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ORIGINAL ARTICLE

Relations Between Bone Quantity, Microarchitecture,
and Collagen Cross-links on Mechanics Following In Vivo
Irradiation in Mice
MeganM Pendleton,1 Shannon R Emerzian,1 Saghi Sadoughi,1 Alfred Li,2 Jennifer W Liu,3 Simon Y Tang,3,4,5

Grace D O’Connell,1,6 Jean D Sibonga,7 Joshua S Alwood,8 and Tony M Keaveny1,9

1Department of Mechanical Engineering, University of California, Berkeley, CA, USA
2Endocrine Research Unit, University of California and Veteran Affairs Medical Center, San Francisco, CA, USA
3Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA
4Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
5Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO, USA
6Department of Orthopaedic Surgery, University of California, San Francisco, CA, USA
7Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, TX, USA
8Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
9Department of Bioengineering, University of California, Berkeley, CA, USA

ABSTRACT
Humans are exposed to ionizing radiation via spaceflight or cancer radiotherapy, and exposure from radiotherapy is known to increase risk
of skeletal fractures. Although irradiation can reduce trabecular bonemass, alter trabecular microarchitecture, and increase collagen cross-
linking, the relative contributions of these effects to any loss of mechanical integrity remain unclear. To provide insight, while addressing
both themonotonic strength and cyclic-loading fatigue life, we conducted total-body, acute, gamma-irradiation experiments on skeletally
mature (17-week-old) C57BL/6J male mice (n = 84). Mice were administered doses of either 0 Gy (sham), 1 Gy (motivated by cumulative
exposures fromaMarsmission), or 5 Gy (motivatedby clinical therapy regimens)with retrieval of the lumbar vertebraeat either a short-term
(11-day) or long-term (12-week) timepoint after exposure.Micro-computed tomographywasused to assess trabecular and cortical quantity
and architecture, biochemical composition assays were used to assess collagen quality, andmechanical testing was performed to evaluate
vertebral compressive strength and fatigue life. At 11 days post-exposure, 5 Gy irradiation significantly reduced trabecularmass (p < 0.001),
alteredmicroarchitecture (eg, connectivity density p < 0.001), and increased collagen cross-links (p < 0.001). Despite these changes, verte-
bral strength (p = 0.745) and fatigue life (p = 0.332) remained unaltered. At 12 weeks after 5 Gy exposure, the trends in trabecular bone
persisted; in addition, regardless of irradiation, cortical thickness (p < 0.01) and fatigue life (p < 0.01) decreased. These results demonstrate
that thehighly significant effects of 5 Gy total-body irradiationon the trabecular bonemorphologyandcollagen cross-linksdidnot translate
intodetectable effects on vertebralmechanics. Theonlymechanical deficits observedwere associatedwith aging. Together, these vertebral
results suggest that for spaceflight, irradiation alone will likely not alter failure properties, and for radiotherapy, more investigations that
include post-exposure time as a positive control and testing of both failure modalities are needed to determine the cause of increased
fracture risk.©2021TheAuthors. JBMRPluspublishedbyWiley Periodicals LLConbehalf of AmericanSociety for BoneandMineral Research.
This article has been contributed to by US Government employees and their work is in the public domain in the USA.

KEY WORDS: AGING; BONE MECHANICS; FATIGUE; IONIZING RADIATION; RADIOTHERAPY; SPACEFLIGHT

Introduction

The effects of exposure to ionizing radiation on bone strength
is of interest for numerous reasons, including oncologic

radiotherapy and space exploration, among others. After onco-
logic radiotherapy, fragility fractures in cancer survivors are a
known complication.(1–10) For example, the risk of hip insuffi-
ciency fracture in postmenopausal women treated for cervical,
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rectal, or anal cancer(9) or in men treated for prostate cancer(10) is
increased at sites directly exposed to radiation (relative risk 1.66,
1.65, 3.14, and 1.76, respectively). Furthermore, a meta-analysis
reported a 14% incidence of pelvic insufficiency fractures after
radiotherapy in patients with cervical cancer,(1) noting fracture as
a more common complication than previously thought, even with
advances in treatment procedures that aim to minimize radiation
to surrounding tissue, such as intensity-modulated radiotherapy.(2,5)
) Thus, there is also a concern for bone degradation and fracture in
astronauts, as they will be exposed to space radiation from solar
and cosmic sources during deep-space exploration.(11–15)

