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Abstract

The study of second language acquisition (SLA) is often hin-
dered by substantial variability in the background of learners,
their learning process and the input they receive. This diver-
sity often makes it difficult to isolate specific learning factors
and study their impact on L2 development. We present a com-
putational study of SLA as an alternative methodological ap-
proach. By applying a usage-based computational model of
construction learning on bilingual (German and English) input
data, we analyze various learning variables in isolation. In par-
ticular, we investigate three factors: ratio between the amount
of L1 and L2 input, age of L2 onset, and L2 frequency dis-
tribution. Our results are in line with experimental findings on
the facilitatory effect of lower L1/L2 ratio and balanced L2 fre-
quency distribution. We found no negative effect of later age of
L2 onset on proficiency, which might be due to positive cross-
linguistic transfer between German and English constructions.

Keywords: second language acquisition, computational cog-
nitive modeling, learning factors, construction grammar

Introduction
Second language (L2) learners show substantial variation
in their developmental trajectory and linguistic proficiency.
A systematic study of Second Language Acquisition (SLA)
must account for multiple factors regarding the characteristics
of the learner (e.g., mother tongue or L1, learning abilities,
motivation), the learning process (e.g., implicit vs. explicit,
age and rate of L2 exposure, opportunities for language use)
and the linguistic input (e.g., its qualitative and quantitative
properties, linguistic distance between L1 and L2) (see, e.g.,
DeKeyser, 2013). The main obstacle for conducting such
studies is finding large, homogeneous populations which al-
low for manipulating one factor at a time while controlling
for the rest, a costly and at times impossible task.

In the light of these difficulties, it is surprising that until
recently SLA has received little attention from the computa-
tional modeling community. Computational models can pre-
dict the impact of each learning factor on L2 development,
and their prediction can suggest fruitful directions for human
subject studies. In first language acquisition research, com-
putational models have been widely used for studying the im-
pact of the characteristics of input and the learning mecha-
nisms on behavioral patterns and developmental trajectory,
both at the level of words and constructions (see, e.g., Chater
& Manning, 2006). However, there are only a few models

of SLA (see an overview by Li, 2013), most of which simu-
late learning the phonetic representations of words and their
association with meaning (Li, 2009; Cuppini, Magosso, &
Ursino, 2013, etc.) or with grammatical categories (Monner,
Vatz, Morini, Hwang, & DeKeyser, 2013). To our knowl-
edge, the only existing model that focuses on sentence struc-
ture and constructions in SLA is that of Rappoport and Shein-
man (2005), but in fact, it learns only one language (see the
section Related computational studies for a more detailed de-
scription of these models).

What is lacking is a computational framework which al-
lows us to study the acquisition of linguistic constructions in
L1 and L2 as an intertwined process, to systematically ma-
nipulate various types of learning variables mentioned ear-
lier, and to study their impact on linguistic performance. In
this paper, we take a first step in this direction by presenting
a computational study of L1 and L2 construction acquisition,
using an adaptation of an existing usage-based computational
model (Alishahi & Stevenson, 2008). We report several ex-
periments on how L2 proficiency is affected by a number of
factors related to the learning process and the input.1

Learning factors
In the current study we manipulate three learning factors: the
age of L2 onset, the ratio between the amount of L1 and L2
input, and frequency distribution in L2 input. The first two
factors have been extensively studied in the SLA literature
and shown to play a crucial role in L2 development, whereas
experimental evidence on the impact of the third factor is in-
conclusive and at times contradictory.

L1/L2 Ratio. The amount and proportion of L2 input that
a learner receives is often estimated by the amount of time
they spend on learning and using L2. Muñoz (2011) reviews
a number of studies showing that this factor correlates with
learners’ performance in various L2 proficiency tests.

Age of L2 Onset (AO). The impact of AO on L2 proficiency
has been attributed to multiple sources, including biological
constraints and the cognitive, socio-cultural and environmen-

1Preliminary results on a small data set were reported by
Matusevych, Alishahi, and Backus (2013), see Input data for a com-
parison.
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tal factors (see Han, 2004, for an overview). Within cognitive
linguistics, the automatization of the L1 system (caused by
L1 neural entrenchment) is believed to negatively affect L2
learning (e.g., MacWhinney, 2006).

