In 1D, fluctu-
ations in the light cone boundary have been verified numerically to have a growing width
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∼ tα with the KPZ growth exponent α = 1/2 [340]. This implies that the contribution of
the boundary to the size width is δSboundary ∝ t1/2, and the full width is

δS =

{
(αbulk + αboundary)t

1/2, t . tscr
αbulkt

1/2
scr , t & tscr

(9.57)

We note that the maximum size width relative to the late-time size width is a constant set
by (αbulk + αboundary)/αbulk. Comparing the size width of multiple system sizes, we observe
excellent agreement with predicted scalings over a wide range of system sizes (Appendix D.5).

The time profile of the size width is directly observable in the peaked-size teleportation
fidelity if we scale g ∼ t

1/2
scr ∼ N1/2. In particular, by setting N/g to lie between the maximum

size width and the late time size width, we observe a distinct decay-revival profile for the
teleportation fidelity (Fig. 9.3). At early times, we observe successful teleportation with
an oscillating fidelity. The fidelity decays slowly, as a power law in time, as it receives
corrections proportional to the growing size variance ∼ g2δS2/N2. After the scrambling
time, we see a revival in the teleportation fidelity as the size width narrows. The lack of a
parametric separation between the maximum and late time size widths means that late time
teleportation will also have some finite error for this value of g.

In 2D, we find that the scaling of the size width also matches predictions from the KPZ
universality class. In this case, the width of the boundary scales as ∼ tα, with α = 1/3 [340].
However, to calculate the boundary’s contribution to the size width, one must take into
account two additional considerations. First, the boundary is 1-dimensional, so its length
trivially grows in time as ∼ t. Second, fluctuations of the boundary are expected to have a
finite correlation length, ξ ∼ t1/z, where z = 3/2 is the KPZ dynamic exponent [109]. Thus,
the boundary can be modeled as nξ ∼ t/ξ = t1/3 uncorrelated regions, each of length ξ. Each
region contributes ∼ ξtα to the size width; adding the uncorrelated contributions from all
regions yields a total size width δS ∼ √nξ ξ tα = t1/6+2/3+1/3 = t7/6.

The time profile of the size width in 2D is thus given by

δS =

{
βbulkt+ βboundaryt

7/6, t . tscr
βbulktscr, t & tscr

(9.58)

We confirm these scalings in our numerics (Fig. 9.2(b) and Appendix D.5). Notably, the
size width is now dominated by the boundary contribution at intermediate times, such that
the ratio of the maximum size width to the late time size width scales as t1/6scr ∼ N1/12. As
in 1D, one can probe this behavior using the peaked-size teleportation fidelity, now with
g ∼ N/t

7/6
scr ∼ N5/12. We emphasize that in 2D, the scaling of the size width is determined

by correlations between different points on the light-cone boundary. This goes beyond the
behavior studied in previous works on RUCs, which focus on quantities probed by local
OTOCs.
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0D random unitary circuits

We now turn to random unitary circuits in zero dimensions, a prototypical model for
‘fast scramblers’ [202, 431]. These circuits are constructued as follows: at each time-step,
we partition the N qubits into randomly chosen pairs, and apply independent Haar random
2-qubit unitaries to each pair.

Below we analyze such circuits using theoretical arguments, in combination with numeri-
cal simulations via Clifford circuits. As the later parts of our analysis are rather technical, we
briefly summarize the main results: (i) peaked size teleportation remains possible but only
if the input state is initially encoded in non-local, p-body operators; (ii) even though there
is no complete separation of operator light cones, size addition still occurs at intermediate
times in a probabilistic sense and enables mutli-qubit teleportation; and (iii) the maximum
channel capacity is linear in the number of coupled qubits, K. These results are depicted
numerically in Fig. 9.2(c) and 9.4.

Peaked sizes—In all-to-all coupled systems, operators are generally expected to grow
exponentially in time, S ∼ eλt, where λ is the Lyapunov exponent [431]. The reason is sim-
ple: at each time step, every term in an operator—rather than just those on a ‘light-cone’
boundary—has a fixed probability of spreading under random pairwise unitaries. A some-
what less intuitive expectation is that the size width also generally grows exponentially [379].
One way of understanding this is by imagining two realizations of the dynamics: in one re-
alization the initial operator doubles at the first time and in the other it does not. In effect,
the latter system now lags behind the former by one time step, ∆t, and the difference in
their sizes at later times will be exponentially magnified, to eλt(1− e−λ∆t).

The lack of separation between the size and size width seems to preclude the possibility
of peaked-size teleportation at intermediate times. Nevertheless, we can engineer such a
separation by encoding the information of each input qubit into p-body operators, with
p� 1 [159]. As an example, consider encoding a single qubit into p = 5 qubit operators via

E(X ⊗ 1⊗ 1⊗ 1⊗ 1)E† = Z ⊗X ⊗X ⊗ Y ⊗ Z
E(Y ⊗ 1⊗ 1⊗ 1⊗ 1)E† = Y ⊗ Z ⊗ Z ⊗X ⊗ Y
E(Z ⊗ 1⊗ 1⊗ 1⊗ 1)E† = X ⊗ Y ⊗ Y ⊗ Z ⊗X,

(9.59)

Here, E is a Clifford unitary encoding operation that conjugates state insertion and decoding
[explicitly, replacing U → UE,U∗ → U∗E∗, and UT → ETUT in Fig. 12.1(a)]. The success
of teleportation is now dependent on the size distributions of time-evolved p-body operators,
QA(t) = UEPE†U †, where P runs over the initial unencoded single-qubit Pauli operators. As
we will soon verify explicitly, before the scrambling time the support of each of the p operators
composing QA will be approximately non-overlapping, so that their size distributions will
convolve. Thus, the total operator size is multiplied by a factor of p but, through the central
limit theorem, the size width is multiplied only by √p.

In more detail, consider the size growth of an operator, QA, with initial size S0 = p.
During a single time step, each qubit i in the support of QA(t) is paired with another
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random qubit; for simplicity, we assume the second qubit is outside the support of QA(t),
which should be valid at times well before the scrambling time. Under random two-qubit
Clifford time-evolution, QA(t) grows to have support on both qubits with probability ν =
1− 2(d2− 1)/(d4− 1) (9/15 for qubits). The operator size, St, therefore grows stochastically
in time, according to

St+1 = St +
St∑

i=0

si

= St + Bit(St, ν)

≈ (1 + ν)St +
√
Stν(1− ν)Nt(0, 1)

(9.60)

where each si is a binary random variable that increases the size by 1 with probability ν and
0 with probability 1− ν, and Bit(St, ν) denotes the binomial distribution with St trials and
probability ν, which we can approximate as a normal distribution, Nt(νSt,

√
Stν(1− ν)).

The size at time t can thus be written as a sum of random variables drawn at each time step:

St ≈(1 + ν)tp

+
√
ν(1− ν)

t−1∑

t′=0

(1 + ν)t−t
′−1
√
St′ Nt′(0, 1)

(9.61)

from which we see that the average size grows exponentially in time with Lyapunov exponent
eλ = 1 + ν. Deviations arise at each time step t′, with typical magnitude (1 + ν)t−t

′−1
√St′ ≈

(1 + ν)t−1−t′/2√p. Since this decays exponentially in t′, we can approximate the total varia-
tion, δSt, as the largest term in the sum (t′ = 0), which has magnitude

δSt ∼ (1 + ν)t−1√p ≈ St√
p
. (9.62)

As anticipated, the size width is dominated by early time errors that have exponentially
grown in time, so that the ratio of the size width to the size remains constant at ∼ 1/

√
p

(after some period of growth from its initial value, 0).
To support these claims, we numerically simulate the time-evolved size distribution of

operators with an initial size p ≈ 1000 [Fig. 9.2(c)]. As expected, we observe that the average
size grows exponentially as ∼ peλt and saturates at a timescale t∗ ∼ log(N/p). Moreover, the
size width grows at the same exponential rate but its magnitude is suppressed by a factor of√
p compared to the average size.
To verify that this allows for teleportation, we next compute the fidelity for teleporting

a single qubit, in the regime g � 1. As shown in Fig. 9.2(c), teleportation occurs with near
perfect fidelity beginning at t ≈ t∗ − log(gp), corresponding gS/N ≈ 1. Thereafter, the
teleportation fidelity decreases exponentially in time, consistent with the increase of the size
width. At time t ≈ t∗−log

(
g
√
p
)
, teleportation stops succeeding entirely, since the size width
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has reached the limit δS/N ∼ 1. Finally, at late times t ≈ t∗− log(p), the fidelity revives as
the system becomes fully scrambled and the operator size width narrows to δS ∼

√
S.

Size addition—We now turn to the possibility of teleporting multiple qubits in 0D RUCs.
Within the peaked-size regime, this reduces to the question of whether operator sizes add
according to Eq. (9.55). Satisfying this requirement in all-to-all coupled systems is not as
trivial as in ≥ 1D, since time-evolved operators typically act on overlapping subsystems at
any finite time. Nevertheless, we now provide a simple argument for why size addition holds
despite this.

To do so, we model each time-evolved Pauli operator Qi(t) as an independent random
Pauli string of size S[Qi]. Consider two such strings, P1 and P2, with support on regions A1

and A2 and sizes S[P1] = |A1| and S[P2] = |A2|. The size of the product, P1P2, is the size
of the union A1 ∪A2, minus the number of sites where the two strings overlap and have the
same single-qubit Pauli operator. This occurs with probability 1/(d2− 1) = 1/3 at each site
in the region A1 ∩ A2, giving

S[P1P2] ≈ |A1 ∪ A2| −
1

3
|A1 ∩ A2|

= S[P1] + S[P2]− 4

3
|A1 ∩ A2|.

(9.63)

The deviation from the simple additive rule S[P1P2] = S[P1] + S[P2] is thus controlled by
|A1 ∩ A2|. If the Pauli strings P1, P2 have independently random areas of support, the size
of this intersection scales as:

|A1 ∩ A2| ∼ S[P1]S[P2]/N, (9.64)

which is subleading to S[Pi] at intermediate times (when S/N � 1). To derive this, note that
the probability for both strings to have support on a given qubit is ∼ (S[P1]/N)(S[P2]/N);
summing over N qubits gives the above result.

For n-qubit teleportation, one must consider the combined size, S[P1 . . . Pm], of m inde-
pendent Pauli strings, wherem takes a typical valuem ≈ 3n/4 (a typical n-qubit operator has
non-identity support on 3n/4 qubits). In general, this quantity will receive corrections from(
m
k

)
different k-way intersections of the strings, for all 2 ≤ k ≤ m. For random Pauli strings,

the expected size of these intersections scales as N |A1 ∩ . . . ∩ Ak| =
∏k

i=1
|Ai|
N
∼ Sk/Nk−1,

where S ∼ |Ai| is the typical size of a single Pauli string [see Eq. (9.64) above]. For a
given k, the correction to size addition will be the sum of

(
m
k

)
∼ mk different intersections

and therefore scales as mS(mS/N)k−1. These corrections can be neglected if they are small
compared to the total size; this occurs when mS � N , which corresponds to a timescale
much less than the scrambling time.

To demonstrate this claim, we numerically simulate the teleportation protocol with n > 1
qubits in the regime 1� p, np� K [Fig. 9.4]. Analogous to single-qubit teleportation, the
teleportation fidelity exhibits oscillations beginning at t ≈ t∗ − log(gp), and vanishes at
t ≈ t∗ − log

(
g
√
pn
)
due to the growth of the combined size width. However, in contrast
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to the single-qubit case, teleportation of multiple qubits is not possible at late times, t &
t∗ − log(gpn), as predicted in Section 9.6. Interestingly, between these two regimes, we
observe a partial revival of the fidelity: this indicates that the operator size widths begin to
narrow before the additive condition is completely invalidated.

Error analysis—While we have confirmed that multi-qubit teleportation can be achieved
in certain ideal limits, a key question remains: how does the maximum number of qubits that
can be teleported scale as a function of K, i.e. what is the protocol’s channel capacity? To
answer this question, we now estimate how deviations from these ideal limits lead to errors
in peaked-size teleportation and ultimately constrain the channel capacity. Throughout this
discussion, we assume that the size, S, is extensive, but K is not; this is the natural regime
for probing the channel capacity of the protocol at intermediate times, and is the physical
scenario in the context of traversable wormholes [317]. The details of this and the following
subsection are quite technical in nature, and may be skipped by most readers.

In summary, we identify four distinct sources of error in the multi-qubit teleportation
fidelity, F = 1− ε:

1. Errors due to finite p: ε ∼ ng2S2
K/K

2p

2. Errors due to finite K: ε ∼ ng2SK/K2

3. Errors due to imperfect size addition: ε ∼
[
n2g2S4

K/K
4 + . . .

]
, where ellipses indicate

higher orders in (nSK/K)2

4. Errors due to fluctuations in size addition: ε ∼
[
n2g2S2

K/K
3 + . . .

]
, where ellipses

indicate higher orders in nSK/K

We discuss each of these errors in detail below.
The first and second sources of error are due to imperfectly peaked K-size distributions.

The K-size width receives contributions from finite-p corrections, ∼ SK/√p, and finite-K
corrections, ∼ √SK [see the discussion below Eq. (9.35)]. To translate these into errors in
the teleportation fidelity, we multiply the size width by g/K and take the square. This gives
fidelity errors ∼ g2S2

K/pK
2 and ∼ g2SK/K2 per teleported qubit.

The third and fourth sources of error arise from imperfect size addition. This leads both
to ‘systematic’ errors, due to the average overlap of operators, as well as ‘sampling’ errors,
due to random fluctuations in this overlap. We begin with the systematic errors: as we recall,
the size addition of m time-evolved operators receives corrections from k-way overlaps of the
operators, each scaling as ∼ mSK(mSK/K)k−1, for 2 ≤ k ≤ m (rescaling our previous results
to the K-size instead of the size). The nonlinear dependence on m indicates that sizes do
not add perfectly. Nevertheless, when teleporting an n-qubit initial state for large n, we
can correct for the above effect at leading order by using a linear approximation for mk

about its typical value, (3n/4)k. This leads to an effectively smaller operator size, which can
be observed in the reduced frequency of the fidelity oscillations for 10-qubit teleportation
compared to 1-,3-qubit teleportation in Fig. 9.4(a). The leading errors after this shift are
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quadratic in δm ≡ m−3n/4, which has a typical magnitude δm ∼ √n. Multiplying by g/K
and taking the square, we therefore find multi-qubit fidelity errors∼ (gSK/K)2(nSK/K)2k−2;
at leading order k = 2, this gives ∼ n2g2S4

K/K
4.

Finally, each intersection above is subject to additional random fluctuations about its
average value. When operator sizes are much smaller than the system size, we can treat
each intersection as arising from a binomial process, in which case fluctuations are propor-
tional to the square root of the intersection’s average size (see Appendix D.6 for a detailed
accounting). These add in quadrature for ∼ nk overlaps, producing a total fidelity error
∼ (g2/K)(nSK/K)k.

Channel capacity— To define the channel capacity of the teleportation protocol, we fix
a per qubit error threshold εth, and determine the maximum number of qubits that can be
sent while maintaining a multi-qubit fidelity above this threshold11, i.e. F ≥ 1 − n εth. We
are interested in how the channel capacity scales with the number of couplings, K, while
allowing both g and SK (determined by the evolution time) to vary.

In 0D RUCs, all errors increase with g, so it is optimal to set g to its minimal value,
ηdgS/N = π. This gives a per qubit error

ε

n
∼1

p
+

1

SK
+

[
nS2

K

K2
+ . . .

]
+

[
n2

K
+ . . .

]
. (9.65)

The first term is negligible in the large p limit and so we will neglect it from here on.
We minimize the remaining terms with respect to SK . There are two relevant regimes.

For n .
√
K, the minimum is determined entirely by the leading order contributions in

nSK/K to the error (i.e. neglecting the ellipses). Taking the derivative and setting to zero,
we have the minimum at S(1)

K ∼ K2/3/n1/3. As we increase n, the optimal size approaches the
value S(2)

K ∼ K/n. At this point, size addition errors of all orders (i.e. the ellipses) become
large, and so the true minimum becomes fixed just below S(2)

K . This crossover between these
two minima occurs at n ∼

√
K, at which S(1)

K ∼ S
(2)
K .

The above minima give two distinct scalings for the per qubit error and thus the channel
capacity. The first minimum has a per qubit error ε(1)/n ∼ (n/K2)1/3, which gives rise to a
superlinear channel capacity, n . ε3thK

2. However, as we increase K, this capacity eventually
surpasses the value

√
K. Above this, the optimal size is given by the second minimum, which

has an error ε(2)/n ∼ n/K, and thus the channel features an asymptotically linear capacity,

n . εthK. (9.66)

This is a stronger instance of the strict general bound Eq. (9.56). Intuitively, this channel
capacity arises because the individual K-sizes must be large, SK � 1, for the K-size to
be tightly peaked, while at same time the combined K-size must be much smaller than K,
nSK � K, for the K-sizes to add; hence n� K.

11We note that this definition of channel capacity differs from more conventional definitions [353]; we do
not expect this difference to qualitatively affect the scaling of the channel capacity with K, as the fidelity
drops off steeply above the capacity [Fig. 9.4(b)].
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We test this scaling numerically by simulating the teleportation protocol and measuring
the per qubit fidelity, F (1)

EPR, as a function of n and K. Specifically, for each value of K, we
sweep the number of qubits n and determine the maximum qubits that can be sent before
the infidelity exceeds a threshold, 1−F (1)

EPR = εth. These results are shown in Fig. 9.4(b) and
exhibit a clear linear trend across two orders of magnitude, confirming our prediction of a
linear channel capacity.

A few final remarks are in order. First, while in principle the per qubit fidelity can be
calculated by taking the nth root of the full n-body fidelity, this approach is numerically
unstable for large n. Thus, we instead compute the fidelity of a single qubit, while trying
to send multiple qubits, using an approach derived in Appendix D.5. This amounts to
performing a sum analogous to Eq. (9.45), but only including pairs of Q1 and Q2 that are
equal on all sites except for one.

Second, the range of system parameters that lie within the linear scaling regime is ulti-
mately constrained by the finite total system size, N = 108. In particular, to maximize the
linear scaling regime, we choose p = 101 and εth = 0.07. The former ensures that finite-p
errors are negligible, while the latter allows the number of qubits at the threshold to be
large enough to access the n &

√
K regime but small enough that the operators are initially

dilute, i.e. n� N/p.

Large-q SYK model: infinite temperature

We now demonstrate peaked-size teleportation in a 0D Hamiltonian system, the large-
q SYK model, at infinite temperature. While teleportation at low temperatures in the
SYK model is known to succeed via the gravitational mechanism, teleportation at infinite
temperature was discovered only recently [159]. In addition to showing that this mechanism
is in fact peaked-size teleportation, we also find that, remarkably, all qualitative aspects of
this teleportation match those of 0D RUCs.

The large-q SYK model is defined by the Hamiltonian [316, 379]:

H = iq/2
∑

1≤j1≤...≤jq

Jj1,...,jqψj1 . . . ψjq , (9.67)

where ψi are Majorana fermions, {ψi, ψj} = 2δij, and the couplings are drawn independently
from a Gaussian distribution with zero mean and a variance 〈J2

j1,...,jq
〉 = J2/2q

(
N−1
q−1

)
. This

model is exactly solvable at all temperatures in the large-q, large-N limit [316, 379].
To construct the teleportation protocol for the SYK model, we first define the N -fermion

EPR state,
ψj,l |FEPR〉 ≡ −iψj,r |FEPR〉 , ∀ j = 1, . . . , N (9.68)

From this, the TFD state is obtained as before,

|TFD〉 ≡ e−βHl/2 |FEPR〉 . (9.69)
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Figure 9.4: Teleportation of multiple qubits in 0D RUCs. (a) Many-body teleportation
fidelity, FEPR, as a function of time for teleporting n = 1, 3, 10 qubits with fixed coupling
strength (g = 177π). Compared to a single qubit, the decay-revival profile for multiple
qubits is shifted to earlier times, since multi-qubit operators both have a larger size width
and saturate the system size earlier. Moreover, multi-qubit teleportation is not possible
at late times, resulting in a trivial late-time fidelity (Sec. 9.6). (b) Numerical results for
the channel capacity nmax as function of the number of coupled qubits K, which exhibit a
clear linear scaling. To determine the channel capacity, we compute the maximum per qubit
fidelity F (1)

EPR for a fixed number of qubits, n, and couplings, K, while allowing the coupling
strength, g, and evolution time to vary. For fixed K, F (1)

EPR decreases as the number of qubits
n is increased, as depicted in the inset for K = 9000. The channel capacity nmax is defined
as the maximum number of qubits for which the fidelity is above a fixed threshold (dashed
line).
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For the two-sided coupling, we consider the simple bilinear interaction,

V =
1

2qN

N∑

j=0

iψj,lψj,r, (9.70)

which measures the size of operators in the Majorana string basis, divided by qN [379, 397].
As in 0D RUCs, the size and size width of time-evolved operators in the SYK model

increase exponentially in time, and exhibit a large separation only when initially encoded in
p-body operators. To see this, we can generalize previous computations of size distributions
in the large-q SYK model [379] to initial p-body operators, ψ = ψ1ψ2 . . . ψp; this relies on the
factorization of SYK correlation functions in the large-N limit [159]. After the relaxation
time (t & 1/J), but before the scrambling time (t . log(N/p)/J), the size and size width
are:

S ≈ p

2
e2Jt, δS ≈

√
2qp

4
e2Jt. (9.71)

The scaling δS ∼ S/√p matches that found for 0D RUCs; in particular, ensuring a large
separation between the size and size width requires p � q. Note that our condition for
peaked size distributions depends on the (large) parameter q, through the size width.

This large separation suggests that peaked-size teleportation is possible at early times in
the large-p limit. To verify this, we analyze the two-sided correlator, which is given by [160]

Cψ(t) = 〈e−igV ψr(−t)eigV ψl(t)〉

=

(
1

1 + i g
N

1
4
e2Jt

)2p/q (9.72)

at infinite temperature before the scrambling time12. For large p and early times, we can
approximate the correlator as

Cψ(t) ≈ exp

(
−i g
qN

p

2
e2Jt

)
, (9.73)

using (1 + ix)m ≈ eimx, valid when mx2 ≡ 2p
q

(
g
N

1
4
e2Jt
)2 � 1. We refer to this regime as

the “early time regime”, and analyze its analog in large-N systems at finite temperature in
Section 9.8.

Crucially, as expected for peaked-size teleportation, the early time correlator consists
of an overall phase equal the average operator size, Eq. (9.71), multiplied by g/qN . This
indicates that teleportation succeeds with nearly maximal fidelity beginning when gS/qN ≈
1. Based on its similarity with 0D RUCs, we expect that teleportation in this regime is
capable of teleporting O(K) qubits (Table 9.1); however, we do not calculate this explicitly.

12The inclusion of e−igV in the correlator applies a phase e−ig to the bra on the left side, which conveniently
subtracts off the constant term in V ’s relation to operator size [Eq. (9.26)].



CHAPTER 9. MANY-BODY QUANTUM TELEPORTATION VIA OPERATOR
SPREADING IN THE TRAVERSABLE WORMHOLE PROTOCOL 147

Teleportation continues to succeed until the above approximation breaks down, which occurs
when the size width, δS, becomes of order (g/qN)−1. As for all scrambling systems, the two-
sided correlator is expected to revive at late times, t & log(N/p)/J , at which point the sizes
saturate the entire system [160, 317] (see Section 9.6); this is not reflected in Eq. (9.72),
which is valid only before the scrambling time.

9.8 Interplay between peaked-size and gravitational
teleportation

In this section, we seek to understand the interplay between peaked-size and gravita-
tional teleportation. A central theme in this understanding is a comparison between the
size distribution introduced in Section 9.4, and the winding size distribution introduced in
Ref. [71, 350].

To illustrate the distinction between these distributions, consider a time-evolved Majo-
rana fermion operator, decomposed in a basis of Majorana strings, χ [379, 397]:

ψ(t)ρ1/2 =
∑

χ

cχχ. (9.74)

From this decomposition, one defines the size distribution [379, 397],

P (S) =
∑

χ :S[χ]=S

|cχ|2, (9.75)

and the winding size distribution [71, 350],

f(S) =
∑

χ :S[χ]=S

c2
χ, (9.76)

where S[χ] is the size of the string χ. Note that the size distribution is real-valued, while
the winding size distribution may be complex.

The teleportation correlators [under coupling Eq. (9.70)] are, in fact, directly related to
the winding size distribution [71, 350]:

Cψ(t) = −i
∞∑

S=0

e−igS/qNf(S), (9.77)

which can be derived by explicitly plugging Eq. (9.74) into the teleportation correlator. The
size distribution, by contrast, is related to “one-sided” correlation functions, e.g. Eq. (9.32),
where both instances of the time-evolved operator appear on the same side of the TFD
state [379].

Despite this distinction, we have so far been able to analyze teleportation using the size
distribution, as opposed to the winding size distribution, because the two are equal in two
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circumstances. The first is at infinite temperature, where the coefficients cχ are real because
ψ(t) is Hermitian. The second has been precisely our focus: when size distributions are
perfectly tightly peaked, in which case both distributions approach a delta function.

In what follows, we describe several scenarios in which the distinction between the two
distributions becomes relevant. First we begin in large-N systems, where large-N factoriza-
tion provides a precise relation between the teleportation correlator and the OTOC at early
times. We find that, even in the presence of the large-p encoding, the correlator deviates
from the peaked-size prediction whenever the OTOC contains an imaginary part. Large-
N systems encompass both peaked-size and gravitational teleportation—our results suggest
that the former occurs in systems where the OTOC is real (e.g. at infinite temperature with
large-p encoding, see Section 9.7), while the latter occurs where the OTOC is imaginary (e.g.
at low temperature in SYK) [181, 252]. Second, we review recent results showing that this
deviation eventually leads an O(1) correlator magnitude when the winding size distribution
takes a particular form, thereby enabling teleportation with unit fidelity (see Section 9.3).
This is conjectured to be the microscopic origin of gravitational teleportation [71, 350], and
so we expect it to occur only in low temperature models with a gravity dual. Third, we
return to teleportation in the large-q SYK model and show that this model interpolates
between gravitational teleportation at low temperatures and peaked-size teleportation at
high temperatures. Surprisingly, this interpolation occurs despite the fact that the large-p
encoding ensures a large separation between the size and size width, i.e. the size distribution
naively appears tightly peaked, even at low temperatures. Finally, motivated by this smooth
interpolation, we conclude this section by searching for a ‘dual’ description of peaked-size
teleportation in a bulk gravitational theory. In particular, we argue that strong stringy
effects lead to the same qualitative features as peaked-size teleportation.

Early time teleportation in large-N systems

In Section 9.4, we saw that for peaked-size operators the teleportation correlator depends
only on the first moment of the size distribution, i.e. the average size [Eq. (9.32)]. We will
now show that a more general relationship holds for large-N systems at early times, where we
substitute the average size with the first moment of the winding size distribution. Specifically,
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using Eqs. (9.9-9.15), the first moment of the winding size is given by a two-sided OTOC:

(9.78)

using Eqs. (9.9-9.15). This differs from the one-sided OTOC, for probing the average size
[Eq. (9.32)], in terms of the placement of the thermal density matrix.

To relate the OTOC and the teleportation fidelity, we consider two simplifying assump-
tions. First, we focus on 0D large-N systems, e.g. the SYK model, with a p-body initial
encoding. In such systems, the teleportation correlator in fact factorizes into a product of
single-body correlators (up to 1/N corrections) [159]:

Cψ(t) =
〈
e−igV ψr(−t)eigV ψl(t)

〉

≈
[
〈e−igV ψ1,r(−t)eigV ψ1,l(t)〉

]p
,

(9.79)

where ψ1 is a single-body operator.
Second, generalizing Eqs. (9.35, 9.73), we consider sufficiently early times to work at

leading order in g13:

Cψ(t) ≈ e−igp〈V 〉
[
〈ψ1,rψ1,l〉+ ig〈ψ1,r V ψ1,l〉+ . . .

]p

≈ e−igp〈V 〉〈ψ1,rψ1,l〉p
[

exp

(
igp
〈ψ1,r V ψ1,l〉
〈ψ1,rψ1,l〉

)
+ . . .

]

= (−iGβ)p exp

(
−igp

2q

[
OTOC2

Gβ

−Gβ

])
+ . . .

= (−iGβ)p exp

(
−i gp

2qN
GβF2(t)

)
+ . . .

(9.80)

13In the first line, we use the fact that the thermofield double state has peaked size [379] to pull e−igV
outside the correlator. In the second line we use the expansion (1 + ix)m ≈ eimx. In the third line we use
〈V 〉 = i〈ψ1,lψ1,r〉/2q = −Gβ/2q.
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where Gβ = i〈ψ1,rψ1,l〉 = tr(ρ1/2ψ1ρ
1/2ψ1) is the imaginary time Green’s function, and F2(t)

is the first-order, connected component of the two-sided OTOC [Eq. (9.78)],

OTOC2 ≈ G2
β

(
1 +

1

N
F2(t) + · · ·

)
. (9.81)

Similar to Eq. (9.35), the leading correction to Eq. (9.80) is ∼ pg2[〈V 2〉ψ − 〈V 〉
2
ψ /Gβ], and

the approximation holds when this is small.
Let us now consider the behavior of the teleportation correlator, Eq. (9.80), under

different physical scenarios. We focus on chaotic systems during the so-called Lyapunov
regime, which occurs between the thermalization time, t ∼ O(1), and the scrambling time,
t ∼ O(logN). In this regime, the connected OTOC is characterized by a simple exponential
F2(t) ∼ eλt with a prefactor that is generally complex. As a result, we expect the telepor-
tation correlator to exhibit two distinct effects: (i) the real part of F2(t) causes rapid phase
oscillations in the teleportation correlator, while (ii) the imaginary part increases/decreases
the teleportation correlator magnitude, depending on the sign of the coupling g.

At infinite temperature, F2(t) is strictly real and thus only effect (i) can occur. Indeed,
in this case, the two-sided OTOC directly measures the operator size and Eq. (9.80) is
equivalent to Eq. (9.35). It follows that peaked-size teleportation can be achieved with
perfect fidelity: the teleportation correlator magnitudes are equal to one due to the infinite
temperature, and their phases can be aligned by tuning g or t. More generally, at finite
temperature, F2(t) contains both a real and imaginary part, and the real part—which leads
to effect (i)—is formally distinct from the first moment of the size distribution. Rather,
recent work has shown that Re{F2(t)} is computable via a ladder diagram identity and
is physically interpreted as a ‘branching time’ [181, 528]. Here teleportation is similarly
possible by tuning g or t to align the correlator phases, however the teleportation fidelity is
bounded from above if the correlators do not have magnitude one (Section 9.3).

At the opposite extreme, effect (ii) is dominant in systems with a gravity dual [181,
252] (as well as other maximally chaotic systems, e.g. maximally chaotic 2D CFTs with a
large central charge [161]). In such cases, F2(t) is mostly imaginary and leads to the growth
(or decay) in the magnitude of the correlator. This opens the door to magnitudes greater
than the two-point function, |Cψ(t)| > Gβ, which is not possible in peaked-size teleportation
(Section 9.5). Interpolating between the two above limits, it has been conjectured that the
prefactor of F2(t) is proportional to eiλβ/4π [181, 252]. This would imply that the imaginary
part is dominant if and only if λ ≈ 2πβ, i.e. the system approaches the bound on chaos [315].

Gravitational teleportation and the size-winding mechanism

We now move beyond early times and provide a brief review of how the correlator can
achieve its maximal magnitude, 1, at finite temperatures. This occurs via the ‘size winding’
phenomenon introduced in Ref. [71, 350] as the microscopic mechanism for gravitational
teleportation [160, 317]. We refer the reader to Ref. [350] for a complete discussion of this
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mechanism, including its connection to physical quantities in the bulk gravity theory. As we
emphasize in Section 9.3, maximizing the magnitude of the correlators is necessary for high
fidelity teleportation, but it is not sufficient: we must also align the correlator phases, for
every operator on the subspace to be teleported.

To begin, note that the winding size distribution is normalized to the two-point function,
Gβ ≤ 1, in contrast to the size distribution, which is normalized to 1. From Eq. (9.76),
we see that this norm being less than one implies that the phases of the coefficients cχ are
not perfectly aligned for different strings χ. It is convenient to separate this misalignment
into two classes: first, when coefficients of strings of the same size S are misaligned, which
manifests in the magnitude of f(S) being less than maximal for a given S, and second, when
the phases of f(S) for different sizes S do not align with each other.

We focus on the latter case and, more specifically, consider an ansatz in which the coef-
ficients’ phases wind with the size [71, 350]:

cχ = e−iαS[χ]/q|cχ|, (9.82)

In this case, the coupling of the teleportation protocol, by applying a phase that is also
proportional to the size, can serve to unwind the phases of f(S) at the value g/N = −2α
[see Eq. (9.77)]. This increases the teleportation correlator magnitude from its initial value,
Gβ, to unity. Although seemingly artificial, in the following subsection we show that this
ansatz holds exactly for the SYK model at low temperatures.

Large-q SYK model: finite temperature

We now turn to explore the interplay between peaked-size and gravitational telepor-
tation in an explicit example: the large-q SYK model at finite temperature and large-p
encoding [379]. Despite the fact that this model features a large separation between the size
and size width, we show that teleportation is not governed by the peaked-size mechanism at
low temperatures, due to the presence of strong size winding.

To begin, let us consider the finite-temperature teleportation correlator, given by [159]:

Cψ(t) = (−iGβ)p
(

1

1− g
N

J
2λ
eλt sin(λβ/4) + i g

N
1
4
eλt

)2p/q

, (9.83)

where (Gβ)p = ip 〈ψrψl〉 = (λ/2J)2p/q is the p-body two-point function, and the Lyapunov
exponent λ corresponds to the solution of

βλ = 2βJ cos(λβ/4) (9.84)

and interpolates between 2π/β at low temperatures and 2J at high temperatures. At infinite
temperature, the correlator reduces to Eq. (9.72), and follows our expectations for peaked-
size teleportation (see Section 9.7). At low temperatures, where the model is known to
possess a gravitational dual [249, 252, 316], the correlator behaves substantially differently;
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most notably, its magnitude increases from Gp
β at time zero to unity when gJeλt/2λN = 1

[illustrated in Fig. 12.1(c)].
From this correlator, we can verify the two predictions made in Sections 9.8 and 9.8:

(i) the early time behavior is governed by the two-sided OTOC, and (ii) the size winding
mechanism is responsible for the O(1) peak in the correlator magnitude at low temperatures.
To see the former, we expand the correlator in the early time regime:

Cψ(t) ≈ (−iGβ)p exp

(
− igp

2qN

[
i
2J

λ
eλt sin(λβ/4) + eλt

])
. (9.85)

Indeed, the term in the exponent is directly proportional to the connected piece of the
two-sided OTOC [181],

F2(t) = i
2J

λ
eλt sin(λβ/4) + eλt, (9.86)

matching Eq. (9.80)14. At high temperatures this OTOC is equal to two times the operator
size [Eq. (9.71)], resulting in phase oscillations, whereas at low temperatures the OTOC ro-
tates to become predominantly imaginary, leading to an exponential growth in the correlator
magnitude.

Next, to understand the role of size winding, we must analyze the full winding size
distribution. We can derive this distribution by expanding the teleportation correlator in
powers of e−ig/qN to match Eq. (9.77) [71, 350, 379]. To do so, it is convenient to consider
the exact correlator (before a g/N � 1 approximation) [159, 379]:

Cψ(t) =

(−iGβ)p
(

e−ig/2N

1 + i(1− e−ig/N)[ J
2λ

sin(λβ/4)− i
4
]eλt

)2p/q (9.87)

Rewriting this correlator using Eq. (9.84) and the Taylor expansion,
(

1

1 + (1− e−µ)x

)2p/q

=
1

(1 + x)2p/q

∞∑

n=0

e−nµ
(
n+ 2p

q
− 1

n

)
1

(1 + 1/x)n
,

(9.88)

and identifying the nth coefficient with the winding size distribution, we have:

f(qn+ p) =− (−iGβ)p

(1 + J
2λ
eλteiλβ/4)2p/q

×
(
n+ 2p

q
− 1

n

)
1

(1 + 2λ
J
e−λte−iλβ/4)n

.

(9.89)

14More precisely, the correlator in Eq. (9.85) is missing a factor of Gpβ compared to Eq. (9.80). This same
mismatch is noted in Ref. [379], and is attributed to the large-q limit utilized for the calculation, since in
this limit Gβ approaches 1.
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At intermediate times and large p, the distribution takes a particularly simple form,

f(qn+ p) ≈ (−iGβ)p
(γ + i2α)2p/q

Γ(2p
q

)
n

2p
q
−1e−γne−i2αn (9.90)

where we define the size decay rate, γ, as

γ =
2λ

J
e−λt cos(λβ/4) =

(
λ

J

)2

e−λt, (9.91)

using Eq. (9.84), and the size winding coefficient, α, as

2α = −2λ

J
e−λt sin(λβ/4). (9.92)

The above expression holds when (2p/q)2 � n � 1/γ2, 1/α2. Crucially, the distribution
follows the size winding ansatz, f(n) = |f(n)|e−i2αn. Thus, we recognize that the maximum
in the correlator magnitude occurs when the coupling has unwound the phases of f(n), at
g/N = −2α, as expected from Section 9.8 [71, 350].

The fact that the correlator magnitude increases in time, and moreover reaches an O(1)
value at low temperatures, is a hallmark of gravitational teleportation and signals physics
outside the peaked-size regime. Naively, this result is surprising, as we expect the p-body
encoding to ensure a peaked size distribution. Indeed, the average size and size width remain
separated by √p at all temperatures [379]:

S[ψ(t)ρ1/2]− S[ρ1/2] ≈ p

2

(
2J

λ

)2

eλt =
2p

γ
, (9.93)

δS[ψ(t)ρ1/2] ≈
√

2qp

4

(
2J

λ

)2

eλt =

√
2qp

γ
. (9.94)

This demonstrates that our simple intuition, of judging a size distribution to be tightly
peaked if the ratio between the size width and average size is small, is not always correct.
Rather, in Appendix D.1, we provide a more precise condition for when peaked-size tele-
portation holds, and explicitly show that this condition breaks down for the SYK model at
finite temperature (but remains satisfied at infinite temperature).

Let us now provide intuition for how peaked-size teleportation is modified by size winding
at low temperatures. To this end, we express the SYK correlator in terms of the winding
size distribution parameters:

Cψ(t) ≈ (−iGβ)p
(γ + i2α)2p/q

Γ(2p
q

)

×
ˆ ∞

0

dnn
2p
q
−1 exp(−γn) exp(−i[g/N + 2α]n).

=(−iGβ)p
[

γ + i2α

γ + i2α + ig/N

]2p/q

(9.95)
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Figure 9.5: Schematic of the teleportation protocol from the bulk gravitational perspective
in AdS2, under both (a) semiclassical gravity, and (b) strong stringy corrections. The TFD
state corresponds to a two-sided black hole. Local quantum mechanical operators, ψl/r,
create or annihilate particles near the two boundaries, with wavefunctions Ψl/r (red). The
protocol begins by inserting a particle on the left side, with wavefunction Ψl (red, bottom
left), at time −t, which then falls towards the interior of the geometry during time-evolution
(red line). The two-sided coupling, g

N

∑
i ψi,lψi,r, is then applied, producing a shock wave

(blue) that interacts with the in-falling particle [160, 317]. (a) In the semiclassical limit, the
shock wave shifts the position the in-falling particle outside of the right horizon (dashed),
which enables the particle to reemerge near the right boundary (red, top right) [160, 317].
(b) When stringy effects are present, the scattering amplitude between the in-falling particle
and the shock wave is modified according to Eq. (9.100) [317, 437]. In the highly stringy
limit and at early times, the interaction results in an overall phase shift, θ = gGNAε(∆/2)εeεt

[Eq. (9.102)]. The overlap between the in-falling particle and a particle at the right boundary
is nevertheless non-zero (red, top right), and is given by the unperturbed two-point function,
Gβ = i 〈ψlψr〉. [Note that stringy effects may also modify the initial wavefunctions of Ψl/r,
as we discuss in the context of Eq. (9.104).]

At early times, this integral can be solved using a saddle-point approximation. At infinite
temperature, the saddle point, ns, occurs precisely at the average size, ns = (2p/q)/γ = S/q,
giving the peaked-size correlator, Cψ = (−iGβ)p · exp(−igS/qN). In contrast, at finite
temperature, the size winding α shifts the saddle point in the imaginary direction of the
complex plane, giving ns = (2p/q)/(γ+2iα) and a correlator Cψ = (−iGβ)p ·exp(−igns/qN).
From this, we recognize the saddle point as precisely the two-sided OTOC, ns = p

2q
F2(t).

The inclusion of the size winding in the low temperature saddle point thus has two
effects. First, it contributes an imaginary part to the OTOC and thereby increases the
magnitude of the teleportation correlator. More subtly, it also alters the real part of the
OTOC. At low temperatures, α/γ ≈ βJ � 1, and we can approximate the saddle as
ns ≈ (2p/q)/(2iα) + (2p/qγ)(γ/2α)2. Recognizing S = 2p/γ, we see that the real part of the
OTOC now corresponds to the average size suppressed by two factors of the ratio (α/γ)2.
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Gravity with stringy effects

While the bulk of this paper approaches teleportation firmly through the lens of quan-
tum mechanics, we would be remiss not to explore the analog of peaked-size teleportation
in gravitational physics. Specifically, we would like to ask: is there a teleportation mech-
anism in gravitational systems that shares the same features as peaked-size teleportation?
Such a connection might seem surprising, given the prevalence of peaked-size teleportation
in quantum mechanical models with no apparent connection to gravity. Nonetheless, the
smooth blending between gravitational teleportation and peaked-size teleportation in the
SYK model suggests a positive answer.

Here, we demonstrate—in a particular gravitational geometry, AdS2—that an analog of
peaked-size teleportation indeed occurs when strong stringy corrections [317, 437] are in-
cluded in the gravitational theory15. Intuitively, our results are consistent with our previous
analysis of the SYK model, where, in the dual gravitational theory, increasing the tempera-
ture is known to add stringy effects [252].

Our derivation closely follows that of Ref. [317] and assumes a background familiarity
with the gravitational description of teleportation in AdS2 (a thorough summary of which
can be found in the seminal works of Refs. [160, 317]). In this setting, the teleportation
correlator can be calculated explicitly by considering gravitational scattering in a wormhole
geometry [Fig. 9.5]. We will maintain our SYK notation, so that V consists of K single-body
fermion operators, ψi, and our input operator is a p-body fermion, ψ. The correlator can
be solved for by decomposing the fermion operators in a momentum basis and applying the
scattering matrix:

Csc
ψ (t) = e−ig〈V 〉

ˆ
dkΨr(k, t)Ψ

∗
l (k,−t)

× exp

(
ig

ˆ
dseiδ(k,s)iΨ1,r(s, 0)Ψ∗1,l(s, 0)

) (9.96)

where Ψl/r(k, t) is the wavefunction for the p-body operator inserted on the left/right bound-
ary with in-falling momentum k (and similarly Ψ1,l/r(s, 0) for any single-body operator in
V ), and eiδ(k,s) is the scattering matrix element between ψ(t) and ψ1(0). In pure gravity,
i.e. in the absence of stringy effects, these quantities take the form [317]:

Ψr(k, t)Ψ
∗
l (k,−t) =

(2ike−t)2∆e−4ike−t

iΓ(2∆)(−k)
Θ(−k) (9.97)

δ(k, s) = GNks (9.98)

where we have set β = 2π for convenience, Θ(x) is the Heavyside function, and ∆ = p/q is
the conformal weight of ψ. The single-body wavefunction, Ψ1(s, 0), is obtained by setting
t = 0 and replacing ∆→ ∆1 = 1/q (i.e. the conformal weight of a single fermion).

15We are grateful to Zhenbin Yang and Douglas Stanford for discussions leading to this connection.
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In the semiclassical limit, we can evaluate the correlator by expanding eiδ to linear order
in GN [317]. We find:

Csc
ψ (t) = 〈ψlψr〉

(−i)42∆

Γ(2∆)

×
ˆ ∞

0

dk (−ik)2∆−1 exp
(
−i(g̃GNe

t − 4)k
)
,

(9.99)

where g̃ ≡ g4−∆1∆1/2. This expression is almost identical to the large-q SYK correlator of
Eq. (9.95), setting the size decay rate to zero, γ = 0, and identifying the momentum k in
the gravitational calculation with the size n in the SYK model [448]. Notably, the correlator
diverges at the teleportation time, 4 = g̃GNe

t. In bulk gravity, this divergence is exactly the
light-cone pole between the left and right sides of the traversable wormhole, and is regulated
by including higher order terms in GN or stringy corrections [317].

While the full effects of stringy scattering in an AdS background are not known, we will
take a phenomenological treatment as in Ref. [317, 437]. Here, the total effect of stringy
corrections is to change the scattering amplitude to

δ(k, s) = iGN(−iks)ε, 0 ≤ ε ≤ 1, (9.100)

where ε controls the strength of stringy effects, and varies from 1 in pure gravity to 0 in the
highly stringy limit.

Again expanding eiδ to leading order in GN , and Wick rotating k → −ik, we can write
the correlator as

Cstringy
ψ (t) = 〈ψlψr〉

42∆

Γ(2∆)

×
ˆ
dk k2∆−1e−4k exp

(
−i1+εgGNAεk

εeεt
) (9.101)

where Aε is a constant of order 1. Note that the k-dependence in front of exponential is a
Poisson distribution with a saddle point at ks ≈ ∆/2 in the heavy particle limit, ∆ = p/q �
1. At early times, eεtGN � 1, and for strong stringy effects, ε→ 0, the change in this saddle
point from the scattering, g, is negligible. In these limits, the saddle point approximation
thus gives the correlator:

Cstringy
ψ (t) ≈ 〈ψlψr〉 exp

(
−igGNAε(∆/2)εeεt

)
, (9.102)

which has exactly the same form as in peaked-size teleportation [Eq. (9.38)]16! Specifically,
the correlator is equal to the two-point function, Gβ = i〈ψlψr〉, multiplied by a pure phase.

16Note that the phase in Eq. (9.102) becomes order-one within the Lyapunov regime, i.e. t .
1/ε log(1/GN ), but at sufficiently early times to satisfy GNe

εt � 1. These conditions are consistent as
long as ∆ = p/q is sufficiently large to ensure Aε(∆/2)ε � 1.
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Tentatively, this suggests interpreting the phase as the operator size in a dual boundary
theory. This size,

S/N ∼ GNAε(∆/2)εeεt, (9.103)

grows exponentially in time with a non-maximal Lyapunov exponent, 2πε/β.
A few remarks are in order. First, while in the above treatment the strength of stringy

effects depends on a ‘free’ parameter ε, we expect that in a UV complete theory ε would in
turn depend on the temperature (and other physical parameters). In particular, we expect
ε → 1 at low temperature in theories that are dual to pure gravity, and ε → 0 at high
temperature, where stringy, UV effects should play an important role. This statement also
follows from the point of view of the boundary field theory, since the scattering matrix is
proportional to an OTOC of the boundary theory, which is real at infinite temperature.

Second, if we would like to recover the infinite temperature SYK correlator, Eq. (9.72),
from the scattering computation, choosing a proper ε as a function of β is not enough. One
also needs to modify the wavefunction of ψ, to:

Ψr(k, t)Ψ
∗
l (k,−t) =

ε(2ikεe−εt)2∆e−4ikεe−εt

iΓ(2∆)(−k)
Θ(−k) (9.104)

Such a wavefunction modification due to UV data should be model dependent, and it would
be interesting to understand how to derive this ‘stringy-corrected’ wavefunction from the
bulk point of view. Nevertheless, one particular feature of the modified wavefunction has
a clear motivation from the boundary perspective. Specifically, Wick rotating Eq. (9.104),
k → −ik, leads to a distribution whose width, δk ∼ ∆1/ε, broadens as ε → 0. This
broadening increases the phase variations in the exponential of Eq. (9.101) and results in
the decay of the correlator at the timescale eεtGN/

√
∆ ≈ 1 for small ε. From the boundary

point of view, this decay corresponds to the requirement that the size width must be small,
gδS/N . 1, for peaked-size teleportation, as we saw for 0D RUCs and infinite temperature
SYK (Section 9.7). We expect this decay to be common to many 0D quantum systems at
high temperatures, which suggests that the broadening of the bulk stringy wavefunction as
ε→ 0 might also be a general feature.

Finally, the most obvious effect of a non-unity ε is to change the scattering phase, δ(k, s),
from being real-valued to complex. Indeed, in the strong stringy limit, δ(k, s) becomes purely
imaginary. In general scattering theory, a complex δ means that the scattering matrix,
eiδ, is no longer normalized, and implies the existence of inelastic scattering [437]. Since
peaked-size teleportation is replicated in the limit ε → 0, this suggests a more general
relationship between peaked sizes and inelastic scattering. In Appendix D.8, we demonstrate
that these two phenomena also coincide at infinite temperature, for arbitrary wavefunctions
and scattering amplitudes.
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9.9 Experimental proposals
Having illustrated the wide breadth of physics that enters into the TW protocol, in

this section we outline explicitly how one can probe this physics in the laboratory. We
begin with a summary of the key signatures of teleportation, and how they can be applied
towards (i) characterizing operator size distributions in generic scrambling dynamics, and (ii)
distinguishing generic vs. gravitational scrambling dynamics. For (i), we show that the TW
protocol can be simplified dramatically at infinite temperature, where an equivalent ‘one-
sided’ protocol eliminates the need to experimentally prepare the thermofield double state.
We next present two near-term experimental realizations of the protocol: first with neutral
atoms and second with trapped ions. The fundamental requirement is the ability to time-
evolve forwards and backwards under many-body scrambling dynamics; recent experimental
progress has demonstrated this in a number of quantum simulation platforms [30, 163, 289,
325, 487]. We conclude with a discussion of the effect of experimental error, and a comparison
of the TW protocol with other diagnostics of scrambling physics.

Signatures of the TW protocol

We begin by reviewing the key signatures of the TW protocol, as discussed in the previous
sections and summarized in Table 9.1. We first recall that the simplest experimental signal—
that is, any non-trivial teleportation fidelity of a single qubit—has already been demonstrated
experimentally in the closely-related HPR protocol [61, 274]. As discussed in Section 9.6,
this signifies that the implemented unitary is scrambling but does not distinguish between
peaked-size or gravitational teleportation. In what follows, we discuss two more refined
applications of the TW protocol.

Characterizing size distributions in generic scrambling dynamics—The dynamics of the
teleportation fidelity within the TW protocol can be used to probe the size distributions
of time-evolved operators. This approach relies on the peaked-size teleportation mechanism
and thus applies to generic scrambling systems, including the examples analyzed in Section
9.7 (e.g. RUCs, spin chains, high T SYK).

Specifically, the teleportation fidelity as a function of time exhibits three relevant features.
First, since peaked-size teleportation relies on the width of the size distribution being small,
gδS/N . 1, its success or failure indicates whether the width has surpassed the tunable
value, N/g. Depending on the model and the value of g, this leads to a temporal profile that
exhibits three regimes: initial teleportation when the size width is small, no teleportation
when δS & N/g, and late time teleportation once the size width converges to its small
final value in a finite-size system [as depicted schematically in Fig. 12.1(c) and observed
numerically in 0D RUCs in Fig. 9.2(c)].

Second, within the peaked-size regime, oscillations in the teleportation fidelity as a func-
tion of time, F = 5

8
− 3

8
cos(ηdgS(t)/N) [Eq. (9.46)], provide a direct measurement of the

growth in operator size. In particular, setting g = 2πn+ π, one expects to see n oscillations
in the teleportation fidelity before it reaches its late time plateau. The peaks in these os-
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cillations give the operator size as a function of time: S = (m/n)(1 − 1/d2)N at the mth

peak.
Third, the teleportation of multiple qubits demonstrates the equivalent channel capacities

of peaked-size and gravitational teleportation (Section 9.7). Formally, multi-qubit telepor-
tation probes whether the sizes of time-evolved operators add under operator composition.
While this is trivial when the operators are causally separated, determining the requirements
for size addition under more general dynamics—e.g. all-to-all or power-law interactions—
remains an open question17.

Distinguishing gravitational scrambling dynamics—The TW protocol can also be used as
an experimental litmus test for gravitational dynamics. To this end, we propose to use two
experimental signatures that distinguish between gravitational and peaked-size teleportation:
(i) the teleportation fidelity at low temperature, and (ii) the behavior of the teleportation
fidelity as a function of time, t, and the coupling strength, g. For (i), the observation of
a high teleportation fidelity, ∼ O(1), at low temperatures strongly suggests the occurrence
of gravitational teleportation, since the fidelity of peaked-size teleportation is limited at
such temperatures by the (small) two-point function, Gβ. For (ii), one observes that the
qualitative profile of the teleportation fidelity as a function of time differs between the
two mechanisms (see Fig. 12.1(c) for a comparison between the two, and Figs. 9.2, 9.3
for additional examples of peaked-size teleportation). Namely, keeping g fixed, the fidelity
of gravitational teleportation is expected to display a single peak as a function of time,
whereas the fidelity of peaked-size teleportation is highly oscillatory in time. Furthermore,
gravitational teleportation works only for a specific sign of the coupling, g > 0, while the
peaked-size teleportation fidelity is an even function of g [71, 160, 317, 350].

Contrasting with finite-size effects—Finally, we would like to distinguish many-body tele-
portation from spurious effects that may be seen in the TW protocol at small-size systems.
The most effective way to avoid such signals is by utilizing a coupling gV [Eq. (9.1)] whose
individual terms have a small magnitude, i.e. g/K � 1; this is most naturally achieved by
including many couplings—which requires a sufficiently large system—and setting g ∼ O(1).
In this limit, the action of the coupling is negligible unless local operators have grown signif-
icantly under many-body dynamics, i.e. S ∼ K/g � 1 (see Section 9.4); any teleportation
signal is thus necessarily a result of scrambling dynamics. Furthermore, we expect large-size
operators to generically exhibit smooth size distributions, justifying our approximation (Sec-
tion 9.4) that the teleportation fidelity is governed by the distributions’ first few moments.

Away from this limit, our general framework relating the teleportation fidelity to operator
size distributions remains valid [e.g. Eq.(9.27)]. However, for g/K . 1, we expect the fidelity
to be sensitive to the discrete nature of the size distributions, and our predictions based
on the first few moments may no longer apply. Fortunately, as we show in the following
subsections, none of these complications are evident for experimentally relevant system sizes
(e.g. K ∼ N ∼ 20) and g ∼ O(1) coupling strengths; indeed, our finite-size numerical results

17Indeed, recent work has indicated that, in theories with a gravitational dual, the lack of size addition
is related to a scattering event among infalling particles [188].
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agree very well with predictions from the peaked-size teleportation framework [Fig. 9.7(b)
and 9.8].

Lastly, in the case where g/K ∼ 1, operator growth is no longer necessary for the
coupling to have a strong effect, leading to the possibility of a teleportation signal unrelated
to scrambling. Indeed, for g/K = π, the coupling effectively ‘swaps’ the left and right qubits.
This is made precise for the coupling Vs [Eq. (9.28)], where exp(iπNVs) = (SWAP)YlYr. In
this case, one would observe perfect teleportation fidelity even without many-body time
evolution, i.e. U = 1; in fact, if U is perturbed away from the identity via scrambling
dynamics, the teleportation fidelity would actually become suppressed. The simplest way
to see this is via Fig. 12.1(a)—in particular, any subsequent time-evolution on the right
side of the system is in the wrong direction to refocus the time-evolved state (one would
want to apply U † after the coupling, not UT ). To achieve a large teleportation fidelity,
the combined time-evolution, UTU , would therefore need to preserve the “teleported” state,
〈ψ|UTU |ψ〉 ∼ 1, a situation that is only likely to occur if the dynamics are non-scrambling
(U = 1 is a special case of this) or undergo a late-time, fine-tuned, Poincare-type recurrence.

One-sided implementation of teleportation circuit

Before proceeding to the experimental blueprints, we first introduce a simpler imple-
mentation of the teleportation protocol that works at infinite temperature (Fig. 9.6). The
outcome of this protocol is equivalent to that of the two-sided protocol (up to experimental
errors), yet it eliminates the need to prepare EPR pairs and requires half as many degrees
of freedom. The cost of this simplification is two-fold: (i) it is restricted to simulating an
infinite temperature TFD state, and (ii) it requires a higher depth quantum circuit.

We derive the one-sided implementation from the ‘two-sided’ implementation [copied in
Fig. 9.6 from Fig. 12.1(a)] by sliding all operations from the left side of the many-body
EPR pairs to the right side, using Eq. (9.9). The initial state of the one-sided circuit
thus corresponds to the top left of the two-sided implementation. Namely, we initialize
the K ‘measured’ qubits of subsystem C in a definite outcome state, |o1 · · · oK〉 (purple).
These states should be drawn from the distribution of measurement outcomes, but when
teleporting an EPR pair at infinite temperature they will be uniformly distributed. For the
N −K ‘unmeasured’ qubits, we use the resolution of the identity 1 ∝∑s |s〉 〈s| to replace
the unterminated legs with an initial product state in the computational basis, |oK+1 · · · oN〉
(gray). This state should be sampled from shot-to-shot over all 2N−K basis states, in effect
preparing a maximally mixed state on these qubits. Finally, we include one ancillary qubit
for each qubit to be teleported, whose initial state is sampled over a complete basis |φ〉
for the teleported subsystem (i.e. subsystem A in Section 9.2). Similar to the unmeasured
qubits, this corresponds to the unterminated leg of the thermofield double state when we
insert the teleported qubit |ψ〉 in the two-sided implementation.

Having defined an initial pure state, we now implement the circuit starting from the top
left of the two-sided implementation and proceeding counter-clockwise (Fig. 9.6). The circuit
consists of three successive applications of U or U †, interspersed with a swap gate exchanging
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Figure 9.6: One-sided implementation (right) of the original two-sided teleportation protocol
(left), derived using repeated applications of Eq. (9.9) [replacing U → UT for convenience,
compared to Fig. 12.1(a)]. Blue arrows denote the sequence of operations in the one-sided
protocol, the green band marks the teleported qubit and its corresponding component in
the one-sided protocol, and the red band marks the initial EPR state and its corresponding
component.

subsystem A with the ancillary qubit(s), and operations V̂i = eigoiÔi/K determined by the
initial state of the ‘measured’ qubits. The outcome of the circuit is an EPR measurement
between the ancilla qubit and subsystem A (black arrows).

As one can see in Fig. 9.6, the one-sided implementation no longer performs teleporta-
tion, but rather prepares an EPR pair from an otherwise scrambled, many-body system.
Specifically, we know that upon swapping out, subsystem A is maximally entangled with the
remaining qubits whenever the unitary, U , is scrambling; the one-sided circuit distills this
entanglement into an output EPR pair. This connection has been noted in gravity, where
similar one-sided protocols can be interpreted as distilling the partner operators of emitted
Hawking radiation [515, 516] or observing behind the horizon in the SYK model [266].
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Preparing the thermofield double state

In the previous subsection, we introduced a one-sided protocol that obviates the need
to prepare the highly entangled TFD state. However, this approach was restricted to infi-
nite temperature; at finite temperature, one must implement the original two-sided protocol,
which necessitates preparing a finite temperature TFD state. A number of recent works have
explored the preparation of TFD states variationally using quantum approximate optimiza-
tion algorithms (QAOA) [444, 502, 533]; we note that these preparation strategies require
no additional experimental capabilities beyond those already necessary for the TW protocol.
The optimization step within a QAOA-based TFD preparation relies on a cost function that
requires one to measure the entanglement entropy between the two sides [502, 533]. While
challenging, this can in principle be experimentally realized by either using several copies
of the system [6, 121, 231] or via randomized measurements [142], both of which have been
demonstrated in small-scale trapped ion experiments [77, 298].

Implementation with neutral Rydberg atoms

One particularly promising platform for implementing the traversable wormhole protocol
is a quantum simulator based on neutral alkali or alkaline-earth atoms held in a reconfigurable
and controllable array of optical dipole traps. Recent experiments have already achieved
near-deterministic trapping and loading of atoms into arbitrary geometries in one, two, and
three dimensions [43, 319, 503]. By leveraging the strong dipole coupling between atomic
Rydberg states, high-fidelity analog quantum simulations and digital gates have also recently
been demonstrated [52, 174, 273, 311, 319, 496]. These demonstrations have primarily used
two natural schemes of encoding qubits into neutral atoms:

1. A qubit can be encoded by choosing an atomic ground state |g〉 to be the |0〉 state,
and a highly excited Rydberg state |r〉 with principal quantum number n � 1 as the
|1〉 state [see Fig. 9.7(a)].

2. Alternatively, the qubit states can also be chosen as two long-lived hyperfine ground
states (for alkali atoms or fermionic alkaline earth atoms) or a ground state and a
metastable clock state (for bosonic alkaline earth atoms), such that the |1〉 state can
be coupled to a Rydberg state to perform entangling gates [see Fig. 9.7(c)].

We will show how both encodings can be used to realize the teleportation protocol in
feasible near-term experiments. We find that the first encoding is naturally suited to ‘analog’
time-evolution under the native (Ising-type) Hamiltonian for a Rydberg setup, but is limited
to system sizes of . 30−35 qubits (in one spatial dimension) due to the inability to perfectly
time-reverse long-range interactions. On the other hand, the second encoding is more flexible
and allows for digital time-evolution including RUCs and Floquet dynamics. This time-
evolution can be reversed exactly and is limited only by qubit and gate fidelities. While we
will primarily consider realizations of our protocol in experimental setups where the neutral
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Figure 9.7: (a) In the proposed analog Rydberg teleportation protocol, qubits are encoded
in a ground state |g〉 and a Rydberg state |r〉. Nearest-neighbor interactions (dark blue) can
be time-reversed, but next-nearest neighbor interactions (light blue) cannot. (b) Numerical
results comparing the average state teleportation fidelity for single-qubit teleportation with
perfectly reversed time-evolution (solid) with the proposed, imperfect time-reversal (dashed).
In particular, we implement the one-sided protocol using N = 20 total spins; K = N − 1
‘measured’ spins (i.e. all except the spin encoding |ψ〉), whose single-qubit rotations are
generated by Ôi = Ẑi; and time evolution under the analog Rydberg Hamiltonian [Eq.(9.105)]
with parameters Ωi = .9, ∆i = −1.5, J0 = 1 (for all i). (c) Implementation of U or U † in
the digital protocol, consisting of alternating layers of controlled-phase gates (horizontal
black lines) between nearest neighbor atoms and single-qubit rotations (red boxes). Here,
qubits are encoded in two hyperfine ground states. Insets show possible pulse sequences
to implement the controlled-phase gate and the single-qubit rotations [228]. The full TW
protocol is obtained by inserting this gate sequence (and its Hermitian conjugate) in place
of U , U † in Fig. 9.6.
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atoms are individually trapped in optical tweezers and undergo (near-)resonant excitation to
Rydberg states, we also conclude by discussing how similar physics can be seen in an optical
lattice setup where the atoms are primarily in ground states |0〉 and |1〉, but one of these
states is ‘dressed’ by an off-resonant laser field which couples it to a Rydberg state [168, 373,
522].

Analog implementation—We first consider the encoding where the qubit states |0〉 and
|1〉 correspond to a ground state |g〉 and a highly excited Rydberg state |r〉. While neutral
atoms are effectively non-interacting in their ground states, nearby atoms interact strongly
via van der Waals interactions ∝ n11/R6 if they are both in the Rydberg state, where R is
the distance between the atoms. If one drives the transition |gi〉 ↔ |ri〉 at each site i with
tunable Rabi frequency Ωi and detuning ∆i [see Fig. 9.7(b)], the system will undergo analog
time evolution under the Hamiltonian

H =
∑

i

Ωi

2
Xi +

∑

i

∆i

2
(1− Zi) +

∑

i 6=j

Jij
4

(1− Zi)(1− Zj) (9.105)

where Xi = |gi〉〈ri|+ |ri〉〈gi|, Zi = |gi〉〈gi|−|ri〉〈ri|, and Jij = J0/|i−j|6 is the van der Waals
interaction strength between two atoms at positions i and j.

The Hamiltonian in Eq. (9.105) is scrambling and exhibits a scrambling time limited by
the smaller of J0 and Ωi, t∗ ∼ N/min(J0,Ωi). To minimize the total evolution time, we
set |Ωi| ∼ J0, so that evolution under H for a time ∼N/J0 implements a fully scrambling
unitary U in the teleportation protocol. To implement U †, we reverse the nearest-neighbor
interactions by conjugating time-evolution via Pauli operators Xi (i.e. applying π-pulses) on
every other site. The tunable single-site parameters Ωi and ∆i are then adjusted to ensure
that each single-site term is also reversed. We note that this simple scheme does not reverse
the (much weaker) next-nearest-neighbor interactions.

In a one-dimensional array, the errors in our implementation will arise from two main
sources: (i) the finite lifetime of the Rydberg state, which gives rise to a nonzero decoherence
rate at each of the N sites, and (ii) the weak next-nearest neighbor interactions ∼J0/2

6 =
J0/64, which cannot be time-reversed simultaneously with nearest neighbor interactions. To
estimate the effect of the former, let us consider the specific case of 87Rb atoms excited to
the 70S Rydberg state [52, 273], which has a lifetime τ ≈ 150 µs. Realistically achievable
Rabi frequencies and interaction strengths are of order ∼ 2π×10−100 MHz. The total time
to implement the three scrambling unitaries of the teleportation protocol is thus ∼ 3N/|Ωi|;
when summed over N qubits and compared to the Rydberg lifetime, this gives an estimated
many-body error ∼ 3N2/|Ωi|τ .

In order to precisely characterize the effects of imperfect backwards time-evolution, we
perform large-scale numerical simulations of the teleportation protocol with the Rydberg
Hamiltonian, Eq. (9.105) [1]. Our results are depicted in Fig. 9.7(b) for a one-dimensional
chain of N = 20 atoms and three values of the coupling g. Analogous to our 1D RUC
numerics [Fig. 9.2(a)], the fidelity increases monotonically in time for g = π; while, for
g = 2π and g = 3π, the fidelity oscillates in time, reaching a local maximum whenever the
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Figure 9.8: Finite-size scaling of the Rydberg simulations (a) as a function of time with
g = π, and (b) as a function of coupling strength g with t = 12. The system was evolved
under the Rydberg Hamiltonian, Eq. (9.105), with the same system parameters as in Fig. 9.7.
At late times, the fidelity increases for larger systems but decreases for larger values of g.
This is consistent with our error analysis in Section 9.6; in particular, we expect the error
to scale as g2δS2/N2 and the size distribution to approach a binomial distribution for which
δS ∼ S/

√
N . In contrast, at early times, smaller systems exhibit a larger fidelity not because

of the size width but because the acquired phase is ηdgS(t)/N , where ηdg is fixed and S(t)
is initially independent of size. The curves in (a) intersect near the scrambling time due to
the transition between the early and late time regimes.

average size satisfies the phase-matching condition [Eq.(9.36)]. Notably, even with perfect
time reversal, the overall fidelity is reduced from unity due to the finite width of the size
distribution. This is a general feature of peaked-size teleportation in finite-size systems, since
the relative size width scales as δS/S ∼ 1/

√
N (Section 9.6). Indeed, in Fig. 9.8, we confirm

that the fidelity improves with increasing system size and is consistent with our peaked-size
error analysis [e.g. see Eq. (9.35)].

With imperfect time reversal, we observe an additional ∼ 10% reduction in the fidelity
compared to the ideal case at the scrambling time [Fig. 9.7(b)]. We can estimate the mag-
nitude of this effect by assuming errors due to the next-nearest-neighbor interactions add
coherently over time-intervals δt ∼ 1/J0 (the local thermalization time), and incoherently at
larger time-scales. Within each δt, each atom accumulates an error ∼ (δt J0/64)2; summed
over N atoms and total time 3t∗ ≈ 3Nδt, this gives a total many-body error ∼ 3N2/642.
Thus, the error due to imperfect time reversal is magnified at larger system sizes and will
eventually outweigh the improvement in fidelity from the narrowing of the size distribution.
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Combined with the Rydberg lifetime error, this suggests that near-term experiments
should be able to implement peaked-size teleportation in systems of N ∼ 35 qubits. We note
that in higher dimensions, the smaller relative distance of next-nearest neighbor atoms gives
rise to a larger error contribution from imperfect time-reversal.

Digital implementation—To implement the protocol in larger systems, higher dimensions,
and at finite temperature, we propose a digital scheme, using the second type of qubit
encoding (i.e. hyperfine ground states) [Fig. 9.7(c)]. In this approach, we envision time-
evolution to be formed from alternating layers of nearest-neighbor controlled-phase gates
and single-qubit rotations. Here, the controlled-phase gates can be implemented by applying
a simple pulse sequence to excite and de-excite qubits from the |1〉 state to the |r〉 state, so
that the wavefunction acquires a phase of −1 if either of the two qubits are in the |1〉 state,
but not if both qubits are in the |0〉 state [see Fig. 9.7(c) insets] [228]. As demonstrated in
recent experiments [288], these Rydberg-mediated controlled-phase gates can be performed in
parallel for sufficiently well-separated pairs of qubits, and non-nearest neighbor interactions
can be avoided by slightly reducing the parallelism within each layer of controlled-phase
gates. Single-qubit rotations can be performed with sufficiently high fidelity such that the
overall circuit fidelity is primarily limited by the entangling gates [287, 503].

For a generic choice of gates, the circuit will be fully scrambling when U is composed of
∼ N layers of controlled-phase gates. The fidelity of the overall implementation is limited
by the finite lifetime of the Rydberg state, which is populated for time ∼ 1/J0 during each
controlled-phase gate. Assuming the same experimental parameters as in the analog case,
one expects to be able to perform approximately Ωτ ∼ 103−104 controlled-phase gates within
the decoherence time-scale. Thus, in the digital approach, one expects that the teleportation
protocol can naturally be implemented for N ∼ 200 qubits.

The digital approach can also be adapted to experiments using Rydberg-dressed neutral
atoms in an optical lattice [168, 373, 522]. In such a setup, qubits are again encoded in hy-
perfine ground states and strong Ising-like interactions are generated by coupling the qubit
state |1〉 to a Rydberg state with a far-detuned laser field. In this way, the Rydberg interac-
tion gives rise to an energy shift for two neighboring atoms both in the |1〉 state. Analogous
to our previous discussion, a simple scrambling unitary could consist of alternating layers of
Rydberg-dressed interactions and single-qubit rotations. While the total accumulated error
in the Rydberg-dressing approach is comparable to the gate-based protocol, one potential
advantage is an increased tunability of the interactions [57, 285].

In addition to scrambling time evolution, there are three ingredients to implement the
one-sided teleportation circuit (Fig. 9.6): (i) the ability to ‘swap’ in the qubit |φ〉, (ii)
single-qubit rotations, Vi = e±igZi/K , and (iii) the final measurement in the EPR basis.
In both digital setups, these are easily accomplished by combining controlled-phase gates,
arbitrary single-qubit rotations, and local measurements. In the analog setup, we propose to
temporarily ‘turn off’ the Hamiltonian by transferring each Rydberg state |r〉 to a hyperfine
ground state (e.g. the state used as |1〉 in the digital protocol) using a resonant laser pulse.
Once this is done, all of the above operations can be performed identically as in the digital
setup. Afterwards, an additional resonant laser pulse returns the system to the analog
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Figure 9.9: (a-b) Chain of atomic ions, with qubit states |0〉, |1〉 represented by hyperfine
ground states. The states are coupled by a pair of laser beams, one with individual addressing
(with strength g1, purple) and one applied globally (with strength g2). Each beam is strongly
detuned from an excited state |e〉 by an amount ∆. The coherent beatnote between the
beams, at frequency ω0, drives stimulated Raman transitions between the qubit levels with
an effective Rabi frequency g1g2/2∆, and also modulates the Coulomb interaction between
qubits to give rise to an effective Ising interaction. (a) A two-qubit entangling gate, XXij(θ),
(red) is performed by addressing only ions i and j with the first beam. (b) Half of the qubits
are addressed, which leads to analog time-evolution under the Hamiltonian Eq. (9.106) (blue)
for all addressed spins. (c) Quantum circuit implementation of the teleportation protocol
at finite temperature. EPR pairs are formed using two-qubit gates. The TFD state is then
prepared via a QAOA approach by iterating multiple times between two-qubit gates coupling
the sides and analog time-evolution on both sides individually [502, 533]. The state |ψ〉 is
inserted either by projectively measuring the designated qubit and preparing the state, or by
digitally swapping in an additional qubit (not shown). Finally, teleportation is implemented
using similar ingredients as well as feed-forward measurements (purple dotted lines).

encoding. The ancillary qubit can be decoupled from the system qubits during Hamiltonian
time-evolution in two ways: (i) by physically positioning the ancillary qubit far from the
system, or (ii) by encoding the ancillary qubit in the hyperfine subspace throughout time-
evolution.

The two-sided, finite temperature TW protocol can be achieved by combining the above
techniques with TFD preparation as in Section 9.9. A particularly natural geometry for
such a realization would be two parallel chains of Rydberg atoms, with each chain forming
one side of the TFD state. The coupling between the two sides is naturally realized by the
atoms’ Ising interactions. This coupling can be applied independently from the one-sided
Hamiltonian using either full digital control or by manipulating the inter- vs. intra-chain
atomic distance.
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Implementation with trapped ions

A second experimental platform that naturally enables the implementation of the TW
protocol is arrays of individual trapped atomic ions [63, 473, 526]. Trapped ion qubits feature
near-perfect replicability, negligible idle errors, and the ability to implement both a universal
set of reconfigurable quantum gates [91] as well as analog long-range spin Hamiltonians [59,
333]. Entangling quantum gates have been demonstrated between isolated pairs of trapped
ions with fidelities exceeding 99.9% [35, 158]. Teleportation protocols—including the HPR
protocol [274]—involving gate operations, partial measurement and feedforward operations,
have been experimentally realized in a number of contexts [44, 274, 357, 393].

Compared to Rydberg atom arrays, trapped ions offer two new regimes for explor-
ing many-body teleportation. First, trapped ions naturally interact via a long-range ana-
log Hamiltonian, whose time-evolution can be fully reversed within certain experimental
regimes [261, 458]. Implementing the TW protocol in this setting would provide a window
into operator spreading and size distributions under such long-range dynamics [144, 531].
Second, when operated digitally, the same long-range interaction has already been demon-
strated to enable the preparation of thermofield double states [322, 444, 502, 533], a crucial
step towards realizing the two-sided TW protocol at finite temperature (see Section 9.9).

We begin by outlining the analog and digital forms of time-evolution that are possible
in trapped ion systems. Interactions between qubits typically stem from state-dependent
optical dipole forces that off-resonantly drive motional sidebands of the qubit [104, 339].
These sideband operations mediate entanglement and give rise to an effective Ising coupling.
When the optical forces are symmetrically detuned far from the upper and lower sidebands,
the motion is only virtually excited, resulting in a long-range Ising Hamiltonian [Fig. 9.9(b)]:

H =
∑

i<j

JijXiXj +Bz

∑

i

Zi, (9.106)

where Jij ≈ J0/|i− j|α, with 0 < α < 3 and J0 . 1 kHz, and the effective magnetic field Bz

can be realized by slightly asymmetrically detuning the driving field [332]. The sign of the
couplings can be reversed by changing the detuning of the optical forces from the motional
sidebands [261, 458].

On the other hand, when the optical dipole forces are closer to resonances of the motional
modes, one can mediate interactions significantly faster, allowing for the execution of rapid,
entangling quantum gates between pairs of illuminated ion qubits [Fig. 9.9(a)] [126, 536].
The native entangling gates are based upon Ising interactions between any selected pair of
ions with a tunable interaction angle; in particular, bothXXij(θ) = e−iθXiXj/2 and Y Yij(θ) =
e−iθYiYj/2 gates are available and θ = π/2 naturally creates an EPR pair [274, 501]. Typical
entangling operations have duration 1/Jent ∼ 100 µs, while decoherence time-scales are
on the order of τ ∼ 400 ms [127]. Following the estimates of Section 9.9 and requiring
3N2/Jentτ . 1, we estimate that near-term state-of-the-art experiments can support high-
fidelity many-body teleportation for up to N ∼ 35 qubits.
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Let us now describe an implementation of the one-sided TW protocol (Fig. 9.6). We
first focus on the ability to implement both U and its inverse U †. For analog time-evolution
[Eq. (9.106)], U † can be implemented by changing the sign of the detuning [163], while for
digital time-evolution, one can directly invert and reverse the ordering of the quantum gates.

The one-sided protocol also requires the ability to locally address a sub-extensive number
of individual qubits. In particular, a subset K of the qubits must be initially prepared in
a product state, |o1, . . . , oK〉 and later rotated by V̂i = eigoiÔi/K . These rotations can be
achieved by taking Ôi = Ẑi and individually addressing the target ions using an auxiliary
“poke” laser beam [440, 526].

Following the first application of U , one must swap out the qubit(s) corresponding to the
teleported subsystem. This swap can be implemented either digitally by applying a SWAP-
gate, or physically, by exchanging the two ions via a modulation of the ion trap’s axial fields
[209, 241, 333].

Extending this implementation to the two-sided protocol [Fig. 12.1(a)] is straightforward.
Initialization into EPR pairs (for infinite temperature) can be accomplished via simple Ising
gates at the input of the circuit [Fig. 9.9(a,c)], while the TFD state (for finite temperature)
can be prepared via variational methods (Section 9.9). Time-evolution can again take the
form of either digital quantum gates [Fig. 9.9(a)] or analog Hamiltonian dynamics. To
separately implement analog dynamics on the two sides of the system, one would illuminate
only half of the ion chain at any given time [Fig. 9.9(b)]; this has the added benefit of avoiding
unwanted coupling between the left and right sides, but implies that the time-evolution must
be performed serially [Fig. 9.9(c)].

Finally, in the two-sided protocol, one must perform projective measurements on K
qubits that feed-forward to the conditional rotations, V̂i. These partial measurements can
be accomplished by using multiple ion species (i.e. different elements or isotopes) [44], or
alternatively, this entire procedure can be replaced with a specific interaction, eigV , between
the two sides; this interaction is naturally realized via an XXij(θ) gate with θ = 2g/K.

Effects of experimental error and relation to quantum error
correction

We now turn to the effect of experimental error on the TW protocol. We find that tele-
portation is robust to nearly all errors that occur on the left side of the TFD state after
time-evolution by U , but is strongly sensitive to errors at nearly all other locations in the
protocol. These two extremes are emblematic of two different relations between scrambling
and error: the former corresponds to interpretations of scrambling as an error-correcting
code [202], while the latter reflects recent results showing that the effect of errors on scram-
bling measurements is enhanced proportional to the size, S, of time-evolved operators [427].
In the following discussion, we demonstrate each of these points through simple but repre-
sentative examples of experimental error.

We begin with the first case: consider errors occurring on the left side of the TFD state
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after application of U but before measurement/coupling. Recall that, in the absence of error,
one can perform teleportation by using any K ∼ O(1) qubits of the left side. This implies
that teleportation is robust to any errors that affect only N − K qubits: as long as one
has knowledge of at least K qubits that are unaffected, measuring these qubits performs
teleportation identically to the error-free case.

This robustness reflects previously noted connections between scrambling and quantum
error correction [202]. In particular, we note that many-body teleportation can be under-
stood as an especially generic example of entanglement-assisted quantum error correction
(EAQEC) [74]. Indeed, the setup for EAQEC is identical to that of the teleportation pro-
tocol: two parties, Alice and Bob, share entanglement (the TFD state), Alice applies an
encoding circuit to her share of qubits (the left unitary, U), and decoding is achieved by tele-
porting Alice’s quantum state to Bob’s share of qubits (via the coupling, V , and unitaries on
the right). Previous schemes for EAQEC have focused primarily on encodings via Clifford
unitaries. In contrast, many-body teleportation, and more specifically peaked-size teleporta-
tion, succeeds for a vastly broader class of encoding procedures—i.e. scrambling many-body
time dynamics—indicating that naturally occurring, strongly interacting systems offer novel
methods of EAQEC.

On the other hand, errors that occur during encoding or decoding—i.e. during the appli-
cation of U on the left side or at any point on the right side—strongly inhibit teleportation.
As a first example, consider a single local error, W1, occurring with probability ε on the right
side after coupling but before UT (i.e. just before decoding). If the error, W1, grows to have
a size, S, after UT is applied, one estimates that it will decrease the teleportation fidelity
by an amount, 1 − F ∼ εS/N , proportional to the probability that W1 has support on the
teleported qubit after time-evolution. If we sum over such errors on all N qubits, we have
1− F ∼ εS.

As a second example, consider a local error, W2, occurring with probability ε on the
left side simultaneously with state insertion (e.g. a damaged TFD state in Fig. 12.1). In
effect, this error shifts the correlator operators [Eq. (9.2)], Q → Q ⊗ W2; following the
arguments of Section 9.7, one then requires that the sizes add for teleportation to succeed,
S[QW2] = S[Q] + S[W2]. In a 1D short-range system (Section 9.7), this condition holds if
and only if the light cones of W2 and Q do not overlap. For O(εN) randomly distributed
errors, we expect this to hold as long as the spacing between errors, 1/ε, is much larger
than the size of the light cone, εS � 1. A similar scaling holds in 0D (Section 9.7). Here,
we expect size addition to hold as long as the size of the total error (corresponding to a
time-evolved product of ∼ εN initially local operators), is much smaller than the system
size, N . Once again, this requires εNS � N , or εS � 1.

The two previous examples are straightforwardly generalized to errors that accumulate
continuously throughout time-evolution. To do so, we replace the error probability with an
error rate, ε (now with units of inverse time). The total effect of the error is then given by
the integral of the error rate multiplied by the size over time, ε

´ t
0
dt′ S(t′) [427]. In one-

dimensional systems evolved up to the scrambling time, i.e. S ∼ Jt and ts ∼ N/J for a
local interaction strength J , we thus estimate a total error, ε

´ ts
0
dt′Jt′ ∼ εSts ∼ εN2/J , in
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agreement with our rough estimates in Sections 9.9 and 9.9.
Finally, we consider a particular form of error that may be relevant for analog time-

evolution: mismatches between the evolution times of U , U∗, and UT . We denote these
three evolution times as t1, t2, t3, respectively, and their mismatches as ∆t12 = t2 − t1 and
∆t13 = t3− t1. We can characterize the mismatches’ effect on the teleportation fidelity using
the correlators, CQ(t1, t2, t3) = 〈U∗r (t3)QrU

T
r (t3)eigVUl(t1)QlU

†
l (t2)〉 (Section 9.3). From this,

we anticipate that the protocol is relatively insensitive to mismatches between t3 and t1, t2:
teleportation succeeds as long as the mismatch is small compared to the local interaction
strength, J , i.e. J∆t13 . 1. To estimate this, we set g = 0 and t1 = t2 in which case the
correlator magnitude is given by an autocorrelation function, CQ = 〈Q(t1)Q(t3)〉 = G(∆t13).
The teleportation fidelity is bounded above by this expression, which decays on a time-scale
∼ 1/J . On the other hand, teleportation is more strongly sensitive to the mismatch between
t1 and t2. To estimate this, we treat the difference in time-evolution between U and U∗ as a
product of ∼ (J∆t12)2N local errors occurring simultaneous with state insertion (to motivate
this scaling, note that one can approximate U(∆t12) as a product of ∼N local unitaries for
small ∆t12, and we expect the error to be an even function of ∆t12). Following our previous
analysis, teleportation is successful as long as S(J∆t12)2N � N , or S(J∆t12)2 � 1.

Directly measuring the size distribution

In Section 9.9, we discussed that the time profile of the teleportation fidelity reveals
important features of the operators’ size distributions, including the average operator size
and the size width. We now demonstrate that a more precise characterization of the operator
size distribution can be obtained by sweeping the coupling strength, g, at a fixed time, t.

For simplicity, we restrict to infinite temperature18 and the coupling Vs in Eq. (9.28),
which precisely measures the operator size. In this case, the two-sided correlator [Eq. (9.2)]
is equal to the characteristic function, ΦS(g), of the size:

CQ(t) = eig
∑

S

P (S)e−igS/N ≡ eigΦS(g) (9.107)

from which the size distribution can be obtained by a Fourier transform in g.
More precisely, to measure the real part of the characteristic function (i.e. the teleporta-

tion correlator), we perform the teleportation protocol with two small modifications: (i) we
replace state insertion with the specific projection operator, (1 +Q)/2, and (ii) we measure
the expectation value of Q applied to the right side, instead of the teleportation fidelity.

18At finite temperature, a similar procedure to what follows determines the winding size distribution
discussed in Section 9.8 [350]. The size distribution can be determined by moving the final measurement of
the TW protocol to the left side.
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This yields the quantity:

〈EPR| 1 +Ql(t)

2
e−igVsQr(−t)eigVs

1 +Ql(t)

2
|EPR〉

= Re
[
〈EPR| e−igVsQr(−t)eigVsQl(t) |EPR〉

]

= Re
[
ϕS(g)

]
,

(9.108)

where in the second line we use that the “diagonal” terms between the two copies of (1+Q)/2
vanish at infinite temperature. The imaginary part of the characteristic function can be
obtained similarly, by replacing state insertion, (1+Q)/2, with an application of the unitary
operator, (1 + iQ)/

√
2. Analogous to Fig. 9.6, both of these measurement schemes can be

adapted into one-sided protocols using Eq. (9.9) whenever the coupling V is classical (i.e.
composed of terms Oi,lO

∗
i,r, where {Oi} mutually commute). While such couplings do not

measure the exact size distribution, we expect their behavior to be similar in most cases
(Section 9.4).

For completeness, we also note an alternate method to measure the size distribution: one
prepares the state Ql(t) |EPR〉 and directly measures the two-sided coupling Vs. The prob-
ability distribution of the measurement results gives the size distribution [see the discussion
below Eq. (9.28)].

Let us now compare these two protocols to other schemes for characterizing the size
distribution of operators. First, we recall that a sum of local OTOCs yields the average
operator size [Eq. (9.32)]. Hence, many existing protocols for measuring local OTOCs [451,
512] can be straightforwardly adapted to measuring the average size. Higher order moments
of the size distribution can similarly be obtained from local OTOCs, using Eq. (9.28):

〈(1− S/N)n〉 = 〈V n
s 〉Q

=
1

Nn

∑

Pi1 ,...,Pin

tr(Q(t)
n∏

k=1

Pik Q
†(t)

1∏

k=n

P †ik).
(9.109)

where the sum is over every possible combination of n single-qubit Pauli operators Pi1 , . . . , Pin .
Based on this approach, however, the number of measurements required to determine the
nth moment scales as O(Nn). In certain situations, this scaling may be reduced through
sampling, though this depends on the nature of the size distribution and the desired degree
of precision. Furthermore, reconstructing the full profile of the size distribution from a finite
number of moments is generally a difficult numerical task [230]. In contrast to these limi-
tations, our proposal directly yields the full size distribution, and can recover its moments
with a number of measurements independent of the system size19.

19This is simplest to see in the protocol which measures the two-sided coupling Vs. Here, the error in
one’s measurement of the nth moment is equal to the expectation value of the moment’s variance divided by
the number of measurements, (δ〈Sn〉)2 = (〈S2n〉− 〈Sn〉2)/M . If one wishes to resolve the moment to within
a relative error ε, i.e. δ〈Sn〉 < ε〈Sn〉, one requires M ∼ 〈S

2n〉−〈Sn〉2
ε2〈Sn〉2 measurements. This number does not

scale with N since it contains the same powers of S in the numerator and denominator.
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We can also compare our proposal to an independent protocol for measuring the size
distribution introduced in Ref. [381]. The protocol of Ref. [381] is experimentally simpler
than our own, and in particular involves only a single application of time-evolution by U (and
no backwards time-evolution). However, this simplicity comes at a cost: resolving high-size
components of the distribution requires a number of measurements that scales exponentially
with size.

9.10 Discussion and outlook
This Chapter develops a unified framework for understanding many-body teleportation

from the perspective of operator growth under scrambling dynamics. The unifying concept
within this framework is the size distribution of time-evolved operators [71, 350, 379, 381,
397]: these form the backbone of peaked-size teleportation, and provide a more fine-grained
measure of operator growth compared to the average operator size (as given by the expec-
tation value of OTOCs).

Our work suggests several future directions for applying and building upon this frame-
work. First, while we have studied the size distributions in 0D and ≥ 1D RUCs, it would
be interesting to extend this analysis to a multitude of other physical systems, where one
expects to find qualitatively distinct behavior. These include long-range interacting sys-
tems [144, 464], interacting and non-interacting integrable systems [381], ≥ 1D systems with
a large on-site Hilbert space [182], 0D systems with sparse couplings [49], and systems with
conserved quantities [246].

Another set of open questions concerns the notion of operator size at finite tempera-
ture. In systems with peaked size distributions, we found that the phase of the two-sided
teleportation correlator was directly proportional to the conventional definition of operator
size [379]. Surprisingly, we observed that this relationship did not hold in the finite tem-
perature SYK model; rather, the phase was given by the real part of the two-sided OTOC.
Unlike the conventional size, this OTOC is not UV divergent, and is thus expected to be
inherently independent of the microscopic Hilbert space. Recent work has shown that its
real part isolates an incoherent component of operator spreading in large-N models [181];
further work is needed to establish and expand this framework. Related to these considera-
tions, one may hope to better understand the bulk analogue of operator size in theories dual
to gravity with strong stringy effects. While we have seen that stringy effects can mimic
peaked-size teleportation, developing a physical interpretation of this correspondence would
be extremely exciting.

Third, we have shown that a promising application of the teleportation protocol is to
distinguish between different classes of scrambling dynamics. In particular, we have focused
on two classes of scramblers—generic thermalizing systems and those with gravitational
duals—and demonstrated that the key distinction between them is their teleportation fidelity
at low temperatures. It is intriguing to ask whether the fidelity increase associated with
gravitational teleportation may also occur in other systems, without a gravitational dual. For
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instance, recently the teleportation correlator magnitude was observed to increase slightly
above Gβ in non-local random Hamiltonian systems [71, 350]; generalizing this to other
physical models would be of tremendous interest.

One may also wonder what role an extensive low temperature entropy—a key feature of
the SYK model [316]—plays in the teleportation process. In particular, how well can systems
with extensive low temperature entropy but no known gravitational dual teleport [18, 415]?
We conjecture that an extensive entropy would allow one to locally encode each qubit into
low-energy degrees of freedom (i.e. operators with an O(1) two-point function), since one
would only require O(1) qubits on the left side of the TFD in order to have one qubit of
mutual information with the right side. Such an encoding would allow low temperature
teleportation with perfect fidelity if operator sizes were peaked, naturally motivating the
study of operator size distributions in such models.

Finally, we would like to discuss the relation between our results on the TW protocol and
the eternal traversable wormhole (ETW) introduced in Ref. [314]. In the latter, the coupling,
V , has an O(1) coefficient and, moreover, is applied simultaneously with single-sided Hamil-
tonian evolution (i.e. the full system evolves under a Hamiltonian, Hl +Hr + g

∑
j Oj,lO

∗
j,r).

Under these conditions, Refs. [314, 371] find that the ETW teleportation fidelity oscillates in
time under gravitational dynamics, indicating that information is transmitted back and forth
between the two boundaries. Intriguingly, unlike the TW protocol, the ETW oscillations oc-
cur at a time-scale given by the single-sided thermalization time (∼β, the inverse effective
temperature), and not the scrambling time. Developing a microscopic understanding of the
ETW in terms of operator spreading, as well as exploring analogous physics in more generic
many-body systems, remains an exciting open direction.
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Chapter 10

Operator growth in open quantum
systems

Continuing the theme of Chs. 7 and 8, in this Chapter we provide a more complete picture
of the behavior of quantum information scrambling [293, 365, 398] under noisy quantum
dynamics. Interestingly, our results apply not just to scrambling experiments [61, 77, 111,
138, 139, 163, 224, 233, 274, 289, 326, 416, 418], but also to a broader class of experiments
that involve time-reversal operations, such as the Loschmidt echo [173, 303]. In this sense,
we can view our results as an application of the framework of quantum information dynamics
to questions that long pre-date their modern study.

As we’ve briefly explored in Chs. 7 and 8, the interplay between scrambling dynamics,
extrinsic decoherence, and experimental noise motivates an essential question: What is the
nature of quantum information scrambling in open quantum systems [8, 21, 28, 30, 37, 55,
197, 274, 326, 450, 463, 473, 518, 529]? Despite the importance of this question, previous
studies have been largely empirical and a unified cohesive understanding is lacking.

In this Chapter, we introduce a universal framework—based upon operator size distribu-
tions [340, 379, 397, 429]—for capturing the effect of local errors on scrambling dynamics.
In particular, we conjecture that the propagation of errors in chaotic many-body systems
is fundamentally controlled by the size distributions of time-evolved operators and indepen-
dent of the microscopic error mechanism. Our framework immediately offers predictions for
both the Loschmidt echo and out-of-time-ordered correlation (OTOC) functions [277, 506].
In particular, we predict that the decay of the Loschmidt echo, which measures the fidelity
associated with backwards time-evolution, occurs at a rate proportional to the operator size.
Meanwhile, we predict that the decay of the OTOC, which measures the growth of local
operators, is inhibited by open-system dynamics (by an amount proportional to the width
of the operator size distribution).

We leverage our framework to characterize operator growth in five distinct classes of open
quantum systems, which vary in their dimensionality, range of interaction, conservation laws,
and integrability (Table 10.1, Figs. 12.1–10.3). In each class, our framework yields markedly
distinct predictions for the Loschmidt echo and OTOCs. We hypothesize that these results
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Figure 10.1: Left: Size distributions for three classes of systems under unitary (blue) versus
open (red) dynamics. Rightward arrows denote growth in time to larger sizes, ticks denote a
fixed size, and downward arrows denote loss of probability at a given size. Right: Qualitative
depiction of open-system operator growth. In all cases, operators lose normalization due to
open dynamics (dark to light gray boxes). In the latter two classes, operators are dominated
by smaller size components compared to unitary evolution (smaller boxes).

provide a theoretical underpinning for recent nuclear magnetic resonance (NMR) experi-
ments [139, 416, 418], and also serve to resolve apparent disagreements between previous
empirical studies of open-system scrambling [326, 473, 529]. Finally, we propose and analyze
a protocol for measuring operator size distributions via engineered dissipation.

10.1 Operator size distributions
We begin with a simple example to build intuition. Consider a lattice of qubits acted on by

a series of local quantum gates, each featuring some error ε, before measuring a local operator
M̂ . Noting that the measurement can only be influenced by gates in its past light cone, a
naive estimate of the measurement fidelity is F ≈ (1 − ε)VLC , where VLC is the light cone
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Table 10.1: Size distributions in various physical regimes

System Unitary dynamics Open dynamics
(d ≥ 1)D, no peaked-size size unaffected

conservation law S ∼ td S ∼ td

(d ≥ 1)D, con- bimodal size decreases
served quantity S ∼ td S ∼ 1/td

all-to-all broad size size plateaus
coupled (0D) S ∼ eλt S ∼ λ/ε

(d ≥ 1)1D, broad size size growth slowed
long-range super-ballistic S ∼ td

free fermion broad size size decreases
integrable S ∼ t S ∼ 1/t

volume, i.e. the number of gates it contains [30, 326]. This relation in fact already contains
the essential intuition underlying our work: a connection between the measurement fidelity
of a local operator and the operator’s growth under Heisenberg evolution. By generalizing
the light cone volume using operator size distributions, we will show that this connection is
significantly richer and more universal than the above example suggests [397, 398].