To address these complications and concerns, prior studies
developed amousemodel to study radiation-induced bone deg-
radation.(11) Although a significant body of literature has
addressed irradiation and bone strength, using this model, a
number of important issues remain unclear. First, because the
effects of radiation on bonemechanics have primarily been stud-
ied for monotonic (one-time) loading,(16–23) much less is known
about fatigue strength (cyclic loading). Because fractures after
radiotherapy are commonly characterized as insufficiency
fractures,(24–27) a type of fatigue fracture, a complete assessment
of bone mechanical performance ought to include both mono-
tonic and cyclic loading responses.(28) Second, we have not iden-
tified the factor(s) responsible for elevated fracture risk. And
third, in living bone, the effects of isolated doses of irradiation
may evolve over time(19) due to radiation effects on cellular activ-
ity.(29,30) Human clinical studies, to date, have demonstrated
mixed results on cortical thinning and/or loss of bone mineral
density after radiation therapy at various anatomical loca-
tions(31–34) and have not shown a conclusive relationship
between bone loss and fracture incidence.(2,35,36) Thus, mouse
models have been critical for exploring the effect of radiation
on bone quality(37) and have addressed the effects of irradiation
(total body or localized) on such morphological properties as
bone mass, trabecular microarchitecture, and collagen struc-
ture.(16–23,29) However, it still remains unclear which parameters
are responsible for reduced skeletal integrity and how these rela-
tionships might change over time.

To provide insight into these issues, the main goal of this ani-
mal study was to investigate the effects in living mouse bone of
different magnitudes of radiation exposure at different post-
exposure time points. To better understand the underlying
biomechanics, we also sought to relate radiation-induced
changes in bone morphology at multiple scales (ie, whole-bone
to molecular level) with changes in mechanical properties. In
particular, we addressed the effects of spacelike (1 Gy) and lower
thresholds of clinically related (5 Gy) total-body irradiation, and
our assays included measurements of bone mass, bone micro-
architecture (both cortical and trabecular), collagen structure,
and both monotonic and cyclic mechanical properties.

Materials and Methods

Animals and experiment design

We conducted gamma-irradiation experiments on mice at
space- and clinically-relevant doses and evaluated temporal
effects by collecting bone tissue at both an early and late time
point post-irradiation. Assays included quantitative characteriza-
tion of the trabecular and cortical bone mass and microarchitec-
ture, biochemical assessments of the organic matrix, and
mechanical characterization with monotonic and cyclic loading.
Eighty-four male C57BL/6J mice (Jackson Labs, Sacramento, CA,

USA) were individually housed and randomly assigned to six
groups (n = 14). At 17 weeks of age, the skeletally mature mice
were exposed to either 0 Gy (sham-irradiated), 1 Gy, or 5 Gy.
Age, sex, and strain of mouse were chosen for mice to be near
peak bone mass before radiation exposure and mice that exhibit
skeletal changes typical of aging similar to that observed in
humans.(17,38,39) Mice were housed individually in standard
cages with food (LabDiet 5001, Purina, St. Louis, MO, USA) and
water ad libitum. Cages were located within a controlled animal
facility room (24 � 2�C, 55 � 5% humidity, 12-hour light/dark
cycle). Mice were euthanized at two time points: either 11 days
or 12 weeks post-irradiation. Both are known time points to
observe initial(17) and lasting effects(11,22,40) of radiation expo-
sure. Investigators were blinded during animal allocation, animal
handling, and endpoint measurements. All experiment proce-
dures were conducted at NASA Ames Research Center and
approved by the Institutional Animal Care and Use Committee
(protocol #NAS-13-004-Y3).