Distribution of Input. It is subject to debate whether learn-
ing a new linguistic construction (both in L1 and L2) can be
facilitated by a skewed frequency distribution of its instances
in the input (for example, when one or two of the verbs which
appear in a construction are much more frequent than oth-
ers) (Boyd & Goldberg, 2009). While some studies demon-
strate a positive effect of skewed input (e.g., Goldberg, Casen-
hiser, & Sethuraman, 2004), others do not (Year & Gordon,
2009), or even show quite the opposite (e.g., McDonough &
Nekrasova-Becker, 2012).

Related computational studies
Perhaps the most fruitful computational research in bilingual-
ism has been done using a family of self-organizing neural
networks (see an overview by Li, 2009). Some experiments
with these models study the pattern of lexical organization
in L2 as a function of AO. These experiments show that the
acquired L2 lexicon is independent and coexists with L1 lex-
icon in early L2 learning, but ‘parasitizes’ on L1 lexicon in
late L2 learning (Zhao & Li, 2010). This difference is ex-
plained by decreased neural network plasticity and increased
L1 entrenchment over time.

Monner et al. (2013) use a connectionist model to study po-
tential impact of L1 entrenchment and memory development
on L2 performance deficits. Their experiments also involve
the manipulation of AO, and show a negative effect of L1 en-
trenchment on the acquisition of L2 grammatical gender. The
model learns to associate each word form with the correct
gender category over time.

Rappoport and Sheinman (2005) model the acquisition of
L2 constructions, but their model suffers from inconsistency
between L1 and L2 representations: L1 knowledge is static,
in contrast to the emerging L2 system, which eliminates any
possible effect of factors such as AO or L1/L2 ratio. Besides,
they represent L1 only in terms of words and their relations,
while the L2 system is purely syntactic – this discrepancy
prevents cross-linguistic transfer of L1 forms into L2.

Computational model
In the current study we use an adapted version of an exist-
ing model of argument structure acquisition by Alishahi and
Stevenson (2008). The model learns abstract constructions
such as transitive and intransitive from instances of verb us-
age, and can use these constructions in a variety of language
comprehension and production tasks. The model is informed
by usage-based linguistics and is compatible with the Con-
struction Grammar view that the building blocks of language
are form–meaning pairings (Goldberg, 1995), but it proposes
an alternative interpretation of linguistic constructions as a
probabilistic association between lexical, syntactic and se-
mantic features.

The example-based learning mechanism of Alishahi and
Stevenson’s (2008) model and its flexibility in simulating var-
ious aspects of language use makes it a suitable candidate for
investigating how input-dependent factors (of the type dis-
cussed in the section Learning factors) affect SLA. In an SLA
setup, the learner may receive input data which includes a
mixture of usages from two different languages, although the
underlying processing mechanism is the same. This is in line
with views in cognitive linguistics, in particular the Unified
Competition Model, which claims that the same cognitive
mechanisms are used for L1 and L2 learning, and the differ-
ence between L1 and L2 proficiency levels can be attributed
to factors such as L1 entrenchment (see MacWhinney, 2013).

Model architecture

We make the simplifying assumption that upon hearing an
utterance in a perceptual context, the learner can recognize
words in the utterance and also form a conceptualization of
the described event. Furthermore, we assume that the learner
knows the idiosyncratic meaning of words in the utterance
and can identify their referent in the corresponding scene.

The model represents each individual verb usage as an
argument structure frame, a collection of features that the
learner can induce from the utterance and the observed event
it refers to. These features include the predicate (corresponds
to the main event) and its semantic properties, the num-
ber of arguments that the predicate takes, argument heads,
their cases, their lexico-semantic and event-based (or the-
matic proto-role) properties, and finally the syntactic pattern
(which in this case only reflects the order of arguments) and
prepositions used in the utterance. In a bilingual setup, some
features (i.e., semantic) share their range of values in L1 and
L2, while other features (lexical) take language-specific val-
ues. A sample verb usage and its corresponding argument
structure frame are shown in Table 1.

