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Objectives and Scope
A major question that arises in many areas of Cognitive Sci-
ence is the need to distinguish true causal connections be-
tween variables from mere correlations. The most com-
mon way of addressing this distinction is the design of well-
controlled experiments. However, in many situations, it is
extremely difficult –or even outright impossible– to perform
such experiments. Researchers are then forced to rely on cor-
relational data in order to make causal inferences. This situa-
tion is especially common when one needs to analyze longi-
tudinal data corresponding to historical time-series, symbolic
sequences, or developmental data. These inferences are often
very problematic. From the correlations alone it is difficult to
determine the direction of the causal arrow linking two vari-
ables. Worse even, the lack of controls of observational data
entail that correlations found between two variables need not
reflect any causal connection between them. The possibility
always remains that some third variable which the researchers
were not able to measure, or were actually unaware of, is the
actually driver for both measured variables, giving rise to the
mirage of a direct relationship between them.

In recent years, it has been shown that, under particular cir-
cumstances, one can use correlational information for mak-
ing sound causal inferences (cf., Pearl, 2000). In this tu-
torial I will provide a hands-on introduction to the use of
modern causality techniques for the analysis of observational
time series. I will cover causality analyses for three types of
time-series that are often encountered in Cognitive Science
research:

• For numerical time-series of a predominantly stochastic
nature I will discuss how to perform Granger-Causality
(Granger, 1981) analyses used by econometricians, us-
ing the methodology introduced by Toda and Yamamoto
(1995).

• For symbolic stochastic time-series, I will introduce the
Transfer Entropy measure developed in Physics (Schreiber,
2000).

• Finally, for numerical series that can be shown to have a
predominantly deterministic (even if possibly chaotic) na-
ture, I will discuss Convergent Cross-Mapping (Clark et
al., 2015; Sugihara et al., 2012), a very powerful technique
recently developed in the field of ecology, that relies on the
Theory of Dynamical Systems to make causal inferences.

Finally, I will demonstrate how to use each of these tech-
niques for reconstructing networks of causal relations be-
tween large sets of variables.

Overview of Causality Methods for Time Series
Granger-Causality
Granger-Causality (cf. Granger, 1981) is a powerful tech-
nique developed in Econometrics for assessing whether one
time sequence can be said to be the cause of another one (or
viceversa). If x and y are stationary time sequences on dis-
crete time (τ), in order to test whether x Granger-causes y,
one tests whether the past of x is able to predict the future
of y, over and above the predictive power that can be ob-
tained from y’s own past. Between just two variables, this
is assessed using Autoregressive Models. When more than
two variables are involved this is naturally extended by using
Vector Autoregressive Models.

This technique is useful for the analysis of numerical time
series data that are generated by a process whose nature is
predominantly stochastic, which is typical of data resulting
from the aggregation of multiple sources. One important re-
quirement of the Granger-causality method is that it is limited
to stationary time series. This property is sometimes difficult
to guarantee in the types of series that one typically encoun-
ters in Cognitive Science, which tend to exhibit a certain de-
gree of co-integration. This limitation can, however, be ad-
dressed by using the methodology introduced by Toda and
Yamamoto (1995), which I will introduce in the tutorial.

Transfer Entropy
Often, in Cognitive Science, researchers need to analyze se-
quences of discrete symbols, as could for instance be the
sounds uttered by a developing child. Schreiber (2000)
extended the main idea of Granger-Causality to symbolic
stochastic processes. Instead of analyzing correlations be-
tween variables, one moves into using mutual informations,
in the sense of Shannon (1948). Even when one’s data are
actually of a numerical nature, it can be actually beneficial to
analyze them in symbolic terms, as the mutual informations
are capable of capturing non-linear relations that could be
missed by linear correlation-based methods (see, Hlaváčcova-
Schindler, Paluš, Vejmelka, & Bhattacharya, 2007, for a re-
view). This later usage will be demonstrated in the tutorial
using a dataset from human speech.

Convergent Cross-Mapping
The Granger-Causality and Transfer-Entropy approaches out-
lined above are suitable only for stochastic systems. In some
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Cognitive Science domains, especially those dealing with
longitudinal developmental data, one also encounters numeri-
cal data that can be argued to originate from a predominantly
deterministic Dynamical System. Such cases can be mod-
elled explicitly using systems of coupled differential equa-
tions. However, in many cases, only a few of the variables
that relevant for the system are available to the researchers
(the others being unmeasurable or plainly unknown). How-
ever, Takens’ Theorem (Takens, 1981) states that the crucial
properties of a dynamical system’s attractor can be succes-
fully recovered using a single one of its variables, in what
is known as Phase-State Reconstruction. Using this fact,
Sugihara et al. (2012) developed the Convergent-Cross Map-
ping (CCM) technique, which enables recovering the direc-
tion of causality between any two time sequences generated
by the same dynamical system. Importantly, and in contrast
with the methods discussed above, CCM is also capable of
distinguishing the case when two correlated variables are not
actually causally related, but rather they are both driven by
a third unstudied variable. A limitation of CCM is that it
requires relatively long time series, which are often unavail-
able in many actual research problems. Clark et al. (2015)
extended CCM to allow combining multiple short time se-
ries originating from similar processes (i.e., as if considering
random effects in a regression model), introducing the “mul-
tispatial” variant of the CCM method. I will demonstrate how
the multispatial CCM analyses can be performed.

Format and Organization
This tutorial is designed to cover half a day (three hours)
broken into two sections of 1.5 hours each. The first ses-
sion in the tutorial will discuss the theoretical basis, con-
ditions of applicability, advantages, drawbacks of each of
the three causal analysis methods. The second session will
be hands-on, guiding attendants on how to perform each of
these analyses, together with the necessary diagnostics, us-
ing the R statistical software. For this, I will make use of
previously published datasets, covering three different time-
scales: historical (Moscoso del Prado Martı́n, 2014), devel-
opmental (Irvin, Spokoyny, & Moscoso del Prado Martı́n,
2016), and the time-scale of a typical behavioral experiment
(Moscoso del Prado Martı́n, 2011).

Target Audience
The tutorial is aimed at advanced graduate students, post-
docs, and senior researchers wishing to use this type of causal
analyses in this research. A familiarity with basic statistics
and with programming (preferably using R) will be neces-
sary to be able to follow the theoretical arguments, and to be
able to perform the analyses.

Tutor Information
Fermı́n Moscoso del Prado Martı́n is assistant professor of
Linguistics at the University of California, Santa Barbara.
Previously he has held positions at the Max Planck Institute

for Psycholinguistics, the Medical Research Council – Cog-
nition and Brain Sciences Unit, and at the Cognitive Psychol-
ogy Laboratory of the French National Research Center. He
holds an MEng in Computer Science by the Technical Uni-
versity of Madrid, and a PhD in Linguistics by the University
of Nijmegen, where he was a student of Prof. R. H. Baayen.
Over the last decade he has published multiple papers com-
bining information-theoretical methods, computational mod-
eling, corpus analyses, and psycholinguistic experiments.

References
Clark, A. T., Ye, H., Isbell, F., Deyle, E. R., Cowles, J.,

Tilman, G. D., & Sugihara, G. (2015). Spatial convergent
cross mapping to detect causal relationships from short
time series. Ecolology, 96, 1174–1181.

Granger, C. W. J. (1981). Testing for causality. Journal of
Economic Dynamics and Control, 2, 329–352.
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