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ABSTRACT OF THE DISSERTATION 
 

Visual cue representation without movement or task demands in the rodent hippocampus 

 

 

by 

 

Chinmay Purandare 

 

Doctor of Philosophy in Bioengineering 

University of California, Los Angeles, 2021 

Professor Kalyanam Shivkumar, Co-Chair 

Professor Mayank Mehta, Co-Chair 

 

 

Rodent hippocampus is believed to be critically involved in generating selectivity to allocentric 

space, call place cells, which are abstract and prospective. Such responses are thought to require 

both distal visual cues and self-motion cues. In primates, however, hippocampal neurons encode 

object-place association without any locomotion requirement.  

In this thesis, we developed a simple experimental design of a moving bar of light to investigate 

the representation of distance, angle, and movement direction of this distal visual cue in 

hippocampal region CA1. Nonspecific olfactory and auditory cues were eliminated using a 

previously described virtual reality (VR) system, where the subject was body-fixed but allowed 
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to run on a spherical treadmill. Our results demonstrate that a moving bar of light can reliably 

modulate the activity of majority of hippocampal place cells, without any task demand, memory, 

reward contingency or locomotion requirements. Visual cue representation was retrospective in 

nature, as would be expected from the hierarchical position of hippocampus in the visual circuit, 

unlike place cells, which are prospective.  

Our unique VR design allowed us to dissociate the contributions of distal visual cues and head 

movements on hippocampal firing. In addition to the visual cue encoding described above, we 

found that a third of the neurons showed selective responses with respect to head movements. 

This head movement selectivity was inversely related to the visual cue selectivity and was also 

found in experiments where the animal performed navigational tasks in the VR. These results 

suggest that multisensory association present in the real world plays a stronger role in 

hippocampal firing than navigational demands tied to virtual navigation. 

We also analyzed single unit responses from multiple hippocampal regions (including CA1) in a 

publicly available dataset of head fixed mice viewing repeated presentations of movie-like, 

streaming visual stimuli. Hippocampal responses were selective to different frames of the movie 

and this selectivity reduced substantially when the frames were presented in a shuffled fashion. 

These results suggest that the rodent hippocampus can encode features of simple as well as 

complex visual stimuli without active engagement or reward contingencies, similar to other 

cortical areas involved in visual processing.  On the other hand, spatial selectivity can occur in 

body fixed environments with only head movements, with mis-matched as well as absent distal 

visual cues. Taken together, our work furthers the understanding of multi-sensory contributions 

to hippocampal firing. 
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CHAPTER 1: INTRODUCTION 
Hippocampus is one of the most well-studied brain regions in mammals.  In their seminal work 

on ‘Patient H.M.’, Milner1 and colleagues found that surgical lesion of hippocampus (undertaken 

to relieve epileptic seizures) led to severe anterograde amnesia. H.M. had reasonably good 

memory of events up to 5 years and earlier from the surgery but could not form new episodic 

memories. On the other hand, he could learn new motor skills, suggesting that the damage to 

hippocampus was tied to the loss of episodic or declarative memory but not so much to the loss 

of procedural memory.  

Synaptic plasticity is one of the most widely accepted neural mechanisms of learning and 

memory. Synapses, the connections between 2 neurons, strengthen or weaken over time. 

Repeated pairing of the ‘driving’ or presynaptic neuron, coupled with the depolarization of the 

‘downstream’ or post-synaptic neuron leads to changes in the efficacy of the driving neuron to 

make the downstream neuron fire. Relative timing is critical; typically, connections become 

stronger when the presynaptic neuron fires before but within few milliseconds of the post 

synaptic neuron. Cellular studies of synaptic plasticity were also first conducted on the 

hippocampal circuitry. Bliss and Lomo2 studied long term potentiation on the synapses forming 

on dentate granule cells from the perforant path.  Repeated potentiation of the perforant path 

fibers for less than 30 seconds resulted in larger post synaptic depolarization of the granule cells, 

which was maintained for long periods of time (30 mins to 10 hours).  