137Cs gamma irradiation

Consciousmicewere exposed to total-body, acute, γ-radiation from
a 137Cs source at 0.76 Gy min�1 (Mark-3 Irradiator, J.L. Shepherd,
San Fernando, CA, USA) for a dose of 1 and 5 Gy or were sham-
irradiated (0 Gy exposure), as reported elsewhere.(17)

Specimen preparation

After humane euthanization, lumbar and sacral vertebrae, L3 to
S1, were excised from the mouse, gently cleaned of soft tissue,
wrapped in saline-soaked gauze (Gibco PBS, pH 7.4), and stored
at�20�C. The endplates and posterior elements of the L4 and L5
were removed to produce plano-parallel surfaces for uniaxial
compression testing (Fig. 1). {FIG1} For further schematics on
sample preparation, see Pendleton and colleagues.(41) In total,
there were three freeze–thaw cycles for L4 and L5 vertebrae
(�20�C to room temperature) between dissection, specimen
preparation, imaging, and mechanical testing.

Quantitative micro-CT imaging

After machining, the L4 and L5 specimens were imaged with
quantitative micro-CT (μCT 50, Scanco Medical AG, Bruttisel-
len, Switzerland) using a 10-μm voxel size (55 kV, 109 μA,
1000 projections per 180�, 500 ms integration time). Micro-
CT images of the L4 and L5 specimens were analyzed for
height (ImageJ 1.51h, Java 1.6.0). Additionally, the L5 speci-
mens were evaluated for three-dimensional architecture of
the trabecular and cortical compartments (Scanco Evaluation
Software v6.0). After manually segmenting the trabecular
compartment—and using a lower threshold of 300 grayscale
units and a Gaussian filter with sigma of 0.5 and support of
2—the following parameters were measured: trabecular
bone volume fraction (BV/TV), number (Tb.N), thickness (Tb.
Th), separation (Tb.Sp), connectivity density (Tb.Conn.D),
structural model index (SMI), and volumetric bone mineral
density (Tb.BMD). Additionally, after segmenting the
cortex—from 0.5 mm above to 0.5 mm below the transverse
processes and using a lower threshold of 380 grayscale units
and a Gaussian filter with sigma of 0.8 and support of 1—the
following parameters were measured: cortical thickness (Ct.
Th), cross-sectional area (CSA), and cortical volumetric bone
mineral density (Ct.BMD). Final data for all micro-CT analyses
consisted of 13 to 14 samples in each group.

JBMR Plus (WOA)n 2 of 10 PENDLETON ET AL.



Biochemical composition assays

After irradiation, two biochemical composition tests were con-
ducted to assess the two primary molecular modifications
thought to alter bone collagen after irradiation: (i) the accumu-
lation of non-enzymatic cross-links and (ii) the fragmentation
of the collagen backbone. Final data for all biochemical ana-
lyses consisted of 4 to 8 samples in each group for cross-links
and 4 to 5 samples in each group for fragmentation. The quan-
tification of non-enzymatic collagen cross-links in the S1 verte-
brae was achieved via a fluorometric assay that determined
the relative fluorescence due to advanced glycation end prod-
ucts (AGEs)(42–45) relative to the amount of collagen in the
bone matrix (protocol adapted from Sell and colleagues(46)).
In brief, each S1 specimen was demineralized in 0.5 M ethyle-
nediaminetetraacetic acid (EDTA) and hydrolyzed in 12 N HCl
at 120�C for 3 hours to break down peptide bonds. The hydro-
lysate was then resuspended in PBS (0.1�) and pipetted in
triplicate onto a black-walled 96-well plate. The non-enzymatic
collagen cross-link content, or number of AGEs, was deter-
mined using fluorescence readings taken using a microplate
reader (370 nm excitation, 440 nm emission). Readings were
standardized to a quinine-sulfate standard (quinine dissolved
in H2SO4), and then normalized to the amount of collagen pre-
sent in each sample, approximated by the amount of hydroxy-
proline.(47–49)