A construction represents a group of frames with simi-
lar features. By detecting and clustering similar frames, the
model can abstract away from individual verb usages and
form probabilistic associations between various features.

Table 1: An example frame extracted from a verb usage I ate
a tuna sandwich.

predicate eat
event properties consume, take in, prep
arg. count 2
arg1 I
arg2 sandwich
arg1 lexical props self, person, ..., entity
arg2 lexical props snack food, dish, ..., entity
arg1 role props living thing, entity, ..., organism
arg2 role props solid, substance, ..., entity
arg1 case N/A
arg2 case N/A
syntactic pattern ARG1 VERB ARG2
prepositions N/A
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Learning mechanism. The model receives one frame at a
time and processes it using an incremental clustering algo-
rithm which finds the most suitable construction for a new
frame. This can be an existing construction or a new one:

BestConstruction(F) = argmax
k

P(k|F) (1)

where k ranges over the indices of all constructions (index 0
represents the new construction). Using Bayes rule and drop-
ping P(F) which is constant for all k:

P(k|F) =
P(k)P(F |k)

P(F)
∝ P(k)P(F |k) (2)

The prior probability P(k) indicates the degree of entrench-
ment of construction k:

P(k) =
Nk

N +1
, P(0) =

1
N +1

(3)

where Nk is the number of frames already contained in con-
struction k, and N is the total number of frames observed so
far. The posterior probability of a frame F is expressed in
terms of the probabilities of its features, which are assumed
to be independent:

P(F |k) = ∏
i∈Features(F)

P(Fi|k) (4)

where Fi is the value of the ith feature in the frame F ,
and P(Fi|k) is the probability of displaying the value Fi
within construction k. This probability is estimated using a
smoothed maximum likelihood formula. For single-valued
features such as the head verb, likelihood is calculated by
simply counting those members of construction k whose
value for feature i exactly matches value Fi. For features with
a set value such as the semantic properties of the verb and the
arguments, the likelihood is calculated by comparing sets.

Using constructions. Linguistic productivity is simulated
as predicting a missing value for a particular feature in a
frame given the other available feature values. For example,
verb comprehension can be seen as predicting the best value
for the feature “event properties” given the lexical features
(such as predicate and argument heads), the syntactic features
(pattern and prepositions) and some semantic features (argu-
ments’ lexical and role properties). The probability that the
missing feature i displays value Fi given other observed fea-
ture values in a partial frame F can be estimated as:

P(Fi|F) = ∑
k

P(Fi|k)P(k|F) ∝ ∑
k

P(Fi|k)P(k)P(F |k) (5)

The probabilities P(k), P(F |k) and P(Fi|k) are estimated as
before (see equations 3 and 4). Ranging over the possible
values of feature i, the value of an unobserved feature can
be predicted by sampling possible values from the estimated
P(Fi|F) distribution.

Evaluating language proficiency. To evaluate the learner’s
language proficiency at a certain moment in time, we test the
model on a language task where one of the features in a test
frame is removed, and the model’s prediction for the missing
feature is compared to the original value. The prediction ac-
curacy of feature i, or PAi, is estimated based on the match

between the original feature value and the value probabilities
predicted by the model. For single-valued features such as
frame predicate, this is estimated as the predicted probability
of the original value. For features with a set value (e.g., event
properties), this is estimated by measuring the Mean Average
Precision2 for the list of the predicted values ranked accord-
ing to their probability, compared to the original set.