We now briefly recap the notion of operator size distributions, as introduced in Chap-
ter 2.3. We first define the size of a Pauli string, R̂, as its number of non-identity elements;
for instance, R̂ = Y ⊗ 1 ⊗ Z ⊗ X has size SR = 3. From this, one can define the size
superoperator:

S{Ô} ≡ −
∑

Pi

(PiÔP †i − Ô)/4, (10.1)

which gives S{R̂} = SRR̂, where P̂i ∈ {1̂i, X̂i, Ŷi, Ẑi} are single-qubit Pauli operators [429].
More general operators can be expressed as a sum of Pauli strings, Ô =

∑
R̂ cRR̂, and

thereby possess a size distribution, P (S) =
∑
{SR=S} |cR|2, with normalization N = 〈O†O〉 =∑

R |cR|2; here, 〈·〉 ≡ Tr(·)/Tr(1) represents the infinite temperature expectation value. We
note that the operator size distribution is closely related to out-of-time-ordered correlation
functions, 〈M̂(t)V̂jM̂(t)V̂j〉. As an operator, M̂(t), grows to have support on site j, the
OTOC typically decays to zero. From Eq. (10.1), one immediately sees that the average
size of M̂(t) is directly proportional to unity minus the OTOC averaged over all single-qubit
Pauli operators:

S =
〈M̂(t)S{M̂(t)}〉
〈M̂(t)M̂(t)〉

=
1

4

∑

Pi

(
1− 〈M̂(t)PiM̂(t)Pi〉

〈M̂(t)M̂(t)〉

)
. (10.2)
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10.2 Open-system operator growth hypothesis
Let us now turn to open quantum systems. Operator evolution is typically governed by

the Lindblad master equation:

∂tM̂ = i[Ĥ, M̂ ]−
∑

α

εα

(
L̂†αM̂L̂α −

1

2
{L̂†αL̂α, M̂}

)
. (10.3)

The first term describes unitary time-evolution, while the second describes a sum of local
error processes, each characterized by a Lindblad operator, L̂α, and an associated error rate,
εα.

Our central conjecture is that the effects of local errors on operator growth are in fact
captured by a much simpler, effective Lindblad equation:

∂tM̂ = i[Ĥ, M̂ ]− εS{M̂}, (10.4)

where S is the size superoperator. In effect, this model replaces the original Lindblad oper-
ators with isotropic decoherence at each qubit [Eq. (10.1)].

This conjecture is rooted in the following intuition—higher size operators are affected by a
greater number of local error processes, and thus decohere at a faster rate1. More specifically,
we expect large-size components of M̂ to typically involve exponentially many Pauli strings
varying rapidly in time. This serves to “average” the effect of Lindblad operators such that
their action depends solely on whether they are in the support of a given size component of
M̂ , independent of their precise microscopic form. The number of Lindblad operators in the
support is directly proportional to the size.

Our framework predicts two effects of open-system dynamics on operator growth, which
are captured by the behavior of the Loschmidt echo and the average OTOC (i.e. the average
operator size), respectively. For the former, we note that the Loschmidt echo fidelity with
respect to a local operator is in fact equal to the normalization of the operator’s size dis-
tribution, N (t) = 〈M̂(t)M̂(t)〉 =

´
dSP (S). Our framework predicts2 that the Loschmidt

echo decays in time at a rate equal to the average size multiplied by the error rate:

∂t logN (t) = −2εS(t). (10.5)

Turning to the OTOC, we note that errors decrease the amplitude of large-size com-
ponents of M̂(t) at a faster rate than small-size components. Thus, compared to purely
unitary evolution, open-system dynamics inhibit the growth of operators. More specifically,
we predict that the average size, S [related to the OTOC via Eq. (10.2)], evolves according
to:

∂tS(t) = (unitary)− 2εδS(t)2. (10.6)
1This behavior has been noted qualitatively in previous works [139, 417, 529] and quantitatively in

the context of random circuits [326]. It is familiar from, for example, quantum sensing, where many-body
correlations in the GHZ state lead both to an increased sensitivity to magnetic fields as well as to increased
dephasing [128].

2We derive Eqs. (10.5,10.6) by differentiating N and S with respect to t and applying Eq. (10.4).
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Here, the first term captures the specific unitary dynamics of the system, while the second
term decreases the size at a rate proportional to the variance of the size distribution, δS2.

10.3 Open-system scrambling dynamics
We now apply our framework to five distinct classes of scrambling dynamics (Table 10.1,

Figs. 12.1–10.3): local and all-to-all interacting systems without conservation laws, local
systems with conservation laws, long-range interacting systems, and free fermion integrable
systems (see Appendix E for a detailed discussion of the latter two cases).

We begin by demonstrating that operator growth in two paradigmatic scramblers—
systems with no conserved quantities under local and all-to-all interactions—are affected
by open-system dynamics in drastically different ways. For the former (focusing on 1D
systems for specificity), one expects operators to grow ballistically in time under unitary
dynamics, with S ≈ 3

2
vBt, where vB is the butterfly velocity. Meanwhile, the width of the

operator size distribution grows “diffusively”, δS ≈ c
√
vBt where c is a constant [340, 429,

476].
Combining these expectations via Eq. (10.6), we arrive at a simple phenomenological

equation for operator growth under open-system dynamics, ∂tS ≈ 3
2
vB − ε(c

√
vBt)

2, whose
solution yields the prediction: S(t) ≈ 3

2
vBt − c

2
εvBt

2. From Eq. (10.5), the Loschmidt echo
fidelity thus decays as a Gaussian in time, N (t) = exp

(
− ε
´ t

0
dt′ S(t′)

)
≈ exp

(
−3

4
εvBt

2
)
, to

leading order in ε. To explore these predictions, we numerically simulate the open-system
dynamics of a 1D random unitary circuit (RUC) [340, 341] (see Appendix E). As depicted in
Fig. 10.2(a), we find that both the operator size and the Loschmidt echo fidelity (solid lines)
agree remarkably well with our phenomenological predictions (dashed lines) across multiple
orders of magnitude in the error rate.

In contrast, in all-to-all interacting systems, unitary dynamics typically exhibit “fast
scrambling” characterized by the exponential growth of operator size in time, S ∼eλt, where
λ is the Lyapunov exponent [49, 249, 256, 316, 410, 429]. Unlike local systems, the size
distribution is also extremely broad, δS ≈ bS where b is a constant, owing to the exponential
growth of early-time fluctuations [379, 397, 429]. Solving Eq. (10.6), i.e. ∂tS ≈ λS − εb2S2,
then yields an intriguing prediction: under open-system dynamics, the average operator size
plateaus to a system-size independent value, Sp ≈ λ/(εb2), after a time tp ∼ log(λ/(εb2)).
This causes the Loschmidt echo to approach a constant rate of decay, N (t) ∼ exp(−λt/b2).
Notably, the decay rate, λ/b2, is independent of the microscopic error rate, ε, echoing seminal
results in single-particle quantum chaos [229] and tantalizing recent NMR experiments [139,
416, 418]. As shown in Fig. 10.2(b), both of these predictions are indeed born out by RUC
simulations.

One can further sharpen the distinction between open-system dynamics for local ver-
sus all-to-all interactions, by analyzing their behavior at asymptotically small error rates.
Specifically, consider the value of the Loschmidt echo, N∗, at a time when the open-system
dynamics have substantially deviated from the unitary dynamics. In all-to-all systems,



CHAPTER 10. OPERATOR GROWTH IN OPEN QUANTUM SYSTEMS 180

N

(b)(a)

t

S

N

t

t

t

S

(e)

(f)(d)

(c)

t

t

S

i

i

S

t

t

S

i i

S

(a)

(c) (d)

t

ε−1

N
∗

ε−1

N
∗

(b)

Figure 10.2: (a) Average operator size, S, and the Loschmidt echo fidelity, N , in a 1D
RUC with N = 200 (see Appendix E for details). The size grows ballistically with quadratic
corrections due to open-system dynamics (solid, data; dashed, theory). Inset: The Loschmidt
echo fidelity, N∗, when dS

dt
= 0.9dS

dt

∣∣
ε=0

, decays exponentially in the inverse error rate, ε−1.
(b) All-to-all RUC withN = 1500 (see Appendix E for details). The size grows exponentially
before plateauing to a value which is independent of the system size. The decay rate of the
Loschmidt echo is independent of ε after plateauing (solid, data; dashed, theory). Inset: The
Loschmidt echo fidelity, N∗, when d logS

dt
= 0.9d logS

dt

∣∣
ε=0

, is constant with respect to ε.
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this occurs shortly after the plateau time, tp, which gives an order one Loschmidt echo,
N (tp) ≈ exp

(
−ε
´ tp

0
dt′ eλt

′) ≈ exp(−1/b2), independent of the error rate [inset, Fig. 10.2(b)].
In contrast, in 1D systems this occurs when (εvBt

2/vBt) ∼ 1, at which point the
Loschmidt echo has decayed to an exponentially small value, N (t) ∼ exp(−vB/ε) [inset,
Fig. 10.2(a)]. For small error rates, this implies that large deviations in operator growth
are in practice unobservable for locally-interacting systems, since the signal is exponentially
small in 1/ε. Physically, this is a direct consequence of the asymptotic separation, δS � S.

10.4 Effects of conservation laws
We now show that the above behaviors are strikingly modified when an operator has

overlap with a conserved quantity, Q̂ =
∑

i q̂i (e.g. the total spin, or the Hamiltonian). Such
systems feature an interplay between hydrodynamics and scrambling, which is embodied by
a ‘bimodal’ profile for unitary time-evolved operators [246, 385]:

M̂(t) =
∑

i

q(i, t) q̂i +
∑

R̂ 6=q̂i

cR(t)R̂. (10.7)

The operator contains both small-size components, q̂i, representing the dynamics of the
conserved quantity, as well as large-size Pauli strings, R̂, representing scrambled information.

The small-size components arise because an operator’s overlap with Q̂, 〈M̂(t)Q̂〉 =´
dx q(x, t), is conserved in time. As an example, in chaotic 1D systems, one expects the

local overlap, q(i, t) = 〈M̂(t)q̂i〉, to spread diffusively, which causes the total normaliza-
tion of the small-size components to decay in time,

´
dx |q(x, t)|2 ∼ 1/

√
t. This in turn,

implies that the total normalization of the large-size Pauli strings is increasing in time;
physically, this corresponds to the dynamics of q(i, t) ‘emitting’ chaotic components, which
spread ballistically from thereon. In combination, this leads to a size distribution (Fig. 12.1),
P (S) ≈ 1√

Dt
δ(S − 1) + vB√

D
(3

2
vBt− S)−3/2, where we have assumed that Sqi = 1 [384].

We expect open-system dynamics to damp the large-size components of M̂ by a factor
∼e−εS2/vB , where S2/vB characterizes the space-time volume of a chaotic component3. This
effectively truncates the size distribution above Str∼

√
vB/ε (Fig. 12.1). At late times, vBt &

Str, this suggests that the average operator size will actually shrink in time, since small-size
components decay more slowly ∼ t−1/2, than large-size components, P (Str) ∼ t−3/2. This
sharply contrasts with the behavior of operators that do not overlap conserved quantities,
where one expects monotonic growth [Fig. 10.2(a)].

To explore this, we simulate the dynamics of a one-dimensional spin chain and measure
the OTOC as a proxy for operator growth. For an operator that does not overlap with

3In systems with conserved quantities, the large-size Pauli strings also feature a heterogeneous structure,
in which Pauli strings are more likely to commute with the conserved quantity near the wavefront of operator
spreading, and only approach fully random behavior in the interior [246, 385]. In principle, this implies that
the wavefront is less susceptible to errors that preserve the conserved quantity.
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Figure 10.3: The OTOC as a function of time and space for an N = 12 one-dimensional
spin chain. (a) Operators that do not overlap the Hamiltonian exhibit an OTOC which
follows a ballistic light cone. (b) For an operator that overlaps with the Hamiltonian, the
OTOC at a given site i initially decays, before increasing at later times. The specific OTOC
we calculate takes the form, 1

4

∑
P 〈e−iH1tM̂eiH1tP̂ie

−iH2tM̂eiH2tP̂i〉/N (t), where the forwards
and backwards time-evolution are governed by two distinct 1D Hamiltonians, H1 = H2+η δH
(see Appendix E for details).

the Hamiltonian, we find that the OTOC decays monotonically following a linear light-cone
[Fig. 10.3(a)]. For an operator exhibiting overlap, we find that the decay of the OTOC
indeed reverses as a function of time, indicative of a decrease in the average operator size
[Fig. 10.3(b)]. Interestingly, this insight immediately resolves an apparent disagreement
between previous studies of open-system operator growth. In particular, certain studies
found that OTOCs were only minimally affected by errors [326, 473], while others found a
dramatic reversal of scrambling [450, 529]. We attribute this difference to the presence or
absence of conservation laws.

10.5 Discussion and outlook
The results of this Chapter lead to a number of implications. First, we provide a new

perspective on protocols which divide error-prone OTOC measurements by an independent
characterization of the error [326, 418, 450, 473]. In our language, the latter is precisely the
normalization, N (t) = 〈M̂(t) M̂(t)〉. To this end, these protocols will only replicate unitary
dynamics when the total error is small (1−N ≈ ε

´ t
0
dtS � 1) or when size distributions are

tightly peaked, δS � S. Notably, this also applies to the teleportation experiments presented
in Chs. 7 and 8. In these protocols, the above division is performed “automatically” within
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quantum mechanics, upon post-selecting on the EPR measurement result.
Second, our results suggest a novel protocol for measuring operator size distributions

(Fig. 10.4), which circumvents the need to either perform exponentially many measure-
ments [381] or utilize two entangled copies of the system [429]. Specifically, in order to
measure the generating function of the size distribution, GS(µ) =

∑
S P (S)e−µS , we propose

the following protocol (Fig. 10.4): (i) prepare an initial state, ρ = (1 + M̂) ⊗ 1⊗N−1/2N ,
(ii) time-evolve forward, e.g. via a unitary operation, U , (iii) apply a set of single-qubit
Pauli operators, {P1, . . . , PN}, (iv) time-evolve backward via U †, and (v) measure M̂ . If
the intervening Pauli operators are fixed, this reduces to previous schemes for measuring
OTOCs [163]. However, if one randomly samples each Pauli matrix in each experimental
shot, with probability p = (1 − e−µ)/4 to be {X, Y, Z} and probability 1 − 3p to be the
identity, this in effect implements a decoherence channel, e−µS , that explicitly depends on
the size superoperator. The fidelity to recover the initial state then gives the generating
function via F = 1

2
[1 +NGS(µ)], where N can be measured by setting µ = 0.

Finally, we conjecture that our framework also applies to an alternate scenario (often
explored in experiments [138, 139, 416, 418]), where one evolves forward via a Hamiltonian,
H, and backward via a perturbed Hamiltonian4, −H + η δH [229]. Naively, this scenario
features perturbations that are highly correlated in time and space, and thus outside the
Lindbladian framework. However, in a chaotic many-body system, one expects such correla-
tions to quickly decay outside of some thermalization time- (τth) and length-scale (ξth). This
assumption leads to a Fermi’s golden rule [118, 229] estimate of an effective decoherence rate,
∂t log(N ) ∼ η2τthξthS, which scales linearly with the average operator size (see Appendix E).
Somewhat intriguingly, recent NMR experiments [139] precisely observe this linear scaling
with operator size for η & 0.1; this transitions to a square root scaling at smaller η and
developing a microscopic understanding of this regime remains an open question.

Finally, looking forward, our results also have implications for the classical simulability
of open quantum systems—if operator sizes are bounded from above by a constant, Sε,
then time-evolution is in principle efficiently simulable, since the dimension of the accessible
operator Hilbert space is polynomial in the system size, ∼NSε . A similar idea was recently
proposed in diffusive 1D spin chains [384]; our results suggest that it may hold more broadly.

4Note that our original use of the term Loschmidt echo refers to the case where one evolves forwards
and backwards with the same Hamiltonian in the presence of noise and errors. The term Loschmidt echo
is also used to describe the scenario here, where one evolves forwards and backwards with two different
Hamiltonians.
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Figure 10.4: Protocol to measure the generating function, GS(µ), of the operator size
distribution. Gray qubits are initially random in the computational basis, |ψ〉 is an M̂
eigenstate, and each site is acted upon randomly by either the identity (gray) or a non-
identity Pauli operator (red) in each experimental shot.
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Chapter 11

Scrambling and complexity in phase
space

theoremcounter conjecturecounter definitioncounter
The vast majority of studies of quantum information scrambling—including all other

Chapters in Parts III and IV—have focused on discrete variable (DV) systems, where the
many-body Hilbert space is composed of a tensor product of local qubits. One of the defining
features of such DV scrambling is the notion of operator growth, where the time evolution
of an initially simple, local operator V , yields a more complex, late-time operator, V(t) =
U † (t)VU (t) [398], whose decomposition is dominated by non-local operator strings. A
particularly powerful quantitative diagnostic of operator growth is provided by the so-called
out-of-time-order correlation (OTOC) function 〈V†(t)W†(0)V(t)W(0)〉, which measures the
spreading of V(t) via another local probe operator W [49, 246, 277, 340, 385, 476, 505].

While discrete variable information dynamics are relatively well understood, both from
an information-theoretic perspective and in terms of physical interpretation, their continuous
variable (CV) cousin remains poorly explored. This owes to a number of intrinsic subtleties
associated with CV systems. For example, their infinite dimensional local Hilbert space leads
to technical and conceptual challenges requiring the need for short- and long-distance cutoffs
as well as ambiguities related to properly defining the ‘volume’ of an operator. Moreover, for
CV systems, there naturally exists two distinct notions of information scrambling; namely,
scrambling within the phase space of a single degree of freedom and scrambling across the
phase space of many coupled degrees of freedom.

To this end, the broad goal of this Chapter is to lay out a theoretical foundation for
investigating quantum information scrambling in CV systems [65, 89, 94, 114, 182, 200, 386,
398, 405]. This is motivated in part, by an abundance of strongly-interacting, controllable
physical systems, whose microscopic degrees of freedom are continuous variable; these in-
clude quantum optical systems, cavity/circuit QED, photonic networks and more abstractly,
quantum field theories in general.
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11.1 Summary of results
We begin with a brief summary of the results and structure of this Chapter.
Analogy between DV and CV systems—Throughout the Chapter, we find it illuminating

to frame our results in analogy with well-known ideas from DV systems. Here, we will begin
by introducing this dictionary before summarizing the organization of the remainder of the
paper.

In an N -qudit DV system (dimension d = qN with q-state qudits), it is common to
diagnose scrambling by observing how a single-qudit Pauli operator, P , evolves under unitary
time evolution, U (t). Since the Pauli operators form a complete basis, the time-evolved P (t)
can be re-expanded as,

P (t) =
∑

Q∈Pauli

f [Q;P (t)]Q (11.1)

where |f [Q;P (t)] |2 can be interpreted as the probability distribution of P (t) over Q and is
normalized such that,

∑
Q |f [Q;P (t)] |2 = 1. As aforementioned, scrambling in DV systems

corresponds to the fact that strongly-interacting time evolution generically leads the operator
expansion in Eqn. (1) to have significant overlaps with ‘high-weight’ Pauli operators. Here,
the weight of a Pauli operator Q quantifies its non-locality and equals the number of qudits
on which Q acts non-trivially.

A central motif of our work is the analogy between Pauli operators in DV systems and
displacement operators in CV systems. In a single-mode CV system (e.g. a simple harmonic
oscillator), the displacement operators (which shift a coherent state in phase space) form a
complete basis:

D (ξ1, ξ2) ≡ exp [i (ξ2q − ξ1p)] , (11.2)

where ξ1 and ξ2 are (respectively) the shifts of q and p, the canonical position and momentum
quadrature operators. More generally, an N -mode displacement operator can be written as
the tensor product of local displacements.

We propose to characterize information scrambling in CV systems by considering the
time-evolution of displacement operators, D (ξ1; t) ≡ U (t)†D (ξ1)U (t). To understand why,
let us begin by decomposing,

D (ξ1; t) =
1

πN

ˆ
d2Nξ2 χ [ξ2;D (ξ1; t)]D (−ξ2) , (11.3)

where χ (ξ;A) ≡ tr [AD (ξ)] is the Wigner characteristic function. Initially, the characteristic
function χ [ξ2;D (ξ1; 0)] = πNδ (ξ2 + ξ1) is highly localized; thus, scrambling in CV systems
can be identified using the spread of χ [ξ2;D (ξ1; t)] in phase space for generic choices of ξ1,
much like the spreading of P (t) into high-weight Pauli operators in the DV case.

With this analogy in hand, let us now introduce the organization and summary of our
results.
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Quasi vs genuine scrambling: In Section 11.2, we introduce an important distinction
between two types of scrambling, which we term: quasi scrambling and genuine scrambling.
In DV systems, both types are captured by the growth of P (t) into high-weight operators
(i.e. large-scale entanglement is generated). The key distinction lies in the nature of the
operator distribution as quantified by |f [Q;P (t)] |2. In particular, we refer to a system as
a quasi scrambler if the operator distribution remains localized on a single high-weight op-
erator, and as a genuine scrambler if the distribution is spread out over a large number of
high-weight operators. This difference in operator distribution behavior can be unambigu-
ously identified via OTOCs and roughly corresponds to whether the scrambling unitary is
generated by Clifford (quasi) or non-Clifford (genuine) operators.

Having defined two classes of scrambling in DV systems, we will find that the same
distinction applies for CV systems. In particular, we propose that CV quasi scrambling cor-
responds to situations where the Wigner characteristic function stays localized, while genuine
CV scrambling results in the delocalization of the characteristic function. Interestingly, in
the case of CV systems, this distinction corresponds to whether the scrambling unitary is
generated by Gaussian (quasi) or non-Gaussian (genuine) operators.

Operator spreading and OTOCs: In Section 11.3, we develop theoretical tools to
study operator spreading in CV systems using CV OTOCs. We begin by establishing an
intuitive measure of genuine scrambling, in terms of the volume of a time-evolved operator’s
distribution in phase space. Then, we present a Fourier transform-like formula which relates
this distribution to OTOCs of the time-evolved operator, from which we see that individual
OTOCs can detect the distinction between genuine and quasi scramblers. This allows us to
propose a physical observable—the OTOC magnitude—which measures the non-Gaussianity
of the dynamics. Furthermore, we show that averages of OTOCs, weighted over ensembles of
displacement operators, can probe an operator’s spread in phase space with tunable short and
long-distance cutoffs. This encompasses both operator spreading in real space, as studied in
DV systems, as well as within a single mode. Finally, we apply our findings to study operator
growth in two examples of genuine scramblers: time-evolution via cubic phase gates and the
Hellon-Heiles potential.

Random Gaussian circuits: In Section 11.4, we turn our attention to quasi scrambling.
Despite the fact that quasi scramblers do not fully spread operators (i.e. they simply map one
displacement operator to another), useful insights into genuine scrambling can be obtained
by studying the stochastic evolution of quasi scramblers. Indeed, recent progress [68, 198,
199, 203, 211, 213] on the interplay between holography and quantum information theory
has revealed that quantum circuits composed of short-range random Clifford unitaries can
provide useful intuition for understanding entanglement and operator propagation in DV
many-body systems [49, 246, 340, 385, 476, 505].

This motivates us to explore local random Gaussian circuits (Sec. 11.4) as an analytically
and numerically tractable toy model of CV scrambling. We observe a number of intriguing
features. In particular, we find that such random circuits exhibit exponential growth of
displacements within each local mode, while operators spread ballistically to distant modes.
In the former case, the observed exponential growth also leads to other surprising conse-
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quences; for example, entanglement in the system grows quadratically in time, in contrast
to the previously found linear growth [340]. In the latter case, we observe that the butterfly
velocity vB of the ballistic spread depends on the local growth exponent in a similar fashion
to large-N models. To this end, we propose a simple hydrodynamical model which relates
the butterfly velocity, the growth exponent and the diffusion constant.

Unitary designs for CV systems: Building upon our exploration of random Gaus-
sian unitaries (see Section 11.4), in Section 11.4 we investigate the statistical properties of
ensembles of such unitaries. In particular, we attempt to construct CV analogs of Haar
randomness and unitary designs1. To begin, we provide a plausible definition for unitary
designs in CV systems. Using this definition, we find that Gaussian distributed displacement
operators asymptotically form a CV 1-design. However, we find that Gaussian unitaries do
not form an exact 2-design—consistent with prior results on state designs [62]—but never-
theless capture many qualitative 2-design features in the limit of large squeezing. Finally,
we provide a unique generalization of the so-called ‘frame potential’ to CV systems, enabling
the quantitative verification of designs.

Experimental realizations of CV scrambling: In Section 11.5, we propose and an-
alyze a concrete experimental realization of CV scrambling in a cavity-QED architecture,
where non-Gaussian unitaries are generated via the SNAP (selective number-dependent ar-
bitrary phase) gate [208, 268]. Next, we present concrete protocols for the measurement
of both individual and average OTOCs in CV systems. In addition, we also present a CV
analog of a teleportation-based protocol for verifying scrambling [274, 517, 518]. Interest-
ingly, while measurement uncertainties may damage the teleported quantum state, our CV
teleportation protocol can be made fault-tolerant by using the Gottesman-Kitaev-Preskill
(GKP) code (when the squeezing parameter is sufficiently large).

Finally, in Section 11.6, we conclude by offering our perspective on a number of exciting
open questions and directions.

11.2 Genuine and quasi scrambling
We begin by presenting a broad overview of scrambling in DV and CV systems. Scram-

bling refers to delocalization of quantum information over the entire system under unitary
dynamics U (t) ≡ exp

(
−i
´
H(t)dt

)
, where H(t) is the Hamiltonian of the system and

can in principle be time dependent. In terms of operators, an initially simple operator O
evolves to a more complex operator O(t) = U † (t)OU (t), e.g. local operators become highly
non-local [398]. In an N -qudit DV system (d = qN with q-state qudits), it is common
to diagnose scrambling by observing how a single-qudit Pauli operator P evolves in time.
Since Pauli operators form a complete basis – 1

d
Tr
(
PQ†

)
= δP,Q for P,Q ∈ Pauli and

1In DV systems, our current understanding of quantum chaos and random matrix theory has been deeply
influenced by ideas and tools from Haar randomness.



CHAPTER 11. SCRAMBLING AND COMPLEXITY IN PHASE SPACE 189

1
d

∑
P∈Pauli POP † = Tr(O)I – the time-evolved P (t) can be expanded as

P (t) =
∑

Q∈Pauli

f [Q;P (t)]Q,
∑

Q

|f [Q;P (t)] |2 = 1, (11.4)

where the second constraint results from the unitarity of U(t). As such, |f [Q;P (t)] |2 can
be interpreted as a probability distribution over Q for each P (t).

Scrambling in DV systems corresponds to the growth of f [Q;P (t)] such that the quan-
tity |f [Q;P (t)] |2 for ‘high-weight’ Pauli operators becomes significant. Here the weight of
a Pauli operator Q quantifies the non-locality of Q, and equals the number of qudits on
which Q acts non-trivially. Within this correspondence, we identify two different classes
of scrambling dynamics. Time-evolution U is called quasi scrambling if the operator dis-
tribution |f [Q;P (t)] |2 remains concentrated on only a few Paulis Q even as the weight of
these Paulis grows significantly. In contrast, time-evolution U is called genuine scrambling
if |f [Q;P (t)] |2 has support on many high-weight Pauli operators for a generic low-weight
Pauli operator P (0).

Interestingly, these two classes of scramblers are related to Clifford and non-Clifford
unitary operators. Clifford operators are unitary operators which transform Pauli operators
into Pauli operators; UPU † ∈ Pauli for all P ∈ Pauli. Examples include the Hadamard gate
and the Control-Not gate. Under a random Clifford operator, the time-evolved operator
P (t) becomes a high-weight ∼ O(N) Pauli operator. However, by definition, the operator
distribution f [Q;P (t)] remains concentrated on a single Pauli Q = P (t), hence it is only
quasi scrambled. On the other hand, if U is a non-Clifford operator, e.g. a Haar random
unitary, the operator distribution becomes almost uniform,

|f [Q;P (t)] |2 ∼ 1

d2 − 1
Q 6= I, (11.5)

achieving genuine scrambling.
Many previous studies in quantum information literature recognize random Clifford uni-

taries as scramblers since they delocalize operators and create nearly maximal entanglement
when applied to arbitrary product states (see [73, 278] for instance). However, Clifford oper-
ators represent only a very restricted subset of all possible time-evolutions, and one expects
that many aspects of thermalization in many-body quantum systems require more complex
unitaries to capture. Hence, we think it is important to distinguish two classes of scram-
blers. A certain plausible definition of scrambling which distinguishes two different classes
was proposed in Ref. [517] based on late-time asymptotic behavior of OTOCs.

We now turn our attention to CV systems. A central motif of our work will be an
analogy between Pauli operators in DV systems and displacement operators in CV systems.
In a single-mode CV system (e.g. the simple harmonic oscillator), the displacement operator
shifts a coherent state by position ξ1 and momentum ξ2 in phase space. It takes the form

D (ξ1, ξ2) ≡ exp [i (ξ2q − ξ1p)] , (11.6)
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(a) (b)

Figure 11.1: Operator spreading in two types of CV scrambling. (a) In genuine scrambling,
an initial displacement operator time-evolves into a sum of many displacements, spread
throughout phase space. (b) In quasi scrambling, displacements may move around phase
space, but remain localized.

where q and p are the canonical position and momentum quadrature operators. Similar to
Paulis, the displacement operators of an N -mode CV system are formed as tensor products
of local displacement operators, written as

D (ξ) ≡
N⊗

k=1

Dk (ξ2k−1, ξ2k) , (11.7)

where Dk (ξ2k−1, ξ2k) is the mode k single-mode displacement operator, and ξ ∈ R2N is a
2N -component vector of displacements. Like Paulis, displacement operators form a complete
operator basis, obeying tr (D (ξ)D (ξ′)) = πNδ (ξ + ξ′) and 1/πN

´
d2Nξ D (ξ)AD† (ξ) =

tr (A) I.
Inspired by the similarities between displacement operators and Paulis, we will character-

ize scrambling in CV systems by considering the time-evolution of displacement operators,
D (ξ1; t) ≡ U (t)†D (ξ1)U (t). The completeness of displacement operators allows the de-
composition

D (ξ1; t) =
1

πN

ˆ
d2Nξ2 χ [ξ2;D (ξ1; t)]D (−ξ2) , (11.8)

where χ (ξ;A) ≡ tr [AD (ξ)] is known as the Wigner characteristic function. Initially, the
characteristic function χ [ξ2;D (ξ1; 0)] = πNδ (ξ2 + ξ1) is highly localized in phase space;
scrambling in CV systems can therefore be characterized by the growth of χ [ξ2;D (ξ1; t)].
As in the DV systems, we identify two distinct classes of scrambling dynamics (visualized in
Fig. 11.1). Time-evolution U (t) is quasi scrambling if χ [ξ2;D (ξ1; t)] remains highly localized
in phase space, but spreads to multiple modes. Time-evolution U (t) is genuine scrambling
if χ [ξ2;D (ξ1; t)] spreads significantly over phase space for generic choices of ξ1.

This separation of CV scramblers can be related to a common classification of CV uni-
taries into Gaussian and non-Gaussian operators. A complete introduction to Gaussian
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unitaries can be found in Ref. [485]; we provide a brief overview here. We begin by con-
densing notation, defining the vector of quadrature operators x = (q1, p1, · · · , qN , pN). This
allows us to concisely write an N -mode displacement operator as D (ξ) = exp

(
ixTΩξ

)
,

defining the block diagonal matrix Ω =
⊕N

k=1( 0 1
−1 0 ). The product of displacement operators

is now given by the simple addition,

D (ξ1)D (ξ2) = e−iξ
T
1 Ωξ2D (ξ1 + ξ2) . (11.9)

Gaussian unitaries are generated by Hamiltonians that are second order in the quadrature
operators. One can represent a Gaussian unitary via its action on quadrature operators,
which takes the form

U †S,dxUS,d = Sx+ d, (11.10)

where the unitary is labelled by a 2N -component displacement d and a 2N × 2N symplec-
tic matrix S, SΩST = Ω. From this, one can show that Gaussian unitaries transform
displacement operators into other displacement operators according to

U †S,dD (ξ)US,d = exp
(
idTΩξ

)
D
(
S−1ξ

)
, (11.11)

analogous to the action of Clifford operators on Paulis in DV systems. As such, the Wigner
characteristic function of D(ξ1; t) remains highly localized under time-evolution by a Gaus-
sian unitary, and so we identify Gaussian unitaries as quasi scramblers. Genuine scramblers
correspond to non-Gaussian unitaries, generated by Hamiltonians that are third or higher
order in the quadrature operators. This can arise from interactions, hard boundary con-
ditions (e.g. quantum billiard systems), or non-linear gates such as the single-mode cubic
phase gate [172] or the Kerr effect [136] in quantum optical experiment.

11.3 Operator spreading in genuine scrambling
In this section, we develop a basic formalism to characterize a time-evolved operator’s

distribution in phase space as a probe of genuine CV scrambling. We begin by demonstrat-
ing that one aspect of this distribution—its volume—can be measured in two ways: via
averages of time-ordered correlation (TOC) functions of (generically non-local) displacement
operators, and via the so-called frame potential, previously used to study the complexity
and pseudorandomness of DV unitary ensembles [399]. While the two measures are iden-
tical at infinite temperature, they differ when regularizing by a density matrix, which will
be necessary in CV systems. To probe finer-grained aspects of operator spreading we turn
to OTOCs, establishing a precise relation between a time-evolved operator’s phase space
distribution and its OTOC with displacement operators. One consequence of this relation
is a constraint on OTOC decay: specifically, the magnitude of the OTOC can only decay
during genuine scrambling (non-Gaussian dynamics), and is strictly 1 in quasi scrambling
(Gaussian dynamics). Further, this relation prompts us to consider more general averages
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of OTOCs over ensembles of displacement operators. We show that average OTOCs mea-
sure a coarse-grained density of an operator’s phase space distribution; their change in time
thus characterizes a ‘flow’ of the distribution. To conclude, we apply these tools to study
two specific non-Gaussian Hamiltonians, an exactly-solvable cubic potential and the chaotic
Henon-Heiles potential, and show that both models lead to operator spreading and OTOC
decay.

Phase space volume and the frame potential

We begin by introducing our notion of an operator’s ‘phase space volume’. We show
that in DV systems one can define such a volume for time-evolved Pauli operators, (roughly)
by counting the number of Pauli strings with non-zero weight when expanding the operator
in the Pauli basis. This can be probed by TOCs at infinite-temperature or, equivalently,
the k = 1 frame potential. In generalizing this to CV systems, one encounters various
divergences due to the lack of an infinite-temperature limit, as the CV system’s Hilbert
space is not bounded. To regulate this, we expand our definition of phase space volume to
be with respect to a normalized density matrix ρ. In sufficiently low-temperature regimes,
this ‘coarse-grained’ volume behaves qualitatively differently from the previous volume. We
demonstrate this in multiple examples for the specific case of a thermal density matrix with
respect to the number operator Hamiltonian.

Defining phase space volume for CV systems

We first introduce an operator volume in DV systems. Consider a system of N qudits,
with total Hilbert space dimension d = qN . As Pauli operators form a complete basis, the
time-evolution of a Pauli operator P may be decomposed as P (t) =

∑
Q∈Pauli f [Q;P (t)]Q.

The coefficients f [Q;P (t)] coincide with the TOC of P and Q with respect to the infinite-
temperature density matrix ρ∞ = 1

d
1,

f [Q;P (t)] = C1(P (t), Q(0)) ≡ 1

d
tr
(
P (t)Q†(0)

)
. (11.12)

One can show that
∑

Q |f [Q;P (t)] |2 = 1. This allows one to consider the ensemble of Pauli
operators E [P (t)] = {Q|Q ∼ |f [Q;P (t)] |2}, defined by the normalized probability distribu-
tion |f [Q;P (t)] |2. One can now define a volume of the ensemble E [P (t)] corresponding to
the number of Q with significant |f [Q;P (t)] |2. This can be made rigorous using entropies
of the distribution |f [Q;P (t)] |2. Specifically, the exponential of the Rényi-2 entropy

vol(E [P (t)]) ≡ 2S
(2)
E[P (t)] =

1∑
Q∈Pauli |f [Q;P (t)] |4 (11.13)

provides a good measure of such a volume. The Rényi-2 entropy of the ensemble is related
to the frame potential [399], which we find corresponds to an inverse volume:

FE[P (t)] ≡ EU,V∼E[P (t)]

{∣∣tr
(
U †V

) ∣∣2
}

= d2 2−S
(2)
E[P (t)] , (11.14)
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where EU,V∼E[P (t)] denotes the expectation value when U, V are sampled independently from
the ensemble E [P (t)].

In generalizing this relation to CV systems, we encounter one of our first obstacles in
working with infinite-dimensional systems: the traces used in DV expressions, regulated by
the infinite-temperature density matrix, are often infinite in the CV context, where infinite-
temperature is not well-defined. For instance, when trying to characterize the volume of a
time-evolved displacement operator D (ξ1; t), the analog of f [Q;P (t)] would naturally be
the characteristic function χ [ξ;D (ξ1; t)]. However, the volume of the characteristic function
is not well-defined, as |χ [ξ;D (ξ1; t)] |2 has infinite norm [for example, at time t = 0, χ ∼
δ(ξ − ξ1)].

To remedy such divergences, it is natural to consider TOCs at a finite temperature,

C1(ξ1, ξ2; t)ρ = tr [ρD (ξ1; t)D (ξ2)] . (11.15)

Expressed in terms of the operators’ characteristic functions, the TOC can be viewed as
χ [ξ;D (ξ1; t)] ‘smeared’ over a width in phase space determined by χ [ξ; ρ],

C1(ξ1, ξ2; t)ρ =

1

πN

ˆ
d2Nξ χ [ξ;D (ξ1; t)] eiξ

TΩξ2 χ (ξ − ξ2; ρ) . (11.16)

For the sake of illustration, throughout the Chapter we will frequently take ρ to be the
thermal density matrix for the number operator Hamiltonian, ρ̃nth ∼

⊗N
k=1 e

−βntha
†
kak , which

we refer to as the ’thermal density matrix’ for convenience. Here the effective temperature

β−1
nth

= ln
(

1 + 1
nth

)−1

is proportional to the mean photon number per mode nth in the CV
limit nth � 1. The characteristic function of the thermal density matrix has a width ∼ 1/nth
in phase space, χ (ζ; ρ̃nth) = exp (− (nth + 1/2) |ζ|2). In the high-temperature limit (nth �
1), this width becomes small, and C1(ξ1, ξ2; t)ρ becomes proportional to the unregulated
χ [ξ2;D (ξ1; t)].

Unlike their infinite temperature counterparts, finite temperature TOCs possess a well-
defined norm Nρ ≡

´
dξ2|C1(ξ1, ξ2; t)ρ|2 = πNtr (ρ2). This allows us to proceed similarly

to the DV case and consider the ensemble of displacement operators E = {D (ξ2) |ξ2 ∼
|C1(ξ1, ξ2; t)ρ|2/Nρ}. The volume of such an ensemble can be defined similarly to Eq. (11.13),

vol (E ; ρ) =

(
1

4π

)N N 2
ρ´

dξ |C1(ξ1, ξ2; t)ρ|4
. (11.17)

In Appendix F, we use this definition to provide quantum analogs of Liouville’s theorem and
the Kolmogorov-Sinai entropy for Gaussian time-evolution.

Phase space volume and the CV frame potential

While the above satisfactorily defines the phase space volume of CV operators, we find
it interesting to also generalize Eq. (11.14), which provides a powerful interpretation of the
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Figure 11.2: The finite temperature frame potential measures the volume of unitary en-
sembles (black dots) coarse-grained over a distance 1/

√
nth in phase space (red), where nth

is the number of photons in the thermal density matrix (proportional to the temperature).
This leads to different behavior for (a) sparsely-distributed ensembles (high temperature)
vs. (b) densely-distributed ensembles (low temperature).

frame potential as a phase space volume. To do so we again require regulation by a density
matrix ρ, which we insert into the frame potential in two distinct ways, providing phase
space interpretations for each. Further discussion of CV frame potentials is contained in
Section 11.4, where they are used to verify unitary designs in CV systems.

To begin, we consider the following finite-temperature frame potential [399],

FE (ρ) = EU,V∼E
{∣∣tr

(
ρU †V

) ∣∣2
}
. (11.18)

For the thermal density matrix, this frame potential measures the inverse volume of an en-
semble ‘smeared’ over distances 1/

√
nth, in units of 1/nNth. To see this, consider an individual

term |tr
(
ρ̃nthU

†V
)
|2 for displacements U = D(ξ1), V = D(ξ2). One computes

|tr
(
ρ̃nthD(ξ1)†D(ξ2)

)
|2 = e−(2nth+1)|ξ1−ξ2|2

'
{

1 if |ξ1 − ξ2| / 1√
nth
,

0 |ξ1 − ξ2| ' 1√
nth
.

(11.19)

Hence, the thermal frame potential treats two sampled displacements U , V as identical if
they are within distance / 1/

√
nth of each other. In the infinite-temperature limit this

distance goes to zero, and one finds a correspondence to our previous definition of volume
Eq. (11.17),

lim
nth→∞

vol (E ; ρ̃nth) = lim
nth→∞

(
1

8nth

)N
1

F (1)
E (ρ̃nth)

. (11.20)

To further illustrate the connection between the finite-temperature frame potential and
volume, we examine two example distributions, or ensembles, of unitaries, as depicted in
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Fig. 11.2. First, consider a discrete ensemble of M displacement operators distributed
sparsely in phase space compared to 1/

√
nth, shown in Fig. 11.2(a). Here, the only nonzero

contributions to the frame potential come from U = V . This occurs a fraction 1/M of the
time, giving FE ≈ 1/M—intuitively, the smeared ensemble has a volume (1/

√
nth)2N per

operator, which gives a volume M in the units (1/nth)N . Second, consider an ensemble of
displacement operators densely distributed with density ω over some volume V . Here, each
displacement U receives significant contributions from all operators within a 2N -dimensional
ball of radius 1/

√
nth about U . There are ∼ ω

(
1/
√
nth
)2N such operators for each U , giving

an inverse volume

FE (ρ̃nth) ∼ ω
(
1/
√
nth
)2N

Vω ∼
(

1

nth

)N
1

V , (11.21)

which is the inverse original volume, in the prescribed units. These two limits, sparsely and
densely distributed, may equivalently be thought of as high and low temperature limits, as
the length scale 1/

√
nth by which the limits were defined is set by the inverse temperature.

The volume interpretation of the frame potential also extends to continuous ensembles
of displacement operators. We present this for the particular case of a Gaussian-distributed
ensemble,

Dξ0,V =
{
D (ξ) |ξ ∼ PG

D (ξ; ξ0,V )
}
, (11.22)

where PG
D (·; ξ0,V ) is a Gaussian distribution with mean ξ0 ∈ R2N and covariance matrix

V ∈ R2N ×R2N . The frame potential can be computed, giving

FDξ0,V (ρ̃nth) =
2N∏

`=1

1√
1 + 4λ` (2nth + 1)

, (11.23)

where the eigenvalues λ` of V give the squared width of the Gaussian along the `th eigenvec-
tor. An intuitive notion of volume would be the product of these widths,

√
detV =

∏
`

√
λ`.

At high temperatures (nthλ` � 1 ∀`, see Fig. 11.3(a)), we indeed find

FDξ0,V (ρ̃nth) '
(

1

8nth

)N
1√
detV

. (11.24)

At lower temperatures this correspondence does not hold. Specifically, if nth < 1/λ` for some
` (shown Fig. 11.3(b)), their contributions to the volume saturate to O(1/nNth) constants. As
before, this is related to the ‘smearing’ due to the finite phase space resolution of the low
temperature thermal density matrix.

An alternative route to characterizing the volume of a CV operator lies in a ‘twice-
regularized’ finite-temperature frame potential, which we introduce in detail in Sec. 11.4 and
Appendix F. In the previous measure of volume, we inserted ρ two separate times, once in
the TOC and once in the finite-temperature frame potential. Here, we instead consider the
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Figure 11.3: Schematic of the volume measured by the frame potential for two continuous
ensembles of displacement operators (grey). (a) For an ensemble with large widths λ1, λ2 �
1/nth, it reproduces the traditional volume

√
λ1λ2. (b) If the ensemble is narrow in some

quadrature, say λ1 � 1/nth, it instead measures the ‘coarse-grained’ volume
√
λ2/nth. Here

nth is the number of photons in the thermal density matrix.

ensemble of the unnormalized characteristic function, E = {D (ξ2) |ξ2 ∼ |χ [ξ;D (ξ1; t)] |2},
and measure its volume using the twice-regularized frame potential

J (1)
E (ρ) ∼ EU,V∼E

{
|tr
(√

ρU †
√
ρ V
)
|2
}
. (11.25)

Intuitively, the frame potential both ‘smears’ displacements over a width χ[ξ, ρ], and weights
operators by their preservation of the low-energy subspace, measured by tr

(√
ρU †
√
ρU
)
. For

the thermal density matrix ρ̃nth , one computes
√
ρ̃nth =

(
n′th+1√
nth+1

)N
ρ̃n′th with (n′th+1)2/n′2th ≡

(nth + 1)/nth, which gives

tr
(√

ρ̃nthD
†(ξ1)

√
ρ̃nthD(ξ2)

)
=

(
(n′th + 1)2

(nth + 1) (2n′th + 1)

)N

× exp

(
−|ξ1|2 + |ξ2|2

2(2n′th + 1)

)
exp

(
−|ξ1 − ξ2|2n′th(n′th + 1)

(2n′th + 1)

)
. (11.26)

As expected, this contribution is significant for nearby |ξ1 − ξ2| / 1/
√
nth displacements

that approximately preserve the subspace of / nth photons, |ξ1|, |ξ2| /
√
nth.

Operator spreading and OTOCs

As we have seen, an operators’ phase space distribution can be characterized by TOCs.
However, such a characterization is not always convenient, nor well-matched to physical
observables. For instance, once the phase space volume of an operator becomes large, its
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characterization will require the measurement of a number of TOCs comparable to the
dimension of the relevant many-body Hilbert space, many of which will involve highly non-
local operators.

This motivates us to turn our attention to OTOCs. In thermalizing many-body systems,
the decay of OTOCs detects the spread of local operators in real space [49, 68, 198, 199,
203, 211, 213, 246, 249, 252, 340, 385, 476, 505]. In few-body CV systems, OTOCs have also
found use due to their correspondence with diagnostics of classical chaos [405].

In contrast to previous work on OTOCs in CV systems, we focus on OTOCs of dis-
placement operators. We begin by establishing a precise Fourier transform-like relation
between these OTOCs and operator distributions in phase space. We find that Gaussian
and non-Gaussian unitaries, previously distinguished by their ability to spread operators
in phase space, also have starkly different behavior on OTOCs. Gaussian time-evolution
cannot cause the OTOC magnitude to decay, and can only change the OTOC’s phase—the
decay of OTOCs thus serves as an indicator of non-Gaussian time-evolution. Extending the
relation between OTOCs and operator spreading, we show that the OTOC, when averaged
over an ensemble of displacement operators, measures a time-evolved operator’s support in
a ‘ball’, of designated width and center, in phase space. This can probe operator spreading
both in real space, by averaging over local displacement operators, as well as within the
Hilbert space of a single mode, by varying the average displacement of the ensemble. Later,
in Section 11.5, we will discuss measurement schemes for both OTOCs and average OTOCs,
showing that both are efficiently measurable using only Gaussian operations.

OTOCs and operator spreading

We begin by deriving an explicit relation between an operator’s distribution in phase
space and OTOCs. Again, it is helpful to first consider DV systems. OTOCs at infinite
temperature are defined as

C2 (P (t), R(0)) ≡ 1

d
Tr
[
P †(t)R†(0)P (t)R(0)

]
. (11.27)

Expanding P (t) =
∑

Q f [Q;P (t)]Q, we have

C2 (P (t), R(0)) =
∑

Q∈Pauli

|f [Q;P (t)] |2 C2 (Q,R) . (11.28)

Since Pauli operators commute up to a phase, QR = eiφQ,RQR, the OTOC of two Paulis
C2 (Q,R) ≡ 1

d
Tr
(
Q†R†QR

)
is an overall phase. This allows the following the inverse trans-

formation:

1

d2

∑

R∈Pauli

C2 (P,R) C2 (R,Q)? = δP,Q, (11.29)
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which can be proven by using the orthogonality of the phase space point operators [175].
Applying this to Eqs. (11.28) we have

|f [Q;P (t)] |2 =
1

d2

∑

R(0)∈Pauli

C2 (P (t), R(0)) C2 (R,Q)? . (11.30)

Thus, the probability distribution |f [Q;P (t)] |2 can be obtained from OTOCs by a transfor-
mation similar to the discrete Fourier transform. A relation akin to this one was previously
derived in Ref.[399].

In analogy to the DV case, we begin by introducing the CV OTOC with respect to
displacement operators,

C2(ξ1, ξ2; t)ρ = tr
[
ρD† (ξ1; t)D† (ξ2)D (ξ1; t)D (ξ2)

]
. (11.31)

By using Eq. (11.8) this OTOC can be written in terms of the characteristic function
χ [ξ;D (ξ1; t)] as

C2(ξ1, ξ2; t)ρ =
1

π2N

ˆ
d2Nξd2Nξ′e−2i(ξ2−ξ/2)TΩξ′

× χ? [ξ;D (ξ1; t)]χ (ξ − ξ′; ρ)χ [ξ′;D (ξ1; t)] , (11.32)

similar to Eqs. (11.28), but with the characteristic function χ (ζ; ρ) of ρ now acting as a
transformation kernel. For the thermal density matrix in the infinite temperature limit, one
has χ (ξ − ξ′; ρ̃nth) ∝ δ (ξ − ξ′) and achieves Fourier-like relations between TOCs and the
OTOC:

C2(ξ1, ξ2; t)ρ ∝
ˆ
d2Nξ |C1(ξ1, ξ; t)ρ|2e−2iξT2 Ωξ, (11.33)

|C1(ξ1, ξ2; t)ρ|2 ∝
ˆ
d2Nξ C2(ξ1, ξ; t)ρe

2iξTΩξ2 , (11.34)

analogous to Eqs. (11.28, 11.30). At finite temperature, the second of these becomes
ˆ
d2Nξ2 e

2iξ2Ωξ′C2(ξ1, ξ2; t)ρ =

ˆ
d2Nξ eiξ

T
2 Ωξ′

× χ? [ξ;D (ξ1; t)]χ (ξ − ξ′; ρ)χ [ξ′;D (ξ1; t)] . (11.35)

For the thermal density matrix, this implies that the Fourier transform of OTOCs addresses
probability distributions coarse-grained over a width ∼ 1√

nth
.

We further illustrate this relation between OTOCs and operator spreading with a brief
example. Consider an operator that spreads to have width V in phase space, χ [ξ;D (ξ1; t)] ∼
exp (|ξ − ξ1|2/ (2V )). This leads to an OTOC C2(ξ1, ξ2; t)ρ ∼ exp (−V |ξ2|2), where a larger
phase space width implies greater decay of the OTOC.
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Average OTOCs

We have seen that the decay of OTOCs detects the increase in operator volume char-
acteristic of genuine scrambling. In this section, we demonstrate that OTOCs can also
probe finer-grained aspects of operator spreading. Specifically, we show that averages of
OTOCs over ensembles of displacement operators measure a coarse-grained distribution of
a time-evolved operator in phase space. We begin by reviewing the use of average OTOCs
to characterize real space operator spreading in DV systems. Following this, we turn to the
simplest example of a CV average OTOC, which detects the amount that an operator has
spread outside a ball of some radius about the identity. We then generalize this, and show
that the center of the ball, as well as its widths in every direction of phase space, can be
tuned by varying the ensemble over which the OTOC is averaged. This heuristic geometrical
picture suggests a hydrodynamical interpretation of operator spreading, where changes of
OTOCs in time characterize a flow of the operator’s distribution through the surfaces of
these balls. In Section 11.4, we develop such a description for random Gaussian circuits.

In DV systems, it is well-known that averaging the OTOC over ensembles of Pauli op-
erators can detect operator spreading in real space. For example, consider the probability
that an operator P (t) has non-trivial support on the j-th qudit,

Wj ≡
∑

Q∈Pauli : Q|j 6=I

|f [Q;P (t)] |2, (11.36)

where Q|j represents the Pauli operator content at j-th qudit. This can be rewritten in
terms of OTOCs as [213]

1−Wj =
1

d2

∑

R∈Pauli : R=I⊗···I⊗Rj⊗I···⊗I

C2 (P (t), R) (11.37)

where R are single qubit Pauli operators acting on jth qubit. This shows that the generic
smallness of OTOCs, namely those averaged over single-qudit Pauli operator, implies higher
weights in the operator spreading of P (t).

In CV systems, averaging the OTOC over ensembles of displacement operators can probe
operator spreading not only in real space, but also phase space. We define the average OTOC
over an ensemble E of displacement operators as:

C2 (D (ξ1; t) , E)ρ ≡ EV∼E [C2 (D (ξ1; t) , V )ρ]. (11.38)

There are two important regularizations in this OTOC to keep in mind: the finite extent of
ensemble E , and the density matrix ρ. To gain insight on their effects, we begin with a fully
symmetric Gaussian ensemble of displacements,

Dn =
{
D (ξ) |ξ ∼ PG

D (ξ;n) ≡ exp
(
−|ξ|2/n

)
/ (πn)N

}
. (11.39)
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Figure 11.4: The average OTOC measures the extent that an operator (grey) has spread
outside a ball of distance 1/

√
n (black) in phase space, after coarse-graining over scales

1/
√
nth (red). Here n is the width of the ensemble that the OTOC is averaged over, and nth

is the number of photons in the thermal density matrix.

To understand the effect of the ensemble size n, consider the average OTOC for an unspread
displacement operator D (ξ1; t) = D (ξ). One finds

C2 (D (ξ) ,Dn)ρ = exp
(
−n|ξ|2

)
, (11.40)

which is small unless |ξ| ≤ 1/
√
n. This suggests that, for an arbitrary D (ξ1; t) with charac-

teristic function χ [ξ;D (ξ1; t)], significant contributions to the OTOC arise only from regions
|ξ| ≤ 1/

√
n. This is confirmed by an explicit calculation of the average OTOC,

C2(D (ξ1; t) , E)ρ =
1

π2N

ˆ
d2Nξd2Nξ′ exp

(
−n|ξ|2

)
eiξ
′TΩξ

× χ? [ξ′;D (ξ1; t)]χ [ξ′ − ξ; ρ]χ [ξ;D (ξ1; t)] , (11.41)

where contributions are damped by the same exponential factor exp (−n|ξ|2). On the other
hand, the finite phase space resolution of ρ (i.e. the width of χ [ξ′ − ξ; ρ]) introduces mixing
between χ? [ξ′;D (ξ1; t)] and χ [ξ;D (ξ1; t)], which serves to coarse-grain the operator’s phase
space distribution on a scale set by ρ. For a thermal state ρ̃nth , this occurs for |ξ′ − ξ| ≤
1/
√
nth. Combining the two regularizations (Fig. 11.4), we see that the decay of the average

OTOC probes the extent that the operator distribution, coarse-grained by ρ, is spread outside
a ball of radius ∼ 1/

√
n about the identity (ξ = 0). Intuitively, one likely wants to set the

coarse-graining to be on a scale smaller than the ball radius, 1/
√
nth < 1/

√
n.

From the analysis above, we see a clear distinction between volume characterization by
the OTOC and the frame potential. Namely, the frame potential measures the overall volume
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of the coarse-grained operator spreading, whereas the average OTOC measures the extent
to which the operator has spread outside the ball of radius 1/

√
n. Broadly, this implies that

the average OTOC decay earns contributions only from operators with large displacements
(compared to 1/

√
n). This feature is intuitively favorable for characterizing scrambling and

operator growth in CV systems because larger displacement operators are more complex,
requiring larger energy to implement.

One can also consider the average OTOC with respect to more generic Gaussian distri-
butions Dξ0,V defined in Eq. (11.22). These detect the portion of a coarse-grained operator’s
distribution within a distorted ball of width(s) determined by V −1 about a center ξ0. As
such, in principle, the average OTOC can measure a coarse-grained local probability density
anywhere in the phase space with tunable short (∼ 1/

√
nth) and long (∼ 1/

√
n) distance

cut-offs. Such measures include probing operator spreading in real space, by choosing the
widths of V to be large for modes inside some spatial region and small otherwise. Finally, we
note that our focus on Gaussian ensembles is not only analytically convenient; in Sec. 11.5
we show that such average OTOCs are naturally measured in quantum optical experiments.

Measuring non-Gaussianity with OTOCs

We have seen that Gaussian and non-Gaussian dynamics have different abilities to spread
operators in phase space, termed genuine and quasi scrambling. Separately, we showed that
operators’ phase space distributions are related to OTOCs via Eq. (11.32) (with Eqs. (11.33-
11.34) as limiting cases). Here we complete this triangle of relations, showing that decay of
the OTOC magnitude measures non-Gaussianity and operator spreading.

Once again, we begin by constructing a measure of non-Cliffordness for DV time-evolution.
Using the commutation PQ = eiφP,QQP of Pauli operators, one can show that OTOCs with
respect to Paulis satisfy (P 6= I)

∣∣C2(P (t), R)
∣∣ = 1, ∀R ∈ Pauli ⇔ U is Clifford,
< 1, ∃R ∈ Pauli ⇔ U is non-Clifford. (11.42)

Hence, the decay of the amplitude of OTOCs is sensitive to non-Cliffordness of U . This is an-
other way to see why Clifford unitaries should not be called genuine scramblers. This prompts
us to consider the sum of OTOC amplitudes as a faithful measure of non-Cliffordness:

MDV ≡ 1

d4

∑

P,R∈Pauli

∣∣C2(P (t), R)
∣∣2

=
1

d2

∑

P∈Pauli

|f [Q;P (t)] |4

=
1

d2

∑

P∈Pauli

vol(E [P (t)])−1, (11.43)
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where decay ofMCV from 1 indicates non-Clifford behavior, and where we use Eqs. (11.13)
to relateMCV to the phase space volume of time-evolved Pauli operators. This provides an
explicit relation between OTOCs, operator spreadings and non-Cliffordness.

Analogous relations can be derived for CV systems. Using the commutationD (ξ1)D (ξ2) =

e−2iξ1
TΩξ2D (ξ2)D (ξ1), the OTOC under Gaussian time-evolution can be computed exactly,

giving the overall phase C2(ξ1, ξ2; t)ρ = e−2i(S−1ξ1)
T

Ωξ2 with magnitude 1. One can show
that (ξ1 6= 0 and ρ full rank)

∣∣C2(ξ1, ξ2; t)ρ
∣∣ = 1, ∀ ξ2 ⇔ U is Gaussian. (11.44)
< 1, ∃ ξ2 ⇔ U is non-Gaussian. (11.45)

This suggests the following measure of non-Gaussianity

MCV ≡ Eξ1∼E1,ξ2∼E2
∣∣C2(ξ1, ξ2; t)ρ

∣∣2 (11.46)

with respect to some ensembles of displacement operators E1, E2, where decay ofMCV from
1 indicates non-Gaussian behavior. In Section 11.5, we present a measurement protocol of
this quantity. Interestingly, our proposed quantityMDV is closely related to a recent work
on the stabilizer test by Gross, Nezami and Walter [177]; it is an interesting future problem
to relateMCV to an analogous ‘Gaussianity test’.

Examples of genuine scramblers

Having established a foundation for characterizing scrambling and operator spreading in
CV systems, we now apply these tools to two specific examples of non-Gaussian Hamiltoni-
ans: an exactly-solvable cubic phase gate in Section 11.3 and the quantum chaotic Henon-
Heiles potential [148, 538, 539] in Section 11.3. We show that both lead to operator spreading
in phase space and the decay of OTOCs. Each Hamiltonian is of the form

HNG =
N∑

k=1

p2
k/2m+ V (q1, · · · , qN) , (11.47)

where the non-Gaussianity arises from a non-linear potential V (q1, · · · , qN). Such Hamilto-
nians encompass a variety of many-body phases, as well as the few-mode billiard systems
often studied in quantum chaos. In addition to the examples given here, in Section 11.5 we
describe genuine scrambling operations suitable to be realized in present-day quantum optics
experiment.

Cubic phase gate

We begin with an analytically tractable toy model: a single-mode Hamiltonian with a
cubic potential V = q3/3!, in the m → ∞ limit [172]. Here we can solve exactly for the
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time-evolved displacement operator D (α; t). We use the Hadamard lemma

eABe−A = B + [A,B] +
1

2!
[A, [A,B]] + · · · ≡ B̃ (11.48)

and its straightforward extension eAf(B)e−A = f(B̃), for functions f(B) with a Taylor
expansion. Taking eA ≡ U (t) = exp (−iγtq3/3!) and f(B) = D (α; t = 0), we find

D (α; t) = exp
[
i
(
Im (α) q − Re (α) p+ γtRe (α) q2

)]
. (11.49)

To compute the OTOC, we apply the Hadamard lemma again, obtaining

D† (α; t)D† (β)D (α; t)

= e
i

(
−Im(β)q+Re(β)p+2Im(α?β)+2γtRe(α)Re(β)q

)
, (11.50)

which gives the OTOC

C2(α, β; t)ρ = exp (iθ)χ (2iγtRe (α)Re (β) ; ρ) . (11.51)

Here the phase factor is given by

θ = 2Im (α?β) + 2γtRe (α)Re (β)Re (α + β) , (11.52)

and χ(Re(ξ)+ iIm(ξ); ρ) is the characteristic function of ρ. For a thermal state ρ̃nth , we have

C2(α, β; t)ρ̃nth
= eiθe−2(2nth+1)(Re(α)Re(β)t)2γ2

(11.53)

indicating a Gaussian decay of the OTOC in time. From this, the operator’s phase space
distribution (diagnosed by TOCs) can be calculated via Eq. (11.34). For large nth, we have

|C1(α, β′; t)ρ̃nth
|2 ≈ δ (Re(α)− Re(β′))

× exp

[
−
(
Im (β′)− Im (α) + γtRe (α)2)2

2(2nth + 1)γ2Re(α)2t2

]
. (11.54)

We see that the imaginary part ofD(α; t) spreads as a Gaussian in phase space, while the real
part does not spread (a consequence of the simplicity of our Hamiltonian, which commutes
with q). The width of the operator distribution increases linearly in t, according to

∣∣Im (β′)
∣∣ '

√
2(2nth + 1)

∣∣Re (α)
∣∣tγ. (11.55)
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Figure 11.5: Time-evolution under the Henon-Heiles potential. (a) The initial (t = 0) wave
function is localized in the red circle with momentum shown by the red arrow. Coloring dis-
plays the probability density of the final state (t = 40tc), with blue indicating zero probability.
Black dashed lines indicate contours V = 2VC , VC , VC/2 of the potential, and time is mea-
sured in units of tc = rC/

√
2VC/m. (b) The OTOC amplitude |Cw,v2 (α, β; t)|γ1〉|γ2〉 | for a two-

mode coherent state γ1 = 0.15rC+i
√

7VC/40 cos(10◦), γ2 = i
√

7VC/40 sin(10◦) and displace-
ment operators α = (1− i)/4, β = (1 + i)/4 on modes v, w ∈ {1, 2}. The OTOC decay for a
different coherent state γ1 = 0.125rC+i0.375

√
VC cos(20◦), γ2 = 0.125rC+i0.375

√
VC sin(20◦)

and displacements α = (1− i)/2, β = (0.4 + 0.3i) exhibits similar behavior (not shown). In
contrast, the OTOC amplitude under Gaussian dynamics does not decay (blue).

Henon-Heiles potentials

The previous example of a genuine scrambler was integrable, to enable analytic treatment.
To probe operator spreading in a non-integrable system, we consider the two-mode Henon-
Heiles potential

V (q1, q2) = U
(
q2

1 + q2
2

)
/2 + λ

(
q2

1q2 − q3
2/3
)
, (11.56)

which has a long history of study in both quantum and classical chaos [148, 538, 539].
We choose this potential partially with an eye on experiment: Hamiltonians that are low-
order polynomials in q, p are likely easier to realize in quantum optics experiment than
those with hard-cut offs, such as billiard systems. This potential has a local minimum at
the origin, and three saddle points at distance rC ≡ U/λ and energies VC = U3/6λ2 [see
Fig. 11.5(a)]. The classical orbits are chaotic for energies above VC/2 [210]. In the quantum
system, Ref. [538, 539] showed that initially local quantum states spread out in phase space,
eventually approaching an equilibrium distribution.

We numerically study the Henon-Heiles potential with parameters m = 1/2, U = 1, λ =
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0.025. In agreement with previous works [538, 539], we observe that an initial wavefunction
localized in phase space spreads out over the entire classically allowed spatial region V <
VC [Fig. 11.5(a)]. To study operator spreading, we numerically compute the OTOC for
pure coherent states, ρ = |γ〉 〈γ|. In practice, we expect such OTOCs to replicate much
of the behavior of OTOCs with respect to the thermal density matrix, as, intuitively, all
information about initial states other than their energy will be ‘forgotten’ at late times due
to the chaotic dynamics. Moreover, since the thermal state is a mixture of coherent states,
ρ̃nth ∼

´
dγ2Ne−βnth |γ|

2 |γ〉 〈γ|, thermal OTOCs can be obtained exactly from an average over
coherent state OTOCs. As shown in Fig. 11.5(b), the OTOC for a coherent state with energy
∼ VC quickly decays on a timescale ∼ tc = rC/

√
2VC/m, roughly the time required to move

from the origin to a saddle point for the classical Hamiltonian. To verify the generic nature of
this decay, we computed the OTOC for a different initial state of similar energy, with respect
to different displacement operators, and observe similar behavior. Finally, as a counterpoint,
we also compute the same OTOCs for a Gaussian potential, V (q1, q2) = U (q2

1 + q2
2) /2. As

expected the OTOC amplitude remains unity, indicating no genuine scrambling.

11.4 Operator distributions in quasi scrambling
In this Section, we attempt to learn more about genuine scrambling dynamics by studying

quasi scrambling systems. Although we were able to exactly numerically simulate genuine
scrambling Hamiltonians in Section 11.3, we were limited to few-mode Hamiltonians due to
the exponential complexity of a many-mode Hilbert space. In contrast, quasi scrambling
(Gaussian) time-evolution can be efficiently simulated—with N modes, one only needs to
keep track of the 2N × 2N symplectic matrix S.

It is initially surprising that quasi scrambling can teach us anything about general scram-
bling systems, and we begin Section 11.4 by briefly elaborating on the sense in which quasi
scrambling unitaries are, and are not, capable of scrambling. Following this, we explore
random circuits of Gaussian unitaries on both single (Section 11.4) and many (Section 11.4)
mode systems. Unlike DV random circuits [49, 68, 198, 246, 340, 385, 476, 505], we find
that the accessible single-mode CV Hilbert space grows exponentially in time, related to a
tunable parameter, the squeezing, of the Gaussian operation. This in turn leads a squeezing-
dependent ballistic spreading of operators in many-mode circuits, as well as an unusual
quadratic growth of entanglement entropy. To theoretically capture these results, we intro-
duce a hydrodynamical model of operator spreading that is accurate in the low-squeezing
regime.

In DV systems, the expectation that quasi scrambling random circuits can mimic aspects
of actual physical systems is justified by the notion of unitary designs. In Section 11.4, we
adapt the definition of unitary designs to CV systems. We provide explicit results for CV
1-designs formed by displacement operators, and analogs of 2-designs formed by Gaussian
unitaries. CV designs necessarily involve ‘cutting-off’ an ensemble of unitaries at some finite
extent, which we show can lead to ensembles that mimic design behavior on certain subspaces
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Figure 11.6: Rough illustration of quasi scrambling and the quantum Liouville’s theorem.
While the global volume of an ensemble Dw

n (t) of time-evolved displacement operators (yel-
low) remains fixed under time-evolution by a Gaussian unitary U(t), the projected volume on
the mode v (measured via an average over local displacements; red), and the coarse-grained
volume (roughly, the number of boxes the ensemble occupies) may increase.

of a Hilbert space, but not the entire space.

Random Gaussian circuits

Before addressing operator spreading in random Gaussian circuits, we find it useful to
discuss the extent that such systems can scramble. As we have seen, quasi scrambling uni-
taries cannot increase the volume of displacement operators in phase space. In Appendix F,
we prove a quantum Louiville theorem that expands this non-increase to volumes of ensem-
bles of displacement operators. Interestingly however, Gaussian dynamics can ‘squeeze’ such
ensembles so that their phase space volume appears to increase after coarse-graining by a
density matrix ρ, as depicted in Figs. 11.3(b), 11.6.

Hints of this scrambling power were in fact already present when we considered average
OTOCs. While quasi scrambling unitaries cannot cause any individual OTOC to decay,
they can randomize the OTOC phase; when averaging many OTOCs, this leads to decay
just as does genuine scrambling2. In what follows, we will be interested in averaging over
the time-evolution itself (i.e. the random circuits), but similar themes hold.

2Even this limited amount of scrambling is somewhat surprising, given that Gaussian time-evolution
corresponds to free bosons (possessing a quadratic Hamiltonian). In contrast, free fermions cannot scramble
operators in any sense—time-evolved local operators will always consist of only few-body terms.
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Single-mode: growth of the accessible local Hilbert space

We begin by studying random Gaussian circuits on a single mode. In DV systems, a
single-qudit circuit would seem trivial—the product of Haar random unitaries is also Haar
random, and so sequential applications of them would have no interesting dynamics. In
contrast, the set of CV Gaussian unitaries is unbounded, and to choose a random unitary we
must cut-off this ensemble using a finite ‘squeezing’ parameter. The squeezing is not invariant
under composition of Gaussians; we will study its increase in time, and this increase’s effect
on the size of the accessible Hilbert space.

Borrowing terminology from quantum optics, we decompose a general N -mode Gaussian
operation into a product of ‘passive linear optics’ operations and ‘squeezing’ operations. This
is known as the Euler decomposition, and takes the form

US = UKUS({rk})UL. (11.57)

The passive linear optics operations preserve photon number, and are described by sym-
plectic orthogonal matrices K,L ∈ SpO(N). Single-mode squeezing operations, which
increase/decrease photon number by mixing creation and annihilation operators of each
mode k, are characterized by their strengths rk and represented by the diagonal matrix
S({rk}) =

⊕N
k=1 Diag (erk , e−rk). This squeezing operation multiplies a states’ width in the

qk-quadratures by erk , and in the pk-quadratures by e−rk . (See Appendix F for a more
in-depth introduction to Gaussian operations.)

In our single-mode Gaussian circuit, we consider a sequence U1, U2, . . . , UT of random
Gaussian unitaries. We take the passive linear optics operations K,L of each unitary to be
distributed uniformly according to the Haar measure, and the squeezing strengths rt (at time
step t) to be small, drawn from some probability distribution P (rt). We study the growth
of the total squeezing rtotT of the compounded unitary UTUT−1 . . . U1. Averaging over angles,
we find that the mean and variance of rtotT increase as

〈rtotT+1〉 = 〈rtotT 〉+
1

2
〈r2
T+1〉 , (11.58)

var
(
rtotT+1

)
= var

(
rtotT
)

+
1

2
〈r2
T+1〉 . (11.59)

After many time steps, this approaches a normal distribution rtotT ∼ N (µ, σ2) with equal
mean and variance, µ = σ2 =

∑T
t=1 〈r2

t /2〉 = T 〈r2
t /2〉. We verify this numerically in

Fig. 11.7(a).
We can also track the time-evolution of a displacement operator D(α(t)) under the ran-

dom Gaussian circuit. At large squeezing, the amplitude of a typical evolved displacement
is dominated by the displacement’s component on the axis amplified by ertotT . From our pre-
vious results, the factor ertotT obeys a log-normal distribution LN (T 〈r2

t /2〉 , T 〈r2
t /2〉), and

so the amplitude obeys

|α(t)| ∼ LN
(
µ = T 〈r2

t /2〉 |α(0)|, σ2 = T 〈r2
t /2〉 |α(0)|2

)
. (11.60)
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Figure 11.7: (a) Increase of the mean and variance of the total squeezing rtotT for a single-
mode Gaussian circuit, with individual squeezings drawn from a uniform distribution in
[0, 1/2] (other distributions exhibit similar behavior). Each data point is calculated from
2000 samples. At large T , the mean and variance are equal and close to the theoretical
prediction 1

2

∑T
t=1 〈r2

t 〉 = (1/24)T (black dashed line). (b) Scaled probability density function
of the log-normal distribution for ertotT (mean/variance 1, 5, 10, 50, 100, from bottom to top).

This resembles a constant distribution in the range |α(0)|e−T 〈r2
t /2〉 < |α(t)| < |α(0)|eT 〈r2

t /2〉

[shown in Fig. 11.7(b)]. The phase space volume ∼ (eT 〈r
2
t /2〉)2 available to the time-evolved

displacement operator increases exponentially in time.
Squeezing’s effect on states parallels its effect on displacement operators. Note that, for

large squeezing, the number of photons in a state typically increases as n→ e2rtotT n (as seen
by writing n = a†a ∼ q2 + p2 → e2rq2 + e−2rp2 ∼ e2rn). Therefore, over different circuit
realizations, the time-evolved state will have some chance to be in any of the ∼ (eT 〈r

2
t /2〉)2 n

states of photon number . (eT 〈r
2
t /2〉)2 n; hence our claim that the size of the Hilbert space

‘accessible’ to the system grows exponentially.

Many-modes: ballistic propagation

We now turn to the effect of squeezing in many-mode random Gaussian circuits. Again
owing to the Euler decomposition of Gaussian unitaries in Eqs. (11.57), we construct a
general many-mode circuit by interleaving layers of single-mode squeezing and layers of
multi-mode passive linear optics (i.e. beamsplitters and phase phase-shifters), as shown
in Fig. 11.8. To capture the behavior of locally-interacting physical systems, we take the
passive linear optics operations to be nearest-neighbor (decomposable into nearest-neighbor
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Figure 11.8: Schematic of the local random Gaussian circuit for 13 modes. The orange
rectangles are random two-mode passive linear optics (beamsplitters and phase shifters)
and the blue rectangles are random single-mode squeezers. The red dashed line shows the
lightcone of mode 0.

beamsplitters and single-mode phase shifting operations). Each of these is described by a
two-mode Gaussian unitary UL2x,t , where L2x,t is a random symplectic orthogonal matrix.
Each time step also includes single-mode squeezing of amplitudes rx,t drawn uniformly from
the interval [0, R].

We characterize operator spreading in these circuits using the average OTOC. Specifically,
we consider the time-evolution of an initial displacement D0 (α) (localized on mode 0) under
an ensemble CR of random Gaussian circuits. This gives rise to an ensemble of displacements
D0 (α; t) = {U † (t)D0 (α)U (t) |U (t) ∼ CR}. We measure the support of this ensemble on
mode x with the OTOC

C2

(
D0 (α; t) ,Dx

n

)
ρ

= Eξ∼D0(α;t)

[
exp

(
−n
(
ξ2

2x + ξ2
2x+1

))]
, (11.61)

averaged over both D0 (α; t) and a local displacement ensemble Dx
n of width n. Per Sec-

tion 11.3, decay of the average OTOC indicates that significant portions of time-evolved
displacements are distributed outside the ball of radius 1√

n
about the identity on mode x.

For low squeezing R, operator spreading in the random Gaussian circuit can be cap-
tured by a simple hydrodynamical equation. The central object of this equation is the
amplitude squared of the operator on the mode x, f (x, t) = ξ2

2x + ξ2
2x+1. To motivate

the hydrodynamical description, note that, in the absence of squeezing, the total amplitude
F (t) =

´
dx f (x, t) is conserved due to the orthogonality of the matrix S [see Eq.(11.57)]. In

this regime, random beamsplitters lead to diffusion of f . Introducing single-mode squeezing
breaks conservation of F and leads, on average, to its exponential growth. Together, these
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Figure 11.9: Average OTOC in the random Gaussian circuit, for a thermal density ma-
trix nth = 5, as a function of both space (x-axis) and time (in units of 10, y-axis).
The butterfly velocity increases to its upper bound of 1 as the squeezing is increased
[R = 0, 0.2, 0.4, 0.6, 0.9, 2, from (a)-(f)]. Each average is obtained from 100 samples.

suggest the hydrodynamical equation

∂tf (x, t) = D∂2
xf (x, t) + cRf (x, t) , (11.62)

where we denote the average of f over the circuit ensemble as f (x, t), and introduce the
diffusion constant D and the growth exponent cR. Solving this equation, we find that an
initially local operator f (x, 0) = δ(x) spreads according to

f (x, t) =
1√

4πDt
exp

(
− x2

4Dt
+ cRt

)
. (11.63)

From Eq. (11.61), the growth of f leads to decay of the OTOC, which becomes sizable when
f ∼ 1. This decay spreads ballistically with a wavefront xf (t) = vBt, where we define the
butterfly velocity

vB =
√

4DcR. (11.64)

Intriguingly, this relation between the butterfly velocity and the diffusion constant closely
resembles that found for a coupled SYK chain [182, 505] and weakly interacting diffusive
metal [367], if one identifies the single-mode growth exponent cR with the Lyapunov expo-
nent.

We verify our hydrodynamic model numerically on a system of 2L + 1 modes, indexed
by integers from [−L,L]. The total operator amplitude n indeed grows exponentially, with
a growth exponent proportional to the squeezing cR ∼ R, see Fig. 11.10(a). The variance in
position 〈x2〉 increases linearly in time, consistent with diffusive behavior at D = 1/2. We
numerically extract the wavefront xf (t) by finding the farthest mode with average OTOC
< 0.5. The wavefront spreads ballistically with a squeezing-dependent butterfly velocity, as
shown in Figs. 11.9, 11.10(c). For small cR, this velocity agrees with the hydrodynamical
relation Eq. (11.64).
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Figure 11.10: Hydrodynamical description of the many-mode random Gaussian circuit. (a)
The total operator amplitude F increases exponentially in time, with growth exponent pro-
portional to the squeezing (R = 0, 0.1, · · · , 0.9, from red to blue). (b) The variance in
position 〈x2〉 grows linearly in time, indicating diffusive behavior. (c) These combine to give
a ballistic spread of the OTOC decay, with a squeezing-dependent butterfly velocity vB. The
black dashed curve is the hydrodynamical prediction vB =

√
4DcR, the red dashed curve

is the binomial analysis, and black dots are numerics. Each average is obtained from 100
samples.

At larger squeezing cR ∼ 1, the butterfly velocity saturates to a maximum value of
1, and our hydrodynamical description does not apply. This maximum velocity is set by
the nearest-neighbor coupling of the circuit, and we can capture this saturation by taking
this discreteness into account. Note that, averaged over circuit realizations, a beam-splitter
between modes x and x + 1 acts to average the values of f on each mode: f(x, t + 1) =
f(x+ 1, t+ 1) = [f(x, t) + f(x+ 1, t)]/2. Under this process, an initially local f will spread
as a binomial distribution. Combining with squeezing, we predict

f(x, t) = Bi(t, x) ecRt =

(
t

x
2

+ t
2

)
1

2t
ecRt. (11.65)

From this, we can solve for the butterfly velocity using only the approximation t� 1 [but not
the further approximation xf (t) � t, which would reproduce the Gaussian of Eq. (11.63)].
As shown in Fig. 11.10(c), this indeed more accurately captures the squeezing dependence
of the butterfly velocity3.

3We observe systematic overestimation of the velocity by theory near the point of saturation ecR = 2. We
speculate that this arises from finite-size effects and discrepancy between the average OTOC, exp (−nf (x, t)),
and the quantity we theoretically model, exp

(
−nf (x, t)

)
. These effects can only decrease the numerical

estimate of the velocity due to the strict upper bound vB ≤ 1.
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Figure 11.11: The entanglement entropy S(x, t) for a random Gaussian circuit with L = 201
modes and squeezing R = 0.2 (t = 0, 80, 160, · · · , 800, 880, from bottom curve to top).
The entropy initially increases quadratically in time, then begins to saturate to S(x, t) ∼
t(L− |x|).

In addition to operator spreading, entanglement growth is a key diagnostic of scrambling
in many-body systems. To study it in our model, we bipartition the system at position x
and calculate the entanglement entropy S (x, t) between the left and right subsystems as
a function of time. As shown in Fig. 11.11, for a system initially in the vacuum product
state, we find that the average entanglement growth across the center cut h (t) = S (0, t) is
quadratic in time ∼ t2, in contrast to the linear growth characteristic of DV systems [341].
We can understand this in terms of the exponential growth of the accessible Hilbert space
found in Section 11.4. In DV systems, the hard cut-off of the local Hilbert space means that
qudits near the cut quickly become maximally entangled across the cut; the linear growth
∼ t arises from a ballistic ‘spread’ of entanglement with faraway modes. In the CV case, one
still receives this ballistic factor of t, in addition to a factor t ∼ log(ecRt) from the growth
of already-entangled modes. In a finite-size system, at some time T ∼ L all modes will
contribute to entanglement across the cut, and we expect this growth to saturate to a linear
behavior S(x, t) ∼ t(L − |x|). This is seen in Fig. 11.11, although we are limited in system
size and evolution time due to the increased ill-conditioning of the state’s covariance matrix
(used for efficient numerical simulation of Gaussian evolution) under squeezing.

In addition to the average entanglement, we study its fluctuations across circuit real-

izations, as measured by the standard deviation w (t) =

√
(S (0, t)− h (t))2. In DV sys-

tems, such fluctuations are predicted to lie in the Kardar-Parisi-Zhang (KPZ) universality
class [341], scaling with time as ∼ t1/3. In contrast, in Fig. 11.12 we observe fluctuations
scaling linearly with time ∼ t. We suspect that this arises from a dominance of fluctuations
in squeezing over KPZ fluctuations, but postpone a full theoretical model to future work.
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Figure 11.12: (a) Average entanglement entropy h(t) across the center cut (black dots), and a
quadratic polynomial fit 0.1t+ 0.001t2 (grey line). (b) Fluctuation w(t) of the entanglement
entropy (black dots), and a linear polynomial fit 0.014t (grey line). Each point is obtained
from 1000 independent samples for R = 0.2 and L = 400. Error bars indicate standard-
deviations.

CV unitary designs

In DV systems, the utility of quasi scrambling random circuit models is justified by
an assumption that aspects of physical systems can be modeled by local, Haar random
unitaries [20, 113, 115, 203, 361, 447]. When applicable, this assumption has incredible
power—it can be rigorously shown that averages over Haar random unitaries can be repli-
cated by much simpler unitary ensembles, known as unitary k-designs. By simulating the
system using the simpler k-designs (or computing the Haar averages explicitly), one encoun-
ters a rare opportunity to study quantum chaotic behavior in an analytically and numerically
tractable setting [49, 68, 198, 246, 340, 385, 476, 505].

In DV systems, a unitary k-design is defined as distribution of unitaries that replicates
the kth moments of the Haar ensemble [24, 122, 402],

EE
[
f(U,U †)

]
= EHaar

[
f(U,U †)

]
(11.66)

for any polynomial f(U,U †) of order ≤ k in U,U †. Designs represent a hierarchy of increas-
ingly random behavior, which has been tied to the complexity of unitary ensembles [399].
They can also inform our understanding of scrambling in systems with a notion of locality:
local randomization of the system, as diagnosed by TOCs, is captured by 1-designs, while
entanglement generation and operator delocalization are captured by 2-designs [399]. In DV
systems, it is well-known that the set of all Pauli operators form a 1-design, and Clifford
operators a 2-design.

The extension of unitary designs to CV systems is initially unclear, as there is no Haar
ensemble in an infinite-dimensional system. Despite this, we notice that averages over Haar
unitaries can remain well-defined in the CV limit. To see this, note that the Haar expectation
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of f(U,U †) can be computed power by power, which leads to an equivalent definition of a
unitary k-design:

EE
[
U⊗k ⊗ (U †)

⊗k
]

= EHaar

[
U⊗k ⊗ (U †)

⊗k
]
, (11.67)

where the operator U⊗k⊗(U †)
⊗k acts on 2k-copies of the original system. This reformulation

is convenient because the RHS can be computed explicitly; it is found to be a sum of
permutation operators between the 2k system copies, with coefficients that depend on the
dimension d [399]. We use this to define a CV k-design as an ensemble which satisfies
Eqs. (11.67) in the limit d→∞, keeping only lowest order terms in 1/d.

In Sections 11.4, we use this definition to show that displacement operators form a CV
1-design. Intriguingly, previous work has indicated that Gaussian states cannot form a CV
state 2-design [62]; in Section 11.4, we show an analogous result for Gaussian unitaries, arising
from the need to regulate, or cut-off, CV unitary ensembles. For 1-designs, regularization
naturally leads to ensembles that replicate ‘energy-constrained’ random behavior. For 2-
designs, regularization relates to the squeezing of the Gaussian unitaries, and we find that
scrambling by Gaussian unitaries necessarily increases the ‘energy’ (defined roughly, by the
choice of regularization) of the system. Intriguingly, large-squeezing Gaussian unitaries do
exhibit some similar behavior to 2-designs in DV systems.

To verify CV designs, in Section 11.4 we adapt a DV quantity which measures closeness
to Haar randomness, the frame potential, to CV unitary ensembles. We find that the DV
finite-temperature frame potential [399] has no nontrivial lower bound for CV systems, owing
to the potentially infinite size of CV ensembles. To remedy this, we define a ‘twice-regulated’
frame potential, which only receives contributions from unitaries that approximately preserve
a ‘low-energy’ subspace.

Although higher designs remain largely unknown in both DV [271, 484, 534] and CV
systems, we note that our differentiation between quasi and genuine scrambling matches
that between 2-designs and higher designs. Specifically, the volume of operators, measured
by either the fourth power of the TOC or the OTOC squared, consists of four copies each
of U and U †. Its ‘Haar average’, corresponding to a large phase space volume of unitary
time-evolved operators, is therefore replicated by (k ≥ 4)-designs.

Before proceeding, we contrast our work with previous results on unitary designs in CV
systems. Ref. [419] proposes to construct a CV 1-design by using the number and phase
operators as generators; however, as they point out, their construction relies on a finite-
dimension Hilbert space cut-off. Another proposal, Ref. [176], defines Haar randomness
and k-designs in CV systems using the isomorphism between unitary matrices U(N) and
orthogonal symplectic matrices SpO(2N), the latter describing operations in passive linear
optics. This approach only encompasses Gaussian operations without squeezing, and is not
suited to capture chaotic behavior in interacting CV systems.
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CV 1-design

We begin with a brief review of 1-designs in DV systems. For k = 1, Eqs. (11.67) becomes

EE
[
U ⊗ U †

]
=

1

d
S↔ (11.68)

where the swap operator S↔ interchanges the copies of the system acted on by U and U †.
By rearranging indices, one can also define 1-designs by any of the equivalent conditions:

EE
[
U AU †

]
=

1

d
tr (A) I, (11.69)

EE
[
tr(U †A)U

]
=

1

d
A, (11.70)

EE [U ⊗ U∗] = |EPR〉〈EPR| , (11.71)

where A is an arbitrary operator on the system, and |EPR〉 ≡ 1√
d

∑
i |i〉 |i〉

∗, with {|i〉} a
complete basis of states, is an EPR pair between two copies of the system. Moreover, as seen
from Eqs. (11.70), all four definitions are equivalent to requiring that E forms a complete
operator basis. Pauli operators, as a complete operator basis, thus form a DV 1-design.

The equivalence of 1-designs and complete operator bases immediately suggests a uni-
form ensemble of displacement operators as a candidate CV 1-design. Indeed, displacement
operators satisfy similar relations

(
1

π

)N ˆ
d2NξD (ξ)⊗D† (ξ) = S↔ (11.72)

(
1

π

)N ˆ
d2NξD (ξ) AD† (ξ) = tr (A) I. (11.73)

However, this ensemble is not normalized, due to the infinite volume of phase space. This
compensates for the factors of 1

d
in Eqs. (11.68-11.70), which go to zero in the CV limit.

Regularizing this ensemble, in addition to being convenient, is also physically motivated.
For example, the dynamics of a Hamiltonian system will be constrained by energy, and we
shouldn’t expect an unbounded ensemble of displacements to mimic typical scrambling be-
havior. To regularize this, we consider the Gaussian ensemble Dn of displacements, defined in
Eq. (11.39). Gaussians are natural due to their stability under addition, which suggests that
sequential applications of random displacements will asymptotically approach a Gaussian
distribution. The ensemble Dn satisfies

lim
n→∞

nN̂ d2Nξ PG
D (ξ;n)D (ξ) AD† (ξ) = tr (A) I (11.74)

lim
n→∞

nN̂ d2Nξ PG
D (ξ;n)D (ξ)⊗D† (ξ) = S↔ (11.75)

lim
n→∞

ˆ
d2Nξ PG

D (ξ;n)D (ξ)⊗D∗ (ξ) = |EPR〉〈EPR| , (11.76)
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where the operator A has a well-defined characteristic function, the conjugate D∗ (ξ) flips
the signs of the displacement’s momentum quadratures4, and the CV EPR pair is defined as
|EPR〉 = limβ→∞

∑
n e
−βn |n〉 |n〉 /Nβ (Nβ chosen for normalization) [36], and the CV EPR

pair is defined as |EPR〉 = limβ→∞
∑

n e
−βn |n〉 |n〉 /Nβ (Nβ chosen for normalization) [36].

Intriguingly, at finite n, analogs of Eqs.(11.74-11.76) still hold for states with mean photon
number nth < n. For example, nN

´
d2Nξ PG

D (ξ;n)D (ξ) ⊗ D† (ξ) will act as the swap
operator on the subspace of . n photons, but not for higher photon number (we verify this
in Appendix F). This can be understood intuitively. As we have seen, a thermal density
matrix ρ̃nth can resolve distances 1/

√
nth in phase space. To swap such states, the ensemble

needs to have nontrivial commutation ∼ eiξ
TΩξ0 [see, e.g. Eq. (11.9)] with displacements of

this minimum distance |ξ0| ∼ 1/
√
nth. This occurs when |ξ| & 1/|ξ0|, or

√
n &

√
nth. We

speculate that these regulated designs may arise naturally when approximating scrambling
quantum dynamics. For example, time-evolution under a static Hamiltonian will generally
be energetically restricted to some subspace of the total Hilbert space. Approximating
scrambling behavior in such systems would require operators which respect this subspace.

The regulated CV 1-design arises naturally in physical contexts. We briefly discuss
two such examples. In CV state tomography [123, 309], one aims to estimate the den-
sity matrix ρ of an unknown quantum state through its characteristic function χ (ξ; ρ) ≡
tr [ρD (ξ)]. In reality, one can only perform a finite number of measurements, and can
therefore only estimate χ (ξ; ρ) in a certain region of phase space. Conventionally, one
chooses to sample ξ according to a Gaussian distribution, obtaining the reconstruction
ρ′ ∼

´
d2Nξ PG

D (ξ;n) tr [ρD (ξ)]D (−ξ) , which suffers from Gaussian additive noise of
strength 1/n [470]. A second application of CV 1-designs concerns designs for quantum
states. In DV systems, a state 1-design is obtained by applying a unitary 1-design to a
computational basis state. For CV systems, an analogous procedure gives a Gaussian dis-
tributed ensemble of coherent states. This ensemble has important applications in quantum
information processing. For instance, it can be used as a basis of encoding states to achieve
the classical capacity of one-mode bosonic Gaussian channels [470], or in CV quantum key
distribution protocols [178].

CV 2-design

In DV systems, the set of Clifford unitaries forms a 2-design [399]. They obey a defining
equation analogous to Eq. (11.68),

EE
[
(U ⊗ U)A (U † ⊗ U †)

]
=

1

d2 − 1
[Itr (A) +

4Partial transpose corresponds to the time reversal, p → −p, q → q, which leads to D (ξ1, ξ2) →
D (−ξ1, ξ2), χ

(
ξ1, ξ2;UT

)
= χ (−ξ1, ξ2;U), and W

(
q, p;UT

)
= W (q,−p;U) [438]. On the other hand,

complex conjugate corresponds to p → p, q → −q, which leads to D (ξ1, ξ2) → D (ξ1,−ξ2), χ (ξ1, ξ2;U?) =
χ (ξ1,−ξ2;U), and W (q, p;U?) = W (−q, p;U). Note that W (q, p;A) = W (−q,−p;A) for a Hermitian
operator A.
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S↔tr (S↔A)− 1

d
Itr (S↔A)− 1

d
Itr (S↔A)

]
. (11.77)

It is insightful to observe the action of this quantum channel on Pauli matrices A = P1⊗P2:

EE
[
(U ⊗ U)P1 ⊗ P2 (U † ⊗ U †)

]

=




I ⊗ I if P1 = P2 = I;

1
d2−1

∑
P 6=I P ⊗ P † if P1 = P2 6= I;

0 if P1 6= P2.
(11.78)

Intuitively, a random Clifford unitary transforms a non-identity Pauli matrix to any other
non-identity Pauli with equal probability (along with the constraint P1 = P2).

In the CV case, we take the d→∞ limit of Eq. (11.77) as the definition of a 2-design5,

EE
[
(U ⊗ U)A (U † ⊗ U †)

]

−−−→
d→∞

1

d2
[Itr (A) + S↔tr (S↔A)] . (11.80)

We begin by exploring a particular ensemble Er of Gaussian unitaries that comes close to
satisfying this definition. To define this ensemble, it is helpful to decompose a given Gaussian
into the product of a quadratic operation and a displacement, U = D(d/2)US, and Euler
decompose the former as S = KS({ri})L, with single-mode squeezings of strength ri (see
Section 11.4). When acted on a displacement operator A = D(ξ1) ⊗ D(ξ2), Eq. (11.80)
leads to a sum over a distribution of transformed displacements D(Sξ1) ⊗ D(Sξ2), similar
to Eqs. (11.77-11.78). A Gaussian distribution over d gives this distribution a factor of
δ(ξ1 − ξ2), analogous to the DV requirement P1 = P2. The distribution is rotationally
symmetric if K,L are Haar distributed. Finally, we take the squeezings ri = r to be large.
In the many-mode limit, one can show (via the Central Limit theorem) that this gives
displacements approximately Gaussian distributed, with a width er|ξ1| proportional to the
initial displacement ξ1. Concretely, we find

EEr
[
(U⊗2)D(ξ1)⊗D(ξ2) (U †⊗2)

]

≈ δ(ξ1 + ξ2)

ˆ
d2Nξ PG

D (ξ; er|ξ1|)
[
D (ξ)⊗D† (ξ)

]
, (11.81)

a CV analog of Eq. (11.78).
The relation Eq. (11.81) is close to the 2-design definition Eq. (11.80). When ξ1 = 0,

both have a RHS proportional to the identity. When ξ1 6= 0, the RHS of Eq. (11.81)
5We note that a similar CV definition of higher k-designs is possible. Using expressions in Ref. [399],

one can derive

EE
[
(U)⊗k A (U†)⊗k

]
−−−→
d→∞

1

dk

∑

π

Wπtr
(
W−1π A

)
, (11.79)

where Wπ performs the permutation π on the k system copies.
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is proportional to a SWAP operator on subspaces with less than ∼ er|ξ1| photons (see
our discussion in Section 11.4). However, the constant of proportionality for the latter
is off by a displacement-dependent factor of 1/(er|ξ1|)N . This arises from the fact that,
wherever a displacement D(ξ) is transformed to, the displacement D(c ξ) is transformed to
a displacement c times as large (because Gaussian unitaries act linearly on ξ). The width
of the transformed displacements’ distribution must then be proportional to |ξ1|, leading to
the prefactor 1/|ξ1|N . This prefactor is similar to that found in Ref. [62], when considering
an ensemble of single-mode Gaussian states.