These clinical and cellular observations led to numerous experiments in rodents as well as 

primates studying the role of hippocampus in formation and recollection of memory. Monkeys 

can be trained to associate a given object with a particular location, even using a single training 

trial3. But such object-place memory is impaired with bilateral hippocampus lesion, even if they 

continue to have object recognition memory. One of the first experimental protocols for object-

place association in rodents is the Morris Water Maze (MWM)4 task. Rats were required to swim 

in a circular pool and search for an elevated platform which allowed them to escape and stop 

swimming (Fig 1.1). Wild type rats readily learnt this place-navigation task and could navigate to 

the platform within 30 training trials, even if they started at a novel starting location. 
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On the other hand, hippocampus lesioned rats were unable to remember the location of the 

hidden platform, hence showing deficits of object (escape platform) in place (quadrant of the 

water pool) memory.  

Fig 1.1 | Morris Water Maze (MWM) task. Mice spend more time in the target quadrant 

where the escape platform is located after repeated training in the MWM task.  

Rodent hippocampus is now believed to be centrally involved in spatial memory and considered 

the seat of ‘internal GPS’. Neural responses in hippocampus and adjacent regions enable the 

encoding of an allocentric, abstract, Euclidean map of space. The formation of such a cognitive 

map is supported by single unit firing in hippocampus which is selective for the current location 

of the animal. O’Keefe and Nadel5 demonstrated the existence of such ‘place cells’; neurons 

which fire in a restricted region of space and are silent at other locations (Fig 1.2).  

Fig. 1.1 Morris Water Maze 
(MWM) task 
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Fig 1.2 | Illustration of place cells (a) Spikes from a single hippocampal neuron in red 

are localized to a subset of the space explored, called the place field of that unit. Path 

taken by the animal in a two-dimensional arena are depicted in gray. Vast majority of 

CA1 hippocampal neurons show place fields as this example neuron, and hence are 

often called ‘place cells’. (b) Illustration of a one dimensional track with different place 

cell spikes shown in different colors along the track (Source: Wikipedia).  

 

What sensory information do these hippocampal neurons use to form such a map of space? 

Landmark cues, like distal visual cues, are believed to influence hippocampal firing. When rats 

ran in a circular environment with a single cue card on one of the walls, the rotation of the cue 

card caused a proportional rotation of the place cell firing activity, also called the ‘place field’ of 

the neuron6 (Fig 1.3). But place cells are seen in blind rats as well7, whose place fields are 

controlled by the location of accessible landmarks of different shapes and sizes which were 

placed inside the testing arena. This result suggests that in addition to the visual cues, olfactory 

(smell) and tactile (touch) properties of objects affect hippocampal firing. More interestingly, 

blind rats had place cells even at locations away from these cues, which were taken to suggest 

that once landmarks have been established, hippocampal firing can use internally generated self-

motion information to build a spatial map.  

Fig. 1.2 Illustration of place cells 
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Fig 1.3 | Relationship between visual cues and spatial coding. Top row: The firing 

of a hippocampal neuron followed the rotation of a cue card on the wall (illustrated by 

the arc on the right in the first session (A) and later moved by 90o to the north of the 

testing arena (B). Middle and bottom row: Instead of distal visual cue, similar 

experiments using objects placed inside the arena led to place fields in sighted as well 

as blind rats. (Adapted from Save et. al. Journal of Neuroscience 19987) 

Apart from landmark and cue-based navigation, path integration is the other leading theory of 

spatial encoding in rodent hippocampus. According to this theory, self-motion cues can be 

integrated over time to compute current position from an initial starting point. The first 

Fig. 1.3 Relationship between visual cues and spatial coding 
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demonstration of the use of a path integration system in mammals was shown in gerbils8,9. 

Female gerbils searched for her cubs in dark, but upon successful retrieval of the pups, returned 

back in a straight-line path (Fig. 1.4). This observation was later corroborated with the presence 

of head direction cells in post-subiculum (which is synapse downstream from hippocampus 

CA1) which could enable the encoding of cardinal direction in the allocentric frame using 

vestibular cues10. Another contributing class of cells is the grid cells in entorhinal cortex, which 

have a grid-like structure of repeating place fields at regular intervals but with different spatial 

periodicities11. The entorhinal cortex is one of the major inputs to CA1 and their input can be 

combined in a sigmoidal fashion to cause spatial firing of place cells (Fig 1.5).  It has also been 

suggested that hippocampal single unit firing is part of a pre-configured network which uses self-

motion to keep track of allocentric space12. According to this theory, distal visual cues or other 

landmarks can be used to reset the system and correct the errors which will build up in the 

position estimate over time. 