To measure collagen fragmentation, we used an automated
electrophoresis assay (2100 Bioanalyzer, Agilent Technologies,
Santa Clara, CA, USA) to assess the molecular weight distribution
of collagen isolated from the L3 vertebrae, as described in detail
elsewhere.(49) Briefly, we first isolated the collagen from the L3
vertebrae via methods adapted from Burton and colleagues.(50)

The isolated collagen was then dissolved in 1� PBS, mixed with
additional reagents (see Agilent Technologies Protein 230 Man-
ual), and loaded on a bioanalyzer chip for automated electropho-
resis. Rat-tail collagen (C7661-25MG; Sigma-Aldrich, St. Louis,
MO, USA) was run as a standard. The distribution of molecular
weights of the bone collagen protein was assessed in two ways:
(i) visually with a software-generated “gel” and (ii) quantitatively
with an electropherogram, a software-generated fluorescence
unit (FU) chart (Agilent 2100 Expert software). The nominal size

of type I collagen, either alpha-1 or alpha-2, is between
130 and 150 kDa. To identify chain fragmentation, we looked
for evidence of less protein in this range and a wider distribution
of molecular weights. On the gel, this is observed as a lighter-col-
ored band or smeared band at �150 kDa. On the electrophero-
gram, fragmentation can be observed when the peak at
�150 kDa is diminished, indicating fewer fluorescence units
and therefore fewer collagen chains of the nominal size. The
quantification of collagen fragmentation was achieved via the
software-generated electropherogram by comparing the quan-
tity of FU at the nominal collagen chain length (�150 kDa) for
each group.

Mechanical testing

After micro-CT imaging, uniaxial compressive monotonic and
cyclic mechanical tests were performed (TA ElectroForce
3200, Eden Prairie, MN, USA). Final data for all mechanical ana-
lyses consisted of 13 to 14 samples in each group for fatigue
loading and 10 to 13 samples in each group for monotonic
loading (excluding samples used to calibrate machine PID
controller). Monotonic testing was conducted on the L4 spec-
imens, at a platen displacement rate of 0.01 mm s�1. Force-
displacement data were collected (1000 Hz) and custom code
(Matlab R2017a) was used to obtain whole-vertebral stiffness
(K), ultimate force (strength; Fult), and ultimate strain (εult).
Cyclic testing was conducted on the L5 specimens, using
methods described in detail elsewhere.(41) Briefly, in order to
load all specimens to the same initial elastic apparent strain,
micro-CT-based finite element models were used to calculate
specimen-specific stiffnesses (KFEA) and minimum and maxi-
mum cyclic compressive forces, Fmin and Fmax.

(41) After Fmin

and Fmax values were calculated, specimens were cyclically
loaded between Fmin and Fmax in uniaxial compression, with
a sinusoidal waveform at 8 Hz until failure (TA ElectroForce
3200). Although faster than physiologic loading, 8 Hz was cho-
sen to optimize test time while remaining below a frequency
threshold of 15 Hz, known to alter fatigue behavior.(51,52) Test-
ing was conducted at room temperature in a saline-water bath
to maintain hydration for the entire duration of the test. Spec-
imen were placed, caudal-side down, in the center of the fixed,
lower platen. A pre-load of 1 N was applied to obtain a flush,
parallel mate between the specimen cranial surface and
mobile, spherically seated upper platen. Cyclic testing began
after the upper platen position was locked in place. Force-
displacement data were collected (1000 Hz), and custom code
was used to obtain fatigue properties, including fatigue life
(number of cycles to failure, Nf), strain to failure (εf), and spec-
imen elastic stiffness (Kelastic). Elastic modulus and ultimate
stress were not calculated from experimental values because
the cross-sectional area of the vertebral body varies substan-
tially from cranial to caudal ends, as is consistent with other
rodent vertebra mechanical assessments.(53) However, an
average effective tissue modulus (Etissue) per vertebral
specimen was calculated by comparing the ratio of computa-
tional to experimental whole-bone stiffness (KFEA/Kelastic) to
the ratio of computational to experimental tissue modulus
(10 GPa/Etissue).