It is unclear how physically fundamental this discrepancy is. Arguing for its physicality is
that it seems as if it would arise in any soft regularization of CV systems. For instance, when
regularized by the thermal density matrix ρ̃nth , information about the state is contained in
displacements as small (‘low-energy’) as ξ ∼ 1/

√
nth and as large (‘high-energy’) as ξ ∼ √nth.

If the lowest-energy operator is evolved to a high-energy operator by some elements of the
2-design, then the product of many low-energy operators (which form a larger displacement,
i.e. a higher energy operator) must be taken to an operator of even higher energy, outside
of the subspace defined by ρ̃nth . This seems to suggest that it is necessary for a 2-design
to increase the energy/dimension of the effective CV Hilbert space, leading to the ‘energy-
dependent’ prefactor 1/|ξ1|N . On the other hand, this restriction may be unique to the
linear action of Gaussian unitaries on displacements, and it is an open question whether an
ensemble of non-Gaussian unitaries can satisfy Eq. (11.80).

Nevertheless, 2-designs are interesting in many-body physics because they can model
physical processes, and the ensemble Er does possess these more qualitative properties. For
instance, a key characteristic of a 2-design is the ability to generate entanglement. In DV
systems, a typical Clifford unitary applied to a product state will generate near maximal
entanglement between any two subsystems. In CV systems, we numerically investigate the
entanglement generated by the ensemble Er by applying a randomly sampled Gaussian on
an initially unentangled two-mode system in a pure state6. We find that the entanglement
generated grows linearly with the squeezing r, as shown in Fig. 11.13. This is expected,
as entanglement is proportional to the logarithm of the number of states accessible to each
subsystem, which increases ∼ e2r under squeezing.

We also find that time-evolution in the many-mode random Gaussian circuit in Section
11.4 converges to Er (with asymptotically increasing squeezing) at long times, demonstrating
that Er can capture operator growth and OTOC decay as observed in those circuits. The
displacement amplitudes can be seen to be Gaussian distributed locally due to the beam-
splitters, with typical width ecRt/

√
2L+ 1 as t→∞. The single-mode circuit in Section 11.4

does not asymptotically converge to Er, although this is less surprising since our arguments
for Er were valid only in the many-mode limit. Instead, we observe that a displacement
D(α(t)) is time-evolved such that its amplitude obeys a uniform distribution, which gives a

6We note that sampling from Er is efficient [106, 389, 408]. The most difficult component is sampling the
N−mode random unitary from passive linear optics B. This can be accomplished by arranging N (N − 1) /2
number of beam splitters in a depth N optical circuit [106].
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Figure 11.13: Distribution of entanglement entropy S after applying random unitaries drawn
from Er on the two-mode vacuum state, for various squeezing strengths r, scaled by its
(squeezing-dependent) maximum Smax. Each distribution contains 104 sampled unitaries.

distribution P (α) ∼ 1/|α| for the displacement.

Finite temperature frame potential

In DV systems, the closeness of a unitary ensemble to a k-design is measured by the kth
frame potential [399],

FE ≡ EU,V∼E
{∣∣tr

(
U †V

) ∣∣2k
}
. (11.82)

The frame potential is 1 for a trivial ensemble, and decays to a minimum k!/d2k when E is a
k-design. A ‘finite-temperature’ generalization of the frame potential also exists [399], which
takes the form

F (k)
E (ρ) = EU,V ∈E

{
|tr
(

(ρ)
1
kU †V

)
|2k
}
, (11.83)

and decays from 1 to a ρ-dependent constant ∼ 1/d2k.
We begin our discussion of CV frame potentials by demonstrating the obstacles encoun-

tered when applying DV frame potentials to CV unitary ensembles. A naive application of
Eq. (11.82) to CV unitaries, say displacements U = D(ξU), V = D(ξV ), is ill-defined due to
traces diverging like ∼ [δ(ξU − ξV )]2k. When discussing operator volumes in Section 11.3,
we regulated these divergences with a density matrix ρ, via the finite-temperature frame
potential Eq. (11.83). Unfortunately, since the frame potential is only lower-bounded by
0 in the CV case, it is not clear how to use its decay to make sharp statements about an
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ensemble’s validity as a k-design. For instance, for our candidate 1-design Dn we find

F (k)
Dn (ρ̃nth) ∼

(
1/k2nnth

)N
, (11.84)

which indeed approaches 0 as n → ∞. However, ensembles which are not 1-designs lead
to similar decay. Consider two such ensembles: the sphere of displacements with fixed
amplitude D̃n =

{
⊗Nk=1D

k
(√

neiθk
)
|θk ∼ [0, 2π]

}
, and the ensemble of phase shifts R ={

⊗Nj=1UR(θj)|θj ∼ [0, 2π]
}
. We find

F (k)

D̃n
(ρ̃nth) ∼ (1/k

√
nnth)

N (11.85)

F (k)
R (ρ̃nth) ∼ (1/knth)N . (11.86)

In particular, the frame potential for D̃n decays to 0 as n → ∞, just as it does for the 1-
design Dn. For k = 1, this can be understood through Section 11.3. The finite-temperature
frame potential measures the ensemble’s inverse volume in phase space—it will decay to 0
as long as this volume increases to infinity, regardless of whether the ensemble approaches
a 1-design. This suggests that we may be asking the wrong question: to be a 1-design on
the entire Hilbert space the ensemble must have infinite phase space volume, and accurately
capturing this volume will necessarily be difficult.

Motivated by our regularization of 1- and 2-designs, we instead seek to characterize
whether a unitary ensemble can form a design on a particular, ‘low-energy’ subspace, defined
by some density matrix ρ. To do so, we introduce a new ‘twice-regulated’ frame potential
that weights unitaries based on their preservation of this subspace. This takes the form (see
Appendix F),

J (k)
E (ρ) =

´
E dU

´
E dV

∣∣Tr
{
U † ρ

1
2k V ρ

1
2k

}∣∣2k
[
k!
´
E dU

∣∣Tr
{
U † ρ

1
k U ρ

1
k

} ∣∣k
]2

≥ 1

H(k)({ρi})
. (11.87)

It has no upper bound, but decays to a strict nonzero lower bound determined by the

entropies of ρ, H(k)({ρi}) ≈ k! Tr
{
ρ

1
k

}2k

. As we saw in Section 11.3, at k = 1, this frame
potential measures the inverse coarse-grained volume of displacements obeying |ξ| < √nth.
This volume is upper bounded by ∼ nNth, leading to the nonzero lower bound of the frame
potential. In Appendix F, we show that the frame potential measures an operator distance
between the LHS and RHS of Eq. (11.67), with respect to the density matrix ρ.

We can use the twice-regulated frame potential to verify our regularized 1-design. We
find:

J (1)
Dn (ρ̃nth) ≈

(
(1 + 2 (nth/n))2

1 + 4 (nth/n)

)N
≥ 1, (11.88)

which indeed decays to its lower bound for n � nth. We postpone evaluation of the k = 2
frame potential for the large-squeezing Gaussian ensemble Er to future work.
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11.5 Experimental verifying scrambling
Here, we consider the experimental detection of scrambling in CV systems. We begin

in Section 11.5 with the implementation of the scrambling dynamics themselves, providing
concrete, precisely-controllable schemes to realize genuine scrambling dynamics using the
so-called SNAP gate in a cavity-QED architecture. We numerically simulate these dynamics
when possible, and mention open questions which may be addressed by experiment. Turning
towards detection, in Section 11.5 we introduce concise measurement schemes for TOCs, in-
dividual OTOCs, and average OTOCs. These schemes rely only on Gaussian operations, as
well as the ability to experimentally implement the (possibly non-Gaussian) scrambling oper-
ations U(t) and U †(t). Unfortunately, all of these schemes are prone to confusing scrambling
with decoherence and experimental error, a problem well-known in DV systems. We ad-
dress this in Section 11.5 by introducing a robust teleportation-based measurement scheme,
adapted from that in Ref. [518].

Experimental realization of scramblers

In this Section, we present concrete proposals for the experimental realization of CV
genuine scrambling dynamics. While we can numerically simulate these models in single- and
few-mode systems, many questions arise that are beyond the scope of exact numerics, and are
ripe for experimental input. For instance, the implementation of genuine scrambling random
circuits could probe the accuracy of our conjecture in Section 11.4, that quasi scrambling
circuits can replicate aspects of OTOC decay and operate spreading in genuine scrambling.
Additionally, our proposal will also prove apt for probing scrambling in number-conserving
CV systems, which may behave qualitatively different from the non-conserving models of
Section 11.4.

Measuring scrambling behavior (as discussed in the following Sections 11.5 and 11.5)
will necessarily entail the precise implementation of not only the scrambling unitary U ,
but also either its inverse U † or its conjugate U∗, requiring a high amount of experimental
control. Additionally, realizing genuine scrambling requires strong non-Gaussian operations.
Candidate experimental platforms for detecting CV scrambling should feature both of these
properties, and might include non-linear crystals, cavities [208, 232, 475], and optical Floquet
systems [283].

For concreteness, we focus on cavity-QED architectures. All Gaussian operations (dis-
placements, beamsplitters, and squeezing operations) can be implemented in these sys-
tems [232]. Furthermore, non-Gaussian effects are typically much stronger than in other
platforms. We focus on a particular non-Gaussian gate that has already been implemented,
the so-called Selective Number-dependent Arbitrary Phase (SNAP) gate [208, 268]. Diagonal
in the photon number basis, it takes the form

SN ({θn}) =
∞∑

n=0

eiθn |n〉 〈n| , (11.89)
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Figure 11.14: OTOC amplitude |C2(α, β; t)|γ〉| for a time-dependent single-mode random
SNAP gate SN(t) (black), for α = 2 + 2i, β = 2− 2i, γ = 8. Blue lines indicate the times of
the TOC snapshots in Fig. 11.15. For contrast, the OTOC amplitude does not decay under
Gaussian dynamics (red).

where the phase θn ∈ [0, 2π) of the n-photon number state can in principle be controlled
arbitrarily. The SNAP gate can be experimentally realized using a cavity coupled to a
transmon qubit, with the Hamiltonian

H = ωca
†a+ ωq|e〉〈e|e+ χa†a|e〉〈e|e+ Ω (t) eiwqt |e〉 〈g| , (11.90)

where a is the annihilation operator of the cavity and |g〉 (|e〉) is the ground (excited) state
of the qubit. When the qubit frequency shift χ is larger than both the qubit and cavity
transition line-widths ωq, ωc, and the drive Ω (t) = Ωn (t) e−inχt is weak, one can apply a
phase selectively to the n-photon state |n〉〈n|n, i.e. |g, n〉 → eiθn |g, n〉, while keeping all
other states invariant. A drive composed of multiple frequencies n allows the independent
implementation of multiple such phases, realizing the SNAP gate. In experiments reported
by Ref. [208], phases for up to n = 11 are precisely controlled. With a cavity lifetime ∼ 50µs,
qubit relaxation times ∼ 20 − 30µs, and χ ∼ MHz, this allowed the implementation of up
to 15 SNAP gates with fidelity > 0.96 per gate.

The SNAP gate can simulate a variety of effective cavity Hamiltonians. For example, the
Kerr nonlinearity KR (t) ≡ exp (−itH2) with H2 = (p2 + q2)

2 is realized via a single SNAP
gate with time-dependent phases θn = −t (4n+ 2)2. In fact, when combined with Gaussian
operations, the SNAP gate is universal for the realization of all Hamiltonians polynomial in
quadrature operators [302]. While in principle this allows one to realize the Henon-Heiles
potential and the cubic phase gate of Section 11.3, such Hamiltonians generically require
long sequences of fast SNAP gates, which may prove less feasible for experiment.

With near-term experiments in mind, we introduce several genuine scramblers composed
of only a moderate number of SNAP gates. We begin by studying operator spreading in the
phase space of a single-mode, under a single time-dependent SNAP gate. As an example, we
consider the random SNAP gate SN (t) =

∑∞
n=0 e

iwnt |n〉 〈n|, with ‘energies’ wn distributed
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Figure 11.15: (a1)-(e1) Snapshots of the phase space distributions of a displacement operator
α = 2 + 2i under the time-dependent random SNAP gate SN(t), as measured by the TOC
|C1(α, β; t)|γ〉|2, with γ = 8 (blue indicates zero TOC). Time increases from left to right [t/π =
0, 0.1, 0.2, 1, 2, 5, from (a1)-(e1); see Fig. 11.14]. (a2)-(e2) For contrast, the distribution
remains localized under Gaussian dynamics (H1 = p2 + q2). All plots share the same x- and
y-axes, the real and imaginary parts of β, respectively.

uniformly in [0, 2π)7. Typical of genuine scrambling behavior, we find numerically that
OTOCs decay to small values in O(1/2π) time and remain small afterwards (see Fig. 11.14).
To visualize the operator spreading responsible for this decay, one can calculate and plot the
square of the TOC |C1(α, β; t)|γ〉|2 [see Eq. (11.15)], shown in Fig. 11.15(a). As anticipated,
the TOC spreads to occupy a larger phase space volume on a time scale similar to that
of the OTOC decay. For contrast, under time-evolution by a Gaussian Hamiltonian H1 =
p2 + q2, the OTOC amplitude is fixed at unity, and the TOC remains localized in phase
space [Fig. 11.15(b)].

Moving forward, we consider the use of SNAP gates to study genuine scrambling in
multi-mode systems. Such behavior is tremendously difficult to numerically simulate due
to the exponential size of the multi-mode Hilbert space, and would benefit greatly from
experimental input. As a first example, the inclusion of SNAP gates in random circuit models
like those in Section 11.4 would break the Gaussianity of the dynamics, and allow one to study
operator spreading and entanglement formation of generic locally interacting CV systems.
In addition, SNAP gates conserve photon number, and are thus particularly well-suited for
probing CV scrambling in the presence of conservation laws. To this end, one might consider
a random circuit of only passive linear optics and SNAP gates (no squeezing), organized

7We choose a random SNAP gate, instead of the better-known Kerr gate, due to a periodicity revival in
the Kerr gate: KR (π/16) = exp (−iπ/4) I.
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Figure 11.16: (a) Simple two-mode model of a SNAP gate random circuit. The center block
represents a random beamsplitter. (b) The average OTOC amplitude (α = (1 + i)/2, β =
(1− i)/2, γ1 = γ2 = 2) under after the circuit, for both single-mode scrambling (w = v = 1)
and multi-mode scrambling (w = 1, v = 2), as a function of the beamsplitter transmissivity
cos2 θ. Dashed curves indicate standard deviations. Each data point is averaged over 100
samples.

similarly to Fig. 11.8, with SNAP gates replacing single-mode squeezing operations. It
would be interesting to observe these circuits’ entanglement growth in time: since number
conservation seems to forbid the squeezing-induced Hilbert space growth of Section 11.4, one
might guess that conservation laws cause the system to saturate to DV-like behavior S ∼ t,
in contrast to our previous result S ∼ t2.

For instructive purposes, we numerically simulate the simplest of such multi-mode, number-
conserving circuits: a single-layer circuit on a two-mode system, as shown in Fig. 11.16(a).
The circuit consists of a beamsplitter with transmissivity cos2 θ sandwiched between four
random SNAP gates, each with phases iid uniformly in [0, 2π). To characterize operator
spreading, we compute the amplitude of the OTOC with respect to single-mode displace-
ment operators, averaged over the random SNAP gates. As expected the OTOC strongly
depends on θ, which controls the mixing of the two modes [see Fig. 11.16(b)]. At θ = 0, there
is no mixing between modes, and so |C1,2

2 (α, β; t) | = 1. At θ = π/2, mode 1 and mode 2 are
swapped, giving |C1,1

2 (α, β; t) | = 1. The mixing is maximized at θ = π/4. Somewhat surpris-
ingly, this value maximizes not only two-mode scrambling (i.e. it minimizes |C1,2

2 (α, β; t) |),
but also single-mode scrambling (i.e. it also minimizes |C1,1

2 (α, β; t) |).
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Figure 11.17: (a) A two-mode Gaussian analog to the random SNAP gate circuit of Fig. 11.16,
where the SNAP gates are replaced with single-mode squeezing of strength r = 1. (b) The
average OTOC (n = 1) for single-mode (w = v = 1) and multi-mode (w = 1, v = 2)
scrambling, as a function of the beamsplitter transmissivity cos2 θ.

The experimental realization of genuine scrambling circuits would also enable a powerful
check on our assumption in Section 11.4, that aspects of genuine scrambling could simulated
using averages over quasi scrambling systems. For example, we consider a quasi scrambling
analog (Fig. 11.17) to our previous SNAP gate circuit (Fig. 11.16), with squeezing operations
of strength r instead of SNAP gates. In Appendix F, we compute the circuit’s average
OTOC Cω,v2 (n; t)ρ ≡ C2(Dω

n(t),Dv
n) [Fig. 11.17(b)]. We find qualitatively similar behavior to

the (non-averaged) OTOC of the random SNAP gate circuit, supporting our assumption.
Nonetheless, some deviation is observed at the minimally-mixing values θ = 0, π/2. We
speculate that this is due to the additional conservation of the individual modes’ photon
numbers at these values in the SNAP gate circuit, which may inhibit OTOC decay and
complicates this particular comparison.

Measurement of TOCs and OTOCs

The most direct way to measure the amplitude of TOCs and OTOCs is to sequentially
apply the operators in the correlation function to a state, and measure the probability to
remain in that state. For instance, to measure the TOC | 〈γ|U †D (ξ1)UD (ξ2) |γ〉 |2, one
would apply D(ξ2), then U , then D(ξ1), then U †, then measure the probability to be in
state |γ〉. This is depicted for TOCs and OTOCs in Figs. 11.18(a,c). For simplicity, we
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consider correlations with respect to a coherent state |γ〉. The probability to be in the
coherent state can be measured by performing a displacement D(−γ) and measuring the
probability to be in the vacuum state.

One can measure TOCs and OTOCs themselves, and not just their amplitudes, using
a control qubit and an interferometric scheme similar to Refs. [451, 512]. As shown in
Fig. 11.18(b,d), here one initializes the control qubit in the state (|0〉 + |1〉)/

√
2 and per-

forms different operations on the CV system given different states of the control qubit. The
complex-valued TOC/OTOC is found by measuring X+ iY , where X, Y are Pauli operators
on the control qubit.

Finally, we present a concise scheme to measure average OTOCs, as introduced in Section
11.3. The only change from our individual OTOC schemes is that we now use an ancillary
mode, prepared in the Gaussian state |ψ0〉 ∼

´∞
−∞ dqe

− 1
2
q2/∆2|q〉 (expressed in the position

basis), to perform the ‘ensemble’ of displacements on the CV system of interest8. This is
done using the SUM gate,

, (11.91)

which acts on quadrature operators as

q1 → q1 p1 → p1 − p2 (11.92)
q2 → q1 + q2 p2 → p2. (11.93)

This implements a displacement D(q) with probability ∼ e−q
2/∆2 (shown by tracing out the

ancilla). Average OTOCs require one to sample pairs of displacement operators D(ξ) and
D(−ξ) in a correlated manner, which can be achieved by using the same ancilla for each
displacement of the pair9.

Robust teleportation-based protocol

In this section, we turn our attention to a theoretical/conceptual question concerning
the verification of scrambling. While OTOCs can characterize the phenomena of scrambling
when measured perfectly, they are sensitive to experimental noise and decoherence, challeng-
ing the experimental measurement of scrambling [518]. For instance, loss and thermal noise,
the most common imperfections in optical systems, both cause the OTOC to decay just as
scrambling time-evolution would (see Appendix F). It is therefore desirable to characterize
scrambling in a way which clearly distinguishes scrambling from such errors.

8A Gaussian thermal state, instead of a Gaussian pure state, could also be used as the ancilla.
9We note that this procedure for taking averages over Gaussian distributions of displacement operators

is performed using only Gaussian operations. From Section 11.3, this implies that one can measure the non-
Gaussianity of an operation U ⊗ U ⊗ U† ⊗ U† via only Gaussian operations, suggesting a possible resource
theoretic interpretation of the quantity.
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Figure 11.18: Measurement protocols for (a) the TOC amplitude |C1(ξ1, ξ2; t)|γ〉|2, (b)
the TOC C1(ξ1, ξ2; t)|γ〉, (c) the OTOC amplitude |C2(ξ1, ξ2; t)|γ〉|2, and (d) the OTOC
C2(ξ1, ξ2; t)|γ〉.

A robust verification protocol of scrambling has been recently proposed [518] and ex-
perimentally realized [274] for DV systems. This protocol draws inspiration from ideas in
quantum gravity, and can be viewed as a many-body generalization of quantum teleporta-
tion [517]. Here, we briefly describe a similar teleportation-based protocol for CV scrambling.
For simplicity, we restrict our attention to measuring scrambling by Gaussian unitaries, where
the protocol will succeed with probability unity assuming no experimental error10.

We begin our analysis with the ideal, error-free case, and demonstrate our protocol’s
robustness to error after. We seek to characterize quasi scrambling by a Gaussian unitary U
acting on two CV modes. Fig. 11.19 displays the set-up for the teleportation-based protocol.
Initially, the system is prepared in two EPR pairs on modes (2, 2′) and (1′, R) whereas an
arbitrary quantum state |ψ〉 is prepared on 1. For a later purpose, it is convenient to use the
stabilizer formalism to characterize EPR pairs. For a two mode system with position and
momentum operators (q, p), (q′, p′), the CV EPR pair |EPR〉 is defined as the P = Q = 0
eigenstate of operators

P = p+ p′ Q = q − q′ (11.94)

Note that this corresponds to the infinite squeezing limit of the two-mode squeezed state.
Next, we apply U on (1, 2), and its complex conjugate U? on modes (2′, 1′). While the

protocol works with an arbitrary quasi scrambling unitary, we simplify our treatment by
10In DV systems, the analogous protocol succeeds with probability unity for Clifford unitaries, but also

with lesser probability 1/d2 for non-Clifford unitaries. This probability goes to zero in the CV limit, hence
our avoidance of non-Gaussian unitaries. In reality, imperfections in EPR preparation and measurement will
‘cut-off’ this CV limit, and one might expect that the protocol can also succeed with finite probability for
non-Gaussian unitaries.
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Figure 11.19: Schematic of the teleportation-based protocol for robustly measuring CV
scrambling. An initial state |ψ〉 and two CV EPR pairs are time-evolved under the unitary
of interest U and its conjugate U∗. After, a pair of modes 2, 2′ are measured via the operators
q2 − q′2 and p2 + p2′ . The measurement outcome is used to error correct the original state,
and the teleportation fidelity serves as a robust measure of information scrambling between
modes 1 and 2 by U . In the presence of measurement uncertainties and imperfection in EPR
preparations, the GKP encoding enables error-correction.

considering the following family of quasi scrambling unitaries:

p1 → mp1 + (m+ 1)p2 q1 → mq1 − (m− 1)q2

p2 → (m− 1)p1 +mp2 q2 → −(m+ 1)q1 +mq2

(11.95)

where m is arbitrary real number. When m 6= 0,−1, 1, observe that U delocalizes any
single-mode displacement operators to a two-mode displacement operator, the criteria for
a non-trivial quasi scrambler. It is convenient to write the above transformation in the
following, inverted manner:

mp1 − (m+ 1)p2 → p1 mq1 + (m− 1)q2 → q1

− (m− 1)p1 +mp2 → p2 (m+ 1)q1 +mq2 → q2.
(11.96)

The unitary U contains squeezing since the total amplitude of displacements changes. The
amount of squeezing er ∼ m plays an important role in fault-tolerance of the teleportation
protocol, as we will see later.

After applying U and U?, we measure (2, 2′) with the following operators:

P22′ = p2 + p2′ Q22′ = q2 − q2′ . (11.97)
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We send the measurement outcomes Q22′ and P22′ as a classical message to R. By applying
the inverse transformation from Eq. (11.96), at t = 0, we have

P22′ =
(
− (m− 1)p1 +mp2

)
+
(
− (m− 1)p1′ +mp2′

)
(11.98)

Q22′ =
(
(m+ 1)q1 +mq2

)
−
(
(m+ 1)q1′ +mq2′

)
. (11.99)

Since p2 + p′2 = 0 and q2 − q2′ = 0, we arrive at

P22′ = −(m− 1)(p1 + p′1) Q22′ = (m+ 1)(q1 − q1′). (11.100)

Hence, the protocol teleports the following state on R:

D

(( Q22′

m+ 1
,− P22′

m− 1

))
|ψ〉 (11.101)

which is just a state shifted from |ψ〉. Since this shift can be corrected using the classical
message, this protocol teleports the quantum state |ψ〉.

While we have focused on a particular family of quasi scramblers, our treatment gen-
eralizes to generic quasi scrambling unitaries U that delocalize single-mode displacement
operators. Namely, we can show that the teleported state is |ψ〉 up to displacements that
can be undone using knowledge of the measurement result.

So far we have assumed that all implementations of the protocol are perfect. In actuality,
one might incur errors due to decoherence, or a mismatch between the experimentally-
implemented unitaries U , U∗. This protocol is robust to both of these effects, as discussed in
great detail for DV systems in Ref. [518]. There are also further imperfections unique to the
CV limit. For example, it is not possible to prepare perfect CV EPR pairs, and one must
approximate them with two-mode squeezed states. In addition, measurements of Q22′ and
P22′ will involve some uncertainty.

Both of these imperfections lead to unknown displacement errors on the teleported state,
and, at a calculational level, appear similar to inserting some density matrix ρ in the
tensor contractions corresponding to the EPR pair and measurement. This link to finite-
temperature scrambling, as well as experimental relevance, motivate us to qualitatively ad-
dress when teleportation can succeed despite these imperfections. We consider the above
protocol for a general N -mode Gaussian unitary US (taking displacements ξ → Sξ, where S
is a symplectic matrix), in the presence of a measurement error, i.e. one recorded (Q22′ , P22′)
but actually measured (Q22′ , P22′) + ∆ξ. Imperfections due to an imperfect EPR pair—a
two-mode squeezed state of ∼ nEPR photons—are treated similarly: they arise from the fact
that small displacements D(∆ξ) leave the state unchanged for ∆ξ < 1/

√
nEPR. To see these

errors’ effect, one can compute the displacement D(∆z) on |ψ〉 that would have given rise to
the measurement error: ∆ξ = S1,m∆z, where S1,m is the 2×2 submatrix of S between mode
1 and the measured mode m. Due to the error, the protocol decodes the ‘wrong’ state, off by
a displacement ∆z. However, as we have seen, small displacements are only distinguishable
from the identity operation on subspaces of greater than 1/|∆z|2 photons. Therefore, if |ψ〉
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has . nψ photons, the error has no effect when √nψ < 1/|∆z|. Since an N -mode unitary
with single-mode squeezing er has elements of typical magnitude ∼ er/

√
N , the protocol can

only teleport states of photon number √nψ < er/(
√
N |∆ξ|)11. This makes sense: a state

|ψ〉 is described by displacement operators separated by distance ∼ 1/
√
nψ in phase space.

This translates to a distance ∼ (er/
√
N)× (1/

√
nψ) on the measured mode after application

of U . Our teleportation constraint implies that we can only teleport states when this phase
space distance is resolvable despite the imperfections, (er/

√
N)× (1/

√
nψ) > ∆ξ.

We also hope to make the teleportation protocol fault-tolerant to these imperfections
by using quantum error-correction. Gottesman, Kitaev and Preskill have proposed a way
of encoding a finite-dimensional qudit into a single oscillator. This error-correcting code,
called the GKP code, enables us to correct small displacement errors. Suppose we prepare
a qudit input state and encode it into mode 1 via the GKP encoding. For simplicity, we
consider the error from faulty measurements, and assume that Q22′ and P22′ suffer from
uncertainties ∆Q22′ and ∆P22′ . When the quantum state is teleported to R, it suffers from
displacement noises D(qR) and D(pR) of |qR| ∼ ∆Q22′

m+1
and |pR| ∼ ∆P22′

m−1
. By using the GKP

code, displacement errors can be corrected ifm is sufficiently large, and thus the teleportation
protocol can be made fault-tolerant. We remark, however, that the aforementioned protocol
does not suppress errors from the imperfect EPR preparations on (2, 2′) and (1′, R).

Observe that the induced error can only be suppressed when the squeezing m is large.
There appears to be an intriguing relation between the amount of squeezing and the amount
of teleported information. This leaves an interesting future problem concerning the up-
per bound on the information capacity under energy constraints. Another relevant future
problem concerns the relation between this protocol and the average OTOC. For the quasi
scramblers in Eq. (11.96), the average OTOCs becomes small as m increases. Hence, in the
presence of measurement uncertainties, the smaller average OTOCs enables larger amount
of fault-tolerant teleportation.

11.6 Discussion and outlook
In this Chapter, we sought to understand scrambling in CV systems from a quantum

information theoretic perspective. Scrambling in CV systems had been studied in a number
of seminal previous works [65, 94, 114, 200, 386, 405], where OTOCs for quadrature operators
and number operators are explored in the context of specific example Hamiltonians. These

11For an imperfect EPR pair, an additional constraint arises from squeezing’s effect on the two-mode
squeezed state. Although squeezing increases the state’s typical photon number, it vastly reduces its width
in certain, typically many-mode, quadratures. This implies that there exist many-mode displacements of
magnitude |∆ξ| ∼ er/

√
nEPR that leave the many-body state (after the application of U , U∗) unchanged.

Projecting to the measured mode, these are equivalent to measurement errors ∼ er/(
√
N
√
nEPR). The

previous arguments then give the constraint √nψ >
√
nEPR, which is a more powerful constraint at high

squeezing er >
√
N . We see that squeezing can only assist teleportation up to a certain limit, after which

the teleportation is bounded solely by the strength of the imperfections.
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studies revealed that the OTOC with quadratures operators can enable a quantum-classical
correspondence within the Ehrenfest time [114, 405]. Compared to these previous studies,
our work provides: (i) general interpretations of TOCs and OTOCs in terms of operator
spreading, (ii) an investigation of the scrambling dynamics of generic local circuits based
upon a CV analog of 2-designs, (iii) a quantum-classical correspondence in phase space, via
our choice to use displacement operators in OTOCs, and (iv) an experimental blueprint for
probing scrambling in cavity QED systems.

Our characterization of CV information dynamics is more appropriate in certain physical
contexts than others. Specifically, a key idea of our work is to introduce a density matrix
representing the Hilbert space of interest, which led to a smooth regularization of various
quantities. Throughout the paper we choose a thermal density matrix ρ̃nth—other choices
may lead to different coarse-graining procedures at short-distances and cut-offs at long-
distances.

For this description to apply, the system of interest must feature a large local Hilbert
space with a smooth cut-off. The relevant notion of locality is determined by the operators
with which we wish to probe the system, and does not necessarily have to agree with the
UV lattice cut-off of the system. Notably, these conditions can hold even for large but finite
dimensional systems, whenever the quantum states under study are associated with a wide
range of energy scales. More specifically, consider a Hamiltonian measuring some energy
H0, with eigenstates |En〉 , 1 ≤ n ≤ N . When N is large and the relevant states ρ have
a distribution 〈En|ρ|En〉 spread out over a range of energies En, and decaying smoothly
towards those states with larger energies, a CV description applies.

We conclude this Chapter by mentioning a few open directions in the study of CV quan-
tum information dynamics. The first set of open directions relates to our understanding
of genuine scrambling. Most importantly, the speed and saturation of operator volume
increase characterized by OTOC decay requires further study. For displacement-operator-
based OTOCs, the connection between the initial decay and the Lyapunov exponent in
classical chaotic systems can be further explored. This may lead to a deeper understanding
of different classes of non-Gaussian unitaries. Related to this, it would be interesting to nu-
merically investigate the effects of the small, but finite mass term m in the cubic phase gate
model in Sec. 11.3. Eventually, one hopes to derive bounds on operators’ volume increase
when the system is constrained by certain conservation law.

The second set of directions concerns our understanding of local random Gaussian cir-
cuits. In Sec 11.4, we identified a quadratic growth of entanglement and linear increase of
fluctuation for such systems, arising from an increase in the accessible local Hilbert space.
However, a full theoretical model that explains the deviation from the KPZ scaling still needs
to be developed. Such a model could deepen our understanding of scrambling dynamics in
general CV systems.

Additionally, extending the study in Sec. 11.5 on models with photon number conserva-
tion law to a larger scale may deepen our understanding of conservation laws’ consequences
for scrambling dynamics. Performing the SNAP gate-based experiment proposed in Sec-
tion 11.5 would be very instructive on this open problem, as numerical simulation becomes
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difficult for greater than a few modes. For state-of-art experimental platforms, the real-
ization of this experiment is plausible in the near future. Adding squeezing to such system
would also allow the verification of the theoretical results, and assumptions, in Sec 11.4. Our
work lays a solid theoretical foundation for such experimental studies.

The third set of directions regards the construction of CV unitary k-designs. We still un-
derstand very little about higher designs in the CV case. Evaluating the new frame potential
in Eq. (F.31) for k ≥ 2, and more general ensembles, as well as relating it to notions of com-
plexity, are important future directions. Additionally, in light of our findings on Gaussian
2-designs, it remains an open question whether there exists a more appropriate definition of
higher CV designs that is compatible with soft energy regularization. Nevertheless, our CV
1-design and 2-design ‘analog’ may still be useful for applications such CV state tomography
(1-design) and compressed sensing (2-design) [401].

Another interesting direction concerns the definition of a ‘size’ for time-evolved operators
at finite temperature. In DV systems at infinite temperature, the size of operators O(t)
corresponds to the average number of qubit supports in the Pauli decomposition of O(t). As
discussed in Section 11.3, the size of O(t) can be measured by OTOCs. However, the notion
of the size of operators O(t) becomes ambiguous at finite temperature since OTOCs depend
on ρ. An important question is to how to define the size of operators in the presence of ρ
at finite temperature in a physically meaningful manner. In a recent work on the operator
growth in the SYK model [379], a possible definition of the finite temperature size of O(t)
is proposed. Namely, the authors argued that the size should be defined by subtracting the
thermal background, i.e. as the difference between the support of ρ1/4O(t)ρ1/4 and ρ1/2.
They showed that the Lyapunov growth of OTOCs corresponds to the exponential growth
of this difference.

On the other hand, in Section 11.3, we have argued that thermal TOC and OTOC
measure coarse-grained volumes of the operator spreading where the resolution of the phase
space is set by ρ. Specifically, we saw that a thermal state ρ̃nth induces a Gaussian blurring
of the phase space. One concrete open question concerns the connection between their
proposal of subtracting the thermal background and our results developing the notion of
coarse-graining. Here we present a heuristic argument while postponing rigorous discussions
to the future work. Recall that the size of the operator can be counted by the number of
qubits. The coarse-grained volume V in the phase space roughly corresponds to a

√
V -state

quantum spin, so it can be embedded in 1
2

log V qubits. So, one may assign 1
2

log V as the
size of the operator. The coarse-grained volume V depends on the scale of the resolution
set by ρ. Letting an approximate radius of the spreading be R and the resolution be δ, the
volume is V = R2/δ2, the size will be given by 1

2
(logR− log δ). Hence we may interpret the

second term as the thermal background.
A final set of open questions is on the connection to resource theory. It is well known that

universal quantum computation requires non-Clifford operations, since Clifford operations
admit efficient classical simulations according to the Gottessman-Knill theorem. It would
therefore be interesting to assign a resource theoretic interpretation of

∑
Q∈Pauli |f [Q;P (t)] |4,

thereby relating quantum computational power and scrambling/decay of OTOCs. Similarly
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in CV systems, the preservation of OTOC amplitude by Gaussian unitaries (quasi scramblers)
and the decay of OTOC amplitude caused by non-Gaussian unitaries (genuine scramblers)
might lead to a new resource theory framework for non-Gaussianity [14, 165, 166, 320, 454,
537]. Finally, there has also been some recent interest in characterizing the complexity of
Gaussian CV states relevant for quantum field theory [92]; we speculate that our general
approach, based upon frame potentials and OTOC decays, can be applied towards a more
broad characterization of the complexity of states in field theories.
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Part IV

Learning about Quantum Dynamics



235

Chapter 12

Learning quantum systems via
out-of-time-order correlators

In this Part, we seek to apply the ideas contained in Part III to questions in quantum
learning (introduced in Ch. 2.4). As we saw in Ch. 2.4, quantum learning is particularly
interesting since learning properties of quantum systems can pose challenges not present in
their classical counterparts [220, 329]. These challenges stem fundamentally from the exis-
tence of entanglement. In the context of learning quantum dynamics or quantum processes,
these difficulties are most commonly encountered in strongly-interacting quantum systems.
Strong interactions can introduce non-local entanglement throughout the system at short
time scales, and are found to thereby inhibit the learning of system properties (e.g. the
Hamiltonian) from physical observables [10, 220, 354, 491, 530].

The ubiquity of strong interactions in experimental applications of quantum learning has
spurred a variety of solutions to this problem. For instance, in nuclear magnetic resonance
(NMR) spectroscopy, a suite of technologies have been developed to controllably dampen
undesired strong interactions between solid-state nuclear spins, which has enabled the iden-
tification of hitherto inaccessible molecular structures [279]. In a similar spirit, in quantum
device characterization [481] and quantum sensing [530], dynamical decoupling control se-
quences [145] can effectively eliminate unwanted interactions and improve learning of the
residual interactions. Other approaches include learning by transducing quantum data from
the system onto a quantum simulator [10, 220, 480, 491], or learning from high-precision
local measurements at early times, before entanglement has formed [32, 186]. Nonetheless,
owing to incomplete control or limited experimental precision, many physical systems remain
unlearnable with existing approaches.

In this Part, we introduce a new paradigm for learning properties of quantum dynamics—
learning via out-of-time-order correlators (OTOCs) [46, 113, 114, 194, 213, 277, 315, 316,
340, 436, 442, 476, 506]. In the present Chapter, we utilize the OTOC as a tool for learn-
ing properties of strongly-interacting quantum Hamiltonians. Our application is motivated
by a simple intuition: while time-ordered observables decay quickly as a system becomes
entangled, out-of-time-order observables continue to fluctuate up to long times (Fig. 12.1).
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Figure 12.1: Schematic of time-ordered correlators (TOCs) and out-of-time-order correlators
(OTOCs) in strongly-interacting systems. TOCs typically decay in O(1) times and distances
(top, red), making it hard to learn features (yellow bond) that manifest only at late times.
OTOCs utilize backwards time-evolution to “refocus” many-body correlations (bottom, blue),
enabling learning of such features.

Guided by this intuition, we demonstrate the power of learning via OTOCs across a range of
physical systems, supported by numerical studies, phenomenological estimates, and rigorous
information-theoretic proofs. We begin in locally-interacting systems, where we identify two
general scenarios in which OTOCs provide a strong learning advantage: (i) when experi-
mental access to the system is spatially-restricted, for example via a single “probe” qubit [83,
167, 304], and (ii) for detecting weak interactions in an otherwise strongly-interacting sys-
tem [481, 530]. We characterize these advantages using both information-theoretic measures
(the Fisher information) and performance metrics for concrete learning tasks. Moreover, we
find that the advantages are robust to experimental read-out error and time-reversal im-
perfections arising from strong coupling with an environment or decoherence. In Ch. 13,
we substantiate these results by introducing a learning task for which OTOCs provide a
provable exponential advantage over any time-ordered learning protocol.
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Figure 12.2: Learning with state preparation and read-out restricted to a probe qubit,
and local unitary control over the remaining system. (a) Results from SVM regression
for learning the distance, d, in the spin geometry shown, with access to TOCs (red) or
both TOCs and OTOCs (blue). Color bars (black ticks) denote 75% (100%) percentiles of
predictions on 200 disorder realizations, and grey step function represents the actual d. (b)
Fisher information, FI(Jd|C), of an interaction, Jd (top; red line), a distance d away from
the probe (top; purple circle), maximized over all correlators, C, in an L-qubit 1D chain.
The FI decays exponentially in d when C is time-ordered (red), and algebraically, ∼ 1/d,
when C is out-of-time-order (blue).
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12.1 Behavior of time-ordered vs. out-of-time-order
correlators

We begin by reviewing the phenomenology of time-ordered and out-of-time-order corre-
lators in ergodic locally-interacting systems (Fig. 12.1). A time-ordered correlator (TOC) is
defined as any correlation function that takes the following general form:

CTOC = tr(Ak(tk) . . . A1(t1) ρB1(t′1) . . . B`(t
′
`)). (12.1)

where the operators A,B increase in time away from the initial density matrix ρ, i.e. tk >
· · · > t1 and t′` > · · · > t′1. Time-ordered correlators can be measured by evolving the
state ρ forward in time (e.g. via Hamiltonian evolution O(t) = eiHtOe−iHt) while applying
intermediary quantum operations at each time ti, t′j1. Any correlation function that does not
obey this form is called an out-of-time-order correlator.

A common example of a time-ordered correlator is the two-point function,

CTOC = 〈Vx(t)Wx′(0)〉 , (12.2)

where 〈·〉 ≡ tr(·)/2L denotes the infinite temperature trace for L qubits, and Vx,Wx′ are local
operators at sites x, x′. Such correlators measure the spread of local quantities in space and
time; for instance, how much spin prepared at site x′ at time zero has transferred to site x at
time t. A wide range of literature on thermalization in strongly-interacting systems has found
that local TOCs typically decay quickly, i.e. in O(1) times, to their thermal values [120]. This
quick decay can inhibit learning tasks, since no additional information can be acquired from
the TOC at times after the decay has occurred [354].

Meanwhile, the prototypical out-of-time-order correlator is the four-point function [506],

COTOC =
〈
Vx(t)Wx′(0)V †x (t)Wx′(0)

〉
, (12.3)

with local operators Vx,Wx′ . Unlike time-ordered measurements, OTOCs typically require
both forwards and backwards time-evolution to measure [111, 506]. (Importantly for our
application, nearly all experimental techniques for time-reversal rely only on the type of
interaction being reversed and require no knowledge of the specific Hamiltonian, which one
might wish to learn. For example, the same pulse sequence reverses an arbitrary dipole-
dipole coupling Hamiltonian in an NMR experiment [416].) Physically, the OTOC probes
whether information encoded at site x′ at time zero is contained in correlations involving
site x at time t. This is quantified by the squared commutator of a time-evolved operator at
x with a local operator at x′,

〈
|[Vx(t),Wx′(0)]|2

〉
= 1− COTOC. In local strongly-interacting

1To see this explicitly, we specify to the case that Ak, Bl are Pauli operators. Consider four possible
operations on the density matrix ρ: the two unitary rotations ρ→ 1±iAk√

2
ρ1∓iAk√

2
(where the signs are chosen

together) and the two projections ρ→ 1±Ak

2 ρ1±Ak

2 . By taking linear combinations of these four possibilities
in classical post-processing, we can in effect implement the matrix multiplications ρ → Akρ (and similarly
ρ→ ρBl). Applying the appropriate operation at each time tk (and t′l) gives Eq. (12.1).
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systems, operators are expected to spread ballistically according to the connectivity of the
system [17, 293, 340]. Crucially, this spread continues for a duration proportional to the
system’s spatial extent ∼ L by which time the information has been delocalized across the
entire system.

This phenomenology leads to two central intuitions for learning from OTOCs. First, the
dynamics of the OTOC contain information primarily about the connectivity of the system
under study. Second, the OTOC continues to reveal such information up to O(L) times, long
after TOCs have decayed. Notice that this timescale increases as the system size increases.
In what follows, we apply these intuitions to identify two broad regimes where access to
OTOCs provides a significant learning advantage.

12.2 Learning with restricted access
The first regime we consider is learning in systems with restricted access. Specifically,

motivated by recent advances in solid-state defects [66, 167, 304] and NMR [58, 81, 459],
we focus on the scenario where an experimenter has state preparation and read-out capa-
bilities over only a single “probe” qubit interacting with a larger system that one wishes to
learn. We note that high-fidelity OTOC measurements have already been achieved in similar
setups by using rapid global pulse sequences to reverse time-evolution [416, 418, 486]. Previ-
ous theoretical approaches to learning in this scenario have been limited to non-interacting
dynamics [81, 82, 83, 135, 441, 527]. Meanwhile, experiments have found that it is in gen-
eral difficult to learn features of a system that are distant from the probe qubit [167, 304].
In strongly-interacting systems, this difficulty can be understood from the quick decay of
correlation functions in space and time. Here, we provide evidence via phenomenological
estimates (Appendix G.2) and numerical simulations (Fig. 12.2) that access to OTOCs can
exponentially improve the learnability of distant features.

To be concrete, we will assume for now that the experimenter has local unitary control
over the qubits of the larger system2. We will also assume that the larger system begins in an
infinite temperature (i.e. maximally mixed) state, which is the natural scenario in NMR and
solid-state defect setups [66, 459]. Within these assumptions, a simple class of measurement
protocols proceeds as follows:

1. Prepare the probe qubit p in an eigenstate of an operator Vp, such that the density
matrix of the entire system is ρ = 1

2
(1p + Vp)⊗ 1

2L−1 1sys.

2. Time-evolve by time τ .

3. Perturb the system by a unitary operation Wx on a qubit x.
2To be precise, our numerical simulations are relevant to the scenario where the experimenter can perform

O(1) local spin rotations within the time-scale set by the inverse spin interaction strength. If substantially
faster local rotations are possible, then the Hamiltonian interactions could be individually tuned via local
dynamical decoupling, which would allow substantially faster learning [481].
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4. Time-evolve by a time τ ′.

5. Read out the expectation value of Vp on the probe qubit.

Taking τ, τ ′ to be positive (e.g. τ = τ ′ = t/2), this allows measurement of time-ordered
correlation functions of the form 〈Vp(t)Wx(t/2)Vp(0)W †

x(t/2)〉. With access to reversible
time-evolution (e.g. τ = −τ ′ = t), the above protocol also allows measurement of out-of-
time-order correlation functions 〈Vp(0)Wx(t)Vp(0)W †

x(t)〉. In Appendix G.2 and G.3, we
discuss how learning is modified when W is instead a global spin rotation over the larger
system.

We begin our exploration of learning via OTOCs by introducing a concrete learning task.
We consider the following scenario: one is given access to a quantum system consisting of
two spin chains intersecting at a distance d from a probe qubit [Fig. 12.2(b)]. The value of d
as well as the specific Hamiltonian parameters of the system are unknown (see below for the
specific distribution that the Hamiltonian is drawn from). The goal is to learn the value of
d, i.e. the geometry of the system, from measurements of the system’s correlation functions.

To solve this task, we assume that the experimenter is capable of simulating quantum
dynamics on either a classical or quantum computer. Since the task involves high-dimensional
input data (i.e. the correlators for every x, t), we will approach it using machine learning
techniques. Specifically, we envision using the quantum simulator to compute the correlation
functions of an ensemble of Hamiltonians for each value of d. These ensembles can then be
used to train a classical learning model to predict an unknown Hamiltonian’s value of d given
its correlation functions.

Let us briefly summarize our numerical simulations in more detail (see Appendix G.1 for
a complete description). Throughout this work, we consider spin systems with disordered
on-site fields, Hf =

∑
i,α h

α
i σ

α
i with hαi ∈ [−1, 1] and α = x, y, z, and dipolar interactions

between neighboring spins, Hc =
∑
〈ij〉 Jij(σ

x
i σ

x
j + σyi σ

y
j − 2σzi σ

z
j ) with Jij ∈ [0.6, 1.4]. We

specify to Floquet dynamics consisting of alternating applications of Hf and Hc for time
T = π/2, and simulate time-evolution via Krylov-subspace methods [1]. We expect that
learning Floquet dynamics will be qualitatively similar to learning time-independent Hamil-
tonian dynamics at moderate times and distances, which we are restricted to in our numerics
(see Appendix G.3 for numerical support of this statement). At larger distances we expect
Hamiltonian dynamics to be dominated by hydrodynamics of the conserved energy (Ap-
pendix G.2) and the two will differ.

Returning to the learning task at hand, we train a support vector machine (SVM) on 3000
randomly drawn Hamiltonians (300 for each value of d = 0, . . . , 9), and test its performance
on 2000 additional Hamiltonians. To ensure that learning is not sensitive to fine-tuned
features of the correlation functions, we add a Gaussian distributed “read-out error” to
all correlation functions, with mean zero and standard deviation δ = 3%. The model’s
predictions as a function of the actual value of d are displayed in Fig. 12.2(b), for learning
either via TOCs (red) or both TOCs and OTOCs (blue). We find that learning via OTOCs
allows accurate predictions of d within ±1 of its actual value for all distances probed (up to
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Figure 12.3: (a) Learning a weak “link” interaction (red line) in a 1D spin chain with
otherwise strong interactions (black lines). (b) Accuracy of binary SVM classification of
whether the link is present or absent, as a function of the link strength J` and at fixed read-
out error δ = 3%. Learning via OTOCs can detect smaller J` as L increases, while the TOC
can only detect relatively large J`, independent of L. (c) The maximum Fisher information
FI(log(J`)|C) of J` decays ∼J4

` for small J`, and is enhanced in OTOCs (blue) compared to
TOCs (red) by a factor that increases with L.
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d = 9). In contrast, with access to only TOCs, the model performs significantly worse for
all d and resorts to nearly random guessing for d & 3.

To evaluate the learning advantage of OTOCs independent of a specific learning task,
we turn to the Fisher information (FI). The FI quantifies the amount of information that
a random variable (e.g. a correlation function C, measured within some read-out error δ)
carries about an unknown parameter (e.g. a coupling strength, J), and thereby bounds the
ultimate learnability of the parameter [242]. If one assumes that read-out errors are normally
distributed, the FI is simply a squared derivative, FI(J |C) ≡ δ2FI(J |C; δ) = |∂C/∂J |2, where
we remove the δ-dependence by introducing a factor δ2.

We numerically compute the FI in ergodic 1D spin chains, where one seeks to learn a
coupling Jd lying a distance d away from a probe qubit [Fig. 12.2(b) inset] [81, 82, 83, 135,
441, 527]. We consider the same set of correlation functions as specified for the learning task
in Fig. 12.2(a). In Fig. 12.2(b), we plot the maximum Fisher information maxC FI(J |C) over
all correlation functions (i.e. over all x, t), averaged over 200 and 1000 disorder realizations
for TOCs and OTOCs respectively. We find that the maximum FI of TOCs (red) decays
exponentially in the distance d from the probe qubit. In contrast, the maximum FI of
OTOCs (blue) follows a slow algebraic decay, ∼ 1/d, thereby achieving a multiple-order-
of-magnitude advantage over TOCs even at modest distances, d & 3. This algebraic decay
arises from the ∼

√
t broadening of the OTOC wavefront in time [340], see Appendix G.2

for a full phenomenological derivation.

12.3 Learning weak interactions
We now turn to our second learning scenario: characterizing weak interactions in an

otherwise strongly-interacting system. Such characterization is notoriously difficult because
weak interactions take long times to manifest (of order the inverse interaction strength),
at which point TOCs have decayed due to the strong interactions. Previous approaches
require either dynamical decoupling of the strong interactions [481, 530] or high-precision
measurements at early times [32, 186]. We will now show that access to OTOCs allows
one to side-step these requirements when characterizing weak interactions that change the
connectivity of a strongly-interacting system. Notably, in contrast to the previous learn-
ing scenario, this advantage holds when the experimenter is capable of measuring all local
correlation functions of the system of interest.

For concreteness, we specialize to 1D spin chains with a single “weak link” interaction,
of strength J` much less than the typical interaction strength J [see Fig. 12.3(b) inset]. We
consider TOCs and OTOCs of the form Eq. (12.2) and Eq. (12.3), where x, x′ run over
all qubits in the system. We anticipate that access to more general correlators within a
given time-ordering, e.g. via shadow tomography or related techniques [2, 112, 217], will not
qualitatively change the observed physics (see Appendix G.1).

We begin as before with a concrete learning task. Specifically, we suppose that one
is given access to a spin chain with unknown Hamiltonian parameters and either no link
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Figure 12.4: Learning as a function of experimental error, in the “weak interaction” learning
task of Fig. 12.3(a). (a) Accuracy of binary SVM classification as in Fig. 12.3(a), now with a
coupling g, to an extrinsic cavity mode that is not time-reversed (cavity frequency ω = 1.7).
Despite imperfect time-reversal, learning via OTOCs continues to provide an advantage up
to large spin-cavity couplings g ∼ 0.5. (b) The minimum link strength J∗` classifiable with
> 90% accuracy as a function of read-out error δ, obtained by repeating Fig. 12.3(a) for
each δ. The minimum link strength in general decreases with decreasing δ; for learning via
TOCs, this decrease plateaus for δ . 0.1%, indicating that learning below this value is not
limited by read-out error.
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interaction (J` → 0) or a fixed non-zero weak link interaction strength J`. For each fixed
value of J`, we train a binary SVM classifier on the correlation functions [Eqs. (12.2), (12.3)]
of 300 disorder samples, again including a read-out error δ = 3% in each correlator value. We
test model performance on 200 additional samples; the resulting classification accuracies are
shown in Fig. 12.3(b). We observe the following general trends: (i) the accuracy decreases
as J` decreases; (ii) learning via both OTOCs and TOCs (blue) allows detection of ∼ 10
times smaller J` than learning via only TOCs (red); and (iii) OTOCs allow detection of
increasingly small J` as the size L of the chain increases.

To understand this behavior analytically, we first note that the optimal correlation func-
tions for detecting the link will typically involve operators lying immediately adjacent to that
link, on both of its sides. These correlators measure either the transfer of spin polarization
(for TOCs) or operator support (for OTOCs) across the link, and will be non-trivial only if
the link interaction strength is nonzero. For TOCs, one expects spin polarization to cross
the link incoherently, at a rate ∼ J2

` /J , where J is the typical strong interaction strength.
Combined with an overall exponential decay of spin in time (if the system has no conserved
quantities), we expect CTOC ∼ (J2

` /J) t e−Jt. For OTOCs, one expects an operator’s support
to cross the link at a similar rate, 1 − COTOC ∼ (J2

` /J)t. Crucially however, this growth
persists until much later times, t ∼ L/J , at which information traveling “around” the chain
will abruptly cause the OTOC to decay to zero. The optimal time for detecting the link
occurs when these correlators are maximized, since each is zero in the absence of the link.
The TOC is maximized at an order one time t ∼ 1/J , at which the correlator magnitude
CTOC ∼ J2

` /J
2 is suppressed by the square of the weak link interaction strength. In contrast,

the OTOC is maximized at a much later time t ∼ L/J , and thereby features a magnitude
1−COTOC ∼ L(J2

` /J
2). In both cases we see that detection of the link becomes more difficult

as the link strength decreases. Detection via the OTOC is enhanced by a factor of L, which
captures the connectivity change associated with the link.

We confirm these estimates quantitatively by computing the Fisher information of the
link interaction strength. In Fig. 12.3(b), we plot the maximum of the Fisher information,
maxC FI(log(J`)|C), over all local correlation functions, averaged over 100 disorder realiza-
tions. Here, we consider the logarithm of the link interaction strength in order to appropri-
ately compare the Fisher information over multiple orders of magnitude of the interaction.
The Fisher information of log(J`) bounds the learnability of the interaction strength as a
percentage of its actual value. Applying our phenomenological estimates, we predict that
FI ∼ J4

` /J
4 for TOCs, and FI ∼ L2J4

` /J
4 for OTOCs. Observing Fig. 12.3(b), we indeed find

that the FI is suppressed by ∼J4
` (dashed lines) for small J`, and displays a multiplicative

advantage for OTOCs (blue) compared to TOCs (red), which grows as L increases.

12.4 Effect of experimental errors
Let us now address the impact of experimental errors on learning. We begin with errors

that accumulate throughout time-evolution. These may occur from extrinsic decoherence or
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Figure 12.5: Solution to the disjoint unitary problem with out-of-time-order measurements.
The state |0〉⊗n is prepared and the unknown unitary (either U or U1⊗U2) is applied. Next
σx is applied to the first qubit, followed by the inverse of the unknown unitary. Finally, it is
checked if the second block of n/2 qubits ends up in the all zero state. If so, then the hidden
unknown unitary is U1 ⊗ U2 as per case (ii); if not, then the unknown unitary is U as per
case (i).

imperfect time-reversal dynamics, each of which disrupt the non-local correlations probed
by the OTOC [21, 139, 326, 416, 427, 450]. While this disruption can be mitigated via
independent error estimates [326, 450], for sufficiently large errors these estimates involve
measuring quantities of small magnitude (comparable to the TOC), squandering the OTOC’s
learning advantage. In Appendix G.2 we estimate that our previous results are modified in
the presence of a small local error rate ε � J as follows: in the first learning regime, the
OTOC maintains its advantage up to distances d . J/ε; in the second regime, the L-fold
advantage is replaced by a (min{L,

√
J/ε})-fold advantage.

In practice, we find that learning via OTOCs remains robust even to relatively large
amounts of imperfect time-reversal [Fig. 12.3(d)]. We study this numerically in the “weak
interaction” learning problem of Fig. 12.3(b). As a concrete instance of imperfect time-
reversal, we take the spins to be coupled to an extrinsic cavity mode and assume that the
spin dynamics are perfectly reversed but the cavity dynamics and spin-cavity coupling g are



CHAPTER 12. LEARNING QUANTUM SYSTEMS VIA OUT-OF-TIME-ORDER
CORRELATORS 246

unreversed. We find that access to OTOCs substantially improves the classification accu-
racy even for quite large spin-cavity couplings g ∼ 0.5, up to half the spin-spin interaction
strength.

We can also examine the dependence of learning on read-out errors, namely where one
measures a correlator C up to additive error. Indeed, we have already incorporated a realistic
read-out error δ = 3% in our previous numerical studies [Figs. 12.2(a), 12.3(a), 12.4(a)].
Intuitively, we expect larger read-out errors to make learning more difficult; however, we have
little reason to expect read-out error to change the relative advantage of OTOCs compared
to TOCs. We test this numerically by repeating the analysis of Fig. 12.3(b) for various
read-out errors, δ. For each δ, we compute the minimum link strength J∗` that can be
learned with > 90% accuracy [Fig. 12.3(c)]. For errors δ & 10−3, our results agree well with
analytic estimates, which predict (J∗` /J)2 ∼ δ for TOCs and (J∗` /J)2 ∼ δ/L for OTOCs.
Intriguingly, for sufficiently small errors δ . 10−3, the minimum link strength detectable with
TOCs saturates to a finite value J∗` ∼ 0.2. Below this value, sample-to-sample fluctuations
of the TOC cause the learning task to be difficult regardless of the read-out error.

12.5 Provable learning advantage
We have so far demonstrated the learning power of OTOCs using phenomenological ar-

guments and numerical simulations, owing to the difficulty of obtaining analytic results for
ergodic Hamiltonian systems. Complementary to these results, we now introduce a binary
classification task in which the OTOC is provably efficient. The task is as follows:

Disjoint unitary problem: One is given oracle access to either: (i) a fixed, n-qubit
Haar-random unitary U , or (ii) a tensor product of two fixed, n/2-qubit Haar-random uni-
taries, U1 ⊗ U2. The task is to determine which of (i) or (ii) is realized.

Qualitatively, this problem resembles the Hamiltonian learning scenarios identified previ-
ously. First, the feature we seek to learn—the connectivity of the unitary—directly deter-
mines how information spreads through the system, as measured by the OTOC. Second, a
Haar-random unitary is inherently “strongly-interacting”, which causes time-ordered mea-
surements to decay and thus provide little information.

In Fig. 12.5 we show that the disjoint unitary problem can be solved with a constant
number (with respect to n) of queries to the oracle and its time-reverse U †, by measuring an
out-of-time-order observable. Letting V denote the unknown unitary (either U or U1 ⊗ U2),
the OTOC is

OTOC(V ) = tr
(
1n

2
⊗ |0〉〈0|⊗n2

{
V †σ1

xV |0〉〈0|⊗nV †σ1
xV
})
.

In case (i), the OTOC is near zero with probability exponentially close to one [111]. In
case (ii), the OTOC is one, since the two subsystems are not coupled by U1 ⊗ U2. Thus,
with probability exponentially close to one, the two cases may be distinguished with a single
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query to the unknown unitary and its time-reverse. In contrast, in the following Chapter,
we prove that any time-ordered learning protocol requires an exponential number Ω(2n/4)
of queries of the unknown unitary to solve the disjoint unitary problem. Our proof applies
even to adaptive measurement strategies, and leverages novel contemporary techniques from
quantum learning theory [10, 96, 220].

12.6 Discussion and outlook
In this Chapter, we have shown that quantum information dynamics can provide powerful

advantages for learning properties of quantum systems. As we have seen in Part III, the
physics of quantum information dynamics is intimately linked with experimental protocols
that involve time-reversal. (In the following Chapter we rigorize this connection.) Our
results thus highlight the potential gains that can be achieved by quantum experiments if
they have sufficient control and coherence to apply time-reversed dynamics. Extraordinary
experimental progress has led to an ever-increasing number of such platforms [61, 139, 163,
274, 289, 326, 416], and we envision that learning via OTOCs might find applications across
these diverse physical contexts. Specific future directions include learning long-range cross-
talk in quantum processors [420], and strongly-interacting problems in NMR [354].
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Chapter 13

Information-theoretic hardness of
out-of-time-order correlators

In this Chapter, we establish that there are properties of quantum many-body dynam-
ics which are efficiently learnable if we are given access to out-of-time-order correlators
(OTOCs) [250, 277, 315], but which require exponentially many operations in the system
size if we can only measure time-ordered correlators. In the context of quantum learning,
this extends the phenomenological and numerical results of Ch. 13 to a rigorous setting. Our
result also provides support to a general theme observed in Part III, where experimental pro-
tocols to measure quantum information dynamics always required the ability to reverse time
mid-experiment [46, 61, 139, 163, 233, 274, 289, 326, 381, 416, 451, 473, 512, 518]. In par-
ticular, we show that in certain cases, any experimental protocol which reconstructs OTOCs
solely from time-ordered correlators must be, in certain cases, exponentially inefficient.

Our proofs build upon and generalize recent work on quantum algorithmic measurements
(QUALMs) and quantum learning theory [10, 95, 96, 219]. The formulation of our results
entails a precise definition of the most general time-ordered and out-of-time-order correlators
that can be measured; this may be of interest for other applications in quantum learning
theory.

The remainder of the Chapter is organized as follows. In Section 13.1 we formulate the
most general time-ordered experiments, and the most general out-of-time-order experiments.
In Section 13.2 we explain our main results on the hardness of measuring certain proper-
ties of quantum many-body systems using time-ordered operations alone. We conclude in
Section 13.3 with a discussion.

13.1 Time-ordered and out-of-time-order experiments
In this section we mathematically formalize how correlators are extracted from mea-

surements of a system. While correlators are natural objects in quantum systems and field
theories, they are often studied abstractly without acknowledgement of how they might be
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measured in a physical system. The question of devising a measurement protocol to extract a
particular correlator from a system of interest is particularly pressing in the case of OTOCs.
Below we will use the framework of learning theory to provide a general definition of how cor-
relators can be obtained via quantum measurements. We leverage the learning tree formalism
for quantum channels, developed in [10, 96]. Let us outline an intuitive understanding of
how such experiments operate, and then render this into more precise definitions.

Suppose we have some experimental system with time evolution by a unitary U , which
is not known to or fully characterized by the experimentalist. The experimentalist desires
to learn about U by making measurements on the system as it evolves. For a Hamiltonian
system, we might have U = e−iH ∆t for some not fully characterized H, where ∆t is the
shortest time scale over which we can control the evolution. So if the experimentalist wants
to evolve the system by a time k∆t, he can simply apply Uk. (Our formulation will also
work if the experimentalist has continuous control over the time t, but this ∆t discretization
will make our definitions simpler to state.) To be explicit, we stipulate that the system in
question is composed of n qubits on which the unitary U acts.

An experiment would operate as follows. The experimentalist begins by preparing the
system in some initial state ρ0. Thereafter, he can choose to either: (i) apply U ; (ii) apply
some other quantum channel; or (iii) perform a partial or complete measurement, which
would confer some classical information about the state of the system which he could store
on a classical computer. He can exercise these options again and again in a sequence, each
time basing his decision of what to do next on the information collected thus far. That is,
the protocol for information collection can be adaptive. At the end of the experiment, the
classical computer contains the information the experimentalist has gained by performing
measurements at any stage throughout the protocol.

We will make the assumption that throughout the protocol, the state of the system is
not entangled with any external ancilla system which the experimentalist can manipulate.
This choice is made to reflect contemporary experimental realities; for instance, at present,
there is no way of entangling a sample of graphene to an external quantum computer. In
the Discussion, we will comment further on the possibility of ancilla-assisted protocols.

Next we turn to formalizing the notion of an experiment explained above. First we
note that in our setting, the most general operation the experimentalist can perform on a
quantum state is a POVM measurement [353]. That is, consider a collection of operators
{Fi}i on n qubits, satisfying

∑
i F
†
i Fi = 1. Then the POVM measurement with respect to

these operators maps

ρ 7−→ FiρF
†
i

tr(FiρF †i )
with probability tr(FiρF †i ) . (13.1)

Here the experimentalists’ apparatuses would register that he had measured the ith out-
come. This generalizes the notion of a projective measurement from elementary quantum
mechanics. Note that a special case of a POVM measurement is simply the application of
a unitary V ; if the POVM is the singleton set {V } which clearly satisfies V †V = 1, then
‘measuring’ ρ yields V ρV † with probability one.
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F1,2
<latexit sha1_base64="GfTn3igcdhabG7V1lTjG4SLuyBk=">AAAB8XicbVBNSwMxEJ34WetX1aOXYBE8SNmVoh6LXjxWsB/YLiWbZtvQbLIkWaEs/RdePCji1X/jzX9j2u5BWx8MPN6bYWZemAhurOd9o5XVtfWNzcJWcXtnd2+/dHDYNCrVlDWoEkq3Q2KY4JI1LLeCtRPNSBwK1gpHt1O/9cS04Uo+2HHCgpgMJI84JdZJj109VL3MP/cnvVLZq3gz4GXi56QMOeq90le3r2gaM2mpIMZ0fC+xQUa05VSwSbGbGpYQOiID1nFUkpiZIJtdPMGnTunjSGlX0uKZ+nsiI7Ex4zh0nTGxQ7PoTcX/vE5qo+sg4zJJLZN0vihKBbYKT9/Hfa4ZtWLsCKGau1sxHRJNqHUhFV0I/uLLy6R5UfEvK9X7arl2k8dRgGM4gTPw4QpqcAd1aAAFCc/wCm/IoBf0jj7mrSsonzmCP0CfP+42kHE=</latexit>⇢1,1

<latexit sha1_base64="bfhjR+7Su6Mh220X1/psC5vjEpk=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSJ4kJJIUY9FQTxWsB/QhrLZbtqlm03YnQgl9Ed48aCIV3+PN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dlZW19Y3Ngtbxe2d3b390sFh08SpZrzBYhnrdkANl0LxBgqUvJ1oTqNA8lYwup36rSeujYjVI44T7kd0oEQoGEUrte56mXfuTXqlsltxZyDLxMtJGXLUe6Wvbj9macQVMkmN6Xhugn5GNQom+aTYTQ1PKBvRAe9YqmjEjZ/Nzp2QU6v0SRhrWwrJTP09kdHImHEU2M6I4tAselPxP6+TYnjtZ0IlKXLF5ovCVBKMyfR30heaM5RjSyjTwt5K2JBqytAmVLQheIsvL5PmRcW7rFQfquXaTR5HAY7hBM7AgyuowT3UoQEMRvAMr/DmJM6L8+58zFtXnHzmCP7A+fwBYKyO9A==</latexit>

F1,1

<latexit sha1_base64="WulvoBrDtFt1vgZS35Az5y/IG5M=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBg5TdUtRjURBPUsF+SLss2TRtQ5PskmSFsvRXePGgiFd/jjf/jWm7B219MPB4b4aZeWHMmTau++3kVlbX1jfym4Wt7Z3dveL+QVNHiSK0QSIeqXaINeVM0oZhhtN2rCgWIaetcHQ99VtPVGkWyQczjqkv8ECyPiPYWOnxJkgrZ3dBZRIUS27ZnQEtEy8jJchQD4pf3V5EEkGlIRxr3fHc2PgpVoYRTieFbqJpjMkID2jHUokF1X46O3iCTqzSQ/1I2ZIGzdTfEykWWo9FaDsFNkO96E3F/7xOYvqXfspknBgqyXxRP+HIRGj6PeoxRYnhY0swUczeisgQK0yMzahgQ/AWX14mzUrZOy9X76ul2lUWRx6O4BhOwYMLqMEt1KEBBAQ8wyu8Ocp5cd6dj3lrzslmDuEPnM8fuIGPtw==</latexit>

F2,N2
<latexit sha1_base64="MYeIjo3UDrw21TiSjx683hNKBiY=">AAAB83icbVBNSwMxEJ2tX7V+VT16CRbBg5TdUtRj0YsnqWA/oLuUbJptQ7PJkmSFsvRvePGgiFf/jDf/jWm7B219MPB4b4aZeWHCmTau++0U1tY3NreK26Wd3b39g/LhUVvLVBHaIpJL1Q2xppwJ2jLMcNpNFMVxyGknHN/O/M4TVZpJ8WgmCQ1iPBQsYgQbK/m+Gsl+Vru479em/XLFrbpzoFXi5aQCOZr98pc/kCSNqTCEY617npuYIMPKMMLptOSnmiaYjPGQ9iwVOKY6yOY3T9GZVQYoksqWMGiu/p7IcKz1JA5tZ4zNSC97M/E/r5ea6DrImEhSQwVZLIpSjoxEswDQgClKDJ9Ygoli9lZERlhhYmxMJRuCt/zyKmnXqt5ltf5QrzRu8jiKcAKncA4eXEED7qAJLSCQwDO8wpuTOi/Ou/OxaC04+cwx/IHz+QNI5JE0</latexit>⇢2,N2

<latexit sha1_base64="ItegwlCYnACAjfgDT5WralydfOc=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgQcJuCOoxKIjHCOYBSQizk9lkyOzsMtMrhCUf4cWDIl79Hm/+jZNkD5pY0FBUddPd5cdSGHTdbye3tr6xuZXfLuzs7u0fFA+PmiZKNOMNFslIt31quBSKN1Cg5O1Ycxr6krf88e3Mbz1xbUSkHnES815Ih0oEglG0Uuuun1YuKtN+seSW3TnIKvEyUoIM9X7xqzuIWBJyhUxSYzqeG2MvpRoFk3xa6CaGx5SN6ZB3LFU05KaXzs+dkjOrDEgQaVsKyVz9PZHS0JhJ6NvOkOLILHsz8T+vk2Bw3UuFihPkii0WBYkkGJHZ72QgNGcoJ5ZQpoW9lbAR1ZShTahgQ/CWX14lzUrZuyxXH6ql2k0WRx5O4BTOwYMrqME91KEBDMbwDK/w5sTOi/PufCxac042cwx/4Hz+AGO4jvY=</latexit>

F2,2
<latexit sha1_base64="9A5QCqjV/vzlXmV9P14f8X7g3LY=">AAAB8XicbVBNSwMxEJ2tX7V+VT16CRbBg5TdUtRj0YvHCvYD26Vk02wbmk2WJCuUpf/CiwdFvPpvvPlvzLZ70NYHA4/3ZpiZF8ScaeO6305hbX1jc6u4XdrZ3ds/KB8etbVMFKEtIrlU3QBrypmgLcMMp91YURwFnHaCyW3md56o0kyKBzONqR/hkWAhI9hY6bGvxnKQ1i5qs0G54lbdOdAq8XJSgRzNQfmrP5QkiagwhGOte54bGz/FyjDC6azUTzSNMZngEe1ZKnBEtZ/OL56hM6sMUSiVLWHQXP09keJI62kU2M4Im7Fe9jLxP6+XmPDaT5mIE0MFWSwKE46MRNn7aMgUJYZPLcFEMXsrImOsMDE2pJINwVt+eZW0a1Xvslq/r1caN3kcRTiBUzgHD66gAXfQhBYQEPAMr/DmaOfFeXc+Fq0FJ585hj9wPn8A8UKQcw==</latexit>⇢2,2

<latexit sha1_base64="B+o6IRYujSEXL6wveCbioP1lCt0=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgQcJuCOoxKIjHCOYByRJmJ51kyOzsMjMrhCUf4cWDIl79Hm/+jZNkD5pY0FBUddPdFcSCa+O6305ubX1jcyu/XdjZ3ds/KB4eNXWUKIYNFolItQOqUXCJDcONwHaskIaBwFYwvp35rSdUmkfy0Uxi9EM6lHzAGTVWat310sqFN+0VS27ZnYOsEi8jJchQ7xW/uv2IJSFKwwTVuuO5sfFTqgxnAqeFbqIxpmxMh9ixVNIQtZ/Oz52SM6v0ySBStqQhc/X3REpDrSdhYDtDakZ62ZuJ/3mdxAyu/ZTLODEo2WLRIBHERGT2O+lzhcyIiSWUKW5vJWxEFWXGJlSwIXjLL6+SZqXsXZarD9VS7SaLIw8ncArn4MEV1OAe6tAABmN4hld4c2LnxXl3PhatOSebOYY/cD5/AGIzjvU=</latexit>

F2,1
<latexit sha1_base64="TAfPnnnlE68fWybxnOju01xL2L8=">AAAB8XicbVBNSwMxEJ2tX7V+VT16CRbBg5TdUtRj0YvHCvYD26Vk02wbmk2WJCuUpf/CiwdFvPpvvPlvzLZ70NYHA4/3ZpiZF8ScaeO6305hbX1jc6u4XdrZ3ds/KB8etbVMFKEtIrlU3QBrypmgLcMMp91YURwFnHaCyW3md56o0kyKBzONqR/hkWAhI9hY6bGvxnKQ1i682aBccavuHGiVeDmpQI7moPzVH0qSRFQYwrHWPc+NjZ9iZRjhdFbqJ5rGmEzwiPYsFTii2k/nF8/QmVWGKJTKljBorv6eSHGk9TQKbGeEzVgve5n4n9dLTHjtp0zEiaGCLBaFCUdGoux9NGSKEsOnlmCimL0VkTFWmBgbUsmG4C2/vEratap3Wa3f1yuNmzyOIpzAKZyDB1fQgDtoQgsICHiGV3hztPPivDsfi9aCk88cwx84nz/vvZBy</latexit>⇢2,1

<latexit sha1_base64="51GCQ2IqzqBdn8fWbvNxX6GyVo0=">AAAB+3icbVDLSgMxFM3UV62vsS7dBIvgQsqMFHVZdOOqVLAPaIchk2ba0EwyJBmxDPMrblwo4tYfceffmE5noa0HLvdwzr3k5gQxo0o7zrdVWlvf2Nwqb1d2dvf2D+zDaleJRGLSwYIJ2Q+QIoxy0tFUM9KPJUFRwEgvmN7O/d4jkYoK/qBnMfEiNOY0pBhpI/l2dSgnwk9bvnPeyluW+XbNqTs54CpxC1IDBdq+/TUcCZxEhGvMkFID14m1lyKpKWYkqwwTRWKEp2hMBoZyFBHlpfntGTw1ygiGQpriGubq740URUrNosBMRkhP1LI3F//zBokOr72U8jjRhOPFQ2HCoBZwHgQcUUmwZjNDEJbU3ArxBEmEtYmrYkJwl7+8SroXdfey3rhv1Jo3RRxlcAxOwBlwwRVogjvQBh2AwRN4Bq/gzcqsF+vd+liMlqxi5wj8gfX5Azz+k+8=</latexit>⇢N0,NN0

<latexit sha1_base64="Me1RbpY9cGpyjcTrtYV/2oQIWZw=">AAAB+HicbVDLSsNAFL3xWeujUZdugkVwISWRoi6LgrgqFewD2hAm00k7dDIJMxOhhnyJGxeKuPVT3Pk3TtMstPXA5R7OuZe5c/yYUals+9tYWV1b39gsbZW3d3b3Kub+QUdGicCkjSMWiZ6PJGGUk7aiipFeLAgKfUa6/uRm5ncfiZA04g9qGhM3RCNOA4qR0pJnVm69tOnZZ828ZZlnVu2ancNaJk5BqlCg5Zlfg2GEk5BwhRmSsu/YsXJTJBTFjGTlQSJJjPAEjUhfU45CIt00PzyzTrQytIJI6OLKytXfGykKpZyGvp4MkRrLRW8m/uf1ExVcuSnlcaIIx/OHgoRZKrJmKVhDKghWbKoJwoLqWy08RgJhpbMq6xCcxS8vk855zbmo1e/r1cZ1EUcJjuAYTsGBS2jAHbSgDRgSeIZXeDOejBfj3fiYj64Yxc4h/IHx+QOj4JJy</latexit>

FN0,NN0
<latexit sha1_base64="u863Crfzvfnxkg8ipnj7tE2kylk=">AAAB83icbVBNSwMxEJ2tX7V+VT16CRbBg5TdUtRj0YsnqWA/oLss2TRtQ7PJkmSFsvRvePGgiFf/jDf/jWm7B219MPB4b4aZeVHCmTau++0U1tY3NreK26Wd3b39g/LhUVvLVBHaIpJL1Y2wppwJ2jLMcNpNFMVxxGknGt/O/M4TVZpJ8WgmCQ1iPBRswAg2VvJ9NZJhdh+6F7VpWK64VXcOtEq8nFQgRzMsf/l9SdKYCkM41rrnuYkJMqwMI5xOS36qaYLJGA9pz1KBY6qDbH7zFJ1ZpY8GUtkSBs3V3xMZjrWexJHtjLEZ6WVvJv7n9VIzuA4yJpLUUEEWiwYpR0aiWQCozxQlhk8swUQxeysiI6wwMTamkg3BW355lbRrVe+yWn+oVxo3eRxFOIFTOAcPrqABd9CEFhBI4Ble4c1JnRfn3flYtBacfOYY/sD5/AFGdJEy</latexit>⇢N0,2

<latexit sha1_base64="9RmttYheouzwPf/mejjqD9iTTNc=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBg5TdUtRjURBPUsF+SLss2TRtQ5PskmSFsvRXePGgiFd/jjf/jWm7B219MPB4b4aZeWHMmTau++3kVlbX1jfym4Wt7Z3dveL+QVNHiSK0QSIeqXaINeVM0oZhhtN2rCgWIaetcHQ99VtPVGkWyQczjqkv8ECyPiPYWOnxJkjvAvesMgmKJbfszoCWiZeREmSoB8Wvbi8iiaDSEI617nhubPwUK8MIp5NCN9E0xmSEB7RjqcSCaj+dHTxBJ1bpoX6kbEmDZurviRQLrccitJ0Cm6Fe9Kbif14nMf1LP2UyTgyVZL6on3BkIjT9HvWYosTwsSWYKGZvRWSIFSbGZlSwIXiLLy+TZqXsnZer99VS7SqLIw9HcAyn4MEF1OAW6tAAAgKe4RXeHOW8OO/Ox7w152Qzh/AHzucPthGPtQ==</latexit>

FN0,2
<latexit sha1_base64="t+j9ie3+AElIRlUH8ZB20OVvdlM=">AAAB83icbVBNS8NAEJ34WetX1aOXxSJ4kJJIUY9FL56kgv2AJoTNdtMu3eyG3Y1QQv+GFw+KePXPePPfuG1z0NYHA4/3ZpiZF6WcaeO6387K6tr6xmZpq7y9s7u3Xzk4bGuZKUJbRHKpuhHWlDNBW4YZTrupojiJOO1Eo9up33miSjMpHs04pUGCB4LFjGBjJd9XQxnm96F77k3CStWtuTOgZeIVpAoFmmHly+9LkiVUGMKx1j3PTU2QY2UY4XRS9jNNU0xGeEB7lgqcUB3ks5sn6NQqfRRLZUsYNFN/T+Q40XqcRLYzwWaoF72p+J/Xy0x8HeRMpJmhgswXxRlHRqJpAKjPFCWGjy3BRDF7KyJDrDAxNqayDcFbfHmZtC9q3mWt/lCvNm6KOEpwDCdwBh5cQQPuoAktIJDCM7zCm5M5L8678zFvXXGKmSP4A+fzB0TvkTE=</latexit>⇢N0,1

<latexit sha1_base64="TCP9OxlspAItg976IvojgDtbtxs=">AAAB8HicbVBNSwMxEJ31s9avqkcvwSJ4kLIrRT0WBfEkFeyHtMuSTbNtaJJdkqxQlv4KLx4U8erP8ea/MW33oK0PBh7vzTAzL0w408Z1v52l5ZXVtfXCRnFza3tnt7S339RxqghtkJjHqh1iTTmTtGGY4bSdKIpFyGkrHF5P/NYTVZrF8sGMEuoL3JcsYgQbKz3eBNld4J5646BUdivuFGiReDkpQ456UPrq9mKSCioN4Vjrjucmxs+wMoxwOi52U00TTIa4TzuWSiyo9rPpwWN0bJUeimJlSxo0VX9PZFhoPRKh7RTYDPS8NxH/8zqpiS79jMkkNVSS2aIo5cjEaPI96jFFieEjSzBRzN6KyAArTIzNqGhD8OZfXiTNs4p3XqneV8u1qzyOAhzCEZyABxdQg1uoQwMICHiGV3hzlPPivDsfs9YlJ585gD9wPn8AtIyPtA==</latexit>

FN0,1

<latexit sha1_base64="PuKcUfkQzenZ3aicnqrkQocxOek=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GNREE9SwX5AG8Jmu22XbjZhdyKU0B/hxYMiXv093vw3btsctPXBwOO9GWbmhYkUBl332ymsrK6tbxQ3S1vbO7t75f2DpolTzXiDxTLW7ZAaLoXiDRQoeTvRnEah5K1wdDP1W09cGxGrRxwn3I/oQIm+YBSt1LoNsvvAnQTlilt1ZyDLxMtJBXLUg/JXtxezNOIKmaTGdDw3QT+jGgWTfFLqpoYnlI3ogHcsVTTixs9m507IiVV6pB9rWwrJTP09kdHImHEU2s6I4tAselPxP6+TYv/Kz4RKUuSKzRf1U0kwJtPfSU9ozlCOLaFMC3srYUOqKUObUMmG4C2+vEyaZ1Xvonr+cF6pXedxFOEIjuEUPLiEGtxBHRrAYATP8ApvTuK8OO/Ox7y14OQzh/AHzucP2SSPQw==</latexit>

FN0

<latexit sha1_base64="EdS5R5jRLbzAqQGWFTYMJ8a+M9E=">AAACAXicbVDLSgMxFM3UV62vqks3wSK4KjMq6rLoxmUF+4B2KJlMpo3NJENyRyilK3/Arf6BO3Hrl/gDfoeZdha29UDgcM693JMTJIIbcN1vp7Cyura+UdwsbW3v7O6V9w+aRqWasgZVQul2QAwTXLIGcBCsnWhG4kCwVjC8zfzWE9OGK/kAo4T5MelLHnFKwErNLg0VmF654lbdKfAy8XJSQTnqvfJPN1Q0jZkEKogxHc9NwB8TDZwKNil1U8MSQoekzzqWShIz44+naSf4xCohjpS2TwKeqn83xiQ2ZhQHdjImMDCLXib+53VSiK79MZdJCkzS2aEoFRgUzr6OQ64ZBTGyhFDNbVZMB0QTCraguSuhyaJNSrYYb7GGZdI8q3qX1fP7i0rtJq+oiI7QMTpFHrpCNXSH6qiBKHpEL+gVvTnPzrvz4XzORgtOvnOI5uB8/QL6+5e0</latexit>

···

<latexit sha1_base64="EdS5R5jRLbzAqQGWFTYMJ8a+M9E=">AAACAXicbVDLSgMxFM3UV62vqks3wSK4KjMq6rLoxmUF+4B2KJlMpo3NJENyRyilK3/Arf6BO3Hrl/gDfoeZdha29UDgcM693JMTJIIbcN1vp7Cyura+UdwsbW3v7O6V9w+aRqWasgZVQul2QAwTXLIGcBCsnWhG4kCwVjC8zfzWE9OGK/kAo4T5MelLHnFKwErNLg0VmF654lbdKfAy8XJSQTnqvfJPN1Q0jZkEKogxHc9NwB8TDZwKNil1U8MSQoekzzqWShIz44+naSf4xCohjpS2TwKeqn83xiQ2ZhQHdjImMDCLXib+53VSiK79MZdJCkzS2aEoFRgUzr6OQ64ZBTGyhFDNbVZMB0QTCraguSuhyaJNSrYYb7GGZdI8q3qX1fP7i0rtJq+oiI7QMTpFHrpCNXSH6qiBKHpEL+gVvTnPzrvz4XzORgtOvnOI5uB8/QL6+5e0</latexit>

···

<latexit sha1_base64="EdS5R5jRLbzAqQGWFTYMJ8a+M9E=">AAACAXicbVDLSgMxFM3UV62vqks3wSK4KjMq6rLoxmUF+4B2KJlMpo3NJENyRyilK3/Arf6BO3Hrl/gDfoeZdha29UDgcM693JMTJIIbcN1vp7Cyura+UdwsbW3v7O6V9w+aRqWasgZVQul2QAwTXLIGcBCsnWhG4kCwVjC8zfzWE9OGK/kAo4T5MelLHnFKwErNLg0VmF654lbdKfAy8XJSQTnqvfJPN1Q0jZkEKogxHc9NwB8TDZwKNil1U8MSQoekzzqWShIz44+naSf4xCohjpS2TwKeqn83xiQ2ZhQHdjImMDCLXib+53VSiK79MZdJCkzS2aEoFRgUzr6OQ64ZBTGyhFDNbVZMB0QTCraguSuhyaJNSrYYb7GGZdI8q3qX1fP7i0rtJq+oiI7QMTpFHrpCNXSH6qiBKHpEL+gVvTnPzrvz4XzORgtOvnOI5uB8/QL6+5e0</latexit>

···

Figure 13.1: Depiction of a learning tree T . We begin with a state ρ0 at the root of the
tree, and perform successive, adaptive POVM measurements. A root-to-leaf path through
the tree corresponds to a sequence of POVM measurement outcomes.

The reason that POVM measurements are so general is encapsulated in the following
fact: any composition of quantum channels and POVM measurements can be captured by a
single new POVM measurement. That is, suppose we have a quantum state and suscept it
to a sequence of POVM measurements and quantum channels; then the result of this is the
same as having applied some über-POVM measurement.

With the above in mind, we can conceive of an experimental protocol as occurring in a
sequence of rounds. The protocol is as follows:

• Initialize ρ0.

• Apply U , measure the state using a POVM {Fi}i. Suppose the outcome is i = q ; then
store this in the classical memory. The output is the state ρq :=

FqUρ0U†F
†
q

tr(FqUρ0U†F
†
q )
.

• Apply U , measure the state using a POVM {Fq,i}i, which can be contingent on the
previous measurement outcome q. Suppose the new outcome is i = r ; then store this
in the classical memory. The output is the state ρq,r :=

Fq,rUρqU†F
†
q,r

tr(Fq,rUρqU†F †q,r)
.

• Apply U , measure the state using a POVM {Fq,r,i}i, which can be contingent on the
previous measurement outcomes q, r. Suppose the new outcome is i = s ; then store
this in the classical memory. The output is the state ρq,r,s :=

Fq,r,sUρq,rU†F
†
q,r,s

tr(Fq,r,sUρq,rU†F †q,r,s)
.

• Repeat this kind of adaptive POVM measurement procedure for T total rounds.

Here, the (adaptive) sequence of POVMs only ‘knows’ about U via the sequence of measure-
ment outcomes.
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Several further comments are in order. First, note that a POVM measurement is not
applied between the initial preparation of ρ0 and the initial application U ; this would be
superfluous since it is equivalent to having prepared a different initial state. Second, this
protocol is clearly adaptive, since the choice of each POVM measurement can be contingent
on all previous measurement outcomes. Indeed, the learning tree specifies an adaptive strat-
egy since it prescribes how the experimentalist makes his adaptive choices. Third, observe
that if the experimentalist wanted to apply k U ’s in a row, i.e. Uk, he could simply choose
for the POVMs to be {1} for k rounds in a row. Finally, we observe that the protocol
outlined above is only directly capturing time-ordered correlations, since the experimentalist
can apply U but not U †.

This class of protocols can be fruitfully organized into a tree, as per Figure 13.1. We start
at the root of the tree (i.e. the top-most vertex), and traverse down the tree by successively
performing POVM measurements in an adaptive fashion. We see, then, that a particular
instantiation of the protocol is a root-to-leaf (i.e. top-to-bottom) path through the tree.
A tree of depth T corresponds to applying U a total of T times, i.e. once per round. The
classical information that the experimentalist obtains is the sequence of POVM measurement
outcomes, which corresponds to a root-to-leaf path through the tree. A path is labelled by
a sequence of vertices v0, v1, ..., vT = `, or more simply by ` since the leaf node specifies the
entire root-to-leaf path.

Let us denote such a learning tree by T . It represents a specification of an adaptive
experimental protocol that an experimentalist can perform. We provide more formal details
in Appendix H. Now if v0, v1, ..., vT = ` is a root-to-leaf path through T , then the probability
of taking that path is

pU({vt}) :=
T∏

t=1

tr(FvtUρvt−1U
†F †vt) , (13.2)

which can be more conveniently notated by pU(`). In other words, this is the probability
of the experimentalist obtaining the sequence of measurement outcomes given by the root-
to-leaf path through the tree terminating in `. The way that information is extracted from
an experiment is via a function G(`) which maps the sequence of measurement outcomes to
the value of some desired quantity, e.g. a time-ordered correlator. The empirical expectation
value of G(`) is then Ĝ := EpU (`)[G(`)] =

∑
` p

U(`)G(`).
The above motivates the following definition of a time-ordered experiment for learning

properties of U , which we further detail in Appendix H:

Definition 1 (Time-ordered experiment). A time-ordered experiment is any learning tree
protocol T which queries U .

The definition of an out-of-time-order experiment follows in a similar fashion:

Definition 2 (Out-of-time-order experiment). An out-of-time-order experiment is any learn-
ing tree protocol T ′ which queries both U and U †, where the choice of which one is to be
queried in each round can be determined adaptively.
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Now suppose we want to measure an OTOC such as tr(ρ0U
†WUV U †WUV ). Clearly this is

most accessible with an out-of-time-order experiment. However, we emphasize that we can
obtain this OTOC using the data of a time-ordered experiment, although we might require
many more rounds of the experiment to obtain the answer to within the desired precision.

Indeed, our goal in next section is to establish that if we do not fully know U (or U †),
then there are certain OTOCs which are readily and efficiently attained by an out-of-time-
order experiment, but which require exponentially many operations if the experiments are
time-ordered.

13.2 Information-theoretic hardness of OTOCs
In this section we explain our main result, namely that for quantum many-body systems

with partially unknown dynamics, there can be OTOCs which are easy to measure with
out-of-time-order experiments but which are exponentially hard to measure with only time-
ordered experiments. Said differently, any experimental protocol that reconstructs OTOCs
from only time-ordered experiments must in some cases be exponentially inefficient. In this
manner, our results elucidate fundamental differences between OTOCs and time-ordered
correlators.

Our proof strategy is to construct an explicit example for which measuring an OTOC
to within constant error has an exponential disparity between the time-ordered and out-of-
time-ordered experimental settings. Concretely, consider again an n qubit system, here for n
even, equipped with a partially uncharacterized unitary. Suppose that it is either: (i) a fixed,
Haar-random unitary U on n qubits, or (ii) a product U1 ⊗ U2 of two fixed, Haar-random
unitaries U1, U2, each on n/2 qubits. Here U1 is to act on the first n/2 qubits, and U2 is
to act on the remaining n/2 qubits. The experimentalist will not know which of these two
possibilities (i) or (ii) is the case, and is tasked with performing an experimental protocol to
determine which one is instantiated.