Fig 1.4 | Path integration in mammals and head direction cells (a) Illustration of 

path integration, where outward motion along different directions can be ‘integrated’ to 

compute an effective displacement vector from the initial position. On the return 

trajectory, animals use this direct path. (b) Example firing rate response of a head 

direction cell, which selectively fires when the animal faces ~30o with respect to the 

experimental room. 
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Fig 1.5 | A model of place cell firing as a summation of grid cell activity. Linear 

summation of multiple grid cells with different spatial periodicities leads to a single peak, 

where they overlap. A simple thresholding operation on this summation can lead to a 

single region of maximal firing as seen for place cells. 

Virtual reality (VR) environments have recently emerged as a popular choice of experimental 

setup to dissociate the contribution of distal visual cues and other proximal cues, like tactile and 

olfactory cues. The exact design of VR and the choice of self-motion cues used to manipulate the 

visual scene affect the response of hippocampal place cells. In rodent studies of Aronov and 

Tank13, the animal ran of a styrofoam ball, but was afforded 360o turning, and the visual world 

moved with him. In such a design, the range of vestibular cues during VR exploration are quite 

similar to that in free foraging in real world (RW) environments (Fig 1.6). Intact spatial firing 

was observed in the animals foraging for reward in such a virtual environment, even if they were 

physically in the same space in the experimental room. On the other hand, prior work from our 

lab14 reported the loss of spatial selectivity in VR if 2-dimensional navigation is accompanied by 

incomplete vestibular signal, resulting from body fixation, which does not allow a 360o turn. But 

this impaired vestibular signal seems to be sufficient for selectivity to position along linear paths, 

where active turning is largely avoided. Hence selective responses in hippocampus CA1 seem to 

require intact and full range of self-motion cues, particularly for navigation of two-dimensional 

paths. 

Fig. 1.5 A model of place cell firing as a summation of grid cell activity 



7 
 

Fig 1.6 | Place cells in VR with complete rotational freedom (a) VR setup from 

experiments of Aronov and Tank13 (Neuron 2014). The overhead projector creates a VR 

environment all around the animal, who can run on the spherical treadmill. The treadmill 

is installed with a ‘yaw-blocker’ which prevents the treadmill rotating around. (b) & (c) 

Instead the animal, along with the lick tube turns around, hence having the complete 

range of turning movements. (d) Intact spatial selectivity, evidenced by place cells in 

CA1 and CA3 was reported in such a VR system. 

Recent work has also shown that hippocampal neurons are involved in the encoding of location 

of ‘others’, called social place cells. In these experiments, an observer rat15  or bat16 viewed 

another animal (termed demonstrator) in an observational learning task. In these experiments, the 

‘observer’ animal was required to navigate a variation of the T-maze, based on which arm/side 

the demonstrator animal navigated to. Neurons in CA1 were found to be encoding for the 

location of the demonstrator animal for both bats and rats. But in similar experiments where the 

rats were passively observing another animal run back and forth on a linear track17, hippocampal 

activity did not show selectivity for the demonstrator animal’s position suggesting that task 

demands or a memory component are crucial for encoding the position of others in hippocampus.   

Fig. 1.6 Place cells in VR with complete rotational freedom 
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In addition to the now well-accepted role in navigation, rodent hippocampus has recently been 

shown to encode non-spatial information. Rats were trained to perform an auditory frequency 

detection task where they held onto a lever while a frequency swept from 2 to 22 kHz, and had to 

release the lever in a small range of sound frequency for rewards18. They found that ~40% of 

CA1 hippocampal neurons showed selective firing during this non-spatial task, where different 

neurons fired at different epochs of the experiments (press the lever, release the lever, and 

corresponding to different frequencies). As a control, they repeated the sound frequency sweeps, 

without the requirement for level press and release. In this passive playback condition, selectivity 

in hippocampus was lost, suggesting that task demands, and memory requirements play an 

important role in hippocampal encoding of a non-spatial dimension (Fig 1.7). Similar 

experiments19,20 showed that hippocampal units showed sensory correlates (preferential firing 

during high frequency or low frequency tones) during working memory or reference memory 

tasks, but not during passive stimulation without memory task.  