In this study, we test PAi for three frame features – the pred-
icate, its semantic properties, and arguments’ role properties.
Conceptually, predicting these features corresponds, respec-
tively, to tasks of predicate selection, predicate comprehen-
sion, and interpreting the (thematic) role of each argument
in the described event. In our preliminary experiments these
three tasks proved to be most informative compared to others.
For example, predicting syntactic pattern and prepositions ap-
peared to be easy for the learner, due to the fact that probabil-
ity mass functions for values of these features were strongly
skewed towards a certain value. Finally, in the reported ex-
periments we use a language proficiency index (LPI) defined
as the average PAi for the three (n = 3) features:

LPI =
∑

n
i=1 PAi

n
(6)

Input data
In previous work (Matusevych et al., 2013), we compiled a
small set of frames from usages of 6 German and 6 English
verbs. The frames were manually extracted from German
child-directed speech (L1) and English classroom material
presented to German elementary school students (L2). Care-
ful annotation of the conversations yielded a relatively noise-
free data set, but the small size of our sample made the distri-
bution of verbs and constructions unrealistic, and the outcome
of our experiments unreliable.

For the experiments reported in this paper, we automat-
ically extract frames for the same languages (German and
English) from a number of available resources. Considering
the frame features (see Table 1), we needed a syntactically
parsed and POS-tagged corpus, also annotated with seman-
tic role labels. For German, the TIGER corpus (Brants et al.,
2004) appeared to be a good candidate, since it has been en-
riched with semantic role annotation in the SALSA project
(Burchardt et al., 2006). For English, we used the WSJ part
of Penn Treebank (Marcus et al., 1994), together with Propo-
sition Bank (PropBank) containing argument structure infor-
mation for WSJ (Palmer, Gildea, & Kingsbury, 2005). Al-
though neither TIGER nor WSJ contained the kind of lan-
guage that children or most L2 learners receive as input, we
used these corpora as the only large sources for English and
German that contained all annotations we needed.

From SALSA and PropBank, we extracted all verb-
centered frames, each containing the main predicate (verb)
and its arguments (labeled with their semantic roles and
cases), as well as prepositions and word order. As for the

2Mean Average Precision is a standard measure in Information
Retrieval, where a set of relevant items are expected to show up at
the top of a ranked list of results.
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latter, many German frames originated from verb-final em-
bedded clauses, but in our setup frames represented simple
main clauses, thus we had to recover German V2 word order
by manually changing the predicate position.

We extracted the lexical properties of the noun arguments
from WordNet (Miller, 1995). For verbs, we extracted fea-
tures from VerbNet (Schuler, 2006) as well as WordNet. For
adjectives and adverbs which are not hierarchically structured
in WordNet, we used synonyms instead of hypernyms. To
maximize semantic consistency, we used WordNet and Verb-
Net for extracting the lexical properties of German words as
well (by translating them into English). Finally, we manually
compiled a set of lexical properties for frequent pronouns.

Arguments’ role-based properties were also extracted from
WordNet through an existing mapping between FrameNet se-
mantic roles and WordNet (Bryl, Tonelli, Giuliano, & Ser-
afini, 2012). This procedure resulted in two German and En-
glish data sets containing 3370 and 3803 frame instances, re-
spectively. The data sets are comparable in terms of overall
number of values for each feature, with the largest difference
observed (obviously) for linguistic case, but also for argument
role properties (353 for German vs. 195 for English) due to
differences in granularity of the semantic annotated roles in
SALSA and PropBank. In the experiments described below,
we used both German and English as L1 or L2.

Experiments and results
In a simulation of an SLA scenario, the model receives and
incrementally processes a sequence of N frames. Typically
during the early stages of learning, all frames represent us-
ages of L1. However, after a certain point in time (corre-
sponding to our AO variable), the model receives a mixture
of L1 and L2 frames, the proportion of which is determined
by our Ratio variable (henceforth R). To depict the develop-
mental trajectory of each language over time, we interrupt the
training process at fixed intervals, and test the proficiency of
the model on 20 test frames using the LPI measure (equa-
tion 6). Both training and test frames are sampled from the
data sets described in the previous section. In the experiments
reported here, we test the model at intervals of 20 frames, and
the results are averaged over 10 simulations unless specified
otherwise. Each simulation corresponds to a learner with a
different history of linguistic input, and the 20 test frames
differ for each learner as well.