The two possibilities are physically rather different. In (i) all of the qubits interact with
one another, whereas in (ii) only blocks of half of the qubits mutually interact. This suggests
that if the experimentalist can perform an out-of-time-order experiment, it is quite easy to
distinguish between (i) and (ii) by measuring a single OTOC. This works in the following
way. The experimentalist prepares the system in the all zero state |0〉⊗n, and then applies
the unknown unitary. Thereafter, the experimentalist applies σx on the first qubit to flip it,
followed by applying the inverse of the unknown unitary. Then the experimentalist checks if
the second block of n/2 qubits is again in the all zero state. This corresponds to measuring
the OTOC

OTOC(V ) = tr
(
1n

2
⊗ |0〉〈0|⊗n2

{
V †σ1

xV |0〉〈0|⊗nV †σ1
xV
})
, (13.3)

where V is a placeholder for the unknown unitary. In case (i), the final output state will be
complicated, having little overlap with the all zero state. Indeed, on average we have

EU∼Haar(2n)[OTOC(U)] =
2

3n
2 − 1

22n − 1
≤ O(1/2n/2) . (13.4)
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<latexit sha1_base64="JXzBjyZgmsI8ags2tosNzBng8sY=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSRS1GPRi8cK9gPaUDabTbt2sxt2J0Ip/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZemApu0PO+ncLa+sbmVnG7tLO7t39QPjxqGZVpyppUCaU7ITFMcMmayFGwTqoZSULB2uHodua3n5g2XMkHHKcsSMhA8phTglZq9Wik0PTLFa/qzeGuEj8nFcjR6Je/epGiWcIkUkGM6fpeisGEaORUsGmplxmWEjoiA9a1VJKEmWAyv3bqnlklcmOlbUl05+rviQlJjBknoe1MCA7NsjcT//O6GcbXwYTLNEMm6WJRnAkXlTt73Y24ZhTF2BJCNbe3unRINKFoAyrZEPzll1dJ66LqX1Zr97VK/SaPowgncArn4MMV1OEOGtAECo/wDK/w5ijnxXl3PhatBSefOYY/cD5/ALFFjzg=</latexit>

· · ·

<latexit sha1_base64="6NYJIWiLGhU3AQfuDeYaY2wCK+k=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cK9kPaUDbbSbt0swm7G6HE/govHhTx6s/x5r9x2+agrQ8GHu/NMDMvSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0M/Vbj6g0j+W9GSfoR3QgecgZNVZ6eHK7isqBwF654lbdGcgy8XJSgRz1Xvmr249ZGqE0TFCtO56bGD+jynAmcFLqphoTykZ0gB1LJY1Q+9ns4Ak5sUqfhLGyJQ2Zqb8nMhppPY4C2xlRM9SL3lT8z+ukJrzyMy6T1KBk80VhKoiJyfR70ucKmRFjSyhT3N5K2JAqyozNqGRD8BZfXibNs6p3UT2/O6/UrvM4inAEx3AKHlxCDW6hDg1gEMEzvMKbo5wX5935mLcWnHzmEP7A+fwBuBeQXg==</latexit>|0i <latexit sha1_base64="6NYJIWiLGhU3AQfuDeYaY2wCK+k=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cK9kPaUDbbSbt0swm7G6HE/govHhTx6s/x5r9x2+agrQ8GHu/NMDMvSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0M/Vbj6g0j+W9GSfoR3QgecgZNVZ6eHK7isqBwF654lbdGcgy8XJSgRz1Xvmr249ZGqE0TFCtO56bGD+jynAmcFLqphoTykZ0gB1LJY1Q+9ns4Ak5sUqfhLGyJQ2Zqb8nMhppPY4C2xlRM9SL3lT8z+ukJrzyMy6T1KBk80VhKoiJyfR70ucKmRFjSyhT3N5K2JAqyozNqGRD8BZfXibNs6p3UT2/O6/UrvM4inAEx3AKHlxCDW6hDg1gEMEzvMKbo5wX5935mLcWnHzmEP7A+fwBuBeQXg==</latexit>|0i <latexit sha1_base64="6NYJIWiLGhU3AQfuDeYaY2wCK+k=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cK9kPaUDbbSbt0swm7G6HE/govHhTx6s/x5r9x2+agrQ8GHu/NMDMvSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0M/Vbj6g0j+W9GSfoR3QgecgZNVZ6eHK7isqBwF654lbdGcgy8XJSgRz1Xvmr249ZGqE0TFCtO56bGD+jynAmcFLqphoTykZ0gB1LJY1Q+9ns4Ak5sUqfhLGyJQ2Zqb8nMhppPY4C2xlRM9SL3lT8z+ukJrzyMy6T1KBk80VhKoiJyfR70ucKmRFjSyhT3N5K2JAqyozNqGRD8BZfXibNs6p3UT2/O6/UrvM4inAEx3AKHlxCDW6hDg1gEMEzvMKbo5wX5935mLcWnHzmEP7A+fwBuBeQXg==</latexit>|0i<latexit sha1_base64="JXzBjyZgmsI8ags2tosNzBng8sY=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSRS1GPRi8cK9gPaUDabTbt2sxt2J0Ip/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZemApu0PO+ncLa+sbmVnG7tLO7t39QPjxqGZVpyppUCaU7ITFMcMmayFGwTqoZSULB2uHodua3n5g2XMkHHKcsSMhA8phTglZq9Wik0PTLFa/qzeGuEj8nFcjR6Je/epGiWcIkUkGM6fpeisGEaORUsGmplxmWEjoiA9a1VJKEmWAyv3bqnlklcmOlbUl05+rviQlJjBknoe1MCA7NsjcT//O6GcbXwYTLNEMm6WJRnAkXlTt73Y24ZhTF2BJCNbe3unRINKFoAyrZEPzll1dJ66LqX1Zr97VK/SaPowgncArn4MMV1OEOGtAECo/wDK/w5ijnxXl3PhatBSefOYY/cD5/ALFFjzg=</latexit>

· · ·

<latexit sha1_base64="JXzBjyZgmsI8ags2tosNzBng8sY=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSRS1GPRi8cK9gPaUDabTbt2sxt2J0Ip/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZemApu0PO+ncLa+sbmVnG7tLO7t39QPjxqGZVpyppUCaU7ITFMcMmayFGwTqoZSULB2uHodua3n5g2XMkHHKcsSMhA8phTglZq9Wik0PTLFa/qzeGuEj8nFcjR6Je/epGiWcIkUkGM6fpeisGEaORUsGmplxmWEjoiA9a1VJKEmWAyv3bqnlklcmOlbUl05+rviQlJjBknoe1MCA7NsjcT//O6GcbXwYTLNEMm6WJRnAkXlTt73Y24ZhTF2BJCNbe3unRINKFoAyrZEPzll1dJ66LqX1Zr97VK/SaPowgncArn4MMV1OEOGtAECo/wDK/w5ijnxXl3PhatBSefOYY/cD5/ALFFjzg=</latexit>

· · ·

<latexit sha1_base64="JXzBjyZgmsI8ags2tosNzBng8sY=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSRS1GPRi8cK9gPaUDabTbt2sxt2J0Ip/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZemApu0PO+ncLa+sbmVnG7tLO7t39QPjxqGZVpyppUCaU7ITFMcMmayFGwTqoZSULB2uHodua3n5g2XMkHHKcsSMhA8phTglZq9Wik0PTLFa/qzeGuEj8nFcjR6Je/epGiWcIkUkGM6fpeisGEaORUsGmplxmWEjoiA9a1VJKEmWAyv3bqnlklcmOlbUl05+rviQlJjBknoe1MCA7NsjcT//O6GcbXwYTLNEMm6WJRnAkXlTt73Y24ZhTF2BJCNbe3unRINKFoAyrZEPzll1dJ66LqX1Zr97VK/SaPowgncArn4MMV1OEOGtAECo/wDK/w5ijnxXl3PhatBSefOYY/cD5/ALFFjzg=</latexit>

· · ·

<latexit sha1_base64="TXEszO8kKfs9HBXB/VFWBVGR+Oo=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48VTVtoQ9lsJ+3SzSbsboRS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fCoqZNMMfRZIhLVDqlGwSX6hhuB7VQhjUOBrXB0O/NbT6g0T+SjGacYxHQgecQZNVZ68Hter1xxq+4cZJV4OalAjkav/NXtJyyLURomqNYdz01NMKHKcCZwWupmGlPKRnSAHUsljVEHk/mpU3JmlT6JEmVLGjJXf09MaKz1OA5tZ0zNUC97M/E/r5OZ6DqYcJlmBiVbLIoyQUxCZn+TPlfIjBhbQpni9lbChlRRZmw6JRuCt/zyKmleVL3Lau2+Vqnf5HEU4QRO4Rw8uII63EEDfGAwgGd4hTdHOC/Ou/OxaC04+cwx/IHz+QPZPY2G</latexit>

U1

<latexit sha1_base64="8EhIvqWVYhfAZguBepW0n9ZBEHo=">AAAB8nicbVBNS8NAEN3Ur1q/qh69BIvgqSRS1GPRi8cKpi2ksWw2k3TpZjfsboQS+jO8eFDEq7/Gm//GbZuDtj4YeLw3w8y8MGNUacf5tipr6xubW9Xt2s7u3v5B/fCoq0QuCXhEMCH7IVbAKAdPU82gn0nAacigF45vZ37vCaSigj/oSQZBihNOY0qwNpLvDd3HQYSTBOSw3nCazhz2KnFL0kAlOsP61yASJE+Ba8KwUr7rZDoosNSUMJjWBrmCDJMxTsA3lOMUVFDMT57aZ0aJ7FhIU1zbc/X3RIFTpSZpaDpTrEdq2ZuJ/3l+ruProKA8yzVwslgU58zWwp79b0dUAtFsYggmkppbbTLCEhNtUqqZENzll1dJ96LpXjZb961G+6aMo4pO0Ck6Ry66Qm10hzrIQwQJ9Ixe0ZulrRfr3fpYtFascuYY/YH1+QPVYZD6</latexit>

U †
1

<latexit sha1_base64="nM8ehSyaueo9F3MmNAoJgptlRNo=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY9FLx4rmlpoQ9lst+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8MJHCoOt+O4W19Y3NreJ2aWd3b/+gfHjUMnGqGfdZLGPdDqnhUijuo0DJ24nmNAolfwzHNzP/8YlrI2L1gJOEBxEdKjEQjKKV7v1erVeuuFV3DrJKvJxUIEezV/7q9mOWRlwhk9SYjucmGGRUo2CST0vd1PCEsjEd8o6likbcBNn81Ck5s0qfDGJtSyGZq78nMhoZM4lC2xlRHJllbyb+53VSHFwFmVBJilyxxaJBKgnGZPY36QvNGcqJJZRpYW8lbEQ1ZWjTKdkQvOWXV0mrVvUuqvW7eqVxncdRhBM4hXPw4BIacAtN8IHBEJ7hFd4c6bw4787HorXg5DPH8AfO5w/awY2H</latexit>

U2

<latexit sha1_base64="S+0TYbpkopscdQOprjRDtSbubnc=">AAAB8nicbVBNS8NAEN34WetX1aOXxSJ4Kkkp6rHoxWMF0xbSWDabTbp0swm7E6GE/gwvHhTx6q/x5r9x2+agrQ8GHu/NMDMvyATXYNvf1tr6xubWdmWnuru3f3BYOzru6jRXlLk0FanqB0QzwSVzgYNg/UwxkgSC9YLx7czvPTGleSofYJIxPyGx5BGnBIzkucPm4yAkcczUsFa3G/YceJU4JamjEp1h7WsQpjRPmAQqiNaeY2fgF0QBp4JNq4Ncs4zQMYmZZ6gkCdN+MT95is+NEuIoVaYk4Ln6e6IgidaTJDCdCYGRXvZm4n+el0N07RdcZjkwSReLolxgSPHsfxxyxSiIiSGEKm5uxXREFKFgUqqaEJzll1dJt9lwLhut+1a9fVPGUUGn6AxdIAddoTa6Qx3kIopS9Ixe0ZsF1ov1bn0sWtescuYE/YH1+QPW7ZD7</latexit>

U †
2

<latexit sha1_base64="K9z6Xbg3l9NTmcCzA9wBIYazp84=">AAACAXicbVDLSgNBEJz1GeNr1YvgZTAInsKuBPUY9OIxgnlAsoTZ2U4yZPbBTK8YlnjxV7x4UMSrf+HNv3GS7EETC4Ypqrrp7vITKTQ6zre1tLyyurZe2Chubm3v7Np7+w0dp4pDnccyVi2faZAigjoKlNBKFLDQl9D0h9cTv3kPSos4usNRAl7I+pHoCc7QSF37sIPwgBmPQzPNiBBQjeYbd+2SU3amoIvEzUmJ5Kh17a9OEPM0hAi5ZFq3XSdBL2MKBZcwLnZSDQnjQ9aHtqERC0F72fSCMT0xSkB7sTIvQjpVf3dkLNR6FPqmMmQ40PPeRPzPa6fYu/QyESUpQsRng3qppBjTSRw0EAo4ypEhjCthdqV8wBTjaEIrmhDc+ZMXSeOs7J6XK7eVUvUqj6NAjsgxOSUuuSBVckNqpE44eSTP5JW8WU/Wi/VufcxKl6y854D8gfX5A2h5l4M=</latexit>

complicated state

<latexit sha1_base64="K9z6Xbg3l9NTmcCzA9wBIYazp84=">AAACAXicbVDLSgNBEJz1GeNr1YvgZTAInsKuBPUY9OIxgnlAsoTZ2U4yZPbBTK8YlnjxV7x4UMSrf+HNv3GS7EETC4Ypqrrp7vITKTQ6zre1tLyyurZe2Chubm3v7Np7+w0dp4pDnccyVi2faZAigjoKlNBKFLDQl9D0h9cTv3kPSos4usNRAl7I+pHoCc7QSF37sIPwgBmPQzPNiBBQjeYbd+2SU3amoIvEzUmJ5Kh17a9OEPM0hAi5ZFq3XSdBL2MKBZcwLnZSDQnjQ9aHtqERC0F72fSCMT0xSkB7sTIvQjpVf3dkLNR6FPqmMmQ40PPeRPzPa6fYu/QyESUpQsRng3qppBjTSRw0EAo4ypEhjCthdqV8wBTjaEIrmhDc+ZMXSeOs7J6XK7eVUvUqj6NAjsgxOSUuuSBVckNqpE44eSTP5JW8WU/Wi/VufcxKl6y854D8gfX5A2h5l4M=</latexit>

complicated state
<latexit sha1_base64="K9z6Xbg3l9NTmcCzA9wBIYazp84=">AAACAXicbVDLSgNBEJz1GeNr1YvgZTAInsKuBPUY9OIxgnlAsoTZ2U4yZPbBTK8YlnjxV7x4UMSrf+HNv3GS7EETC4Ypqrrp7vITKTQ6zre1tLyyurZe2Chubm3v7Np7+w0dp4pDnccyVi2faZAigjoKlNBKFLDQl9D0h9cTv3kPSos4usNRAl7I+pHoCc7QSF37sIPwgBmPQzPNiBBQjeYbd+2SU3amoIvEzUmJ5Kh17a9OEPM0hAi5ZFq3XSdBL2MKBZcwLnZSDQnjQ9aHtqERC0F72fSCMT0xSkB7sTIvQjpVf3dkLNR6FPqmMmQ40PPeRPzPa6fYu/QyESUpQsRng3qppBjTSRw0EAo4ypEhjCthdqV8wBTjaEIrmhDc+ZMXSeOs7J6XK7eVUvUqj6NAjsgxOSUuuSBVckNqpE44eSTP5JW8WU/Wi/VufcxKl6y854D8gfX5A2h5l4M=</latexit>

complicated state
<latexit sha1_base64="fQaUEIF4QZbuegnyVGDHSbrmc6g=">AAAB8XicbVDLSgNBEJz1GeMr6tHLYBDiJexKUI9BLx4jmAcmS5iddJIhs7PLTK8YlvyFFw+KePVvvPk3TpI9aGJBQ1HVTXdXEEth0HW/nZXVtfWNzdxWfntnd2+/cHDYMFGiOdR5JCPdCpgBKRTUUaCEVqyBhYGEZjC6mfrNR9BGROoexzH4IRso0RecoZUeOghPmJbE2aRbKLpldwa6TLyMFEmGWrfw1elFPAlBIZfMmLbnxuinTKPgEib5TmIgZnzEBtC2VLEQjJ/OLp7QU6v0aD/SthTSmfp7ImWhMeMwsJ0hw6FZ9Kbif147wf6VnwoVJwiKzxf1E0kxotP3aU9o4CjHljCuhb2V8iHTjKMNKW9D8BZfXiaN87J3Ua7cVYrV6yyOHDkmJ6REPHJJquSW1EidcKLIM3klb45xXpx352PeuuJkM0fkD5zPH13akLo=</latexit>

(i)
<latexit sha1_base64="RoOiXhXdWoOlxstxkkbMCskVubk=">AAAB8nicbVBNSwMxEM3Wr1q/qh69BItQL2VXinosevFYwX7AdinZNNuGZpMlmRXL0p/hxYMiXv013vw3pu0etPXBwOO9GWbmhYngBlz32ymsrW9sbhW3Szu7e/sH5cOjtlGppqxFlVC6GxLDBJesBRwE6yaakTgUrBOOb2d+55Fpw5V8gEnCgpgMJY84JWAlvwfsCbIq5+fTfrni1tw58CrxclJBOZr98ldvoGgaMwlUEGN8z00gyIgGTgWblnqpYQmhYzJkvqWSxMwE2fzkKT6zygBHStuSgOfq74mMxMZM4tB2xgRGZtmbif95fgrRdZBxmaTAJF0silKBQeHZ/3jANaMgJpYQqrm9FdMR0YSCTalkQ/CWX14l7Yuad1mr39crjZs8jiI6Qaeoijx0hRroDjVRC1Gk0DN6RW8OOC/Ou/OxaC04+cwx+gPn8wcmApEt</latexit>

(ii)

Figure 13.2: Schematic of out-of-time-order experiment. (i) In the first case, applying U ,
then σ1

x, and then U † results in a complicated state. (ii) In the second case, applying U1⊗U2,
then σ1

x, and then U †1 ⊗ U †2 leads to a product of two pure states, each on n/2 qubits; the
first is complicated, the second is the all zero state.

However, in case (ii) the σ1
x operator still allows U2 to cancel with U †2 , and so the second

block of n/2 qubits ends up precisely in the all zero state. In terms of the OTOC correlator,
we have

OTOC(U1 ⊗ U2) = 1 for all U1, U2 . (13.5)

These results are illustrated in Figure 13.2.
More formally, these results have the following consequence:

Theorem 1 (Easiness of task with out-of-time-order experiment). If the experimentalist can
perform an out-of-time-order experiment, then with probability exponentially close to one the
cases (i) and (ii) can be distinguished using only a single application of the unknown unitary,
and a single application of its inverse.

Proof. In case (i), the probability that the OTOC is less than or equal to a small constant
ε is bounded by Markov’s inequality, namely

Prob[OTOC(U) ≤ ε] ≥ 1− EU∼Haar(2n)[OTOC(U)]

ε
≥ 1−O(1/(ε 2

n
2 )) , (13.6)

where we have used (13.4). In case (ii), the probability that OTOC(U1⊗U2) is greater than ε
is one, on account of (13.5). Thus the two possibilities can be distinguished with probability
exponentially close to unity, and the protocol only requires a single query of the unknown
unitary and a single query of its inverse.

This result lies in contrast to the following, more difficult theorem:
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Theorem 2 (Exponential hardness of task with time-ordered experiment). Any time-ordered
experiment which can distinguish cases (i) and (ii) requires at least Ω(2n/4) queries of the
unknown unitary, and so is exponentially inefficient.

An equivalent rephrasing is our promised result:

Theorem 2 ′ 1 (Exponential hardness OTOCs with time-ordered experiments). Any time-
ordered experimental protocol to determine an OTOC to within constant error must in certain
instances require accessing the time evolution exponentially many times. However, in some of
these instances, an out-of-time-order experiment can determine the OTOC to within constant
error by accessing the time evolution only a constant number of times.

The theorems should be regarded as quantifying a form of information-theoretic hardness,
since they bound the number of applications of the unknown unitary that we need to succeed
in the time-ordered setting. While the proof of hardness is given in Appendix H, we sketch
its high-level strategy here.

The idea, coming from previous work [10, 96], is to upper bound the sum

∑

`∈ leaf(T )

∣∣∣∣∣ E
U∼Haar(2n)

[pU(`)]− E
U1,U2∼Haar(2n/2)

[pU1⊗U2(`)]

∣∣∣∣∣ (13.7)

for any time-ordered experiment T . We would like to show that this quantity is o(1) if the
number of applications of the unknown unitary is less than o(2n/4). This would imply that
the probability of distinguishing (i) and (ii) can only reach a constant value (i.e. one that is
not suppressed in n) if we apply the oracle exponentially many times in n. Intuitively, upper
bounding (13.7) by a small number means that the probability distribution over measurement
outcomes looks extremely similar regardless of whether case (i) or case (ii) is instantiated;
this means that the two cases cannot be distinguished.

Operationally, we show that EU∼Haar(2n)[p
U(`)] and EU1,U2∼Haar(2n/2)[p

U1⊗U2(`)] are each
close to the uniform distribution 1

2nT
, and hence close to one another via the triangle in-

equality. To establish closeness to the uniform distribution, we rewrite the Haar averages in
terms of sums of correlators involving permutation operators via the Weingarten calculus.
In each case, one of the correlators is exponentially close to 1

2nT
, and intricate algebraic

manipulations establish that the remaining correlators are further suppressed by factors of
the Hilbert space dimension. The required technical tools including Haar integration, Wein-
garten functions, and the learning tree formalism are provided in Appendix H. Our main
proofs are presented in Appendix H.

13.3 Discussion and outlook
In this Chapter we have given a precise framework for defining and analyzing time-ordered

versus out-of-time-order experiments, and established that the latter have an exponential ad-
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vantage over the former for measuring certain OTOCs. Our methods advance recent devel-
opments in quantum learning theory [10, 95, 96, 216, 219], and extend the phenomenological
results presented in Ch. 12.

An interesting future direction is to generalize our results to more realistic settings,
e.g. when the unitaries in question are not constructed from Haar-random ensembles (which
are exponentially complex to realize physically). There has been progress in this vein for a
related class of learning problems involving states instead of unitaries, e.g. [96, 219]. To this
end, it may be fruitful to borrow intuition from the learning problems introduced in Ch. 12.

We also emphasize that in this Chapter we have made the physically reasonable assump-
tion that we cannot entangle our system to ancillas which could act as a quantum memory.
Indeed, in certain cases adding ancillas could equalize the power balance between time-
ordered and out-of-time-order experiments for certain OTOC learning tasks. While we do
not expect this equalization to hold generally, the tradeoff between quantum memory and
the ability to reverse time is worthy of further investigation.

There has been previous work on the difficulty of simulating the Hermitian conjugate of
a unitary U given only black box access to U [382, 383]; our approach in the present work is
different, since we instead consider experiments for learning properties of U . However, our
results and techniques may interface in interesting ways with this line of previous work, for
instance establishing new hardness results. We note that our Theorem 2 implies that in the
worst case it is exponentially hard to construct the inverse of a unknown unitary U for which
one has query access; this is consistent with [382, 383].

As a conceptual coda to our results, we remark that in our own universe we do not have the
ability to reverse the direction of time. As such, there may be physically interesting features
of nature, such as ones pertaining to quantum chaos, which are effectively inaccessible to
us. This is also true of experimental systems in which we cannot, in practice, reverse the
direction of their time evolution. In the latter case, we may one day be able to exercise
the option of simulating that physical system on a quantum computer, and so time-reversal
becomes available. Thus the ability to control the flow of time evolution in a quantum
computer may ultimately allow us to unlock hidden properties of natural systems around us.
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Part V

Appendices
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Appendix A

Details on Floquet Hopf insulators

In this Appendix we provide additional theoretical and numerical details on the Floquet
Hopf insulator (discussed in Ch. 5) and its behavior during adiabatic transformations.

A.1 Twisting interpretation of the topological invariants
We elaborate on the twisting interpretations of the static and Floquet Hopf invariants.

Formally, these derive from the framed-cobordism understanding of the homotopy groups
π3(S2) and π4(S3) in mathematics [372]. For the static Hopf invariant, this understand-
ing was related to the conventional linking interpretation by Ref. [243], which we briefly
summarize. Consider two infinitesimally close points n and n + δn on the Bloch sphere.
Their pre-images will also be infinitesimally close, and we may parameterize them by the
periodic parameter θ, k(θ) and k(θ) + δk(θ) [where θ interpolates between 0 and 2π along
the pre-image]. By calculus, the difference δk(θ) between the two pre-images is determined
by the Jacobian Jij(θ) ≡ ∂kinj(k)|θ along the first pre-image, according to J(θ)δk(θ) = δn.
Crucially, this implies that all information about the pre-images’ linking, and thus the Hopf
invariant, can be found from the Jacobian along a single pre-image! The Jacobian is a 2× 3
matrix (as n is normalized, only derivatives with respect to its two orthogonal components
are nonzero), which generically has two independent non-parallel column vectors. As shown
in Fig. 5.1, we may choose one of these vectors to point along the direction to the second
pre-image, such that the vector ‘traces out’ the second pre-image as it varies along the first
pre-image. As seen in the figure, the total rotation, or twisting, of the column vectors along
the pre-image is precisely the linking number of the pre-images. To formalize this, we view
the two vectors as those of a real orthogonal matrix in SO(2) (the reduction of the 2×3 ma-
trix Jij(θ) to a 2× 2 matrix is proper, because the derivative ∂k‖nj(k)|θ along the pre-image
is always zero). The twisting of this matrix along the 1-dimensional pre-image is classified
by the homotopy group π1(SO(2)) = Z, agreeing with the original π3(S2) classification.

This twisting interpretation generalizes to the Floquet invariant much better than the
linking number interpretation. Although the pre-images of SU(2) in the 4D Floquet Bril-



APPENDIX A. DETAILS ON FLOQUET HOPF INSULATORS 258

louin zone are again 1D loops (because SU(2) is three-dimensional), there is no concept of
linking number in 4D, as any two loops may be smoothly unlinked by moving in the fourth
dimension. Nevertheless, one may consider the Jacobian along the pre-image loop, now a
3 × 4 matrix with three independent non-parallel column vectors. To analyze the twisting
of the Jacobian along the loop, we view these three vectors as the columns of a real orthog-
onal matrix in SO(3). The twisting of this matrix along the 1D loop is characterized by
the group π1(SO(3)) = Z2, reproducing the Floquet invariant’s classification. The reduced
classification indicates that any even twisting of the Jacobian may be smoothly deformed
to a constant Jacobian, and is familiar from characterizing particle statistics (bosons vs.
fermions) in three-dimensions. We see that the reduced Z2 invariant is the natural result of
extending the static Hopf invariant to higher dimensions.

We can verify the twisting interpretation for the stroboscopic evolution described in Ch. 5.
To do so, we first write down the micromotion operator for the stroboscopic evolution. The
micromotion operator closes the bands of the Floquet unitary, and is homotopy equivalent
to the flat band unitary:

Um(k, t) =

{
e−

2πit
T
HhS−hF (k) 0 ≤ t < T/2

−e 2πi(t−T/2)
T

HhS (k) T/2 ≤ t < T
. (A.1)

We’ll take hF = 1 mod 2, hS = 0, and choose the trivial insulator to be the product state,
HhS=0(k) = σz. Consider the pre-image of fixed n̂ 6= ẑ and φ. This occurs at fixed time-
slice t = φT/2π, with k determined by the pre-image of n̂ under the static Hamiltonian
HhS−hF=1(k). Compared to the static case, the Jacobian along a pre-image has one new row,
corresponding to derivatives of the quasienergy φ, and one new column, for derivatives with
respect to time t. In the flat band micromotion operator ∂kiφ = 0 and ∂tn̂ = 0, and so the
time column is nonzero only on the quasienergy row and is orthogonal to both other columns.
The Jacobian twisting is therefore determined entirely by the columns corresponding to n̂,
and so is the same as the twisting for the static Hamiltonian HhS−hF (k) = H1(k): equal to
the Floquet invariant hF = 1.

A.2 Derivation of the Floquet invariant
In this section, we derive an explicit formula for the Floquet Hopf invariant in terms of the

eigenvalues and eigenvectors of the micromotion operator. This allows for straightforward
numerical calculation of the invariant, and, at the end of this section, allows us to rigorously
derive the equality between the Floquet invariant and the quasienergy-π topological defect
charge.

The Floquet Hopf invariant characterizes elements of the homotopy group π4(SU(2)) =
Z2. Witten introduced a method to compute this invariant [499]. Unfortunately, this method
can be somewhat opaque, and unwieldy for numerics, in its original formulation. Our goal
here is to re-express Witten’s formula for the invariant in a more convenient, and explicit,
form.
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Witten’s method relies on the fact that the fourth homotopy group of three-band uni-
taries, π4(U(3)), is trivial, in contrast to the homotopy group of interest, of SU(2) [or,
equivalently, U(2)]. The prescription to compute the invariant proceeds as follows. First,
embed the micromotion unitary Um(k, t) in U(3) by adding a third, trivial band (i.e. with
no k, t dependence):

Ũm(k, t) ≡


Um(k, t)

0
0

0 0 1


 . (A.2)

Next, contract the three-band unitary Ũm(k, t) smoothly to the identity. Specifically, find
a continuous family of unitaries Ũ(k, t, ρ), labelled by contraction parameter ρ, such that
Ũ(k, t, ρ = 0) = Ũm(k, t) and Ũ(k, t, ρ = π/2) = 1, ∀k, t. Prior to embedding in U(3),
such a contraction is forbidden if the Hopf defect at π-quasienergy has a nontrivial topolog-
ical charge. After embedding, the contraction becomes possible due to the triviality of the
Hopf insulator in three-band systems [or, equivalently, due to the trivial homotopy group
π4(U(3))]. Remarkably, the Floquet Hopf invariant of the original two-band micromotion op-
erator can be computed from the entire family of three-band unitaries along the contraction,
Ũ(k, t, ρ), via the five-dimensional integral

hF =
−i

240π3

ˆ π/2

0

dρ

ˆ
dt d3k

∑

ijkln∈
kx,ky ,kz ,t,ρ

εijklnTr
(
Ũ−1∂iŨ Ũ

−1∂jŨ Ũ
−1∂kŨ Ũ

−1∂lŨ Ũ
−1∂mŨ

)
.

(A.3)

The invariant hF is quantized to an integer modulo 2, and is independent of the deformation
chosen.

To see that this integral is a topological invariant of the original unitary, we review an
argument from Ref. [499]. Consider two micromotion operators Um(k, t) and U ′m(k, t). If the
two operators are homotopy equivalent, there exists a smooth deformation of one into the
other. To contract Ũ ′m(k, t) to the identity after embedding in SU(3), one can therefore first
deform the embedded Ũ ′m(k, t) to the embedded Ũm(k, t), and then contract Ũm(k, t) to the
identity. Crucially, the first step necessitates only matrices of the form


U(k, t; ρ)

0
0

0 0 1


 , (A.4)

since the two unitaries are homotopy equivalent in SU(2). However, one can show that the
integrand of Eq. (A.3) is identically zero for Ũ of this form. Therefore the second part of the
contraction is the sole contributor to the Floquet Hopf invariant, and so the two unitaries
have the same invariant. To show that the integrand indeed vanishes for all SU(2) matrices,
one can express the integral in terms of eigenvectors and eigenvalues of the unitary, as we
do for SU(3) unitaries below, and use the fact that the eigenvectors have normalization 1.
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We can also show that the parity of invariant calculated is independent of the contraction
chosen. Consider two different contractions, Ũ1(k, t, ρ) and Ũ2(k, t, ρ), of the same micromo-
tion operator. Each contraction is a map from the domain T 4 × [0, 1] to SU(3). One can
‘sandwich’ together the two contractions to define a new map,

Ũ12(k, t, ρ) =

{
Ũ1(k, t,−ρ) −π/2 ≤ ρ ≤ 0

Ũ2(k, t, ρ) 0 ≤ ρ ≤ π/2
, (A.5)

which is now periodic in ρ with period π, and therefore maps instead from the domain T 5 to
SU(3). Since the domain is now closed, we can consider the homotopy equivalence classes
of such maps. Neglecting weak invariants, these are characterized by the homotopy group
π5(SU(3)) = Z. This integer invariant Γ ∈ Z can be calculated [67]:

Γ =
−i

480π3

ˆ π/2

−π/2
dρ

ˆ
dt d3k

∑

ijkln∈
kx,ky ,kz ,t,ρ

εijklnTr
(
Ũ−1∂iŨ Ũ

−1∂jŨ Ũ
−1∂kŨ Ũ

−1∂lŨ Ũ
−1∂nŨ

)
.

(A.6)

This integral is easily related to the Floquet Hopf invariants of the two contractions,

2Γ = hF,1 + hF,2. (A.7)

Taking both sides modulo 2 gives our desired equivalence,

hF,1 mod 2 = hF,2 mod 2, (A.8)

proving that the Floquet Hopf invariant calculated is independent of the contraction. One
can also see from Eq. (A.7) that hF is quantized to be an integer: set the second contraction
to be the same as the first one, i.e. hF,1 = hF,2 ≡ hF , which then gives hF = Γ, an integer.

We now turn to recasting the above formula in terms of the eigenvectors |zm〉 and
quasienergies φm of the original micromotion operator Um(k, t). We do this by writing down
an explicit contraction (valid for an arbitrary micromotion operator), and using it to simplify
Eq. (A.3). The embedding and contraction are depicted in Fig. A.1. The embedded micro-
motion operator has three bands: an upper band with eigenvector

(
zm,1(k, t), zm,2(k, t), 0

)T ,
a lower band with orthogonal eigenvector

(
− z∗m,2(k, t), z∗m,1(k, t), 0

)T , and the third, trivial
band with eigenvector

(
0, 0, 1

)T . Here, the upper and lower bands are written in terms of the
original two-band micromotion operator’s upper eigenvector |zm(k, t)〉 =

(
zm,1(k, t), zm,2(k, t)

)T ,
and are labelled in Fig. A.1 by the original Bloch spin vectors +n̂(k, t), −n̂(k, t). The con-
traction consists of three steps. First, the quasienergy of the trivial band is shifted to be
degenerate with the lower SU(2) band. At this point the unitary takes the form

Ũ(k, t) = eiφm(k,t) |ψ(k, t)〉〈ψ(k, t)|+ e−iφm(k,t)(1− |ψ(k, t)〉〈ψ(k, t)|), (A.9)



APPENDIX A. DETAILS ON FLOQUET HOPF INSULATORS 261

Figure A.1: Depiction of the embedding of the micromotion operator in U(3), and its
contraction to the identity operator. (a) The original, two-band micromotion operator. Its
upper (blue) and lower band (magenta) are labelled by their Bloch spins n̂,−n̂, and possess
some instantaneous Hopf invariant. Here we depict a flat band micromotion operator, where
the invariant changes from h1 to h2 across a π-defect at t = T/2. If h1 6= h2 mod 2, the
π-defect is topologically protected and the unitary cannot be contracted to the identity. (b)
After embedding, the unitary gains an additional, trivial band (gray) at zero quasienergy. (c)
The first step of the contraction changes the quasienergy of the trivial band to be degenerate
with the lower band (solid arrow). (d) Second, the eigenvectors of the upper band and the
trivial are smoothly exchanged via Eq. (A.10), without changing either band’s quasienergy
(dashed arrows). After this exchange, the original upper and lower band are degenerate, and
do not possess any nontrivial topology. (e) This allows the quasienergy of all bands to be
deformed continuously to zero, completing the contraction.

where |ψ(k, t)〉 =
(
z1(k, t), z2(k, t), 0

)T is the upper band’s three-component eigenvector.
In the second step, we use the triviality of the Hopf insulator in three-band systems to
deform the upper band to a trivial band (no k-dependence), while leaving the quasienergies
φm(k, t) unchanged. Specifically, the unitary maintains the above form, but with upper band
eigenvector

|ψ(k, t, ρ)〉 =




cos(ρ) zm,1(k, t)
cos(ρ) zm,2(k, t)

sin(ρ)


 , (A.10)

for ρ ∈ [0, π/2]. As the lower bands’ eigenvectors must remain orthogonal to the upper
band, this step effectively swaps the eigenvectors of the upper band and the trivial lower
band [Fig. A.1(d)]. After this step, the two k-dependent bands are degenerate (see Fig. A.1),
and are therefore equivalently labelled by k-independent eigenvectors

(
1, 0, 0

)
,
(
0, 1, 0

)
. This

relabelling makes it clear that the ‘defect’ at π-quasienergy is no longer topologically pro-
tected. In the third step, we complete the contraction by continuously take the quasienergies
of all three bands to 0 for all k, t.

Contraction in hand, we turn to computing the Floquet Hopf invariant via Eq. (A.3).
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The first and final steps of the contraction involve changing the quasienergies of bands with
no k-dependence, and as such can be shown to not contribute to Eq. (A.3). We thus only
need to consider the second step, defined via Eqs. (A.9) and (A.10). Using these, we compute

Ũ−1∂iŨ = (i∂i∆φm) |ψ〉〈ψ|+ |α|2 〈ψ|∂iψ〉 |ψ〉〈ψ| − α∗ |ψ〉〈∂iψ|+ α |∂iψ〉〈ψ| −
i

2
∂i∆φm1,

(A.11)

where we define the quasienergy difference ∆φm ≡ 2φm, and α(k, t) ≡ ei∆φm(k,t) − 1 for
convenience. From this, we see that the integrand of Eq. (A.3) consists of a sum of terms,
each of which are products of expressions of the form i∂i∆φm, 〈ψ|∂iψ〉, 〈∂iψ|ψ〉, or 〈∂iψ|∂jψ〉,
with each ∂i occurring exactly once in each term. We note that the final term ∼ 1 in this
expression can be eliminated by adding a global phase to Ũ(k, t, ρ), and thus does not
contribute the topological invariant.

We now argue that only terms of the form ∂iφ 〈∂jψ|∂kψ〉 〈∂lψ|∂nψ〉 are nonzero after
antisymmetrization by εijklm. It is clear that any term with greater than one derivative
acting on ∆φm antisymmetrizes to zero. Similarly, any term that contains greater than one
expression 〈ψ|∂iψ〉 also antisymmetrizes to zero. A term containing 〈ψ|∂iψ〉 〈∂jψ|ψ〉 also
gives zero, as 〈ψ|∂iψ〉 and 〈ψ|∂jψ〉 are both pure imaginary (because |ψ〉 is normalized), and
so the index-flipped 〈ψ|∂jψ〉 〈∂iψ|ψ〉 = 〈ψ|∂iψ〉∗ 〈∂jψ|ψ〉∗ is equal to the original expression
and they cancel after antisymmetrization. The only terms left given these restrictions are of
the form ∂iφ 〈∂jψ|∂kψ〉 〈∂lψ|∂nψ〉 and 〈ψ|∂iψ〉 〈∂jψ|∂kψ〉 〈∂lψ|∂nψ〉. The latter is ruled out
by our choice of deformation: recalling our expression for |ψ〉 in terms of |z〉 in Eq. (A.10),
we compute the inner products

〈∂ρψ|ψ〉 = 0

〈∂ρψ|∂jψ〉 = − cos(ρ) sin(ρ) 〈z(k, t)|∂jz(k, t)〉
〈∂lψ|∂nψ〉 = cos2(ρ) 〈∂lz(k, t)|∂nz(k, t)〉 ,

(A.12)

for j, l,m ∈ {kx, ky, kz, t}. As ∂ρφ and 〈ψ|∂ρψ〉 are both zero, the ρ-derivative must appear
in a term of the form 〈∂ρψ|∂jψ〉 ∼ 〈z(k, t)|∂jz(k, t)〉. However, the first expression in the
term 〈ψ|∂iψ〉 〈∂jψ|∂kψ〉 〈∂lψ|∂nψ〉 is similarly proportional to some 〈z(k, t)|∂iz(k, t)〉, and so
the term will again vanish upon antisymmetrization.

Keeping only the aforementioned nonzero terms, we have

hF =
1

48π3

ˆ π/2

0

dρ

ˆ
dt d3k |α|4

∑

ijkln∈
kx,ky ,kz ,t,ρ

εijkln∂i∆φm 〈∂jψ|∂kψ〉 〈∂lψ|∂nψ〉

=
1

24π3

ˆ
dρ dt d3k |α|4

∑

ijkl∈
kx,ky ,kz ,t

εijkl∂i∆φm 〈∂jψ|∂kψ〉
(
〈∂lψ|∂ρψ〉 − 〈∂ρψ|∂lψ〉

)
.

(A.13)
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A factor of 5 was gained from the cyclicity of the trace. We proceed further by using
Eqs. (A.12) and performing the ρ integral. We find

hF = − 1

24π3

( ˆ
dρ cos3(ρ) sin(ρ)

) ˆ
dt d3k |α|4×

∑

ijkl∈
kx,ky ,kz ,t

εijkl∂i∆φm 〈∂jz(k, t)|∂kz(k, t)〉
(
〈z(k, t)|∂lz(k, t)〉 − 〈∂lz(k, t)|z(k, t)〉

)

= − 1

96π3

ˆ
dt d3k |α|4×

∑

ijln∈
kx,ky ,kz ,t

εijln∂i∆φm 〈∂jz(k, t)|∂kz(k, t)〉
(
〈z(k, t)|∂lz(k, t)〉 − 〈∂lz(k, t)|z(k, t)〉

)
,

=
1

24π

ˆ
dt d3k

[
6− 8 cos(∆φm)− 2 cos(2∆φm)

] ∑

ijkl∈
kx,ky ,kz ,t

εijkl ∂i∆φmFjkAl,

(A.14)

defining Al = −i
4π

(〈z|∂lz〉 − 〈∂lz|z〉) and Fjk = −i
2π

(〈∂jz(k, t)|∂kz(k, t)〉 − 〈∂kz(k, t)|∂jz(k, t)〉),
and recalling |α|4 = 6 − 8 cos(∆φm) − 2 cos(2∆φm). We will soon show that only the first,
non-oscillating term of |α|4 is nonzero after integration, in which case the above expression
replicates the Floquet Hopf invariant formula presented in Ch. 5. We have also confirmed
that these terms are zero numerically.

We are now ready to confirm the relation between the Floquet invariant and the defect
charges. We begin with the special case of flat band micromotion operators, to build intu-
ition. Consider the micromotion operator depicted in Fig. A.1(a) (and written in Eq. (A.1),
replacing hS − hF → h1, hS → h2). Here ∆φm(k, t) = ∆φm(t) and so we have

hF =
1

24π

(ˆ T

0

dt ∂t∆φm
[
6− 8 cos(∆φm)− 2 cos(2∆φm)

])(ˆ
d3k

∑

jkl∈
kx,ky ,kz

εjklAj Fkl
)

=
1

12π

ˆ T

0

dt (∂t∆φm)
[
6− 8 cos(∆φm)− 2 cos(2∆φm)

]
h(t)

=
1

12π

ˆ 2π

0

d(∆φm)
[
6− 8 cos(∆φm)− 2 cos(2∆φm)

]
h1 +

1

12π

ˆ 0

2π

d(∆φm)
[
6− 8 cos(∆φm)− 2 cos(2∆φm)

]
h2

)

=
6× 2π

12π

(
h1 − h2

)

= hπ mod 2.

(A.15)



APPENDIX A. DETAILS ON FLOQUET HOPF INSULATORS 264

In the first step, we use the definition of the Hopf invariant. In the second to last step, we
separately compute the integral for the two regions in which h(t) is constant: t ∈ [0, T/2],
where ∆φm increases from 0 to 2π, and t ∈ [T/2, T ], where ∆φm decreases from 2π to 0. The
integral receives a positive contribution from the first region, and a negative contribution
from the second; this subtraction is precisely the change in Hopf invariant between the two
regions, at ∆φm = 2π (φm = π). It is straightforward to generalize this to the case of
multiple defects, and one replicates the above formula for the total π-defect charge hπ.

Inspired by the flat band case, we can relate the invariant to the defect charges for
general micromotion operators with the help of a coordinate change. We transform from the
space-time coordinates

(
kx, ky, kz, t

)
to coordinates

(
x1, x2, x3,∆φm

)
, where ∆φm is again the

micromotion’s relative phase and the xi are some coordinates that parameterize the three-
dimensional submanifolds of constant ∆φm. In general this coordinate transformation is not
possible (not 1-to-1) on the entire space, and we will have to divide the space into a union
of patches P , each with their own coordinates

(
xP1 , x

P
2 , x

P
3 ,∆φ

P
m

)
. This is similar to the flat

band case, where ∆φm ∼ t is increasing on the first patch (t < T/2) and ∆φm ∼ −(t− T/2)
is decreasing on the second (t > T/2). The Floquet Hopf invariant then takes the form

hF =
1

24π

∑

P

ˆ
d(∆φPm) |α(∆φPm)|4

ˆ
d3xP

∑

jkl∈{xP1 ,xP2 ,xP3 }

εjklAj(∆φPm,xP )Fkl(∆φPm,xP ),

(A.16)

where the change of coordinates has little effect because the integral is a topological invariant.
The xP -integrals are performed over three-dimensional manifolds, defined by the surface of
constant ∆φPm. Contributions from different patches of the same constant ∆φm are added
together, each with the same prefactor |α(∆φm)|4. The sum over P thus amounts to changing
the domain of the x-integral to be over the entire submanifold of constant ∆φm (i.e. over
all patches) , which we will callM∆φm . We have,

hF =
1

12π

ˆ
d(∆φm) |α(∆φm)|4

[
1

2

ˆ
M∆φm

d3x
∑

jkl∈{x1,x2,x3}

εjklAj(∆φm,x)Fkl(∆φm,x)

]
.

(A.17)

The submanifoldM∆φm is closed, and may consist of multiple disjoint regions. The sign of
the contribution from each region is equivalent to the orientation of that region, and is fixed
by sign of the original derivative (∂i∆φm) to point in the direction of increasing ∆φm. (For
instance, in the flat band example there are two regions for each ∆φm, the increasing region
[t < T/2] and the decreasing region [t > T/2], and the contribution from the decreasing
region is subtracted from that of the increasing region.) Looking at Eq. (A.18), the integral
over M∆φm is nothing more than the (signed) sum of the static Hopf invariants of each
closed region of the submanifold, h(M∆φm). As a topological invariant, h(M∆φm) cannot
change with the relative phase ∆φm, and is therefore fixed to be a constant for allM∆φm .
As one might guess from the flat band example, this constant is precisely the Floquet Hopf
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invariant,

hF =
1

12π

ˆ 2π

0

d(∆φm) |α(∆φm)|4h(M∆φm)

=
1

12π

ˆ 2π

0

d(∆φm)
[
6− 8 cos(∆φm)− 2 cos(2∆φm)

]
h(M∆φm)

= h(M∆φm).

(A.18)

where the constancy of h(M∆φm) causes all oscillatory terms ∼ ein∆φm(k,t) (for nonzero n)
to integrate to zero.

It remains only to identify the constant h(M∆φm) = hF with the defect charges. Consider
the submanifoldM∆φm for ∆φm infinitesimally close to 2π. For a micromotion operator with
N point Hopf defects at π-quasienergy, of charges ∆hiπ, i = 1, . . . , N , this manifold consists
of N 3-spheres, each enclosing one of the point Hopf defects. The Hopf invariant of each
3-sphere is exactly the charge of its enclosed defect, and each 3-sphere contributes with the
same sign. The total Hopf invariant of the submanifold then gives

hF = h(M2π−ε) =
∑

i

∆hiπ = hπ. (A.19)

This completes our identification of the parity of hπ with the Floquet invariant.

A.3 Examples of point and loop Hopf defects
A simple example of a point Hopf defect, of charge ∆h = 1, is introduced in Ch. 5, taking

m = 1, k = 0. Replacing m with t, the eigenvector near the defect varies as

|z(k, t)〉 =

(
δkx + i δky
δkz + i δt

)
. (A.20)

To derive the quadratic energy degeneracy of this defect, we consider the instantaneous
Hamiltonian giving rise to the defect,Hinst(k, t) = n(k, t)·σ, with n(k, t) = 〈z(k, t)|σ |z(k, t)〉.
Note that |z(k, t)〉, and therefore n(k, t), are not normalized here, in contrast to Ch. 5.
[There, we considered a gapped Hamiltonian, which can always be deformed to a flat band
Hamiltonian with normalized n(k, t).] Their normalization gives us the quasienergy in the
vicinity of the defect, ∆φ(k, t) = |Hinst(k, t)| = | 〈z(k, t)|σ |z(k, t)〉 | = δk2 + δt2.

We now turn to loop Hopf defects. After demonstrating an example of such a defect,
we will use the example to show: first, that the point Hopf defect can be viewed as a
contraction of the loop defect; and second, that each point along the loop defect appears
as a Weyl cone, with the frame of the Weyl cone twisting by 2π as one circles the defect.
Our example loop defect is also found in Ch. 5, this time by adding an on-site splitting
µσz to the associated instantaneous Hamiltonian. This splitting changes the Bloch sphere
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vector n(k) → n(k) + µẑ. In the Hopf insulator phase, the pre-image of n̂(k) = −ẑ is
a loop in the Brillouin zone defined by kz = 0, cos(kx) + cos(ky) = m − 1, with energy
E(k) = |n(k)| =

√
||z1(k)|2 − µ| =

√
| sin2(kx) + sin2(ky)− µ| along the loop. For each

point along the pre-image, there is a value of µ at which the energy equals zero, and above
which nz is positive. As µ is increased this change propagates along the pre-image, until
all points have transitioned to being pre-images of n̂(k) = +ẑ. Envisioning µ as varying in
time, this realizes a loop defect with some finite extent in the time-direction.

It is illuminating and convenient to analyze the loop defect in the limit where it occurs at
small kx, ky. The smallness of the pre-image is controlled by the parameter ε = 3−m, where
for small ε the pre-image occurs along the circle kz = 0, k2

x + k2
y = 2ε, with energy

√
|2ε− µ|

[neglecting corrections O(k3)]. Since the energy is now constant along the pre-image, the
defect occurs at a single value of the splitting (i.e. a single instant in time), µ = 2ε. Near
the defect, the Bloch sphere vector varies as

nx = kxkz + kyδ

ny = −kxδ − kykz
nz = k2

x + k2
y − k2

z − δ2 − µ
, (A.21)

defining k2
r ≡ k2

x + k2
y, δ ≡ ε − 1

2
k2
r , and µ = 2ε + δµ. Keeping only first order terms, and

defining δkr ≡ −δ/
√

2ε and kx = kr cos(θ), ky = kr sin(θ) we have

nx =
√

2ε kz cos(θ)− 2ε δkr sin(θ)

ny = −2ε δkr cos(θ) +
√

2ε kz sin(θ)

nz = −δµ
. (A.22)

From this we see that the energy is indeed linearly dispersing about the loop defect. We note
that in the limit ε→ 0 the linearly-dispersing loop defect contracts to a single quadratically-
dispersing point at k = 0, showing that the point Hopf defect can be understood as a
contraction of the loop defect.

At each point along the loop, the three vectors ∂kzn, ∂µn, and ∂krn define the frame of
a Weyl cone extending in the directions perpendicular to the loop. To analyze the twisting
of the Weyl cone about the loop, we compute these vectors

∂kzn =
(√

2ε cos(θ), −
√

2ε sin(θ), 0
)

∂krn =
(
− 2ε sin(θ), −2ε cos(θ), 0

)

∂µn =
(
0, 0, −1

)
.

(A.23)

These vectors are linearly independent and twist by 2π about the µ-axis along the loop
parameterized by θ, verifying the Weyl cone interpretation.
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A.4 Defects during the deformation
Here we describe the topological defects’ trajectories throughout the smooth deformation

in more detail. We denote the initial (λ = 0) times of the 0- and π-defects as t0 and tπ
respectively. Expressing Uλ in the 3-sphere coordinates (ξ,n), the gapless points at a given
λ are by definition the pre-images of Uλ = (±1, 0, 0, 0). From Ch. 5, these are identical
to the pre-images of the points R−1

ξnz
(λ)(±1, 0, 0, 0) = (± cos(πλ), 0, 0,± sin(λ)) in the un-

rotated evolution Uλ=0. For simplicity, we assume that U0 has flat bands for some range in
between t0 and tπ, such that in this range the quasienergies linearly interpolate between their
defect values of 0 and π, ξ(k, t) = ξ(t) = cos

(
t−t0
tπ−t0π

)
. With this assumption, the defects

occur at fixed time-slices t = ξ−1
(
± cos(πλ)

)
= ±(λ− 1

2
± 1

2
)(tπ − t0) + t0. (If we relax the

flat band assumption the defects will have some extent in the t-direction.) Further, within
these time-slices, the pre-images in the Brillouin zone are precisely the pre-images of n̂ = ±ẑ
in the instantaneous static Hamiltonian defined by the evolutions’ eigenvectors at this time.
Thus the 0-defect is a loop of gapless points moving forward in time (as λ increases) and
the π-defect is a different loop moving backwards. At the intermediate value λ = 1/2, the
two defects exist in the same time-slice t = (t0 + tπ)/2 and are linked in the Brillouin zone,
by virtue of the linking of the n̂ = ±ẑ pre-images in the instantaneous Hamiltonian, which
has Hopf invariant 1. At this λ, only the total charge h0 + hπ is well-defined. The analysis
of Ch. 5 shows that as the pre-images pass each other the individual charges h0 and hπ are
indeed changed from their initial values, and only the total charge and the Floquet invariant
hπ mod 2 are preserved.

A.5 Edge modes
In this section, we first review the theoretical arguments made in Ch. 5 on the bulk-

boundary correspondence in more detail, and second, numerically demonstrate that edge
modes at certain sharp terminations of the lattice are not protected against generic per-
turbations. Details on the numerical simulations of edge modes are found in the following
section.

Expanded theoretical arguments for edge modes

We briefly review the properties of edge modes in the static Hopf insulator, and use this
to establish the edge modes of the Floquet Hopf insulator in more detail. Unlike topological
insulators classified by K-theory, the edge modes of the Hopf insulator are protected only for
sufficiently smooth edges [335, 430]. This is a consequence of the two-band requirement: the
notion of bands relies on translational invariance, which is broken at a sharply terminated
edge. At edges that are smooth relative to the lattice length, we may define the adiabatic
Hamiltonian H(k; r). At a boundary where this Hamiltonian’s topological invariant changes,
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the Hopf insulator’s nontrivial homotopy classification requires the Hamiltonian’s gap to
close, which we identify as the gapless edge mode.

A similar argument holds for the Floquet Hopf insulator, if we replace the adiabatic
Hamiltonian with an adiabatic unitary evolution U(k, t; r). The defect charges h0/hπ of the
adiabatic evolution can change by two mechanisms: a 0/π-gap closing, respectively; or the
smooth deformation that takes (h0, hπ)→ (h0 + 2n, hπ − 2n). The latter cannot change the
charges’ parities, which leads to a simple rule: if the parity of h0/hπ changes across a smooth
boundary, there will be a gapless edge mode at 0/π-quasienergy. For instance, in Fig. 5.4(a),
the parity of both h0 and hπ change across the edge region, leading to gapless edge modes
in each edge. In contrast, in Fig. 5.4(b) neither defect charge parity changes, nor does the
static invariant, and so the two systems are in fact the same phase and no edge modes are
observed. In both of these examples, the behavior is identical to that of a stable Z2 × Z2

Floquet topological insulator.
The more unique case is that described in Ch. 5 and displayed in Fig. 5.4(c-d), at a

boundary where the static invariant changes, but the defect charges’ parities do not (i.e. the
Floquet invariant does not change, but the static invariant changes by an even amount).
While the change in static invariant necessitates a gap closing, neither gap individually
requires one, and so the quasienergy of the gapless edge mode will be determined by details
of the edge region. This is illuminated by a specific example: consider a boundary between
the trivial phase, (hS, hF ) = (0, 0) [e.g. (h0, hπ) = (0, 0)], and the phase (hS, hF ) = (2, 0)
[e.g. (h0, hπ) = (0, 2)]. A gap closing at π-quasienergy suffices to change hπ by +2 and
connect the two phases. However, the latter phase is equivalently described by defect charges
(h0, hπ) = (−2, 0), which is connected to the (0, 0) phase by a closing at 0-quasienergy. The
‘natural’ quasienergy of the gapless edge modes depends on the specific defect charges of the
two phases, which is a non-universal property of the adiabatic edge region. This behavior
arises precisely because of the different classifications of the static and Floquet invariants,
which prevents the integer static invariant h0 +hπ from being decomposed into a sum of two
independently conserved invariants h0, hπ, since hπ is only conserved modulo 2.

Edge modes at sharp terminations

In this section we briefly investigate edge modes at sharp edges of the Floquet Hopf insula-
tor, in contrast to the smooth edges used for the numerics of Ch. 5. As previously mentioned,
owing to the triviality of the Hopf insulator in systems with band number greater than 2,
the Hopf insulator only protects gapless edge modes at smooth edges. This was first pointed
out by Ref. [335], and observed numerically in Ref. [430]. Past works have nevertheless ob-
served gapless edge modes even at ‘sharp’ edges – specifically, for open boundary conditions,
which can be viewed as a sharp boundary between the system and the trivial phase [131,
335]. In Ref. [430], it was shown that such sharp edge modes arise as a result of unintentional
crystalline symmetries of the Hamiltonians considered, and are not protected against pertur-
bations that break these symmetries. For instance, one such crystalline symmetry, pointed
out in Ref. [299], stabilizes the Hopf invariant to a Z2 invariant in higher band systems. In
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Figure A.2: Quasienergy spectra of the Floquet unitary for the (hS, hF ) = (0, 1) phase
with open boundary conditions, solved via exact diagonalization. Quasienergies are colored
according to their eigenstates’ average position, from left edge (blue) to bulk (black) to right
edge (red). (a) Without any additional perturbation to the edge, gapless edge modes are
observed across both band gaps at both the left and right edges. (b) Adding perturbations
localized at each edge leads to gaps in both edges’ spectra, suggesting that gapless sharp
edge modes are protected by unintentional crystalline symmetries of the model.

numerics, one must therefore be careful to work with only smooth edges, if one is interested
in pure Hopf insulator edge modes and not those of related topological crystalline insulators.

Like the static Hopf invariant, the Floquet Hopf invariant is only non-trivial in two-band
systems. One therefore expects gapless edge modes at sharp terminations of the Floquet
Hopf insulator, as seen in Ref. [207], to only exist via the same ‘unintentional’ crystalline
symmetries that stabilize the Hopf insulator edge modes in non-driven systems. We do
not aim to provide an exhaustive classification of such symmetries, but instead only to
demonstrate one particular case of these edge modes’ instability to generic perturbations, at
the (100) edge of our model. In Fig. A.2(a), we compute the spectrum of the Floquet Hopf
insulator (hS, hF ) = (0, 1) with naive open boundary conditions (i.e. hoppings from sites
within the lattice to sites terminated from it are set to zero, but hoppings remaining within
the lattice are unchanged). We indeed observe gapless edge modes, with linear dispersion,
across both band gaps, and on both the left and right edges of the system. However, as
expected, these edge modes are gapped by adding a perturbation localized to each lattice
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edge, as shown in Fig. A.2(b). This indicates that they are not in correspondence with
the bulk Floquet Hopf insulator phase, and instead must be protected some unintentional
symmetry of the model.

A.6 Details on numerics

Fig. 5.2 and Fig. 5.3

The evolution depicted in Fig. 5.2, and those used the numerics of Fig. 5.3, are calculated
similarly. The evolution consists of five components:

1. For times 0 ≤ t < t1 the quasienergy linearly increases, φ = (t/t1)φm. For the first
half of this 0 ≤ t < t1/2 the eigenvector are in the product state n̂(k, t) = ẑ. For the
second half t1/2 ≤ t < t1 the eigenvectors are smoothly deformed to those of the trivial
insulator described in Ch. 5 at m = 4. This done by multiplying the first component
z1(k, t) of the eigenvector by constant that increases from 0 to 1 from t1/2 to t1, and is
possible while maintaining the eigenvectors normalization because z2(k, t) 6= 0 for all
k in the trivial phase.

2. For times t1 ≤ t < t2, the eigenvectors continue to be described by those in Ch. 5,
but with m varying with time as m(t) = 4 − 2(t − t1)/(t2 − t1). During this the
instantaneous Hopf invariant changes from 0 at m = 4 to 1 at m = 2 through a gap
closing at quasienergy 0, corresponding to a point 0-defect with charge +1. We take
the quasienergy to be

φ =

{
(1− d) + d|z(k, t)|2 (1− d) + d|z(k, t)|2 < φm

φm else
(A.24)

where d ≡ e−(k2
x+k2

x+k2
x+(m−3)2)/w2 is 1 at the gapless point and asymptotically 0. This

describes a gapless region of approximately quadratic dispersion and finite-extent, sur-
rounded by an otherwise flat band with quasienergy φm. We choose width w = 1,
small enough such that the quasienergy is constant with k at the beginning and end
times t1, t2, so as to match the preceding and proceeding evolution.

3. For times t1 + t2 ≤ t < T − t1 + t2 the eigenvectors remain described by Ch. 5 at m = 2,
and the quasienergy increases linearly from φm to π−φm. This has instantaneous Hopf
invariant 1 at all times.

4. For times (T − t2) ≤ t < (T − t1) the process of the second step is replicated, but with
the reversed quasienergy φ→ π− φ and time t→ T − t. This gives a gap closing at π
with charge −1.
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5. For times T−t1 ≤ t the evolution of Fig. 5.2 is constant. For the micromotion operator,
we take the eigenvectors to remain constant (described by Ch. 5 at m = 2), while the
quasienergy linearly decreases from π − φm to 0. This is homotopy equivalent to
the usual micromotion operator Um(k, t) ≡ U(k, t)

(
U(k, T )

)−t/T via the deformation
Um(k, t) ≡ U(k, t)

(
U(k, T )

)−p(t;τ), where the power p(t; τ) varies as

p(t; τ) =

{
0 t < τ

(t− T + τ)/τ t ≥ τ
, (A.25)

which interpolates between the usual micromotion operator at τ = 0 and our micro-
motion operator at τ = t1.

Fig. 5.2 depicts an evolution with parameters t1 = .2T, t2 = .4T, φm = 3π/8. The phase
transition and the smooth deformation were implemented with t1 = .3T, t2 = .35T, φm =
.025π and t1 = .3T, t2 = .35T, φm = .025π, respectively. This evolution has a 0-defect with
charge 1 at time t0 = (t1 + t2)/2 and a π-defect with charge −1 at time tπ = T − (t1 + t2)/2.
A phase transition is naturally found by truncating the evolution at times T (λ) < T . If
the truncation time T (λ) occurs after the time of the π-defect, the system is in the initial
phase (hS, hF ) = (0, 1). However, if the truncation time is before the π-defect, the evolution
consists only of the charge 1 0-defect, and thus is in the (hS, hF ) = (1, 0) phase. The phase
transition between the two is at T (λ) = tπ. For Fig. 5.3, we take T (λ) = T−2λ(T−tπ), which
has a phase transition at λ = 1/2. The smooth deformation is implemented as described in
Ch. 5, with θ(t) chosen to be the piecewise linear ramp

θ(t) =

{
(t/t1)π t < t1

π t ≥ t1
. (A.26)

The integral for the Floquet Hopf invariant is evaluated by summing the integrand on
N4 points in the Floquet Brillouin zone. The points are chosen by first forming an evenly-
spaced N4 grid in the Floquet Brillouin zone, and then randomizing the position of each
point within the width−1/N hypercube surrounding each grid point. The randomization
improves convergence of the integral, and reproduces the non-randomized result in the limit
of large N . The eigenvectors and the phases φ(k, t) obey a number of reflection symmetries
such that the Floquet invariant integrand is invariant under ki → −ki for any ki. This is
used to reduce the domain of the integral to the 0 ≤ ki < π octant of the Brillouin zone.
The N4 grid is shifted by half a discretization in each dimension to avoid over-counting the
contribution of the integration domain’s boundary. At N = 90, the numerical invariants are
within 0.6% of their theoretical values on both sides of the phase transition, and within 1.5%
of the theoretical value throughout the smooth deformation. As expected, the error is seen
to decrease with increasing N .

The defect charges, and the static Hopf invariant, are calculated by evaluating the instan-
taneous Hopf invariants h(Tmid) and h(T ) at two time-slices of the evolution: an intermediate
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time Tmid between the two gapless points, and the final time T . If the 0-defect occurs be-
fore the π-defect, the defect charges follow as h0 = h(Tmid) and hπ = h(T ) − h(Tmid), and
vice versa if the π-defect occurs before the 0-defect. The static invariant is by definition
hS = h(T ). The instantaneous Hopf invariants are numerically calculated similar to the
Floquet Hopf invariant, now on a N3 grid in the (non-Floquet) Brillouin zone.

Fig. 5.4 and Fig. A.2

All spectra are calculated via exact diagonalization of the hybrid real/momentum-space
Floquet unitary Uxx′(ky, kz, T ), which is obtained by time-evolving under the Hamilto-
nian Hx,x′(ky, kz, t). All numerics are done for N = 60 lattice sites in the x-direction.
Time-evolution is computed by repeatedly applying the matrix exp(−iδtHx,x′(ky, kz, t)),
with δt/T = 500 for Fig. 5.4(b) and δt/T = 50 for all other figures. The evolutions for
Fig. 5.4(a,c,d) and Fig. A.2 are generated from the stroboscopic flat-band Hamiltonian con-
struction in Ch. 5. The flat-band Hamiltonians are obtained by normalizing the Hamiltonians
of Ref. [132] with p = q = 1 for h = 1 and p = 2, q = 1 for h = 2. Hoppings are obtained by
Fourier transforming in the x-direction and truncating to a distance of at most 5 lattice sites.
To form the boundary between two such phases for Fig. 5.4(a,c-d), we linearly interpolate
between the two hoppings over a distance of 20 lattice sites in the center of the lattice. For
Fig. 5.4(b), we begin with the stroboscopic evolution for (hS, hF ) = (0, 1), and perform the
deformation of Fig. 5.2 ‘in real space’ over a distance of 20 lattice sites in the center of the
lattice. That is, at each of the sites in the edge region, we use time-dependent hoppings
derived from the time-evolution U(k, t;λ), where λ interpolates from 0 to 1 across the edge
region. In all panels Fig. 5.4, we only plot quasienergies from eigenstates that have an aver-
age x-position outside a region of length 6 bordering either edge. This eliminates the sharp
edge modes studied in Fig. A.2 from the spectra. In Fig. A.2(b), the symmetry-breaking
perturbation is chosen as an x-dependent chemical potential µx1 localized on the two layers
nearest each edge.
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Appendix B

Details on quantum information
scrambling on a trapped ion quantum
processor

In this Appendix we provide additional details on the experiments and numerics presented
in Ch. 7.

B.1 Experimental details
Trapped ion qubits.—We perform the experiment on a quantum computer consisting of a

chain of nine 171Yb+ ions confined in a Paul trap and laser cooled near the motional ground
state. The hyperfine-split 2S1/2 ground level with an energy difference of 12.642821 GHz
provides a pair of qubit states, |0〉 = |0, 0〉 and |1〉 = |1, 0〉 with quantum numbers |F,mF 〉,
that are magnetic field independent to first order. The 1/e-coherence time of this so-called
“atomic clock” qubit is 1.5(5) s in our system, limited by magnetic field noise. Optical
pumping is used to initialize the state of all ions, and the final states are measured collectively
via state-dependent fluorescence detection [356]. Each ion is mapped to a distinct channel of
a photomultiplier tube (PMT) array. The average state detection fidelity is 99.4(1)% for a
single qubit, while a 7-qubit state is typically read out with 92(1)% average fidelity, limited
by channel-to-channel crosstalk. These state detection and measurement (SPAM) errors are
characterized in detail by measuring the state-to-state error matrix.

Gate operations.—Quantum operations are achieved by applying two Raman beams from
a single 355 nm mode-locked laser, which form beat notes near the qubit frequency. The
first Raman beam is a global beam applied to the entire chain, while the second is split into
individual addressing beams to target each ion qubit [126], controlled by a set of Arbitrary
Waveform Generators (AWGs). Single qubit gates are generated by driving resonant Rabi
rotations (R-gates) of defined phase, amplitude, and duration. Single-qubit Z-rotations are
applied efficiently as classical phase advances. Two-qubit gates (XX-gates) are realized by
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Figure B.1: Circuit representation of the scrambling unitary used for the probabilistic tele-
portation scheme [see Eq. (B.2)], consisting of six two-qubit entangling XX-gates and indi-
vidual Z-rotations.

illuminating two ions with beat-note frequencies near the motional sidebands and creating
an effective spin-spin Ising interaction via transient entanglement between the state of two
ions and all modes of motion [330]. To ensure that the motion is left disentangled from the
qubit states at the end of the interaction, we employ a pulse shaping scheme [101, 535]. We
use only the middle seven ions in the chain as qubits, in order to ensure a higher uniformity
in the ion spacing, matching the equally-spaced individual addressing beams. The two edge
ion qubits are neither manipulated nor measured, but their contribution to the collective
motion is included when creating the entangling operations.

Bell state preparation and measurement.—In Fig. 7.3(b), we depict Bell state pairs ini-
tially in the state 1√

2
|00〉+ |11〉. This entangled state is created using the following circuit:

XX(±π
4
)

Rz(±π
2
) (B.1)

The sign of the XX gate depends on the pulse shape solution used for the particular gate,
and is stored in a table in the control software, which then determines the appropriate Z
rotation to create the Bell state. We use additional rotations to create the other Bell states
from this circuit. We measure in the Bell basis by applying a simple CNOT gate followed
by a Hadamard gate, and subsequent measurement of the two qubits.
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B.2 Implementing and optimizing scrambling operators
The scrambling unitary used for the probabilistic teleportation scheme can be represented

in the computational basis by the following matrix:

Ûs =
1

2




−1 0 0 −1 0 −1 −1 0
0 1 −1 0 −1 0 0 1
0 −1 1 0 −1 0 0 1
1 0 0 1 0 −1 −1 0
0 −1 −1 0 1 0 0 1
1 0 0 −1 0 1 −1 0
1 0 0 −1 0 −1 1 0
0 −1 −1 0 −1 0 0 −1




(B.2)

Since this unitary is real, Ûs
∗

= Ûs, simplifying the experimental sequence since Ûd = Ûs
∗

=
Ûs. The unitary fulfills the following set of equations which verify its scrambling property
by showing that it disperses all single-qubit operators into three-qubit operators.

U †(X ⊗ I ⊗ I)U = X ⊗ Z ⊗ Z
U †(I ⊗X ⊗ I)U = Z ⊗X ⊗ Z
U †(I ⊗ I ⊗X)U = Z ⊗ Z ⊗X
U †(Y ⊗ I ⊗ I)U = Y ⊗X ⊗X
U †(I ⊗ Y ⊗ I)U = X ⊗ Y ⊗X
U †(I ⊗ I ⊗ Y )U = X ⊗X ⊗ Y
U †(Z ⊗ I ⊗ I)U = Z ⊗ Y ⊗ Y
U †(I ⊗ Z ⊗ I)U = Y ⊗ Z ⊗ Y
U †(I ⊗ I ⊗ Z)U = Y ⊗ Y ⊗ Z

(B.3)

Here, X,Y,Z, and I are the Pauli operators, and the identity operator, respectively. Ûs is
implemented experimentally using six two-qubit entangling gates (see Fig. B.1).

In the experimental implementation, we take advantage of the following identity to reduce
the number of two-qubit gates needed:

U
=

UT
(B.4)

where the vertical line indicates that the qubits are in an EPR state.
In this way, we can combine the first two XX gates on ions 2 and 3 in Ûs (and similarly

on ions 4 and 5 in Ûd) into two single-qubit X-rotations, as shown in Fig. B.2.
In Fig. 7.2 we vary the amount of scrambling in U parametrized by α. This is achieved

by changing the angles of the Z-rotations depicted in Fig. B.4 according to θ = ±απ
2
. When
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Figure B.2: The experimental sequence used for the probabilistic teleportation scheme. Any
one of the 3 Bell measurements can be used. The scrambling unitary has been simplified
using the identity given in Eq. (B.4).

Figure B.3: Circuit depicting the Bell measurement pairs used in Fig. 7.3(a,b).

α = 0, the XX-gates combine to create the identity matrix, and when α = 1, the unitary
corresponds to the maximally scrambling case shown in Fig B.1. Additional Z-rotations are
applied around the XX-gates to ensure that Ûd = Ûs

∗
. In Fig. 7.3, we measure the delo-

calization of information throughout the seven-qubit system in the presence of a maximally
scrambling unitary Ûs(α = 1). The Bell measurements used are depicted in Fig. B.3 with
the same color scheme.
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Figure B.4: (a) Circuit for the unitary used in Fig. 7.3 as well as (b) the same unitary with
varying degrees of scrambling for the data in Fig. 7.2. The angles of the the Z-rotations are
changed according to θ = ±απ

2
to continuously scan between not scrambling (α = 0) and

maximally scrambling (α = 1).

For the data in Fig. 7.4, we compose the scrambling unitary depicted in Fig. B.5. This
unitary has the following matrix representation in the computational basis:

UCZ =
1

2
√

2




1 1 1 −1 1 −1 −1 −1
1 −1 1 1 1 1 −1 1
1 1 −1 1 1 −1 1 1
−1 1 1 1 −1 −1 −1 1

1 1 1 −1 −1 1 1 1
−1 1 −1 −1 1 1 −1 1
−1 −1 1 −1 1 −1 1 1
−1 1 1 1 1 1 1 −1




(B.5)

We can confirm that this is indeed a maximally scrambling unitary via a set of equations
analogous to Eq. B.3. The optimized circuit used to implement this unitary experimentally
is shown in Fig. B.6. We use a similar circuit to effect the classical scrambling unitary, Ûc,
by implementing only the first three controlled-Z gates.

Lastly, the Grover search operator labeled G in Fig. 7.4 is realized using the following
circuit:

G =
Rz (π) Rx (π) × Rz (π)

Rx (π) ×
(B.6)
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|q1〉 • • H • •

|q2〉 • Z H Z •

|q3〉 Z Z H Z Z

1

Figure B.5: Circuit representation of the scrambling unitary from Eq. (B.5), used for the
data in Fig. 7.4. The breakdown into native gates for the experimental implementation is
shown in Fig. B.6. A reduced circuit, made up of only the first three controlled-Z gates, is
used to create the classical scrambling unitary Ûc.
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Figure B.6: The scrambling unitary from Eq. (B.5) compiled into native gates. This circuit
was used for the measurements in Fig. 7.4.

The SWAP gate (line connecting two X’s) is implemented classically by reassigning qubit
labels.

B.3 Numerical simulations
Theory curves were obtained through numerical simulation of the circuits in Appendix B

using a simple one-parameter coherent error model. To simulate coherent errors, a random
single-(two-)qubit unitary close to the identity was applied following each single-(two-)qubit
gate. Single-qubit rotations about the z-axis were performed classically with negligible ex-
perimental error and were therefore omitted from this procedure. Random single-(two-)qubit
unitary errors were taken as the exponential of a linear combination of the 3 single-(15 two-
)qubit traceless Hermitian matrices, with coefficients sampled from a normal distribution
with mean 0 and standard deviation ε/

√
3 (ε/

√
15). The resulting observables 〈Pψ〉 and

〈Fψ〉 were averaged over N = 10 realizations of random error, and the same random errors
were used for simulation at each experimental parameter. The error strength ε = .184 was
chosen to minimize the sum of squared errors in 〈Pψ〉 and 〈Fψ〉.
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Appendix C

Details on quantum information
scrambling on a qutrit superconducting
quantum processor

In this Appendix we provide additional details on the experiments and numerics presented
in Ch. 7.

C.1 Processor and fabrication details
The processor we use features five fixed-frequency (single junction) transmon qutrits on

a chip with an eight-transmon ring geometry. The readout and coupling resonators, Purcell
filter, transmon capacitors, microwave drive lines and ground plane are composed of niobium,
while the transmon junctions are aluminum with an aluminum oxide barrier (Fig. 8.1).

The processor is fabricated on intrinsic >8000 ohm-cm silicon <100> wafers. Initial
cleaning of the silicon wafer occurs in piranha solution—a mixture of sulfuric acid and
hydrogen peroxide—at 120◦C for 10 minutes, followed by 5:1 buffered oxide etch (BOE) for
30 seconds to remove surface contaminants and native oxides. A 200-nm thick film of niobium
is then sputtered onto the wafer, with deposition pressures optimized to yield a slightly
compressive film. Following this, junctions and all other structures are patterned using 3
rounds of electron-beam lithography. We use MicroChem MMA EL-13 copolymer as a resist,
developing it in a 3:1 mixture of IPA:MIBK (isopropyl alcohol and methyl isobutyl ketone)
at room temperature for 8 minutes. We then etch the niobium with chlorine chemistry in
an inductively coupled reactive ion etcher with about 50 nm overetch into the silicon. After
etching, resist is removed with Microposit 1165 at 80◦C for 60 min. The Josephson junction
fabrication process begins by stripping native Nb and Si oxides with 30 seconds in BOE.
Resist is then spun: we use 500 nm of MMA EL-13 and 150 nm of AllResist AR-P 6200.9,
both baked at 150◦C for 60 and 90 seconds, respectively. We write "Manhattan style"
junction patterns [110, 374] (proximity-effect-corrected with Beamer by Genisys software)
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at 100 keV in a Raith EBPG 5150 using a 200 pA beam current and 200 µm aperture. After
writing, the exposed AR-P is first developed in n-amyl acetate chilled to 0◦C; after this the
AR-P development is halted with 10s immersion in IPA; finally MMA is developed in 3:1
IPA:MIBK for 10 min. We then dry the resulting structure with N2 and descum it with
an 80W, 200 mbar oxygen plasma etch. This etching step is split into 4 separate substeps,
with 90 degree substrate rotations between each substep for improved junction uniformity.
Newly-formed oxides at the bottom of the developed structure are then removed with a
15s dip in BOE. The wafer is then loaded into a Plassys MEB550s evaporator and pumped
overnight before the junction evaporation steps: first, an Al base electrode is evaporated
and the tunnel barrier then formed by thermal oxidiation, introducing a 95%/5% Ar/O mix
into the chamber at 10 mbar for 10 min. A second aluminum electrode is then evaporated
to complete the junction and a third evaporation is necessary to climb the second 250 nm
capacitor step edge. The junction pattern includes a 6 x 8 µm Al wire on top of the Nb
for electrical contact between the junction and capacitor. After liftoff for 2 hours in acetone
at 67◦C, the same resist stack is spun, and 10 x 15 µm rectangles are opened over the
Al/Nb overlap region. The exposed metals are then ion milled and Al is subsequently e-
beam evaporated to ensure a low loss galvanic connection between Nb and Al [140]. More
details on junction fabrication, including the steps leading to higher uniformity, can be found
in [269]. After fabrication, the wafer is diced into 1x1 cm dies; cleaned in Microposit 1165
for 12 hours at 80C; sonicated in DI water, acetone, and IPA; descummed in 100 W oxygen
plasma for 1 min and then wirebonded into a gold plated copper cryopackage on a 300 µm
air gap.

Each transmon is coupled to (i) a linear readout resonator to enable multiplexed disper-
sive measurement, (ii) two coupling resonators to enable entangling interactions with nearest
neighbors, and (iii) a microwave drive line. Readout resonators are loaded so that their ef-
fective linewidth κext ≈ 1 MHz. All readout resonators on the chip are coupled to a common
λ/2 resonator, a Purcell filter with an external Q ≈ 10 [434]. The Purcell filter’s passband
overlaps with all readout resonator frequencies, allowing fast readout; all qutrit frequencies
lie outside the passband, suppressing qutrit relaxation through this channel. Slotline modes
of all structures are suppressed using wirebonds; a wirebond also enables the readout bus to
overlap a coupling resonator.

C.2 Experimental setup
The processor is installed in the 10 mK stage of a BlueFors XLD dilution refrigerator.

Room-temperature and cryogenic electronics for performing control and measurement of the
qutrit chip are shown in Fig. C.2. A Holzworth multi-channel synthesizer generates three
local oscillator tones: a qubit control LO at 4.72 GHz, a readout LO at 6.483 GHz, and a
pump at 7.618 GHz for the traveling-wave parametric amplifier (TWPAs). Qutrit control
pulses are formed by IQ modulating the amplified qubit LO (split six ways) with IF signals
from a Tektronix AWG (sample rate 2.5 GS/s) with frequencies between 0.5 and 1.1 GHz. We
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Figure C.1: Experimental setup described in detail in the Ch. 8.

use both single-channel, hybrid-enabled SSB modulation and high-pass filtering to eliminate
the lower sideband of the pulse, with additional band-pass filtering at room-temperature to
eliminate noise from the AWG itself. Readout signals are generated using two-channel SSB
modulation with IF signals from the same Tektronix AWG. All input signals are further
attenuated in the cryostat.

Readout signals are amplified by the TWPA at 10 mK, high-electron mobility transis-
tor amplifiers (HEMT) at 4K, and further amplification at room-temperature before being
digitized at 1.25 GSa/s and demodulated in software.
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Q1 Q2 Q3 Q4 Q5

Qutrit |0〉 ↔ |1〉 frequency, ω01/2π (GHz) 5.447 5.634 5.776 5.619 5.431
Qutrit |1〉 ↔ |2〉 frequency, ω12/2π (GHz) 5.177 5.368 5.512 5.351 5.160
Readout frequency, ωRO/2π (GHz) 6.384 6.324 6.731 6.673 6.618
Lifetime T |1〉→|0〉1 (µs) 70 49 43 55 63
Lifetime T |2〉→|1〉1 (µs) 38 29 39 32 36
Ramsey decay time T ∗2 , |1〉/|0〉 (µs) 73 13 41 48 20
Ramsey decay time T ∗2 , |2〉/|1〉 (µs) 13 10 16 23 10
Ramsey decay time T ∗2 , |2〉/|0〉 (µs) 16 6 15 26 11
Echo time T2Echo, |1〉/|0〉 (µs) 71 51 46 64 74
Echo time T2Echo, |2〉/|1〉 (µs) 29 22 22 35 32
Echo time T2Echo, |2〉/|0〉 (µs) 39 26 34 45 39
Readout fidelity, |0〉 0.99 0.99 0.97 0.98 0.99
Readout fidelity, |1〉 0.97 0.95 0.94 0.95 0.96
Readout fidelity, |2〉 0.95 0.94 0.92 0.95 0.96
Per-Clifford error, |1〉/|0〉 subspace 3.6e-4 3.9e-4 5.5e-4 2.7e-4 -
Per-Clifford error, |2〉/|1〉 subspace 3.6e-4 6.0e-4 5.0e-4 7.5e-4 -

Table C.1: Measured properties of the five qutrits

C.3 Chip characterization
Transmon parameters are given in Table C.1. The frequencies are extracted using stan-

dard spectroscopy methods. Lifetimes are extracted by fitting decay curves to a single model
with five parameters: two energy-relaxation times (T 1→0

1 and T 2→1
1 ) and a dephasing time

for each basis state. We perform randomized benchmarking to measure pulse errors of single
qubit operations in the different subspaces, shown in the table.

We further measure the coefficients of the cross-Kerr (or ‘ZZ’) interaction by performing
a Ramsey measurement with neighboring qutrits in the |1〉 or |2〉 states. The cross-Kerr
Hamiltonian between neighboring qutrits is

HKerr/~ = α11|11〉 〈11 |+α12| 12〉 〈12 |+α21| 21〉 〈21 |+α22| 22〉 〈22| (C.1)

Table C.2 gives the value of these coefficients. Residual cross-Kerr interaction coefficients
between non-nearest-neighbor transmons were found to be negligible.

The cross-Kerr interaction is the dispersive limit of an exchange interaction between
nearest-neighbor transmons mediated by the coupling resonators, governed by the Hamilto-
nian

Hint/~ = g
(
a†b+ b†a

)
(C.2)
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Q1/Q2 Q2/Q3 Q3/Q4 Q4/Q5

α11 -279 -138 -276 -262
α12 160 158 -631 -495
α21 -528 -335 243 -528
α22 -743 -342 -748 -708

Table C.2: Cross-Kerr interaction coefficients between nearest-neighbor transmons, given in
kilohertz

We measure the value of g on a chip with tunable transmons, but otherwise identical to
the one used in the experiment. Spectroscopy of the avoided crossing reveals an interaction
amplitude g of roughly 3 MHz.

C.4 Coherence of third transmon level
The dominant noise processes affecting transmons tend to worsen for states higher up

the transmon ladder. For our qutrit-based processor there are two salient manifestations of
this:

• Due to bosonic enhancement, amplitude damping (spontaneous emission) decay from
state |2〉 to |1〉 proceeds roughly twice as fast as the decay from |1〉 to |0〉.

• Dephasing due to charge noise, which randomizes the relative phases between the |0〉,
|1〉, and |2〉 states, occurs roughly an order of magnitude faster for each state up the
transmon ladder: in particular, for the |2〉 state relative to the |1〉 state.

As stated in Ch. 8, careful fabrication, microwave engineering, and parameter selection were
required to obtain high coherence in the transmon qutrit. The fabrication and microwave
engineering are detailed in the following section, and served to mitigate the T1 decay. Here
we describe the parameter selection – specifically, the choice of the transmon EJ/EC ratio –
which was chosen to minimize the effect of dephasing.

Transmons are characterized by two parameters: the Josephson energy EJ , and the ca-
pacitive energy EC [258]. Increasing the EJ/EC ratio exponentially decreases the sensitivity
of all transmon eigenstates to charge noise, at the expense of also lowering the transmon’s
anharmonicity. Specifically, the charge dispersion εm of the mth level is given by

εm ≈ (−1)mEC
24m+5

m!

√
2

π

(
EJ

2EC

)m
2

+ 3
4

e−
√

8EJ/EC , (C.3)

while the relative anharmonicity αr is given by

αr ≈ −(8EJ/EC)−1/2. (C.4)
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Typical transmon qubit designs use ratios EJ/EC ≈ 50. We initially used such a ratio, which
resulted in charge dispersion of 102 kHz and <10 kHz of |2〉 and |1〉 states, respectively. How-
ever, with these parameters, charge-parity fluctuations [396] dephase the coherence between
the |2〉 and |1〉 states within 5 µs, making high-fidelity gates impossible to implement. To
mitigate this dephasing, we switched to a design with EJ/EC ≈ 73, which resulted in charge
dispersions of 12 kHz and 261 Hz for the |2〉 and |1〉 states, respectively. This also reduced
the anharmonicity from roughly 300 MHz to roughly 250 MHz.

Crosstalk.—As discussed in Ch. 8, each transmon features a dedicated microwave control
line through which we drive single- and two-qutrit gates. However, we find significant (order
unity compared to intended coupling) crosstalk between the microwave drive lines for each
qutrit. This crosstalk is non-local, not confined to nearest or next-nearest neighbors. When
driving Rabi oscillations on a given qutrit, it produces two unwanted effects:

1. All other qutrits will be off-resonantly Rabi driven. Depending on the relative fre-
quencies between the qutrits, this can either manifest as an unwanted change in a
qutrit’s state populations (if the frequencies are relatively close) or a Stark shift (if the
frequency difference is large compared to the Rabi frequency).

2. Microwave field leaking onto one or more neighboring qutrits will result in an unwanted
cross-resonance interaction, making the desired Rabi oscillation frequency vary with
the state of the neighboring qutrit(s). This effect was anticipated in [394].

We observed no indications of nonlinearity in the cross-talk at the drive powers we used.
That is, for a given drive frequency, the cross-talk can be characterized in terms of a five-
by-five complex-valued matrix C(ω) relating the field amplitudes o(ω) seen by each of the
five qutrits to the input field amplitudes i(ω) on each drive line: o(ω) = C(ω)i(ω). We did
observe a strong frequency-dependence of the cross-talk matrix.

The linearity of the cross-talk enabled us to compensate for it by inverting the matrix
C(ω) at each drive frequency, yielding combinations of microwave drive lines which would
route the drive field to only a single qutrit. The main challenge in this scheme was the
measurement of C(ω). Our strategy was to focus on two drive lines at a time, and find for
each line the relative amplitudes and phases which exactly cancelled the field at the location
of all of the qutrits on our chip—depending on the relative frequencies, we used either a Stark
shift or a Rabi oscillation as a symptom of unwanted microwave field. This measurement
was repeated for each of ten drive frequencies of interest (i.e. the |0〉 ↔ |1〉 and |1〉 ↔ |2〉
transition frequencies of all five qutrits), each pair of lines, and each qutrit on the chip.

Our crosstalk cancellation method is extremely measurement-intensive and was feasible
only because of the relatively few qutrits in this work. On future quantum processors with
tens or hundreds of quantum systems, the number of measurements required for our cancella-
tion scheme would be prohibitively expensive. In addition, the strong frequency dependence
of the cross-talk matrix limits the speed at which one can apply single-qudit pulses in this
manner: for pulses approximately 10 ns in length, we observed cross-talk which we could
not compensate for using our method, likely because of this frequency dependence combined
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with Fourier broadening of the pulses. Going forward, it is thus important to pinpoint the
source of the microwave cross-talk, in order to develop scalable solutions at the hardware
level.

C.5 Qutrit Rotations and gate-set
A convenient set of generators to describe qutrit rotations are the Gell-Mann matrices:

λ1 ≡ s01
x =




0 1 0
1 0 0
0 0 0


 λ2 ≡ s01

y =




0 −i 0
i 0 0
0 0 0


 λ3 ≡ s01

z =




1 0 0
0 −1 0
0 0 0




λ4 ≡ s02
x =




0 0 1
0 0 0
1 0 0


 λ5 ≡ s02

y =




0 0 −i
0 0 0
i 0 0


 λ6 ≡ s12

x =




0 0 0
0 0 1
0 1 0




λ7 ≡ s12
y =




0 0 0
0 0 −i
0 i 0


 λ8 =

1√
3




1 0 0
0 1 0
0 0 −2




They are the generators of the Lie algebra of the special unitary group SU(3) and can be
thought of as the natural extension of Pauli matrices (generators of the Lie algebra of the
SU(2) group). For each qutrit (with basis states |0〉 , |1〉 , |2〉), we calibrate a set of microwave
pulses that resonantly drive the |0〉 ↔ |1〉-transition and a separate set of pulses to address
the |1〉 ↔ |2〉-transition, providing universal control over the qubit subspaces {|0〉 , |1〉}
and {|1〉 , |2〉}. Our microwave control pulses directly perform rotations that correspond to
exponentiating Gell-Mann matrices s01

x , s
01
y , s

01
z , s

12
x , s

12
y . The Z-rotation (s01

z ) is implemented
as a virtual Z gate in software by adjusting the phases of subsequent microwave pulses in
that subspace [324]. We extend this technique to the 12 subspace to also obtain the following
rotation that is not one of the Gell-Mann matrices but that is very useful for single qutrit
control since it is a virtual rotation with negligible error:

s12
z =




0 0 0
0 1 0
0 0 −1


 (C.5)

In principle one could also drive the |0〉 ↔ |2〉-transition to directly implement rotations
corresponding to s02

x , s
02
y . While it would be worthwhile to add these rotations to the avail-

able gate-set to compile circuits with lower depth, these two-photon transitions are more
challenging to address as they require high-power. Luckily, all rotations generated by the
remaining Gell-Mann matrices can be constructed from our available operations, for example

e−i
θ
2
s02
x/y = e−i

π
2
s12
x · e−i θ2 s01

x/y · eiπ2 s12
x (C.6)
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where the right most operator is the first to act on the state, so time goes from right to left.
Similarly, λ8 can be constructed from s01

z and s12
z

We write a rotation in one of these subspaces as θkj = e−i
θ
2
skj , where k = {01, 12} defines

the subspace of the rotation, j = {x, y, z} the rotation axis and θ the rotation angle. As an
example, the two available x-rotations and their corresponding rotation matrices are

θ01
x =

(
cos θ/2 −i sin θ/2 0
−i sin θ/2 cos θ/2 0

0 0 1

)
, θ12
x =

(
1 0 0
0 cos θ/2 −i sin θ/2
0 −i sin θ/2 cos θ/2

)
, (C.7)

This notation, combined with some useful qutrit and experiment specific operations, is
also adopted in circuit diagrams displayed in Ch. 8 and in this document.

Our gate-set consists of all Z-rotations along an arbitrary angle, combined with the
Clifford operations operations in the 01 and 12 subspace :

θkj with θ = {π,−π, π
2
,
−π
2
}, k = {01, 12} and j = {x, y, z}. (C.8)

Three convenient gates to describe qudit-logic, which can be constructed from our uni-
versal gate-set, are the X and Z gates

X |i〉 = |i+ 1 mod d〉 (C.9)

Z |i〉 = ωi |i〉 , (C.10)

where ω = exp(i2π/d).
and the Hadamard gate

H =
1√
d

∑

i,j

ωij|i〉〈j| (C.11)

C.6 Controlled-SUM Gate
In general d-dimensional qudits, two-qudit controlled-SUM and controlled-phase gates

can be defined using the Pauli X and Z gates We have:

U01
CSUM =

d∑

n=1

|n〉〈n| ⊗Xn and UCφ =
d∑

n=1

|n〉〈n| ⊗ Zn (C.12)

Here the superscript 01 indicates that the controlled-SUM is applied with Q0 as the control
qudit and Q1 as the target; such a label is not necessary for UCφ, which is symmetric between
the two qudits. The two gates are equivalent up to a single-qudit Hadamard gate H on the
second qudit:

(I ⊗H†)UCφ(I ⊗H) = U01
CSUM, (C.13)

where the qudit Hadamard gate is defined to transform the Z gate into the X gate under
conjugation. Reversing the order of H and H† yields a controlled-MINUS gate, and changing
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Figure C.2: Four-segment pulse sequence implementing UCφ. Four local π-pulses that effec-
tively permute the eigenstates are interspersed with periods of free evolution TA, TB, TC , TD.
The times depend on the cross-Kerr interaction parameters and are chosen such that the
pulse sequence implements the desired diagonal unitary operation.

which qubit receives the conjugation interchanges the control and target. The entangling
gates UCφ, U01

CSUM, U10
CSUM, U01

CMIN, and U10
CMIN are therefore all equivalent up to local (single-

qudit) operations.
In our system, we directly implement the two-qutrit UCφ gate by interspersing periods of

evolution under the cross-Kerr Hamiltonian (Eq. C.1) with single-qutrit gates. Intuitively,
evolution under the cross-Kerr Hamiltonian imparts phases to the two-qutrit states |11〉,
|12〉, |21〉, and |22〉, with values determined by the coefficients αij. By interspersing this
phase accumulation with single-qutrit pulses exchanging the various states, we can ensure
that each state accumulates exactly the phase required for the controlled-phase gate.

We present two methods for implementing the controlled-phase gate in the manner de-
scribed above. The first uses fewer single-qutrit pulses and is conceptually simpler, but is
not dynamically decoupled from the cross-Kerr interaction with neighboring qutrits. The
second is dynamically decoupled and is the one used in the teleportation experiment.

First method: As depicted in Fig. C.2, here we use four periods of cross-Kerr evolution,
separated by pulses swapping the |1〉 and |2〉 states of a single qutrit. Denoting this swap
pulse as Π12

q , where q is the qutrit number, and evolution under the cross-Kerr Hamiltonian
for a time T as ZZT , the total pulse sequence is

ZZTA · Π12
0 · ZZTB · Π12

1 · ZZTC · Π12
0 · ZZTD · Π12

1 . (C.14)

where the times TA, TB, TC , TD depend on the cross-Kerr interaction parameters αij. For
any choice of times, this operation imparts zero phase to the states |00〉, |01〉, |02〉, |20〉,
|10〉, and non-zero relative phases φ11, φ12, φ21, and φ22 to the other basis states. These
phases are linear combinations of the delay times TA, TB, TC , and TD. The transformation
from delay times to induced phases is full rank (except for pathological values of the cross-
Kerr coefficients), meaning that, given enough total delay time, this method can in principle
generate an arbitrary two-qudit phase gate (the states that receive zero phase above can be
made to gain arbitrary phase using only single-qutrit phase gates). On our particular chip,
the coefficients αij allow us to implement the controlled-phase in this manner in roughly 1.5
µs for qutrit pairs Q1/Q2 and Q3/Q4.
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The drawbacks of this method become apparent when one tries to use it in a multi-qutrit
algorithm. If the two qutrits undergoing the controlled-phase are coupled to other qutrits
via the same cross-Kerr Hamiltonian (as is the case for our chip), the above method will not
work when the other qutrits are in superpositions of basis states, in which case entanglement
between them and the desired qutrits will be generated. The second method addresses this
problem.

Second method: As depicted in Fig. C.3 a, this method uses six equal time periods of
cross-Kerr evolution. These are interspersed with single-qutrit pulses swapping the |0〉/|1〉
and |1〉/|2〉 subspaces, denoted Π12

q and Π01
q , respectively. The total pulse sequence consists

of three repetitions of:
[
ZZT ·

(
Π12

0 ⊗ Π12
1

)
· ZZT ·

(
Π01

0 ⊗ Π01
1

)]
(C.15)

For specificity, we have parameterized this pulse sequence with a single delay time, T ; an
appropriately chosen T realizes the controlled-phase gate. The delay time T is determined
by the values of the cross-Kerr coefficients αij for each pair Q1/Q2 and Q3/Q4, and thus
differs between the pairs; however, in practice, we find that a delay of 192 ns works well for
both.

This pulse sequence constitutes a dynamically-decoupled implementation of the UCφ uni-
tary, as its operation is successful regardless of the states of the neighboring qutrits. The
dynamical decoupling arises because the single-qutrit pulses shuffle each qutrit’s states |0〉,
|1〉, and |2〉 such that an equal amount of time is spent in each state, regardless of the
initial state of either qutrit. This shuffling ‘averages out’ the cross-Kerr interaction with
neighboring qutrits, such that no entanglement is generated.