What is the minimum combination of sensory, self-motion cues and memory demands which are 

necessary and sufficient to drive selective responses in hippocampus? Prior work has shown that 

direction selectivity in the hippocampus can be causally controlled by distal visual cues. The 

virtual environment was varied, ranging from a rich set of distal visual cues on all walls, to a 

visual environment with all 4 walls which were black21. Although there was no task demand tied 

to the visual cues on the wall, hippocampal firing was modulated by these cues in a causal 

manner. The use of body-fixed VR caused the proximal cues to be unpaired with the visual cues 

on the walls and vestibular signal was minimized since the animal could not completely turn 

around. This suggests that active locomotion, paired with visual cues is sufficient to drive 

selective responses in hippocampus to this one-dimensional metric of direction. On the other 

hand, active navigation itself was insufficient, since in the absence of cues on the wall, 

directional selectivity was lost (Fig 1.8).  
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Fig 1.7 | Hippocampal selectivity to a non-spatial dimension (a) Activity of the same 

CA1 neuron during the SMT and during passive playback (PP) of acoustic stimuli that 

matched those in the SMT. Top, PSTHs. Bottom, raster plots, with time linearly warped 

between the onset and the offset of the sound. On, sound onset; off, sound offset.      

(b) Firing rate modulation of all 295 CA1 neurons recorded during the SMT and passive 

playback. ‘Normalized info’ is the mutual information between spikes and the phase of 

the task, divided by the average value from samples with shuffled spike timing. Points 

are colored according to whether the cell was modulated by SMT and/or passive 

playback. (c) Activity of a neuron during passive playback of acoustic stimuli that were 

followed by rewards (PPR).  (d) Cumulative histograms of the normalized information in 

the three tasks (295 cells for SMT and passive playback and 248 cells for PPR). Task 

modulation of activity is stronger during PPR than during passive playback and even 

stronger during the SMT. (e) Cumulative histograms of the field durations during SMT 

Fig. 1.7 Hippocampal selectivity to a non-spatial dimension  
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and PPR. Activity shows more temporally precise task modulation during the SMT. 

(Adapted from Aronov et. al. Nature 201718) 

Fig 1.8 | Causal control of hippocampal directionality by distal visual cues.       

Left - Illustration of the experimental setup with variety of visual cues on the walls   

Right - Selectivity for head direction (HD) was at chance level when the visual cues did 

not provide directional information, as for the blank and symmetric experiments even 

though the animal actively navigated the virtual room. (Adapted from Acharya et. al. Cell 

201521)  

In the present work, we considered the complementary experiment. Instead of a stationary visual 

cue presented while the animal is mobile, we rotated a bar of light (similar to the ‘narrow’ strip 

in Fig 1.8) while the animal was held a fixed distance from the visual cue. These experiments 

and their results are described in Chapter 2.  

Although body fixed, the rats were able to move their head around. The range of head 

movements was small and could not explain the selectivity we report for the bar of light. But 

would hippocampal neurons show selective responses to the position of the head with respect to 

Fig. 1. 8 Causal control of hippocampal directionality by distal visual cues 
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the body, regardless of distal visual cues? To answer this, we looked at the recordings from rats 

performing active foraging in VR, where the range and frequency of head movements was larger, 

since the animal would actively scan the virtual environment to navigate. These analyses are 

detailed in Chapter 3. 

