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Pseudorange Measurement Outlier Detection for
Navigation with Cellular Signals

MAHDI MAAREF, JOE KHALIFE, AND ZAK KASSAS

BACKGROUND
• Autonomous ground vehicles (AGVs) will

operate in deep urban canyons where global
navigation satellite system (GNSS) signals are
unusable or unreliable.

• In these environments, signals of opportu-
nity, particularly cellular long-term evolution
(LTE) signals are abundant and can be consid-
ered as an alternative navigation source in the
absence of GNSS signals.

MOTIVATION
• The ASPIN Laboratory has developed pro-

prietary, state-of-the-art receivers and navi-
gation frameworks for AGV navigation with
LTE signals, demonstrating meter-level accu-
racy with standalone LTE signals.

• As the number of systems that rely on cellu-
lar signals for navigation grows, the need for
monitoring the integrity of their navigation
solution becomes essential.

APPROACH
Developed an autonomous measurement outlier
detection and exclusion framework for ground ve-
hicle navigation using LTE cellular signals and an
inertial measurement unit (IMU). The proposed
framework accounts for:

• line-of-sight blockage

• short multipath delays
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NAVIGATION FRAMEWORK

The observations {zsn}
Ns

n=1 are fused through an ex-
tended Kalman filter (EKF), which produces an es-
timate of the receiver’s state vector x̂ and an asso-
ciated estimation error covariance P.
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OUTLIER DETECTION
In order to distinguish between outlier-free mea-
surements and those subject to outliers, a measur-
able scalar parameter is defined that provides in-
formation about pseudorange measurement errors.
This parameter, called a test statistic, is a random
variable with a known distribution (i.e., chi-square)
and is defined as

'(k + 1) , ⌫T(k + 1)S�1(k + 1)⌫(k + 1),

where ⌫ and S represent the innovation vector and
its associated covariance, respectively. Outlier de-
tection is achieved by comparing '(k+1) against a
detection threshold Th, namely

'(k + 1)  Th : no outliers present,
'(k + 1) > Th : outlier present.

OUTLIER EXCLUSION

Step 1: Construct Ns subsets of Ns � 1 pseudorange
measurements each of which excludes one pseudor-
ange measurement.
Step 2: Assuming that only one of the cellular mea-
surements is outlier, apply outlier detection proce-
dure to each subset.
Step 3: This results in a test statistic failure in all sub-
sets except one.
Step 4: Feed the navigation solution block with the
measurement subset with successful test statistic.
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ABSTRACT

We present an autonomous measurement outlier detection and ex-

clusion framework for ground vehicle navigation using cellular

signals of opportunity (SOPs) and an inertial measurement unit

(IMU). The experimental results demonstrate the proposed frame-

work successfully detecting and excluding outlier measurements,

improving the position root mean-squared error (RMSE) by 42%.

The demo sessionwill showcase work in progress, namely (1) demo

(in the form of a video of our experiment driving in downtown

Riverside, California) and (2) a poster that includes the navigation

framework, the proposed outlier detection method, and the exper-

imental results.

ACM Reference Format:

Mahdi Maaref, Joe Khalife, and Zaher M. Kassas. 2019. WiP Abstract: Pseu-

dorange Measurement Outlier Detection for Navigation with Cellular Sig-

nals . In Proceedings of ICCPS ’19,. ACM, Montreal, QC, Canada, Article 24,

2 pages. https://doi.org/https://doi.org/10.1145/3302509.3313334

1 INTRODUCTION

Global navigation satellite system (GNSS) signals are insufficient

for reliable and accurate ground vehicle navigation in deep ur-

ban environments due to the inherent weakness of their space-

based signals. Among alternative sensing modalities to compen-

sate for GNSS limitations and vulnerabilities, signals of opportu-

nity (SOPs) represent a particularly fruitful class of sensing modal-

ities LATEX [2]. SOPs are radio frequency signals that are not in-

tended for navigation but can be exploited for navigation purposes,

such as AM/FM radio signals, digital television, cellular, and low

Earth orbit (LEO) satellites.

Despite the promise of SOPs as a reliable and accurate sensing

modality, their integrity has not been fully studied. An initial work

on integrity monitoring for SOP-based navigation was conducted

in LATEX [3]. This paper extends the work in LATEX [3] by develop-

ing an autonomous measurement outlier detection and exclusion

method for cellular long-term evolution (LTE) SOPs due to two

main sources of errors: line-of-sight (LOS) blockage and short mul-

tipath delays. Experimental results are presented validating the ef-

ficacy of the proposed method for a ground vehicle navigating in

an urban environment (downtown Riverside, California) over a tra-

jectory of 1.4 km. The position root mean-squared error (RMSE) is
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reduced by 42% when the measurement outliers are detected and

excluded via the proposed method.

2 NAVIGATION FRAMEWORK

The environment is assumed to comprise Ns terrestrial cellular

transmitters, denoted {Sn}
Ns

n=1 and the vehicle is assumed to be

equipped with an inertial measurement unit (IMU) and a receiver

capable of producing pseudorange measurements to cellular trans-

mitters. It is assumed that the vehicle knows the location of the

cellular transmitters (e.g., from a local or a cloud-hosted database).