The particular teleportation algorithm we implement requires applying UCφ on two pairs
of qutrits Q1/Q2 and Q3/Q4. We use this dynamically decoupled pulse sequence for both
pairs, and apply the gates simultaneously to reduce decoherence associated with a longer
total gate time. Naively, the dynamical decoupling effect is weakened by this simultaneity,
since the ‘neighboring qutrits’, with respect to each individual pair, are no longer static.
Fortunately, we verify both theoretically and empirically that we can nevertheless decouple
the unwanted interaction by reversing the order of the Π12 and Π01 gates between the two
pairs (Fig. C.3 b).

C.7 Dynamically-decoupled EPR preparation
We prepare the two intial EPR pairs of the teleportation algorithm using the controlled-π

gate as discussed in Ch. 8. The basic sequence is presented in Fig. 8.3, and serves to prepare
an EPR pair on either Q2/Q3 or Q4/Q5 individually, while all other qutrits are in the ground
state |0〉. Simultaneous EPR pair preparation, as required by the algorithm, necessitates
a more complicated sequence that incorporates dynamical decoupling. This necessity is
demonstrated by Fig. C.4(a-b), which compares the result of individual EPR preparation to
joint EPR preparation without dynamical decoupling. Joint preparation fidelities are much
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Figure C.3: Six-segment pulse sequence implementing UCφ, dynamically-decoupled from
static neighbors. (a) By alternating six periods of free evolution with local permutation
pulses, a diagonal phase gate can be implemented while also protecting the two qutrits
from dephasing and static interactions with neighbors provided that they are static. (b)
To perform two of these gates in parallel and maintain the decoupling, in this case between
qutrit 2 and qutrit 3, the order of local permutations is swapped between pairs: qutrit 1 and
qutrit 2 first are permuted in the |0〉/|1〉 subspace (blue) while the first local operation on
qutrit 3 and 4 is in the |1〉/|2〉 subspace (orange). This effectively decouples qutrit 2 and 3
in addition to performing the desired gates and decoupling qutrit 1 and 4 from their other
neighbors (0 and 5).

lower than those of individual preparation. From the measured density matrices, this loss
seems to be largely due to a decrease in the off-diagonal elements (i.e. the coherences).

To understand the source of this decrease in coherence, we measured the density matrix
of the Q2/Q3 EPR pair while projecting the neighboring qutrit, Q4, into each of its basis
states. Each of the three conditional density matrices we obtained was much purer (i.e.
had much higher coherence) than the unconditional density matrix; however, the phases of
each coherence differed depending on the state of Q4. These measurements suggest that the
source of the decoherence was indeed unwanted entanglement between Q3 and Q4 arising
from the cross-Kerr interaction.

Qutrit State Tomography [56] after each step of the EPR preparation sequence allows
us to pinpoint the portions of the sequence that contribute most strongly to the unwanted
entanglement. The cross-Kerr interaction affects the |2〉 states most strongly, and we find
correspondingly that most of the entanglement occurs after the |2〉 state ofQ3 gets populated.
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a: Individual preparation

b: Simultaneous preparation

c: Simultaneous preparation with dynamical decoupling

Figure C.4: Dynamically-decoupling the EPR pair preparation. (a) Density matrices of
the Q2/Q3 (left, purple) and Q4/Q5 (right, orange) EPR pairs, prepared individually (i.e.
with all other qutrits in the ground state). State fidelities for this dataset are 0.94 ± 0.002
and 0.98 ± 0.002 respectively. (b) Density matrices of the same EPR pairs when prepared
simultaneously without any dynamical decoupling. Fidelites are markedly lower in this case,
0.81 ± 0.002 and 0.82 ± 0.002 respectively for the Q2/Q3 and Q4/Q5 pairs. As discussed
in the text, the loss of fidelity is due to unwanted entanglement arising from the cross-
Kerr interaction between the two EPR pairs. (c) EPR pairs prepared simultaneously using
dynamical decoupling, with fidelities 0.88± 0.002 and 0.92± 0.002 , respectively.
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Figure C.5: Dynamically-decoupled gate sequence. The initial step in joint EPR preparation
is simultaneous preparation of Bell pairs on both pairs of qutrits. Since the cross-Kerr
interaction in the |0〉/|1〉 subspace is relatively weak compared to the interaction time, little
unwanted entanglement occurs during this operation. Following Bell state creation, the
remaining evolution is divided into three equal periods of 125 ns, during which the cross-
resonance interaction completes the creation of the EPR pairs. In between each period, qutrit
X gates applied on Q4 serve to dynamically decouple the unwanted cross-Kerr interaction.

We take advantage of this by only dynamical decoupling the cross-Kerr interaction after this
point. As shown in Fig. C.5, the initial preparation of Bell states (|00〉 + |11〉)/

√
2, which

does not involve the state |2〉, is performed without dynamical decoupling to reduce the error
associated with additional single-qutrit gates.

The mechanism underlying our decoupling sequence is most easily understood by first
considering a simpler problem, of decoupling an unwanted cross-Kerr interaction between two
qutrits during an idling period. This can be accomplished by splitting the idling time into
three equal time periods, and applying single-qutrit X gates to one of the qutrits between
each of the periods. This shuffling of the populations decouples the entangling interaction
into a product of local Z interactions. Using the same principle, we divide the controlled-π
operations in the relevant portion of simultaneous EPR preparation into three equal periods
of 125 ns, and apply qutrit X gates on Q4 in between the periods. This sequence enables
simultaneous EPR pair preparation with fidelities 0.88 ± 0.002 and 0.92 ± 0.002 on Q2/Q3

and Q4/Q5, respectively.
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Appendix D

Details on many-body quantum
teleportation

In this Appendix we provide additional details on many-body quantum teleportation in
the traversable wormhole protocol, discussed in Ch. 9. In particular, we provide: rigorous
lower bounds on the teleportation fidelity from the operator size distribution; a detailed
overview of the connection between the traversable wormhole protocol and the Hayden-
Preskill recovery protocol (the subject of Ch. 7 and 8); expressions for the fidelity of quantum
state teleportation; details on the numerical results of Ch. 9; and many-body quantum
teleportation of fermions.

D.1 Precise bound for the peaked size regime
Here we provide a precise mathematical bound guaranteeing that the teleportation cor-

relator obeys the peaked-size prediction [Eq. (9.33), Section 9.4] when the size distribution is
sufficiently tightly peaked. We apply this bound to two examples where the size distribution
is known exactly: late times in all scrambling systems (Section 9.6), and the large-q SYK
model (Sections 9.7 and 9.8). Notably, in the latter we find that our bound applies only at
infinite temperature, despite the profile of the size distribution (e.g. its ratio of size width to
average size) behaving similarly at all temperatures. The discrepancy arises instead because
the correlator magnitude, (Gβ)p, decreases exponentially in the encoding size p at all finite
temperatures.

Precise bound

As in the Ch. 9, we decompose a time-evolved finite temperature operator into a sum of
Pauli strings:

QA(t)ρ1/2 =
∑

R

cR(t)S (D.1)
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In this basis, for qubit systems the correlator takes the form

CQ = 〈TFD| Q̃†A,r(−t)eigVQA,l(t) |TFD〉
= eig+iπS[QA(t=0)]

∑

R

e−iηdgS[R]/Nc2
R(t)

= eig+iπS[QA(t=0)]
∑

n

eiηdgn/Nf(n)

(D.2)

where again Q̃†A,r = DQ†A,rD
† for the decoding operation D = Y ⊗ . . . ⊗ Y , and we use

〈TFD| Q̃†A,r(−t) = eiπS[QA] 〈EPR|QA,l(t)ρ
1/2 for qubit Pauli operators QA. Here we define

the winding size distribution [71, 350]

f(n) ≡
∑

S:S[R]=n

c2
R(t). (D.3)

At finite temperature, this size wavefunction is distinct from the size distribution:

P (n) ≡
∑

S:S[R]=n

|cR(t)|2, (D.4)

which is a real, normalized probability distribution probed by the one-sided correlator [379]

〈TFD|Q†A,l(t)eigVQA,l(t) |TFD〉 = eig
∑

R

e−iηdgS[R]/N |cR|2(t) =
∑

n

eiηdgn/NP (n). (D.5)

Nevertheless, the size distribution bounds the size wavefunction magnitude via the triangle
inequality:

|f(n)| ≤ P (n), (D.6)

with equality achieved when all Pauli operators of size n contribute the same phase to f(n).
The average size and size variance are easily found from the size distribution as

S =

ˆ ∞
0

dnnP (n), δS2 + S2 =

ˆ ∞
0

dnn2 P (n) (D.7)

where we work in the continuum limit replacing sums over the size by integrals for simplicity.
We now define the asymptotic size width with error ε as the minimal width Wε about the
average size such that

1−
ˆ S+Wε

S−Wε

dnP (n) ≤ ε, (D.8)

i.e. a fraction 1 − ε of the size distribution’s support is contained in the interval I =
[S − Wε,S + Wε] (the lower limit of the integral should be bounded by zero; for simpler
notation we’ll deal with this by instead defining P (n) = f(n) = 0 for n < 0). We can now
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separate the correlator into two pieces, one arising from sizes in the interval I and the other
from the interval’s complement Ī = [−∞,S −Wε] ∪ [S +Wε,∞]:

CQ =

ˆ
I

dn f(n)eiηdgn/N +R (D.9)

where the remainder R =
´
Ī
dn f(n)eiηdgn/N is strictly smaller than ε:

|R| =
∣∣∣∣
ˆ
Ī

dn f(n)eiηdgn/N
∣∣∣∣

≤
ˆ
Ī

dn
∣∣f(n)eiηdgn/N

∣∣

≤
ˆ
Ī

dn |P (n)|

≤ ε

(D.10)

Peaked size teleportation occurs in the regime where gWε/N � 1. In this limit, we can
expand

eiηdgn/N = eiηdgS/N [1 + E(n)] (D.11)

where the deviation for n ∈ I is bounded by

|E(n)| ≤ maxn∈I

∣∣∣∣1− eiηdg(n−S)/N

∣∣∣∣ =

∣∣∣∣ sin(ηdgWε/N)

∣∣∣∣, (D.12)

which holds as long as gWε/N ≤ π/2. We then have

CQ =

ˆ
I

dn f(n)eiηdgS/N [1 + E(n)] +R

= eiηdgS/NGβ(QA) +R +R′ +R′′
(D.13)

where Gβ(QA) =
´∞

0
dn f(n) = tr(Q†Aρ

1/2QAρ
1/2) is the imaginary time two-point function,

and the error R′ = eigS/N
´
I
dn f(n)E(n) is bounded by

|R′| =
∣∣∣∣
ˆ
I

dn f(n)E(n)

∣∣∣∣

≤
ˆ
I

dn |f(n)||E(n)|

≤
∣∣∣∣ sin(ηdgWε/N)

∣∣∣∣
ˆ
I

dn |f(n)|

≤
∣∣∣∣ sin(ηdgWε/N)

∣∣∣∣

(D.14)
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and the second error R′′ = Gβ(QA)−
´
I
dn f(n) is bounded by

|R′′| =
∣∣∣∣Gβ(QA)−

ˆ
I

dn f(n)

∣∣∣∣ =

∣∣∣∣
ˆ
Ī

dn f(n)

∣∣∣∣ ≤ ε. (D.15)

We therefore conclude that whenever ηdgWε/N ≤ π/2, the deviation of CQ from the peaked
size value is controlled by the upper bound

∣∣CQ − eiηdgS/NGβ(QA)
∣∣ ≤ 2ε+

∣∣∣∣ sin(ηdgWε/N)

∣∣∣∣ ≡ B. (D.16)

Practically speaking, the lowest value of g for successful peaked-size teleportation is ηdgS/N =
π. Therefore, for a given size distribution, we can guarantee that peaked-size teleportation is
possible if we find ε such that B � Gβ(QA), i.e. the error in the correlator is small compared
to the correlator magnitude.

Application to late times

We illustrate this with some examples, in the few cases where we can exactly solve for
operators’ full size distribution. First, consider a thermalized system at late times, which we
will approximate by setting the size distribution of QA(t) to be that of a random Pauli string.
For large n,N is a Gaussian distribution with mean S = 3N/4 and variance δS2 = 3N/16:

P (n) = (3/4)n(1/4)N−n ≈ 1√
2πδS

exp
(
−(n− S)2/2δS2

)
. (D.17)

We therefore have

1−
ˆ S+Wε

S−Wε

dnP (n) = 2 erfc
(

Wε√
2δS

)
= ε. (D.18)

The error function decays exponentially in its argument, so even for exponentially small ε
we require only Wε = AδS for some constant A ∼ O(1). Setting g equal to its minimal
value, ηdgS/N = π, we have both ε� 1 and

∣∣ sin(ηdgWε/N)
∣∣ ≈ AδS/S ∼ 1/

√
N � 1, and

so peaked size teleportation is guaranteed.

Application to the large-q SYK model

We can also use this method to guarantee peaked-size teleportation in the large-q SYK
model at infinite temperature.

We begin by writing down the size distribution for the large-q SYK model in detail,
quoting the results of Ref. [379]. The generating function for the size distribution is:

∑

n

P (n)e−µn =
e−µp

(1 + (1− e−µq) sinh2 Jt)2p/q
=
∑

n

∆n

n!
xn(1− x)∆e−µ(qn+p) (D.19)
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where we define

∆n ≡
Γ(∆ + n)

Γ(∆)
, x ≡ sinh2 Jt

1 + sinh2 Jt
, ∆ ≡ 2p/q. (D.20)

From this, we can identify the size distribution:

P (qn+ p) =
∆n

n!
xn(1− x)∆. (D.21)

The size and size width are

S = n =
∑

n

n
∆n

n!
xn(1− x)∆ =

∆x

1− x, δS =
√
n2 − n2 =

√
∆x

1− x. (D.22)

Therefore, the ratio of size width to average size is

δS/S =

√
x

∆

1

1 + x
, (D.23)

which approaches zero when p→∞ (∆→∞).
To apply the upper bound Eq. (D.16), we need to integrate (i.e. sum) the tail of the

size distribution in order to compute its asymptotic width [Eq. (D.8)]. In this example, the
discrete tail can be summed explicitly and we define

I(k) ≡
∞∑

n=k

P (qk + p) =
∞∑

n=k

∆n

n!
xn(1− x)∆ =

Bx(k,∆)

B(k,∆)
(D.24)

where Bx(a, b) and B(a, b) are incomplete and ordinary beta function respectively. Let us
take k = n̄(1± ζ) for some small ζ representing the asymptotic width

Wε = n̄ζq. (D.25)

This width corresponds to an error

ε = 1− I(n̄(1− ζ)) + I(n̄(1 + ζ)). (D.26)

Taking gS/N = π, the upper bound is

B = 2[1− I(n̄(1− ζ)) + I(n̄(1 + ζ))] + sin
2πζx

1 + x

= 2

(
1−

Bx(
∆x(1−ζ)

1−x ,∆)

B(∆x(1−ζ)
1−x ,∆)

+
Bx(

∆x(1+ζ)
1−x ,∆)

B(∆x(1+ζ)
1−x ,∆)

)
+ sin

2πζx

1 + x
. (D.27)

At infinite temperature Gβ(QA) = 1, we need to show that the minimum of B tends to zero
when ∆→∞.
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For early time sinh Jt ∼ O(1), 1− x is an order 1 number, and we take ∆→∞ limit to
get

Bx(
∆x(1−ζ)

1−x ,∆)

B(∆x(1−ζ)
1−x ,∆)

→ 1,
Bx(

∆x(1+ζ)
1−x ,∆)

B(∆x(1+ζ)
1−x ,∆)

→ 0 (D.28)

The bound becomes
B → sin

2πζx

1 + x
(D.29)

This basically means that the integrated probability between n̄(1− ζ) and n̄(1 + ζ) for any
finite ζ is 1. One can thus take ζ → 0 with speed slower than 1/∆ → 0 in order to have
the bound vanish. This computation applies for x ∈ (0, 1), which means that the peaked
size always holds for early time. This is physically reasonable as the operator has not yet
been scrambled extensively. However, since the size is small at such early times, in order for
teleportation to work we must choose g ∼ N .

For intermediate times, such that sinh2 Jt ∼ N and ∆ � N ∼ 1/(1 − x), we must take
the x→ 1 limit first. Using the fact that

Bx(
∆x(1−ζ)

1−x ,∆)

B(∆x(1−ζ)
1−x ,∆)

= 1−
(1− x)∆x

∆x(1−ζ)
1−x Γ(∆(1−xζ)

1−x )

Γ(∆x(1−ζ)
1−x )Γ(1 + ∆)

F (1,
∆(1− xζ)

1− x ; ∆ + 1; 1− x) (D.30)

where F is Gauss hypergeometric function, in x → 1 limit the right portion of Eq. (D.30)
tends to

F (1,
∆(1− xζ)

1− x ; ∆ + 1; 1− x)→

F1(1; ∆ + 1; ∆(1− ζ)) = ∆1−∆e∆(1−ζ)(1− ζ)−∆(Γ(∆)− Γ(∆,∆(1− ζ)))

(D.31)

where Γ(x, a) is incomplete gamma function. Meanwhile, the left portion of the second term
of Eq. (D.30) gives

(1− x)∆x
∆x(1−ζ)

1−x Γ(∆(1−xζ)
1−x )

Γ(∆x(1−ζ)
1−x )Γ(1 + ∆)

→ ∆∆(1− ζ)∆e−∆(1−ζ)

Γ(1 + ∆)
(D.32)

under x→ 1. Combining the two, we have

lim
x→1

Bx(
∆x(1−ζ)

1−x ,∆)

B(∆x(1−ζ)
1−x ,∆)

=
Γ(∆,∆(1− ζ))

Γ(∆)
. (D.33)

It follows that the upper bound is

B = 2

(
1− Γ(∆,∆(1− ζ))

Γ(∆)
+

Γ(∆,∆(1 + ζ))

Γ(∆)

)
+ sin πζ (D.34)
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This function has a unique minimum for ζ ∈ [0, 1/2] and this minimum decreases as ∆
increases. Taking derivative with respect to ζ, we get

∂ζB = π cos πζ − 2∆∆

Γ(∆)

[
(1 + ζ)∆−1e−∆(1+ζ) + (1− ζ)∆−1e−∆(1−ζ)]

→ π cosπζ −
√

2∆

π

[
(1 + ζ)∆−1e−∆ζ + (1− ζ)∆−1e∆ζ

]
(D.35)

where in the second step we have taken large ∆ limit. Solving ∂ζB = 0 in this limit, we find
the minimum at

ζ ≈
√

1

∆
log

8∆

π3
→ 0 (D.36)

which in turn gives the limit value of B to be zero. This proves that at infinite temperature,
teleportation exactly matches the peaked-size prediction for both early and intermediate
times. For late times t � 1

2J
logN the size distribution above breaks down, as can be seen

since P (n) is dominated by some n > N , which is unphysical since N is the total number of
fermions.

In contrast, we can also show that the above bound does not apply at low temperatures
for large-q SYK, as expected from Ch. 9. At low temperature, the upper bound B needs
to be much smaller than the two-sided correlation function Gβ(QA) ∼ (βJ)−2∆ in order to
guarantee peaked-size teleportation. The low temperature size distribution is essentially the
same as at infinite temperature, requiring only the replacement [379]:

x→ sinh2 πt/β

(π/βJ)2 + sinh2 πt/β
∈ [0, 1] (D.37)

and adding e−µNδβ to the distribution, which shifts the initial size by a constant amount Nδβ
(accounting for the size of the thermal density matrix [379]). Following a similar computation
to above, one can show that B still asymptotes to zero, but now with a slower speed than
Gβ(QA). For example, in the early time and large ∆ limits, B ∼ exp(−∆C(x, ζ))/

√
∆ where

C(x, ζ) is order 1, while Gβ(QA) ∼ exp(−2∆ log(βJ)) is exponentially smaller for large βJ .
Therefore, the upper bound B fails to guarantee peaked-size teleportation. This is consistent
with the fact that the correlation function CQ(t) in Eq. (9.87) in low temperature is far from
being a pure phase.

D.2 The Hayden-Preskill recovery protocol
Here we review the HPR protocol following Refs. [517, 518] and derive its equivalence

to the TW protocol in the case of infinite temperature teleportation of a single qubit (in-
troduced in Section 9.6). This single-qubit variant of the HPR protocol was experimentally
implemented in Ref. [274], although an explicit derivation of its quantum circuit was not
provided.
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There are two variants of the HPR protocol: a probabilistic variant, which teleports
successfully only with some finite probability, and a deterministic variant, which uses an
analog of Grover’s search algorithm and succeeds with unit probability, but involves a more
complex decoding operation. Both protocols take the general form,

(D.38)

shown for teleportation of a quantum state |ψ〉 (the generalization to EPR teleportation is
straightforward). We now outline the interpretation of each aspect of the above protocol in
the context of the Hayden-Preskill thought experiment. For consistency with past literature,
we have used different subsystem labels than introduced in Ch. 9—most notably, subsystem
D now denotes the coupled qubits, and subsystem C denotes its complement. Subsystem B
represents an eternal black hole that is maximally entangled with its past Hawking radiation
subsystem B’, as represented by a dimension dB = d′B EPR pair between the two subsystems.
Subsystem A contains the initial state |ψ〉 of an observer Alice’s diary. Upon falling into
the black hole, the diary’s information is scrambled by the unitary time-evolution U acting
on the left subsystem l ≡ AB = CD. Far from destroying the information of Alice’s diary,
scrambling by U in fact allows an outside observer Bob to decode the diary if he has access to
any few qubits of new Hawking radiation D, along with the past Hawking radiation B’ and
an ancillary EPR pair between A’ and R’, where d′A = dA. This decoding relies on OTOCs
between subsystem A and D being minimal, a general feature of thermalizing time-evolution
after the scrambling time. We describe each of the decoding protocols of Ref. [517] in detail
below.

Probabilistic decoding: intuition

Although our main focus will be on the deterministic teleportation protocol, we review
the probabilistic protocol here for completeness, and as a convenient platform to introduce
the intuition connecting operator spreading to the success of teleportation. The decoding
operation of the probabilistic HPR protocol consists of projection onto EPR pairs on a
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subsystems D, D’:

(D.39)

Perfect teleportation requires dD ≥ dA, and succeeds with probability 1/d2
A when U is

maximal scrambling. The non-unity success probability signifies that the decoding protocol
becomes exponentially more complex with the number of qubits to be teleported.

To provide intuition for the protocol’s success, we analyze the action of EPR projection
on the initial states QA,l(t) |EPR〉. We restrict to infinite temperature, i.e. EPR pairs in
place of the TFD state, in keeping with the original introduction of the HPR protocol in
Ref. [517]. We write QA(t) as a sum of Pauli strings S on the entire system:

QA(t) =
∑

R

cR(t)S. (D.40)

Denoting the EPR projector on subsystems D, D’ as PEPR,D and writing each Pauli string
as a tensor product R = RC ⊗RD of Paulis on subsystems D and C, we have

PEPR,DRl |EPR〉 = δRD,1Rl |EPR〉 , (D.41)

since 〈EPRD,D′|SD,l |EPRD,D′〉 = trD(RD)/dD = δRD,1. Perfect teleportation is achieved
when all input Pauli operators on subsystem A have spread to subsystem D, such that every
Pauli string S composing QA(t) has non-identity support on subsystem D, for all non-identity
QA. In this situation, the EPR projector has eigenvalue 1 on the thermofield double state
and eigenvalue 0 in all perturbed states:

PEPR,D |EPR〉 = |EPR〉 , PEPR,DQA,l(t) |EPR〉 = 0. (D.42)

However, this is no different than projecting onto EPR pairs between subsystems A and A’
before time-evolution by UlU∗r ! This projection would, of course, have an action

PEPR |EPR〉 = |EPR〉 , PEPRQA,l |EPR〉 = tr(QA) = 0. (D.43)
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Expressed diagrammatically, this equivalence is:

(D.44)

for all initial states ψ. However, performing EPR projection between subsystems A, A’ before
time-evolution is precisely the standard quantum teleportation protocol, applied to subsys-
tems A, A’, and R’. The scrambling dynamics of U allow one to perform this teleportation
via coupling any subsystem D of the system’s qubits.

Deterministic decoding

After scrambling, the probability of successful EPR projection on subsystem D, O(1/d2
A),

is exponentially small in the size of subsystem A, the state to be teleported. In contrast
to standard teleportation, non-successful EPR projection (i.e. projection onto a different
maximally entangled state, not |EPRD,D′〉) cannot be corrected via an additional decoding
operation. This exponential decrease in success probability is overcome in the deterministic
HPR protocol, which uses an analog of Grover’s search algorithm to search for an EPR
pair between subsystems D, D’. The protocol requires O(dA) steps for completion, again
exponential in the number of qubits to be teleported (albeit with half the exponent of the
probabilistic decoding).

Grover’s search algorithm involves two operations: the first applies a minus sign to the
state one is searching for, and the second applies a minus sign to the system’s initial state.
We will search for an EPR pair on subsystem D, so for the first step we apply WD ≡
1− 2PEPR,D = eiπPEPR,D :

(D.45)

In the second step, we flip the sign of the initial state (the time-evolved EPR pair between
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A’ and the reference qubit R’) by applying W̃A ≡ U∗WAU
T :

(D.46)

where WA = 1− 2PEPR,A acts on A’, R’ to apply a minus sign if the two are in an EPR pair.
The entire Grover protocol is identical to the probabilistic protocol, but with EPR mea-

surement replaced by repeated applications of the two above steps until the EPR pair is
found. Displaying, for instance, only the first two iterations:

(D.47)

After O(dA) iterations, the state |ψ〉 is found on subsystem R’.
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Single qubit deterministic decoding

Two important simplifications occur to the deterministic HPR protocol in the case of
single qubit teleportation, dA = 2. The first is that the Grover operator WA is equal to a
SWAP operator composed with single-qubit Y operations. To see this, we expand WA in
terms of Pauli operators:

WA = 1− 2PEPR,A

= 1− 2

d2
A

∑

PA

PA,l P
∗
A,r

=
1

2
− 1

2
XlXr +

1

2
YlYr −

1

2
ZlZr

=
1

2
Yl [1 +XlXr + YlYr + ZlZr]Yl

= Yl (SWAP)Yl,

= YlYr (SWAP)

(D.48)

where in the final equality we used YrSWAP = SWAPYl, and in the second equality we used
the Pauli decomposition for the swap operator between two dA-dimensional boson systems:

SWAP =
1

dA

∑

PA

PA,lP
†
A,r. (D.49)

Expressed graphically, we have

(D.50)

The second simplification is that Grover’s search for an EPR pair D, D’ succeeds after only
one step; this is a general result for Grover’s search in a d2

D = 4-dimensional database [353].
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It implies that the Grover protocol can teleport one qubit through the circuit:

(D.51)

If we only care about the fidelity of the teleported state, we can neglect the final application
of U∗. Performing the SWAP gate explicitly, and neglecting the action of the final Y operator
on R’, we have:

(D.52)

This exact circuit has been performed in trapped ion experiment [274]. We now make a
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small cosmetic adjustment, and move the reference qubit R’ from the far right to the far left,

(D.53)

Sliding U∗ to the left side using Eq. (9.9), we have:

(D.54)

This is the same circuit appearing the teleportation protocol of Ref. [71, 350], modulo the
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precise form of the coupling. In the case of EPR teleportation, we would instead have

(D.55)

where subsystems R’ and A’ are in an EPR pair when teleportation is successful. This is the
circuit appearing in Ref. [159], modulo the form of the coupling as well as the Y decoding
operation. The lack of a Y decoding operation for fermionic teleportation is discussed in
Section D.7.

D.3 State teleportation fidelity
In Section 9.5, we provided a detailed derivation of the teleportation fidelity’s relation to

the teleportation correlators in the case where one teleports one half of an EPR pair. This
allowed us to lower bound the fidelity in Eq. (9.43) and calculate the peaked-size fidelity in
Eq. (9.45). Here we do the same for teleportation of a quantum state, as shown in Fig. 12.1(a)
and outlined in Section 9.2. Our results provide a rigorous foundation for the arguments of
Section 9.3, in particular the insertion of the state 〈φ| and the subsequent replacement of
|ψ〉〈φ| with a Pauli operator QA.

We begin with the insertion of 〈φ| into the protocol Eq. (9.17). We do so by inserting
the resolution of the identity 1

dA

∑
|φ〉 |φ〉〈φ| = 1 into the ancillary qubit leg of the diagram
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for the state teleportation fidelity. We find:

(D.56)

Plugging Eq. (9.19) into this diagram provides unit teleportation fidelity, as described in
Ch. 9. When teleportation is successful each of the dA terms of the sum must succeed
individually, so the right input state |φ〉 will not affect the success of the teleportation.

As with EPR distillation [Eq. (9.41)], we can relate the state teleportation fidelity to
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correlators of Pauli operators by decomposing the SWAP operator. Diagramatically,

, (D.57)

and in equation form,

Fψ =
1

d2
A

∑

P1,P2

〈ψ|P2P
†
1 |ψ〉 · 〈TFD|P †2,l(t)e−igV |ψ〉〈ψ|r(−t) eigV P1,l(t) |TFD〉 . (D.58)

When the correlators are maximal with phases eiθP , i.e. when

eigV P1,l(t) |TFD〉 = eiθPP1,r(−t) |TFD〉 , (D.59)

we can simplify this expression as

Fψ ≈
1

d2
A

∑

P1,P2

〈ψ|P2P
†
1 |ψ〉 · 〈TFD|P †2,r(−t) |ψ〉〈ψ|r(−t) P1,r(−t) |TFD〉

=
1

d2
A

∑

P1,P2

ei(θP1
−θP2

) · 〈ψ|P2P
†
1 |ψ〉 · tr

(
ρP †2 |ψ〉〈ψ|P1

)

=
1

d2
A

∑

P1,P2

ei(θP1
−θP2

) · tr
(
P †1 |ψ〉〈ψ|P2

)
· tr
(
ρP †2 |ψ〉〈ψ|P1

)
.

(D.60)
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As expected, when the phases eiθP are the same for all operators, this gives unit fidelity:

Fψ =
1

d2
A

∑

P1,P2

tr(P †1 |ψ〉〈ψ|P2) · tr(ρP †2 |ψ〉〈ψ|P1)

=
1

dA

∑

P1

tr(P †1 |ψ〉〈ψ| |ψ〉〈ψ|P1ρ)

= tr(|ψ〉〈ψ|)tr(ρ)

= 1,

(D.61)

using properties of Pauli operators as a 1-design [540]. Differing phases eiθP cause the terms
in the sum to interfere with each other, giving lower fidelity. At finite temperature, the
fidelity of peaked-size teleportation is again limited. For instance, if |ψ〉 is a single-qubit
eigenstate of the Pauli Z operator, we have:

FEPR =
1

22

∑

P1,P2

〈ψ|P2P
†
1 |ψ〉 · 〈TFD|P †2,l(t)e−igV [Y |ψ〉〈ψ|Y ]r(−t) eigV P1,l(t) |TFD〉

=
1

22

∑

P1,P2

〈ψ|P2P
†
1 |ψ〉 · tr(|ψ〉〈ψ| ρ1/2P †2P1ρ

1/2)

=
∑

P

〈ψ|P † |ψ〉 · tr(|ψ〉〈ψ| ρ1/2Pρ1/2)

= 2tr(|ψ〉〈ψ| ρ1/2 |ψ〉〈ψ| ρ1/2)

≈ 1

2
tr((1+ Z) ρ1/2(1+ Z)ρ1/2)

≈ 1

2
+

1

2
G(t′ − t+ iβ/2) + 〈Z〉β ,

(D.62)

where 〈Z〉β = tr(Zρ), which averages to zero for different initial states |ψ〉.

D.4 Rydberg numerical simulations
For the numerical results shown in Fig. 9.7 and 9.8, we simulate the full TW protocol with

time evolution generated by the analog Rydberg Hamiltonian [Eq. (9.105)]. In particular, we
implement the one-sided version of state teleportation, which is obtained by replacing the
EPR measurement in Fig. 9.6(b) with a measurement of a two-qubit state |ψ〉 ⊗ |ψ∗〉. The
many-body unitary corresponds to U = e−iHt, where H is given in Eq. (9.105) with Ωi = .9,
∆i = −1.5, J0 = 1 and open boundary conditions. The teleported state |ψ〉 is inserted in the
middle qubit, and the remaining K = N − 1 qubits serve as ‘measured’ qubits, with Ôi = Ẑi
(see Section 9.9).

More explicitly, the numerical procedure is given as follows: (i) begin in a random initial
state, |o1 · · · oN〉; (ii) evolve forward for time t under the Rydberg Hamiltonian; (iii) apply
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the operator |φ〉〈ψ| onto the middle qubit; (iv) evolve backward in time, apply V̂i = eigoiẐi/K

to each of the K = N − 1 ‘measured’ qubits (where oi is determined by the initial state),
and evolve forward again; (v) measure the projector |ψ〉〈ψ| on the middle qubit. We repeat
this procedure for |φ〉 ∈ {|0〉 , |1〉} [see Eq. (D.57)] and starting from ∼ 100 random initial
states. Moreover, to compute the average state fidelity, we average |ψ〉 over all single-
qubit states in a 2-design [274], i.e. |ψ〉 ∈ {|0〉 , |1〉 , 1√

2
(|0〉 ± |1〉), 1√

2
(|0〉 ± i |1〉}). Lastly,

we note that the time evolution is implemented with Krylov subspace methods, an iterative
technique that is amenable to parallelization and is more computationally efficient than exact
diagonalization [1, 257].

D.5 Random unitary circuit numerics
In this section, we provide additional details and numerical data from our random unitary

circuit simulations (Section 9.7 B, C).

Algorithm

Our goal for the RUC simulations is to compute the Haar-averaged EPR fidelity and
operator size distribution for the circuit layouts shown in Fig. 9.2. Crucially, the relevant
diagrams for computing these quantities—Eq. (9.41) for the EPR fidelity, and Eq. (9.32) for
the operator size distribution—contain at most three copies of U and U †. Together with the
fact that Clifford unitaries form a 3-designs for qubits, this implies that can compute the
averaged quantities by replacing each Haar-random gate with a random Clifford gate [271,
484, 534]. This dramatic simplification has been exploited in prior studies of operator growth
in random unitary circuits [340, 476]; here, we adapt these same techniques for computing
the full size distribution and the teleportation fidelity.

In more detail, our algorithm consists of the following three ingredients. First, following
a standard approach [3, 340], we represent an initial n-qubit Pauli operator, Q, as a binary
string v = x1x2 · · ·xnz1z2 · · · zn of length 2n:

Q =
n∏

i=1

Qi(xi, zi) (D.63)

where Qi(0, 0) = Ii, Qi(1, 0) = Xi, Qi(0, 1) = Zi, and Qi(1, 1) = Yi denote individual Pauli
operators within the Pauli string. For example, the operator 1⊗1⊗Z⊗1⊗1 is represented
as x = 00000 and z = 00100. Normally, one would also keep track of the overall phase of Q,
but for our purposes the phase will be irrelevant and is dropped in the above notation.

Second, we evolve Q under a random Clifford unitary U to obtain Q(t) = UQU †. We
consider the circuits shown in Fig. 9.2, which are composed of random 2-qubit Clifford
unitaries laid out in a “brick-layer” fashion. Each of the 2-qubit unitaries is sampled uniformly
from the set of 2-qubit Clifford unitaries. While an algorithm exists to perform this sampling
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directly [291], in practice we find it more convenient to pre-compute and enumerate the entire
2-qubit Clifford set (which consists of 11520 distinct unitaries)1. In the binary notation, each
2-qubit Clifford unitary corresponds to a map which acts on the relevant components v, i.e. a
unitary with support on the jth and kth qubits updates the values of (xj, zj, xk, zk). The
time complexity of applying the full circuit thus scales linearly with the number of 2-qubit
gates and does not otherwise depend on the number of qubits n. As a reference point,
simulating a 0D circuit until the scrambling time with 108 qubits for a single realization
takes approximately one day on a standard single-core processor.

Third, we compute the average operator size distribution and EPR fidelity of the time-
evolved operators. For the former, we simply count the size, i.e. number of non-identity
terms, of a time-evolved operator Q(t) for a single circuit realization and determine the
distribution of sizes with respect to ∼ 103 circuit realizations. Depending on the simulation,
we either initialize Q with support on a single site (i.e. p=1) or as a p-body operator. In
either case, the specific terms in Q (e.g. whether each site is initialized as X, Y , or Z) is
arbitrary since the averaged quantities are basis independent.

Computing the averaged EPR fidelity requires an additional average over the initial
operators. In particular, for a single circuit realization U , we compute the EPR fidelity
using [Eq. (9.45)]:

FEPR =

∣∣∣∣
1

d2
A

∑

QA

eiθQA

∣∣∣∣
2

(D.64)

where
θQA = ηdgSK [UQAU

†]/K + πS[QA]. (D.65)

and ηd ≡ 1/(1−1/d2), as defined in Section 9.4. Note that the first term in θQA corresponds to
the phase applied by the coupling, while the second term accounts for minus signs associated
with transposition and decoding (see Section 9.7). The sum in Eq. (D.64) is over the complete
basis of Pauli operators in subsystem A. For single-qubit teleportation, this consists of three
non-trivial Pauli operators and the identity (for which θ = 0), and the sum can be performed
explicitly. However, for teleporting many qubits, the number of terms quickly becomes
intractable, and we instead approximate the sum by sampling QA (e.g. ∼ 100 randomly
selected operators). To compute the average EPR fidelity, we repeat this procedure for ∼ 100
realizations of U . Finally, we note that the coupling strength g enters the fidelity calculation
in a computationally efficient manner; in particular, upon determining the distribution of
sizes for a particular circuit realization, we can compute the teleportation fidelity for arbitrary
values of g “offline” with no additional simulation cost.

Extended data for 1D and 2D RUCs

Size distribution— The average size and size width for time-evolved operators in 1D and
2D for various system sizes are shown in Fig. D.1. In each case, we apply periodic boundary

1We are grateful to Maxwell Block for sharing code to generate the full set of 2-qubit Clifford unitaries.
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Figure D.1: Extended data for average operator size and size width in 1D (a) and 2D (b)
RUCs. The average size grows ballistically ∼ td (dashed line) and saturates at tscr ∼ L ∼
N1/d. The size width matches the predictions from the KPZ universality class (dashed lines)
and allows us to extract the prefactors in Eq. (9.57) and (9.58). In particular, we determine
αbulk and βbulk from the saturation values (light gray), and αboundary and βboundary from the
initial growth rate (dark gray).

conditions and begin with a single-qubit operator. These results match the functional forms
predicted by the KPZ universality class [Eq. (9.57) and (9.58)] and allow us to extract the
growth parameters {αbulk, αboundary, βbulk, βboundary} = {0.66, 0.70, 1.2, 4.5}.

Multiple qubits—In Fig. D.2, we present numerical evidence to support our claim that
multiple qubits can be teleported in ≥ 1D short-range models if their operator light cones
are non-overlapping (Section 9.7). In particular, we simulate the teleportation of n = 5
qubits that are initially evenly spaced in a 1D RUC with periodic boundary conditions. At
early times (t < 1300, Region I), we confirm that high-fidelity teleportation is possible for a
wide range of coupling strengths, and by measuring the average operator size we infer that
during this time the operator light cones have not overlapped. In contrast, after the light
cones have overlapped, we generally observe a large suppression in the teleportation fidelity.

Interestingly, there is one noticeable exception to this reasoning: When only adjacent
light cones have overlapped (i.e. 1300 < t < 2600, Region II), high-fidelity teleportation
can still occur for specific values of g. This situation corresponds to when the multi-
qubit size is a multiple of 2πK/ηdg off from the size addition value, e.g. S[Q1(t)Q2(t)] =
S[Q1(t)] + S[Q1(t)] − 2πm(K/ηdg), where m is an integer value. Therefore, strictly speak-
ing, it is possible to satisfy the conditions for many-body teleportation without size addition;
nevertheless, it is a non-generic effect that requires finely tuned values of g and evenly spaced
input qubits.
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Region I Region II

Region III

Figure D.2: Teleporting multiple qubits (n = 5) in 1D, where the input qubits are evenly
spaced in the system (N = 10000). (a) Teleportation is achieved with high fidelity for
t ≤ 1300 (Region I). This corresponds to the regime in which the light cones of the operators
are non-overlapping. Interestingly, order-one fidelity can also occur for 1300 < t < 2600
(Region II), when adjacent light cones have overlapped, but only for certain values of g. No
multi qubit teleportation is possible for t ≥ 2600 (Region III), as expected from the lack of
size addition. (b) The three Regions can be detected by changes in the slope of the operator
size as a function of time. In particular, the growth rate decreases when nearest neighbor
light cones, then next nearest neighbor light cones, etc. begin to overlap.

Channel capacity for 0D RUCs

An important result of our numerical simulations is substantiating the claim that 0D
RUCs exhibit a channel capacity that scales linearly with the number of coupled qubits K.
To this end, we first recall that our working definition for the channel capacity is based on
setting a threshold for the per qubit fidelity. The most direct way to compute this fidelity
would be to take the n-th root of the many-body EPR fidelity; in practice, however, this
approach is numerically unstable for large n. Thus, we instead consider a modified protocol
for estimating the per qubit fidelity where one attempts to send n qubits but only measures
the fidelity of one of the n qubits. At infinite temperature and generalizing from one to m
qubits, this fidelity is given by:

F
(m)
EPR =

1

d4
A

∑

Q1,Q2

〈TFD|Q†2,l(t) e−igV Q̃m
2,r(−t)Q̃m†

1,r(−t) eigV Q1,l(t) |TFD〉 · tr(Qu†
1 Q

u
2)

=
1

d4
md

2
u

∑

Q1,Q2

ei(θQ1
−θQ2

)δQu1 ,Qu2 (D.66)



APPENDIX D. DETAILS ON MANY-BODY QUANTUM TELEPORTATION 314

Figure D.3: Procedure for determining the channel capacity in 0D RUCs. (a-b) For fixed
n and K, we compute the per qubit fidelity while sweeping both the evolution time and
coupling strength g. (a) The fidelity as a function of evolution time with coupling strength
fixed is optimized at the first local maximum, which corresponds to ηdgS/N = π. (b) After
optimizing the evolution time, the fidelity as a function of the coupling strength g is maximal
when g (and correspondingly the average operator size S) is tuned to balance errors due to
size addition and the finite number of couplings (see Section 9.7 for details). The data shown
correspond to n = 38 and K = 9000. (c) The channel capacity is defined as the maximum
number of qubits that can be teleported while maintaining the fidelity per qubit above a
fixed threshold, i.e. 1 − F (1)

EPR ≤ 0.07 (dashed line). To determine this number, we fit the
optimal fidelity as a function of n (for each K) with a linear fit in log space and compute the
intercept of the fit with the threshold fidelity. The fits approximately collapse with respect
to n/K, indicating that the channel capacity is linear in K.

where Q = Qm ⊗Qu and dA = dmdu, such that Qm acts on the measured qubit(s), and Qu

acts on the unmeasured qubits. This can be derived diagrammatically via

(D.67)
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Hence, computing the per qubit fidelity, F (1)
EPR, is nearly identical to computing the full

many-body fidelity, except we sample only over pairs of Pauli operators (Q1, Q2) which are
identical on every qubit except for one.

We next discuss how to determine the channel capacity from the teleportation fidelity.
Specifically, we compute the maximum number of qubits nmax that can be teleported above
a certain teleportation fidelity, where we fix the number of coupled qubits K and optimize
over the evolution time t and the coupling strength g. We consider each of these parameters
in turn. First, when sweeping the evolution time and holding all other parameters fixed,
the maximum fidelity occurs during the first peak in the time profile; this corresponds to
a size ηdgS = π/N . After optimizing the evolution time (but holding n and K fixed), the
fidelity is non-monotonic with respect to g, owing to the competition among errors due the
size addition and finite K. Finally, after optimizing evolution time and g, we determine the
maximum number of qubits that can be teleported while maintaining a per qubit fidelity
above a fixed threshold value, i.e. 1 − F 1

EPR ≥ 0.07. Our results from this procedure are
shown in Fig. D.3 and demonstrate that the channel capacity follows a linear trend in K
across two orders of magnitude, in agreement with our analytical predictions.

D.6 Random circuit calculations
Here we provide more detailed technical calculations of the size overlap and K-size distri-

bution of random Pauli operators of a fixed size. The former is relevant to 0D RUCs (Section
9.7), as the vanishingly small overlap of random Pauli strings with size much less than the
system size underlies the circuit’s ability to teleport multiple qubits at intermediate times.
The latter is applicable to all systems when the K coupled qubits are chosen randomly, and
quantifies the width introduced to the K-size by this random sampling (Section 9.4). In the
appropriate limits, these calculations reproduce the intuitive binomial scalings we argued for
in Ch. 9.

Distribution of the overlap of two random Pauli strings

We are interested in the probability distribution of the size of the overlap, p (not to
be confused with the large-p encoding, which we do not reference in this Section) of two
randomly samples Pauli strings of fixed size R1, R2, in a system of N qubits. We expect this
to quantify errors to the size addition formula, Eq. (9.55) in Section 9.7, for 0D RUCs with
large-p encoding (Section 9.7), where the assumption of random Pauli strings of a fixed size
is appropriate. Our precise derivation is necessarily quite technical, however our final result
matches that obtained by intuitive arguments in Section 9.7.

This probability distribution is computed exactly as a product of various factorials:

P [p] =
CN
p C

N−p
R1−pC

N−R1
R2−p

CN
R1
CN
R2

=
1

p!

R1!

(R1 − p)!
R2!

(R2 − p)!
(N −R1)!(N −R2)!

N !(N −R1 −R2 + p)!
(D.68)



APPENDIX D. DETAILS ON MANY-BODY QUANTUM TELEPORTATION 316

The numerator computes the number of distinct configurations with Pauli strings of size
R1, R2 and overlap p, while the denominator computes the number of distinct Pauli strings
of size R1, R2 regardless of the overlap. We are interested in the case where all variables
are extensive (scale with N), but N � R1, R2 � p. We will proceed by applying Stirling’s
approximation to each term above, which holds as long as all quantities are large compared
to 1. For instance, for dummy variables n, k, we have:

n!

(n− k)!
≈
√

n

n− k
nn

(n− k)n−k
e−k = nk

(
1− k

n

)−n+k−1/2

e−k (D.69)

or, taking the logarithm,

log
n!

(n− k)!
≈ k log(n)−

(
n− k +

1

2

)
log

(
1− k

n

)
− k. (D.70)

We will apply this to a few pairs of factorials in our original expression for P [p]. For
convenience, we only keep track of the p-dependence of the probability, and neglect overall
constants which serve to normalize the distribution. Anticipating that the average p will be
R1R2/N , we expand p = R1R2/N + δ and work to second order in δ. At the end we will
show that this is justified. We have:

log
R1!

(R1 − p)!
≈ p log(R1)−

(
R1 −

R1R2

N
+

1

2

)
log

(
1− R2

N
− δ

R1

)
− R1R2

N
− δ (D.71)

Expanding the logarithm using

log(1− y − x) ≈ log(1− y)− x

1− y −
1

2

x2

(1− y)2
+O(x3) (D.72)

we have

log
R1!

(R1 − p)!
≈ p log(R1)−

(
R1 −

R1R2

N
− δ +

1

2

)[
log

(
1− R2

N

)
− δ/R1

1−R2/N
− (δ/R1)2

(1−R2/N)2

]

− δ + . . .

≈ p log(R1) + δ log

(
1− R2

N

)
− 1

2
δ2

[
1

R1

1

1−R2/N

]

+O(δ/R) +O(δ3/R2) + . . . .
(D.73)

This gives

log
R1!

(R1 − p)!
R2!

(R2 − p)!
≈ p log(R1R2) + δ log

(
(1− R2

N
)(1− R1

N
)

)

− 1

2
δ2

[
1

R1

1

1−R2/N
+

1

R2

1

1−R1/N

]

+O(δ/R) +O(δ3/R2) + . . . .

(D.74)
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The last piece is

log
N !

(N −R1 −R2 + p)!

≈ −p log(N)

−
(
N −R1 −R2 +

R1R2

N
+ δ +

1

2

)
log

(
1− R1

N
− R2

N
+
R1R2

N2
+

δ

N

)

+ δ + . . .

≈ −p log(N)−
(
N −R1 −R2 +

R1R2

N
+ δ +

1

2

)
×

[
log

(
(1− R1

N
)(1− R2

N
)

)
+

δ/N

(1− R1

N
)(1− R2

N
)
− δ2/N2

(1− R1

N
)2(1− R2

N
)2

]

+ δ + . . .

≈ −p log(N)− δ
[
log

(
(1− R1

N
)(1− R2

N
)

)]

− 1

2
δ2

[
1

N

1

(1−R1/N)(1−R2/N)

]
+O(δ/N) +O(δ3/N2)

(D.75)

Combining these together, we have

logP [p] ≈− log(p!) + p log

(
R1R2

N

)
−

1

2
δ2

[
1

R1

1

1−R2/N
+

1

R2

1

1−R1/N
+

1

N

1

(1−R1/N)(1−R2/N)

]

+O(δ/R) +O(δ3/R2).

(D.76)

Exponentiating,

P [p] ≈ 1

p!

(
R1R2

N

)p
×

exp

(
−1

2

(
p− R1R2

N

)2 [
R1R2

R1 +R2

+O(1/N)

]−1

+O(δ/R) +O(δ3/R2)

)
.

(D.77)

The first two terms are precisely a Poisson distribution, which has mean R1R2/N and width√
R1R2/N . The exponential is a Gaussian with the same mean R1R2/N , and a larger width√
R1R2/(R1 +R2). The smaller width determines the width of the product of the two

functions, so we conclude:

〈p〉 =
R1R2

N
,

〈
p2
〉
− 〈p〉2 ≈ R1R2

N
. (D.78)
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This is what we would expect for drawing p random sites out of N , where each site has
independent probability Ri/N of being in either Pauli string (Section 9.7). The width is
subextensive, δ ∼ ε

√
N , justifying the higher order terms we neglected along the way.

Distribution of the K-size

Here we are interested in the probability distribution of the K-size of a Pauli string
of fixed total size S, with K randomly chosen couplings. Our results substantiate those
obtained by intuitive arguments beneath Eq. (9.35) in Section 9.4 in Ch. 9.

This objective is in fact an identical problem to calculating the overlap: the K-size is the
overlap of the K coupled qubits with the S qubits acted on by the operator of interest. We
should just replace R1 → K, R2 → S, p→ n above, where n is the K-size. This is confirmed
by comparing the factorial expressions:

P [n] =
CSnC

N−S
K−n

CN
K

=
1

n!

S!

(S − n)!

K!

(K − n)!

(N − S)!(N −K)!

N !(N − S −K + n)!
(D.79)

where the numerator computes the number of distinct configurations with n qubits over-
lapping the Pauli operator support of size S and K − n qubits not overlapping, and the
denominator computes the number of distinct configurations of the K coupled qubits. There
are two regimes of interest: when K and S are both extensive, and when S is extensive but
K is not. The former provides a more accurate measure of the full operator size (K → N),
while the latter is relevant for probing the channel capacity. Both regimes share the same
mean K-size SK and K-size width δSK :

SK ≡ 〈n〉 =
SK
N

, δS2
K ≡

〈
n2
〉
− 〈n〉2 ≈ SK

N
= SK . (D.80)

This matches our prediction in Section 9.4, which was based on a simple scenario of picking
K sites, each with a S/N chance of being in the support of the Pauli operator.

D.7 Teleportation of fermions
Here we generalize the teleportation protocol to Majorana fermion systems, as discussed

in Ch. 9 for the SYK model. This involves a few small modifications, stemming from (i) a dif-
ferent definition of fermionic EPR (FEPR) pairs, and (ii) a different relation between FEPR
pair projector and the SWAP gate. These modifications explain the results of Ref. [159],
which find that late time teleportation in the SYK model occurs with less than unit fidelity
even at infinite temperature (where we would generally expect perfect fidelity, from late
time peaked-size teleportation [Section 9.5, VI]). In particular, we find that the encoding
procedure for the late time fermionic protocol must be modified for teleportation to succeed
with perfect fidelity, due to modification (ii) above.
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Consider two complex fermions χl and χr, decomposed into pairs of Majorana fermions
via χl = ψ1

l + iψ2
l , χr = ψ1

r + iψ2
r . The number operators of the original fermions are

Majorana bilinears, e.g. iψ1
l ψ

2
l = 2N̂l − 1 = (−1)N̂l . We define a single FEPR pair as the

positive eigenstate of iψ1
l ψ

1
r and iψ2

l ψ
2
r . In the number operator basis of the original complex

fermions, this is the maximally entangled state (|10〉 − i |01〉)/
√

2. Multiple fermion EPR
pairs are formed as a tensor product of single FEPR pairs.

This definition leads to some simple relations when ‘sliding’ fermion operators around
FEPR bras and kets in diagrammatic calculations. We have:

ψjl |FEPR〉 = iψjr |FEPR〉
〈FEPR|ψjl = −i 〈FEPR|ψjr ,

(D.81)

diagrammatically,

(D.82)

As in bosonic systems, the thermofield double state is obtained by applying ρ1/2 to one side,
|TFD〉 = ρ

1/2
l |FEPR〉. Since the SYK Hamiltonian is composed of 4-fermion terms, we have

Hl |TFD〉 = (i)4Hr |TFD〉 = Hr |TFD〉 . (D.83)

As in bosonic systems, the coupling for Majorana systems [Eq. (9.70)] measures the size of
Majorana strings.

There are two options teleportation in fermionic system. First, we could teleport an
ordinary bosonic qubit by encoding it into Majorana fermion operators, for instance:

X ≡ iψ1ψ2

Y ≡ iψ2ψ3

Z ≡ iψ1ψ3.

(D.84)

At infinite temperature before coupling, each of the above operators has a correlator equal
to −1, which is exactly the result for bosonic systems, but without a need for the decoding
operation Y . At late times, the coupling eigV applies a relative phase between the identity
and non-identity Paulis, giving correlator phases:

1 eig〈V 〉

iψ1ψ2 −1
iψ2ψ3 −1
iψ1ψ3 −1
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When g 〈V 〉 = π all correlators have the same phase, and peaked-size teleportation succeeds
with perfect fidelity at infinite temperature. At intermediate times, peaked-size teleportation
of multiple bosonic qubits will succeed just as in bosonic systems.

The second option is to send a fermionic qubit, for instance by inserting half of an
ancillary FEPR pair. Here we begin with intermediate times, and discuss a modification
necessary for late time teleportation afterwards. We represent a single complex fermion with
two Majorana operators ψ1, ψ2, and suppose that the operators’ size distributions are tightly
peaked, and the size of iψ1ψ2 is twice that of the individual Majorana sizes, denoted S (this
assumption of size addition is appropriate in all-to-all coupled systems, e.g. SYK, but would
not necessarily hold for e.g. a 1D Majorana chain). The relevant operator correlators after
coupling with a bilinear fermionic interaction, as in Eq. (9.70), are:

1 1
ψ1 −i · eigS/qN
ψ2 −i · eigS/qN

iψ1ψ2 −1 · eig2S/qN

At gS/qN = π/2 we have perfect teleportation. This generalizes straightforwardly to multi-
ple fermionic qubits: a p-fermion operator will gain a phase ip from sliding across the FEPR
pair, and a phase eigpS/qN from coupling.

At late times, the sizes of initial single-body and two-body Majorana operators are equal,
since they have saturated the size of the system, and the above operator correlators do
not have the same phase. We now show that an alteration of the encoding procedure can
rectify this and lead to perfect late time teleportation. This alteration is explained by the
HPR protocol, and we derive it by reexamining the equivalence between the HPR and TW
protocols in the case of fermionic qubits. Here, the relevant difference between bosons and
fermions is that the fermionic SWAP gate is not related to the Grover search operation
1− 2PFEPR by single-qubit rotations. Since fermions gain a minus sign upon exchange, the
fermionic SWAP gate takes the form

SWAPF =




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 −1


 =

iψ1,lψ2,l + iψ1,rψ2,r + iψ1,lψ2,r − iψ2,lψ1,r

2
. (D.85)

This is a two-qubit controlled-phase (CZ) gate away from 1− 2PFEPR:

1−2PFEPR =




1 0 0 0
0 0 i 0
0 −i 0 0
0 0 0 1


 =

1− iψ1,lψ1,r − iψ2,lψ2,r − (iψ1,lψ1,r)(iψ2,lψ2,r)

2
= SWAPF ·CZ,

(D.86)
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where the CZ gate is defined as

CZ =




1 0 0 0
0 i 0 0
0 0 −i 0
0 0 0 −1


 = (1 + i)

ψ1,lψ2,l + iψ1,rψ2,r

2

= exp
(
i
π

4

)
· exp

(
−iπ

2
[iψ1,lψ2,l]

)
· exp

(
i
π

4
[iψ1,lψ2,l][iψ1,rψ2,r]

)
.

(D.87)

The single-fermion exp
(
−iπ

2
[iψ1,lψ2,l]

)
gate occurs on the swapped-out fermion and may be

neglected. Inserting this in place of the second Grover search operation gives the appropriate
teleportation protocol:

(D.88)

In the second diagram we have slid the action of each side of the CZ gate such that the gate
acts at the same time and on the same qubits as the initial SWAP gate.

We can relate the fidelity of teleportation to operator correlators by decomposing the
encoding gate as

CZ · SWAPF =
1

2

4∑

j=1

SLj,lS
R
j,r (D.89)

where we define the operators:
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j SLj SRj SRj S
L
j

1 1 1 1

2 iψ1ψ2 iψ1ψ2 1

3 iψ1 ψ1 i1
4 iψ2 ψ2 i1

according to Eq. (D.86). The final column displays the product SLj SRj , where both act on
the same qubit, which will be useful shortly. We find a fidelity:

(D.90)

In the peaked-size regime with correlator phases θR,j, we have

FEPR =
1

24

∑

j,k

〈TFD|SR,j,l(t) e−igV [SL,j,rS
†
L,k,r](−t′) eigV S†R,k,l(t) |TFD〉

=
1

24

∑

j,k

exp(−i[θR,j − θR,k])tr(SR,j(t− t′) ρ1/2 SL,j(0)S†L,k(0) ρ1/2 S†R,k(t− t′))

(D.91)

At infinite temperature, late times, and g 〈V 〉 = π, we have correlator phases θR,j = 0 for
the identity and two-bosonic operator and θR,j = π/2 for single-body fermionic operators,
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and find perfect teleportation fidelity:

FEPR =
1

24

∑

j,k

exp(−i[θR,j − θR,k])tr(SR,j SL,j S†L,k S†R,k)

=
1

24

∑

j,k

exp(−i[θR,j − θR,k]) · iFj · (−i)Fk · tr(iψ1ψ2 iψ1ψ2)

=
1

24

∑

j,k

exp(−i[θR,j − θR,k]) · iFj · (−i)Fk

=
1

24

∑

j,k

(−i)Fj · iFk · iFj · (−i)Fk

= 1,

(D.92)

where we define Fj = 1 if SL/R,j is fermionic, and 0 if bosonic.
We note that for state, as opposed to EPR, teleportation, the above CZ gate turns out not

to be necessary. Since coherent superpositions of different fermion parity cannot be created
by physical Hamiltonians, which contain only even combinations of fermionic operators, we
should only consider teleporting states of definite fermion parity. The CZ gate applies only
an overall phase on these states, and so does not affect the success of teleportation.

We can also briefly analyze the low temperature results of Ref. [159] through the lens
of operator correlator phases. Here, state teleportation is found to succeed perfectly at
low temperatures only when the initial operators are encoded in p-body Majoranas, with
p = q/2 + 1, despite the operator correlators having maximal magnitude for any value of p.
At the semiclassical gravity teleportation time, the correlators have phases:

1 1
ψ1 ip(i)2p/q

ψ2 ip(i)2p/q

iψ1ψ2 (−1)p(i)4p/q

For single-body Majoranas, p = 1, the correlators clearly do not have the same phase—in fact,
their phases are nearly identical to their phases at infinite temperature with no coupling—so
state teleportation is not possible. When p = q/2 + 1, in the large-q limit, these phases are
1,±1,±1, 1, respectively, where the sign is determined by whether p = 1, 3 mod 4. When
the sign is odd, it can be corrected via the decoding operation iψ1ψ2 = (−1)N , which applies
a minus sign when conjugating fermionic operators. Either case can therefore achieve perfect
teleportation.
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D.8 Teleportation and inelastic scattering at infinite
temperature

In Section 9.8, we found that strong stringy corrections to a bulk theory of gravity led
to peaked-size teleportation as well as a deeply inelastic scattering amplitude. We will now
demonstrate that these two phenomena—peaked-size teleportation and inelastic scattering—
also coincide at infinite temperature, for arbitrary functional forms of the wavefunctions and
scattering amplitudes. As we argued before, for a UV complete theory of quantum gravity,
strong stringy (and in general deep inelastic) effects are expected to dominate only at high
temperatures, β → 0.

At infinite temperature, the form of the correlator is constrained by the equality

Cψ(t; g)∗ = −Cψ(t;−g). (D.93)

This implies that Cψ(t) can be written as a real function of ig multiplied by the two-point
function:

Cψ(t) = 〈ψlψr〉e−F (ig,t). (D.94)

When g = 0, Cψ(t) is equal to 〈ψlψr〉, implying

F (ig) = igf1(t) +O(g2), (D.95)

where f1(t) is a real function. Therefore, at this order in g, the infinite temperature cor-
relator is simply the two-point function multiplied by a pure phase, matching peaked-size
teleportation [Eq. (9.38)].

To justify that higher order terms in g are subleading, we need an additional assumption:
that the wavefunction of ψ(t) has a saddle point at some momentum k. This is analogous to
the boundary assumption that operator sizes are tightly peaked. At early times, this saddle
will not be significantly changed by the coupling, since the derivative of the scattering matrix
with respect to k will be suppressed by GN , and at early times the time-dependence of the
wavefunction will not be strong enough to compensate for this suppression (for example, in
semiclassical AdS2, we observed competition between e2πt/β and 1/GN). In such cases, it is
easy to see that Eq. (9.96) becomes 〈ψlψr〉 times a pure phase linear in g, with higher powers
of g suppressed by GN .

Infinite temperature also implies purely inelastic scattering, i.e. the scattering amplitude,
eiδ = 1 − S(k, s), is automatically real. To see this, we first rewrite the correlator in terms
of the in-falling momentum operators, P̂ and K̂, for ψ1 and ψ(t) respectively. For instance,
for the former we have:

Ψ1,r(s, 0)Ψ∗1,l(s, 0) = 〈ψ1,l(0)|s〉〈s|ψ1,r(0)〉

=

ˆ
da

2π
〈ψ1,l(0)e−iaP̂ψ1,r(0)〉eias.

(D.96)
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As ψ(t) and ψ1 are in principle independent operators, we have [K̂, P̂ ] = 0. Using this, we
can rewrite Eq. (9.96) as

Cψ(t) = 〈ψr(−t) exp
(
−igS(K̂, P̂ )iψ1,lψ1,r

)
ψl(t)〉. (D.97)

Taking the complex conjugate gives

Cψ(t)∗ = 〈ψl(t) exp
(
igS(K̂, P̂ )∗(−i)ψ1,rψ1,l

)
ψr(−t)〉

= −〈ψr(−t) exp
(
igS(K̂, P̂ )∗iψ1,lψ1,r

)
ψl(t)〉

(D.98)

where we used the fact that K̂, P̂ are Hermitian and that at infinite temperature ψl(t) |TFD〉 =
ψr(−t) |TFD〉. Combining this with Eq. (D.93) then enforces S(K̂, P̂ )∗ = S(K̂, P̂ ), i.e.
purely inelastic scattering.
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Appendix E

Details and additional derivations on
operator growth in open quantum
systems

In this Appendix we provide additional theoretical and numerical details relating to the
results of Ch. 10.

E.1 Additional analytical details and discussion
In this section, we provide substantially more details and discussion on the approxi-

mations leading to Eq. 10.4. We begin by clarifying our notion of operator growth under
open-system dynamics, and outlining how this notion connects to different protocols that
measure information scrambling. The remainder of the section serves to build intuition and
outline the explicit steps that lead to Eq. 10.4. While these steps involve a substantial num-
ber of equations, we emphasize that the physical intuition behind Eq. 10.4 is fully contained
in Ch. 10.

Preliminaries

Defining operator growth under open-system dynamics involves a few subtleties not
present in unitary dynamics. In Ch. 10, we focused on the time-evolution of operators
in the Heisenberg picture [Eq. (10.1)]:

∂tM̂H(t) = i[Ĥ, M̂H(t)] + ε
∑

α

(
L̂†αM̂H(t)L̂α −

1

2
{L̂†αL̂α, M̂H(t)}

)
. (E.1)

Heisenberg time-evolution is relevant when M̂ is a Hermitian observable being measured in
an experiment. The growth of M̂H(t) signifies that the measurement outcome depends on
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increasingly non-local correlations in the initial state of the system. Note that Heisenberg
time-evolution is unital, i.e. it maps the identity to the identity.

One can also, in principle, consider the growth of operators in the Schrodinger picture.
For instance, consider preparing a system in an initial density matrix that is almost entirely
mixed, ρ = M̂ ⊗ 1N−1/2N , where M̂ is an initial single-qubit density matrix. The state now
evolves via:

∂tM̂S(t) = −i[Ĥ, M̂S(t)] + ε
∑

α

(
L̂αM̂S(t)L̂†α −

1

2
{L̂†αL̂α, M̂S(t)}

)
, (E.2)

which differs from Heisenberg time-evolution in the sign of the Hamiltonian and the ordering
of the Lindblad operators. Note that Schrodinger and Heisenberg time-evolution coincide
precisely when the Lindblad operators are Hermitian, L̂α = L̂†α, in which case we have
M̂H(t; Ĥ) = M̂S(t;−Ĥ). This is trivially the case for unitary dynamics, and also holds for a
variety of error models of practical interest (see the subsequent subsection).

Interpreting operator growth in the Schrodinger picture outside of the case L̂α = L̂†α is
more difficult. Fundamentally, this difficulty arises because Schrodinger time-evolution is
not unital, i.e. the identity operator is time-evolved non-trivially. We illustrate this point
with two examples. First, take the Lindblad operators to be zero and the Hamiltonian
to implement unitary scrambling dynamics such that the operator M̂S(t) grows to have
support across the entire system. In this case, operator growth corresponds to the formation
of non-local correlations under time-evolution. Second, take the Hamiltonian to be zero and
the Lindbladian operators to implement spontaneous emission on each qubit (i.e. L̂α are
lowering operators on each qubit). At late enough times, the density matrix will approach
the all zero state, M̂S(t) → |0 . . . 0〉〈0 . . . 0|. This operator is quite large (it has non-trivial
support on every qubit of the system), yet its growth clearly does not represent any non-
local correlations, since the system remains in a product state throughout time-evolution.
For these reasons, in this work we direct our attention to operator growth under Heisenberg
time-evolution.

The “correct” time-evolution is dictated by the experimental protocol under study. Let us
specify to the protocol depicted in Fig. 10.4, and consider the behavior of the protocol when
the unitaries, U and U †, are instead replaced by open-system dynamics under Hamiltonians,
Ĥ and −Ĥ, and Lindblad operators, L̂α. Here, for simplicity we assume the Lindblad
operators are the same for forwards and backwards time-evolution, although this assumption
is not essential in the subsequent sections. The operator M̂ appears in two places in the
protocol: First, describing the initial single-qubit state, |ψ±〉〈ψ±| = (1± M̂)/2; and second,
describing the final observable to be measured, again (1 ± M̂)/2. Here, we take M̂ to be a
single-qubit operator, and generalize from preparing only the positive eigenstate of M̂ (as
considered in Ch. 10) to either the positive or negative eigenstate. The expectation value of
the final measurement represents the fidelity to recover the initial state. The fidelity consists
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of one copy each of the Schrodinger and Heisenberg time-evolved operators,

F± =

〈
1̂S(t;−Ĥ)± M̂S(t;−Ĥ)

2N
· e−µS

{
1̂± M̂H(t; Ĥ)

2

}〉

=
1

2
±
〈
1̂S(t;−Ĥ) · e−µS

{
M̂H(t; Ĥ)

}〉
+

1

2

〈
M̂S(t;−Ĥ) · e−µS

{
M̂H(t; Ĥ)

}〉
,

(E.3)

where in the final expression we used the property, tr
(
M̂S(t)

)
= 0, to neglect one cross term.

We can eliminate the middle term on the RHS by averaging the fidelity over the positive
and negative eigenstates, F = (F+ + F−)/2. We have:

F =
1

2
+

1

2

〈
M̂S(t;−Ĥ) · e−µS

{
M̂H(t; Ĥ)

}〉
, (E.4)

which is the result quoted in Ch. 10, upon the substitution M̂(t) ≡ M̂S(t;−Ĥ) = M̂H(t; Ĥ)
for Hermitian Lindblad operators.

We briefly comment on how open-system dynamics manifest in other protocols for mea-
suring information scrambling. The above analysis applies to a large class of protocols that
involve evolving once via forward time-evolution and once via backwards time-evolution [139,
163, 289, 326, 418, 529]. In contrast, protocols that measure scrambling via exclusively for-
ward time-evolution [381, 473] will depend instead on inner products of two copies of the
Heisenberg time-evolved operator (although we note that such protocols must in some cases
be exponentially inefficient [111]). Finally, in teleportation-based protocols [blok2020quantum,
274, 429, 517, 518], the operator of interest enters neither a measured observable nor as an
initial state, but rather as a quantum operation applied to one half of EPR pairs. In this case,
one should properly consider the time-evolution of the quantum channel,M{·} ≡ M̂(·)M̂ †,
which displays qualitatively different behavior from the Heisenberg time-evolution analyzed
in this work [429].

Examples of Lindblad operators

We can build intuition for the effect of Lindbladian time-evolution on operator growth
in the Heisenberg and Schrodinger pictures by analyzing a few simple error models. Let us
begin with the simplest case, of isotropic decoherence on each qubit. In this case, we found
in Ch. 10 that the action of the Lindbladian was precisely given by the size superoperator:

− 1

4

∑

i

∑

P

(PiM̂(t)P †i − M̂(t)) = S{M̂(t)} = # of X, Y, Z in M̂(t), (E.5)

where the RHS is intended to indicate that the size superoperator multiplies each Pauli string,
R, of the operator, M̂(t) =

∑
R cRM̂(t), by its number of non-identity components (i.e. the

number of X-, Y -, or Z-components). Here the Pauli matrices run over P ∈ {1, X, Y, Z} on
each qubit.
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Different error models do not exactly measure the operator size. For instance, dephasing
noise gives rise to the following superoperator:

− 1

2

∑

i

(ZiM̂(t)Z†i − M̂(t)) = SZ{M̂(t)} = # of X, Y in M̂(t), (E.6)

while depolarizing noise gives rise to:

−1

4

∑

i

(XiM̂(t)X†i + YiM̂(t)Y †i − 2M̂(t)) =

[
S − 1

2
SZ
]
{M̂(t)}

=
(
# of Z in M̂(t)

)
+

1

2

(
# of X, Y in M̂(t)

)
.

(E.7)

In Ch. 10, we argue that these superoperators display similar phenomenology as the operator
size when applied to chaotic many-body time-evolved operators. From the definitions above,
we see that this is a reasonable assumption if the high-size components of time-evolved
operators fluctuate randomly between the local choice of basis (i.e. in these examples,
between single-qubit X-, Y -, and Z-components).

Non-Hermitian errors require more careful consideration than Hermitian errors, since
their time-evolution differs between the Heisenberg and Schrodinger pictures. For instance,
consider spontaneous emission on each qubit, i.e. Lindblad operators equal to the lowering
operator, ˆ̀

i = (X̂i − iŶi)/2. We denote the raising operator, r̂i = ˆ̀†
i , the projector to

the up eigenstate, Ûi = r̂i ˆ̀i = (1i + Ẑi)/2, and the projector to the down eigenstate,
D̂i = ˆ̀

ir̂i = 1i − Ûi. In the Heisenberg picture, operators time-evolve via:

∂tM̂H(t) = i[Ĥ, M̂H(t)] + ε
∑

i

(
r̂iM̂H(t)ˆ̀

i −
1

2
{Ûi, M̂H(t)}

)
. (E.8)

Let us focus on the effect of spontaneous emission on a single component, Ri, of a single
Pauli string, R̂ =

⊗
iRi. We have:

− r̂iR̂i
ˆ̀
i +

1

2
{Ûi, R̂i} =





0, R̂i = 1i

X̂i/2, R̂i = X̂i

Ŷi/2, R̂i = Ŷi

2Ûi, R̂i = Ẑi

. (E.9)

We see that the error cannot increase the size of a Pauli string, since each identity component
is mapped to itself under Heisenberg time-evolution. Summing over all qubits, we have:

−
∑

i

(
r̂iR̂ ˆ̀

i −
1

2
{Ûi, R̂}

)
=

[
S − 1

2
SZ
]
{R̂} −

∑

i

(δRi=Zi) 1̂i ⊗ R̂6=i. (E.10)
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The effect of spontaneous emission in the Heisenberg picture is thus a combination of depo-
larizing noise (left term) and a superoperator that generates Pauli strings that differ from R̂
by replacement of a single Z-component with the identity (right term). We do not expect
the latter effect to substantially alter operator spreading, since the newly generated strings
contain similar support to the original string. Indeed, in the following subsection we find that
their effect is suppressed by a factor of ∼ε/J , where J is the local Hamiltonian interaction
strength.

As noted in the previous subsection, the time-evolution of operators in the Schrodinger
picture can be drastically different. Again considering spontaneous emission, we have:

∂tM̂S(t) = −i[Ĥ, M̂S(t)] + ε
∑

i

(
ˆ̀
iM̂S(t)r̂i −

1

2
{Ûi, M̂S(t)}

)
, (E.11)

where the Lindblad operators now act as,

− ˆ̀
iR̂ir̂i +

1

2
{Ûi, R̂i} =





Ẑi, R̂i = 1i

X̂i/2, R̂i = X̂i

Ŷi/2, R̂i = Ŷi

Ẑi, R̂i = Ẑi

. (E.12)

Summing over all qubits, we now have:

−
∑

i

(
r̂iR̂ ˆ̀

i −
1

2
{Ûi, R̂}

)
=

[
S − 1

2
SZ
]
{R̂} −

∑

i

(δRi=1i) Ẑi ⊗ R̂6=i. (E.13)

The effect of spontaneous emission in the Schrodinger picture is thus a combination of
depolarizing noise (left term) and a superoperator that generates Pauli strings that differ
from R̂ by a single replacement of an identity component with a Pauli-Z operator (right
term). As in the previous subsection, we see that non-Hermitian Lindblad operators cause
Schrodinger time-evolved operators to immediately gain support on all qubits, irrespective
of the locality of the dynamics.

Approximations leading to Eq. (10.4)

In Ch. 10, we provided intuitive arguments that open-system operator growth is gov-
erned by an effective Lindblad equation involving the size superoperator [Eq. (10.4)], in the
case of chaotic dynamics and small error rates. In this subsection, we specify the precise
approximations which lead to Eq. (10.4).

We begin by formally solving the Heisenberg and Schrodinger time-evolution equations
as a Taylor series in the error rate. We have:

M̂H(t) =
∞∑

n=0

εn
∑

{αi}

ˆ
t1≤...≤tn

dt1 . . . dtne
−iH(t−tn)Lαn{. . .Lα1{e−iHt1MeiHt1} . . .}eiH(t−tn),

(E.14)
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and

M̂S(t) =
∞∑

n=0

εn
∑

{αi}

ˆ
t1≤...≤tn

dt1 . . . dtne
−iH(t−tn)L†αn{. . .L†α1

{e−iHt1MeiHt1} . . .}eiH(t−tn),

(E.15)
where for each Lindblad operator, L̂α, we associate a superoperator, Lα{·} = L̂†α(·)L̂α −
1
2
{L̂†αL̂α, ·}, and its adjoint, L†α{·} = L̂α(·)L̂†α − 1

2
{L̂†αL̂α, ·}. Inserting these solutions into

Eq. (E.4), we find that the protocol in Fig. 10.4 measures the following quantity:
〈
M̂S(t;−Ĥ)e−µS

{
M̂H(t; Ĥ)

}〉

=
∞∑

m,n=0

εn+m
∑

{αi}

∑

{βi}

ˆ
s1≤...≤sm

ds1 . . . dsm

ˆ
t1≤...≤tn

dt1 . . . dtn×
〈
e−iH(t−sm)L†βm{. . .L

†
β1
{e−iHs1MeiHs1} . . .}eiH(t−sn)

× e−µS{e−iH(t−tn)Lαn{. . .Lα1{e−iHt1MeiHt1} . . .}eiH(t−tn)}
〉
.

(E.16)

Each expectation value in the summation is a multi-point OTOC involving M̂ , the Lindblad
operators, and the Pauli operators used to implement the quantum channel, e−µS .

We apply two approximations to this expression: (i) First, we assume that the precise
form of operators entering the OTOC is only relevant for operators that occur at approx-
imately the same “time slice”, i.e. their times are separated by less than the inverse local
interaction strength, ∼1/J . (ii) Second, we assume that the only OTOCs that are non-zero
are those for which all operators in every time-slice product to the identity, i.e. “off-diagonal”
OTOCs such as 〈Ẑi(t)X̂j(0)Ẑi(t)Ŷj(0)〉 are zero. Properties (i) and (ii) are exact within large-
N systems and random matrix theory [399], and in random unitary circuits for single-qubit
errors at leading order in the error rate. In the latter, condition (i) follows because the
local basis is randomized with each time step, while condition (ii) follows because the sign of
off-diagonal OTOCs can be flipped via single-qubit rotations (e.g. conjugation by the Pauli
operator Xj at time zero in the aforementioned example), which thus average the OTOC to
zero. Corrections arise when the same Lindblad superoperator is applied in both forwards
and backwards time-evolution, which occurs with a probability suppressed by ε2. The ap-
plication of these approximations to chaotic many-body systems is a conjecture, motivated
by the intuition presented in Ch. 10.

We now apply approximations (i) and (ii) to Eq. (E.16). In particular, we show that
approximation (ii) implies that operator growth under non-Hermitian Lindblad operators is
equal to that under a particular set of Hermitian Lindblad operators, to leading order in
ε/J . Since Schrodinger and Heisenberg time-evolution are equivalent for Hermitian Lindblad
operators, this verifies that the operator size distribution measured via Eq. (E.4) is well-
defined (i.e. it contains no negative elements). From this result, approximation (i) leads to
Eq. (10.4).
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To establish the first simplification, we define Hermitian operators, L̂+
α = (L̂α + L̂†α)/2

and L̂−α = i(L̂α− L̂†α)/2. Note that the inner product between the two Hermitian operators,
〈L̂+L̂−〉 = 1

2
[〈L̂†L̂†〉 − 〈L̂L̂〉], can be set to zero by multiplying L̂ by an overall phase. The

Lindblad superoperator can be expressed as:

Lα{·} = L̂α(·)L̂†α −
1

2
{L̂†αL̂α, (·)}

= L+
α{·}+ L−α{·} − iL̂−α (·)L̂+

α + iL̂+
α (·)L̂−α −

i

2
{[L̂−α , L̂+

α ], (·)}

L†α{·} = L̂†α(·)L̂α −
1

2
{L̂†αL̂α, (·)}

= L+
α{·}+ L−α{·}+ iL̂−α (·)L̂+

α − iL̂+
α (·)L̂−α −

i

2
{[L̂−α , L̂+

α ], (·)}

(E.17)

where L±α{·} are the analogous Lindblad superoperators for L̂±α .
Now, note that the typical separation in time of spatially and temporally nearby Lindblad

operators in Eq. (E.16) is given by the inverse local error rate, ∼1/ε. For small error rates,
this is much longer than the thermalization time, ∼ 1/J ; thus we can assume that each
Lindblad superoperator in Eq. (E.16) occurs at a different “time-slice” for the purposes of
approximations (i), (ii). Applying Eq. (E.17), we see that each time-slice contains at most
two of a given Lindblad operator: either two copies of L̂+

α (from L+
α{·}), two copies of L̂−α

(from L−α{·}), or one copy each of L̂+
α and L̂−α (from the latter four terms). However, the

latter terms are precisely those that vanish under approximation (ii). Therefore, to leading
order in ε/J , we find that time-evolution is effectively governed by the Hermitian Lindblad
operators, L̂±α . Concretely, we can replace M̂H(t; Ĥ) → M̂(t) and M̂S(t;−Ĥ) → M̂(t) in
Eq. (E.16), where the operator, M̂(t), evolves as:

∂tM̂(t) = i[Ĥ, M̂(t)] + ε
∑

α

(
L+
α{M̂(t)}+ L−α{M̂(t)}

)
. (E.18)

For example, in the case of spontaneous emission, with non-Hermitian Lindblad operator
L̂i = ˆ̀

i, we have Hermitian Lindblad operators, L̂+
i = X and L̂−i = Y , which represent an

effective depolarizing channel. Intuitively, this occurs because the Pauli strings in the final
right term of Eqs. (E.10,E.13) are effectively uncorrelated with those of the original operator
after time ∼ 1/J , and thus only contribute at higher order in ε/J .

Applying approximation (i) to Eq. (E.18) leads us to Eq. (10.4). Specifically, we replace
each Lindblad superoperator, Lα, with a sum of Pauli Lindblad superoperators, LPi , acting
on the same qubit:

∂tM̂(t) ≈ i[Ĥ, M̂(t)] + ε̃
∑

i

∑

Pi

LPi{M̂(t)} = i[Ĥ, M̂(t)] + 4ε̃S{M̂(t)}. (E.19)

To be precise, we can adjust the local error rates so that the normalization of the Lindblad
operators is unchanged, ε〈L̂†αL̂α〉 = ε̃

∑
Pi 6=1i〈P̂iP̂i〉 = 3ε̃. In the remainder of the work,
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we replace the notation ε̃ with ε for simplicity. If Lα has support on multiple qubits but
the qubits are nearby each other in space, we expect this approximation to apply when i
is chosen as any one of the qubits, because the support of M̂(t) will be highly correlated
between nearby qubits in a locally interacting system. If Lα has support on multiple qubits
in an all-to-all coupled system, we expect the approximation to apply when i is summed over
all qubits, since the support of M̂(t) will be nearly entirely uncorrelated between qubits.

Before concluding, we mention a few notable violations of the approximations (i) and (ii),
and show that they nonetheless have a subleading effect. First, note that systems with local
conserved quantities violate both approximations. Regarding approximation (i), Lindblad
operators that overlap vs. do not overlap the conserved quantity will spread differently; for
approximation (ii), certain terms with zero trace in each time-slice are non-zero, for example
the two-point function, 〈Ẑi(t)Ẑj(0)〉. Nonetheless, we expect both of these violations to give
only subleading contribution (suppressed by 1/

√
t), since the majority of a time-evolved

operator’s support is contained in chaotic large-size Pauli strings.
Second, a distinct argument shows that the approximation (ii) is violated in Hamiltonian

systems. Consider the time-derivative of the OTOC under unitary dynamics:

∂t〈M̂(t)Q̂M̂(t)Q̂〉 = i〈M̂(t)[Q̂, Ĥ]M̂(t)Q̂〉. (E.20)

The right side is an “off-diagonal” OTOC since the trace of all operators at time zero vanishes,
yet it is non-zero whenever the OTOC on the left side changes in time. We now show
that this violation gives only a subleading contribution to Eq. (E.4) in two examples. In
all-to-all interacting systems, the right side of Eq. (E.20) contains a sum of at least ∼ N
Hamiltonian terms, which leads to a ∼ 1/N suppression in the value of each off-diagonal
OTOC. Meanwhile, in a 1D system, the left side OTOC (before differentiation) is zero
when the operator Q is within the light cone of M̂(t), and unity when it is outside. The
time-derivative of the OTOC is therefore non-zero only over a small region of width ∼c

√
t,

with a magnitude ∼ vB/c
√
t. The total contribution of “off-diagonal” OTOCs to Eq. (E.4)

therefore scales as ε(c
√
t)(vB/c

√
t) ∼ ε∂tS/J ∼ ε, which is much less than the contribution

of “diagonal” OTOCs, ∼εS.

Derivation of Eqs. (10.5), (10.6)

In this section, we derive the Loschmidt echo decay equation [Eq. (10.5)] and the size
growth equation [Eq. (10.6)]. Both equations are obtained directly by applying Eq. (10.4)
to the quantities of interest. We begin with the Loschmidt echo fidelity, N = 〈M̂(t)M̂(t)〉.
The time-derivative is:

∂tN (t) = 2 〈∂tM̂(t)M̂(t)〉
= −2ε 〈S{M̂(t)}M̂(t)〉
= −2εS(t)N (t).

(E.21)
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using the definition of the average operator size, S(t) = 〈S{M̂(t)}M̂(t)〉/〈M̂(t)M̂(t)〉. Tak-
ing the time-derivative of the average operator size gives:

∂tS(t) =
∂t〈M̂(t)S{M̂(t)}〉
〈M̂(t)M̂(t)〉

− 〈M̂(t)S{M̂(t)}〉 · ∂t〈M̂(t)M̂(t)〉
〈M̂(t)M̂(t)〉2

= 2i

(
〈[Ĥ, M̂(t)]S{M̂(t)}〉
〈M̂(t)M̂(t)〉

)
− 2ε

(
〈M̂(t)S2{M̂(t)}〉
〈M̂(t)M̂(t)〉

)
+ 2ε

(
〈M̂(t)S{M̂(t)}〉2
〈M̂(t)M̂(t)〉2

)

= 2i

(
〈[Ĥ, M̂(t)]S{M̂(t)}〉
〈M̂(t)M̂(t)〉

)
− 2εδS(t)2,

(E.22)

where the size width is defined as δS(t)2 = S2(t)−S(t)2. The first term corresponds to size
growth via the unitary dynamics generated by Ĥ.

Unequal Hamiltonian formulation of the Loschmidt echo

In this section, we address the alternate Loschmidt echo scenario discussed in Ch. 10, in
which time-evolution is unitary but is governed by unequal Hamiltonians for forwards and
backwards time-evolution. Similar to the previous subsections, we outline the precise approx-
imations which lead to a Loschmidt echo fidelity described by Eq. (10.4). In what follows,
we begin by Taylor expanding the fidelity in the difference between the two Hamiltonians, in
which case each term is again a sum of various OTOCs. We then apply a single assumption:
that these correlation functions relax quickly outside of some correlation length, ξth, and
correlation time, τth. We expect these assumptions to hold for chaotic many-body systems
when the perturbation δH does not overlap any conserved quantities (e.g. the Hamiltonian,
H). In principle, we expect modifications to our predictions when the perturbation does
overlap a conserved quantity. In Fig. 10.3 we explore this scenario numerically for small
system sizes, and observe qualitatively similar behavior to that expected from Lindbladian
dynamics.

The fidelity of the many-body Loschmidt echo is given by the correlation function:

Fη(t) = 〈e−iHtMeiHte−i(H+η δH)tMei(H+η δH)t〉. (E.23)

We begin our derivation by Taylor expanding in the perturbation strength, η:

Fη(t) =
∑

n

(iη)nCn(t) (E.24)

where the nth coefficient is given by:

Cn(t) =
∑

bipart

(−1)nL
ˆ
dtL1 . . . dt

L
nL

ˆ
dtR1 . . . dt

R
nR
×

tr(e−iHtMeiHte−iH(t−tLnL )δH . . . e−iH(tL2−tL1 )δHe−iHt
L
1M

× eiHtR1 δHeiH(tR2 −tR1 ) . . . δHeiH(t−tRnR ))

(E.25)
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Here the summation occurs over all bipartitions, (nL, nR), with nL +nR = n and nL, nR ≥ 0
(since each η-derivative can hit either e−i(H+η δH)t on the left, or ei(H+η δH)t on the right).
The time-ordering is tL1 ≤ tL2 ≤ . . . ≤ tLnL and tR1 ≤ tR2 ≤ . . . ≤ tRnR . Each term in the above
equation is an OTOC,

〈e−iHtMeiHte−iH(t−tLnL )δH . . . e−iH(tL2−tL1 )δHe−iHt
L
1M

× eiHtR1 δHeiH(tR2 −tR1 ) . . . δHeiH(t−tRnR )〉
= 〈M̂(t)δH(t− tLnL) . . . δH(t− tL1 )M̂(t)δH(t− tR1 ) . . . δH(t− tRn )〉

(E.26)

To proceed farther, we approximate that each OTOC is zero unless its set of times,
{tL1 , . . . tLnL , tR1 , . . . , tRnR}, can be decomposed into pairs of equal times (note that this is
equivalent to approximation (ii) in the previous subsection). Note that this immediately
eliminates all Cn(t) with n odd. These pairs can occur either between times on the same side
(e.g. tL1 = tL2 or tR1 = tR2 ), or on opposite sides (e.g. tL1 = tR1 ). Summing these four possibilities
for a fixed set of times, we find that each pair enters in the form:

LδH{(. . .)M̂(. . .)} = δHδH(. . .)M̂(. . .) + (. . .)M̂(. . .)δHδH − 2δH(. . .)M̂(. . .)δH, (E.27)

where LδH is a superoperator and the ellipses represent intermediate time-evolution. The
sum over bipartitions in Eq. (E.25) can thus be re-expressed as:

C2n(t) ≈ τnth

ˆ
dt1 . . . dtn〈e−iHtM

× eiHte−iH(t−tn)LδH{. . . e−iH(t2−t1)LδH{e−iHt1MeiHt1}eiH(t2−t1) . . .}eiH(t−tn)〉.
(E.28)

This can be interpreted as the connected part of the OTOC between M and n copies of δH.
We have not yet assumed anything about the spatial correlations of δH. However, we

can already connect our expression for the Loschmidt echo fidelity to an effective Lindblad
equation. Specifically, applying the above results, we can write:

Fp(t) ≈
∑

n

(−p2)nC2n(t) = 〈MtM̃t〉 (E.29)

with the operator M̃t defined as:

M̃t ≡
∑

n

(−τthp2)n
ˆ
dt1 . . . dtne

−iH(t−tn)LδH{. . . e−iH(t2−t1)LδH{e−iHt1M

× eiHt1}eiH(t2−t1) . . .}eiH(t−tn).

(E.30)
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Taking a time-derivative (note that the time-derivative hits three locations: the first and
final applications of e±iH(t−tn), and the upper limit of the integral over 0 ≤ tn ≤ t), we have:

∂tM̃t = −i[H, M̃t] +
∑

n

(−p2)n
ˆ
dt1 . . . dtn−1LδH{. . . e−iH(t2−t1)LδH{e−iHt1M

× eiHt1}eiH(t2−t1) . . .}
= −i[H, M̃t]− p2LδH{M̃t}.

= −i[H, M̃t]− 2τthp
2

[
1

2
δH2M̃t +

1

2
M̃tδH

2 − δHM̃tδH

]
.

(E.31)

The operator is thus the solution to an effective Lindblad equation with a single Lindblad
operator, L̂ = δH, and error rate, ε = 2τthp

2. Note that we could have symmetrized the
above equation by re-defining the original Hamiltonians so that H1 = H − η δH/2 and
H2 = H + η δH/2.

To proceed further, we assume that the perturbation is a sum of local operators, δH =∑
i δHi, and that OTOCs involving a pair of local operators at the same fixed time are zero

unless the operators are spatially nearby one another. Our notion of ‘local’ and ‘nearby’ can
be clarified. For locally interacting systems, we have in mind that each δHi is contained
within a finite spatial region, e.g. a ball of finite radius. We then assume that the relevant
OTOCs are zero unless the pair of local terms within each fixed-time application of LδH are
within distance ξth of each other—there are ∼ ξdth such pairs in dimension d. In all-to-all
coupled systems, we have in mind that δHi acts on only one of the all-to-all coupled degrees of
freedom (e.g. a single qubit in an all-to-all coupled spin system, or a single Majorana fermion
in SYK). The OTOCs between pairs of different δHi and δHj are then zero whenever i 6= j.
For concreteness, we focus on local systems in what follows.

Applying this assumption to the effective Lindblad equation, Eq. (E.31), immediately
yields a new effective Lindblad equation:

∂tM̃t = −i[H, M̃t]− 2τthξthp
2
∑

i

[
1

2
δH2

i M̃t +
1

2
M̃tδH

2
i − δHiM̃tδHi

]
, (E.32)

which involves only local Lindblad operators, L̂i = δHi, each with error rate, 2τthξthp
2. The

approximation (i) in the previous subsection then leads to Eq. (10.4).

E.2 Information-theoretic interpretation of the
Loschmidt echo

In this section, we show that the Loschmidt echo with respect to a local operator M̂ is
related to a Renyi-2 mutual information, between the many-body input state of Lindbladian
time-evolution and the subsystem of the output state that M̂ act upon. Specifically, this
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relation holds for the average Loschmidt echo fidelity over a complete basis of operators M̂
on the subsystem of interest.

To define the relevant subsystems, we consider a setup where our many-body system
S is initially maximally entangled with a reference system E. The state then undergoes
Lindbladian time-evolution, i.e. we apply the quantum channel, E = eLt, where L is the
Lindbladian superoperator on system S. We are interested in the Renyi-2 mutual information
between E and a subsystem A of S.

To compute the mutual information, we utilize a tensor network-like diagrammatic nota-
tion introduced in Ref. [517] (see Ref. [429] for a more extensive introduction). We represent
the density matrix of the entire system, SE, after Lindbladian time-evolution via the fol-
lowing diagram:

(E.33)

Here system S is represented via three pairs of tensor indices on the left side (decomposed
into subsystem A and its complement, B), and system E similarly on the right. We denote
the number of qubits in S as N and its Hilbert space dimension as d = 2N , and similar
for subsystem A, with nA qubits and dimension dA = 2nA . For each subsystem, the tensor
legs terminating downward represent the input to the density matrix (i.e. the ket indices),
while the legs terminating upward represent the output (i.e. the bra indices). The middle
horizontal lines represent initial EPR pairs between subsystems A, B and the reference
system E. Each dot represents a factor of the inverse square root dimension of the tensor
leg it is located on, to normalize the EPR pairs. The quantum channel E acts on system S,
i.e. the left half of the EPR pairs.