In Chapter 4, we analyzed hippocampal responses to repeated presentation of a 30 second clip of 

a movie from a publicly available dataset. Here, the animal was head fixed, removing the 

confounding effects of head movements. We report single units from all parts of the 

hippocampus which are selective to the visual information presented on the screen, similar to the 

selectivity seen in visual areas, like lateral geniculate nucleus and primary visual cortex. 
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CHAPTER 2: VISUAL CUE DISTANCE, ANGLE AND DIRECTION ENCODING 

WITHOUT TASK, MEMORY OR NAVIGATION DEMANDS 

Abstract 

 Primary visual cortical neurons selectively respond to the position and motion direction of 

specific stimuli retrospectively, without any locomotion or task demand. At the other end of the 

visual circuit is the hippocampus, where in addition to visual cues, self-motion cues and task 

demand are thought to be crucial to generate selectivity to allocentric space in rodents that is 

abstract and prospective. In primates, however, hippocampal neurons encode object-place 

association without any locomotion requirement. To bridge these disparities, we measured rodent 

hippocampal responses to a vertical bar of light in a body-fixed rat, independent of behavior and 

rewards. When the bar revolved around the rat at a fixed distance, more than 70% of dorsal CA1 

neurons showed stable modulation of activity as a function of the bar’s angular position, while 

nearly 40% showed canonical angular tuning, in a body-centric coordinate frame, termed 

Stimulus Angle Cells or Coding (SAC). The angular position of the oriented bar could be 

decoded from only a few hundred neurons’ activity. Nearly a third of SAC were also tuned to the 

direction of revolution of the bar and most of these responses were retrospective. SAC were 

invariant with respect to the pattern, color, speed and predictability of movement of the bar. 

When the bar moved towards and away from the rat at a fixed angle, neurons encoded its 

distance and direction of movement, with more neurons preferring approaching motion. Thus, a 

majority of neurons in the hippocampus, a multisensory region several synapses away from the 

primary visual cortex, encode non-abstract information about stimulus-angle, distance and 

direction of movement, in a manner similar to the visual cortex, without any locomotion, reward 

or memory demand. We posit that these responses would influence the cortico-hippocampal 

circuit and form the basis for generating abstract and prospective representations. 

Introduction 

Sensory cortical neurons generate selective responses to specific stimuli, in the egocentric (e.g. 

retinotopic) coordinate frame, without any locomotion, memory or rewards22. In contrast, the 

hippocampus is thought to contain an abstract, allocentric cognitive map, supported by spatially 

selective place cells23, grid cells24 and head direction cells10.  Such robust hippocampal responses 

are thought to require both distal visual cues5 and self-motion cues14,25, e.g. via path 
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integration12, which requires specific sets of self-movements. In addition, the angular and linear 

optic flow generated by locomotion could contribute to hippocampal activity, but this has not 

been directly tested. Recent studies have shown significant modulation of hippocampal activity 

by an auditory18–20,26 or a social stimulus15,16. These tasks required specific actions, rewards or 

memory to generate selectivity. The stimulus related hippocampal activity modulation reduced to 

chance level when task demand and stimulus locked rewards were omitted17–20. In particular, no 

study has investigated if hippocampal neurons can encode the angular position and direction of 

movement of a visual stimulus without bodily movements; it is commonly thought that such 

compass information requires locomotion12,21,27. To understand hippocampal function, it is 

necessary to know if place cells encode information about the angular position and motion 

direction of a specific moving visual stimulus, like sensory cortices, regardless of movement, 

memory or reward. 

Fig. 2.1 | Hippocampal response to a revolving bar of light: (a) Schematic of the 

experimental setup and (b) Top-down view. The rat’s head is at the center of a cylinder. 

A green-striped bar of light (13 o wide) revolves around the rat at a fixed distance in two 

Fig. 2. 1 Hippocampal response to a revolving bar of light 
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directions (clockwise (CW) or counterclockwise (CCW)). Rat’s putative field of view is 

270o, with the area (dark gray) behind him being invisible to him. (c) Raster plots. Trial 

number (y-axis on the left) and firing rates (y-axis on the right) of six CA1 neurons as a 

function of the angular position of the bar (x-axis, 0o in front of the rat and ±180o 

behind). Bold arrows underneath show the direction of revolution (top panels, 

Counterclockwise (CCW); bottom panels, Clockwise (CW)). (d) Cumulative distribution 

function (CDF) of strength of tuning (z-scored sparsity, see methods) for 1191 active 