It is also assumed that the vehicle has an initial period of access

to GNSS signals. During this period, the vehicle estimates its state.

After this period, it is assumed that GNSS signals become unus-

able, and the vehicle begins to navigate exclusively with cellular

signals and the IMU. In addition, the proposed framework assumes

the presence of an stationary agent in the vehicle’s environment,

referred to as the base, which has knowledge of its own state at

all time. The base’s purpose is to estimate the dynamic stochas-

tic clock bias states of cellular transmitters and to share these es-

timates with the navigating vehicle. The cellular receiver draws

pseudorange observations from each cellular transmitters, given

by
zsn (k) =





rr (k) − rsn





2
+ c

[

δtr (k) − δtsn (k)
]

+vsn (k), (1)

where r r and r sn are the location of the receiver and n-th cellular

transmitter, respectively; δtr and δtsn represent the clock bias of

the receiver and n-th cellular transmitter; and vsn is the measure-

ment noise, which is modeled as a discrete-time zero-mean white

Gaussian sequence. The clock biases of the cellular transmitters
{

δtsn
}Ns

n=1
are known to the navigating vehicle through a base re-

ceiver. The observations
{

zsn
}Ns

n=1
are fused through an extended

Kalman filter (EKF), which produces an estimate of the receiver’s

state vector x̂ and an associated estimation error covariance P. The

EKF-based estimation framework is illustrated in Figure 1.
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Figure 1: EKF-based estimation framework to fuse IMU data

with cellular.
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3 OUTLIER DETECTION

In the presence of a measurement bias due to LOS signal block-

age or due to short multipath delays, a bias with magnitude bn
is injected in the pseudorange measurement drawn from the n-th

cellular transmitter, rendering that particularmeasurement an out-

lier. In order to distinguish between outlier-freemeasurements and

those subject to outliers, a measurable scalar parameter is defined

that provides information about pseudorange measurement errors.

This parameter, called a test statistic, is a random variable with a

known distribution. Under outlier-free, normal operation, the in-

novation vector ν0(k + 1) and its associated innovation error co-

variance S(k + 1) are given by

ν0(k + 1),z(k + 1) − ẑ(k + 1|k)≈H(k + 1)x̂(k + 1|k) +vs (k + 1),

S(k + 1),H(k + 1)P(k + 1|k)HT(k + 1) + R,

where vs , [vs1 , . . . ,vsNs ]
T, H is the measurement Jacobian, z is

the vector of pseudorange measurements, and R is the measure-

ment noise covariance matrix. Whenever the n-th measurement

experiences an outlier bias, the biased innovation vector ν̄(k + 1)

may be expressed as

ν̄(k + 1) = ν0(k + 1) +un (k + 1),

where the vector un(k + 1) , [0, . . . , 0,bn(k + 1), 0, . . . , 0]T is the

bias vector resulting when a bias of magnitude bn is present in the

pseudorange measurement drawn from the outlier cellular tower.

Note that ν̄(k+1) has the same covariance asν0(k+1). Denoteν(k+

1) the innovation vector evaluated by the filter. The hypothesis

test relies on the normalized innovation squared (NIS)-based test

statistic, which is defined as

φ(k + 1) , ν
T(k + 1)S−1(k + 1)ν(k + 1).

Note that the test statistics follows a chi-square distribution under

outlier-free operation and a non-central chi-square distribution in

the presence of outliers LATEX [1]. The degrees of freedom of the

distributions under both conditions is d = Ns . Outlier detection is

achieved by comparing φ(k + 1) against a detection threshold Th ,

namely

φ(k + 1) ≤ Th : no outliers present,

φ(k + 1) > Th : outlier present.

4 EXPERIMENTAL RESULTS

A vehicle was equipped with an IMU and a cellular receiver (Fig-

ure 2). Over the course of the experiment, the vehicle-mounted

receiver was listening to 5 LTE base stations. The outlier detec-

tion test was performed throughout the experiment. The results

are shown in Figure 3 and Figure 4. Figure 3 shows the outlier de-

tection test which compares the test statistic φ against the detec-

tion thresholdTh . It can be seen that at t = 95 s, the threshold is ex-

ceeded; therefore, the test is not declared successful (see the red cir-

cle in Figure 3). This implies that at least one of the measurements

was detected as an outlier and its contribution to the test statistic

was significant enough for the test to fail. Figure 4 shows the re-

sulting position estimation error and corresponding ±3σ bounds

with and without using the proposed outlier exclusion. As can be

seen, outlier exclusion results in a significant reduction in the x-

Figure 2: Experimentalhardware setupand the traversed tra-

jectory along with the position of cellular towers.
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Figure 3: The resulting fault detection test.
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Figure 4: Vehicle’s position estimation errors in the x- and y-

directions with and without the proposed autonomousmea-

surement outlier exclusion method.

and y-direction estimation error. The position RMSE without mea-

surement exclusion was 8.2 m, whereas the position RMSE with

the proposed autonomous measurement outlier exclusion method

was 4.8 m. Hence, incorporating the proposed algorithm reduced

the position RMSE by 42%.
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