The Renyi-2 mutual information of interest is defined as:

I(2)(A,E) = S(2)(E) + S(2)(A)− S(2)(AE) = N + nA − S(2)(AE), (E.34)

where we use the fact E and A are in maximally mixed states. Here, the Renyi-2 entropy is
defined as:

S(2)(AE) = − log2

[
tr(ρ2

AE)
]
, (E.35)

with ρAE = trB(ρBAE). In the diagrammatic notation, the quantity tr(ρ2
AE) can be expressed



APPENDIX E. DETAILS AND ADDITIONAL DERIVATIONS ON OPERATOR
GROWTH IN OPEN QUANTUM SYSTEMS 338

as:

(E.36)

The leftmost diagram follows straightforwardly from Eq. (E.33) by tracing over subsystem
B, squaring, and then tracing over A and E. In the first equality, we use the identity,
trA(·) = 1

dA

∑
PA
P̂A(·)P̂ †A, where P̂A form a complete basis for operators on subsystem A (e.g.

the Pauli operators), to re-arrange the tensor indices. In the second equality, we complex
conjugate the entire diagram and apply the definition of the adjoint in order to “slide” the
channel E across the EPR pairs (note that tr(ρ2

AE) is real and so is invariant under complex
conjugation; we also re-index the summation P̂A → P̂ ∗A for convenience). This can be derived
explicitly by decomposing E in terms of Kraus operators, E(·) =

∑
i Êi(·)Ê†i , and utilizing the

identity [429], ÊT
i,left |EPR〉 = Êi,right |EPR〉, for each Kraus operator. Now, we note that this

diagram contains precisely the Heisenberg time-evolution of the operators, P̂A(t) = E†{P̂A}.
Contracting the tensor indices and keeping track of the various Hilbert space dimensions, we
thus arrive at our final result:

I(2)(A,E) = N + nA + log2

[
1

ddA

∑

PA

〈
P̂A(t)P̂ †A(t)

〉]

= 2nA + log2

[
1

d2
A

∑

PA

〈
P̂A(t)P̂ †A(t)

〉]
.

(E.37)

The argument of the logarithm is the average operator normalization over a complete basis of
d2
A operators on subsystem A. We can easily check the limits on this equation. Under unitary

dynamics, the average normalization is unity and so the mutual information is maximal,
I(2)(A,E) = 2nA. Under a maximally decohering channel, the normalization approaches
zero for all operators except the identity. This gives an average normalization of 1/d2

A, and
thus a mutual information of zero, I(2)(A,E) = 2nA − 2nA = 0.
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E.3 Open-system operator growth in long-range
interacting systems

In this section, we turn to operator growth in long-range interacting open-system dy-
namics. We begin by summarizing previous results on operator growth under long-range
interacting unitary dynamics. We then provide a brief intuitive picture to explain the ef-
fect of open-system dynamics, and explore these predictions numerically in random unitary
circuits (Fig. E.1).

Operator growth in long-range interacting dynamics has been studied in the context of
random unitary circuits [97, 531] and biological physics [93, 192], and is known to display
qualitatively distinct behavior compared to short-range dynamics. In particular, these works
establish several regimes of operator growth, dependent on the power-law, α, of the inter-
action and the spatial dimension, d. Here, long-range hops are designated to occur with a
probability, ∼1/r2α. For d + 1/2 < α, operator growth proceeds similarly to in short-range
dynamics: the average operator size grows ballistically, S ∼ td, and the size width grows at
a slower rate dominated by fluctuations at the light cone boundary. For d < α < d + 1/2,
the average operator size exhibits a super-ballistic power law in time, S ∼ t 1

2α−2d . Moreover,
fluctuations in the light cone boundary become the same order as the light cone width [192],
implying that the size distribution becomes broad (δS ∼ S). For d/2 < α < d, the average
operator size exhibits a stretched exponential, S ∼ et

log2(d/α) , again with large fluctuations at
the boundary. Finally, for α < d/2, the system is effectively all-to-all coupled and operators
grow according a simple exponential in time.

In Ref. [192], all of the above patterns of growth are explained by a single remarkably
simple model for operator growth. The central observation of this model is that the value of
the light cone radius at time t , r(t), is determined primarily by contributions from long-range
hops that were “seeded” from the bulk of the light cone at an earlier time, tseed ≈ r−1(r(t)/2).
These seeds grow separately from the bulk of the light cone until the time of interest, t, at
which the light cones of the seed and core combine. The radius r(t) can then be solved
for in a self-consistent approach, by demanding that the expected number of such hops up
to the time t [expressed in terms of d, α, and r(t)] is equal to one. For more details, we
refer to Ref. [192]. We note that this simple picture explains why the size distributions
are broad (for power laws α < d + 1/2). The long-range hops that contribute to the light
cone boundary at time t occur via a Poisson process with expected value 1. This leads
to comparable fluctuations in the number of such hops; in particular, there will be some
∼ O(1) probability that no hop of distance r(t) has occurred at all. This is in sharp contrast
to operator growth in short-range systems, where fluctuations in the light cone boundary
receive equal contributions from fluctuations at all previous times [340].

A full analysis of long-range operator spreading in the presence of error would represent
a substantial undertaking. We note that the manifestation of error that is relevant for time-
evolution of quantum mechanical operators has no physical analog in the biological context
where the previous studies of operator spreading originated [93, 97, 192, 531]. Here, we
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Figure E.1: Operator growth in long-range interacting random unitary circuits under unitary
and open-system dynamics. (a) Power-law exponent α = 0.14. The average operator size
grows super-linearly under unitary dynamics (black), according to the power-law [531], S ∼
t1/(2α−1). Under open-system dynamics (red), the average operator size eventually reverts
to sub-linear growth. (b) Power-law exponent α = 0.7. The average operator size grows
super-linearly under unitary dynamics (black), now according to a shrunk exponential [531],
S ∼ et

log2(1/α) . Under open-system dynamics (red), the average operator size eventually
plateaus, similar to our observation in all-to-all interacting systems [Fig. 10.2(b)]. The
arguments in the text predict that this apparent plateau is in fact a slow linear growth,
however, it is difficult to precisely distinguish these the two scenarios here.

instead propose a simple modification of the intuitive picture above. Consider two possi-
ble outcomes of the aforementioned Poisson process: one in which no hop of distance r(t)
occurs, and one in which ≥ 1 such hops occur. Both outcomes occur with ∼ O(1) proba-
bility under unitary dynamics. However, under open-system dynamics, the latter scenario
will have be suppressed exponentially in the operator size of the seed integrated over time,
i.e. proportional to ∼ exp

(
−ε
´ t
tseed

dt′ Sseed(t′)
)
. We therefore expect that sufficiently long-

range hops will cease to contribute to open-system operator growth, when this suppression
becomes small. This implies that at sufficiently late times, operator growth will asymptote
to ballistic behavior, S ∼ td, dominated by finite-range hops.

We explore these predictions by numerically simulating open-system long-range interact-
ing RUCs for α = 0.7, 1.4 (Fig. E.1). For α = 1.4, consistent with previous results, we observe
that the average operator size grows super-ballistically under unitary dynamics (black). In
contrast, under open-system dynamics (red), we indeed find that the average operator size
eventually crosses over to sub-ballistic growth at late times. We observe qualitatively similar
results for α = 0.7. Namely, the average operator size grows consistently with a shrunk expo-
nential at early times, and appears to plateau to a constant at late times. While we cannot
firmly establish the functional form of the late time behavior in either case, the crossover
from super-linear to sub-linear growth is consistent with the simple model outlined in the
previous paragraph.
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E.4 Open-system operator growth in free-fermion
integrable spin chains

In this section, we address operator growth in free-fermion integrable spin chains (FF-
ISCs) with open-system dynamics (Fig. E.2). Under unitary dynamics, FFISCs have been
found to exhibit qualitatively different behavior of operator growth compared to chaotic spin
chains [381, 504]. We will begin by showing that under unitary dynamics the size distribu-
tions of FFISCs are in fact broad (δS ∼ S), unlike those of chaotic short-range 1D systems
(δS ∼

√
S). We will then show that open-system dynamics eventually cause the average

operator size of FFISCs to decrease in time, S ∼ 1/t. In contrast to our other examples, we
do not expect this behavior to be universal for all local error models. For instance, errors
such as spontaneous emission will destroy the free fermion integrability of the model and
are thus beyond the analytic framework we introduce below. Other errors, such as dephas-
ing, will have a substantially weaker effect owing to the particular structure of time-evolved
operators in FFISCs.

For concreteness, we focus on the XX model:

H = J
∞∑

i=−∞

(XiXi+1 + YiYi+1) = J
∞∑

i=−∞

(ri`i+1 + `iri+1) . (E.38)

We expect the physics of other free-fermion integrable models to be similar. On the right
side, we re-write the Pauli matrices, X and Y , in terms of raising and lowering operators,
Xi = ri + `i, Yi = i(ri − `i). We can solve this Hamiltonian by defining fermion operators
via the Jordan-Wigner transform:

ri =

( ∏

0≤j<i

[2c†jcj − 1]

)
c†i

`i =

( ∏

0≤j<i

[2c†jcj − 1]

)
ci

Zi = 2c†ici − 1.

(E.39)

The Hamiltonian becomes:

H = J

∞∑

i=−∞

(
c†ici+1 + cic

†
i+1

)
, (E.40)

corresponding to hopping on a one-dimensional chain of free fermions.
Operator growth under unitary dynamics.—The Jordan-Wigner transformation allows us

to exactly solve for the time-evolution of operators that map to local fermion bilinears. We
focus on one such example: the fermion number operator, Z0 = 2c†0c0 − 1 (taken to lie at
site i = 0). Under unitary dynamics, the Heisenberg equation is:

∂tZ0(t) = i[Z0(t), H]. (E.41)
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Note that repeated commutations Z0 with the Hamiltonian give rise to operators exclusively
of the form rxZx+1 . . . Zx′−1`x′ , for x′ ≥ x, and `x′Zx′+1 . . . Zx−1rx, for x ≥ x′. In the fermion
picture, these correspond to bilinears, c†xcx′ . Making this explicit, we define the Pauli strings,

Sx,x′ ≡ c†xcx′ =





−PxZx+1 . . . Zx′−1Mx′ x < x′

+PxMx x = x′

−Mx′Zx′+1 . . . Zx−1Px x > x′
. (E.42)

We can decompose the time-evolved operator as a sum of such strings,

Z0(t) = 2
∑

x,x′

ax,x′(t) (Sx,x′ − δx,x1/2) , (E.43)

with coefficients ax,x′(t). Note that the identity factors guarantee that tr(Z0(t)) = 0. The
Heisenberg equation becomes:
∑

x,x′

∂tax,x′(t) (Sx,x′ − δx,x1/2) = i
∑

x,x′

ax,x′(t)[Sx,x′ , H]

= iJ
∑

x,x′

ax,x′(t)[Sx−1,x′ + Sx+1,x′ − Sx,x′−1 − Sx,x′+1]
(E.44)

which gives the following time-evolution for the coefficients, ax,x′(t):

∂tax,x′(t) = iJ [ax−1,x′(t) + ax+1,x′(t)− ax,x′−1(t)− ax,x′+1(t)]. (E.45)

This is the equation of motion for two (decoupled) free fermions, indexed by x and x′

respectively. It can be solved exactly via Fourier transform.
We now present the solution to this equation in the continuum limit, ax,x′(t)→ a(x, x′; t).

This limit neglects lattice-scale fluctuations in the coefficients ax,x′(t), but we expect it to
broadly capture the operators size distribution in the bulk of the light cone (see Ref. [504]
for a full treatment of unitary operator growth without the continuum approximation). The
Heisenberg equation becomes:

− i∂ta(x, x′; t) = J∂2
xa(x, x′; t)− J∂2

x′a(x, x′; t). (E.46)

We can solve this via a Fourier transform with the initial condition, a(x, x′; 0) = δ(x)δ(x′):

a(x, x′; t) =
1

(2π)2

ˆ
dk

ˆ
dk′ e−ikxe−ik

′x′e−iJk
2teiJk

′2t

=
1

(2π)2Jt
e−ix

2/4Jteix
′2/4Jt.

(E.47)

The solution has non-zero support at every site at any non-zero time, which is clearly unphys-
ical. We can rectify this by smoothing the wavefunction over an initial Gaussian wavepacket
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of width ∼ 1 (i.e. the lattice spacing):

as(x, x
′; t) =

1√
2π

ˆ
dy

ˆ
dy′ exp

(
−(x− y)2

2
− (x′ − y′)2

2

)
a(y, y′; t)

=
1√
2π

1

(2π)2Jt

ˆ
dy

ˆ
dy′ exp

(
−(x− y)2

2
− i y

2

4Jt
− (x′ − y′)2

2
+ i

y′2

4Jt

)

=
1√
2π

1

(2π)2Jt

ˆ
dy

ˆ
dy′

× exp

(
−y

2(1 + i/2Jt)

2
− yx− x2

2
− y′2(1− i/2Jt)

2
− y′x′ − x′2

2

)

=
1√

2π2Jt
√

(1 + i/2Jt)(1− i/2Jt)

× exp

(
−x

2

2

[
1− 1

1 + i/2Jt

]
− x′2

2

[
1− 1

1− i/2Jt

])

=
1√

2π
√

(2Jt)2 + 1
exp

(
− x2

2(1− i2Jt)

)
exp

(
− x′2

2(1 + i2Jt)

)
.

(E.48)

This gives a normalized probability distribution for x, x′,

|as(x, x′; t)|2 =
1

2π[(2Jt)2 + 1]
exp

(
− x2

2(1− i2Jt) −
x2

2(1 + i2Jt)

)

× exp

(
− x′2

2(1 + i2Jt)
− x′2

2(1− i2Jt)

)

=
1

2π[(2Jt)2 + 1]
exp

(
− x2/2

1 + (2Jt)2

)
exp

(
− x′2/2

1 + (2Jt)2

)

≈ 1

2π(2Jt)2
exp

(
−1

2
(x/2Jt)2

)
exp

(
−1

2
(x′/2Jt)2

)
,

(E.49)

corresponding to a Gaussian centered about x = x′ = 0, with a ballistically growing width,
2Jt.

To compute the operator size distribution, note that the size superoperator acts on each
string, Sx,x′ , as:

S{Sx,x′} = (|x− x′|+ 1)Sx,x′ −
1

2
1δx,x′ . (E.50)

This implies that Sx,x′− 1
2
1δx,x′ is a size eigenstate with size (|x−x′|+1). The size distribution

of Z0(t) is therefore:

P (S) =
∑

{x,x′:|x−x′|+1=S}

|ax,x′(t)|2 ≈
ˆ
dx
(
|as(x, x+ S − 1; t)|2 + |as(x, x− S + 1; t)|2

)

(E.51)
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Changing coordinates, δH = x+ x′, δ = x− x′, the operator wavefunction becomes:

|as(δH, δ; t)|2 ≈
1

2(2π)(2Jt)2
exp

(
−1

4
(δH/2Jt)2

)
exp

(
−1

4
(δ/2Jt)2

)
, (E.52)

which gives a size distribution:

P (S) ≈
ˆ
dδH |as(δH,S − 1; t)|2 + |as(δH,−S + 1; t)|2

=
1

2
√
πJt

exp

(
−1

4

(S − 1

2Jt

)2
)
.

≈ 1

2
√
πJt

exp

(
−1

4

( S
2Jt

)2
)
.

(E.53)

The size distribution is the positive half of a Gaussian with mean zero and width 2
√

2Jt.
The average size thus grows ballistically,

S ≈ 4Jt√
π
, (E.54)

and the size width likewise,
δS ≈ 2

√
2
√

1− 2/πJt. (E.55)
This is in sharp contrast with chaotic spin chains, which exhibit diffusive growth of the size
width, δS ∼

√
S.

Operator growth under open-system dynamics.—We now turn to the effect of open-system
dynamics on operator growth. For simplicity, we study isotropic decoherence on each qubit,
in which case the latter portion of the Lindbladian is directly given by the operator size.
Again, in contrast to chaotic systems, we expect that different forms of open-system dynamics
will affect FFISCs in different ways, since the large-size Pauli strings composing Ẑ0(t) contain
nearly entirely Pauli-Z components [Eq. (E.42)]. For example, this implies that dephasing
dynamics will have a nearly negligible effect on time-evolution. On the other hand, open-
system dynamics such as spontaneous emission will evolve Ẑ0(t) outside the given set of
strings, breaking free fermion integrability.

The Heisenberg equation becomes:

∂tZ0(t) = i[Z0(t), H]− εS{Z0(t)}. (E.56)

Using the expansion in Eq. (E.43), we have:
∑

x,x′

∂tax,x′(t) (Sx,x′ − δx,x1/2) =
∑

x,x′

ax,x′(t) (i[Sx,x′ , H]− εS{Sx,x′})

=
∑

x,x′

ax,x′(t)

[
iJ [Sx−1,x′ + Sx+1,x′ − Sx,x′−1 − Sx,x′+1]

− ε(|x− x′|+ 1) (Sx,x′ − δx,x1/2)

]
,

(E.57)
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S N

Figure E.2: Operator growth in free-fermion integrable spin chains with isotropic single-qubit
decoherence [Eq. (E.58)]. (a) The average operator size increases linearly at early times, and
before inverting to decay towards one at a time-scale set by the error rate, ε. The Loschmidt
echo fidelity (i.e. the operator normalization) displays non-concave behavior as a result of
this reverse in operator growth. (b) The probability distribution, ax,x′(t), for the location
of the endpoints, x, x′, of a time-evolved operators’ Pauli strings under unitary dynamics.
Each endpoint spreads ballistically in either direction, and the interior of the distribution is
approximately uniform. (c) The same probability distribution under open-system dynamics
with ε = 0.003. The small-size components (which lie along the diagonal, x ≈ x′) are nearly
unaffected by error, while large-size components (which lie highly off-diagonal) are strongly
damped. Note that the time of the final image, t = 45, occurs shortly before the first kink
appearing in (a).

which gives the following time-evolution for the Pauli string coefficients:

∂tax,x′(t) = iJ [ax−1,x′(t) + ax+1,x′(t)− ax,x′−1(t)− ax,x′+1(t)]− ε(|x− x′|+ 1)ax,x′(t). (E.58)

Note that the coordinates, x and x′, are now coupled by the Lindbladian, since the error is
proportional the absolute value of the separation between the two coordinates (i.e. the size).

To approximately solve this equation, first recall that in the fermion picture for unitary
time-evolution, the growth of Z0(t) corresponds a fermionic creation and annihilation oper-
ator each dispersing independently. At large times, t� 1/J , each momentum-component of
each fermion will propagate independently of all other momenta (formally, this corresponds to
a saddle point approximation when solving Eq. (E.44) via a Fourier transform, see Ref. [504]).
For a given momentum k, the group velocity, v(k) = ∂kε(k), is determined by the dispersion
relation, ε(k), of the Hamiltonian (for the XX model, we have ε(k) = 2J cos(k) ≈ 2J + Jk2

in the continuum limit). Turning to Lindbladian time-evolution, we now consider a pair of
momenta, k, k′, for the creation and annihilation operator respectively. The size of the Pauli



APPENDIX E. DETAILS AND ADDITIONAL DERIVATIONS ON OPERATOR
GROWTH IN OPEN QUANTUM SYSTEMS 346

strings corresponding to these momenta grows linearly in time, according to:

Sk,k′(t) = |v(k)− v(k′)|t. (E.59)

We therefore expect normalization of the particular pair of momenta to decay by a factor,

∼ exp

(
−2ε

ˆ t

0

dt′Sk,k′(t)
)

= exp

(
− εtSk,k′(t)

)
. (E.60)

Integrating over all momenta pairs gives a size distribution,

P (S) ≈ 1

2
√
πJt

exp

(
−1

4

( S
2Jt

)2

− εSt
)
. (E.61)

We expect this treatment to hold when ε/J � 1, which guarantees that the effect of error,
∼ εJt2, will be negligible until sufficiently large times (t � 1/J) that our approximation
holds.

The normalization of the operator size distribution is:

N =

ˆ ∞
0

dS P (S) = exp
(
4J2ε2t4

)
· erfc

(
2Jεt2

)
, (E.62)

where the complementary error function is defined as, erfc (x) ≡ (2/
√
π)
´∞
x
e−x

2 . The
average size can also be computed exactly in terms of the error function, although we do not
express it here. At late times (Jεt2 � 1), the size distribution asymptotes to,

P (S)→ 1

2
√
πJt

exp

(
− εSt

)
, (E.63)

which gives an algebraic decay for the normalization,

N → 1

2
√
πJεt2

. (E.64)

This can be derived from Eq. (E.62) using the approximation, erfc (x) ≈ e−x
2
/(
√
πx), for the

complementary error function at large x. This normalization decay implies a ∼1/t decay of
the average operator size,

S =
−∂t log(N )

2ε
→ 1

εt
, (E.65)

as quoted in Table 10.1.
To explore open-system operator growth in FFISCs outside the continuum limit, we

numerically solve Eq. (E.58) for N = 200 with open boundary conditions. As shown in
Fig. E.2, we observe that the average operator size indeed increases linearly at early times
and decays towards its minimal value, one, at late times. We also observe “kinks” in the
time profile of the average operator size. By analyzing the full Pauli string distribution
(Fig. E.2), ax,x′(t), we see that these kinks occur precisely when fermion operators reflect off
the boundary of the finite-size system.
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E.5 Numerical simulation details
In this section we provide details on the numerical simulations presented in Figs. 10.2,

10.3, E.1, and E.2.
Haar-random unitary circuits.—We begin with the random unitary circuit (RUC) sim-

ulations presented in Fig. 10.2 and Fig. E.1. Haar-random unitary circuits are toy models
for operator spreading, in which averages of quantities that contain two or fewer copies of
a time-evolved operator are efficiently simulable by averaging instead over Clifford-random
unitaries [122, 171, 340, 341]. Note that the generating function for the size distribution
(Fig. 10.4) contains two copies of M̂(t) can thus be efficiently simulated. The zeroth and
first moments of the size distribution provide the Loschmidt echo fidelity and the average
operator size. The RUC formalism can be also adapted to incorporate open-system operator
spreading [326]. Below, we do so for the specific error model in Eq. (10.4). As discussed
earlier in the supplemental material, this model exactly captures the effect of single-qubit
Pauli errors, and also applies to leading order in the error rate for arbitrary single-qubit
errors (assuming in both cases that errors occur at the same rate at each qubit, although
the model is easily modified if this is not the case).

We consider three RUC models: (i) 1D short-range interacting [340], (ii) 1D long-range
interacting [97, 531], and (iii) 0D all-to-all interacting [429]. In each model, a single time
step, δt, consists of choosing a pair of qubits and acting on this pair with a Haar-random
unitary, and applying the global quantum channel, exp(−εSδt). A unit of physical time
consists of N iterations of this procedure, so that each qubit is acted on by two unitaries
per unit time, on average. The pairs are chosen as follows: (i) in the short-range 1D RUC,
a qubit j is sampled randomly and paired with its nearest neighbor, j + 1, (ii) in the long-
range 1D RUC, a pair of qubits i and j are sampled according to a power law distribution
in their distance, ∼1/|i− j|2α [97, 531], and (iii) in the 0D RUC, pairs are sampled entirely
randomly. In cases (i) and (ii) we take periodic boundary conditions.

We simulate the average generating function of the operator size distribution by tracking
the Clifford time-evolution of a local Pauli operator of interest, and sampling over realiza-
tions of Clifford-random unitaries [340, 341]. In each Clifford realization, C, the time-evolved
operator, M̂C(t), has a well-defined size at every time step (since Pauli operators are eigen-
states of the size superoperator). Under open-system dynamics, the individual Pauli operator
M̂C(t) thus evolves exactly as:

M̂C(t) = exp

(
−ε
ˆ t

0

dt′SC(t′)
)
· M̂C,U(t). (E.66)

Here, M̂C,U(t) represents the operator time-evolved by Clifford unitaries under unitary dy-
namics (i.e. ε = 0), and SC(t′) is the size of this operator at time t′. The average generating
function of the size distribution over Haar-random realizations, U , is therefore equal to:

GS(µ) =
1

NC

∑

C

〈
M̂C(t)e

−µS
{
M̂C(t)

}〉
=

1

NC

∑

C

NC(t)e−µSC(t), (E.67)
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where we denote the normalization of a single Clifford realization as:

NC(t) = exp

(
−2ε

ˆ t

0

dt′SC(t′)
)
. (E.68)

The average generating function is a sum of the generating functions over each Clifford
realization (i.e. the simple exponentials e−µSC(t)), weighted by its normalization, NC(t). From
Eq. (E.67), we obtain the average Loschmidt echo fidelity,

Nt =
1

NC

∑

C

NC(t), (E.69)

and the moments of the size distribution,

Sn =
1
NC

∑
CNC(t)

(
SC(t)

)n

Nt
. (E.70)

In Fig. 10.2, we plot our phenomenological predictions as dashed lines in addition to data
from numerical simulations. For Fig. 10.2(a) [i.e. model (i)], the dashed curve is given by
S = 2vBt− εct2/2, with the butterfly velocity, vB = (3/5)(3/4) = 9/20, set by theory [340],
and the size width parameter, c = 1.14, fit to the average operator size data via linear
regression. For Fig. 10.2(b) [i.e. model (iii)], the dashed curve is given by S = eλt

1+eλt/Sp , with
the value of the plateau size, Sp = λ

b2ε+4λ/3N
, and the Lyapunov exponent, λ = 2(3/5) = 6/5,

are set by theory, and the size width parameter, b = 1.00, is fit to the average operator
size via linear regression. This is the solution to the phenomenological size growth equation,
∂tS = λS − (εb2 + 4λ

3N
)S2, obtained from the equation in Ch. 10 by setting δS = bS and

including a 1/N correction to ensure that under unitary dynamics the average operator size
saturates to the late time value, 3N/4.

Hamiltonian dynamics.—In Fig. 10.3, we compute the OTOCs of local operators in the
scenario in which forwards and backwards time-evolution are both performed unitarily, but
under unequal Hamiltonians. Specifically, we consider the following spin chain Hamiltonians:

Ĥ1 = Ĥ − η

2
δĤ, Ĥ2 = Ĥ +

η

2
δĤ. (E.71)

Here, the Hamiltonian Ĥ is given by:

Ĥ =
N∑

i=1

hzẐi +
N−1∑

i=1

(
JxX̂iX̂i+1 + JyŶiŶi+1 + JzẐiẐi+1

)

×+
N−2∑

i=1

(
J ′xX̂iX̂i+2 + J ′yŶiŶi+2 + J ′zẐiẐi+2

)
,

(E.72)
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which consists of single-site fields, hz = 0.4, strong nearest-neighbor interactions, Jx =
0.6, Jy = −0.8, Jz = 1.1, and weak next-nearest-neighbor interactions, J ′x = −0.3, J ′y =
0.3, J ′z = 0.15. Here, we choose “generic” values for the interaction strengths in order to
avoid behavior associated with closeness to integrable points (for example, the Heisenberg
point at Jα = J, J ′α = 0). We do not otherwise expect our results to depend on the specific
values chosen. The perturbing Hamiltonian,

η δĤ =
∑

i

(
hx,iX̂i + hy,iŶi

)
, (E.73)

consists of disordered single-site fields in the perpendicular directions, with each magnitude
drawn randomly from the interval [−η, η] with η = 0.4. This choice of Hamiltonians pos-
sesses one special feature, namely that the perturbing Hamiltonian has zero overlap with
all powers of the average Hamiltonian, tr

(
δĤ Ĥm

)
= 0 for all m. As discussed earlier in

the supplemental material, we expect errors with non-zero overlap to contribute subleading
corrections (suppressed by powers of ∼1/t) to our picture of operator spreading.

We numerically compute the Loschmidt echo fidelity,

N (t) = 〈e−iH1tM̂eiH1te−iH2tM̂eiH2t〉, (E.74)

and the OTOCs,
C(t; P̂i) = 〈e−iH1tM̂eiH1tP̂ie

−iH2tM̂eiH2tP̂i〉 (E.75)

of the above Hamiltonians via Krylov-subspace methods for N = 12 and 104 disorder real-
izations. Note that Loschmidt echo fidelity, N (t), is not guaranteed to be positive in this
scenario (although we expect it to be in the many-body limit). Indeed, at late times where
N (t) is expected to be exponentially small, we observe that the value of N (t) for individual
disorder realizations may take small negative values. We find that the average of N (t) over
disorder realizations is significantly more stable and remains positive for all times considered.

In Fig. 10.3, we plot the average of the OTOC over both disorder realizations and the
set of single-qubit Pauli operators, P̂i ∈ {1i, Xi, Yi, Zi}, divided by the average Loschmidt
echo fidelity over disorder realizations. We comment that, if the experiments we wish to
model contain only a single realization of the perturbing Hamiltonian, it would be more
appropriate to divide the OTOC by the Loschmidt echo fidelity before averaging over disorder
realizations. However, we find that this leads to numerical instabilities at the small system
sizes we consider. In Fig. 10.3(a) we take the initial operator M̂ = X̂0, which does not
overlap the Hamiltonian, while in Fig. 10.3(b) we take the initial operator M̂ = Ẑ0, which
has non-zero overlap.

Free fermions integrable spin chains.—Time-evolution for Fig. E.2 is performed by exactly
solving Eq. (E.58) via matrix exponentiation, with open boundary condition for J = 1 and
N = 200.
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Appendix F

Details on scrambling and complexity in
phase space

In this Appendix we provide additional theoretical and numerical details relating to the
results of Ch. 11.

F.1 Basic Gaussian unitaries
In this appendix, we give some examples of symplectic matrices corresponding to Gaus-

sian unitries [485].

1. Single-mode phase rotation (2 by 2)

R (θ) =

(
cos θ sin θ
− sin θ cos θ

)
. (F.1)

2. Single-mode squeezing (2 by 2)

S (r) =

(
e−r 0
0 er

)
. (F.2)

3. Beam-splitter transform (4 by 4) written in a block form

B (η) =

( √
ηI

√
1− ηI

−√1− ηI √
ηI

)
, (F.3)

where I is the 2 by 2 identity matrix.

4. Two-mode squeezing (4 by 4) written in a block form

S2 (r) =

(
cosh rI sinh rZ
sinh rZ cosh rI

)
, (F.4)

where Z is the 2 by 2 Pauli Z matrix.
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In the following, we formalize the analog between displacement operators and Pauli
operators, and between Gaussian unitaries and Clifford unitaries [472].

Lemma 1. Completeness of displacement operators, tr (D (ξ)D (ξ′)) = πNδ (ξ + ξ′), and
A = 1/πN

´
d2Nξ χ (ξ;A)D (−ξ) , when χ (ξ;A) exists. Moreover, we have two useful iden-

tities

1

πN

ˆ
d2Nξ D (ξ)AD† (ξ) = tr (A) I, (F.5)

1

πN

ˆ
d2Nξ tr [D (ξ)A] tr

[
D† (ξ)B

]
= tr (AB) . (F.6)

The proof can be found in Ref. [84].

Lemma 2. For Gaussian unitary,

U †S,dD (ξ)US,d = exp
(
idTΩξ

)
D
(
S−1ξ

)
. (F.7)

The proof is straightforward calculation.

Lemma 3. Gaussian unitary corresponds to a linear coordinate transform of the Wigner
characteristic function and Wigner function,

χ
(
ξ;US,dAU

†
S,d

)
= χ

(
S−1ξ;A

)
exp

(
idTΩξ

)
(F.8)

and
W
(
x;US,dAU

†
S,d

)
= W

(
S−1 (x− d) ;A

)
. (F.9)

The proof for Lemma 3 can also be found in Ref. [454]
The above analog motivates us to consider displacement operators as a 1-design and

Gaussian unitaries as a 2-design analog.

F.2 Operator distributions and OTOCs in quasi
scramblers

Volume and average OTOCs

Consider some ensemble E of displacement operators. Under a quasi scrambling dynamics
by a Gaussian unitary U(t), the ensemble evolves to E(t) which is also an ensemble of
displacement operators. Our goal is to develop a probe of E(t) via OTOCs. For this purpose,
let us introduce a formal definition of the average OTOCs for quasi scramblers. Given a pair
of ensembles of displacement operators E1 and E2, define

C2 (E1, E2)ρ ≡ EV∼E1,W∼E2tr
[
ρV †W †VW

]
. (F.10)
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For the purpose of characterizing operator distributions, E1 may be regarded as the distribu-
tion of our interest, e.g., E1 = E(t), while E2 is a probe. The necessity of taking an average
over E1 and E2 can be understood from the fact that the amplitude of OTOCs for Gaussian
unitaries is always unity.

While the average OTOCs of quasi scramblers in Eq. (F.10) bears great similarity with
the one of genuine scramblers in Eq. (11.38), there is a subtle difference. In the case of genuine
scramblers, D†(ξ1; t) and D(ξ1; t) are decomposed by different displacement operators with
weights χ?[ξ] and χ[ξ′]. Observe that, due to ρ, there are contributions for ξ 6= ξ′ to
the average OTOCs. This is not the case for quasi scramblers where we sample the same
displacement operator for U † and U . Namely, the average OTOCs for quasi scramblers do
not depend on ρ. We note that the ρ dependence may be recovered by considering thermally
regulated OTOCs, but detailed discussions on these generalizations of OTOCs are beyond
the scope of this paper.

As in the case with genuine scramblers, the average OTOC is closely related to operator
distributions. For instance, given an arbitrary ensemble of dispalcement operators DP (·)
with the distribution P (·), let us consider cases where the probe E2 is the global Gaussian
displacement ensemble Dn defined in Eq. (11.39):

C2

(
Dn,DP (·)

)
ρ

= EV∼Dn,W∼DP (·)tr
[
ρV †W †VW

]
(F.11)

= Eξ∼P (·)
[
exp

(
−n|ξ|2

)]
. (F.12)

This measures the extent of the operator spreading with Gaussian filters.
In fact, an explicit relation between OTOCs and frame potentials can be derived when

distributions of our interest are Gaussian distributions with zero mean. As an example, we
look at the zero mean ensemble D0,V in Eq. (11.22). One can show that

C2 (D0,V ,Dn)ρ =
2N∏

`=1

1√
1 + 2λ`n

, (F.13)

where λ`’s are the eigenvalues of the matrix V . Note that for displacement operators, the
OTOC is independent of the state ρ. In particular, if n = 2 (2nth + 1), comparing with
Eq. (11.23) we have

C2 (D0,V ,Dn)ρ = FDξ0,V (ρ̃nth) . (F.14)

An important merit of OTOCs over the frame potential is that OTOCs can measure
not only the ensemble volume, but also the projected volume on certain subspace of the
2N−dimensional phase space (Fig. 11.6). If one chooses one of the ensembles as displacement
operators localized on certain mode w, i.e. Dw

n =
{
Dw (ξ) |ξ ∼ PG

D (ξ;n) ≡ exp (−|ξ|2/n) / (πn)
}
,

we have
C2 (D0,V ,Dw

n )ρ =
1√

(1 + 2λw1 n) (1 + 2λw2 n)
, (F.15)
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where λw1 , λw2 are the eigenvalues of the marginal covariance matrix V2w,2w+1. This enables
us to define the projected volume on mode w as

volw (E) = lim
n→∞

(
1

2n

)
1

C2 (E ,Dw
n )ρ

, (F.16)

in analog to Eqs. (11.20) and (11.13).
It is worth looking at a few simple examples. We shall consider the average OTOCs of

the form

Cω,v2 (n; t)ρ ≡ C2(Dω
n(t),Dv

n), (F.17)

where displacement operators are chosen to be Gaussian distributed at t = 0, and Dω
n evolves

to Dω
n(t) under a Gaussian unitary U . Note that in Eq. (F.16), the limit is only on the probe

ensemble, which is not taking n to infinity in Eq. (F.17). First we look at single-mode cases
w = v.

i) For U being displacements and phase rotations, we have

Cw,v2 (n; t)ρ =
1

1 + n2
. (F.18)

This includes the case where U is an identity operator.
ii) For single-mode squeezing, we have α′ = e−rReα + erImα, and

Cw,v2 (n; t)ρ =
1√

1 + n4 + 2n2 cosh(2r)
(F.19)

where the average OTOC decays as the squeezing parameter r increases. This is an example
of the increase of coarse-grained volume measured by finite temperature average OTOCs.

Next we look at multi-mode cases.
iii) Passive linear optics. Let ηw,v be the transmissivity between the two modes w, v. We

have

Cw,v2 (n; t)ρ =
1

(1 + η2
w,vn

2)
. (F.20)

When ηw,v = 1, it corresponds to swap gate and Cw,v2 (n; t)ρ = 1/(1 + n2). For generic passive
linear optics, a typical transmissivity between the two modes ηw,v ∼ 1/

√
N decreases with

the system size, thus the decay of the average OTOCs becomes less significant.
iv) For a two-mode squeezing between modes w, v, we find

Cw,v2 (n; t)ρ = 1/(1 + sinh2 (r)n2). (F.21)

We see that as the amount of squeezing |r| increases, Cw,v2 (n; t)ρ ∼ e−2|r| decreases exponen-
tially.
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Quantum Liouville’s theorem

Genuine scrambling via non-Gaussian unitaries is of quantum nature whereas quasi
scrambling via Gaussian unitaries admits description by a classical chaotic Hamiltonian
dynamics since a single phase space point stays localized. This observation motivates us
to look for a generalization of the classical Liouville’s theorem applicable to the Gaussian
quantum dynamics.

In classical mechanics, Liouville’s theorem asserts that the phase space volume is pre-
served in Hamiltonian dynamics. Namely, a phase space volume may stretch and distort to
complicated forms, yet its volume is always conserved. In analog to the classical theorem,
let us consider an arbitrary displacement ensemble DP (·) with the distribution P (·). We are
interested in the volume of the ensemble DP (·) (t) at time t. To be more rigorous, we shall
consider the volume of operator distributions as defined in Eq. (11.20). Noticing that volume
is given by an integration in Eq. (11.17) and det (S) = 1, we immediately have the following
theorem.

Theorem 3. (Quantum Liouville’s theorem) Phase space volume of a general ensemble of
displacement operators is preserved if U (t) is a Gaussian unitary.

Despite its simplicity, the theorem provides interesting lessons. First, since the theorem
suggests no volume increase for Gaussian unitaries, one might wonder why Gaussian quasi
scramblers can transform a displacement operator into the one with larger displacement.
Indeed, given the fact that OTOCs are sensitive to volume growths, the decay of the average
OTOCs appear to contradict with the theorem. However, recall that the average OTOCs
with respect to local modes measure projected volumes. Namely, even if the whole volume
in 2N -dimensional space is fixed, the projected volumes on local modes can be large in the
presence of large squeezing (Fig. 11.6). Second, the theorem holds at the infinite temperature
limit whereas coarse-grained volumes at finite temperature may not be preserved, suggesting
the emergence of quantum nature at low temperature phases. This coarse-grained volume
also has a nice correspondence to the idea of Kolmogorov-Sinai (KS) entropy. In classical
Hamiltonian dynamics, the phase space volume is preserved. The KS entropy counts the
number of coarse-grained phase space boxes of the phase space volume, which increases for
generic chaotic dynamics.

Another interesting implication concerns characterization of quantum chaos in CV sys-
tems. The theorem implies that any non-Gaussian effect will lead to some change of the
volume. Although the volume may either decrease or increase depending on U and initial
conditions, we expect that the volume can only increase for generic choice of chaotic non-
Gaussian dynamics. This speculation suggests that the volume of operator distributions
is a monotonically increasing quantity, providing an intuition similar to the second-law of
entropies.
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F.3 OTOC in presence of loss
In this section, we demonstrate that OTOCs decay due to a loss channel. Consider

the original unitary channel ρ → U † (t) ρU (t) combined with a thermal loss channel. Let’s
suppose the loss happens before the unitary, then

Dw (α; t) = U (t)†NNE
η (Dw (α))U (t) , (F.22)

the channel maps x→ √ηx+
√

1− ηxe, where xe are quadrature operators for an ancilla in
thermal state ρE with mean photon number NE. To obtain how operators evolve under the
loss channel we consider the trace

trA
(
DA (α)NNE

η (ρA)
)

= trA
(
DA (α) trEUAE,η (ρA ⊗ ρE)U †AE,η

)

= trEtrA
(
U †AE,ηDA (α)UAE,ηρA ⊗ ρE

)

= trEtrA
(
DA (
√
ηα)DE

(√
1− ηα

)
ρA ⊗ ρE

)

= χ
(
Re
√

1− ηα, Im
√

1− ηα; ρE

)
trA (DA (

√
ηα) ρA)

= exp
(
− (1− η) |α|2(2NE + 1)/2

)
trA (DA (

√
ηα) ρA) , (F.23)

where we have used the Stinespring dilation of a pure loss channel. Thus for a single loss
channel

NNE
η (D (α)) = exp

(
− (1− η) |α|2(2NE + 1)/2

)
D (
√
ηα) . (F.24)

From this we expect, the OTOC decreases exponentially in presence of loss and noise. The ac-
tual decay relies on the measurement scheme of the OTOC, but a rule-of-thumb estimation by
considering two lossy noisy channel gives Cw,v2 (α, β; t)T |η,NE ∼ exp (− (1− η) |α|2(2NE + 1)) .

F.4 Twice-regulated frame potential
In the main text, we have employed the finite-temperature frame potential to characterize

operator distributions in an ensemble of CV unitaries. Despite the fact that it provides us
with a quantitative understanding of volumes of distributions, there are two drawbacks.
First, it is lower bounded by zero even though ρ is a quantum state with finite entropy. This
implies that any normalized probability distribution won’t saturate the lower bound while
our Hilbert space of interest is regulated by ρ. This concern is also related to the second
drawback. When we seek for appropriate definitions of CV design, it would be natural to
consider ensembles of unitaries which approximately preserve the density matrix ρ. Hence
we hope to construct a modification of frame potentials which is lower bounded by some
ρ-dependent finite value.
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We now outline the derivation of the new frame potential. The guiding principle is
the definition (11.67) of DV k-designs. For CV systems with d → ∞, it converges to the
following:

lim
d→∞

dk EHaar
{
U⊗k ⊗ (U †)⊗k

}
=
∑

π

S↔(Wπ ⊗W−1
π ), (F.25)

where subleading contributions from the Weingarten functions are neglected. We will use
this as a definition for Haar randomness for CV systems. HereWπ performs the permutation
π on the k-copied Hilbert space H⊗k and S↔ is the swap operator between the two copies
of H⊗k (one acted on by U⊗k and one acted on by (U †)⊗k).

The new frame potential seeks to characterize how closely a given ensemble E resemble
the Haar ensemble. Define the followings:

|H) ≡ EHaar
{
U⊗k ⊗ (U †)⊗k

}
(F.26)

|E) ≡ N EE
{
U⊗k ⊗ (U †)⊗k

}
, (F.27)

with some appropriate normalization constant N which will be specified later. We define
the inner product between operators O1,O2 on the 2k-copied Hilbert space H⊗2k as

(O1|O2) = tr
(
O†1 PkO2 Pk

)
, (F.28)

with positive Hermitian operators Pk = [
(
ρ

1
2k

)⊗k
⊗
(
ρ

1
2k

)⊗k
]. One can show that it satisfies

all properties of inner product if ρ is full rank. If ρ is not full rank, it satisfies properties
of a semi-definite inner product. It can be viewed as the usual matrix inner product of the
‘low-energy weighted’ operators P 1/2

k O1 P
1/2
k and P 1/2

k O2 P
1/2
k .

The inner product defines a natural distance measure with which to compare E and
H, minN ‖|E)− |H)‖2 ≡ minN

[
(E| − (H|

] [
|E) − |H)

]
≥ 0. Here we minimize over the

normalization constant N such that the distance is minimum. After some calculations, we
arrive at

min
N
‖|E)− |H)‖2 = H(k)(ρ)− 1

J (k)
E (ρ)

≥ 0, (F.29)

where

H(k)(ρ) = k!
∑

π

|tr
(
Wπ

(
ρ

1
2k

)⊗k (
ρ

1
2k

)⊗k)
|2, (F.30)

J (k)
E (ρ) =

EU,V ∈E
[
|tr
(
U †ρ

1
2kV ρ

1
2k

)
|2k
]

(k!)2

[
EU∈E

[
tr (U †ρ1/kUρ1/k)

]k
]2 . (F.31)

Note that H(k)(ρ) depends only on ρ. Observing

J (k)
E (ρ) ≥ 1

H(k)(ρ)
, (F.32)
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we recognize J (k)
E (ρ) as the frame potential. For k = 1, 2, we find the following lower bounds

H(1)(ρ) = 1, H(2)(ρ) = 2 + 2 tr
(
ρ1/2

)4
. (F.33)

We would like to emphasize that the density matrix ρ reflects the Hilbert space of interest.
Namely, when the frame potential achieves its lower bound, the ensemble E is CV k-design
with respect to ρ. For instance, for a pure state ρ = |ψ〉〈ψ|, the lower bound is always
saturated for any ensembles.

The new frame potential can be used to verify CV k-designs. As an illuminating example,
we calculate the k = 1 CV frame potential for our 1-design candidate Dn on a thermal state
ρ̃nth of mean photon number nth. We obtain

J (1)
Dn (ρ̃nth) =

(
(1 + n+ 2nth)2

(1 + n)2 + 4nnth

)N
≥ 1 =

1

H(1)
, (F.34)

where N is the number of modes. It is illuminating to examine two limits: n � nth, where
the ensemble Dn contains an approximate basis for all operators acting on the subspace of
. nth photons, and n� nth, where it does not. For the latter, the frame potential scales as
(nth/n)N and continues decreasing as we increase the size n of the ensemble. Once n & nth,
the frame potential algebraically saturates to its lower bound of 1, up to terms of order (1/n)
and (nth/n)2, confirming again that limn→∞Dn is a proper CV 1-design.
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Appendix G

Details on learning quantum systems via
out-of-time-order correlators

In this Appendix we provide additional theoretical and numerical details relating to the
results of Ch. 13.

G.1 Details of numerical simulations
Here we provide further details on the numerical simulations displayed in Figs. 12.2, 12.3,

and 12.4.

Correlation functions

We begin by explicitly writing down the correlation functions used in Figs. 12.2, 12.3, 12.4.
Throughout, we denote time-evolved operators as V (t) ≡ U(t, 0)V U(t, 0)†, where the time-
evolution unitary is U(t2, t1) = T

{
e−i

´ t2
t1
dtH(t)

}
andH(t) is the time-dependent stroboscopic

Floquet Hamiltonian specified in Ch. 12 (unless otherwise stated, in Fig. G.2).
In the restricted access scenario considered in Figs. 12.2, G.2, we use the following cor-

relation functions:

CTOC(t) = 〈Vp(t)Vp(0)〉
CTOC(x, t) = 〈Vp(t)Wx(t/2)Vp(0)Wx(t/2)〉
COTOC(x, t) = 〈Vp(t)Wx(0)Vp(t)Wx(0)〉

(G.1)

where p denotes the probe qubit, and 〈·〉 ≡ 2−Ltr(·) is an infinite temperature average. Each
of these correlation functions can be measured using state preparation and read-out on the
probe qubit, combined with time-evolution and a single local unitary operation on the larger
system. (In the case of the auto-correlation function CTOC(t) no local unitary operation is
needed, Wx = 1.)
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In principle, we envision allowing V,W to run over all local operators in the system. For
instance, they could run over all 4w

(
N
w

)
Pauli operators of weight ≤ w, where w ∼ O(1). This

is naturally achieved by randomized measurement strategies such as shadow tomography with
local Clifford unitaries andO(3w) measurements [112, 217]. In practice, we must restrict V,W
to a few possible values in numerical simulations. Specifically, we take V = W ∈ {σx, σz} for
TOCs, and V = W ∈ {σz} for OTOCs. The OTOC is observed to be relatively insensitive
to basis of V and W , hence our choice to restrict to a single operator, σz (further, we note
that adding σx OTOCs could only improve the relative advantage of OTOCs compared
to TOCs). More broadly, we do not expect that adding additional pairs of {V,W} will
change the qualitative behavior of learning via TOCs and OTOCs. Specifically, we have
seen that the learning advantage of OTOCs arises from their ability to detect highly non-
local correlations in the system (i.e. large-weight components of the time-evolved operator
Vp(t), see Appendix G.2 for more detailed phenomenological estimates). These correlations
are not detectable by any time-ordered correlator involving only few-body operators; indeed,
in ergodic systems we generically expect that they are not efficiently detectable by any
time-ordered measurement.

For Figs. 12.3, 12.4, we utilize two-point correlation functions between pairs of local
operators:

CTOC = 〈Vx(t)Wx′(0)〉 ,
COTOC = 〈Vx(t)Wx′(0)Vx(t)Wx′(0)〉 . (G.2)

We again take V = W ∈ {σx, σz} for TOCs and V = W ∈ {σz} for OTOCs. We allow
x, x′ to span all qubits within a distance 2 of the link—this consists of 6 possible values for
each of x, x′, corresponding to distances 0, 1, and 2 to both the left and right of the link. In
principle, we would like x, x′ to run over the entire lattice; however, in practice we observe
that correlation functions involving qubits distant from the link provide little information,
and so can be safely neglected.

We now briefly comment on our numerical methods for computing the above correlation
functions and the Fisher information [Figs. 12.2(b), 12.3(b)]. We compute the infinite tem-
perature average in the correlation functions by sampling over Haar-random initial states
|ψ〉. To motivate this, we can insert a resolution of the identity, 1 = 1

2L

∑
ψ |ψ〉〈ψ| into the

correlation functions Eq. (G.2) to obtain:

CTOC =
1

2L

∑

ψ

〈ψ|Vi(t)Wj(0) |ψ〉 , (G.3)

and similarly for the OTOC. In numerics, we approximate this sum by sampling a finite
number Nψ of states |ψ〉 drawn from the Haar distribution; errors in this approximation will
scale as ∼ 1/

√
Nψ2L.

In the learning problems considered in Ch. 12 [Fig. 12.2(a), 12.3(a), 12.4], we take
Nψ = 25, 25, 10, 1, 1 for system sizes L = 6, 8, 10, 12, 14, respectively. In contrast, when
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Figure G.1: Depiction of the extrapolation method used to calculate the maximum Fisher in-
formation over time-ordered correlators [Fig. 12.2(b)]. Each correlation function is computed
for 25 Haar-random values of the state |ψ〉 [Eq. (G.3)]. For each value ofNψ between 1 and 25,
we choose a random subset of Nψ values of |ψ〉 and compute the average correlation function
over the subset. (Left) For each value of Nψ, we then compute the maximum Fisher infor-
mation over all correlation functions, max FI(Nψ) (solid red lines, darker lines corresponds
to higher Nψ). (Right) Our estimate of the maximum Fisher information at infinite tem-
perature (dotted lines, both plots) is obtained by fitting max FI(Nψ) = max FI(∞) +A/Nψ

and taking Nψ →∞ (points denote data, solid lines denote 1/Nψ-fit).

estimating the Fisher information [Fig. 12.2(b), 12.3(b)], we perform a large-Nψ extrapola-
tion to improve precision. This is required in order to establish the asymptotic scaling of
the Fisher information at large d [Fig. 12.2(b)] and small J` [Fig. 12.3(b)]. Specifically, we
compute the estimated correlation function CNψ averaged over Nψ = 1, . . . , 25 Haar-random
initial states, as well as the resultant Fisher information max FI(Nψ) ≡ |∂CNψ/∂J |2, max-
imized over all relevant correlation functions. We then perform a linear fit max FI(Nψ) =
max FI(∞) + A

Nψ
, where max FI(∞) and A are fitting parameters. Finally, the fitting pa-

rameter max FI(∞) represents our estimation of the Fisher information at Nψ →∞, which
we plot in Figs. 12.2(b), 12.3(b). We illustrate this procedure in Fig. G.1, using the data for
Fig. 12.2(b). On the left of Fig. G.1, we plot the maximum Fisher information, max FI(Nψ),
for each Nψ, as a function of the distance d. We observe that in regions where C is relatively
large (i.e. small d), the estimates are quite accurate even for Nψ = 1, while in regions where
C is small (i.e. large d) the Fisher information becomes successively smaller as the number of
sampled states Nψ increases. On the right of Fig. G.1, we re-plot the Fisher information for
each d as a function of Nψ. Solid lines represent the results of the linear fit, which we observe
to fit the Nψ-dependence of the data quite well. The extrapolated Fisher information [as
displayed in Fig. 12.2(b)] is shown in Fig. G.1 as a dashed line.
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Imperfect time-reversal via cavity mode

In Fig. 12.4(a), we benchmark the effects of decoherence on learning by coupling the spin
system to a single cavity mode. Our motivation for studying this model is two-fold. First, in
ergodic many-body systems the effect of local errors on OTOCs is expected to be independent
of the precise microscopic form of the error [427]. We therefore expect the spin-cavity system
to display similar OTOC physics to more generic local error models. Second, for L = 10
spins the spin-cavity system can be exactly simulated in a Hilbert space of size 2L × L (we
assume the cavity initially has zero occupation number; since the sum of spin magnetization
and the cavity occupation is conserved, the cavity occupation is upper bounded by L). This
is substantially smaller than the requirements to exactly simulate a mixed state quantum
system, 22L.

More specifically, the spin-cavity Hamiltonian is as follows. We modify the Floquet
time-evolution described in Ch. 12 to alternate between the following two Hamiltonians:

H1 = ±Hf + g
∑

i

(
a†σ−i + aσ+

i

)
+ ωa†a

H2 = ±Hc + g
∑

i

(
a†σ−i + aσ+

i

)
+ ωa†a

(G.4)

where Hf , Hc are the field and coupling Hamiltonians written in Ch. 12, a, a† are lower-
ing/raising operators for a bosonic cavity mode, g = {0.0, 0.25, 0.5} is the spin-cavity in-
teraction strength, and ω = 1.7 is the cavity frequency. Here, the ± denote values during
forwards/backwards time-evolution; note that we do not reverse the spin-cavity interaction
or the cavity frequency during backwards time-evolution.

Learning model

We now detail the machine learning techniques used in Figs. 12.2(a), 12.3(a), 12.4 and G.3(b).
Throughout, read-out error is mimicked by adding a random Gaussian variable with mean
zero and standard deviation δ to the exact correlation functions.

We begin with Fig. 12.2(a). Our goal is to predict the value of d [which specifies the
geometry of the spin system, see Fig. 12.2(a)] from the correlation functions of the system,
Eq. (G.1). To do so, we train a learning model on 3000 randomly drawn disorder realizations
of the Hamiltonian, consisting of 300 realizations each for d = 0, 1, . . . , 9. We test model
performance on 2000 additional disorder realizations, again consisting of 200 realizations each
for d = 0, 1, . . . , 9. For each disorder realization, the input to our learning model consists of
the correlation functions Eq. (G.1), evaluated at x = 2, . . . , L and 30 evenly spaced times
between 0 and 12. We apply Gaussian distributed read-out error δ = 3% to each correlation
function. We repeat this procedure, as well as the model training and evaluation that follows,
first using only TOCs as input to the learning algorithm, and second using both TOCs and
OTOCs.
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Next, we input these correlation functions into a support vector regression (SVR) model
with radial basis functions [78]. The radial SVR contains two hyperparameters: C, the
regularization parameter, and γ, which controls the width of the radial basis functions. We
choose C and γ by performing five-fold cross-validation over the sets C = {10, 30, 100},
γ = {0.03, 0.06, 0.1, 0.3, 1, 3, 6, 10}. We obtain C = 10, γ = 1 for learning via TOCs, and
C = 10, γ = 0.03 for learning via both TOCs and OTOCs. In the identical learning task for
Hamiltonian evolution [Fig. G.2(a)], we obtain C = 10, γ = 1 for learning via TOCs, and
C = 100, γ = 0.03 for learning via both TOCs and OTOCs.

We now turn to Fig. 12.3(a) and 12.4. Our goal is to perform binary classification using
the correlation functions Eq. (G.2) to distinguish whether the link interaction strength is
zero or nonzero. To do so, we simulate the correlation functions of 300 randomly drawn
disorder realizations of the Hamiltonian for each link strength,

J` = {0, 0.01, 0.017, 0.03, 0.06, 0.1, 0.17, 0.3, 0.6, 1.0}. (G.5)

For each nonzero J`, we train a learning model to perform binary classification between link
strength 0 and J`. We test model performance on 400 additional disorder realizations, again
consisting of 200 realizations each for link strength 0 and J`.

The first step of our learning model is to prune the correlation functions used as input.
We do so by estimating the mutual information between each individual correlation func-
tion and the link interaction strength, and selecting the K correlation functions with the
highest mutual information. Here K is a hyperparameter that will ultimately be chosen via
cross-validation. To estimate the mutual information, we fit the distribution of correlation
functions values over disorder realizations to a Gaussian for each link strength, and compute
the Jensen-Shannon divergence between the Gaussian distributions. The Jensen-Shannon
divergence is equal to the desired mutual information [296].

As before, we input the selected correlation functions into a support vector machine
(SVM) with radial basis functions [78]. We now have three hyperparameters: the SVM
hyperparameters C and γ and the number of selected correlation functions K. We choose C,
γ, and K by performing five-fold cross-validation over each value C = {0.1, 1, 10, 100, 1000},
γ = {0.1, 0.3, 1, 3, 10, 30}. We obtain Figs. 12.4(b), by repeating this procedure for various
simulated read-out errors,

δ = {0.0001, 0.0003, 0.001, 0.003, 0.01, 0.03, 0.1}. (G.6)

At each read-out error, we perform a linear interpolation of the classification accuracy as a
function of J` [as shown in Fig. 12.3(a) for δ = 0.03]. The minimum detectable link strength
J∗` occurs at the intersection of this interpolation with a horizontal line (not depicted) cor-
responding to a classification accuracy of 90%.

Finally, we turn to Fig. G.3(b) in Appendix G.3. In the probe qubit scenario, training and
testing are performed on 300 and 200 samples respectively for each geometry and each value
of d. In the global state preparation and read-out scenario, we instead use 60 and 40 samples
respectively for each geometry. Our learning model consists of a support vector machine
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with hyperparameters chosen via 4-fold cross-validation from the sets C = {0.1, 1, 10}, γ =
{0.3, 3, 30}. As in our previous learning tasks, we apply a read-out error δ = 3% to each
correlation function before use in learning.

G.2 Phenomenological estimates
In this section, we provide more detailed reasoning behind the phenomenological esti-

mates of the Fisher information presented in Ch. 12. We begin with the Fisher information
under unitary dynamics with restricted access and then turn to the effects of imperfect
time-reversal and decoherence.

Fisher information in restricted access scenario

At sufficiently large times and distances, we expect the profile of correlation functions
in ergodic many-body systems to be described by only a few phenomenological parameters.
For instance, in one-dimensional systems the out-of-time-order correlator is predicted to take
the following functional form [17, 341],

COTOC(x, t) ≈ f

(
x/vB − t
A
√
t

)
(G.7)

where the phenomenological parameters vB and A describe the butterfly velocity and the
width of the OTOC wavefront, respectively. Here f is a compactly supported bump function
which interpolates between zero and one and then zero again within an O(1)-sized region
about the origin. Meanwhile, in systems with a local conservation law, we expect time-
ordered correlators to be dominated by diffusion of the conserved quantity. This leads to the
following profile for the auto-correlation function,

CTOC(t) ∼ 1√
Dt

, (G.8)

where D is a diffusion constant. In the absence of conserved quantities, one expects time-
ordered correlation functions to instead decay exponentially in time,

CTOC(t) ∼ exp(−γt), (G.9)

parameterized by a decay rate γ.
To obtain the Fisher information, FI(J |C) = |∂C/∂J |2, we must compute the deriva-

tive of the correlation functions with respect to a local coupling strength, Jy. To do so
while leveraging the above phenomenological predictions, we must first recognize that the
phenomenological parameters are themselves dependent on the local coupling strengths of
the system, e.g. vB → vB({Jy}). We expand on this in further detail for each case below.
The resultant scaling of the Fisher information in various physical regimes is summarized in
Table G.1.
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Table G.1: Maximum Fisher information in restricted access scenarios

Correlation function Probe qubit with Probe qubit with
local unitary control global unitary control

TOC without O(exp(−d)), O(exp(−d)),
conserved quantity [Fig. 12.2(b)]

TOC with O(1/d4) O(1/d4)
conserved quantity

OTOC O(1/d), O(1/d2),
[Fig. 12.2(b)]

Table G.2: Phenomenological estimates of the scaling of the Fisher information in the re-
stricted access scenario, for learning an interaction that lies a distance d from the probe
qubit.

Fisher information of OTOCs

We begin with the Fisher information of OTOCs. Our treatment is broken into two parts,
corresponding to the scenarios where the experimenter has either local or global unitary
control over the larger system. The former scenario is simulated numerically in Fig. 12.2.

Local unitary control.—We consider local OTOCs [Eq. (G.1)] and are interested in the
dependence of the OTOC on the local coupling strengths, {Jy}. To approach this, we will
assume that OTOC takes the same functional form as in Eq. (G.7),

COTOC(x, t) = 〈Vp(t)Wx(0)Vp(t)Wx(0)〉 ≈ f

(
x/vB(x)− t

A
√
t

)
, (G.10)

but now with a position-dependent butterfly velocity, vB(x). Specifically, we assume that
the effective butterfly velocity at time t receives contributions from all couplings that have
been visited thus far, i.e. all Jy with y . x. Since the time to traverse a single coupling
is proportional to the inverse coupling strength 1/Jy, we expect the time to traverse all
couplings up to a distance x to be proportional to the sum

∑x
y=0 1/Jy. Equating this time

to the distance divided by the effective butterfly velocity x/vB(x), we have:

vB(x) ≈
[

1

x

x∑

x=0

1

Jx

]−1

. (G.11)

If each coupling strength is drawn independently from some disorder realization, then at
large times the butterfly velocity will be close to its typical value, vB = 1/J .
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We can now compute derivatives of the correlation function with respect to a given
coupling strength via the chain rule. The derivative of the butterfly velocity is

∂JdvB(x) ≈ vB(x)2

J2
dx
· δd≤x, (G.12)

which yields the following for the OTOC:

∂JdCOTOC(x, t) ≈ − x

A
√
tvB(x)2

· f ′
(
x/vB(x)− t

A
√
t

)
· ∂JdvB(x)

≈ − 1

AJ2
d

√
t
· δd≤x · f ′

(
x/vB(x)− t

A
√
t

)
.

(G.13)

There are two parameters of the local OTOC chosen by a potential experimentalist: the
position x of the local perturbation, and the evolution time t. We are interested in the
maximum Fisher information given an optimal choice of x and t. Observing Eq. (G.13), we
see that the derivative f ′ is maximized by the choice x = vBt, while the delta function then
sets vBt = d. Plugging these values in, we find the Fisher information

max
C

FI(J |COTOC) ≈
∣∣∣∣∣

f ′(0)

AJ2
y

√
vBd

∣∣∣∣∣

2

∼ 1

d
. (G.14)

Global unitary control.—We now turn to an alternate experimental scenario, where one
has only global unitary control over the larger system. In this scenario, the natural general-
ization of the correlation functions Eq. (G.1) is the following:

CTOC = 〈Vp(t)Vp(0)〉
CTOC =

〈
Vp(t) e

iφ
∑
xWx(t/2) Vp(0) e−iφ

∑
xWx(t/2)

〉

COTOC =
〈
Vp(t) e

iφ
∑
xWx(0) Vp(t) e

−iφ
∑
xWx(0).

〉
(G.15)

Here we replace the local unitary operations of Eq. (G.1) with global spin rotations, eiφ
∑
xWx ,

by an angle φ (here, Wx is a local Hermitian operator on qubit x).
We expect the behavior of the OTOC under global control to be governed by the “size” of

time-evolved operators [139, 416, 418]. The size corresponds to the average of local OTOCs
over all qubits in the system [379]. In one-dimensional ergodic systems the size grows linearly
∼ vBt, which yields the following phenomenological expectation for the global OTOC [139]:

Cglob
OTOC = exp

(
−φ2vB(t)t

)
. (G.16)

Here we have made the butterfly velocity time-dependent to capture its dependence on the
local coupling strengths,

vB(t) ≈
[

1

vBt

vBt∑

y=0

1

Jy

]−1

, (G.17)
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where vB = 1/J is the typical butterfly velocity.
Taking the derivative of the OTOC via the chain rule, we have:

∂JdC
glob
OTOC ≈ −φ2t · ∂JdvB(t) · exp

(
−φ2vB(t)t

)

= −φ2t · vB(t)2

vBJ2
d t
· δd≤vB(t)t · exp

(
−φ2vB(t)t

)

≈ −φ2 · vB
J2
d

· δd≤vBt · exp
(
−φ2vBt

)
.

(G.18)

We would like to maximize the Fisher information over the parameters (φ, t). This entails
taking the time t to be as early as allowed by the delta function, t ≈ d/vB, in order to
minimize the exponential. The correlator is then maximized by choosing φ such that φ2vBt ∼
1. This gives a Fisher information:

max
C

FI(J |COTOC) ≈
∣∣∣∣
vBe

−1

J2
yd

∣∣∣∣
2

∼ 1

d2
, (G.19)

which decays algebraically, with an additional factor of d compared to the local unitary
control scenario.

Before moving on, we briefly summarize the intuition behind the two above estimates.
In both cases, an O(1) perturbation in a local coupling strength produces an O(1) shift in
the location of the OTOC wavefront. With local control, this shift produces an O(1/

√
d)

change in the OTOC, since the OTOC wavefront is spread across a width ∼
√
d by the time

it reaches the coupling. With global control, this produces an O(1/d) change in the OTOC,
since the global OTOC depends on the average of ∼d individual coupling strengths. Since
the Fisher information involves the square of the OTOC derivative, these lead to an O(1/d)
and O(1/d2) Fisher information, respectively.

Fisher information of TOCs in absence of conserved quantities

We now turn to a simpler case, the Fisher information of time-ordered correlators in
the absence of conserved quantities [Fig. 12.2(b)]. Under ergodic dynamics, we expect such
correlation functions to decay exponentially in time at sufficiently large times, see Eq. (G.9).
Now, consider the derivative of the correlation function with respect to a local coupling
strength at a distance d away from the probe qubit. By causality, this derivative can only
be non-zero after a time t & d/vB. However, at such times the magnitude of the correlation
function has already decayed by a factor of e−γt. This suggests that the Fisher information
will decay exponentially in the distance d,

max
C

FI(J |CTOC) . exp(−2γx/vB), (G.20)

as observed numerically in Fig. 12.2(b).
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Fisher information of TOCs in presence of conserved quantities

The scaling of the Fisher information for TOCs is modified in the presence of a conserved
quantities. In this case, one expects the TOC at sufficiently large times to be dominated by
slow diffusive dynamics of the conserved quantity. This lies in contrast to the exponential
decay expected in the absence of conserved quantities.

To study this, we begin with the auto-correlation function [first line of Eq. (G.1)]. Recall
that the auto-correlation function can be measured with access solely to the probe qubit,
and is thus accessible in both the local and global control scenarios. Similar to the case of
OTOCs, we will assume that the dependence of the correlation function on the local coupling
strengths is captured by replacing the diffusion constant, D, with a time-dependent value,

CTOC(t) =
1√
D(t)t

. (G.21)

Following the logic of the previous section, we assume the effective diffusion constant takes
the form [392],

D(t) ∼


 1√

Dt

√
Dt∑

y=0

1

Jy



−1

, (G.22)

where D = 1/J is the diffusion constant’s typical value. Differentiating with respect to the
local coupling strength gives

∂JdD(t) ∼ D(t)2

J2
d

√
Dt
· δd<√Dt . (G.23)

Computing the derivative of the auto-correlation function, we have:

∂JdCTOC(t) = − 1

2D(t)3/2t1/2
· ∂JdD(t)

= − D(t)1/2

2J2
d t
√
D
· δd<√Dt

≈ − 1

2J2
d t
· δd<√Dt .

(G.24)

The magnitude of the derivative is maximized by taking the minimum possible time, t ≈
d2/D, which yields a Fisher information,

max
C

FI(J |CTOC) ≈
∣∣∣∣
D

2J2
xd

2

∣∣∣∣
2

∼ 1

d4
. (G.25)

This can be understood intuitively as follows. For the auto-correlation function to be sensitive
to the coupling strength Jd, the conserved quantity must have spread to at least distance
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d. At such a distance the magnitude of the auto-correlation function is O(1/d), since the
conserved quantity has spread over ∼ d sites. In addition, the derivative with respect to an
individual coupling strength is suppressed by an additional factor O(1/d), since the auto-
correlator depends only on the average (inverse) coupling strength over ∼ d sites. Combining
these two factors and squaring leads to an O(1/d4) Fisher information.

We now turn to the remaining time-ordered correlation functions in Eqs. (G.1, G.15),
which require either local or global unitary control over the non-probe qubits. We will find
that such correlators provide no scaling advantage beyond the auto-correlator.

We first consider the case of local unitary control [Eq. (G.1)]. Physically, these corre-
lation functions correspond to preparing an amount of the conserved quantity (e.g. a spin
polarization) at the probe qubit, letting it diffuse for a time t/2, flipping the spin polarization
at a qubit x, and measuring the polarization at the probe qubit after an additional time t/2.
We thus expect the TOC behave as follows,

CTOC(x, t) = 〈Vp(t)Wx(0)Vp(t)Wx(0)〉 ≈ q(0, t)− 2q(x, t/2) · q(x, t/2), (G.26)

where q(x, t) ≈ (2πD(t)t)−1/2 exp(−x2/(2D(t)t)) is the propagator of the conserved quantity
from position 0 to position x (or vice versa). The first term is equal to the auto-correlation
function. The second term arises from the spin flip at position x and time t/2. The spin flip
effectively inserts a negative polarization −2q(x, t/2) on the qubit x, which propagates back
to the probe qubit with amplitude q(x, t/2).

The derivative of the second term is as follows,

∂Jd
[
q(x, t/2)2

]
= ∂Jd

[
1

πD(t)t
exp

(
− 2x2

D(t)t

)]

≈ ∂Jd

[ −1

πJ2
yD

1/2t3/2
exp

(
− 2x2

D(t)t

)
+

2x2

πJ2
yD

3/2t5/2
exp

(
− 2x2

D(t)t

)]
· δd<√Dt .

(G.27)

The magnitude of the derivative is maximized at Dt ∼ x2, x ∼ d, and is of order O(1/d3).
This is subleading compared to the auto-correlation function, of order O(1/d2), and thus
does not affect the asymptotic scaling of the Fisher information with d.

The case of a global control [Eq. (G.15)] is even simpler. A global spin rotation about the
x-axis by an angle φ multiplies the conserved quantity at each site by a factor of cos(φ). Here
we assume that the x- and y-components of spin that are generated by the rotation quickly
decay in time if they are not conserved by the ergodic dynamics. The resulting correlation
function is then given by the auto-correlation multiplied by cos(φ). Again, this provides no
scaling advantage in the Fisher information.

Effect of imperfect time-reversal and decoherence on Fisher
information

We now incorporate imperfect time-reversal dynamics into our estimates of the Fisher
information of OTOCs. Previous works have been found that a wide range of experimental
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errors (e.g. extrinsic decoherence, coherent errors in time-reversal) have a similar effect
on OTOC measurements, as long as the relevant errors are local and the dynamics are
ergodic [139, 326, 416, 427, 450].

Specifically, in one-dimensional systems, one expects that the OTOC under open-system
dynamics, C̃OTOC, is equal to the same OTOC under unitary dynamics, COTOC, multiplied
by an overall Gaussian decay in time [427]:

C̃OTOC ≈ exp
(
−aεvBt2

)
× COTOC . (G.28)

Here ε is an effective local error rate, vB is the butterfly velocity, and a is an order one
constant. The argument of the above exponential is proportional the volume of the time-
evolved operator’s light cone. Intuitively, Eq. (G.28) states that each error in the causal past
of an operator contributes a roughly equal amount to the decay of the OTOC. We note that
in finite-size systems we do not expect Eq. (G.28) to precisely hold, however, corrections are
expected to be suppressed by ∼ ε/J where J is the local interaction strength [427], so we
neglect them here.

Substituting Eq. (G.28) into our estimate for the Fisher information [Eq. (G.19)] and
setting vBt ≈ d, we find:

max
C

FI(Jd|C̃OTOC) ∼ 1

d2
exp
(
−aεd2/vB

)
. (G.29)

Meanwhile, we assume that the Fisher information with respect to TOCs is comparatively
unaffected by error, and thus once again follows a linear exponential decay in d:

max
C

FI(Jd|C̃TOC) ∼ exp(−γd) . (G.30)

Setting the two exponentials to be equal, maxC FI(Jd|C̃OTOC) ∼ maxC FI(Jd|C̃TOC), we find
that the OTOC continues to provide an advantage over the TOC up to

d .
γvB
ε

, (G.31)

as quoted in Ch. 12.
We now apply the same analysis to our second learning regime. Let us set vB ∼ J for

consistency with Ch. 12. The Fisher information of an OTOC between operators on either
side of the link with respect to the link interaction strength is now modified to

max
C

FI(J`|C̃OTOC) ∼ J4
` t

2

J2
exp
(
−aεJt2

)
, Jt . L . (G.32)

The maximum of the Fisher information as a function of time now occurs at

t∗ ∼ min

{√
1

εJ
,
L

J

}
, (G.33)
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Figure G.2: Learning in the restricted access scenario under Hamiltonian evolution. Numer-
ical simulations are performed identically to Fig. 12.2 but now with Hamiltonian evolution
under (Hc +Hf )/2 instead of Floquet evolution. In both (a) the learning task and (b) the
Fisher information, the results for learning Hamiltonian dynamics are qualitatively similar
to the results for learning Floquet dynamics [Fig. 12.2]. In (b), the maximum Fisher infor-
mation is averaged over 100 disorder realizations for both TOCs and OTOCs. At large d,
we expect the Fisher information for Hamiltonian evolution to approach a power law decay
∼1/d4 (see Appendix G.2), but this cannot be observed in our finite-size numerics.

with value
max
C

FI(J`|C̃OTOC) ∼ min

{
J4
`

εJ3
,
J4
`L

2

J4

}
, (G.34)

which differs from the unitary OTOC for sufficiently high error rates. Again, we assume
that the Fisher information of TOC is not affected by error to leading order. Taking the
square root of Eq. (G.34), we thus find the L-fold advantage of the OTOC is replaced by a√
J/ε-fold advantage at error rates

√
ε/J & 1/L, as quoted in Ch. 12.

G.3 Additional numerics
In this section we provide numerical results in two additional learning scenarios. We

begin by repeating the simulations leading to Fig. 12.2 for time-independent Hamiltonian
evolution instead of Floquet evolution. We then discuss learning in the restricted access
scenario with global unitary control, in contrast to local unitary control as considered in
Ch. 12).

Learning with time-independent Hamiltonian evolution

In the numerical simulations in Ch. 12, we utilized Floquet time-evolution in which the
spin interactions and local fields were applied in a stroboscopic fashion. Our motivations for
using Floquet time-evolution instead of Hamiltonian time-evolution were three-fold: First,
Floquet dynamics are prevalent in a variety of quantum systems that one might wish to
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learn, e.g. in digital quantum simulators, and NMR or solid-state defect setups with optical
driving. Second, the Floquet dynamics considered are moderately faster to simulate via
Krylov subspace methods than Hamiltonian dynamics, since the Hamiltonian of the former
contains fewer terms at a given instant in time. Third, we do not expect the behavior of
learning via TOCs or OTOCs under the two dynamics to qualitatively differ at moderate
times and distances (although at large distances they may, see Appendix G.2).

Here, we check the latter assumption by repeating the numerical analysis of Fig. 12.2
using time-independent Hamiltonian dynamics. As shown in Fig. G.2(a), we find that the
results of the learning task of Fig. 12.2(a) behave quite similarly for Hamiltonian and Floquet
dynamics. In particular, access to OTOCs continues to enable substantially more accurate
predictions for the crossing distance d for all d & 3. In Fig. G.2(b), we turn to the behavior
of the Fisher information as a function of a coupling’s distance from the probe qubit. Un-
fortunately, we are not able to discern the ∼1/d4 scaling predicted in Appendix G.2 in our
finite-size numerics. Instead, the Fisher information behaves qualitatively similar to that
of Floquet dynamics [Fig. 12.2(b)]. We anticipate that at sufficiently large distances the
Fisher information of Hamiltonian dynamics will indeed asymptote to the expected power
law decay. However, at such distances the Fisher information will likely already be too small
to be useful for most practical purposes.

Learning under restricted access with global unitary control

We now turn to learning when one has only global unitary control over the system of
interest. We consider a learning task where one wishes to classify the geometry of an unknown
spin system, which we assume is drawn with equal probability from the three geometries
shown in Fig. G.3(a). We find that access to OTOCs provides a substantial advantage in
this classification task. Notably, we find that OTOCs continue to improve learning even
when one has only global state preparation, control, and read-out (i.e. even in the absence
of a probe qubit).

The classification problem we consider is a close variant of those introduced in Ch. 12.
We suppose that one has access to the correlation functions of an unknown Hamiltonian
whose connectivity corresponds to one of the three geometries shown in Fig. G.3(a). The
goal is to distinguish which geometry describes the Hamiltonian. We again approach this
task by training and testing a support vector machine on samples of disorder realizations,
see Section G.1 for details.

We consider learning in two different experimental access scenarios. First, we consider
the scenario where one has state preparation and read-out from a single probe qubit, and
global control over the remainder of the system. In this case, we take the probe qubit to be
a distance d away from any distinguishing features of the geometry (see Fig. G.3), and study
the learnability as a function of d. Note that we are restricted to relatively small distances,
d ≤ 4, owing to the particular form of the three geometries considered. We find that access
to OTOCs increases the classification accuracy between 10% and 35% for all values of d
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Figure G.3: (a) The three spin geometries considered in the learning task defined in the
text. Each geometry consists of L = 14 spins. The probe qubit (purple) is located along
a subset of the system that is identical between the three geometries up to a distance d
away from the probe. (b) Accuracy of classification, using correlation functions that can be
measured with (left) state preparation and read-out on the probe qubit and global unitary
control over the remaining system, and (right) global state preparation, unitary control, and
read-out. For the former, the accuracy is plotted as a function of the distance d of the probe
qubit from the geometric feature of interest. In both scenarios, access to OTOCs (blue)
substantially improves the classification accuracy compare solely accessing TOCs (red).

[Fig. G.3(b)]. For instance, OTOCs allow classification with accuracy ∼ 65% at d = 3, at
which learning via TOCs has nearly trivial accuracy.

Our second scenario is even more restrictive: we suppose that one has only global state
preparation, control and read-out over the entire system. Despite being commonplace in ex-
periments such as NMR spectroscopy [279], learning in this scenario remains quite difficult
in strongly-interacting systems, due to the combination of time-ordered correlators decaying
quickly and local information being averaged out by global control and measurement. In-
deed, in our learning task, we find that learning via TOCs features a classification accuracy
of only ∼ 55%. Intuitively, we expect access to global OTOCs to improve learning, as op-
erator spreading at late times is dependent on global geometric features of the system. In
keeping with this intuition, we find that learning via both TOCs and OTOCs improves the
classification accuracy to ∼80%.
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Appendix H

Proof of information-theoretic hardness
of out-of-time-order correlators

In this Appendix we provide a detailed proof of the main result of Ch. 13.

H.1 Technical preliminaries
Before delving into the proof of Theorem 1, we require some technical definitions and

tools. Included are more precise versions of Definition 1 and Definition 2 from Ch. 13.

Notation

We will work with an n qubit Hilbert space H ' (C2)⊗n, for n even. The dimension of
the Hilbert space is 2n, which we denote by d. Our main proof will involve extensive use of
diagrammatic tensor network notation, reviewed in detail in [96]. Our conventions for the
diagrams will match those of [96].

Haar integration and Weingarten functions

Consider the unitary group U(d). It will be convenient to use multi-index notation,
wherein I = (i1, ..., ik) and analogously for I ′, J, J ′. Letting

U⊗kIJ := Ui1j1Ui2j2 · · ·Uikjk , (H.1)

we will be interested in computing expectation values of the form EU∼Haar(d)[U
⊗k
IJ U

†⊗k
J ′I′ ]. To

write out the result of this expectation value, we denote by Sk the symmetric group on k
elements; for σ ∈ Sk, we adopt the notation

δσ(I),I′ := δiσ(1),i
′
1
δiσ(2),i

′
2
· · · δiσ(k),i

′
k
. (H.2)
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Then we have the useful identity (see e.g. [262] for a review)

E
U∼Haar(d)

[U⊗kIJ U
⊗k
J ′I′ ] =

∑

σ,τ∈Sk

δσ(I),I′δτ(J),J ′WgU(στ−1, d) , (H.3)

where WgU( · , d) : Sk → R is the Weingarten function. This function can be constructed
somewhat explicitly in the following way. In a slight abuse of notation, let us also denote by
σ, τ their representation on H⊗k, and define

GU(στ−1, d) := tr(στ−1) = d#(στ−1) (H.4)

where #(στ−1) is the number of cycles of στ−1. Viewing GU(στ−1, d) as a k! × k! matrix
Gσ−1,τ , we have that WgU(σ−1τ, d) is its matrix inverse. That is,

∑

τ∈Sk
WgU(σ−1τ, d)GU(τ−1π, d) = δσ,π . (H.5)

Having defined the Weingarten function, let us state a few useful results from the litera-
ture which we will leverage in our proofs:

Theorem 3.2 of [108] 1. For any σ ∈ Sk and d >
√

6 k7/4,

1

1− k−1
d

≤ (−1)k−#(σ)d2k−#(σ)WgU(σ, d)
∏

i
(2`i−2)!

(`i−1)!`i!

≤ 1

1− 6k7/2

d2

, (H.6)

where the left-hand side inequality is valid for any d ≥ k. Here σ ∈ Sk has cycle type
(`1, `2, ...).

We will in fact use the following corollary of this result:

Corollary 1. |WgU(1, d)− d−k| ≤ O(k7/2d−(k+2)).

Finally we state a Lemma from [10]:

Lemma 6 of [10] 1.
∑

τ∈Sk |WgU(τ, d)| = (d−k)!
d!

.

Learning tree formalism

In Ch. 13, we provided definitions of time-ordered and out-of-time-order experiments
based on the learning tree framework in quantum learning theory [10, 96]. It is useful to
formalize these more precisely; our definitions below are closely based off of Definition 6.1
of [96].

Definition 3 (Tree representation for learning a collection of channels without a quantum
memory). Let S = {Ci}i be a set of quantum channels on states on H. A quantum learning
algorithm without memory can be cast as a rooted tree T of depth T where each vertex encodes
all of the classical measurement outcomes that have been obtained by the algorithm up until
then. The tree T satisfies the following properties:
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1. Each note u has an associated n-qubit unnormalized state ρS(u) corresponding to the
current state of the system.

2. At the root r of the tree, ρS(r) is the initial state ρ0.

3. At each node u (except the root node) we apply a POVM measurement {F u
s }s on ρ(u)

to obtain a classical outcome s. Without loss of generality we take all of the F u
s ’s to

be rank one; if they are not, we can simply refine {F u
s }s so that each of its elements is

rank one. We also have a function fu which takes the index set of {F u
s }s to the index

set of S = {Ci}i. Then we apply the channel Cfu(s) to the present state. Each child
node v of u is connected through the edge eu,s.

4. If v is the child node of u connected through the edge eu,s, then

ρS(v) := Cfu(s)[F
u
s ρ

S(u) (F u
s )†] . (H.7)

Here F u
s ρ

S(u) (F u
s )† is the unnormalized post-measurement state, to which the channel

Cfu(s) is applied.

5. For any node u at depth t in the tree, pS(u) := tr(ρS(u)) is the probability that the
transcript of measurement outcomes observed by the learning algorithm after t mea-
surements is u. Moreover, ρS(u)/pS(u) is the state of the system at the node u.

Using this definition, we can provide the following formalizations of Definitions 1 and 2 in
Ch. 13:

Definition 4 (Time-ordered experiment, formal). A time-ordered experiment is a tree rep-
resentation for learning a single unitary channel U without quantum memory.

Definition 5 (Out-of-time-order experiment, formal). An out-of-time-order experiment is
a tree representation for learning the collection of two unitary channels {U ,U †} without
quantum memory, where the channels are inverses of one another.

Suppose we have a tree representation T for learning a collection of channels without
quantum memory, with depth T . Let its associated collection of channels be S = {Ci}i.
Then the probability distribution over measurement outcomes is given by pS(`) where ` runs
over the leafs of the tree. If instead we had a collection of channels S ′ = {C ′i}i with the
same index set as S = {Ci}i, then we could run S ′ through the same learning tree protocol
so that the probability distribution over measurement outcomes is now pS

′
(`). If we did not

know if we were handed S or S ′, then Le Cam’s two point method [519] implies that any
post-processing algorithm we might use on our measurement data to distinguish between S
and S ′ can succeed with a probability p ≥ 1/2 only if

1

2

∑

`∈ leaf(T )

|pS(`)− pS′(`)| ≥ 2p− 1 . (H.8)
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Circling back to Theorem 2, it is thus sufficient to show that for any time-ordered exper-
iment corresponding to a learning tree T of depth T ,

1

2

∑

`∈ leaf(T )

|EU [pU(`)]− EU1,U2 [pU1⊗U2(`)]| ≤ 2

3
(H.9)

for T ≤ Ω(d1/4). This inequality would show that we cannot distinguish between the two
ensembles with success probability p ≥ 5/6 using fewer than Ω(d1/4) queries to the unknown
unitary. Here EU denotes the Haar average over U in the unitary channel U [ρ] = UρU †, and
similarly for EU1,U2 and (U1⊗U2)[ρ] = (U1⊗U2)ρ(U †1⊗U †2). We will prove the inequality (H.9)
below.

H.2 Main proofs
As explained above, we can reformulate Theorem 2 in the following manner:

Theorem 4 (Equivalent to Theorem 2). For any time-ordered experiment with learning tree
T with depth T ≤ Ω(d1/4), we have

1

2

∑

`∈ leaf(T )

|EU [pU(`)]− EU1,U2 [pU1⊗U2(`)]| ≤ 2

3
. (H.10)

Proof. Let D be the maximally depolarizing channel so that pD(`) = 1/dT . Then using the
triangle inequality,

1

2

∑

`∈ leaf(T )

|EU [pU(`)]− EU1,U2 [pU1⊗U2(`)]|

≤ 1

2

∑

`∈ leaf(T )

|pD(`)− EU [pU(`)]|+ 1

2

∑

`∈ leaf(T )

|pD(`)− EU1,U2 [pU1⊗U2(`)]| .
(H.11)

By Proposition 1 below, the first term on the right-hand side is less than or equal to 1/3 for
T ≤ Ω(d1/3). Similarly, by Proposition 2 below the second term is less than or equal to 1/3
for T ≤ Ω(d1/4). This completes the proof.

Unitary channel versus maximally depolarizing channel

We begin by establishing more notation. Given a learning tree T of depth T , let
v0, v1, ..., vT = ` be a root-to-leaf path through the tree. This corresponds to having mea-
sured a sequence of POVM elements; let us denote them by Fv1 , Fv2 , ..., FvT . Without loss
of generality these can be assumed to be rank one, as we explained previously. We can treat
the last round (i.e. the T th round) differently than all of the others, since we do not need
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to have a residual state after measuring. This allows us to replace FvT by a bra 〈ψvT |. Our
Fvi ’s and 〈ψvT |’s satisfy completeness relations, namely

∑

v ∈ child(vi−1)

F †vFv = 1 for i = 1, ..., T − 1 , (H.12)

and also ∑

v ∈ child(vT−1)

|ψv〉〈ψv| = 1 . (H.13)

With this notation at hand, we can write pU(`) as

pU(`) = 〈ψvT |UFvT−1
U · · ·UFv2ρ0F

†
v1
U † · · ·U †FvT−1

U †|ψvT 〉 . (H.14)

For later, it will also be convenient to define F` by F` := Fv1 ⊗ Fv2 ⊗ · · · ⊗ FvT−1
.

With these preparations in order, we turn to our desired Proposition:

Proposition 1. For T ≤ Ω(d1/3), we have
1

2

∑

`∈ leaf(T )

|pD(`)− EU [pU(`)]| ≤ 1

3
. (H.15)

Proof. Using our Haar integration results from earlier, we have

<latexit sha1_base64="+QEJNuyxbank3U3v1VkBjLYmsJs=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGUY9BLx4jmAckS5idzCZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHdFCWfG+v63V1hb39jcKm6Xdnb39g/Kh0cto1JNaJMornQnwoZyJmnTMstpJ9EUi4jTdjS+nfntJ6oNU/LBThIaCjyULGYEWye1eoYNBe6XK37VnwOtkiAnFcjR6Je/egNFUkGlJRwb0w38xIYZ1pYRTqelXmpogskYD2nXUYkFNWE2v3aKzpwyQLHSrqRFc/X3RIaFMRMRuU6B7cgsezPxP6+b2vg6zJhMUkslWSyKU46sQrPX0YBpSiyfOIKJZu5WREZYY2JdQCUXQrD88ipp1arBZbV2f1Gp3+RxFOEETuEcAriCOtxBA5pA4BGe4RXePOW9eO/ex6K14OUzx/AH3ucPnqmPKg==</latexit>�

<latexit sha1_base64="XtRWCmBm4aVHkWHjAEHCJsINCh4=">AAAB8HicbVDLSgNBEOyNrxhfUY9eFoPgxbAbRD0GvXiMYB6SrGF2MkmGzMwuM71CWPIVXjwo4tXP8ebfOEn2oIkFDUVVN91dYSy4Qc/7dnIrq2vrG/nNwtb2zu5ecf+gYaJEU1ankYh0KySGCa5YHTkK1oo1IzIUrBmObqZ+84lpwyN1j+OYBZIMFO9zStBKDx0kyWN65k+6xZJX9mZwl4mfkRJkqHWLX51eRBPJFFJBjGn7XoxBSjRyKtik0EkMiwkdkQFrW6qIZCZIZwdP3BOr9Nx+pG0pdGfq74mUSGPGMrSdkuDQLHpT8T+vnWD/Kki5ihNkis4X9RPhYuROv3d7XDOKYmwJoZrbW106JJpQtBkVbAj+4svLpFEp+xflyt15qXqdxZGHIziGU/DhEqpwCzWoAwUJz/AKb452Xpx352PemnOymUP4A+fzB3zMkDU=</latexit>

⌧�1<latexit sha1_base64="UtiM86E2ZEp50Nao18YowkGgUaM=">AAAB/HicbVBNS8NAEN3Ur1q/oj16WSyCp5JIUY9FLx4r9AvaEDbbabt0swm7m0KI9a948aCIV3+IN/+N2zYHbX0w8Hhvhpl5QcyZ0o7zbRU2Nre2d4q7pb39g8Mj+/ikraJEUmjRiEeyGxAFnAloaaY5dGMJJAw4dILJ3dzvTEEqFommTmPwQjISbMgo0Uby7XKfEzHigPuxYn429ZuzR9+uOFVnAbxO3JxUUI6Gb3/1BxFNQhCacqJUz3Vi7WVEakY5zEr9REFM6ISMoGeoICEoL1scP8PnRhngYSRNCY0X6u+JjIRKpWFgOkOix2rVm4v/eb1ED2+8jIk40SDoctEw4VhHeJ4EHjAJVPPUEEIlM7diOiaSUG3yKpkQ3NWX10n7supeVWsPtUr9No+jiE7RGbpALrpGdXSPGqiFKErRM3pFb9aT9WK9Wx/L1oKVz5TRH1ifPwJ5lQU=</latexit>h vT
| <latexit sha1_base64="+0yu3fJs6rZq6TAZPu9EyGC2vtw=">AAAB+3icbVBNS8NAEJ3Ur1q/Yj16CRbBU0mkqMeiF48V+gVNCJvtpl262YTdTbHE/BUvHhTx6h/x5r9x2+agrQ8GHu/NMDMvSBiVyra/jdLG5tb2Tnm3srd/cHhkHle7Mk4FJh0cs1j0AyQJo5x0FFWM9BNBUBQw0gsmd3O/NyVC0pi31SwhXoRGnIYUI6Ul36w+uYmkfjb127krEB8x4ps1u24vYK0TpyA1KNDyzS93GOM0IlxhhqQcOHaivAwJRTEjecVNJUkQnqARGWjKUUSkly1uz61zrQytMBa6uLIW6u+JDEVSzqJAd0ZIjeWqNxf/8wapCm+8jPIkVYTj5aIwZZaKrXkQ1pAKghWbaYKwoPpWC4+RQFjpuCo6BGf15XXSvaw7V/XGQ6PWvC3iKMMpnMEFOHANTbiHFnQAwyM8wyu8GbnxYrwbH8vWklHMnMAfGJ8/tBOU4Q==</latexit>| vT

i

<latexit sha1_base64="BhWeMcCuYKBxdTTgLu2DNRrW3iI=">AAACDnicbVDJSgNBEO2JW4xb1KOX1hCIEMOMBPUY9OIxglkgMwk9nZ5Jk56F7hoxDPkCL/6KFw+KePXszb+xsxw0+qDg8V4VVfXcWHAFpvllZJaWV1bXsuu5jc2t7Z387l5TRYmkrEEjEcm2SxQTPGQN4CBYO5aMBK5gLXd4NfFbd0wqHoW3MIqZExA/5B6nBLTUyxdtYPeQtvxxt2EflmwgCbYV9wPSTU+scRn3j+1ypZcvmBVzCvyXWHNSQHPUe/lPux/RJGAhUEGU6lhmDE5KJHAq2DhnJ4rFhA6JzzqahiRgykmn74xxUSt97EVSVwh4qv6cSEmg1ChwdWdAYKAWvYn4n9dJwLtwUh7GCbCQzhZ5icAQ4Uk2uM8loyBGmhAqub4V0wGRhIJOMKdDsBZf/kuapxXrrFK9qRZql/M4sugAHaESstA5qqFrVEcNRNEDekIv6NV4NJ6NN+N91pox5jP76BeMj28GIJrL</latexit>

WgU(⌧��1, d) .<latexit sha1_base64="YHo16WBzbApBHGSjcgEfouEQCnc=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GNREI8V7Ae0oWy2k3btJht2N0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekAiujet+O4WV1bX1jeJmaWt7Z3evvH/Q1DJVDBtMCqnaAdUoeIwNw43AdqKQRoHAVjC6mfqtJ1Say/jBjBP0IzqIecgZNVZq3va6KESvXHGr7gxkmXg5qUCOeq/81e1LlkYYGyao1h3PTYyfUWU4EzgpdVONCWUjOsCOpTGNUPvZ7NoJObFKn4RS2YoNmam/JzIaaT2OAtsZUTPUi95U/M/rpCa88jMeJ6nBmM0XhakgRpLp66TPFTIjxpZQpri9lbAhVZQZG1DJhuAtvrxMmmdV76J6fn9eqV3ncRThCI7hFDy4hBrcQR0awOARnuEV3hzpvDjvzse8teDkM4fwB87nD1cnjv0=</latexit>

F`
<latexit sha1_base64="QHNARAiqfWUN8HoSzK0rtSUb4tM=">AAAB9XicbVBNS8NAEN3Ur1q/qh69LBbBU0lE1GNREI8V7Ac0adlsJunSzSbsbpQS+j+8eFDEq//Fm//GbZuDtj4YeLw3w8w8P+VMadv+tkorq2vrG+XNytb2zu5edf+grZJMUmjRhCey6xMFnAloaaY5dFMJJPY5dPzRzdTvPIJULBEPepyCF5NIsJBRoo3Uvx24wHnfDUgUgRxUa3bdngEvE6cgNVSgOah+uUFCsxiEppwo1XPsVHs5kZpRDpOKmylICR2RCHqGChKD8vLZ1RN8YpQAh4k0JTSeqb8nchIrNY590xkTPVSL3lT8z+tlOrzycibSTIOg80VhxrFO8DQCHDAJVPOxIYRKZm7FdEgkodoEVTEhOIsvL5P2Wd25qJ/fn9ca10UcZXSEjtEpctAlaqA71EQtRJFEz+gVvVlP1ov1bn3MW0tWMXOI/sD6/AFeQ5Jx</latexit>

F †
`

<latexit sha1_base64="Ej1UUYpgdMhDedp3vPRMBqNML1g=">AAAB7XicbVBNSwMxEJ3Ur1q/qh69BIvgqexKUY9FLx4r2A9ol5JNs21sNlmSrFCW/gcvHhTx6v/x5r8xbfegrQ8GHu/NMDMvTAQ31vO+UWFtfWNzq7hd2tnd2z8oHx61jEo1ZU2qhNKdkBgmuGRNy61gnUQzEoeCtcPx7cxvPzFtuJIPdpKwICZDySNOiXVSq6dHqu/1yxWv6s2BV4mfkwrkaPTLX72BomnMpKWCGNP1vcQGGdGWU8GmpV5qWELomAxZ11FJYmaCbH7tFJ85ZYAjpV1Ji+fq74mMxMZM4tB1xsSOzLI3E//zuqmNroOMyyS1TNLFoigV2Co8ex0PuGbUiokjhGrubsV0RDSh1gVUciH4yy+vktZF1b+s1u5rlfpNHkcRTuAUzsGHK6jDHTSgCRQe4Rle4Q0p9ILe0ceitYDymWP4A/T5A0jkjvM=</latexit>⇢0

<latexit sha1_base64="BQHAh73Jws5wm/35nXgavrTFE4E="></latexit>

EU [pU (`)] =
X

�,⌧2ST

We let pσ,τ (`) denote the summand of the above. Now we can upper bound the left-hand
side of (H.15) using the triangle inequality and the Cauchy-Schwarz inequality as

1

2

∑

`∈ leaf(T )

|pD(`)− EU [pU(`)]| ≤ 1

2

∑

`∈ leaf(T )

|pD(`)− p1,1(`)|

+
1

2

∑

`∈ leaf(T )

∑

σ 6=1

|pσ,1(`)|+ 1

2

∑

`∈ leaf(T )

∑

τ 6=1, σ

|pσ,τ (`)| . (H.16)

We will proceed by bounding each of the three terms on the right-hand side of (H.16) in turn.