CA1 putative pyramidal cells (response with higher tuning chosen between CCW and 

CW, (d) through (f)). The actual data shows significantly greater (KS-test p=1.26x10-89) 

tuning than the shuffled data (Gray line for (d) through (g)). 39% of neurons showed 

significant (z>2, vertical black line) tuning. (e) Distribution of tuned cells as a function of 

the preferred angle (angle of maximal firing). There were twice as many tuned cells at 

forward angles than behind. (f) Median z-scored sparsity and its variability (SEM, 

shaded area, here and subsequently) of tuned cells as a function of their preferred 

angle. (Correlation coefficient r=-0.28 p=1.5x10-9). (g) Median value of the full width at 

quarter maxima across the ensemble of tuned responses increased as a function of 

preferred angle of tuning. (r=+0.15 p=1.3x10-3). (h) CDF of firing rate modulation index 

within versus outside the preferred zone (see methods) for tuned cells was significantly 

different (Two-sample KS test p=1.9x10-50) than untuned cells.  

To address these questions, rats were gently held in place on a large spherical treadmill, 

surrounded by a cylindrical screen28. They were free to move their heads around the body, but 

not fully turn their body. They were given random rewards to keep them motivated, similar to 

typical place cell (e.g. random foraging) experiments. The only salient visual stimulus was a 

vertical bar of light, 74cm tall, 7.5cm wide, 33cm away from the rat, thus subtending a 13o solid 

angle. In the first set of experiments, the bar revolved around the rat at a constant speed (36o/s), 

without any change in shape or size (Fig. 2.1a, b), independent of rat’s behavior or reward 

delivery. The bar’s revolution direction switched between CW (clockwise) and CCW 

(counterclockwise) every four revolutions. In subsequent experiments, when we varied the 

identity, movement and trajectory of the bar, selective responses were found in all cases. 
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Stimulus angle coding (SAC) in large fraction of CA1 neurons 

We measured the activity of 1191 putative pyramidal neurons (with firing rate above 0.2Hz 

during the experiment) from the dorsal CA1 of 8 Long Evans rats in 149 sessions using tetrodes 

(see methods29). Many neurons showed clear modulation of firing rate as a function of the bar 

position (Fig. 2.1c), with substantial increase in firing rates in a limited region of visual angles. 

We call this stimulus angle coding (SAC) or stimulus angle cells.  Across the ensemble of 

neurons, 464 (39%) showed significant (sparsity (z)>2, corresponding to p < 0.023, see methods, 

see Extended Data Fig. 2.1 for other metrics) stimulus angle tuning in either the CW or CCW 

direction (Fig. 2.1d).  

Like the primary visual cortical responses and hippocampal place cells, most tuning curves were 

unimodal (Extended Data Fig. 2.2) with a single preferred angle where the firing rate was the 

highest. But virtually no neurons showed an off response (a significant decrease in firing rate).  

The preferred angles spanned the entire range, including angles behind the rat (Fig. 2.1e). These 

responses resembled striate cortical neurons in many ways22,30. More neurons encoded the 

positions in front of the rat (0o) and there was a gradual, two-fold decline in the number of tuned 

cells for angles behind (±180o). The strength of SAC (Fig. 2.1f, see methods) was much larger 

near 0o compared to 180o. The width of the tuning curves also increased gradually as a function 

of the absolute preferred angle from 0o to 180o (114o vs 144o Fig. 2.1g), and was quite variable at 

every angle, spanning on average about a third of the visual field, similar to place cells on linear 

tracks31,32. 

Hippocampal place cells on 1D tracks have high firing rates within the field and virtually no 

spiking outside31. In contrast, the firing rates of SAC were often nonzero outside the preferred 

angle of SAC, as evidenced by modest values of the firing rate modulation index (Fig. 2.1h, see 

methods). On the other hand, these broad SAC tuning curves resembled the directional tuning of 