Figure 1 shows L1 and L2 learning curves for two com-
mon scenarios: (a) early bilingual learners who receive equal
amounts of L1 and L2 input from the start (R = 1, AO = 0);
and (b) learners who are exposed to L2 input at a later stage
and with a lower amount compared to L1 (R = 5, AO = 200).
In both cases, the model receives a total of N = 400 frames.
As can be seen, the L1 and L2 learning curves of the early
bilinguals show the same developmental trajectory, whereas
for the late L2 learners, the L2 curve straggles behind L1.

It must be noted that under equal conditions, learning En-
glish for our model is easier than learning German (as re-
flected in Figure 1(a)). This can be explained by the differ-
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Figure 1: LPI change over time in two specific settings
ence between English and German data sets – as mentioned
before, the total number of values for arguments’ role prop-
erties is larger in the German data set, which makes the task
of predicting this feature more difficult in German than in En-
glish. However, a combination of larger R and AO can reverse
this effect. In the late L2 learning scenario (Figure 1(b)) the
lower level of L2 proficiency could be caused both by differ-
ent R and AO values. The following experiments investigate
the impact of each of the two variables in isolation.

L1/L2 Ratio
To investigate the impact of the proportion of L2 input data
on proficiency, we ran a number of experiments with varying
R ∈ {1,2,5,10,20} while keeping the total number of frames
and the age of L2 onset constant (N = 400, AO = 0). Figure 2
shows the developmental pattern (depicted by the change in
L2 proficiency, or LPI) over time in varying R conditions. At
the end of learning, LPI was negatively correlated with R both
for L2 English (Kendall’s tau τ = −.57, p < .001) and for L2 German
(τ = −.60, p < .001). Figure 3 highlights this trend: the final LPI
value significantly decreases as R increases.

This result is in line with experimental and observational
findings that L2 proficiency is influenced by the amount of
L2 exposure and contact with native speakers (see overview
by Muñoz, 2011). However, there is no agreement yet on
whether this effect is only limited to the initial period of learn-
ing. Although our results suggest a long-term effect, larger-
scale simulations are needed to make a more reliable conclu-
sion.
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Figure 2: L2 LPI change over time for different R values
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Age of L2 Onset
To study the impact of AO on L2 proficiency, we ran a num-
ber of experiments with varying AO ∈ {0,100,200,300,400}
(frames) while keeping R and N constant (R = 1, N = 800).
For each AO value the model received the same amount of
mixed L1/L2 input (hence the truncated curves). Figure 4
shows the change in L2 proficiency over time for different
AO values. As we can see, there is no noticeable difference
in the final LPI value across conditions. That is, we found no
significant correlation between AO and the resulting LPI, ei-
ther for English L2 (τ = .09, p > .05) or German L2 (τ = .06, p > .05).
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Figure 4: L2 LPI change over time for different AO values
These results are contrary to the L1 entrenchment account,

which predicts that a more entrenched L1 uses up memory
resources and yields lower L2 proficiency (Zhao & Li, 2010;
Monner et al., 2013). However, considering the typologi-
cal similarity between English and German, we believe that
a positive transfer effect might be at play here, where L2
learning in higher AO conditions is facilitated by the exist-
ing knowledge of similar L1 constructions. Such effects must
be observed for (shared) semantic features (e.g., event prop-
erties), but semantic features take set values, and it is difficult
to trace the origin of each set element in the input. Neverthe-
less, the presence of transfer can be confirmed by looking at
L2 predicate prediction. Predicting the L2 German predicate
sometimes resulted in producing its L1 English counterpart
(e.g., occur instead of geschehen [to occur], increase instead
of steigen [to increase]), and vice versa (existieren [to exist]
instead of exist). Thus, an absence of an AO effect might be
due to the opposite directions of L1 entrenchment and posi-
tive transfer, and needs further investigation.