First term

For the first term, we can apply Cauchy-Schwarz to find the upper bound

<latexit sha1_base64="UtiM86E2ZEp50Nao18YowkGgUaM=">AAAB/HicbVBNS8NAEN3Ur1q/oj16WSyCp5JIUY9FLx4r9AvaEDbbabt0swm7m0KI9a948aCIV3+IN/+N2zYHbX0w8Hhvhpl5QcyZ0o7zbRU2Nre2d4q7pb39g8Mj+/ikraJEUmjRiEeyGxAFnAloaaY5dGMJJAw4dILJ3dzvTEEqFommTmPwQjISbMgo0Uby7XKfEzHigPuxYn429ZuzR9+uOFVnAbxO3JxUUI6Gb3/1BxFNQhCacqJUz3Vi7WVEakY5zEr9REFM6ISMoGeoICEoL1scP8PnRhngYSRNCY0X6u+JjIRKpWFgOkOix2rVm4v/eb1ED2+8jIk40SDoctEw4VhHeJ4EHjAJVPPUEEIlM7diOiaSUG3yKpkQ3NWX10n7supeVWsPtUr9No+jiE7RGbpALrpGdXSPGqiFKErRM3pFb9aT9WK9Wx/L1oKVz5TRH1ifPwJ5lQU=</latexit>h vT
| <latexit sha1_base64="+0yu3fJs6rZq6TAZPu9EyGC2vtw=">AAAB+3icbVBNS8NAEJ3Ur1q/Yj16CRbBU0mkqMeiF48V+gVNCJvtpl262YTdTbHE/BUvHhTx6h/x5r9x2+agrQ8GHu/NMDMvSBiVyra/jdLG5tb2Tnm3srd/cHhkHle7Mk4FJh0cs1j0AyQJo5x0FFWM9BNBUBQw0gsmd3O/NyVC0pi31SwhXoRGnIYUI6Ul36w+uYmkfjb127krEB8x4ps1u24vYK0TpyA1KNDyzS93GOM0IlxhhqQcOHaivAwJRTEjecVNJUkQnqARGWjKUUSkly1uz61zrQytMBa6uLIW6u+JDEVSzqJAd0ZIjeWqNxf/8wapCm+8jPIkVYTj5aIwZZaKrXkQ1pAKghWbaYKwoPpWC4+RQFjpuCo6BGf15XXSvaw7V/XGQ6PWvC3iKMMpnMEFOHANTbiHFnQAwyM8wyu8GbnxYrwbH8vWklHMnMAfGJ8/tBOU4Q==</latexit>| vT

i

<latexit sha1_base64="8OaZgFjHHQdM0WNkA2JOO7dH1A8="></latexit>����WgU(1, d) � 1

dT

���� .
<latexit sha1_base64="YHo16WBzbApBHGSjcgEfouEQCnc=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GNREI8V7Ae0oWy2k3btJht2N0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekAiujet+O4WV1bX1jeJmaWt7Z3evvH/Q1DJVDBtMCqnaAdUoeIwNw43AdqKQRoHAVjC6mfqtJ1Say/jBjBP0IzqIecgZNVZq3va6KESvXHGr7gxkmXg5qUCOeq/81e1LlkYYGyao1h3PTYyfUWU4EzgpdVONCWUjOsCOpTGNUPvZ7NoJObFKn4RS2YoNmam/JzIaaT2OAtsZUTPUi95U/M/rpCa88jMeJ6nBmM0XhakgRpLp66TPFTIjxpZQpri9lbAhVZQZG1DJhuAtvrxMmmdV76J6fn9eqV3ncRThCI7hFDy4hBrcQR0awOARnuEV3hzpvDjvzse8teDkM4fwB87nD1cnjv0=</latexit>

F`
<latexit sha1_base64="QHNARAiqfWUN8HoSzK0rtSUb4tM=">AAAB9XicbVBNS8NAEN3Ur1q/qh69LBbBU0lE1GNREI8V7Ac0adlsJunSzSbsbpQS+j+8eFDEq//Fm//GbZuDtj4YeLw3w8w8P+VMadv+tkorq2vrG+XNytb2zu5edf+grZJMUmjRhCey6xMFnAloaaY5dFMJJPY5dPzRzdTvPIJULBEPepyCF5NIsJBRoo3Uvx24wHnfDUgUgRxUa3bdngEvE6cgNVSgOah+uUFCsxiEppwo1XPsVHs5kZpRDpOKmylICR2RCHqGChKD8vLZ1RN8YpQAh4k0JTSeqb8nchIrNY590xkTPVSL3lT8z+tlOrzycibSTIOg80VhxrFO8DQCHDAJVPOxIYRKZm7FdEgkodoEVTEhOIsvL5P2Wd25qJ/fn9ca10UcZXSEjtEpctAlaqA71EQtRJFEz+gVvVlP1ov1bn3MW0tWMXOI/sD6/AFeQ5Jx</latexit>

F †
`

<latexit sha1_base64="Ej1UUYpgdMhDedp3vPRMBqNML1g=">AAAB7XicbVBNSwMxEJ3Ur1q/qh69BIvgqexKUY9FLx4r2A9ol5JNs21sNlmSrFCW/gcvHhTx6v/x5r8xbfegrQ8GHu/NMDMvTAQ31vO+UWFtfWNzq7hd2tnd2z8oHx61jEo1ZU2qhNKdkBgmuGRNy61gnUQzEoeCtcPx7cxvPzFtuJIPdpKwICZDySNOiXVSq6dHqu/1yxWv6s2BV4mfkwrkaPTLX72BomnMpKWCGNP1vcQGGdGWU8GmpV5qWELomAxZ11FJYmaCbH7tFJ85ZYAjpV1Ji+fq74mMxMZM4tB1xsSOzLI3E//zuqmNroOMyyS1TNLFoigV2Co8ex0PuGbUiokjhGrubsV0RDSh1gVUciH4yy+vktZF1b+s1u5rlfpNHkcRTuAUzsGHK6jDHTSgCRQe4Rle4Q0p9ILe0ceitYDymWP4A/T5A0jkjvM=</latexit>⇢0
<latexit sha1_base64="SuoOoURh7m4N+Pz1OCN9Jbs6ajY=">AAACH3icbVBNSwMxEM36bf2qevQSLIKClN1SqkfRi8cKthW6pWTTWQ1ms0syK5aw/8SLf8WLB0XEW/+Nae3BrwcJj/dmmJkXZVIY9P2RNzM7N7+wuLRcWlldW98ob261TZprDi2eylRfRcyAFApaKFDCVaaBJZGETnR7NvY7d6CNSNUlDjPoJexaiVhwhk7qlxthrBm3QWFrRWjypG9DkDI8DIVyH8I9WgksLvbDhOENZ9JeFgcF7ZcrftWfgP4lwZRUyBTNfvkjHKQ8T0Ahl8yYbuBn2LNMo+ASilKYG8gYv2XX0HVUsQRMz07uK+ieUwY0TrV7CulE/d5hWWLMMIlc5XhL89sbi/953Rzj454VKssRFP8aFOeSYkrHYdGB0MBRDh1hXAu3K+U3zAWGLtKSCyH4ffJf0q5Vg0a1flGvnJxO41giO2SX7JOAHJETck6apEU4eSBP5IW8eo/es/fmvX+VznjTnm3yA97oEx9Ao6M=</latexit>

1

2

X

`2 leaf(T )
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The absolute value in the first term can be removed since its argument is positive. Now we
can explicitly sum over leafs to obtain

dT

2

∣∣∣∣WgU(1, d)− 1

dT

∣∣∣∣ . (H.17)

But using Corollary 1 we have
∣∣WgU(1, d)− 1

dT

∣∣ ≤ O(T 7/2/dT+2) for T <
(

d√
6

)4/7

, and so
in total

1

2

∑

`∈ leaf(T )

|pD(`)− p1,1(`)| ≤ O

(
T 7/2

d2

)
. (H.18)

Second term

Applying Cauchy-Schwarz to the second term on the right-hand side of (H.16), we have
the upper bound

<latexit sha1_base64="+QEJNuyxbank3U3v1VkBjLYmsJs=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGUY9BLx4jmAckS5idzCZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHdFCWfG+v63V1hb39jcKm6Xdnb39g/Kh0cto1JNaJMornQnwoZyJmnTMstpJ9EUi4jTdjS+nfntJ6oNU/LBThIaCjyULGYEWye1eoYNBe6XK37VnwOtkiAnFcjR6Je/egNFUkGlJRwb0w38xIYZ1pYRTqelXmpogskYD2nXUYkFNWE2v3aKzpwyQLHSrqRFc/X3RIaFMRMRuU6B7cgsezPxP6+b2vg6zJhMUkslWSyKU46sQrPX0YBpSiyfOIKJZu5WREZYY2JdQCUXQrD88ipp1arBZbV2f1Gp3+RxFOEETuEcAriCOtxBA5pA4BGe4RXePOW9eO/ex6K14OUzx/AH3ucPnqmPKg==</latexit>�

<latexit sha1_base64="UtiM86E2ZEp50Nao18YowkGgUaM=">AAAB/HicbVBNS8NAEN3Ur1q/oj16WSyCp5JIUY9FLx4r9AvaEDbbabt0swm7m0KI9a948aCIV3+IN/+N2zYHbX0w8Hhvhpl5QcyZ0o7zbRU2Nre2d4q7pb39g8Mj+/ikraJEUmjRiEeyGxAFnAloaaY5dGMJJAw4dILJ3dzvTEEqFommTmPwQjISbMgo0Uby7XKfEzHigPuxYn429ZuzR9+uOFVnAbxO3JxUUI6Gb3/1BxFNQhCacqJUz3Vi7WVEakY5zEr9REFM6ISMoGeoICEoL1scP8PnRhngYSRNCY0X6u+JjIRKpWFgOkOix2rVm4v/eb1ED2+8jIk40SDoctEw4VhHeJ4EHjAJVPPUEEIlM7diOiaSUG3yKpkQ3NWX10n7supeVWsPtUr9No+jiE7RGbpALrpGdXSPGqiFKErRM3pFb9aT9WK9Wx/L1oKVz5TRH1ifPwJ5lQU=</latexit>h vT
| <latexit sha1_base64="+0yu3fJs6rZq6TAZPu9EyGC2vtw=">AAAB+3icbVBNS8NAEJ3Ur1q/Yj16CRbBU0mkqMeiF48V+gVNCJvtpl262YTdTbHE/BUvHhTx6h/x5r9x2+agrQ8GHu/NMDMvSBiVyra/jdLG5tb2Tnm3srd/cHhkHle7Mk4FJh0cs1j0AyQJo5x0FFWM9BNBUBQw0gsmd3O/NyVC0pi31SwhXoRGnIYUI6Ul36w+uYmkfjb127krEB8x4ps1u24vYK0TpyA1KNDyzS93GOM0IlxhhqQcOHaivAwJRTEjecVNJUkQnqARGWjKUUSkly1uz61zrQytMBa6uLIW6u+JDEVSzqJAd0ZIjeWqNxf/8wapCm+8jPIkVYTj5aIwZZaKrXkQ1pAKghWbaYKwoPpWC4+RQFjpuCo6BGf15XXSvaw7V/XGQ6PWvC3iKMMpnMEFOHANTbiHFnQAwyM8wyu8GbnxYrwbH8vWklHMnMAfGJ8/tBOU4Q==</latexit>| vT

i

<latexit sha1_base64="KyoaB9NaYJaEtKK5cyYZTbviqoY=">AAACC3icbVDLTgJBEJzFF+IL9ehlhJhggmSXGPVI9OIRE3kkLJDZYcAJs4/M9BrJsncv/ooXDxrj1R/w5t84wB4UrKSTSlV3urucQHAFpvltpJaWV1bX0uuZjc2t7Z3s7l5d+aGkrEZ94cumQxQT3GM14CBYM5CMuI5gDWd4NfEb90wq7nu3MApY2yUDj/c5JaClbjY3toE9QNQYxJ2afViwFR+4pBOdWHER947HdrHUzebNkjkFXiRWQvIoQbWb/bJ7Pg1d5gEVRKmWZQbQjogETgWLM3aoWEDokAxYS1OPuEy1o+kvMT7SSg/3fanLAzxVf09ExFVq5Dq60yVwp+a9ifif1wqhf9GOuBeEwDw6W9QPBQYfT4LBPS4ZBTHShFDJ9a2Y3hFJKOj4MjoEa/7lRVIvl6yzUvnmNF+5TOJIowOUQwVkoXNUQdeoimqIokf0jF7Rm/FkvBjvxsesNWUkM/voD4zPHzsQmd0=</latexit>

|WgU(��1, d)| .<latexit sha1_base64="YHo16WBzbApBHGSjcgEfouEQCnc=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GNREI8V7Ae0oWy2k3btJht2N0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekAiujet+O4WV1bX1jeJmaWt7Z3evvH/Q1DJVDBtMCqnaAdUoeIwNw43AdqKQRoHAVjC6mfqtJ1Say/jBjBP0IzqIecgZNVZq3va6KESvXHGr7gxkmXg5qUCOeq/81e1LlkYYGyao1h3PTYyfUWU4EzgpdVONCWUjOsCOpTGNUPvZ7NoJObFKn4RS2YoNmam/JzIaaT2OAtsZUTPUi95U/M/rpCa88jMeJ6nBmM0XhakgRpLp66TPFTIjxpZQpri9lbAhVZQZG1DJhuAtvrxMmmdV76J6fn9eqV3ncRThCI7hFDy4hBrcQR0awOARnuEV3hzpvDjvzse8teDkM4fwB87nD1cnjv0=</latexit>

F`
<latexit sha1_base64="QHNARAiqfWUN8HoSzK0rtSUb4tM=">AAAB9XicbVBNS8NAEN3Ur1q/qh69LBbBU0lE1GNREI8V7Ac0adlsJunSzSbsbpQS+j+8eFDEq//Fm//GbZuDtj4YeLw3w8w8P+VMadv+tkorq2vrG+XNytb2zu5edf+grZJMUmjRhCey6xMFnAloaaY5dFMJJPY5dPzRzdTvPIJULBEPepyCF5NIsJBRoo3Uvx24wHnfDUgUgRxUa3bdngEvE6cgNVSgOah+uUFCsxiEppwo1XPsVHs5kZpRDpOKmylICR2RCHqGChKD8vLZ1RN8YpQAh4k0JTSeqb8nchIrNY590xkTPVSL3lT8z+tlOrzycibSTIOg80VhxrFO8DQCHDAJVPOxIYRKZm7FdEgkodoEVTEhOIsvL5P2Wd25qJ/fn9ca10UcZXSEjtEpctAlaqA71EQtRJFEz+gVvVlP1ov1bn3MW0tWMXOI/sD6/AFeQ5Jx</latexit>

F †
`

<latexit sha1_base64="Ej1UUYpgdMhDedp3vPRMBqNML1g=">AAAB7XicbVBNSwMxEJ3Ur1q/qh69BIvgqexKUY9FLx4r2A9ol5JNs21sNlmSrFCW/gcvHhTx6v/x5r8xbfegrQ8GHu/NMDMvTAQ31vO+UWFtfWNzq7hd2tnd2z8oHx61jEo1ZU2qhNKdkBgmuGRNy61gnUQzEoeCtcPx7cxvPzFtuJIPdpKwICZDySNOiXVSq6dHqu/1yxWv6s2BV4mfkwrkaPTLX72BomnMpKWCGNP1vcQGGdGWU8GmpV5qWELomAxZ11FJYmaCbH7tFJ85ZYAjpV1Ji+fq74mMxMZM4tB1xsSOzLI3E//zuqmNroOMyyS1TNLFoigV2Co8ex0PuGbUiokjhGrubsV0RDSh1gVUciH4yy+vktZF1b+s1u5rlfpNHkcRTuAUzsGHK6jDHTSgCRQe4Rle4Q0p9ILe0ceitYDymWP4A/T5A0jkjvM=</latexit>⇢0

<latexit sha1_base64="RwrbFKlcVfXJE5sGJ4N3YES9dJQ="></latexit>

1

2

X

`2 leaf(T )

X

� 6=1

(H.19)

The first term can be upper bounded using Hölder’s inequality

<latexit sha1_base64="+QEJNuyxbank3U3v1VkBjLYmsJs=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGUY9BLx4jmAckS5idzCZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHdFCWfG+v63V1hb39jcKm6Xdnb39g/Kh0cto1JNaJMornQnwoZyJmnTMstpJ9EUi4jTdjS+nfntJ6oNU/LBThIaCjyULGYEWye1eoYNBe6XK37VnwOtkiAnFcjR6Je/egNFUkGlJRwb0w38xIYZ1pYRTqelXmpogskYD2nXUYkFNWE2v3aKzpwyQLHSrqRFc/X3RIaFMRMRuU6B7cgsezPxP6+b2vg6zJhMUkslWSyKU46sQrPX0YBpSiyfOIKJZu5WREZYY2JdQCUXQrD88ipp1arBZbV2f1Gp3+RxFOEETuEcAriCOtxBA5pA4BGe4RXePOW9eO/ex6K14OUzx/AH3ucPnqmPKg==</latexit>�

<latexit sha1_base64="UtiM86E2ZEp50Nao18YowkGgUaM=">AAAB/HicbVBNS8NAEN3Ur1q/oj16WSyCp5JIUY9FLx4r9AvaEDbbabt0swm7m0KI9a948aCIV3+IN/+N2zYHbX0w8Hhvhpl5QcyZ0o7zbRU2Nre2d4q7pb39g8Mj+/ikraJEUmjRiEeyGxAFnAloaaY5dGMJJAw4dILJ3dzvTEEqFommTmPwQjISbMgo0Uby7XKfEzHigPuxYn429ZuzR9+uOFVnAbxO3JxUUI6Gb3/1BxFNQhCacqJUz3Vi7WVEakY5zEr9REFM6ISMoGeoICEoL1scP8PnRhngYSRNCY0X6u+JjIRKpWFgOkOix2rVm4v/eb1ED2+8jIk40SDoctEw4VhHeJ4EHjAJVPPUEEIlM7diOiaSUG3yKpkQ3NWX10n7supeVWsPtUr9No+jiE7RGbpALrpGdXSPGqiFKErRM3pFb9aT9WK9Wx/L1oKVz5TRH1ifPwJ5lQU=</latexit>h vT
| <latexit sha1_base64="+0yu3fJs6rZq6TAZPu9EyGC2vtw=">AAAB+3icbVBNS8NAEJ3Ur1q/Yj16CRbBU0mkqMeiF48V+gVNCJvtpl262YTdTbHE/BUvHhTx6h/x5r9x2+agrQ8GHu/NMDMvSBiVyra/jdLG5tb2Tnm3srd/cHhkHle7Mk4FJh0cs1j0AyQJo5x0FFWM9BNBUBQw0gsmd3O/NyVC0pi31SwhXoRGnIYUI6Ul36w+uYmkfjb127krEB8x4ps1u24vYK0TpyA1KNDyzS93GOM0IlxhhqQcOHaivAwJRTEjecVNJUkQnqARGWjKUUSkly1uz61zrQytMBa6uLIW6u+JDEVSzqJAd0ZIjeWqNxf/8wapCm+8jPIkVYTj5aIwZZaKrXkQ1pAKghWbaYKwoPpWC4+RQFjpuCo6BGf15XXSvaw7V/XGQ6PWvC3iKMMpnMEFOHANTbiHFnQAwyM8wyu8GbnxYrwbH8vWklHMnMAfGJ8/tBOU4Q==</latexit>| vT

i

<latexit sha1_base64="DXuRapL2zhAhBQ/ls752flWawPY=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKqMeiF48VTFtoQ9lsJ+3SzSbuboRS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fCoqZNMMfRZIhLVDqlGwSX6hhuB7VQhjUOBrXB0O/NbT6g0T+SDGacYxHQgecQZNVbyuwIfSa9ccavuHGSVeDmpQI5Gr/zV7Scsi1EaJqjWHc9NTTChynAmcFrqZhpTykZ0gB1LJY1RB5P5sVNyZpU+iRJlSxoyV39PTGis9TgObWdMzVAvezPxP6+Tmeg6mHCZZgYlWyyKMkFMQmafkz5XyIwYW0KZ4vZWwoZUUWZsPiUbgrf88ipp1qreZbV2f1Gp3+RxFOEETuEcPLiCOtxBA3xgwOEZXuHNkc6L8+58LFoLTj5zDH/gfP4AblOOcQ==</latexit>
<latexit sha1_base64="UtiM86E2ZEp50Nao18YowkGgUaM=">AAAB/HicbVBNS8NAEN3Ur1q/oj16WSyCp5JIUY9FLx4r9AvaEDbbabt0swm7m0KI9a948aCIV3+IN/+N2zYHbX0w8Hhvhpl5QcyZ0o7zbRU2Nre2d4q7pb39g8Mj+/ikraJEUmjRiEeyGxAFnAloaaY5dGMJJAw4dILJ3dzvTEEqFommTmPwQjISbMgo0Uby7XKfEzHigPuxYn429ZuzR9+uOFVnAbxO3JxUUI6Gb3/1BxFNQhCacqJUz3Vi7WVEakY5zEr9REFM6ISMoGeoICEoL1scP8PnRhngYSRNCY0X6u+JjIRKpWFgOkOix2rVm4v/eb1ED2+8jIk40SDoctEw4VhHeJ4EHjAJVPPUEEIlM7diOiaSUG3yKpkQ3NWX10n7supeVWsPtUr9No+jiE7RGbpALrpGdXSPGqiFKErRM3pFb9aT9WK9Wx/L1oKVz5TRH1ifPwJ5lQU=</latexit>h vT

| <latexit sha1_base64="+0yu3fJs6rZq6TAZPu9EyGC2vtw=">AAAB+3icbVBNS8NAEJ3Ur1q/Yj16CRbBU0mkqMeiF48V+gVNCJvtpl262YTdTbHE/BUvHhTx6h/x5r9x2+agrQ8GHu/NMDMvSBiVyra/jdLG5tb2Tnm3srd/cHhkHle7Mk4FJh0cs1j0AyQJo5x0FFWM9BNBUBQw0gsmd3O/NyVC0pi31SwhXoRGnIYUI6Ul36w+uYmkfjb127krEB8x4ps1u24vYK0TpyA1KNDyzS93GOM0IlxhhqQcOHaivAwJRTEjecVNJUkQnqARGWjKUUSkly1uz61zrQytMBa6uLIW6u+JDEVSzqJAd0ZIjeWqNxf/8wapCm+8jPIkVYTj5aIwZZaKrXkQ1pAKghWbaYKwoPpWC4+RQFjpuCo6BGf15XXSvaw7V/XGQ6PWvC3iKMMpnMEFOHANTbiHFnQAwyM8wyu8GbnxYrwbH8vWklHMnMAfGJ8/tBOU4Q==</latexit>| vT
i

<latexit sha1_base64="FzLrOMdk10HcH2RNBbFZJUSrsoo=">AAAB/HicbVBNS8NAEN34WetXtEcvi0XwVJIi6rHoxWMF+wFNKJvtpl262YTdiRDS+le8eFDEqz/Em//GbZuDtj4YeLw3w8y8IBFcg+N8W2vrG5tb26Wd8u7e/sGhfXTc1nGqKGvRWMSqGxDNBJesBRwE6yaKkSgQrBOMb2d+55EpzWP5AFnC/IgMJQ85JWCkvl3xJtjTfBgR7E36HpchZH276tScOfAqcQtSRQWaffvLG8Q0jZgEKojWPddJwM+JAk4Fm5a9VLOE0DEZsp6hkkRM+/n8+Ck+M8oAh7EyJQHP1d8TOYm0zqLAdEYERnrZm4n/eb0Uwms/5zJJgUm6WBSmAkOMZ0ngAVeMgsgMIVRxcyumI6IIBZNX2YTgLr+8Str1mntZq99fVBs3RRwldIJO0Tly0RVqoDvURC1EUYae0St6s56sF+vd+li0rlnFTAX9gfX5A4OElLI=</latexit>k�k1

<latexit sha1_base64="3yzzMpLGc+AxOVeOSUfkgMSIBJg=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKqMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptcvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukXat6l9Va86JSv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPfOeMvA==</latexit>

1

<latexit sha1_base64="YHo16WBzbApBHGSjcgEfouEQCnc=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GNREI8V7Ae0oWy2k3btJht2N0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekAiujet+O4WV1bX1jeJmaWt7Z3evvH/Q1DJVDBtMCqnaAdUoeIwNw43AdqKQRoHAVjC6mfqtJ1Say/jBjBP0IzqIecgZNVZq3va6KESvXHGr7gxkmXg5qUCOeq/81e1LlkYYGyao1h3PTYyfUWU4EzgpdVONCWUjOsCOpTGNUPvZ7NoJObFKn4RS2YoNmam/JzIaaT2OAtsZUTPUi95U/M/rpCa88jMeJ6nBmM0XhakgRpLp66TPFTIjxpZQpri9lbAhVZQZG1DJhuAtvrxMmmdV76J6fn9eqV3ncRThCI7hFDy4hBrcQR0awOARnuEV3hzpvDjvzse8teDkM4fwB87nD1cnjv0=</latexit>

F`
<latexit sha1_base64="QHNARAiqfWUN8HoSzK0rtSUb4tM=">AAAB9XicbVBNS8NAEN3Ur1q/qh69LBbBU0lE1GNREI8V7Ac0adlsJunSzSbsbpQS+j+8eFDEq//Fm//GbZuDtj4YeLw3w8w8P+VMadv+tkorq2vrG+XNytb2zu5edf+grZJMUmjRhCey6xMFnAloaaY5dFMJJPY5dPzRzdTvPIJULBEPepyCF5NIsJBRoo3Uvx24wHnfDUgUgRxUa3bdngEvE6cgNVSgOah+uUFCsxiEppwo1XPsVHs5kZpRDpOKmylICR2RCHqGChKD8vLZ1RN8YpQAh4k0JTSeqb8nchIrNY590xkTPVSL3lT8z+tlOrzycibSTIOg80VhxrFO8DQCHDAJVPOxIYRKZm7FdEgkodoEVTEhOIsvL5P2Wd25qJ/fn9ca10UcZXSEjtEpctAlaqA71EQtRJFEz+gVvVlP1ov1bn3MW0tWMXOI/sD6/AFeQ5Jx</latexit>

F †
`

<latexit sha1_base64="YHo16WBzbApBHGSjcgEfouEQCnc=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GNREI8V7Ae0oWy2k3btJht2N0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekAiujet+O4WV1bX1jeJmaWt7Z3evvH/Q1DJVDBtMCqnaAdUoeIwNw43AdqKQRoHAVjC6mfqtJ1Say/jBjBP0IzqIecgZNVZq3va6KESvXHGr7gxkmXg5qUCOeq/81e1LlkYYGyao1h3PTYyfUWU4EzgpdVONCWUjOsCOpTGNUPvZ7NoJObFKn4RS2YoNmam/JzIaaT2OAtsZUTPUi95U/M/rpCa88jMeJ6nBmM0XhakgRpLp66TPFTIjxpZQpri9lbAhVZQZG1DJhuAtvrxMmmdV76J6fn9eqV3ncRThCI7hFDy4hBrcQR0awOARnuEV3hzpvDjvzse8teDkM4fwB87nD1cnjv0=</latexit>

F`
<latexit sha1_base64="QHNARAiqfWUN8HoSzK0rtSUb4tM=">AAAB9XicbVBNS8NAEN3Ur1q/qh69LBbBU0lE1GNREI8V7Ac0adlsJunSzSbsbpQS+j+8eFDEq//Fm//GbZuDtj4YeLw3w8w8P+VMadv+tkorq2vrG+XNytb2zu5edf+grZJMUmjRhCey6xMFnAloaaY5dFMJJPY5dPzRzdTvPIJULBEPepyCF5NIsJBRoo3Uvx24wHnfDUgUgRxUa3bdngEvE6cgNVSgOah+uUFCsxiEppwo1XPsVHs5kZpRDpOKmylICR2RCHqGChKD8vLZ1RN8YpQAh4k0JTSeqb8nchIrNY590xkTPVSL3lT8z+tlOrzycibSTIOg80VhxrFO8DQCHDAJVPOxIYRKZm7FdEgkodoEVTEhOIsvL5P2Wd25qJ/fn9ca10UcZXSEjtEpctAlaqA71EQtRJFEz+gVvVlP1ov1bn3MW0tWMXOI/sD6/AFeQ5Jx</latexit>

F †
`

<latexit sha1_base64="Ej1UUYpgdMhDedp3vPRMBqNML1g=">AAAB7XicbVBNSwMxEJ3Ur1q/qh69BIvgqexKUY9FLx4r2A9ol5JNs21sNlmSrFCW/gcvHhTx6v/x5r8xbfegrQ8GHu/NMDMvTAQ31vO+UWFtfWNzq7hd2tnd2z8oHx61jEo1ZU2qhNKdkBgmuGRNy61gnUQzEoeCtcPx7cxvPzFtuJIPdpKwICZDySNOiXVSq6dHqu/1yxWv6s2BV4mfkwrkaPTLX72BomnMpKWCGNP1vcQGGdGWU8GmpV5qWELomAxZ11FJYmaCbH7tFJ85ZYAjpV1Ji+fq74mMxMZM4tB1xsSOzLI3E//zuqmNroOMyyS1TNLFoigV2Co8ex0PuGbUiokjhGrubsV0RDSh1gVUciH4yy+vktZF1b+s1u5rlfpNHkcRTuAUzsGHK6jDHTSgCRQe4Rle4Q0p9ILe0ceitYDymWP4A/T5A0jkjvM=</latexit>⇢0
<latexit sha1_base64="Ej1UUYpgdMhDedp3vPRMBqNML1g=">AAAB7XicbVBNSwMxEJ3Ur1q/qh69BIvgqexKUY9FLx4r2A9ol5JNs21sNlmSrFCW/gcvHhTx6v/x5r8xbfegrQ8GHu/NMDMvTAQ31vO+UWFtfWNzq7hd2tnd2z8oHx61jEo1ZU2qhNKdkBgmuGRNy61gnUQzEoeCtcPx7cxvPzFtuJIPdpKwICZDySNOiXVSq6dHqu/1yxWv6s2BV4mfkwrkaPTLX72BomnMpKWCGNP1vcQGGdGWU8GmpV5qWELomAxZ11FJYmaCbH7tFJ85ZYAjpV1Ji+fq74mMxMZM4tB1xsSOzLI3E//zuqmNroOMyyS1TNLFoigV2Co8ex0PuGbUiokjhGrubsV0RDSh1gVUciH4yy+vktZF1b+s1u5rlfpNHkcRTuAUzsGHK6jDHTSgCRQe4Rle4Q0p9ILe0ceitYDymWP4A/T5A0jkjvM=</latexit>⇢0

and we further use the equality

<latexit sha1_base64="UtiM86E2ZEp50Nao18YowkGgUaM=">AAAB/HicbVBNS8NAEN3Ur1q/oj16WSyCp5JIUY9FLx4r9AvaEDbbabt0swm7m0KI9a948aCIV3+IN/+N2zYHbX0w8Hhvhpl5QcyZ0o7zbRU2Nre2d4q7pb39g8Mj+/ikraJEUmjRiEeyGxAFnAloaaY5dGMJJAw4dILJ3dzvTEEqFommTmPwQjISbMgo0Uby7XKfEzHigPuxYn429ZuzR9+uOFVnAbxO3JxUUI6Gb3/1BxFNQhCacqJUz3Vi7WVEakY5zEr9REFM6ISMoGeoICEoL1scP8PnRhngYSRNCY0X6u+JjIRKpWFgOkOix2rVm4v/eb1ED2+8jIk40SDoctEw4VhHeJ4EHjAJVPPUEEIlM7diOiaSUG3yKpkQ3NWX10n7supeVWsPtUr9No+jiE7RGbpALrpGdXSPGqiFKErRM3pFb9aT9WK9Wx/L1oKVz5TRH1ifPwJ5lQU=</latexit>h vT
| <latexit sha1_base64="+0yu3fJs6rZq6TAZPu9EyGC2vtw=">AAAB+3icbVBNS8NAEJ3Ur1q/Yj16CRbBU0mkqMeiF48V+gVNCJvtpl262YTdTbHE/BUvHhTx6h/x5r9x2+agrQ8GHu/NMDMvSBiVyra/jdLG5tb2Tnm3srd/cHhkHle7Mk4FJh0cs1j0AyQJo5x0FFWM9BNBUBQw0gsmd3O/NyVC0pi31SwhXoRGnIYUI6Ul36w+uYmkfjb127krEB8x4ps1u24vYK0TpyA1KNDyzS93GOM0IlxhhqQcOHaivAwJRTEjecVNJUkQnqARGWjKUUSkly1uz61zrQytMBa6uLIW6u+JDEVSzqJAd0ZIjeWqNxf/8wapCm+8jPIkVYTj5aIwZZaKrXkQ1pAKghWbaYKwoPpWC4+RQFjpuCo6BGf15XXSvaw7V/XGQ6PWvC3iKMMpnMEFOHANTbiHFnQAwyM8wyu8GbnxYrwbH8vWklHMnMAfGJ8/tBOU4Q==</latexit>| vT

i <latexit sha1_base64="3yzzMpLGc+AxOVeOSUfkgMSIBJg=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKqMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptcvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukXat6l9Va86JSv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPfOeMvA==</latexit>

1

<latexit sha1_base64="2Qsdalu/dg77by3FFjV+bjq8QIQ=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKewGUS9C0IvHBMwDkiXMTnqTMbOzy8ysEEK+wIsHRbz6Sd78GyfJHjSxoKGo6qa7K0gE18Z1v53c2vrG5lZ+u7Czu7d/UDw8auo4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdDfzW0+oNI/lgxkn6Ed0IHnIGTVWqt/0iiW37M5BVomXkRJkqPWKX91+zNIIpWGCat3x3MT4E6oMZwKnhW6qMaFsRAfYsVTSCLU/mR86JWdW6ZMwVrakIXP198SERlqPo8B2RtQM9bI3E//zOqkJr/0Jl0lqULLFojAVxMRk9jXpc4XMiLEllClubyVsSBVlxmZTsCF4yy+vkmal7F2WK/WLUvU2iyMPJ3AK5+DBFVThHmrQAAYIz/AKb86j8+K8Ox+L1pyTzRzDHzifP48XjMg=</latexit>=

<latexit sha1_base64="UtiM86E2ZEp50Nao18YowkGgUaM=">AAAB/HicbVBNS8NAEN3Ur1q/oj16WSyCp5JIUY9FLx4r9AvaEDbbabt0swm7m0KI9a948aCIV3+IN/+N2zYHbX0w8Hhvhpl5QcyZ0o7zbRU2Nre2d4q7pb39g8Mj+/ikraJEUmjRiEeyGxAFnAloaaY5dGMJJAw4dILJ3dzvTEEqFommTmPwQjISbMgo0Uby7XKfEzHigPuxYn429ZuzR9+uOFVnAbxO3JxUUI6Gb3/1BxFNQhCacqJUz3Vi7WVEakY5zEr9REFM6ISMoGeoICEoL1scP8PnRhngYSRNCY0X6u+JjIRKpWFgOkOix2rVm4v/eb1ED2+8jIk40SDoctEw4VhHeJ4EHjAJVPPUEEIlM7diOiaSUG3yKpkQ3NWX10n7supeVWsPtUr9No+jiE7RGbpALrpGdXSPGqiFKErRM3pFb9aT9WK9Wx/L1oKVz5TRH1ifPwJ5lQU=</latexit>h vT
| <latexit sha1_base64="+0yu3fJs6rZq6TAZPu9EyGC2vtw=">AAAB+3icbVBNS8NAEJ3Ur1q/Yj16CRbBU0mkqMeiF48V+gVNCJvtpl262YTdTbHE/BUvHhTx6h/x5r9x2+agrQ8GHu/NMDMvSBiVyra/jdLG5tb2Tnm3srd/cHhkHle7Mk4FJh0cs1j0AyQJo5x0FFWM9BNBUBQw0gsmd3O/NyVC0pi31SwhXoRGnIYUI6Ul36w+uYmkfjb127krEB8x4ps1u24vYK0TpyA1KNDyzS93GOM0IlxhhqQcOHaivAwJRTEjecVNJUkQnqARGWjKUUSkly1uz61zrQytMBa6uLIW6u+JDEVSzqJAd0ZIjeWqNxf/8wapCm+8jPIkVYTj5aIwZZaKrXkQ1pAKghWbaYKwoPpWC4+RQFjpuCo6BGf15XXSvaw7V/XGQ6PWvC3iKMMpnMEFOHANTbiHFnQAwyM8wyu8GbnxYrwbH8vWklHMnMAfGJ8/tBOU4Q==</latexit>| vT

i

<latexit sha1_base64="YHo16WBzbApBHGSjcgEfouEQCnc=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GNREI8V7Ae0oWy2k3btJht2N0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekAiujet+O4WV1bX1jeJmaWt7Z3evvH/Q1DJVDBtMCqnaAdUoeIwNw43AdqKQRoHAVjC6mfqtJ1Say/jBjBP0IzqIecgZNVZq3va6KESvXHGr7gxkmXg5qUCOeq/81e1LlkYYGyao1h3PTYyfUWU4EzgpdVONCWUjOsCOpTGNUPvZ7NoJObFKn4RS2YoNmam/JzIaaT2OAtsZUTPUi95U/M/rpCa88jMeJ6nBmM0XhakgRpLp66TPFTIjxpZQpri9lbAhVZQZG1DJhuAtvrxMmmdV76J6fn9eqV3ncRThCI7hFDy4hBrcQR0awOARnuEV3hzpvDjvzse8teDkM4fwB87nD1cnjv0=</latexit>

F`
<latexit sha1_base64="QHNARAiqfWUN8HoSzK0rtSUb4tM=">AAAB9XicbVBNS8NAEN3Ur1q/qh69LBbBU0lE1GNREI8V7Ac0adlsJunSzSbsbpQS+j+8eFDEq//Fm//GbZuDtj4YeLw3w8w8P+VMadv+tkorq2vrG+XNytb2zu5edf+grZJMUmjRhCey6xMFnAloaaY5dFMJJPY5dPzRzdTvPIJULBEPepyCF5NIsJBRoo3Uvx24wHnfDUgUgRxUa3bdngEvE6cgNVSgOah+uUFCsxiEppwo1XPsVHs5kZpRDpOKmylICR2RCHqGChKD8vLZ1RN8YpQAh4k0JTSeqb8nchIrNY590xkTPVSL3lT8z+tlOrzycibSTIOg80VhxrFO8DQCHDAJVPOxIYRKZm7FdEgkodoEVTEhOIsvL5P2Wd25qJ/fn9ca10UcZXSEjtEpctAlaqA71EQtRJFEz+gVvVlP1ov1bn3MW0tWMXOI/sD6/AFeQ5Jx</latexit>

F †
`

<latexit sha1_base64="YHo16WBzbApBHGSjcgEfouEQCnc=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GNREI8V7Ae0oWy2k3btJht2N0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekAiujet+O4WV1bX1jeJmaWt7Z3evvH/Q1DJVDBtMCqnaAdUoeIwNw43AdqKQRoHAVjC6mfqtJ1Say/jBjBP0IzqIecgZNVZq3va6KESvXHGr7gxkmXg5qUCOeq/81e1LlkYYGyao1h3PTYyfUWU4EzgpdVONCWUjOsCOpTGNUPvZ7NoJObFKn4RS2YoNmam/JzIaaT2OAtsZUTPUi95U/M/rpCa88jMeJ6nBmM0XhakgRpLp66TPFTIjxpZQpri9lbAhVZQZG1DJhuAtvrxMmmdV76J6fn9eqV3ncRThCI7hFDy4hBrcQR0awOARnuEV3hzpvDjvzse8teDkM4fwB87nD1cnjv0=</latexit>

F`
<latexit sha1_base64="QHNARAiqfWUN8HoSzK0rtSUb4tM=">AAAB9XicbVBNS8NAEN3Ur1q/qh69LBbBU0lE1GNREI8V7Ac0adlsJunSzSbsbpQS+j+8eFDEq//Fm//GbZuDtj4YeLw3w8w8P+VMadv+tkorq2vrG+XNytb2zu5edf+grZJMUmjRhCey6xMFnAloaaY5dFMJJPY5dPzRzdTvPIJULBEPepyCF5NIsJBRoo3Uvx24wHnfDUgUgRxUa3bdngEvE6cgNVSgOah+uUFCsxiEppwo1XPsVHs5kZpRDpOKmylICR2RCHqGChKD8vLZ1RN8YpQAh4k0JTSeqb8nchIrNY590xkTPVSL3lT8z+tlOrzycibSTIOg80VhxrFO8DQCHDAJVPOxIYRKZm7FdEgkodoEVTEhOIsvL5P2Wd25qJ/fn9ca10UcZXSEjtEpctAlaqA71EQtRJFEz+gVvVlP1ov1bn3MW0tWMXOI/sD6/AFeQ5Jx</latexit>

F †
`

<latexit sha1_base64="8OaZgFjHHQdM0WNkA2JOO7dH1A8="></latexit>����WgU(1, d) � 1

dT

���� .

<latexit sha1_base64="Ej1UUYpgdMhDedp3vPRMBqNML1g=">AAAB7XicbVBNSwMxEJ3Ur1q/qh69BIvgqexKUY9FLx4r2A9ol5JNs21sNlmSrFCW/gcvHhTx6v/x5r8xbfegrQ8GHu/NMDMvTAQ31vO+UWFtfWNzq7hd2tnd2z8oHx61jEo1ZU2qhNKdkBgmuGRNy61gnUQzEoeCtcPx7cxvPzFtuJIPdpKwICZDySNOiXVSq6dHqu/1yxWv6s2BV4mfkwrkaPTLX72BomnMpKWCGNP1vcQGGdGWU8GmpV5qWELomAxZ11FJYmaCbH7tFJ85ZYAjpV1Ji+fq74mMxMZM4tB1xsSOzLI3E//zuqmNroOMyyS1TNLFoigV2Co8ex0PuGbUiokjhGrubsV0RDSh1gVUciH4yy+vktZF1b+s1u5rlfpNHkcRTuAUzsGHK6jDHTSgCRQe4Rle4Q0p9ILe0ceitYDymWP4A/T5A0jkjvM=</latexit>⇢0
<latexit sha1_base64="Ej1UUYpgdMhDedp3vPRMBqNML1g=">AAAB7XicbVBNSwMxEJ3Ur1q/qh69BIvgqexKUY9FLx4r2A9ol5JNs21sNlmSrFCW/gcvHhTx6v/x5r8xbfegrQ8GHu/NMDMvTAQ31vO+UWFtfWNzq7hd2tnd2z8oHx61jEo1ZU2qhNKdkBgmuGRNy61gnUQzEoeCtcPx7cxvPzFtuJIPdpKwICZDySNOiXVSq6dHqu/1yxWv6s2BV4mfkwrkaPTLX72BomnMpKWCGNP1vcQGGdGWU8GmpV5qWELomAxZ11FJYmaCbH7tFJ85ZYAjpV1Ji+fq74mMxMZM4tB1xsSOzLI3E//zuqmNroOMyyS1TNLFoigV2Co8ex0PuGbUiokjhGrubsV0RDSh1gVUciH4yy+vktZF1b+s1u5rlfpNHkcRTuAUzsGHK6jDHTSgCRQe4Rle4Q0p9ILe0ceitYDymWP4A/T5A0jkjvM=</latexit>⇢0

(H.20)

This follows from the fact that ‖A⊗B‖1 = ‖A‖1‖B‖1 = tr(A) tr(B) if A and B are positive
semi-definite. Then (H.19) is upper bounded by

<latexit sha1_base64="KyoaB9NaYJaEtKK5cyYZTbviqoY=">AAACC3icbVDLTgJBEJzFF+IL9ehlhJhggmSXGPVI9OIRE3kkLJDZYcAJs4/M9BrJsncv/ooXDxrj1R/w5t84wB4UrKSTSlV3urucQHAFpvltpJaWV1bX0uuZjc2t7Z3s7l5d+aGkrEZ94cumQxQT3GM14CBYM5CMuI5gDWd4NfEb90wq7nu3MApY2yUDj/c5JaClbjY3toE9QNQYxJ2afViwFR+4pBOdWHER947HdrHUzebNkjkFXiRWQvIoQbWb/bJ7Pg1d5gEVRKmWZQbQjogETgWLM3aoWEDokAxYS1OPuEy1o+kvMT7SSg/3fanLAzxVf09ExFVq5Dq60yVwp+a9ifif1wqhf9GOuBeEwDw6W9QPBQYfT4LBPS4ZBTHShFDJ9a2Y3hFJKOj4MjoEa/7lRVIvl6yzUvnmNF+5TOJIowOUQwVkoXNUQdeoimqIokf0jF7Rm/FkvBjvxsesNWUkM/voD4zPHzsQmd0=</latexit>

|WgU(��1, d)| .
<latexit sha1_base64="UtiM86E2ZEp50Nao18YowkGgUaM=">AAAB/HicbVBNS8NAEN3Ur1q/oj16WSyCp5JIUY9FLx4r9AvaEDbbabt0swm7m0KI9a948aCIV3+IN/+N2zYHbX0w8Hhvhpl5QcyZ0o7zbRU2Nre2d4q7pb39g8Mj+/ikraJEUmjRiEeyGxAFnAloaaY5dGMJJAw4dILJ3dzvTEEqFommTmPwQjISbMgo0Uby7XKfEzHigPuxYn429ZuzR9+uOFVnAbxO3JxUUI6Gb3/1BxFNQhCacqJUz3Vi7WVEakY5zEr9REFM6ISMoGeoICEoL1scP8PnRhngYSRNCY0X6u+JjIRKpWFgOkOix2rVm4v/eb1ED2+8jIk40SDoctEw4VhHeJ4EHjAJVPPUEEIlM7diOiaSUG3yKpkQ3NWX10n7supeVWsPtUr9No+jiE7RGbpALrpGdXSPGqiFKErRM3pFb9aT9WK9Wx/L1oKVz5TRH1ifPwJ5lQU=</latexit>h vT

| <latexit sha1_base64="+0yu3fJs6rZq6TAZPu9EyGC2vtw=">AAAB+3icbVBNS8NAEJ3Ur1q/Yj16CRbBU0mkqMeiF48V+gVNCJvtpl262YTdTbHE/BUvHhTx6h/x5r9x2+agrQ8GHu/NMDMvSBiVyra/jdLG5tb2Tnm3srd/cHhkHle7Mk4FJh0cs1j0AyQJo5x0FFWM9BNBUBQw0gsmd3O/NyVC0pi31SwhXoRGnIYUI6Ul36w+uYmkfjb127krEB8x4ps1u24vYK0TpyA1KNDyzS93GOM0IlxhhqQcOHaivAwJRTEjecVNJUkQnqARGWjKUUSkly1uz61zrQytMBa6uLIW6u+JDEVSzqJAd0ZIjeWqNxf/8wapCm+8jPIkVYTj5aIwZZaKrXkQ1pAKghWbaYKwoPpWC4+RQFjpuCo6BGf15XXSvaw7V/XGQ6PWvC3iKMMpnMEFOHANTbiHFnQAwyM8wyu8GbnxYrwbH8vWklHMnMAfGJ8/tBOU4Q==</latexit>| vT
i

<latexit sha1_base64="YHo16WBzbApBHGSjcgEfouEQCnc=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GNREI8V7Ae0oWy2k3btJht2N0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekAiujet+O4WV1bX1jeJmaWt7Z3evvH/Q1DJVDBtMCqnaAdUoeIwNw43AdqKQRoHAVjC6mfqtJ1Say/jBjBP0IzqIecgZNVZq3va6KESvXHGr7gxkmXg5qUCOeq/81e1LlkYYGyao1h3PTYyfUWU4EzgpdVONCWUjOsCOpTGNUPvZ7NoJObFKn4RS2YoNmam/JzIaaT2OAtsZUTPUi95U/M/rpCa88jMeJ6nBmM0XhakgRpLp66TPFTIjxpZQpri9lbAhVZQZG1DJhuAtvrxMmmdV76J6fn9eqV3ncRThCI7hFDy4hBrcQR0awOARnuEV3hzpvDjvzse8teDkM4fwB87nD1cnjv0=</latexit>

F`
<latexit sha1_base64="QHNARAiqfWUN8HoSzK0rtSUb4tM=">AAAB9XicbVBNS8NAEN3Ur1q/qh69LBbBU0lE1GNREI8V7Ac0adlsJunSzSbsbpQS+j+8eFDEq//Fm//GbZuDtj4YeLw3w8w8P+VMadv+tkorq2vrG+XNytb2zu5edf+grZJMUmjRhCey6xMFnAloaaY5dFMJJPY5dPzRzdTvPIJULBEPepyCF5NIsJBRoo3Uvx24wHnfDUgUgRxUa3bdngEvE6cgNVSgOah+uUFCsxiEppwo1XPsVHs5kZpRDpOKmylICR2RCHqGChKD8vLZ1RN8YpQAh4k0JTSeqb8nchIrNY590xkTPVSL3lT8z+tlOrzycibSTIOg80VhxrFO8DQCHDAJVPOxIYRKZm7FdEgkodoEVTEhOIsvL5P2Wd25qJ/fn9ca10UcZXSEjtEpctAlaqA71EQtRJFEz+gVvVlP1ov1bn3MW0tWMXOI/sD6/AFeQ5Jx</latexit>

F †
`

<latexit sha1_base64="Ej1UUYpgdMhDedp3vPRMBqNML1g=">AAAB7XicbVBNSwMxEJ3Ur1q/qh69BIvgqexKUY9FLx4r2A9ol5JNs21sNlmSrFCW/gcvHhTx6v/x5r8xbfegrQ8GHu/NMDMvTAQ31vO+UWFtfWNzq7hd2tnd2z8oHx61jEo1ZU2qhNKdkBgmuGRNy61gnUQzEoeCtcPx7cxvPzFtuJIPdpKwICZDySNOiXVSq6dHqu/1yxWv6s2BV4mfkwrkaPTLX72BomnMpKWCGNP1vcQGGdGWU8GmpV5qWELomAxZ11FJYmaCbH7tFJ85ZYAjpV1Ji+fq74mMxMZM4tB1xsSOzLI3E//zuqmNroOMyyS1TNLFoigV2Co8ex0PuGbUiokjhGrubsV0RDSh1gVUciH4yy+vktZF1b+s1u5rlfpNHkcRTuAUzsGHK6jDHTSgCRQe4Rle4Q0p9ILe0ceitYDymWP4A/T5A0jkjvM=</latexit>⇢0

<latexit sha1_base64="RwrbFKlcVfXJE5sGJ4N3YES9dJQ="></latexit>

1

2

X

`2 leaf(T )

X

� 6=1

(H.21)
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and so summing over leafs we obtain

dT

2

∑

σ 6=1

|WgU(σ−1, d)| . (H.22)

But this quantity is less than or equal to O(T 2/d) using Lemma 6 of [10]; thus we summarily
find

1

2

∑

`∈ leaf(T )

∑

σ 6=1

|pσ,1(`)| ≤ O

(
T 2

d

)
. (H.23)

Third term

As usual, we apply the Cauchy-Schwarz inequality to the last term on the right-hand side
of (H.16) to obtain

<latexit sha1_base64="HcjH7pigZlh/sptoRtzIPL8dqbo=">AAACEHicbVDLTgJBEJzFF+IL9ehllBgxQbJriHokevGIiQskLJDZ2QEmzD4y02skC5/gxV/x4kFjvHr05t84PA6KVtJJpao73V1uJLgC0/wyUguLS8sr6dXM2vrG5lZ2e6eqwlhSZtNQhLLuEsUED5gNHASrR5IR3xWs5vavxn7tjknFw+AWBhFr+qQb8A6nBLTUzh4NHWD3kNS6o5bt7OcdIDF2FO/6pJWcWKMC9o6HTqHYzubMojkB/kusGcmhGSrt7KfjhTT2WQBUEKUalhlBMyESOBVslHFixSJC+6TLGpoGxGeqmUweGuFDrXi4E0pdAeCJ+nMiIb5SA9/VnT6Bnpr3xuJ/XiOGzkUz4UEUAwvodFEnFhhCPE4He1wyCmKgCaGS61sx7RFJKOgMMzoEa/7lv6R6WrTOiqWbUq58OYsjjfbQAcojC52jMrpGFWQjih7QE3pBr8aj8Wy8Ge/T1pQxm9lFv2B8fAPocpvX</latexit>

|WgU(⌧��1, d)| .
<latexit sha1_base64="+QEJNuyxbank3U3v1VkBjLYmsJs=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGUY9BLx4jmAckS5idzCZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHdFCWfG+v63V1hb39jcKm6Xdnb39g/Kh0cto1JNaJMornQnwoZyJmnTMstpJ9EUi4jTdjS+nfntJ6oNU/LBThIaCjyULGYEWye1eoYNBe6XK37VnwOtkiAnFcjR6Je/egNFUkGlJRwb0w38xIYZ1pYRTqelXmpogskYD2nXUYkFNWE2v3aKzpwyQLHSrqRFc/X3RIaFMRMRuU6B7cgsezPxP6+b2vg6zJhMUkslWSyKU46sQrPX0YBpSiyfOIKJZu5WREZYY2JdQCUXQrD88ipp1arBZbV2f1Gp3+RxFOEETuEcAriCOtxBA5pA4BGe4RXePOW9eO/ex6K14OUzx/AH3ucPnqmPKg==</latexit>�

<latexit sha1_base64="XtRWCmBm4aVHkWHjAEHCJsINCh4=">AAAB8HicbVDLSgNBEOyNrxhfUY9eFoPgxbAbRD0GvXiMYB6SrGF2MkmGzMwuM71CWPIVXjwo4tXP8ebfOEn2oIkFDUVVN91dYSy4Qc/7dnIrq2vrG/nNwtb2zu5ecf+gYaJEU1ankYh0KySGCa5YHTkK1oo1IzIUrBmObqZ+84lpwyN1j+OYBZIMFO9zStBKDx0kyWN65k+6xZJX9mZwl4mfkRJkqHWLX51eRBPJFFJBjGn7XoxBSjRyKtik0EkMiwkdkQFrW6qIZCZIZwdP3BOr9Nx+pG0pdGfq74mUSGPGMrSdkuDQLHpT8T+vnWD/Kki5ihNkis4X9RPhYuROv3d7XDOKYmwJoZrbW106JJpQtBkVbAj+4svLpFEp+xflyt15qXqdxZGHIziGU/DhEqpwCzWoAwUJz/AKb452Xpx352PemnOymUP4A+fzB3zMkDU=</latexit>

⌧�1<latexit sha1_base64="UtiM86E2ZEp50Nao18YowkGgUaM=">AAAB/HicbVBNS8NAEN3Ur1q/oj16WSyCp5JIUY9FLx4r9AvaEDbbabt0swm7m0KI9a948aCIV3+IN/+N2zYHbX0w8Hhvhpl5QcyZ0o7zbRU2Nre2d4q7pb39g8Mj+/ikraJEUmjRiEeyGxAFnAloaaY5dGMJJAw4dILJ3dzvTEEqFommTmPwQjISbMgo0Uby7XKfEzHigPuxYn429ZuzR9+uOFVnAbxO3JxUUI6Gb3/1BxFNQhCacqJUz3Vi7WVEakY5zEr9REFM6ISMoGeoICEoL1scP8PnRhngYSRNCY0X6u+JjIRKpWFgOkOix2rVm4v/eb1ED2+8jIk40SDoctEw4VhHeJ4EHjAJVPPUEEIlM7diOiaSUG3yKpkQ3NWX10n7supeVWsPtUr9No+jiE7RGbpALrpGdXSPGqiFKErRM3pFb9aT9WK9Wx/L1oKVz5TRH1ifPwJ5lQU=</latexit>h vT
| <latexit sha1_base64="+0yu3fJs6rZq6TAZPu9EyGC2vtw=">AAAB+3icbVBNS8NAEJ3Ur1q/Yj16CRbBU0mkqMeiF48V+gVNCJvtpl262YTdTbHE/BUvHhTx6h/x5r9x2+agrQ8GHu/NMDMvSBiVyra/jdLG5tb2Tnm3srd/cHhkHle7Mk4FJh0cs1j0AyQJo5x0FFWM9BNBUBQw0gsmd3O/NyVC0pi31SwhXoRGnIYUI6Ul36w+uYmkfjb127krEB8x4ps1u24vYK0TpyA1KNDyzS93GOM0IlxhhqQcOHaivAwJRTEjecVNJUkQnqARGWjKUUSkly1uz61zrQytMBa6uLIW6u+JDEVSzqJAd0ZIjeWqNxf/8wapCm+8jPIkVYTj5aIwZZaKrXkQ1pAKghWbaYKwoPpWC4+RQFjpuCo6BGf15XXSvaw7V/XGQ6PWvC3iKMMpnMEFOHANTbiHFnQAwyM8wyu8GbnxYrwbH8vWklHMnMAfGJ8/tBOU4Q==</latexit>| vT

i

<latexit sha1_base64="YHo16WBzbApBHGSjcgEfouEQCnc=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GNREI8V7Ae0oWy2k3btJht2N0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekAiujet+O4WV1bX1jeJmaWt7Z3evvH/Q1DJVDBtMCqnaAdUoeIwNw43AdqKQRoHAVjC6mfqtJ1Say/jBjBP0IzqIecgZNVZq3va6KESvXHGr7gxkmXg5qUCOeq/81e1LlkYYGyao1h3PTYyfUWU4EzgpdVONCWUjOsCOpTGNUPvZ7NoJObFKn4RS2YoNmam/JzIaaT2OAtsZUTPUi95U/M/rpCa88jMeJ6nBmM0XhakgRpLp66TPFTIjxpZQpri9lbAhVZQZG1DJhuAtvrxMmmdV76J6fn9eqV3ncRThCI7hFDy4hBrcQR0awOARnuEV3hzpvDjvzse8teDkM4fwB87nD1cnjv0=</latexit>

F`
<latexit sha1_base64="QHNARAiqfWUN8HoSzK0rtSUb4tM=">AAAB9XicbVBNS8NAEN3Ur1q/qh69LBbBU0lE1GNREI8V7Ac0adlsJunSzSbsbpQS+j+8eFDEq//Fm//GbZuDtj4YeLw3w8w8P+VMadv+tkorq2vrG+XNytb2zu5edf+grZJMUmjRhCey6xMFnAloaaY5dFMJJPY5dPzRzdTvPIJULBEPepyCF5NIsJBRoo3Uvx24wHnfDUgUgRxUa3bdngEvE6cgNVSgOah+uUFCsxiEppwo1XPsVHs5kZpRDpOKmylICR2RCHqGChKD8vLZ1RN8YpQAh4k0JTSeqb8nchIrNY590xkTPVSL3lT8z+tlOrzycibSTIOg80VhxrFO8DQCHDAJVPOxIYRKZm7FdEgkodoEVTEhOIsvL5P2Wd25qJ/fn9ca10UcZXSEjtEpctAlaqA71EQtRJFEz+gVvVlP1ov1bn3MW0tWMXOI/sD6/AFeQ5Jx</latexit>

F †
`

<latexit sha1_base64="Li1E1y9hAeSmwHTYsVMK5+oduCw="></latexit>

1

2

X

`2 leaf(T )

X

⌧ 6=1
�

<latexit sha1_base64="Ej1UUYpgdMhDedp3vPRMBqNML1g=">AAAB7XicbVBNSwMxEJ3Ur1q/qh69BIvgqexKUY9FLx4r2A9ol5JNs21sNlmSrFCW/gcvHhTx6v/x5r8xbfegrQ8GHu/NMDMvTAQ31vO+UWFtfWNzq7hd2tnd2z8oHx61jEo1ZU2qhNKdkBgmuGRNy61gnUQzEoeCtcPx7cxvPzFtuJIPdpKwICZDySNOiXVSq6dHqu/1yxWv6s2BV4mfkwrkaPTLX72BomnMpKWCGNP1vcQGGdGWU8GmpV5qWELomAxZ11FJYmaCbH7tFJ85ZYAjpV1Ji+fq74mMxMZM4tB1xsSOzLI3E//zuqmNroOMyyS1TNLFoigV2Co8ex0PuGbUiokjhGrubsV0RDSh1gVUciH4yy+vktZF1b+s1u5rlfpNHkcRTuAUzsGHK6jDHTSgCRQe4Rle4Q0p9ILe0ceitYDymWP4A/T5A0jkjvM=</latexit>⇢0

(H.24)

Similar to the previous case, we apply Hölder’s inequality to the diagrammatic term in the
summand as

<latexit sha1_base64="+QEJNuyxbank3U3v1VkBjLYmsJs=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGUY9BLx4jmAckS5idzCZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHdFCWfG+v63V1hb39jcKm6Xdnb39g/Kh0cto1JNaJMornQnwoZyJmnTMstpJ9EUi4jTdjS+nfntJ6oNU/LBThIaCjyULGYEWye1eoYNBe6XK37VnwOtkiAnFcjR6Je/egNFUkGlJRwb0w38xIYZ1pYRTqelXmpogskYD2nXUYkFNWE2v3aKzpwyQLHSrqRFc/X3RIaFMRMRuU6B7cgsezPxP6+b2vg6zJhMUkslWSyKU46sQrPX0YBpSiyfOIKJZu5WREZYY2JdQCUXQrD88ipp1arBZbV2f1Gp3+RxFOEETuEcAriCOtxBA5pA4BGe4RXePOW9eO/ex6K14OUzx/AH3ucPnqmPKg==</latexit>�

<latexit sha1_base64="XtRWCmBm4aVHkWHjAEHCJsINCh4=">AAAB8HicbVDLSgNBEOyNrxhfUY9eFoPgxbAbRD0GvXiMYB6SrGF2MkmGzMwuM71CWPIVXjwo4tXP8ebfOEn2oIkFDUVVN91dYSy4Qc/7dnIrq2vrG/nNwtb2zu5ecf+gYaJEU1ankYh0KySGCa5YHTkK1oo1IzIUrBmObqZ+84lpwyN1j+OYBZIMFO9zStBKDx0kyWN65k+6xZJX9mZwl4mfkRJkqHWLX51eRBPJFFJBjGn7XoxBSjRyKtik0EkMiwkdkQFrW6qIZCZIZwdP3BOr9Nx+pG0pdGfq74mUSGPGMrSdkuDQLHpT8T+vnWD/Kki5ihNkis4X9RPhYuROv3d7XDOKYmwJoZrbW106JJpQtBkVbAj+4svLpFEp+xflyt15qXqdxZGHIziGU/DhEqpwCzWoAwUJz/AKb452Xpx352PemnOymUP4A+fzB3zMkDU=</latexit>

⌧�1<latexit sha1_base64="UtiM86E2ZEp50Nao18YowkGgUaM=">AAAB/HicbVBNS8NAEN3Ur1q/oj16WSyCp5JIUY9FLx4r9AvaEDbbabt0swm7m0KI9a948aCIV3+IN/+N2zYHbX0w8Hhvhpl5QcyZ0o7zbRU2Nre2d4q7pb39g8Mj+/ikraJEUmjRiEeyGxAFnAloaaY5dGMJJAw4dILJ3dzvTEEqFommTmPwQjISbMgo0Uby7XKfEzHigPuxYn429ZuzR9+uOFVnAbxO3JxUUI6Gb3/1BxFNQhCacqJUz3Vi7WVEakY5zEr9REFM6ISMoGeoICEoL1scP8PnRhngYSRNCY0X6u+JjIRKpWFgOkOix2rVm4v/eb1ED2+8jIk40SDoctEw4VhHeJ4EHjAJVPPUEEIlM7diOiaSUG3yKpkQ3NWX10n7supeVWsPtUr9No+jiE7RGbpALrpGdXSPGqiFKErRM3pFb9aT9WK9Wx/L1oKVz5TRH1ifPwJ5lQU=</latexit>h vT
| <latexit sha1_base64="+0yu3fJs6rZq6TAZPu9EyGC2vtw=">AAAB+3icbVBNS8NAEJ3Ur1q/Yj16CRbBU0mkqMeiF48V+gVNCJvtpl262YTdTbHE/BUvHhTx6h/x5r9x2+agrQ8GHu/NMDMvSBiVyra/jdLG5tb2Tnm3srd/cHhkHle7Mk4FJh0cs1j0AyQJo5x0FFWM9BNBUBQw0gsmd3O/NyVC0pi31SwhXoRGnIYUI6Ul36w+uYmkfjb127krEB8x4ps1u24vYK0TpyA1KNDyzS93GOM0IlxhhqQcOHaivAwJRTEjecVNJUkQnqARGWjKUUSkly1uz61zrQytMBa6uLIW6u+JDEVSzqJAd0ZIjeWqNxf/8wapCm+8jPIkVYTj5aIwZZaKrXkQ1pAKghWbaYKwoPpWC4+RQFjpuCo6BGf15XXSvaw7V/XGQ6PWvC3iKMMpnMEFOHANTbiHFnQAwyM8wyu8GbnxYrwbH8vWklHMnMAfGJ8/tBOU4Q==</latexit>| vT

i <latexit sha1_base64="3yzzMpLGc+AxOVeOSUfkgMSIBJg=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKqMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptcvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukXat6l9Va86JSv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPfOeMvA==</latexit>

1

<latexit sha1_base64="XtRWCmBm4aVHkWHjAEHCJsINCh4=">AAAB8HicbVDLSgNBEOyNrxhfUY9eFoPgxbAbRD0GvXiMYB6SrGF2MkmGzMwuM71CWPIVXjwo4tXP8ebfOEn2oIkFDUVVN91dYSy4Qc/7dnIrq2vrG/nNwtb2zu5ecf+gYaJEU1ankYh0KySGCa5YHTkK1oo1IzIUrBmObqZ+84lpwyN1j+OYBZIMFO9zStBKDx0kyWN65k+6xZJX9mZwl4mfkRJkqHWLX51eRBPJFFJBjGn7XoxBSjRyKtik0EkMiwkdkQFrW6qIZCZIZwdP3BOr9Nx+pG0pdGfq74mUSGPGMrSdkuDQLHpT8T+vnWD/Kki5ihNkis4X9RPhYuROv3d7XDOKYmwJoZrbW106JJpQtBkVbAj+4svLpFEp+xflyt15qXqdxZGHIziGU/DhEqpwCzWoAwUJz/AKb452Xpx352PemnOymUP4A+fzB3zMkDU=</latexit>

⌧�1<latexit sha1_base64="UtiM86E2ZEp50Nao18YowkGgUaM=">AAAB/HicbVBNS8NAEN3Ur1q/oj16WSyCp5JIUY9FLx4r9AvaEDbbabt0swm7m0KI9a948aCIV3+IN/+N2zYHbX0w8Hhvhpl5QcyZ0o7zbRU2Nre2d4q7pb39g8Mj+/ikraJEUmjRiEeyGxAFnAloaaY5dGMJJAw4dILJ3dzvTEEqFommTmPwQjISbMgo0Uby7XKfEzHigPuxYn429ZuzR9+uOFVnAbxO3JxUUI6Gb3/1BxFNQhCacqJUz3Vi7WVEakY5zEr9REFM6ISMoGeoICEoL1scP8PnRhngYSRNCY0X6u+JjIRKpWFgOkOix2rVm4v/eb1ED2+8jIk40SDoctEw4VhHeJ4EHjAJVPPUEEIlM7diOiaSUG3yKpkQ3NWX10n7supeVWsPtUr9No+jiE7RGbpALrpGdXSPGqiFKErRM3pFb9aT9WK9Wx/L1oKVz5TRH1ifPwJ5lQU=</latexit>h vT
| <latexit sha1_base64="+0yu3fJs6rZq6TAZPu9EyGC2vtw=">AAAB+3icbVBNS8NAEJ3Ur1q/Yj16CRbBU0mkqMeiF48V+gVNCJvtpl262YTdTbHE/BUvHhTx6h/x5r9x2+agrQ8GHu/NMDMvSBiVyra/jdLG5tb2Tnm3srd/cHhkHle7Mk4FJh0cs1j0AyQJo5x0FFWM9BNBUBQw0gsmd3O/NyVC0pi31SwhXoRGnIYUI6Ul36w+uYmkfjb127krEB8x4ps1u24vYK0TpyA1KNDyzS93GOM0IlxhhqQcOHaivAwJRTEjecVNJUkQnqARGWjKUUSkly1uz61zrQytMBa6uLIW6u+JDEVSzqJAd0ZIjeWqNxf/8wapCm+8jPIkVYTj5aIwZZaKrXkQ1pAKghWbaYKwoPpWC4+RQFjpuCo6BGf15XXSvaw7V/XGQ6PWvC3iKMMpnMEFOHANTbiHFnQAwyM8wyu8GbnxYrwbH8vWklHMnMAfGJ8/tBOU4Q==</latexit>| vT

i

<latexit sha1_base64="YHo16WBzbApBHGSjcgEfouEQCnc=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GNREI8V7Ae0oWy2k3btJht2N0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekAiujet+O4WV1bX1jeJmaWt7Z3evvH/Q1DJVDBtMCqnaAdUoeIwNw43AdqKQRoHAVjC6mfqtJ1Say/jBjBP0IzqIecgZNVZq3va6KESvXHGr7gxkmXg5qUCOeq/81e1LlkYYGyao1h3PTYyfUWU4EzgpdVONCWUjOsCOpTGNUPvZ7NoJObFKn4RS2YoNmam/JzIaaT2OAtsZUTPUi95U/M/rpCa88jMeJ6nBmM0XhakgRpLp66TPFTIjxpZQpri9lbAhVZQZG1DJhuAtvrxMmmdV76J6fn9eqV3ncRThCI7hFDy4hBrcQR0awOARnuEV3hzpvDjvzse8teDkM4fwB87nD1cnjv0=</latexit>

F`
<latexit sha1_base64="QHNARAiqfWUN8HoSzK0rtSUb4tM=">AAAB9XicbVBNS8NAEN3Ur1q/qh69LBbBU0lE1GNREI8V7Ac0adlsJunSzSbsbpQS+j+8eFDEq//Fm//GbZuDtj4YeLw3w8w8P+VMadv+tkorq2vrG+XNytb2zu5edf+grZJMUmjRhCey6xMFnAloaaY5dFMJJPY5dPzRzdTvPIJULBEPepyCF5NIsJBRoo3Uvx24wHnfDUgUgRxUa3bdngEvE6cgNVSgOah+uUFCsxiEppwo1XPsVHs5kZpRDpOKmylICR2RCHqGChKD8vLZ1RN8YpQAh4k0JTSeqb8nchIrNY590xkTPVSL3lT8z+tlOrzycibSTIOg80VhxrFO8DQCHDAJVPOxIYRKZm7FdEgkodoEVTEhOIsvL5P2Wd25qJ/fn9ca10UcZXSEjtEpctAlaqA71EQtRJFEz+gVvVlP1ov1bn3MW0tWMXOI/sD6/AFeQ5Jx</latexit>

F †
`

<latexit sha1_base64="YHo16WBzbApBHGSjcgEfouEQCnc=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GNREI8V7Ae0oWy2k3btJht2N0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekAiujet+O4WV1bX1jeJmaWt7Z3evvH/Q1DJVDBtMCqnaAdUoeIwNw43AdqKQRoHAVjC6mfqtJ1Say/jBjBP0IzqIecgZNVZq3va6KESvXHGr7gxkmXg5qUCOeq/81e1LlkYYGyao1h3PTYyfUWU4EzgpdVONCWUjOsCOpTGNUPvZ7NoJObFKn4RS2YoNmam/JzIaaT2OAtsZUTPUi95U/M/rpCa88jMeJ6nBmM0XhakgRpLp66TPFTIjxpZQpri9lbAhVZQZG1DJhuAtvrxMmmdV76J6fn9eqV3ncRThCI7hFDy4hBrcQR0awOARnuEV3hzpvDjvzse8teDkM4fwB87nD1cnjv0=</latexit>

F`
<latexit sha1_base64="QHNARAiqfWUN8HoSzK0rtSUb4tM=">AAAB9XicbVBNS8NAEN3Ur1q/qh69LBbBU0lE1GNREI8V7Ac0adlsJunSzSbsbpQS+j+8eFDEq//Fm//GbZuDtj4YeLw3w8w8P+VMadv+tkorq2vrG+XNytb2zu5edf+grZJMUmjRhCey6xMFnAloaaY5dFMJJPY5dPzRzdTvPIJULBEPepyCF5NIsJBRoo3Uvx24wHnfDUgUgRxUa3bdngEvE6cgNVSgOah+uUFCsxiEppwo1XPsVHs5kZpRDpOKmylICR2RCHqGChKD8vLZ1RN8YpQAh4k0JTSeqb8nchIrNY590xkTPVSL3lT8z+tlOrzycibSTIOg80VhxrFO8DQCHDAJVPOxIYRKZm7FdEgkodoEVTEhOIsvL5P2Wd25qJ/fn9ca10UcZXSEjtEpctAlaqA71EQtRJFEz+gVvVlP1ov1bn3MW0tWMXOI/sD6/AFeQ5Jx</latexit>

F †
`

<latexit sha1_base64="Ej1UUYpgdMhDedp3vPRMBqNML1g=">AAAB7XicbVBNSwMxEJ3Ur1q/qh69BIvgqexKUY9FLx4r2A9ol5JNs21sNlmSrFCW/gcvHhTx6v/x5r8xbfegrQ8GHu/NMDMvTAQ31vO+UWFtfWNzq7hd2tnd2z8oHx61jEo1ZU2qhNKdkBgmuGRNy61gnUQzEoeCtcPx7cxvPzFtuJIPdpKwICZDySNOiXVSq6dHqu/1yxWv6s2BV4mfkwrkaPTLX72BomnMpKWCGNP1vcQGGdGWU8GmpV5qWELomAxZ11FJYmaCbH7tFJ85ZYAjpV1Ji+fq74mMxMZM4tB1xsSOzLI3E//zuqmNroOMyyS1TNLFoigV2Co8ex0PuGbUiokjhGrubsV0RDSh1gVUciH4yy+vktZF1b+s1u5rlfpNHkcRTuAUzsGHK6jDHTSgCRQe4Rle4Q0p9ILe0ceitYDymWP4A/T5A0jkjvM=</latexit>⇢0
<latexit sha1_base64="Ej1UUYpgdMhDedp3vPRMBqNML1g=">AAAB7XicbVBNSwMxEJ3Ur1q/qh69BIvgqexKUY9FLx4r2A9ol5JNs21sNlmSrFCW/gcvHhTx6v/x5r8xbfegrQ8GHu/NMDMvTAQ31vO+UWFtfWNzq7hd2tnd2z8oHx61jEo1ZU2qhNKdkBgmuGRNy61gnUQzEoeCtcPx7cxvPzFtuJIPdpKwICZDySNOiXVSq6dHqu/1yxWv6s2BV4mfkwrkaPTLX72BomnMpKWCGNP1vcQGGdGWU8GmpV5qWELomAxZ11FJYmaCbH7tFJ85ZYAjpV1Ji+fq74mMxMZM4tB1xsSOzLI3E//zuqmNroOMyyS1TNLFoigV2Co8ex0PuGbUiokjhGrubsV0RDSh1gVUciH4yy+vktZF1b+s1u5rlfpNHkcRTuAUzsGHK6jDHTSgCRQe4Rle4Q0p9ILe0ceitYDymWP4A/T5A0jkjvM=</latexit>⇢0

<latexit sha1_base64="DXuRapL2zhAhBQ/ls752flWawPY=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKqMeiF48VTFtoQ9lsJ+3SzSbuboRS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fCoqZNMMfRZIhLVDqlGwSX6hhuB7VQhjUOBrXB0O/NbT6g0T+SDGacYxHQgecQZNVbyuwIfSa9ccavuHGSVeDmpQI5Gr/zV7Scsi1EaJqjWHc9NTTChynAmcFrqZhpTykZ0gB1LJY1RB5P5sVNyZpU+iRJlSxoyV39PTGis9TgObWdMzVAvezPxP6+Tmeg6mHCZZgYlWyyKMkFMQmafkz5XyIwYW0KZ4vZWwoZUUWZsPiUbgrf88ipp1qreZbV2f1Gp3+RxFOEETuEcPLiCOtxBA3xgwOEZXuHNkc6L8+58LFoLTj5zDH/gfP4AblOOcQ==</latexit> <latexit sha1_base64="FzLrOMdk10HcH2RNBbFZJUSrsoo=">AAAB/HicbVBNS8NAEN34WetXtEcvi0XwVJIi6rHoxWMF+wFNKJvtpl262YTdiRDS+le8eFDEqz/Em//GbZuDtj4YeLw3w8y8IBFcg+N8W2vrG5tb26Wd8u7e/sGhfXTc1nGqKGvRWMSqGxDNBJesBRwE6yaKkSgQrBOMb2d+55EpzWP5AFnC/IgMJQ85JWCkvl3xJtjTfBgR7E36HpchZH276tScOfAqcQtSRQWaffvLG8Q0jZgEKojWPddJwM+JAk4Fm5a9VLOE0DEZsp6hkkRM+/n8+Ck+M8oAh7EyJQHP1d8TOYm0zqLAdEYERnrZm4n/eb0Uwms/5zJJgUm6WBSmAkOMZ0ngAVeMgsgMIVRxcyumI6IIBZNX2YTgLr+8Str1mntZq99fVBs3RRwldIJO0Tly0RVqoDvURC1EUYae0St6s56sF+vd+li0rlnFTAX9gfX5A4OElLI=</latexit>k�k1

(H.25)

noting again that ‖σ‖∞ = 1. The other 1-norm term further simplifies to

<latexit sha1_base64="2Qsdalu/dg77by3FFjV+bjq8QIQ=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKewGUS9C0IvHBMwDkiXMTnqTMbOzy8ysEEK+wIsHRbz6Sd78GyfJHjSxoKGo6qa7K0gE18Z1v53c2vrG5lZ+u7Czu7d/UDw8auo4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdDfzW0+oNI/lgxkn6Ed0IHnIGTVWqt/0iiW37M5BVomXkRJkqPWKX91+zNIIpWGCat3x3MT4E6oMZwKnhW6qMaFsRAfYsVTSCLU/mR86JWdW6ZMwVrakIXP198SERlqPo8B2RtQM9bI3E//zOqkJr/0Jl0lqULLFojAVxMRk9jXpc4XMiLEllClubyVsSBVlxmZTsCF4yy+vkmal7F2WK/WLUvU2iyMPJ3AK5+DBFVThHmrQAAYIz/AKb86j8+K8Ox+L1pyTzRzDHzifP48XjMg=</latexit>=

<latexit sha1_base64="3yzzMpLGc+AxOVeOSUfkgMSIBJg=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKqMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptcvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukXat6l9Va86JSv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPfOeMvA==</latexit>

1

<latexit sha1_base64="XtRWCmBm4aVHkWHjAEHCJsINCh4=">AAAB8HicbVDLSgNBEOyNrxhfUY9eFoPgxbAbRD0GvXiMYB6SrGF2MkmGzMwuM71CWPIVXjwo4tXP8ebfOEn2oIkFDUVVN91dYSy4Qc/7dnIrq2vrG/nNwtb2zu5ecf+gYaJEU1ankYh0KySGCa5YHTkK1oo1IzIUrBmObqZ+84lpwyN1j+OYBZIMFO9zStBKDx0kyWN65k+6xZJX9mZwl4mfkRJkqHWLX51eRBPJFFJBjGn7XoxBSjRyKtik0EkMiwkdkQFrW6qIZCZIZwdP3BOr9Nx+pG0pdGfq74mUSGPGMrSdkuDQLHpT8T+vnWD/Kki5ihNkis4X9RPhYuROv3d7XDOKYmwJoZrbW106JJpQtBkVbAj+4svLpFEp+xflyt15qXqdxZGHIziGU/DhEqpwCzWoAwUJz/AKb452Xpx352PemnOymUP4A+fzB3zMkDU=</latexit>

⌧�1<latexit sha1_base64="UtiM86E2ZEp50Nao18YowkGgUaM=">AAAB/HicbVBNS8NAEN3Ur1q/oj16WSyCp5JIUY9FLx4r9AvaEDbbabt0swm7m0KI9a948aCIV3+IN/+N2zYHbX0w8Hhvhpl5QcyZ0o7zbRU2Nre2d4q7pb39g8Mj+/ikraJEUmjRiEeyGxAFnAloaaY5dGMJJAw4dILJ3dzvTEEqFommTmPwQjISbMgo0Uby7XKfEzHigPuxYn429ZuzR9+uOFVnAbxO3JxUUI6Gb3/1BxFNQhCacqJUz3Vi7WVEakY5zEr9REFM6ISMoGeoICEoL1scP8PnRhngYSRNCY0X6u+JjIRKpWFgOkOix2rVm4v/eb1ED2+8jIk40SDoctEw4VhHeJ4EHjAJVPPUEEIlM7diOiaSUG3yKpkQ3NWX10n7supeVWsPtUr9No+jiE7RGbpALrpGdXSPGqiFKErRM3pFb9aT9WK9Wx/L1oKVz5TRH1ifPwJ5lQU=</latexit>h vT
| <latexit sha1_base64="+0yu3fJs6rZq6TAZPu9EyGC2vtw=">AAAB+3icbVBNS8NAEJ3Ur1q/Yj16CRbBU0mkqMeiF48V+gVNCJvtpl262YTdTbHE/BUvHhTx6h/x5r9x2+agrQ8GHu/NMDMvSBiVyra/jdLG5tb2Tnm3srd/cHhkHle7Mk4FJh0cs1j0AyQJo5x0FFWM9BNBUBQw0gsmd3O/NyVC0pi31SwhXoRGnIYUI6Ul36w+uYmkfjb127krEB8x4ps1u24vYK0TpyA1KNDyzS93GOM0IlxhhqQcOHaivAwJRTEjecVNJUkQnqARGWjKUUSkly1uz61zrQytMBa6uLIW6u+JDEVSzqJAd0ZIjeWqNxf/8wapCm+8jPIkVYTj5aIwZZaKrXkQ1pAKghWbaYKwoPpWC4+RQFjpuCo6BGf15XXSvaw7V/XGQ6PWvC3iKMMpnMEFOHANTbiHFnQAwyM8wyu8GbnxYrwbH8vWklHMnMAfGJ8/tBOU4Q==</latexit>| vT

i

<latexit sha1_base64="YHo16WBzbApBHGSjcgEfouEQCnc=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GNREI8V7Ae0oWy2k3btJht2N0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekAiujet+O4WV1bX1jeJmaWt7Z3evvH/Q1DJVDBtMCqnaAdUoeIwNw43AdqKQRoHAVjC6mfqtJ1Say/jBjBP0IzqIecgZNVZq3va6KESvXHGr7gxkmXg5qUCOeq/81e1LlkYYGyao1h3PTYyfUWU4EzgpdVONCWUjOsCOpTGNUPvZ7NoJObFKn4RS2YoNmam/JzIaaT2OAtsZUTPUi95U/M/rpCa88jMeJ6nBmM0XhakgRpLp66TPFTIjxpZQpri9lbAhVZQZG1DJhuAtvrxMmmdV76J6fn9eqV3ncRThCI7hFDy4hBrcQR0awOARnuEV3hzpvDjvzse8teDkM4fwB87nD1cnjv0=</latexit>

F`
<latexit sha1_base64="QHNARAiqfWUN8HoSzK0rtSUb4tM=">AAAB9XicbVBNS8NAEN3Ur1q/qh69LBbBU0lE1GNREI8V7Ac0adlsJunSzSbsbpQS+j+8eFDEq//Fm//GbZuDtj4YeLw3w8w8P+VMadv+tkorq2vrG+XNytb2zu5edf+grZJMUmjRhCey6xMFnAloaaY5dFMJJPY5dPzRzdTvPIJULBEPepyCF5NIsJBRoo3Uvx24wHnfDUgUgRxUa3bdngEvE6cgNVSgOah+uUFCsxiEppwo1XPsVHs5kZpRDpOKmylICR2RCHqGChKD8vLZ1RN8YpQAh4k0JTSeqb8nchIrNY590xkTPVSL3lT8z+tlOrzycibSTIOg80VhxrFO8DQCHDAJVPOxIYRKZm7FdEgkodoEVTEhOIsvL5P2Wd25qJ/fn9ca10UcZXSEjtEpctAlaqA71EQtRJFEz+gVvVlP1ov1bn3MW0tWMXOI/sD6/AFeQ5Jx</latexit>

F †
`

<latexit sha1_base64="3yzzMpLGc+AxOVeOSUfkgMSIBJg=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKqMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptcvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukXat6l9Va86JSv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPfOeMvA==</latexit>

1

<latexit sha1_base64="XtRWCmBm4aVHkWHjAEHCJsINCh4=">AAAB8HicbVDLSgNBEOyNrxhfUY9eFoPgxbAbRD0GvXiMYB6SrGF2MkmGzMwuM71CWPIVXjwo4tXP8ebfOEn2oIkFDUVVN91dYSy4Qc/7dnIrq2vrG/nNwtb2zu5ecf+gYaJEU1ankYh0KySGCa5YHTkK1oo1IzIUrBmObqZ+84lpwyN1j+OYBZIMFO9zStBKDx0kyWN65k+6xZJX9mZwl4mfkRJkqHWLX51eRBPJFFJBjGn7XoxBSjRyKtik0EkMiwkdkQFrW6qIZCZIZwdP3BOr9Nx+pG0pdGfq74mUSGPGMrSdkuDQLHpT8T+vnWD/Kki5ihNkis4X9RPhYuROv3d7XDOKYmwJoZrbW106JJpQtBkVbAj+4svLpFEp+xflyt15qXqdxZGHIziGU/DhEqpwCzWoAwUJz/AKb452Xpx352PemnOymUP4A+fzB3zMkDU=</latexit>

⌧�1<latexit sha1_base64="UtiM86E2ZEp50Nao18YowkGgUaM=">AAAB/HicbVBNS8NAEN3Ur1q/oj16WSyCp5JIUY9FLx4r9AvaEDbbabt0swm7m0KI9a948aCIV3+IN/+N2zYHbX0w8Hhvhpl5QcyZ0o7zbRU2Nre2d4q7pb39g8Mj+/ikraJEUmjRiEeyGxAFnAloaaY5dGMJJAw4dILJ3dzvTEEqFommTmPwQjISbMgo0Uby7XKfEzHigPuxYn429ZuzR9+uOFVnAbxO3JxUUI6Gb3/1BxFNQhCacqJUz3Vi7WVEakY5zEr9REFM6ISMoGeoICEoL1scP8PnRhngYSRNCY0X6u+JjIRKpWFgOkOix2rVm4v/eb1ED2+8jIk40SDoctEw4VhHeJ4EHjAJVPPUEEIlM7diOiaSUG3yKpkQ3NWX10n7supeVWsPtUr9No+jiE7RGbpALrpGdXSPGqiFKErRM3pFb9aT9WK9Wx/L1oKVz5TRH1ifPwJ5lQU=</latexit>h vT
| <latexit sha1_base64="+0yu3fJs6rZq6TAZPu9EyGC2vtw=">AAAB+3icbVBNS8NAEJ3Ur1q/Yj16CRbBU0mkqMeiF48V+gVNCJvtpl262YTdTbHE/BUvHhTx6h/x5r9x2+agrQ8GHu/NMDMvSBiVyra/jdLG5tb2Tnm3srd/cHhkHle7Mk4FJh0cs1j0AyQJo5x0FFWM9BNBUBQw0gsmd3O/NyVC0pi31SwhXoRGnIYUI6Ul36w+uYmkfjb127krEB8x4ps1u24vYK0TpyA1KNDyzS93GOM0IlxhhqQcOHaivAwJRTEjecVNJUkQnqARGWjKUUSkly1uz61zrQytMBa6uLIW6u+JDEVSzqJAd0ZIjeWqNxf/8wapCm+8jPIkVYTj5aIwZZaKrXkQ1pAKghWbaYKwoPpWC4+RQFjpuCo6BGf15XXSvaw7V/XGQ6PWvC3iKMMpnMEFOHANTbiHFnQAwyM8wyu8GbnxYrwbH8vWklHMnMAfGJ8/tBOU4Q==</latexit>| vT

i

<latexit sha1_base64="YHo16WBzbApBHGSjcgEfouEQCnc=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GNREI8V7Ae0oWy2k3btJht2N0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekAiujet+O4WV1bX1jeJmaWt7Z3evvH/Q1DJVDBtMCqnaAdUoeIwNw43AdqKQRoHAVjC6mfqtJ1Say/jBjBP0IzqIecgZNVZq3va6KESvXHGr7gxkmXg5qUCOeq/81e1LlkYYGyao1h3PTYyfUWU4EzgpdVONCWUjOsCOpTGNUPvZ7NoJObFKn4RS2YoNmam/JzIaaT2OAtsZUTPUi95U/M/rpCa88jMeJ6nBmM0XhakgRpLp66TPFTIjxpZQpri9lbAhVZQZG1DJhuAtvrxMmmdV76J6fn9eqV3ncRThCI7hFDy4hBrcQR0awOARnuEV3hzpvDjvzse8teDkM4fwB87nD1cnjv0=</latexit>

F`
<latexit sha1_base64="QHNARAiqfWUN8HoSzK0rtSUb4tM=">AAAB9XicbVBNS8NAEN3Ur1q/qh69LBbBU0lE1GNREI8V7Ac0adlsJunSzSbsbpQS+j+8eFDEq//Fm//GbZuDtj4YeLw3w8w8P+VMadv+tkorq2vrG+XNytb2zu5edf+grZJMUmjRhCey6xMFnAloaaY5dFMJJPY5dPzRzdTvPIJULBEPepyCF5NIsJBRoo3Uvx24wHnfDUgUgRxUa3bdngEvE6cgNVSgOah+uUFCsxiEppwo1XPsVHs5kZpRDpOKmylICR2RCHqGChKD8vLZ1RN8YpQAh4k0JTSeqb8nchIrNY590xkTPVSL3lT8z+tlOrzycibSTIOg80VhxrFO8DQCHDAJVPOxIYRKZm7FdEgkodoEVTEhOIsvL5P2Wd25qJ/fn9ca10UcZXSEjtEpctAlaqA71EQtRJFEz+gVvVlP1ov1bn3MW0tWMXOI/sD6/AFeQ5Jx</latexit>

F †
`

<latexit sha1_base64="Ej1UUYpgdMhDedp3vPRMBqNML1g=">AAAB7XicbVBNSwMxEJ3Ur1q/qh69BIvgqexKUY9FLx4r2A9ol5JNs21sNlmSrFCW/gcvHhTx6v/x5r8xbfegrQ8GHu/NMDMvTAQ31vO+UWFtfWNzq7hd2tnd2z8oHx61jEo1ZU2qhNKdkBgmuGRNy61gnUQzEoeCtcPx7cxvPzFtuJIPdpKwICZDySNOiXVSq6dHqu/1yxWv6s2BV4mfkwrkaPTLX72BomnMpKWCGNP1vcQGGdGWU8GmpV5qWELomAxZ11FJYmaCbH7tFJ85ZYAjpV1Ji+fq74mMxMZM4tB1xsSOzLI3E//zuqmNroOMyyS1TNLFoigV2Co8ex0PuGbUiokjhGrubsV0RDSh1gVUciH4yy+vktZF1b+s1u5rlfpNHkcRTuAUzsGHK6jDHTSgCRQe4Rle4Q0p9ILe0ceitYDymWP4A/T5A0jkjvM=</latexit>⇢0

(H.26)

where we have used ‖A ⊗ B‖1 = ‖A‖1‖B‖1, where in the above setting ‖B‖1 = 1. It is
convenient to simplify the remaining 1-norm term for fixed τ−1. To do so, we decompose τ−1

into cycles as τ−1 = C1C2 · · ·C#(τ−1), and will say that i → j belongs to the mth cycle Cm
if Cm = (· · · ij · · · ). More generally we also say that i → j belongs to τ−1. Further letting
v0 = r, v1, ..., vT−1, vT = ` be the root-to-leaf path terminating in `, we leverage the following
lemma:
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Lemma 4. If τ−1 contains the 1-cycle T → T then

<latexit sha1_base64="2Qsdalu/dg77by3FFjV+bjq8QIQ=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKewGUS9C0IvHBMwDkiXMTnqTMbOzy8ysEEK+wIsHRbz6Sd78GyfJHjSxoKGo6qa7K0gE18Z1v53c2vrG5lZ+u7Czu7d/UDw8auo4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdDfzW0+oNI/lgxkn6Ed0IHnIGTVWqt/0iiW37M5BVomXkRJkqPWKX91+zNIIpWGCat3x3MT4E6oMZwKnhW6qMaFsRAfYsVTSCLU/mR86JWdW6ZMwVrakIXP198SERlqPo8B2RtQM9bI3E//zOqkJr/0Jl0lqULLFojAVxMRk9jXpc4XMiLEllClubyVsSBVlxmZTsCF4yy+vkmal7F2WK/WLUvU2iyMPJ3AK5+DBFVThHmrQAAYIz/AKb86j8+K8Ox+L1pyTzRzDHzifP48XjMg=</latexit>=

<latexit sha1_base64="3yzzMpLGc+AxOVeOSUfkgMSIBJg=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKqMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptcvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukXat6l9Va86JSv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPfOeMvA==</latexit>

1

<latexit sha1_base64="XtRWCmBm4aVHkWHjAEHCJsINCh4=">AAAB8HicbVDLSgNBEOyNrxhfUY9eFoPgxbAbRD0GvXiMYB6SrGF2MkmGzMwuM71CWPIVXjwo4tXP8ebfOEn2oIkFDUVVN91dYSy4Qc/7dnIrq2vrG/nNwtb2zu5ecf+gYaJEU1ankYh0KySGCa5YHTkK1oo1IzIUrBmObqZ+84lpwyN1j+OYBZIMFO9zStBKDx0kyWN65k+6xZJX9mZwl4mfkRJkqHWLX51eRBPJFFJBjGn7XoxBSjRyKtik0EkMiwkdkQFrW6qIZCZIZwdP3BOr9Nx+pG0pdGfq74mUSGPGMrSdkuDQLHpT8T+vnWD/Kki5ihNkis4X9RPhYuROv3d7XDOKYmwJoZrbW106JJpQtBkVbAj+4svLpFEp+xflyt15qXqdxZGHIziGU/DhEqpwCzWoAwUJz/AKb452Xpx352PemnOymUP4A+fzB3zMkDU=</latexit>

⌧�1<latexit sha1_base64="UtiM86E2ZEp50Nao18YowkGgUaM=">AAAB/HicbVBNS8NAEN3Ur1q/oj16WSyCp5JIUY9FLx4r9AvaEDbbabt0swm7m0KI9a948aCIV3+IN/+N2zYHbX0w8Hhvhpl5QcyZ0o7zbRU2Nre2d4q7pb39g8Mj+/ikraJEUmjRiEeyGxAFnAloaaY5dGMJJAw4dILJ3dzvTEEqFommTmPwQjISbMgo0Uby7XKfEzHigPuxYn429ZuzR9+uOFVnAbxO3JxUUI6Gb3/1BxFNQhCacqJUz3Vi7WVEakY5zEr9REFM6ISMoGeoICEoL1scP8PnRhngYSRNCY0X6u+JjIRKpWFgOkOix2rVm4v/eb1ED2+8jIk40SDoctEw4VhHeJ4EHjAJVPPUEEIlM7diOiaSUG3yKpkQ3NWX10n7supeVWsPtUr9No+jiE7RGbpALrpGdXSPGqiFKErRM3pFb9aT9WK9Wx/L1oKVz5TRH1ifPwJ5lQU=</latexit>h vT
| <latexit sha1_base64="+0yu3fJs6rZq6TAZPu9EyGC2vtw=">AAAB+3icbVBNS8NAEJ3Ur1q/Yj16CRbBU0mkqMeiF48V+gVNCJvtpl262YTdTbHE/BUvHhTx6h/x5r9x2+agrQ8GHu/NMDMvSBiVyra/jdLG5tb2Tnm3srd/cHhkHle7Mk4FJh0cs1j0AyQJo5x0FFWM9BNBUBQw0gsmd3O/NyVC0pi31SwhXoRGnIYUI6Ul36w+uYmkfjb127krEB8x4ps1u24vYK0TpyA1KNDyzS93GOM0IlxhhqQcOHaivAwJRTEjecVNJUkQnqARGWjKUUSkly1uz61zrQytMBa6uLIW6u+JDEVSzqJAd0ZIjeWqNxf/8wapCm+8jPIkVYTj5aIwZZaKrXkQ1pAKghWbaYKwoPpWC4+RQFjpuCo6BGf15XXSvaw7V/XGQ6PWvC3iKMMpnMEFOHANTbiHFnQAwyM8wyu8GbnxYrwbH8vWklHMnMAfGJ8/tBOU4Q==</latexit>| vT

i

<latexit sha1_base64="QHNARAiqfWUN8HoSzK0rtSUb4tM=">AAAB9XicbVBNS8NAEN3Ur1q/qh69LBbBU0lE1GNREI8V7Ac0adlsJunSzSbsbpQS+j+8eFDEq//Fm//GbZuDtj4YeLw3w8w8P+VMadv+tkorq2vrG+XNytb2zu5edf+grZJMUmjRhCey6xMFnAloaaY5dFMJJPY5dPzRzdTvPIJULBEPepyCF5NIsJBRoo3Uvx24wHnfDUgUgRxUa3bdngEvE6cgNVSgOah+uUFCsxiEppwo1XPsVHs5kZpRDpOKmylICR2RCHqGChKD8vLZ1RN8YpQAh4k0JTSeqb8nchIrNY590xkTPVSL3lT8z+tlOrzycibSTIOg80VhxrFO8DQCHDAJVPOxIYRKZm7FdEgkodoEVTEhOIsvL5P2Wd25qJ/fn9ca10UcZXSEjtEpctAlaqA71EQtRJFEz+gVvVlP1ov1bn3MW0tWMXOI/sD6/AFeQ5Jx</latexit>

F †
`

<latexit sha1_base64="YHo16WBzbApBHGSjcgEfouEQCnc=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GNREI8V7Ae0oWy2k3btJht2N0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekAiujet+O4WV1bX1jeJmaWt7Z3evvH/Q1DJVDBtMCqnaAdUoeIwNw43AdqKQRoHAVjC6mfqtJ1Say/jBjBP0IzqIecgZNVZq3va6KESvXHGr7gxkmXg5qUCOeq/81e1LlkYYGyao1h3PTYyfUWU4EzgpdVONCWUjOsCOpTGNUPvZ7NoJObFKn4RS2YoNmam/JzIaaT2OAtsZUTPUi95U/M/rpCa88jMeJ6nBmM0XhakgRpLp66TPFTIjxpZQpri9lbAhVZQZG1DJhuAtvrxMmmdV76J6fn9eqV3ncRThCI7hFDy4hBrcQR0awOARnuEV3hzpvDjvzse8teDkM4fwB87nD1cnjv0=</latexit>

F`
<latexit sha1_base64="Lg9JWTJlzGa3NOqmrAzWEgzPsIs="></latexit> Y

i!j 2 ⌧�1

i,j 6=T

<latexit sha1_base64="Gc19ueDtgCr5UpuYZR9OwZgEw6Q=">AAACAXicbVDLSsNAFL2pr1pfVZduBovQVUmkqMtSNy4r2Ae0oUwmk3TsZBJmJkIpXfkDbvUP3Ilbv8Qf8DuctFnY1gMDh3Pu5Z45XsKZ0rb9bRU2Nre2d4q7pb39g8Oj8vFJR8WpJLRNYh7LnocV5UzQtmaa014iKY48Trve+Dbzu09UKhaLBz1JqBvhULCAEayN1Bk0WRhWh+WKXbPnQOvEyUkFcrSG5Z+BH5M0okITjpXqO3ai3SmWmhFOZ6VBqmiCyRiHtG+owBFV7nSedoYujOKjIJbmCY3m6t+NKY6UmkSemYywHqlVLxP/8/qpDm7cKRNJqqkgi0NBypGOUfZ15DNJieYTQzCRzGRFZIQlJtoUtHTFV1m0WckU46zWsE46lzXnqla/r1cazbyiIpzBOVTBgWtowB20oA0EHuEFXuHNerberQ/rczFasPKdU1iC9fULNRuXOQ==</latexit> 

<latexit sha1_base64="3yzzMpLGc+AxOVeOSUfkgMSIBJg=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKqMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptcvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukXat6l9Va86JSv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPfOeMvA==</latexit>

1

<latexit sha1_base64="Gc19ueDtgCr5UpuYZR9OwZgEw6Q=">AAACAXicbVDLSsNAFL2pr1pfVZduBovQVUmkqMtSNy4r2Ae0oUwmk3TsZBJmJkIpXfkDbvUP3Ilbv8Qf8DuctFnY1gMDh3Pu5Z45XsKZ0rb9bRU2Nre2d4q7pb39g8Oj8vFJR8WpJLRNYh7LnocV5UzQtmaa014iKY48Trve+Dbzu09UKhaLBz1JqBvhULCAEayN1Bk0WRhWh+WKXbPnQOvEyUkFcrSG5Z+BH5M0okITjpXqO3ai3SmWmhFOZ6VBqmiCyRiHtG+owBFV7nSedoYujOKjIJbmCY3m6t+NKY6UmkSemYywHqlVLxP/8/qpDm7cKRNJqqkgi0NBypGOUfZ15DNJieYTQzCRzGRFZIQlJtoUtHTFV1m0WckU46zWsE46lzXnqla/r1cazbyiIpzBOVTBgWtowB20oA0EHuEFXuHNerberQ/rczFasPKdU1iC9fULNRuXOQ==</latexit>  
<latexit sha1_base64="DKpd9f3Nt2pauXQEhAcpcKWOEzw=">AAAB7nicbVBNSwMxEJ3Ur1q/qh69BIvgqexKUY9FQTxWsB/QLks2zbax2eySZAtl6Y/w4kERr/4eb/4b03YP2vpg4PHeDDPzgkRwbRznGxXW1jc2t4rbpZ3dvf2D8uFRS8epoqxJYxGrTkA0E1yypuFGsE6iGIkCwdrB6Hbmt8dMaR7LRzNJmBeRgeQhp8RYqX3nZ2P/aeqXK07VmQOvEjcnFcjR8MtfvX5M04hJQwXRuus6ifEyogyngk1LvVSzhNARGbCupZJETHvZ/NwpPrNKH4exsiUNnqu/JzISaT2JAtsZETPUy95M/M/rpia89jIuk9QwSReLwlRgE+PZ77jPFaNGTCwhVHF7K6ZDogg1NqGSDcFdfnmVtC6q7mW19lCr1G/yOIpwAqdwDi5cQR3uoQFNoDCCZ3iFN5SgF/SOPhatBZTPHMMfoM8fbm2PpQ==</latexit>

Fvj

<latexit sha1_base64="+AZQBIUcsT624WHOajaT3YorgKM=">AAAB+HicbVDLSsNAFJ3UV62PRl26GSyCq5JIUZdFQVxWsA9oY5hMbtKhkwczk0IN/RI3LhRx66e482+ctllo64ELh3Pu5d57vJQzqSzr2yitrW9sbpW3Kzu7e/tV8+CwI5NMUGjThCei5xEJnMXQVkxx6KUCSORx6Hqjm5nfHYOQLIkf1CQFJyJhzAJGidKSa1Zv3XzssunjwCdhCMI1a1bdmgOvErsgNVSg5ZpfAz+hWQSxopxI2betVDk5EYpRDtPKIJOQEjoiIfQ1jUkE0snnh0/xqVZ8HCRCV6zwXP09kZNIyknk6c6IqKFc9mbif14/U8GVk7M4zRTEdLEoyDhWCZ6lgH0mgCo+0YRQwfStmA6JIFTprCo6BHv55VXSOa/bF/XGfaPWvC7iKKNjdILOkI0uURPdoRZqI4oy9Ixe0ZvxZLwY78bHorVkFDNH6A+Mzx/wsZNJ</latexit>

F †
vi

<latexit sha1_base64="mU2SaH0pb9mDR57RQ2y/5WJD+Ps=">AAACEHicbZDLSsNAFIYnXmu9RV26GSyiCwmJFHVZdOOyQm/QhDCZTtqhk0mYmRRK7CO48VXcuFDErUt3vo3TNKC2Hhj4+P9zOHP+IGFUKtv+MpaWV1bX1ksb5c2t7Z1dc2+/JeNUYNLEMYtFJ0CSMMpJU1HFSCcRBEUBI+1geDP12yMiJI15Q40T4kWoz2lIMVJa8s0TlyHeZwS6iaR+NvIbk/sfdEVuumeWb1Zsy84LLoJTQAUUVffNT7cX4zQiXGGGpOw6dqK8DAlFMSOTsptKkiA8RH3S1chRRKSX5QdN4LFWejCMhX5cwVz9PZGhSMpxFOjOCKmBnPem4n9eN1XhlZdRnqSKcDxbFKYMqhhO04E9KghWbKwBYUH1XyEeIIGw0hmWdQjO/MmL0Dq3nAurelet1K6LOErgEByBU+CAS1ADt6AOmgCDB/AEXsCr8Wg8G2/G+6x1yShmDsCfMj6+AXyZnYA=</latexit>h vT
| vT

i .