Statistics

For each of the 17 measurements (10� micro-CT, 2� biochemi-
cal, 5� mechanical), an ANOVA was used to test for any

Fig. 1. (A) L5 specimen before sample preparation. Red dotted lines indi-
cate location of cuts applied using a diamond saw to remove posterior
elements and achieve plano-parallel surfaces for testing. (B) L5 specimen
after sample preparation. Red arrows point to cross sections from respec-
tive cranial and caudal ends of vertebra.
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significant effects of radiation dose (0, 1, or 5 Gy) and post-
exposure time (either 11 days or 12 weeks), including their inter-
action, in which both factors were treated as ordinal categorical
variables (JMP Pro 15.0.0, SAS Institute Inc., Cary, NC, USA). The
exact sample numbers used in each group for each experimental
measurement are provided in Supplemental Table S1. For any
parameter with a significant main effect of radiation dose, we

assessed pairwise comparisons via Dunnett’s post hoc test com-
pared with 0 Gy. If the interaction factor was significant
(p < 0.05), we used Dunnett’s post hoc test to compare each
group against a single baseline control (0 Gy, 11 days). Percent
differences in measurements are reported in Table 1 {TBL 1}with
respect to this baseline control, unless otherwise specified.

To gain additional insight, we used correlation analysis
and stepwise multiple regression analysis to identify
structure–function relations between the underlying micro-CT
and biochemical variables with the mechanical properties
(in particular, strength and fatigue life). First, a Pearson correla-
tion analysis indicated which non-mechanical variables were
potentially significant (p < 0.10) with the mechanical properties
(Pearson correlation coefficient, r). Next, we identified those vari-
ables that reached statistical significance (p < 0.05) in both the
forward and backward multiple regression models; this analysis
was repeated separately for monotonic strength and fatigue life
as the outcome variable. For both analyses, all groups were
pooled, and neither post-exposure time nor radiation dose were
accounted for.

Results

Effects on bone volume fraction (BV/TV)

BV/TV depended on radiation dose (p < 0.0001) and post-
exposure time (p < 0.001) and the interaction term (p < 0.05),

Fig. 3. Effect of in vivo acute, total-body gamma radiation (0, 1, and 5 Gy) at 11 days and 12 weeks post-exposure on selected parameters. Data are shown
as least-square means; error bars represent standard deviation. Significance by ANOVA is indicated with superscripts: *radiation dose p < 0.05;
†post-exposure time p < 0.05; or ‡interaction p < 0.05.

Fig. 2. Micro-CT images of transverse cross sections from the caudal
region of representative L5mouse vertebrae, showing the effects of three
different one-time radiation doses (0, 1, or 5 Gy) after 11 days or
12 weeks (all different animals).
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indicating that the effects of radiation dose depended on post-
exposure time. Compared with the control group (0 Gy, 11 days),
without irradiation BV/TV was lower by �11.5% at 12 weeks. For
high-dose irradiation (5 Gy), BV/TV was lower by �23% at
11 days (p < 0.0001) and by a similar amount at 12 weeks
(�21.6%, p < 0.0001). For all variables affected by radiation dose
(Table 1, p < 0.05 for “radiation dose”), the effects were consis-
tently significant for 5 Gy but not significant for 1 Gy.