CA1 neurons recently reported in the real world and virtual reality21, with comparable fraction of 

neurons showing significant angular tuning. SAC trial to trial variability was quite large, but 

comparable to recent experiments in visual cortex of mice under similar conditions33. Notably, 

the variability in the mean firing rate across trials was small and unrelated to the degree of 

angular tuning. However, the trial-trial variability of the preferred angle was quite large and 

predictive of the degree of SAC of a neuron (Extended Data Fig. 2.3). 
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Fig. 2.2 | Directionality, stability and ensemble decoding of SAC. (a) Example of a 

bi-directional cell, showing significant (z>2) tuning (maroon) in both CCW and CW 

directions. (b) Similar to (a), but for a uni-directional cell, showing significant tuning in 

only one direction (CW here).  CCW (blue) and CW (red) trials have been grouped 

together for ease of visualization, but experimentally were presented in alternating 

blocks of four trials each. (c) Example cells showing stable responses (lavender) with 

multiple peaks that did not have significant sparsity (z<2) (bi-directional stable, left; 

unidirectional stable (CCW), right). (d) Relative percentages of cells. (e) Percentage of 

tuned responses as a function of the absolute preferred angle, for bidirectional and 

unidirectional populations are significantly different from each other (two-sample KS test 

p=0.04). (f) Correlation coefficient of CCW and CW responses for different populations 

of cells, (two sample KS test green, bidirectional, p=3.3x10-27, orange, unidirectional 

p=7.0x10-27, lavender, untuned stable, p=4.4x10-4. Dashed curves indicate respective 

shuffles. (g) Firing rate modulation index for uni-directionally tuned cells (see methods), 

for angles around the response peak (preferred zone) was significantly different from 

zero (t-test p=4.1x10-35), but not outside preferred zone (t-test p=0.35). (h) Example 

Fig. 2.2 Directionality, stability and ensemble decoding of SAC. 
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decoding of 10 randomly chosen trials (gray) using all tuned cells in the CCW direction 

(maroon); all other trials were used to build the population-encoding matrix. (i) Same as 

(h) but using the untuned-stable responses (lavender). (j) Median error between 

stimulus angle and decoded angle over 30 instantiations of 10 trials each for actual and 

shuffle data. The decoding errors for tuned (median=17.6o) and untuned stable 

(median=45.2o) are significantly less than that of shuffle (non-parametric rank sum test 

p<10-150 for both populations). Green dashed line indicates width of the visual cue; black 

dashed line indicates median error expected by chance. (k) Sample iteration showing 

decoding error decreases with increase in the number of responses used for decoding, 

for populations of all (black), tuned (maroon) and untuned stable (lavender) cells, but 

not for untuned unstable cells (gray).   

Revolution direction selectivity of SAC 

In the primary visual cortex, majority of neurons respond selectively to the angular position of 

the oriented bar, regardless of its movement direction, and a minority of neurons are sensitive to 

the movement direction of the bar22. But, majority of hippocampal neurons on linear tracks are 

highly directional29,31. Further, in both areas, if a neuron is active in both directions, then it 

shows significant and stable modulation in both directions. 

To bridge these discrepancies, we inspected the selectivity, directionality, and stability (see 

methods) of the SAC. The degree of tuning varied continuously across neurons with no clear 

boundary between tuned and untuned neurons (Extended Data Fig. 2.4).To examine the tuning 

properties across this population we separated the neurons according to their degree of tuning in 

the two movement directions, as commonly done17. Some neurons were bidirectional, with 

significant (z>2) SAC in both movement directions (Fig. 2.2a, Extended Data Fig. 2.5).  

However, a larger subset of neurons was unidirectional, with significant (z>2) angle selectivity 

in only one movement direction (Fig. 2.2b, Extended Data Fig. 2.5). For the tuned direction, 

SAC were stable, showing consistent firing rate modulation as a function of angle across trials. 

Surprisingly, there were many untuned-stable neurons (see methods), which showed consistent, 

significantly stable spiking across trials, but the SAC, quantified by z-scored sparsity, was not 

significantly different than chance (Fig. 2.2c, Extended Data Fig. 2.6). Across the ensemble, 

about 13% (154) of neurons were bidirectional, 26% (310) were unidirectional, and 35% (421) 
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were untuned-stable (Fig. 2.2d, Extended Data Fig. 2.6). Thus, the vast majority (74%, 885) of 

hippocampal pyramidal neurons were consistently influenced by the angular position and 

direction of the revolving bar. However, unlike visual cortex, far more SAC neurons were 

unidirectional, and unlike hippocampal place cells and visual cortex, far greater number of 

neurons showed untuned but stable responses. The majority of tuned neurons had their preferred 

angle around 0o, i.e., in front of the rat (Fig. 2.2e) and this bias was greater for the bidirectional 

cells.  