(H.27)

Otherwise if τ−1 does not contain the 1-cycle T → T , then it must contain some î→ T → ĵ
(where possibly î = ĵ) in which case

<latexit sha1_base64="2Qsdalu/dg77by3FFjV+bjq8QIQ=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKewGUS9C0IvHBMwDkiXMTnqTMbOzy8ysEEK+wIsHRbz6Sd78GyfJHjSxoKGo6qa7K0gE18Z1v53c2vrG5lZ+u7Czu7d/UDw8auo4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdDfzW0+oNI/lgxkn6Ed0IHnIGTVWqt/0iiW37M5BVomXkRJkqPWKX91+zNIIpWGCat3x3MT4E6oMZwKnhW6qMaFsRAfYsVTSCLU/mR86JWdW6ZMwVrakIXP198SERlqPo8B2RtQM9bI3E//zOqkJr/0Jl0lqULLFojAVxMRk9jXpc4XMiLEllClubyVsSBVlxmZTsCF4yy+vkmal7F2WK/WLUvU2iyMPJ3AK5+DBFVThHmrQAAYIz/AKb86j8+K8Ox+L1pyTzRzDHzifP48XjMg=</latexit>=

<latexit sha1_base64="3yzzMpLGc+AxOVeOSUfkgMSIBJg=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKqMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptcvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukXat6l9Va86JSv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPfOeMvA==</latexit>

1

<latexit sha1_base64="XtRWCmBm4aVHkWHjAEHCJsINCh4=">AAAB8HicbVDLSgNBEOyNrxhfUY9eFoPgxbAbRD0GvXiMYB6SrGF2MkmGzMwuM71CWPIVXjwo4tXP8ebfOEn2oIkFDUVVN91dYSy4Qc/7dnIrq2vrG/nNwtb2zu5ecf+gYaJEU1ankYh0KySGCa5YHTkK1oo1IzIUrBmObqZ+84lpwyN1j+OYBZIMFO9zStBKDx0kyWN65k+6xZJX9mZwl4mfkRJkqHWLX51eRBPJFFJBjGn7XoxBSjRyKtik0EkMiwkdkQFrW6qIZCZIZwdP3BOr9Nx+pG0pdGfq74mUSGPGMrSdkuDQLHpT8T+vnWD/Kki5ihNkis4X9RPhYuROv3d7XDOKYmwJoZrbW106JJpQtBkVbAj+4svLpFEp+xflyt15qXqdxZGHIziGU/DhEqpwCzWoAwUJz/AKb452Xpx352PemnOymUP4A+fzB3zMkDU=</latexit>

⌧�1<latexit sha1_base64="UtiM86E2ZEp50Nao18YowkGgUaM=">AAAB/HicbVBNS8NAEN3Ur1q/oj16WSyCp5JIUY9FLx4r9AvaEDbbabt0swm7m0KI9a948aCIV3+IN/+N2zYHbX0w8Hhvhpl5QcyZ0o7zbRU2Nre2d4q7pb39g8Mj+/ikraJEUmjRiEeyGxAFnAloaaY5dGMJJAw4dILJ3dzvTEEqFommTmPwQjISbMgo0Uby7XKfEzHigPuxYn429ZuzR9+uOFVnAbxO3JxUUI6Gb3/1BxFNQhCacqJUz3Vi7WVEakY5zEr9REFM6ISMoGeoICEoL1scP8PnRhngYSRNCY0X6u+JjIRKpWFgOkOix2rVm4v/eb1ED2+8jIk40SDoctEw4VhHeJ4EHjAJVPPUEEIlM7diOiaSUG3yKpkQ3NWX10n7supeVWsPtUr9No+jiE7RGbpALrpGdXSPGqiFKErRM3pFb9aT9WK9Wx/L1oKVz5TRH1ifPwJ5lQU=</latexit>h vT
| <latexit sha1_base64="+0yu3fJs6rZq6TAZPu9EyGC2vtw=">AAAB+3icbVBNS8NAEJ3Ur1q/Yj16CRbBU0mkqMeiF48V+gVNCJvtpl262YTdTbHE/BUvHhTx6h/x5r9x2+agrQ8GHu/NMDMvSBiVyra/jdLG5tb2Tnm3srd/cHhkHle7Mk4FJh0cs1j0AyQJo5x0FFWM9BNBUBQw0gsmd3O/NyVC0pi31SwhXoRGnIYUI6Ul36w+uYmkfjb127krEB8x4ps1u24vYK0TpyA1KNDyzS93GOM0IlxhhqQcOHaivAwJRTEjecVNJUkQnqARGWjKUUSkly1uz61zrQytMBa6uLIW6u+JDEVSzqJAd0ZIjeWqNxf/8wapCm+8jPIkVYTj5aIwZZaKrXkQ1pAKghWbaYKwoPpWC4+RQFjpuCo6BGf15XXSvaw7V/XGQ6PWvC3iKMMpnMEFOHANTbiHFnQAwyM8wyu8GbnxYrwbH8vWklHMnMAfGJ8/tBOU4Q==</latexit>| vT

i

<latexit sha1_base64="QHNARAiqfWUN8HoSzK0rtSUb4tM=">AAAB9XicbVBNS8NAEN3Ur1q/qh69LBbBU0lE1GNREI8V7Ac0adlsJunSzSbsbpQS+j+8eFDEq//Fm//GbZuDtj4YeLw3w8w8P+VMadv+tkorq2vrG+XNytb2zu5edf+grZJMUmjRhCey6xMFnAloaaY5dFMJJPY5dPzRzdTvPIJULBEPepyCF5NIsJBRoo3Uvx24wHnfDUgUgRxUa3bdngEvE6cgNVSgOah+uUFCsxiEppwo1XPsVHs5kZpRDpOKmylICR2RCHqGChKD8vLZ1RN8YpQAh4k0JTSeqb8nchIrNY590xkTPVSL3lT8z+tlOrzycibSTIOg80VhxrFO8DQCHDAJVPOxIYRKZm7FdEgkodoEVTEhOIsvL5P2Wd25qJ/fn9ca10UcZXSEjtEpctAlaqA71EQtRJFEz+gVvVlP1ov1bn3MW0tWMXOI/sD6/AFeQ5Jx</latexit>

F †
`

<latexit sha1_base64="YHo16WBzbApBHGSjcgEfouEQCnc=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GNREI8V7Ae0oWy2k3btJht2N0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekAiujet+O4WV1bX1jeJmaWt7Z3evvH/Q1DJVDBtMCqnaAdUoeIwNw43AdqKQRoHAVjC6mfqtJ1Say/jBjBP0IzqIecgZNVZq3va6KESvXHGr7gxkmXg5qUCOeq/81e1LlkYYGyao1h3PTYyfUWU4EzgpdVONCWUjOsCOpTGNUPvZ7NoJObFKn4RS2YoNmam/JzIaaT2OAtsZUTPUi95U/M/rpCa88jMeJ6nBmM0XhakgRpLp66TPFTIjxpZQpri9lbAhVZQZG1DJhuAtvrxMmmdV76J6fn9eqV3ncRThCI7hFDy4hBrcQR0awOARnuEV3hzpvDjvzse8teDkM4fwB87nD1cnjv0=</latexit>

F`
<latexit sha1_base64="Lg9JWTJlzGa3NOqmrAzWEgzPsIs="></latexit> Y

i!j 2 ⌧�1

i,j 6=T

<latexit sha1_base64="Gc19ueDtgCr5UpuYZR9OwZgEw6Q=">AAACAXicbVDLSsNAFL2pr1pfVZduBovQVUmkqMtSNy4r2Ae0oUwmk3TsZBJmJkIpXfkDbvUP3Ilbv8Qf8DuctFnY1gMDh3Pu5Z45XsKZ0rb9bRU2Nre2d4q7pb39g8Oj8vFJR8WpJLRNYh7LnocV5UzQtmaa014iKY48Trve+Dbzu09UKhaLBz1JqBvhULCAEayN1Bk0WRhWh+WKXbPnQOvEyUkFcrSG5Z+BH5M0okITjpXqO3ai3SmWmhFOZ6VBqmiCyRiHtG+owBFV7nSedoYujOKjIJbmCY3m6t+NKY6UmkSemYywHqlVLxP/8/qpDm7cKRNJqqkgi0NBypGOUfZ15DNJieYTQzCRzGRFZIQlJtoUtHTFV1m0WckU46zWsE46lzXnqla/r1cazbyiIpzBOVTBgWtowB20oA0EHuEFXuHNerberQ/rczFasPKdU1iC9fULNRuXOQ==</latexit> 

<latexit sha1_base64="3yzzMpLGc+AxOVeOSUfkgMSIBJg=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKqMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptcvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukXat6l9Va86JSv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPfOeMvA==</latexit>

1

<latexit sha1_base64="Gc19ueDtgCr5UpuYZR9OwZgEw6Q=">AAACAXicbVDLSsNAFL2pr1pfVZduBovQVUmkqMtSNy4r2Ae0oUwmk3TsZBJmJkIpXfkDbvUP3Ilbv8Qf8DuctFnY1gMDh3Pu5Z45XsKZ0rb9bRU2Nre2d4q7pb39g8Oj8vFJR8WpJLRNYh7LnocV5UzQtmaa014iKY48Trve+Dbzu09UKhaLBz1JqBvhULCAEayN1Bk0WRhWh+WKXbPnQOvEyUkFcrSG5Z+BH5M0okITjpXqO3ai3SmWmhFOZ6VBqmiCyRiHtG+owBFV7nSedoYujOKjIJbmCY3m6t+NKY6UmkSemYywHqlVLxP/8/qpDm7cKRNJqqkgi0NBypGOUfZ15DNJieYTQzCRzGRFZIQlJtoUtHTFV1m0WckU46zWsE46lzXnqla/r1cazbyiIpzBOVTBgWtowB20oA0EHuEFXuHNerberQ/rczFasPKdU1iC9fULNRuXOQ==</latexit>  

<latexit sha1_base64="3yzzMpLGc+AxOVeOSUfkgMSIBJg=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKqMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptcvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukXat6l9Va86JSv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPfOeMvA==</latexit>

1

<latexit sha1_base64="HuvDOdJM9HNZu3jhu53Q4/pz7iM=">AAACD3icbVDLSgMxFL3js9bXqEs3waK4KjNS1GXRjcsKfUGnDJk0bUMzmSHJFMq0f+DGX3HjQhG3bt35N6btINp64HIP59xLck8Qc6a043xZK6tr6xubua389s7u3r59cFhXUSIJrZGIR7IZYEU5E7Smmea0GUuKw4DTRjC4nfqNIZWKRaKqRzFth7gnWJcRrI3k22djL1bMT4d+deJJLHqcIo9n/ccZ+3bBKTozoGXiZqQAGSq+/el1IpKEVGjCsVIt14l1O8VSM8LpJO8lisaYDHCPtgwVOKSqnc7umaBTo3RQN5KmhEYz9fdGikOlRmFgJkOs+2rRm4r/ea1Ed6/bKRNxoqkg84e6CUc6QtNwUIdJSjQfGYKJZOaviPSxxESbCPMmBHfx5GVSvyi6l8XSfalQvsniyMExnMA5uHAFZbiDCtSAwAM8wQu8Wo/Ws/Vmvc9HV6xs5wj+wPr4BiKdnVw=</latexit>| vT
ih vT

|
<latexit sha1_base64="DKpd9f3Nt2pauXQEhAcpcKWOEzw=">AAAB7nicbVBNSwMxEJ3Ur1q/qh69BIvgqexKUY9FQTxWsB/QLks2zbax2eySZAtl6Y/w4kERr/4eb/4b03YP2vpg4PHeDDPzgkRwbRznGxXW1jc2t4rbpZ3dvf2D8uFRS8epoqxJYxGrTkA0E1yypuFGsE6iGIkCwdrB6Hbmt8dMaR7LRzNJmBeRgeQhp8RYqX3nZ2P/aeqXK07VmQOvEjcnFcjR8MtfvX5M04hJQwXRuus6ifEyogyngk1LvVSzhNARGbCupZJETHvZ/NwpPrNKH4exsiUNnqu/JzISaT2JAtsZETPUy95M/M/rpia89jIuk9QwSReLwlRgE+PZ77jPFaNGTCwhVHF7K6ZDogg1NqGSDcFdfnmVtC6q7mW19lCr1G/yOIpwAqdwDi5cQR3uoQFNoDCCZ3iFN5SgF/SOPhatBZTPHMMfoM8fbm2PpQ==</latexit>

Fvj

<latexit sha1_base64="+AZQBIUcsT624WHOajaT3YorgKM=">AAAB+HicbVDLSsNAFJ3UV62PRl26GSyCq5JIUZdFQVxWsA9oY5hMbtKhkwczk0IN/RI3LhRx66e482+ctllo64ELh3Pu5d57vJQzqSzr2yitrW9sbpW3Kzu7e/tV8+CwI5NMUGjThCei5xEJnMXQVkxx6KUCSORx6Hqjm5nfHYOQLIkf1CQFJyJhzAJGidKSa1Zv3XzssunjwCdhCMI1a1bdmgOvErsgNVSg5ZpfAz+hWQSxopxI2betVDk5EYpRDtPKIJOQEjoiIfQ1jUkE0snnh0/xqVZ8HCRCV6zwXP09kZNIyknk6c6IqKFc9mbif14/U8GVk7M4zRTEdLEoyDhWCZ6lgH0mgCo+0YRQwfStmA6JIFTprCo6BHv55VXSOa/bF/XGfaPWvC7iKKNjdILOkI0uURPdoRZqI4oy9Ixe0ZvxZLwY78bHorVkFDNH6A+Mzx/wsZNJ</latexit>

F †
vi

<latexit sha1_base64="VaHhrjglGeXiSOiX58LuGqMns5M=">AAACAHicbVDLSsNAFJ3UV62vqAsXbgaL4KokUtRlURCXFewDmhgmk0k6dDIJM5NCCdn4K25cKOLWz3Dn3zhts9DWAxcO59zLvff4KaNSWda3UVlZXVvfqG7WtrZ3dvfM/YOuTDKBSQcnLBF9H0nCKCcdRRUj/VQQFPuM9PzRzdTvjYmQNOEPapISN0YRpyHFSGnJM49uvXzs5c4QqZwWRfHoBCiKiPDMutWwZoDLxC5JHZRoe+aXEyQ4iwlXmCEpB7aVKjdHQlHMSFFzMklShEcoIgNNOYqJdPPZAwU81UoAw0To4grO1N8TOYqlnMS+7oyRGspFbyr+5w0yFV65OeVppgjH80VhxqBK4DQNGFBBsGITTRAWVN8K8RAJhJXOrKZDsBdfXibd84Z90WjeN+ut6zKOKjgGJ+AM2OAStMAdaIMOwKAAz+AVvBlPxovxbnzMWytGOXMI/sD4/AG0qJci</latexit>

F †
vî

<latexit sha1_base64="TuMybkgh6zyLZhvkjjjbEiHPyOQ=">AAAB+HicbVBNS8NAEJ3Ur1o/GvXoZbEInkoiRT0WBfFYwX5AG8Jmu23XbjZhd1OoIb/EiwdFvPpTvPlv3LY5aOuDgcd7M8zMC2LOlHacb6uwtr6xuVXcLu3s7u2X7YPDlooSSWiTRDySnQArypmgTc00p51YUhwGnLaD8c3Mb0+oVCwSD3oaUy/EQ8EGjGBtJN8u3/rpxE97I6zTxyzLfLviVJ050Cpxc1KBHA3f/ur1I5KEVGjCsVJd14m1l2KpGeE0K/USRWNMxnhIu4YKHFLlpfPDM3RqlD4aRNKU0Giu/p5IcajUNAxMZ4j1SC17M/E/r5vowZWXMhEnmgqyWDRIONIRmqWA+kxSovnUEEwkM7ciMsISE22yKpkQ3OWXV0nrvOpeVGv3tUr9Oo+jCMdwAmfgwiXU4Q4a0AQCCTzDK7xZT9aL9W59LFoLVj5zBH9gff4AjFuTrw==</latexit>

Fvĵ

<latexit sha1_base64="mU2SaH0pb9mDR57RQ2y/5WJD+Ps=">AAACEHicbZDLSsNAFIYnXmu9RV26GSyiCwmJFHVZdOOyQm/QhDCZTtqhk0mYmRRK7CO48VXcuFDErUt3vo3TNKC2Hhj4+P9zOHP+IGFUKtv+MpaWV1bX1ksb5c2t7Z1dc2+/JeNUYNLEMYtFJ0CSMMpJU1HFSCcRBEUBI+1geDP12yMiJI15Q40T4kWoz2lIMVJa8s0TlyHeZwS6iaR+NvIbk/sfdEVuumeWb1Zsy84LLoJTQAUUVffNT7cX4zQiXGGGpOw6dqK8DAlFMSOTsptKkiA8RH3S1chRRKSX5QdN4LFWejCMhX5cwVz9PZGhSMpxFOjOCKmBnPem4n9eN1XhlZdRnqSKcDxbFKYMqhhO04E9KghWbKwBYUH1XyEeIIGw0hmWdQjO/MmL0Dq3nAurelet1K6LOErgEByBU+CAS1ADt6AOmgCDB/AEXsCr8Wg8G2/G+6x1yShmDsCfMj6+AXyZnYA=</latexit>h vT
| vT

i .

(H.28)

Proof. The identities follow by contracting tensor indices of F`, F †` , 〈ψvT | and |ψvT 〉 according
to τ−1, and then using the identity ‖A1 ⊗ A2 ⊗ · · · ⊗ An‖1 =

∏n
i=1 ‖Ai‖1.

Next we simplify the 1-norm terms appearing in (H.27) and (H.28). Since ‖A‖1 = ‖A‖2

when A is rank one, we have

<latexit sha1_base64="3yzzMpLGc+AxOVeOSUfkgMSIBJg=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKqMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptcvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukXat6l9Va86JSv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPfOeMvA==</latexit>

1

<latexit sha1_base64="DKpd9f3Nt2pauXQEhAcpcKWOEzw=">AAAB7nicbVBNSwMxEJ3Ur1q/qh69BIvgqexKUY9FQTxWsB/QLks2zbax2eySZAtl6Y/w4kERr/4eb/4b03YP2vpg4PHeDDPzgkRwbRznGxXW1jc2t4rbpZ3dvf2D8uFRS8epoqxJYxGrTkA0E1yypuFGsE6iGIkCwdrB6Hbmt8dMaR7LRzNJmBeRgeQhp8RYqX3nZ2P/aeqXK07VmQOvEjcnFcjR8MtfvX5M04hJQwXRuus6ifEyogyngk1LvVSzhNARGbCupZJETHvZ/NwpPrNKH4exsiUNnqu/JzISaT2JAtsZETPUy95M/M/rpia89jIuk9QwSReLwlRgE+PZ77jPFaNGTCwhVHF7K6ZDogg1NqGSDcFdfnmVtC6q7mW19lCr1G/yOIpwAqdwDi5cQR3uoQFNoDCCZ3iFN5SgF/SOPhatBZTPHMMfoM8fbm2PpQ==</latexit>

Fvj

<latexit sha1_base64="+AZQBIUcsT624WHOajaT3YorgKM=">AAAB+HicbVDLSsNAFJ3UV62PRl26GSyCq5JIUZdFQVxWsA9oY5hMbtKhkwczk0IN/RI3LhRx66e482+ctllo64ELh3Pu5d57vJQzqSzr2yitrW9sbpW3Kzu7e/tV8+CwI5NMUGjThCei5xEJnMXQVkxx6KUCSORx6Hqjm5nfHYOQLIkf1CQFJyJhzAJGidKSa1Zv3XzssunjwCdhCMI1a1bdmgOvErsgNVSg5ZpfAz+hWQSxopxI2betVDk5EYpRDtPKIJOQEjoiIfQ1jUkE0snnh0/xqVZ8HCRCV6zwXP09kZNIyknk6c6IqKFc9mbif14/U8GVk7M4zRTEdLEoyDhWCZ6lgH0mgCo+0YRQwfStmA6JIFTprCo6BHv55VXSOa/bF/XGfaPWvC7iKKNjdILOkI0uURPdoRZqI4oy9Ixe0ZvxZLwY78bHorVkFDNH6A+Mzx/wsZNJ</latexit>

F †
vi

<latexit sha1_base64="tK4BalyGcCRU9kB0n5zsUZNLc0E=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4qkkR9Vj04rGi/YA2lM120y7dbMLuRCihP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LR7dRvPXFtRKwecZxwP6IDJULBKFrpwTuv9kplt+LOQJaJl5My5Kj3Sl/dfszSiCtkkhrT8dwE/YxqFEzySbGbGp5QNqID3rFU0YgbP5udOiGnVumTMNa2FJKZ+nsio5Ex4yiwnRHFoVn0puJ/XifF8NrPhEpS5IrNF4WpJBiT6d+kLzRnKMeWUKaFvZWwIdWUoU2naEPwFl9eJs1qxbusVO8vyrWbPI4CHMMJnIEHV1CDO6hDAxgM4Ble4c2Rzovz7nzMW1ecfOYI/sD5/AFaVY0x</latexit>

1/2

<latexit sha1_base64="/kl/J/MrbFHXr+CghOKY6aWWQz0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0iKqMeiF48t2FpoQ9lsJ+3azSbsboRS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8MBVcG8/7dgpr6xubW8Xt0s7u3v5B+fCopZNMMWyyRCSqHVKNgktsGm4EtlOFNA4FPoSj25n/8IRK80Tem3GKQUwHkkecUWOlhtsrVzzXm4OsEj8nFchR75W/uv2EZTFKwwTVuuN7qQkmVBnOBE5L3UxjStmIDrBjqaQx6mAyP3RKzqzSJ1GibElD5urviQmNtR7Hoe2MqRnqZW8m/ud1MhNdBxMu08ygZItFUSaIScjsa9LnCpkRY0soU9zeStiQKsqMzaZkQ/CXX14lrarrX7rVxkWldpPHUYQTOIVz8OEKanAHdWgCA4RneIU359F5cd6dj0VrwclnjuEPnM8feFuMuQ==</latexit>.
<latexit sha1_base64="DKpd9f3Nt2pauXQEhAcpcKWOEzw=">AAAB7nicbVBNSwMxEJ3Ur1q/qh69BIvgqexKUY9FQTxWsB/QLks2zbax2eySZAtl6Y/w4kERr/4eb/4b03YP2vpg4PHeDDPzgkRwbRznGxXW1jc2t4rbpZ3dvf2D8uFRS8epoqxJYxGrTkA0E1yypuFGsE6iGIkCwdrB6Hbmt8dMaR7LRzNJmBeRgeQhp8RYqX3nZ2P/aeqXK07VmQOvEjcnFcjR8MtfvX5M04hJQwXRuus6ifEyogyngk1LvVSzhNARGbCupZJETHvZ/NwpPrNKH4exsiUNnqu/JzISaT2JAtsZETPUy95M/M/rpia89jIuk9QwSReLwlRgE+PZ77jPFaNGTCwhVHF7K6ZDogg1NqGSDcFdfnmVtC6q7mW19lCr1G/yOIpwAqdwDi5cQR3uoQFNoDCCZ3iFN5SgF/SOPhatBZTPHMMfoM8fbm2PpQ==</latexit>

Fvj

<latexit sha1_base64="+AZQBIUcsT624WHOajaT3YorgKM=">AAAB+HicbVDLSsNAFJ3UV62PRl26GSyCq5JIUZdFQVxWsA9oY5hMbtKhkwczk0IN/RI3LhRx66e482+ctllo64ELh3Pu5d57vJQzqSzr2yitrW9sbpW3Kzu7e/tV8+CwI5NMUGjThCei5xEJnMXQVkxx6KUCSORx6Hqjm5nfHYOQLIkf1CQFJyJhzAJGidKSa1Zv3XzssunjwCdhCMI1a1bdmgOvErsgNVSg5ZpfAz+hWQSxopxI2betVDk5EYpRDtPKIJOQEjoiIfQ1jUkE0snnh0/xqVZ8HCRCV6zwXP09kZNIyknk6c6IqKFc9mbif14/U8GVk7M4zRTEdLEoyDhWCZ6lgH0mgCo+0YRQwfStmA6JIFTprCo6BHv55VXSOa/bF/XGfaPWvC7iKKNjdILOkI0uURPdoRZqI4oy9Ixe0ZvxZLwY78bHorVkFDNH6A+Mzx/wsZNJ</latexit>

F †
vi

<latexit sha1_base64="y1MHyKMAa0Zks4XsE8iZiH0C7+U=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GNREI8V7Ae0IWy203bpZhN2N4US+iO8eFDEq7/Hm//GbZuDtj4YeLw3w8y8MBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoqeNUMWywWMSqHVKNgktsGG4EthOFNAoFtsLR3cxvjVFpHssnM0nQj+hA8j5n1FipdR9k44BPg3LFrbpzkFXi5aQCOepB+avbi1kaoTRMUK07npsYP6PKcCZwWuqmGhPKRnSAHUsljVD72fzcKTmzSo/0Y2VLGjJXf09kNNJ6EoW2M6JmqJe9mfif10lN/8bPuExSg5ItFvVTQUxMZr+THlfIjJhYQpni9lbChlRRZmxCJRuCt/zyKmleVL2r6uXjZaV2m8dRhBM4hXPw4Bpq8AB1aACDETzDK7w5ifPivDsfi9aCk88cwx84nz9s6I+k</latexit>

Fvi

<latexit sha1_base64="HjHTAFtPrkMi4XpwtPjCv91LDVU=">AAAB+HicbVDLSsNAFL2pr1ofjbp0M1gEVyURUZdFQVxWsA9oY5hMJunYyYOZSaGGfokbF4q49VPc+TdO2yy09cCFwzn3cu89XsqZVJb1bZRWVtfWN8qbla3tnd2qubfflkkmCG2RhCei62FJOYtpSzHFaTcVFEcepx1veD31OyMqJEviezVOqRPhMGYBI1hpyTWrN24+ch8nD30fhyEVrlmz6tYMaJnYBalBgaZrfvX9hGQRjRXhWMqebaXKybFQjHA6qfQzSVNMhjikPU1jHFHp5LPDJ+hYKz4KEqErVmim/p7IcSTlOPJ0Z4TVQC56U/E/r5ep4NLJWZxmisZkvijIOFIJmqaAfCYoUXysCSaC6VsRGWCBidJZVXQI9uLLy6R9WrfP62d3Z7XGVRFHGQ7hCE7AhgtowC00oQUEMniGV3gznowX4934mLeWjGLmAP7A+PwB8j6TSg==</latexit>

F †
vj

<latexit sha1_base64="noc4FXgm61TAfjmNkzGKfuK327Y=">AAAB/HicbVDLSsNAFL2pr1pfVZdugkVwVRIRdSMU3bhswT6gDWUyuWmHTiZhZiKUUH/Arf6BO3Hrv/gDfofTNgvbemDgcM693DPHTzhT2nG+rcLa+sbmVnG7tLO7t39QPjxqqTiVFJs05rHs+EQhZwKbmmmOnUQiiXyObX90P/XbTygVi8WjHifoRWQgWMgo0UZq3PbLFafqzGCvEjcnFchR75d/ekFM0wiFppwo1XWdRHsZkZpRjpNSL1WYEDoiA+waKkiEystmQSf2mVECO4yleULbM/XvRkYipcaRbyYjoodq2ZuK/3ndVIc3XsZEkmoUdH4oTLmtY3v6aztgEqnmY0MIlcxktemQSEK16WbhSqCm0SYlU4y7XMMqaV1U3avqZeOyUrvLKyrCCZzCObhwDTV4gDo0gQLCC7zCm/VsvVsf1ud8tGDlO8ewAOvrF6yvlUc=</latexit>=

<latexit sha1_base64="Gc19ueDtgCr5UpuYZR9OwZgEw6Q=">AAACAXicbVDLSsNAFL2pr1pfVZduBovQVUmkqMtSNy4r2Ae0oUwmk3TsZBJmJkIpXfkDbvUP3Ilbv8Qf8DuctFnY1gMDh3Pu5Z45XsKZ0rb9bRU2Nre2d4q7pb39g8Oj8vFJR8WpJLRNYh7LnocV5UzQtmaa014iKY48Trve+Dbzu09UKhaLBz1JqBvhULCAEayN1Bk0WRhWh+WKXbPnQOvEyUkFcrSG5Z+BH5M0okITjpXqO3ai3SmWmhFOZ6VBqmiCyRiHtG+owBFV7nSedoYujOKjIJbmCY3m6t+NKY6UmkSemYywHqlVLxP/8/qpDm7cKRNJqqkgi0NBypGOUfZ15DNJieYTQzCRzGRFZIQlJtoUtHTFV1m0WckU46zWsE46lzXnqla/r1cazbyiIpzBOVTBgWtowB20oA0EHuEFXuHNerberQ/rczFasPKdU1iC9fULNRuXOQ==</latexit> <latexit sha1_base64="Gc19ueDtgCr5UpuYZR9OwZgEw6Q=">AAACAXicbVDLSsNAFL2pr1pfVZduBovQVUmkqMtSNy4r2Ae0oUwmk3TsZBJmJkIpXfkDbvUP3Ilbv8Qf8DuctFnY1gMDh3Pu5Z45XsKZ0rb9bRU2Nre2d4q7pb39g8Oj8vFJR8WpJLRNYh7LnocV5UzQtmaa014iKY48Trve+Dbzu09UKhaLBz1JqBvhULCAEayN1Bk0WRhWh+WKXbPnQOvEyUkFcrSG5Z+BH5M0okITjpXqO3ai3SmWmhFOZ6VBqmiCyRiHtG+owBFV7nSedoYujOKjIJbmCY3m6t+NKY6UmkSemYywHqlVLxP/8/qpDm7cKRNJqqkgi0NBypGOUfZ15DNJieYTQzCRzGRFZIQlJtoUtHTFV1m0WckU46zWsE46lzXnqla/r1cazbyiIpzBOVTBgWtowB20oA0EHuEFXuHNerberQ/rczFasPKdU1iC9fULNRuXOQ==</latexit>  

(H.29)

Equivalently, this is

<latexit sha1_base64="3yzzMpLGc+AxOVeOSUfkgMSIBJg=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKqMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptcvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukXat6l9Va86JSv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPfOeMvA==</latexit>

1

<latexit sha1_base64="DKpd9f3Nt2pauXQEhAcpcKWOEzw=">AAAB7nicbVBNSwMxEJ3Ur1q/qh69BIvgqexKUY9FQTxWsB/QLks2zbax2eySZAtl6Y/w4kERr/4eb/4b03YP2vpg4PHeDDPzgkRwbRznGxXW1jc2t4rbpZ3dvf2D8uFRS8epoqxJYxGrTkA0E1yypuFGsE6iGIkCwdrB6Hbmt8dMaR7LRzNJmBeRgeQhp8RYqX3nZ2P/aeqXK07VmQOvEjcnFcjR8MtfvX5M04hJQwXRuus6ifEyogyngk1LvVSzhNARGbCupZJETHvZ/NwpPrNKH4exsiUNnqu/JzISaT2JAtsZETPUy95M/M/rpia89jIuk9QwSReLwlRgE+PZ77jPFaNGTCwhVHF7K6ZDogg1NqGSDcFdfnmVtC6q7mW19lCr1G/yOIpwAqdwDi5cQR3uoQFNoDCCZ3iFN5SgF/SOPhatBZTPHMMfoM8fbm2PpQ==</latexit>

Fvj

<latexit sha1_base64="+AZQBIUcsT624WHOajaT3YorgKM=">AAAB+HicbVDLSsNAFJ3UV62PRl26GSyCq5JIUZdFQVxWsA9oY5hMbtKhkwczk0IN/RI3LhRx66e482+ctllo64ELh3Pu5d57vJQzqSzr2yitrW9sbpW3Kzu7e/tV8+CwI5NMUGjThCei5xEJnMXQVkxx6KUCSORx6Hqjm5nfHYOQLIkf1CQFJyJhzAJGidKSa1Zv3XzssunjwCdhCMI1a1bdmgOvErsgNVSg5ZpfAz+hWQSxopxI2betVDk5EYpRDtPKIJOQEjoiIfQ1jUkE0snnh0/xqVZ8HCRCV6zwXP09kZNIyknk6c6IqKFc9mbif14/U8GVk7M4zRTEdLEoyDhWCZ6lgH0mgCo+0YRQwfStmA6JIFTprCo6BHv55VXSOa/bF/XGfaPWvC7iKKNjdILOkI0uURPdoRZqI4oy9Ixe0ZvxZLwY78bHorVkFDNH6A+Mzx/wsZNJ</latexit>

F †
vi

<latexit sha1_base64="SqIGKlvLKDnTZ/8z5vGYd4OIf6M="></latexit>

=

q
tr(F †

viFvi · F †
vj Fvj ) .

(H.30)

Following the same logic, we obtain the equality

<latexit sha1_base64="3yzzMpLGc+AxOVeOSUfkgMSIBJg=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKqMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptcvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukXat6l9Va86JSv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPfOeMvA==</latexit>

1

<latexit sha1_base64="HuvDOdJM9HNZu3jhu53Q4/pz7iM=">AAACD3icbVDLSgMxFL3js9bXqEs3waK4KjNS1GXRjcsKfUGnDJk0bUMzmSHJFMq0f+DGX3HjQhG3bt35N6btINp64HIP59xLck8Qc6a043xZK6tr6xubua389s7u3r59cFhXUSIJrZGIR7IZYEU5E7Smmea0GUuKw4DTRjC4nfqNIZWKRaKqRzFth7gnWJcRrI3k22djL1bMT4d+deJJLHqcIo9n/ccZ+3bBKTozoGXiZqQAGSq+/el1IpKEVGjCsVIt14l1O8VSM8LpJO8lisaYDHCPtgwVOKSqnc7umaBTo3RQN5KmhEYz9fdGikOlRmFgJkOs+2rRm4r/ea1Ed6/bKRNxoqkg84e6CUc6QtNwUIdJSjQfGYKJZOaviPSxxESbCPMmBHfx5GVSvyi6l8XSfalQvsniyMExnMA5uHAFZbiDCtSAwAM8wQu8Wo/Ws/Vmvc9HV6xs5wj+wPr4BiKdnVw=</latexit>| vT
ih vT

|

<latexit sha1_base64="VaHhrjglGeXiSOiX58LuGqMns5M=">AAACAHicbVDLSsNAFJ3UV62vqAsXbgaL4KokUtRlURCXFewDmhgmk0k6dDIJM5NCCdn4K25cKOLWz3Dn3zhts9DWAxcO59zLvff4KaNSWda3UVlZXVvfqG7WtrZ3dvfM/YOuTDKBSQcnLBF9H0nCKCcdRRUj/VQQFPuM9PzRzdTvjYmQNOEPapISN0YRpyHFSGnJM49uvXzs5c4QqZwWRfHoBCiKiPDMutWwZoDLxC5JHZRoe+aXEyQ4iwlXmCEpB7aVKjdHQlHMSFFzMklShEcoIgNNOYqJdPPZAwU81UoAw0To4grO1N8TOYqlnMS+7oyRGspFbyr+5w0yFV65OeVppgjH80VhxqBK4DQNGFBBsGITTRAWVN8K8RAJhJXOrKZDsBdfXibd84Z90WjeN+ut6zKOKjgGJ+AM2OAStMAdaIMOwKAAz+AVvBlPxovxbnzMWytGOXMI/sD4/AG0qJci</latexit>

F †
vî

<latexit sha1_base64="TuMybkgh6zyLZhvkjjjbEiHPyOQ=">AAAB+HicbVBNS8NAEJ3Ur1o/GvXoZbEInkoiRT0WBfFYwX5AG8Jmu23XbjZhd1OoIb/EiwdFvPpTvPlv3LY5aOuDgcd7M8zMC2LOlHacb6uwtr6xuVXcLu3s7u2X7YPDlooSSWiTRDySnQArypmgTc00p51YUhwGnLaD8c3Mb0+oVCwSD3oaUy/EQ8EGjGBtJN8u3/rpxE97I6zTxyzLfLviVJ050Cpxc1KBHA3f/ur1I5KEVGjCsVJd14m1l2KpGeE0K/USRWNMxnhIu4YKHFLlpfPDM3RqlD4aRNKU0Giu/p5IcajUNAxMZ4j1SC17M/E/r5vowZWXMhEnmgqyWDRIONIRmqWA+kxSovnUEEwkM7ciMsISE22yKpkQ3OWXV0nrvOpeVGv3tUr9Oo+jCMdwAmfgwiXU4Q4a0AQCCTzDK7xZT9aL9W59LFoLVj5zBH9gff4AjFuTrw==</latexit>

Fvĵ

<latexit sha1_base64="SzWY1BEAyXhqbVYg5t5BkVmFEjs="></latexit>

=

q
tr(| vT

ih vT
| · F †

vî
Fvî

)
q

tr(| vT
ih vT

| · F †
vĵ

Fvĵ
) .

(H.31)

Accordingly, (H.27) is equal to



∏

i→j∈τ−1

i,j 6=T

√
tr(F †viFvi · F †vjFvj)


 〈ψvT |ψvT 〉 (H.32)
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and likewise (H.28) is equal to



∏

i→j∈τ−1

i,j 6=T

√
tr(F †viFvi · F †vjFvj)



√

tr(|ψvT 〉〈ψvT | · F †vîFvî)
√

tr(|ψvT 〉〈ψvT | · F †vĵFvĵ) . (H.33)

To make the two cases look the same, we simply define FvT := |ψvT 〉〈ψvT | so that both (H.32)
and (H.33) can be written as

∏

i→j∈τ−1

√
tr(F †viFvi · F †vjFvj) . (H.34)

To further bound (H.34), we decompose the product into cycles as

#(τ−1)∏

m=1

∏

i→j∈Cm

√
tr(F †viFvi · F †vjFvj) (H.35)

and treat each
∏

i→j∈Cm

√
tr(F †viFvi · F †vjFvj) term separately.

Suppose that Cm is a cycle of length p (often denoted by |Cm| = p); then we can write
it as Cm = (am,1am,2 · · · am,p) where {am,1, am,2, ..., am,p} ⊆ {1, 2, ..., T}. Then we can write
∏

i→j∈Cm

√
tr(F †viFvi · F †vjFvj) as

p∏

i=1

√
tr(F †vam,iFvam,i · F

†
vam,i+1

Fvam,i+1
) (H.36)

where the i subscripts are treated modulo p. Consider two cases:

Case 1: p is even. We can split up (H.36) into two products as
(∏

i odd

√
tr(F †vam,iFvam,i · F

†
vam,i+1

Fvam,i+1
)

)( ∏

j even

√
tr(F †vam,jFvam,j · F

†
vam,j+1

Fvam,j+1
)

)

(H.37)
and using the inequality ab ≤ 1

2
(a2 + b2) we obtain the upper bound

1

2

∏

i odd

tr(F †vam,iFvam,i · F
†
vam,i+1

Fvam,i+1
) +

1

2

∏

j even

tr(F †vam,jFvam,j · F
†
vam,j+1

Fvam,j+1
) . (H.38)

Let us define the first term as 1
2
Rm,− and the second term as 1

2
Rm,+.
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Case 2: p is odd. Here we opt to split up (H.36) as

√
tr(F †vam,pFvam,p · F

†
vam,1

Fvam,1 )




∏

i odd
1≤i≤p−2

√
tr(F †vam,iFvam,i · F

†
vam,i+1

Fvam,i+1
)




×
( ∏

j even

√
tr(F †vam,jFvam,j · F

†
vam,j+1

Fvam,j+1
)

)
(H.39)

For A,B positive semi-definite we have tr(AB) ≤ ‖A‖2‖B‖2 ≤ ‖A‖1‖B‖1 ≤ tr(A)tr(B) and

so
√

tr(F †vam,pFvam,p · F
†
vam,1

Fvam,1 ) ≤
√

tr(F †vam,pFvam,p )
√

tr(F †vam,1Fvam,1 ) . Then the above
equation is upper bounded by

√
tr(F †vam,pFvam,p )

√
tr(F †vam,1Fvam,1 )




∏

i odd
1≤i≤p−2

√
tr(F †vam,iFvam,i · F

†
vam,i+1

Fvam,i+1
)




×
( ∏

j even

√
tr(F †vam,jFvam,j · F

†
vam,j+1

Fvam,j+1
)

)
(H.40)

and so using ab ≤ 1
2
(a2 + b2) we have the further upper bound

1

2
tr(F †vam,pFvam,p )

∏

i odd
1≤i≤p−2

tr(F †vam,iFvam,i · F
†
vam,i+1

Fvam,i+1
)

+
1

2
tr(F †vam,1Fvam,1 )

∏

j even

tr(F †vam,jFvam,j · F
†
vam,j+1

Fvam,j+1
) . (H.41)

We similarly call the first term 1
2
Rm,− and the second term 1

2
Rm,+.

Taken together, Case 1 and Case 2 give us the following bound on (H.35):

#(τ−1)∏

m=1

∏

i→j∈Cm

√
tr(F †viFvi · F †vjFvj) ≤

1

2#(τ−1)

#(τ−1)∏

m=1

(Rm,− +Rm,+)

=
1

2#(τ−1)

∑

i1,...,i#(τ−1)=±

R1,i1R2,i2 · · ·R#(τ−1),i#(τ−1)
.

(H.42)

Since the Rm,±’s depend implicitly on the leaf `, we add an ` superscript as R`
m,± to

make the dependence explicit. The summand R`
1,i1
R`

2,i2
· · ·R`

#(τ−1),i#(τ−1)
for fixed indices

i1, i2, ..., i#(τ−1) has the feature that each F †viFvi for i = 1, ..., T appears exactly once. By
virtue of this fact we can establish the following lemma:
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Lemma 5. For any fixed set of indices i1, i2, ..., i#(τ−1) ∈ {+,−}, we have

∑

`∈ leaf(T )

R`
1,i1
R`

2,i2
· · ·R`

#(τ−1),i#(τ−1)
≤ d

T−
⌊
L(τ−1)

2

⌋
(H.43)

where L(τ−1) is the length of the longest cycle in τ−1.

Proof. We have the identities
∑

v ∈ child(vi−1)

tr(F †vFv · F †vjFvj) = tr(F †vjFvj) (H.44)

∑

v ∈ child(vi−1)

tr(F †vFv) = d . (H.45)

In a slight abuse of notation, we rewrite these as
∑

vi

tr(F †viFvi · F †vjFvj) = tr(F †vjFvj) (H.46)

∑

vi

tr(F †viFvi) = d . (H.47)

For fixed i1, i2, ..., i#(τ−1) ∈ {+,−}, we have

R`
1,i1
R`

2,i2
· · ·R`

#(τ−1),i#(τ−1)
=

(∏

i∈S1

tr(F †viFvi)

)
 ∏

(j,j′)∈S2

tr(F †vjFvj · F †vj′Fvj′ )


 (H.48)

where S1 ⊂ {1, ..., T} is the set of indices for which a tr(F †viFvi) term appears, and S2 ⊂
{1, ..., T}×{1, ..., T} is the set of unordered pairs (j, j′) for which a tr(F †vjFvj ·F †vj′Fvj′ ) term
appears. Note that the size of S1 is the number of odd-length cycles of τ−1. As noted above,
each vi for i = 1, ..., T appears exactly once in the above expression. Writing the (H.43) as

∑

v1

· · ·
∑

vT−1

∑

vT

(∏

i∈S1

tr(F †viFvi)

)
 ∏

(j,j′)∈S2

tr(F †vjFvj · F †vj′Fvj′ )


 , (H.49)

we can perform the inner-most sum over vT following by the vT−1 sum, and so on through the
v1 sum. That is, we are summing from the leafs of the tree back up to the root; this order of
summation is necessitated because of the adaptive nature of the measurement strategies that
we allow. That is, the choice of measurements in the future (i.e. higher depth in the learning
tree) depend on measurements made in the past (i.e. lower depth in the learning tree), but
not conversely. Leveraging the identities (H.46), (H.47) and the equality

⌈
x
2

⌉
+
⌊
x
2

⌋
= x for

integer x, we find that the sum equals

d
∑#(τ−1)
m=1 d |Cm|2 e = dT−

∑#(τ−1)
m=1 b |Cm|2 c ≤ d

T−
⌊
L(τ−1)

2

⌋
(H.50)

giving the desired bound.
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An immediate consequence of the above Lemma is that

∑

`∈ leaf(T )


 1

2#(τ−1)

∑

i1,...,i#(τ−1)=±

R`
1,i1
R`

2,i2
· · ·R`

#(τ−1),i#(τ−1)




=
1

2#(τ−1)

∑

i1,...,i#(τ−1)=±


 ∑

`∈ leaf(T )

R`
1,i1
R`

2,i2
· · ·R`

#(τ−1),i#(τ−1)




≤ 1

2#(τ−1)

∑

i1,...,i#(τ−1)=±

d
T−
⌊
L(τ−1)

2

⌋

= d
T−
⌊
L(τ−1)

2

⌋
. (H.51)

Circling back to (H.24), we can combine our bounds to obtain

1

2

∑

`∈ leaf(T )

∑

τ 6=1
σ

|pσ,τ (`)| ≤
dT

2

∑

σ

|WgU(σ−1, d)|
∑

τ 6=1

d
−
⌊
L(τ−1)

2

⌋
. (H.52)

To bound the right-hand side, we can use dT
∑

σ |WgU(σ−1, d)| ≤ 1 + O(T 2/d). Letting
N(T, L) denote the number of permutations of ST whose longest cycle has length L, we can
write

∑

τ 6=1

d
−
⌊
L(τ−1)

2

⌋
=

T∑

L=2

N(T, L) d−bL2 c . (H.53)

Here the L = 1 case is omitted since this corresponds to the identity permutation. Since
N(T, L) ≤

(
T
L

)
L! = T !

(T−L)!
< TL, the above sum is upper bounded by

∞∑

L=2

TLd−bL2 c =
(1 + T )T

2

d

1− T 2

d

=
T 3

d
+
T 2

d
+O

(
T 5

d2

)
. (H.54)

In summary, if T ≤ o(d1/3) we have

1

2

∑

`∈ leaf(T )

∑

τ 6=1
σ

|pσ,τ (`)| ≤ o(1) , (H.55)

as needed.

Combining the three cases, we find that for T ≤ Ω(d1/3) we have

1

2

∑

`∈ leaf(T )

|pD(`)− (EU pU(`))| ≤ 1

3
(H.56)

which completes the proof.
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Product unitary channel versus maximally depolarizing channel

For the next proposition we use the same notations and conventions as we did above.

Proposition 2. For T ≤ Ω(d1/4), we have

1

2

∑

`∈ leaf(T )

|pD(`)− EU1,U2 [pU1⊗U2(`)]| ≤ 1

3
. (H.57)

Proof. As before pD(`) = 1/dT , and now we have

<latexit sha1_base64="VEulvKXoHDIDJ2UX+ySVoVXSGqQ="></latexit>

WgU(⌧1�
�1
1 , d1/2) WgU(⌧2�

�1
2 , d1/2) .

<latexit sha1_base64="UtiM86E2ZEp50Nao18YowkGgUaM=">AAAB/HicbVBNS8NAEN3Ur1q/oj16WSyCp5JIUY9FLx4r9AvaEDbbabt0swm7m0KI9a948aCIV3+IN/+N2zYHbX0w8Hhvhpl5QcyZ0o7zbRU2Nre2d4q7pb39g8Mj+/ikraJEUmjRiEeyGxAFnAloaaY5dGMJJAw4dILJ3dzvTEEqFommTmPwQjISbMgo0Uby7XKfEzHigPuxYn429ZuzR9+uOFVnAbxO3JxUUI6Gb3/1BxFNQhCacqJUz3Vi7WVEakY5zEr9REFM6ISMoGeoICEoL1scP8PnRhngYSRNCY0X6u+JjIRKpWFgOkOix2rVm4v/eb1ED2+8jIk40SDoctEw4VhHeJ4EHjAJVPPUEEIlM7diOiaSUG3yKpkQ3NWX10n7supeVWsPtUr9No+jiE7RGbpALrpGdXSPGqiFKErRM3pFb9aT9WK9Wx/L1oKVz5TRH1ifPwJ5lQU=</latexit>h vT
| <latexit sha1_base64="+0yu3fJs6rZq6TAZPu9EyGC2vtw=">AAAB+3icbVBNS8NAEJ3Ur1q/Yj16CRbBU0mkqMeiF48V+gVNCJvtpl262YTdTbHE/BUvHhTx6h/x5r9x2+agrQ8GHu/NMDMvSBiVyra/jdLG5tb2Tnm3srd/cHhkHle7Mk4FJh0cs1j0AyQJo5x0FFWM9BNBUBQw0gsmd3O/NyVC0pi31SwhXoRGnIYUI6Ul36w+uYmkfjb127krEB8x4ps1u24vYK0TpyA1KNDyzS93GOM0IlxhhqQcOHaivAwJRTEjecVNJUkQnqARGWjKUUSkly1uz61zrQytMBa6uLIW6u+JDEVSzqJAd0ZIjeWqNxf/8wapCm+8jPIkVYTj5aIwZZaKrXkQ1pAKghWbaYKwoPpWC4+RQFjpuCo6BGf15XXSvaw7V/XGQ6PWvC3iKMMpnMEFOHANTbiHFnQAwyM8wyu8GbnxYrwbH8vWklHMnMAfGJ8/tBOU4Q==</latexit>| vT

i

<latexit sha1_base64="YHo16WBzbApBHGSjcgEfouEQCnc=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GNREI8V7Ae0oWy2k3btJht2N0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekAiujet+O4WV1bX1jeJmaWt7Z3evvH/Q1DJVDBtMCqnaAdUoeIwNw43AdqKQRoHAVjC6mfqtJ1Say/jBjBP0IzqIecgZNVZq3va6KESvXHGr7gxkmXg5qUCOeq/81e1LlkYYGyao1h3PTYyfUWU4EzgpdVONCWUjOsCOpTGNUPvZ7NoJObFKn4RS2YoNmam/JzIaaT2OAtsZUTPUi95U/M/rpCa88jMeJ6nBmM0XhakgRpLp66TPFTIjxpZQpri9lbAhVZQZG1DJhuAtvrxMmmdV76J6fn9eqV3ncRThCI7hFDy4hBrcQR0awOARnuEV3hzpvDjvzse8teDkM4fwB87nD1cnjv0=</latexit>

F`
<latexit sha1_base64="QHNARAiqfWUN8HoSzK0rtSUb4tM=">AAAB9XicbVBNS8NAEN3Ur1q/qh69LBbBU0lE1GNREI8V7Ac0adlsJunSzSbsbpQS+j+8eFDEq//Fm//GbZuDtj4YeLw3w8w8P+VMadv+tkorq2vrG+XNytb2zu5edf+grZJMUmjRhCey6xMFnAloaaY5dFMJJPY5dPzRzdTvPIJULBEPepyCF5NIsJBRoo3Uvx24wHnfDUgUgRxUa3bdngEvE6cgNVSgOah+uUFCsxiEppwo1XPsVHs5kZpRDpOKmylICR2RCHqGChKD8vLZ1RN8YpQAh4k0JTSeqb8nchIrNY590xkTPVSL3lT8z+tlOrzycibSTIOg80VhxrFO8DQCHDAJVPOxIYRKZm7FdEgkodoEVTEhOIsvL5P2Wd25qJ/fn9ca10UcZXSEjtEpctAlaqA71EQtRJFEz+gVvVlP1ov1bn3MW0tWMXOI/sD6/AFeQ5Jx</latexit>

F †
`

<latexit sha1_base64="PNCbYYyZ5XngbbTZLt2YPq599c0=">AAAB73icbVDLSgNBEOz1GeMr6tHLYBA8hd0Q1GPQi8cI5gHJEmYns8mQeawzs0JY8hNePCji1d/x5t84SfagiQUNRVU33V1Rwpmxvv/tra1vbG5tF3aKu3v7B4elo+OWUakmtEkUV7oTYUM5k7RpmeW0k2iKRcRpOxrfzvz2E9WGKflgJwkNBR5KFjOCrZM6PcOGAver/VLZr/hzoFUS5KQMORr90ldvoEgqqLSEY2O6gZ/YMMPaMsLptNhLDU0wGeMh7ToqsaAmzOb3TtG5UwYoVtqVtGiu/p7IsDBmIiLXKbAdmWVvJv7ndVMbX4cZk0lqqSSLRXHKkVVo9jwaME2J5RNHMNHM3YrICGtMrIuo6EIIll9eJa1qJbis1O5r5fpNHkcBTuEMLiCAK6jDHTSgCQQ4PMMrvHmP3ov37n0sWte8fOYE/sD7/AHKN4/R</latexit>�2

<latexit sha1_base64="M2+YlW1CWBYBmuuqucVlF2Of49o=">AAAB9HicbVBNS8NAEJ34WetX1aOXYBG8WBIp6rHoxWMF+wFtLJvtpl262cTdSaGE/A4vHhTx6o/x5r9x2+agrQ8GHu/NMDPPjwXX6Djf1srq2vrGZmGruL2zu7dfOjhs6ihRlDVoJCLV9olmgkvWQI6CtWPFSOgL1vJHt1O/NWZK80g+4CRmXkgGkgecEjSS10WS9FI3e0zP3axXKjsVZwZ7mbg5KUOOeq/01e1HNAmZRCqI1h3XidFLiUJOBcuK3USzmNARGbCOoZKETHvp7OjMPjVK3w4iZUqiPVN/T6Qk1HoS+qYzJDjUi95U/M/rJBhceymXcYJM0vmiIBE2RvY0AbvPFaMoJoYQqri51aZDoghFk1PRhOAuvrxMmhcV97JSva+Wazd5HAU4hhM4AxeuoAZ3UIcGUHiCZ3iFN2tsvVjv1se8dcXKZ47gD6zPH3Qdkec=</latexit>

⌧�1
1

<latexit sha1_base64="pPuc5O+cURC5opmNq67wGXl+IlY=">AAAB9HicbVDLTgJBEOzFF+IL9ehlIjHxItklRD0SvXjERB4JrGR2GGDC7MOZXhKy2e/w4kFjvPox3vwbB9iDgpV0UqnqTneXF0mh0ba/rdza+sbmVn67sLO7t39QPDxq6jBWjDdYKEPV9qjmUgS8gQIlb0eKU9+TvOWNb2d+a8KVFmHwgNOIuz4dBmIgGEUjuV2kcS+ppI/JhZP2iiW7bM9BVomTkRJkqPeKX91+yGKfB8gk1brj2BG6CVUomORpoRtrHlE2pkPeMTSgPtduMj86JWdG6ZNBqEwFSObq74mE+lpPfc90+hRHetmbif95nRgH124igihGHrDFokEsCYZklgDpC8UZyqkhlClhbiVsRBVlaHIqmBCc5ZdXSbNSdi7L1ftqqXaTxZGHEziFc3DgCmpwB3VoAIMneIZXeLMm1ov1bn0sWnNWNnMMf2B9/gB1p5Ho</latexit>

⌧�1
2

<latexit sha1_base64="RnY430m3Rbu7Zsk9BEQBf8OwNfU=">AAAB73icbVBNSwMxEJ3Ur1q/qh69BIvgqexKUY9FLx4r2A9ol5JNs21okl2TrFCW/gkvHhTx6t/x5r8xbfegrQ8GHu/NMDMvTAQ31vO+UWFtfWNzq7hd2tnd2z8oHx61TJxqypo0FrHuhMQwwRVrWm4F6ySaERkK1g7HtzO//cS04bF6sJOEBZIMFY84JdZJnZ7hQ0n6fr9c8areHHiV+DmpQI5Gv/zVG8Q0lUxZKogxXd9LbJARbTkVbFrqpYYlhI7JkHUdVUQyE2Tze6f4zCkDHMXalbJ4rv6eyIg0ZiJD1ymJHZllbyb+53VTG10HGVdJapmii0VRKrCN8ex5POCaUSsmjhCqubsV0xHRhFoXUcmF4C+/vEpaF1X/slq7r1XqN3kcRTiBUzgHH66gDnfQgCZQEPAMr/CGHtELekcfi9YCymeO4Q/Q5w/Is4/Q</latexit>�1

<latexit sha1_base64="Ej1UUYpgdMhDedp3vPRMBqNML1g=">AAAB7XicbVBNSwMxEJ3Ur1q/qh69BIvgqexKUY9FLx4r2A9ol5JNs21sNlmSrFCW/gcvHhTx6v/x5r8xbfegrQ8GHu/NMDMvTAQ31vO+UWFtfWNzq7hd2tnd2z8oHx61jEo1ZU2qhNKdkBgmuGRNy61gnUQzEoeCtcPx7cxvPzFtuJIPdpKwICZDySNOiXVSq6dHqu/1yxWv6s2BV4mfkwrkaPTLX72BomnMpKWCGNP1vcQGGdGWU8GmpV5qWELomAxZ11FJYmaCbH7tFJ85ZYAjpV1Ji+fq74mMxMZM4tB1xsSOzLI3E//zuqmNroOMyyS1TNLFoigV2Co8ex0PuGbUiokjhGrubsV0RDSh1gVUciH4yy+vktZF1b+s1u5rlfpNHkcRTuAUzsGHK6jDHTSgCRQe4Rle4Q0p9ILe0ceitYDymWP4A/T5A0jkjvM=</latexit>⇢0

<latexit sha1_base64="O+c6Z77cSzRau4twiYTGv0v22GY="></latexit>

EU1,U2
[pU1⌦U2(`)] =

X

�1,�2,⌧1,⌧2

(H.58)

We let pσ1,σ2,τ1,τ2(`) denote the summand of the above. The left-hand side of (H.57) can be
upper bounded via the triangle and Cauchy-Schwarz inequalities as

1

2

∑

`∈ leaf(T )

|pD(`)− EU1,U2 [pU1⊗U2(`)]|

≤ 1

2

∑

`∈ leaf(T )

|pD(`)− p1,1,1,1(`)|+ 1

2

∑

`∈ leaf(T )

∑

σ1⊗σ2 6=1⊗1

|pσ1,σ2,1,1(`)|

+
1

2

∑

`∈ leaf(T )

∑

τ1⊗τ2 6=1⊗1
σ1,σ2

|pσ1,σ2,τ1,τ2(`)| . (H.59)

Similar to the previous Proposition, we will individually bound each term on the right-hand
side of (H.59).

First term

Applying the Cauchy-Schwarz inequality we have the upper bound

<latexit sha1_base64="UtiM86E2ZEp50Nao18YowkGgUaM=">AAAB/HicbVBNS8NAEN3Ur1q/oj16WSyCp5JIUY9FLx4r9AvaEDbbabt0swm7m0KI9a948aCIV3+IN/+N2zYHbX0w8Hhvhpl5QcyZ0o7zbRU2Nre2d4q7pb39g8Mj+/ikraJEUmjRiEeyGxAFnAloaaY5dGMJJAw4dILJ3dzvTEEqFommTmPwQjISbMgo0Uby7XKfEzHigPuxYn429ZuzR9+uOFVnAbxO3JxUUI6Gb3/1BxFNQhCacqJUz3Vi7WVEakY5zEr9REFM6ISMoGeoICEoL1scP8PnRhngYSRNCY0X6u+JjIRKpWFgOkOix2rVm4v/eb1ED2+8jIk40SDoctEw4VhHeJ4EHjAJVPPUEEIlM7diOiaSUG3yKpkQ3NWX10n7supeVWsPtUr9No+jiE7RGbpALrpGdXSPGqiFKErRM3pFb9aT9WK9Wx/L1oKVz5TRH1ifPwJ5lQU=</latexit>h vT
| <latexit sha1_base64="+0yu3fJs6rZq6TAZPu9EyGC2vtw=">AAAB+3icbVBNS8NAEJ3Ur1q/Yj16CRbBU0mkqMeiF48V+gVNCJvtpl262YTdTbHE/BUvHhTx6h/x5r9x2+agrQ8GHu/NMDMvSBiVyra/jdLG5tb2Tnm3srd/cHhkHle7Mk4FJh0cs1j0AyQJo5x0FFWM9BNBUBQw0gsmd3O/NyVC0pi31SwhXoRGnIYUI6Ul36w+uYmkfjb127krEB8x4ps1u24vYK0TpyA1KNDyzS93GOM0IlxhhqQcOHaivAwJRTEjecVNJUkQnqARGWjKUUSkly1uz61zrQytMBa6uLIW6u+JDEVSzqJAd0ZIjeWqNxf/8wapCm+8jPIkVYTj5aIwZZaKrXkQ1pAKghWbaYKwoPpWC4+RQFjpuCo6BGf15XXSvaw7V/XGQ6PWvC3iKMMpnMEFOHANTbiHFnQAwyM8wyu8GbnxYrwbH8vWklHMnMAfGJ8/tBOU4Q==</latexit>| vT

i

<latexit sha1_base64="YHo16WBzbApBHGSjcgEfouEQCnc=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GNREI8V7Ae0oWy2k3btJht2N0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekAiujet+O4WV1bX1jeJmaWt7Z3evvH/Q1DJVDBtMCqnaAdUoeIwNw43AdqKQRoHAVjC6mfqtJ1Say/jBjBP0IzqIecgZNVZq3va6KESvXHGr7gxkmXg5qUCOeq/81e1LlkYYGyao1h3PTYyfUWU4EzgpdVONCWUjOsCOpTGNUPvZ7NoJObFKn4RS2YoNmam/JzIaaT2OAtsZUTPUi95U/M/rpCa88jMeJ6nBmM0XhakgRpLp66TPFTIjxpZQpri9lbAhVZQZG1DJhuAtvrxMmmdV76J6fn9eqV3ncRThCI7hFDy4hBrcQR0awOARnuEV3hzpvDjvzse8teDkM4fwB87nD1cnjv0=</latexit>

F`
<latexit sha1_base64="QHNARAiqfWUN8HoSzK0rtSUb4tM=">AAAB9XicbVBNS8NAEN3Ur1q/qh69LBbBU0lE1GNREI8V7Ac0adlsJunSzSbsbpQS+j+8eFDEq//Fm//GbZuDtj4YeLw3w8w8P+VMadv+tkorq2vrG+XNytb2zu5edf+grZJMUmjRhCey6xMFnAloaaY5dFMJJPY5dPzRzdTvPIJULBEPepyCF5NIsJBRoo3Uvx24wHnfDUgUgRxUa3bdngEvE6cgNVSgOah+uUFCsxiEppwo1XPsVHs5kZpRDpOKmylICR2RCHqGChKD8vLZ1RN8YpQAh4k0JTSeqb8nchIrNY590xkTPVSL3lT8z+tlOrzycibSTIOg80VhxrFO8DQCHDAJVPOxIYRKZm7FdEgkodoEVTEhOIsvL5P2Wd25qJ/fn9ca10UcZXSEjtEpctAlaqA71EQtRJFEz+gVvVlP1ov1bn3MW0tWMXOI/sD6/AFeQ5Jx</latexit>

F †
`

<latexit sha1_base64="X64kxVR50efO5C9t924+eYOy5U4="></latexit>����WgU(1, d1/2)WgU(1, d1/2) � 1

dT

���� .

<latexit sha1_base64="Ej1UUYpgdMhDedp3vPRMBqNML1g=">AAAB7XicbVBNSwMxEJ3Ur1q/qh69BIvgqexKUY9FLx4r2A9ol5JNs21sNlmSrFCW/gcvHhTx6v/x5r8xbfegrQ8GHu/NMDMvTAQ31vO+UWFtfWNzq7hd2tnd2z8oHx61jEo1ZU2qhNKdkBgmuGRNy61gnUQzEoeCtcPx7cxvPzFtuJIPdpKwICZDySNOiXVSq6dHqu/1yxWv6s2BV4mfkwrkaPTLX72BomnMpKWCGNP1vcQGGdGWU8GmpV5qWELomAxZ11FJYmaCbH7tFJ85ZYAjpV1Ji+fq74mMxMZM4tB1xsSOzLI3E//zuqmNroOMyyS1TNLFoigV2Co8ex0PuGbUiokjhGrubsV0RDSh1gVUciH4yy+vktZF1b+s1u5rlfpNHkcRTuAUzsGHK6jDHTSgCRQe4Rle4Q0p9ILe0ceitYDymWP4A/T5A0jkjvM=</latexit>⇢0

<latexit sha1_base64="SuoOoURh7m4N+Pz1OCN9Jbs6ajY=">AAACH3icbVBNSwMxEM36bf2qevQSLIKClN1SqkfRi8cKthW6pWTTWQ1ms0syK5aw/8SLf8WLB0XEW/+Nae3BrwcJj/dmmJkXZVIY9P2RNzM7N7+wuLRcWlldW98ob261TZprDi2eylRfRcyAFApaKFDCVaaBJZGETnR7NvY7d6CNSNUlDjPoJexaiVhwhk7qlxthrBm3QWFrRWjypG9DkDI8DIVyH8I9WgksLvbDhOENZ9JeFgcF7ZcrftWfgP4lwZRUyBTNfvkjHKQ8T0Ahl8yYbuBn2LNMo+ASilKYG8gYv2XX0HVUsQRMz07uK+ieUwY0TrV7CulE/d5hWWLMMIlc5XhL89sbi/953Rzj454VKssRFP8aFOeSYkrHYdGB0MBRDh1hXAu3K+U3zAWGLtKSCyH4ffJf0q5Vg0a1flGvnJxO41giO2SX7JOAHJETck6apEU4eSBP5IW8eo/es/fmvX+VznjTnm3yA97oEx9Ao6M=</latexit>

1

2

X

`2 leaf(T )

(H.60)
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Since the argument of the first term is positive, we remove the absolute values; this allows
us to explicitly sum over leafs to obtain

dT

2

∣∣∣∣WgU(1, d1/2)WgU(1, d1/2)− 1

dT

∣∣∣∣ . (H.61)

The appropriate version of Corollary 1 gives us
∣∣WgU(1, d1/2)− 1

dT/2

∣∣ ≤ O(T 7/2/dT/2+1) for
T <

(
d
6

)2/7, and thus

1

2

∑

`∈ leaf(T )

|pD(`)− p1,1,1,1(`)| ≤ O

(
T 7/2

d

)
. (H.62)

Second term

We can apply the Cauchy-Schwarz inequality to the second term on the right-hand side
of (H.59) to get the upper bound

<latexit sha1_base64="1Io9rUz1vqP40Cl2+sgI6SKb8HQ=">AAACPHicbVC7TgJBFJ3FF+ILtbQZJSaYIO4SopZEG0uMAiYskNlhgAmzj8zcNZJlP8zGj7CzsrHQGFtrh0ehwkkmOTnn3Ny5xwkEV2CaL0ZiYXFpeSW5mlpb39jcSm/vVJUfSsoq1Be+vHOIYoJ7rAIcBLsLJCOuI1jN6V+O/No9k4r73i0MAtZwSdfjHU4JaKmVvhnawB4gqnXjZsXez9qKd13SsprRsRXncLsZWSeF+Gho5+YHC7PBfCudMfPmGHiWWFOSQVOUW+lnu+3T0GUeUEGUqltmAI2ISOBUsDhlh4oFhPZJl9U19YjLVCMaHx/jQ620cceX+nmAx+rviYi4Sg1cRyddAj313xuJ87x6CJ3zRsS9IATm0cmiTigw+HjUJG5zySiIgSaESq7/immPSEJB953SJVj/T54l1ULeOs0Xr4uZ0sW0jiTaQwcoiyx0hkroCpVRBVH0iF7RO/ownow349P4mkQTxnRmF/2B8f0DfMSsYw==</latexit>

|WgU(��1
1 , d1/2)| |WgU(��1

2 , d1/2)| .

<latexit sha1_base64="UtiM86E2ZEp50Nao18YowkGgUaM=">AAAB/HicbVBNS8NAEN3Ur1q/oj16WSyCp5JIUY9FLx4r9AvaEDbbabt0swm7m0KI9a948aCIV3+IN/+N2zYHbX0w8Hhvhpl5QcyZ0o7zbRU2Nre2d4q7pb39g8Mj+/ikraJEUmjRiEeyGxAFnAloaaY5dGMJJAw4dILJ3dzvTEEqFommTmPwQjISbMgo0Uby7XKfEzHigPuxYn429ZuzR9+uOFVnAbxO3JxUUI6Gb3/1BxFNQhCacqJUz3Vi7WVEakY5zEr9REFM6ISMoGeoICEoL1scP8PnRhngYSRNCY0X6u+JjIRKpWFgOkOix2rVm4v/eb1ED2+8jIk40SDoctEw4VhHeJ4EHjAJVPPUEEIlM7diOiaSUG3yKpkQ3NWX10n7supeVWsPtUr9No+jiE7RGbpALrpGdXSPGqiFKErRM3pFb9aT9WK9Wx/L1oKVz5TRH1ifPwJ5lQU=</latexit>h vT
| <latexit sha1_base64="+0yu3fJs6rZq6TAZPu9EyGC2vtw=">AAAB+3icbVBNS8NAEJ3Ur1q/Yj16CRbBU0mkqMeiF48V+gVNCJvtpl262YTdTbHE/BUvHhTx6h/x5r9x2+agrQ8GHu/NMDMvSBiVyra/jdLG5tb2Tnm3srd/cHhkHle7Mk4FJh0cs1j0AyQJo5x0FFWM9BNBUBQw0gsmd3O/NyVC0pi31SwhXoRGnIYUI6Ul36w+uYmkfjb127krEB8x4ps1u24vYK0TpyA1KNDyzS93GOM0IlxhhqQcOHaivAwJRTEjecVNJUkQnqARGWjKUUSkly1uz61zrQytMBa6uLIW6u+JDEVSzqJAd0ZIjeWqNxf/8wapCm+8jPIkVYTj5aIwZZaKrXkQ1pAKghWbaYKwoPpWC4+RQFjpuCo6BGf15XXSvaw7V/XGQ6PWvC3iKMMpnMEFOHANTbiHFnQAwyM8wyu8GbnxYrwbH8vWklHMnMAfGJ8/tBOU4Q==</latexit>| vT

i

<latexit sha1_base64="YHo16WBzbApBHGSjcgEfouEQCnc=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GNREI8V7Ae0oWy2k3btJht2N0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekAiujet+O4WV1bX1jeJmaWt7Z3evvH/Q1DJVDBtMCqnaAdUoeIwNw43AdqKQRoHAVjC6mfqtJ1Say/jBjBP0IzqIecgZNVZq3va6KESvXHGr7gxkmXg5qUCOeq/81e1LlkYYGyao1h3PTYyfUWU4EzgpdVONCWUjOsCOpTGNUPvZ7NoJObFKn4RS2YoNmam/JzIaaT2OAtsZUTPUi95U/M/rpCa88jMeJ6nBmM0XhakgRpLp66TPFTIjxpZQpri9lbAhVZQZG1DJhuAtvrxMmmdV76J6fn9eqV3ncRThCI7hFDy4hBrcQR0awOARnuEV3hzpvDjvzse8teDkM4fwB87nD1cnjv0=</latexit>

F`
<latexit sha1_base64="QHNARAiqfWUN8HoSzK0rtSUb4tM=">AAAB9XicbVBNS8NAEN3Ur1q/qh69LBbBU0lE1GNREI8V7Ac0adlsJunSzSbsbpQS+j+8eFDEq//Fm//GbZuDtj4YeLw3w8w8P+VMadv+tkorq2vrG+XNytb2zu5edf+grZJMUmjRhCey6xMFnAloaaY5dFMJJPY5dPzRzdTvPIJULBEPepyCF5NIsJBRoo3Uvx24wHnfDUgUgRxUa3bdngEvE6cgNVSgOah+uUFCsxiEppwo1XPsVHs5kZpRDpOKmylICR2RCHqGChKD8vLZ1RN8YpQAh4k0JTSeqb8nchIrNY590xkTPVSL3lT8z+tlOrzycibSTIOg80VhxrFO8DQCHDAJVPOxIYRKZm7FdEgkodoEVTEhOIsvL5P2Wd25qJ/fn9ca10UcZXSEjtEpctAlaqA71EQtRJFEz+gVvVlP1ov1bn3MW0tWMXOI/sD6/AFeQ5Jx</latexit>

F †
`

<latexit sha1_base64="PNCbYYyZ5XngbbTZLt2YPq599c0=">AAAB73icbVDLSgNBEOz1GeMr6tHLYBA8hd0Q1GPQi8cI5gHJEmYns8mQeawzs0JY8hNePCji1d/x5t84SfagiQUNRVU33V1Rwpmxvv/tra1vbG5tF3aKu3v7B4elo+OWUakmtEkUV7oTYUM5k7RpmeW0k2iKRcRpOxrfzvz2E9WGKflgJwkNBR5KFjOCrZM6PcOGAver/VLZr/hzoFUS5KQMORr90ldvoEgqqLSEY2O6gZ/YMMPaMsLptNhLDU0wGeMh7ToqsaAmzOb3TtG5UwYoVtqVtGiu/p7IsDBmIiLXKbAdmWVvJv7ndVMbX4cZk0lqqSSLRXHKkVVo9jwaME2J5RNHMNHM3YrICGtMrIuo6EIIll9eJa1qJbis1O5r5fpNHkcBTuEMLiCAK6jDHTSgCQQ4PMMrvHmP3ov37n0sWte8fOYE/sD7/AHKN4/R</latexit>�2

<latexit sha1_base64="RnY430m3Rbu7Zsk9BEQBf8OwNfU=">AAAB73icbVBNSwMxEJ3Ur1q/qh69BIvgqexKUY9FLx4r2A9ol5JNs21okl2TrFCW/gkvHhTx6t/x5r8xbfegrQ8GHu/NMDMvTAQ31vO+UWFtfWNzq7hd2tnd2z8oHx61TJxqypo0FrHuhMQwwRVrWm4F6ySaERkK1g7HtzO//cS04bF6sJOEBZIMFY84JdZJnZ7hQ0n6fr9c8areHHiV+DmpQI5Gv/zVG8Q0lUxZKogxXd9LbJARbTkVbFrqpYYlhI7JkHUdVUQyE2Tze6f4zCkDHMXalbJ4rv6eyIg0ZiJD1ymJHZllbyb+53VTG10HGVdJapmii0VRKrCN8ex5POCaUSsmjhCqubsV0xHRhFoXUcmF4C+/vEpaF1X/slq7r1XqN3kcRTiBUzgHH66gDnfQgCZQEPAMr/CGHtELekcfi9YCymeO4Q/Q5w/Is4/Q</latexit>�1

<latexit sha1_base64="Ej1UUYpgdMhDedp3vPRMBqNML1g=">AAAB7XicbVBNSwMxEJ3Ur1q/qh69BIvgqexKUY9FLx4r2A9ol5JNs21sNlmSrFCW/gcvHhTx6v/x5r8xbfegrQ8GHu/NMDMvTAQ31vO+UWFtfWNzq7hd2tnd2z8oHx61jEo1ZU2qhNKdkBgmuGRNy61gnUQzEoeCtcPx7cxvPzFtuJIPdpKwICZDySNOiXVSq6dHqu/1yxWv6s2BV4mfkwrkaPTLX72BomnMpKWCGNP1vcQGGdGWU8GmpV5qWELomAxZ11FJYmaCbH7tFJ85ZYAjpV1Ji+fq74mMxMZM4tB1xsSOzLI3E//zuqmNroOMyyS1TNLFoigV2Co8ex0PuGbUiokjhGrubsV0RDSh1gVUciH4yy+vktZF1b+s1u5rlfpNHkcRTuAUzsGHK6jDHTSgCRQe4Rle4Q0p9ILe0ceitYDymWP4A/T5A0jkjvM=</latexit>⇢0

<latexit sha1_base64="4NWf6pxMc4+dpcF7Vcc32JBAvFk="></latexit>

1

2

X

`2 leaf(T )

X

�1⌦�2 6=1⌦1

(H.63)

The above can be bounded in the same manner as (H.19) in Proposition 1; the proof is the
same up through (H.20). Then the analog of (H.21) is

<latexit sha1_base64="UtiM86E2ZEp50Nao18YowkGgUaM=">AAAB/HicbVBNS8NAEN3Ur1q/oj16WSyCp5JIUY9FLx4r9AvaEDbbabt0swm7m0KI9a948aCIV3+IN/+N2zYHbX0w8Hhvhpl5QcyZ0o7zbRU2Nre2d4q7pb39g8Mj+/ikraJEUmjRiEeyGxAFnAloaaY5dGMJJAw4dILJ3dzvTEEqFommTmPwQjISbMgo0Uby7XKfEzHigPuxYn429ZuzR9+uOFVnAbxO3JxUUI6Gb3/1BxFNQhCacqJUz3Vi7WVEakY5zEr9REFM6ISMoGeoICEoL1scP8PnRhngYSRNCY0X6u+JjIRKpWFgOkOix2rVm4v/eb1ED2+8jIk40SDoctEw4VhHeJ4EHjAJVPPUEEIlM7diOiaSUG3yKpkQ3NWX10n7supeVWsPtUr9No+jiE7RGbpALrpGdXSPGqiFKErRM3pFb9aT9WK9Wx/L1oKVz5TRH1ifPwJ5lQU=</latexit>h vT
| <latexit sha1_base64="+0yu3fJs6rZq6TAZPu9EyGC2vtw=">AAAB+3icbVBNS8NAEJ3Ur1q/Yj16CRbBU0mkqMeiF48V+gVNCJvtpl262YTdTbHE/BUvHhTx6h/x5r9x2+agrQ8GHu/NMDMvSBiVyra/jdLG5tb2Tnm3srd/cHhkHle7Mk4FJh0cs1j0AyQJo5x0FFWM9BNBUBQw0gsmd3O/NyVC0pi31SwhXoRGnIYUI6Ul36w+uYmkfjb127krEB8x4ps1u24vYK0TpyA1KNDyzS93GOM0IlxhhqQcOHaivAwJRTEjecVNJUkQnqARGWjKUUSkly1uz61zrQytMBa6uLIW6u+JDEVSzqJAd0ZIjeWqNxf/8wapCm+8jPIkVYTj5aIwZZaKrXkQ1pAKghWbaYKwoPpWC4+RQFjpuCo6BGf15XXSvaw7V/XGQ6PWvC3iKMMpnMEFOHANTbiHFnQAwyM8wyu8GbnxYrwbH8vWklHMnMAfGJ8/tBOU4Q==</latexit>| vT

i

<latexit sha1_base64="YHo16WBzbApBHGSjcgEfouEQCnc=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GNREI8V7Ae0oWy2k3btJht2N0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekAiujet+O4WV1bX1jeJmaWt7Z3evvH/Q1DJVDBtMCqnaAdUoeIwNw43AdqKQRoHAVjC6mfqtJ1Say/jBjBP0IzqIecgZNVZq3va6KESvXHGr7gxkmXg5qUCOeq/81e1LlkYYGyao1h3PTYyfUWU4EzgpdVONCWUjOsCOpTGNUPvZ7NoJObFKn4RS2YoNmam/JzIaaT2OAtsZUTPUi95U/M/rpCa88jMeJ6nBmM0XhakgRpLp66TPFTIjxpZQpri9lbAhVZQZG1DJhuAtvrxMmmdV76J6fn9eqV3ncRThCI7hFDy4hBrcQR0awOARnuEV3hzpvDjvzse8teDkM4fwB87nD1cnjv0=</latexit>

F`
<latexit sha1_base64="QHNARAiqfWUN8HoSzK0rtSUb4tM=">AAAB9XicbVBNS8NAEN3Ur1q/qh69LBbBU0lE1GNREI8V7Ac0adlsJunSzSbsbpQS+j+8eFDEq//Fm//GbZuDtj4YeLw3w8w8P+VMadv+tkorq2vrG+XNytb2zu5edf+grZJMUmjRhCey6xMFnAloaaY5dFMJJPY5dPzRzdTvPIJULBEPepyCF5NIsJBRoo3Uvx24wHnfDUgUgRxUa3bdngEvE6cgNVSgOah+uUFCsxiEppwo1XPsVHs5kZpRDpOKmylICR2RCHqGChKD8vLZ1RN8YpQAh4k0JTSeqb8nchIrNY590xkTPVSL3lT8z+tlOrzycibSTIOg80VhxrFO8DQCHDAJVPOxIYRKZm7FdEgkodoEVTEhOIsvL5P2Wd25qJ/fn9ca10UcZXSEjtEpctAlaqA71EQtRJFEz+gVvVlP1ov1bn3MW0tWMXOI/sD6/AFeQ5Jx</latexit>

F †
`

<latexit sha1_base64="Ej1UUYpgdMhDedp3vPRMBqNML1g=">AAAB7XicbVBNSwMxEJ3Ur1q/qh69BIvgqexKUY9FLx4r2A9ol5JNs21sNlmSrFCW/gcvHhTx6v/x5r8xbfegrQ8GHu/NMDMvTAQ31vO+UWFtfWNzq7hd2tnd2z8oHx61jEo1ZU2qhNKdkBgmuGRNy61gnUQzEoeCtcPx7cxvPzFtuJIPdpKwICZDySNOiXVSq6dHqu/1yxWv6s2BV4mfkwrkaPTLX72BomnMpKWCGNP1vcQGGdGWU8GmpV5qWELomAxZ11FJYmaCbH7tFJ85ZYAjpV1Ji+fq74mMxMZM4tB1xsSOzLI3E//zuqmNroOMyyS1TNLFoigV2Co8ex0PuGbUiokjhGrubsV0RDSh1gVUciH4yy+vktZF1b+s1u5rlfpNHkcRTuAUzsGHK6jDHTSgCRQe4Rle4Q0p9ILe0ceitYDymWP4A/T5A0jkjvM=</latexit>⇢0

<latexit sha1_base64="1Io9rUz1vqP40Cl2+sgI6SKb8HQ="></latexit>

|WgU(��1
1 , d1/2)| |WgU(��1

2 , d1/2)| .
<latexit sha1_base64="GPI33MqjtuwxdIiRkWHzs4k1Pow="></latexit>

1

2

X

`2 leaf(T )

X

�1⌦�2 6=1⌦1

(H.64)

and summing over leafs we find
dT

2

∑

σ1⊗σ2 6=1⊗1

|WgU(σ−1
1 , d1/2)| |WgU(σ−1

2 , d1/2)| . (H.65)

Denoting σ = σ1 ⊗ σ2, the above is equal to

2 · d
T/2

2
|WgU(1, d1/2)|


d

T/2
∑

σ 6=1
σ∈ST

|WgU(σ−1, d1/2)|


+

1

2


d

T/2
∑

σ 6=1
σ∈ST

|WgU(σ−1, d1/2)|




2

.

(H.66)
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Since |WgU(1, d1/2)| = 1
dT/2

+O(T 7/2/dT/2+1) for T <
(
d
6

)2/7 and the term in the parentheses
is less than or equal to O(T 2/d1/2) by Lemma 6 of [10], we have in total

1

2

∑

`∈ leaf(T )

∑

σ1⊗σ2 6=1⊗1

|pσ1,σ2,1,1(`)| ≤ O

(
T 2

d1/2

)
. (H.67)

Third term

Applying the Cauchy-Schwarz inequality to final term in (H.59) we find

<latexit sha1_base64="hEDKWDrW0xiLHo4+jKUgOW/pI9o="></latexit>

|WgU(⌧1�
�1
1 , d1/2)| |WgU(⌧2�

�1
2 , d1/2)| .
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If we label σ = σ1 ⊗ σ2 and τ = τ1 ⊗ τ2, the proof proceeds identically to the third case of
Proposition 1 up through (H.51). Then the new analog of (H.52) is
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The right-hand side can be bounded in part using dT/2
∑

σ |WgU(σ−1, d1/2)| ≤ 1+O(T 2/d1/2).
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where the last bound comes from Proposition 1, we find that if T ≤ o(d1/4) then
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Putting all three cases together, we see that for T ≤ Ω(d1/4) we have
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