Effects on other micro-CT measurements

Most of the trabecular bone microarchitecture parameters were
altered independently by radiation dose (p < 0.0001) and post-
exposure time (p < 0.05) (Table 1; images in Fig. 2). {FIG2} Com-
pared with the control group, without irradiation trabecular
Conn.D was lower by �25% at 12 weeks (p < 0.001) (Fig. 3).
{FIG3} With high-dose irradiation (5 Gy), Conn.D was lower by
�17% (p < 0.001) within 11 days and by a greater amount after
12 weeks (�49.5%, p < 0.001). Similar trends were observed for

Tb.N and Tb.Sp, with a lower number of trabeculae and greater
spacing over time with irradiation (Table 1). Tb.Th was increased
by 5 Gy irradiation, and the effect was the same at both 11 days
(+5.4%, p < 0.01) and 12 weeks (+4.8%, p < 0.01). Changes in
cortical bone parameters were not detected after irradiation.
However, cortical thickness (Ct.Th) was associated with post-
exposure time (p < 0.01) and demonstrated cortical thinning in
all the 12-week groups (Table 1; Fig. 3).

Effects on biochemical measurements of collagen

The only biochemical parameter significantly altered was the
concentration of AGEs, which was only affected by radiation
dose of 5 Gy (p < 0.0001). After 5 Gy irradiation, the number of
AGEs was increased by +85.5% (p = 0.001) within 11 days and
by a similar amount at 12 weeks (+67.9%, p = 0.002) (Table 1;
Fig. 3). Changes were not detected in collagen fragmentation.

Effects on mechanical properties

Of the five mechanical properties characterized, none were
altered by radiation dose or a radiation dose by post-exposure
time interaction, while two parameters (fatigue life, Kelastic) were
altered by post-exposure time (p < 0.01). At 12 weeks, fatigue life
was lower by 10% (p = 0.002) without irradiation and lower by
9.6% (p= 0.004) and 15.1% (p < 0.001) with 1 and 5 Gy radiation
exposure, respectively (Table 1; Fig. 3).

Role of microarchitectural and biochemical
measurements on mechanical properties

Results from the multiple regression analyses for all specimens
indicated different structure–function relations between these
measurements and the monotonic versus fatigue mechanical
properties (Table 2). {TBL 2} Fatigue life was significantly associ-
ated with Ct.Th and Conn.D (adjusted R2 = 0.29), although not
significantly with any biochemical parameters. In contrast,
monotonic strength was associated with biochemical AGEs
(adjusted R2 = 0.23).

Discussion

Our results demonstrate that irradiation effects on bone mor-
phology inmouse vertebra did not translate to detectable effects
on overall bone mechanical properties, such as strength and
fatigue life for 5 Gy total-body irradiation. Specifically, 5 Gy irra-
diation caused acute deficits in trabecular mass and microarchi-
tecture and increased collagen cross-links but did not
independently produce any measurable change in the compres-
sive strength, fatigue life, or stiffness of the overall vertebral
body. While consistent with previous reports showing irradiation
acutely altering cancellous morphology (eg, rarefaction of the
centrum’s spongy cancellous tissue—loss of thin trabeculae
and perforation of plates, leaving thicker, more widely spaced,
more strutlike tissue(54)) driven by a temporal elevation of osteo-
clast activity(17,29,30,55,56) and collagen cross-link quantity,(20) the
lack of detectable mechanical effects in our experiment or com-
putational models seems counterintuitive. One possible expla-
nation is that a loss of strength from reduced trabecular BV/TV
was offset by a gain in strength from increased collagen cross-
links. However, our univariate correlation analyses showed that
radiation-induced alterations to AGEs and microarchitecture
parameters are both associated with a decrease in mechanical

Table 2. Independent Effect (Reported as Pearson’s Correlation
Coefficient) and Multivariate Regression Analysis of Microstruc-
tural and Biochemical Parameters on Measured Vertebral
Strength (Fult) and Fatigue Life (log(Nf))

Correlation analysis Fult log(Nf)

Microstructural
BV/TV +0.30* +0.20a

Tb.Th +0.02 �0.09
Tb.Sp �0.32** �0.37***

Tb.N +0.32** +0.40***

Conn.D +0.34** +0.49***
SMI �0.16 �0.02
Tb.BMD �0.09 �0.03
CSA +0.25* +0.11
Ct.Th +0.21a +0.35**