Frequency distribution in the input
To investigate whether the type of verb frequency distribution
in L2 input affects L2 construction learning, we adopted a de-
sign from several experimental studies (e.g., Year & Gordon,
2009; Nakamura, 2012) where participants learn a new L2
construction which has no counterpart in their L1, and where
the distribution of verbs in this construction is either skewed
or balanced. Since it was difficult to find an English argument
structure construction in our data set with no counterpart in
German, in this experiment we only ran simulations on L1
English and L2 German. The construction of interest was a
ditransitive with reversed order of arguments (THEME PRED.
AGENT PATIENT, e.g., das gab ich dem Herren [I gave it to
the gentlemen]), which was absent in the English data set.
We manually prepared a small set of frames with 15 different
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Figure 5: L2 LPI at 4 learning steps by the type of input
predicates appearing in this construction. In each simulation,
10 randomly selected predicates were used for training, and
the other 5 for testing. In the balanced condition, train pred-
icates were uniformly distributed, while in the skewed con-
dition two randomly selected predicates were 20 times more
frequent than the others. We ran the model with parameters
N = 400, AO = 200, R = 2, and calculated LPI3 (which in
this case reflected the knowledge of a single construction) at
4 learning steps (50 frames each) after AO. The results (aver-
aged over 30 simulations) are shown in Figure 5.

Applying Wilcoxon signed-rank test showed that after n =
50 mixed L1 and L2 frames, LPI was significantly higher for
balanced (median Mdn = 0.53) than skewed input (Mdn = 0.49, T = 46,

p < .001,r = −.49). The same effect was observed for n = 100
(Mdn = 0.55 vs. 0.52, T = 89, p < .01, r =−.38) and n = 150 (Mdn = 0.56 vs.

0.52, T = 127, p < .05, r = −.28), but there was no significant differ-
ence for n = 200 (Mdn = 0.56 vs. 0.53, T = 155, p > .05).

The results support experimental findings that balanced in-
put facilitates novel construction learning (Nakamura, 2012).
McDonough and Nekrasova-Becker (2012), who found the
same effect for an L2 construction that had a counterpart
in the learners’ L1, suggested that balanced input promotes
broader category generalization. At the same time, other stud-
ies on learning a novel L1 construction found the opposite fa-
cilitatory effect of skewed input (see an overview by Boyd &
Goldberg, 2009). Nakamura (2012) explains this mismatch
by the fact that adult L2 learners, unlike L1 learners, engage
in explicit learning. Our results support this argument, since
our model performs an explicit categorization task by looking
for regularities in instances, thus the learning is rather more
explicit than implicit.

Conclusion
We present a computational study of learning second lan-
guage constructions. Employing a usage-based computa-
tional model allows us to control the specifications of the
learning process and the characteristics of input, and to simu-
late specific populations of L2 learners such as balanced bilin-
gual children and late L2 learners. This approach enables us
to isolate the impact of each learning factor on L2 develop-
ment by manipulating one variable at a time – a methodolog-
ical advantage that is absent from studies on human subjects.

Here we have investigated the impact of three learning vari-
ables: L1 to L2 ratio in the input, age of L2 onset, and L2 fre-
quency distribution. Our experimental results showed that a

3In this experiment, learners never encountered test predicates in
the input, thus instead of PApredicate we used PAsynt.pattern.
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decreasing L1 to L2 ratio facilitates L2 development, as pre-
dicted by existing literature. Our analyses of L2 input dis-
tribution showed that balanced input facilitates construction
learning, which is in line with some existing experimental
findings. However, our simulations did not show a similar
positive effect for early age of L2 onset. We suggest that this
might be due to an interaction between two conflicting fac-
tors, L1 entrenchment and positive transfer from L1 to L2.

Our model represents both L1 and L2 as complex systems
that comprise different features and can compete with each
other. This framework allows for studying the concurrent ac-
quisition of both languages, and modeling phenomena such
as linguistic transfer. To our knowledge, this is the first mod-
eling attempt of this kind. However, larger-scale and more
diverse experimental investigation is needed for depicting a
detailed picture of SLA and its parameters. In addition, fu-
ture research must include other language pairs with different
degrees of typological similarity in order to study the relative
impact of cross-linguistic transfer.
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