Ct.BMD �0.11 �0.03
Biochemical

AGEs �0.51** �0.23
Fragmentation �0.13 �0.24

Multivariate
regression Fult log(Nf)

Initial modela BV/TV, Tb.N, Conn.D,
CSA, Ct.Th, AGEs

BV/TV, Tb.N,
Conn.D,
Ct.Th

Final model
Adjusted R2 0.23 0.29
Parameter
(s)

AGEs** Conn.D***

Ct.Th**

BV/TV = bone volume fraction; Tb.Th = trabecular thickness; Tb.Sp =
trabecular separation; Tb.N= trabecular number; Conn.D= connectivity
density; SMI= structural model index; Tb.BMD= trabecular bonemineral
density; CSA= cross-sectional area; Ct.Th= cortical thickness; Ct.BMD=

cortical bone mineral density; AGEs = advanced glycation end products.
Significant terms (p < 0.05) in bold. Tb.Sp and Tb.N were highly corre-

lated; only Tb.N included in model.
aMultivariate regression for parameters with p < 0.1 after correlation

analysis.
*p < 0.05.
**p < 0.01.
***p < 0.001.
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properties, ruling out this possibility. Another possibility is that
irradiation may have altered the internal load sharing between
the trabecular and cortical bone in such a way as to attenuate
the biomechanical effects of any trabecular changes, a theory
supported by prior finite element analyses of mouse vertebrae
after irradiation(18) and a topic of ongoing investigation. Regard-
less of the underlying mechanisms, our results nevertheless
demonstrate that the highly significant observed effects of
5 Gy total-body irradiation on the trabecular bone morphology
and collagen cross-linking did not translate into detectable
effects on overall failure properties such as vertebral strength
or fatigue life in this mouse vertebra model.

Two important features of our overall experimental design
were (i) our inclusion of multiple assays that cover those usually
only measured individually in other irradiation studies and
(ii) our inclusion of post-exposure time as a factor, enabling us
to tease out time effects from the irradiation treatment effects.
First, this approach enabled us to show that irradiation alone
had no significant impact on mechanical failure properties in
the short term; however, post-exposure time, with and without
irradiation did exhibit reductions in cyclic mechanics. We found
an association between cortical thinning and reduced fatigue life
that was only significant within all the 12-week groups. It has
been shown that the incidence of insufficiency fractures post-
radiotherapy increases after 1 year(2) and that the median time
to fracture after treatment is approximately 2.5 years.(4) Taken
together, these findings would question the role of irradiation
alone and consider the role of irradiation plus time on insuffi-
ciency fractures,(24–27) such as those after radiation therapy,
which have been reported to occur after repetitive loading at
magnitudes well below the bone’s strength.(57,58) However, it is
also possible that irradiation may affect adult human bone tissue
differently than it affects mouse bone, a noteworthy limitation of
our study, or our model has limitations as a clinical correlate, dis-
cussed further below. Interestingly, this effect of time had no
impact on monotonic strength, underscoring an instance of
greater sensitivity with cyclic testing to detectmechanical degra-
dation in bone. Second, this approach enabled us to show
12 weeks of aging without irradiation-diminished cancellous
microarchitecture, cortical thickness, and fatigue life and, thus,
served as a positive control in our study. Radiation exposure at
5 Gy altered these age-related changes in key parameters, such
that the acute irradiation effects on cancellous microarchitecture
did not worsen with time (Table 1).

Our results confirm that although collagen cross-links—
also known as AGEs—are likely to have an effect on bone tis-
sue material properties,(47) AGEs alone cannot account for
the irradiation-induced degradation of bone fatigue life.
Because an increase in collagen cross-links has been widely
observed in radiation experiments(20,59–64) and associated
with a reduction in monotonic bone strength in aging and
diabetes,(44,48,65–73) it has been hypothesized to cause dimin-
ished mechanical properties after irradiation.(62) In the current
study, 5 Gy irradiation doubled the concentration of fluores-
cent AGEs, consistent with previous studies.(20,59–64) However,
recent work suggests an increase in AGE content alone is not
independently responsible for diminished mechanics.(20,49)

In line with this, the twofold increase in AGEs observed in
the current study did not coincide with reduced failure prop-
erties (5 Gy, 11 days; Table 1). This is further supported by
our regression analysis, where AGEs were not an independent
predictor of fatigue life but were the only predictor of mono-
tonic strength.

Our study has a number of limitations. First, as noted above, a
mouse model may not be a good model of human bone, which
would be due to obvious differences in whole-bone geometry
and bone microstructure and also due to potential differences in
tissue material behavior. Second, we focused our mechanical test-
ing at the L4 and L5 vertebrae. Previous studies investigating the
effects of irradiation and aging on trabecular bone loss have shown
more pronounced bone loss in long bone (eg, tibial metaphysis)
compared with the vertebral centrum in mouse(17,38) and human
models.(34) Thus, it is possible that mechanical testing at another
skeletal site would have detected mechanical deficits. Third, there
are limitations to this model from a spaceflight perspective. The
space radiation environment is more complex than our gamma-
radiation model; in addition to low linear energy transfer (LET)
gamma rays, spaceflight radiation also includes higher LET parti-
cles(74,75) such as protons, neutrons, and heavy ions, which will
likely have greater impact on the bone than what we observed
for 1 Gy gamma exposure.(76–78) However, a spaceflight radiation
dose will be received chronically over the course of a mission, not
in a single acute dose as modeled in this study.(79) Lastly, because
this model used total-body irradiation, there are certainly limita-
tions when considering our results in the context of clinical applica-
tions. Conventional radiation therapy for tumors of the pelvis (eg,
cervical, anal, rectal, prostate) is administered in a fractionated
and localized manner (eg, 1.8 Gy for 30 days, for a total of 54 Gy),
with surrounding bone tissue estimated to receive a dose up to
50% of the intended target area.(12) Our model differs in that we
administer a one-time, much smaller dose of 5 Gy distributed
across the whole body. Thus, it is possible that there are more sig-
nificant systemic effects taking place in ourmodel. It is also possible
that our model is conservative with respect to clinical
applications—with a dose larger than 5 Gy applied locally to the
surrounding bone tissue, the bone quantity, quality, microarchitec-
ture, and collagen structure may be further degraded(20) such that
they contribute to the increased risk in fracture.(80)

Despite these limitations, our results suggest implications
with respect to future studies on spaceflight and clinical irradia-
tion. For spaceflight applications, our results suggest that the
expected radiation exposure per se on a roundtrip mission to
Mars(81) (ie, �1 Sievert) will not significantly impact cyclic or
monotonic mechanics. That said, in astronauts, the effects of
microgravity result in an approximately 1% permonth loss of spi-
nal bone mineral density(82) and both cortical and trabecular
architecture(83) due to lack of nominal mechanical loading of
the bone. It is possible that any potential irradiation biomechan-
ical effects might be accentuated in more porous bone. For
spaceflight applications, future work that integrates unloading
into our experimental protocol might therefore be informative.
For clinical applications, extending our studies to more porous
bones may have more relevance to humans because human
bone typically has a lower bone volume fraction than the mouse
bones used in this study. For both applications, one key finding
from our study is that radiation treatment can alter major ele-
ments of centrum morphology, in mice, without having any
appreciable effect on the bone’s mechanical properties. Thus,
quantification of centrum morphology is not a sufficient predic-
tor of mechanics on its own in mice. As such, future in vivo stud-
ies investigating the effect of irradiation or the efficacy of
suggested countermeasures (ie, antiresorptive drugs,(55,84–88)

strength training,(89) diet,(90,91) or some combination thereof(92))
require a detailed biomechanical assessment with architectural,
mechanical, and biochemical quantification and inclusion of
post-exposure time as an added variable.
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