We then examined the differences in firing rates and tuning properties between the two 

movement directions. For both the unidirectional and bidirectional cells, the firing rate was 

substantially different between the two directions of movement (Extended Data Fig. 2.7).  

Further, the mean firing rates of neurons was invariably larger in the direction in which the 

stimulus angle tuning was greater, compared to the less tuned, or untuned, direction (Extended 

Data Fig. 2.7). This disparity in firing rates between the tuned and untuned directions arose 

largely from the increase in firing rate within the preferred zone (±90o around the preferred 

angle) in the tuned direction (Fig. 2.2g). Higher rate cells were more likely to be bidirectional 

than unidirectional, even when the contribution of firing rates differences to strength of tuning 

were factored out (Extended Data Fig. 2.8). Finally, the tuning curves in the CW and CCW 

directions were significantly correlated for bidirectional cells (Fig. 2.2f). This was true, although 

to a smaller extent, for unidirectional cells and untuned-stable cells, but not for the untuned 

unstable cells.  

Population vector decoding of SAC  

In addition to individual cells showing stable stimulus angle encoding, we found that the 

population responses were also coherent for tuned and untuned-stable populations (Extended 

Data Fig. 2.9, see methods). Ensemble of a few hundred place cells is sufficient to decode the 

rat’s position using population vector decoding34. Using similar methods, we decoded the 

position of the bar using different ensembles of SAC (see methods).  

The ensemble of 310 tuned cells (CCW), with a short temporal window of 250ms, could decode 

the position of the oriented bar with a median accuracy of 17.6o (Fig. 2.2h, j) comparable to the 

bar width (13o). This is qualitatively similar to the spatial decoding accuracy of place cells34,35. 
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Additionally, the 266 untuned but stable cells could also decode the position of the bar 

significantly better than chance, but the median error was 45.2o (Fig. 2.2i, j) which is larger than 

that for the tuned cells. The unstable cells did not contain significant information about the bar 

position. Decoding performance improved when using a larger number of tuned or untuned 

stable cells, but not when using more unstable responses (Fig 2.2k). Thus the ensemble of 

untuned stable cells contained significant SAC information, even though these individual cells 

did not36. This was not the case for the untuned unstable cells. 

Most neurons show retrospective SAC 

Under most conditions, visual cortical neurons respond to the stimulus with a short latency, i.e. 

retrospectively, whereas most hippocampal bidirectional cells on linear tracks are prospective, 

i.e. they fire before the rat approaches the place field from the opposite movement 

directions29,35,37. However, we found that the converse was true for these hippocampal 

bidirectional SAC (Extended Data Fig. 2.10). Here (example cell, Fig. 2.3d), the preferred angle 

in the CCW direction lagged behind that in the CW direction, i.e., in both directions the neuron 

responded to the bar after it had gone past a specific angle, which is a retrospective response. 

Hence, we computed the circular difference between the preferred angle between the CW and 

CCW directions (bidirectional population response, Fig. 2.3a-b), which were predominantly 

positive. Are only the peaks of SAC retrospective or do the entire tuning curves have lagged 

responses? To address this, we computed the cross correlation between the entire tuning curves 

between the CW and CCW directions. Majority (80%) of neurons showed maximum correlation 

at positive latency. Thus, most neurons responded to the oriented bar retrospectively, i.e., with a 

lag.  

The median latency to response was 276.2ms (leading to 19.9o median shift in cross correlation 

Fig. 2.3f). This retrospective coding was evident across the entire ensemble of bidirectional cells, 

such that the population vector overlap between the CW and CCW directions was highest at 

values slightly shifted from the diagonal (Fig. 2.3h, see methods). 

Additional experiments using a photodiode showed that this lag could not be explained by the 

latencies in the recording equipment (Extended Data Fig. 2.11, equipment latency of 38.9ms was 

removed from all numbers reported herein).  In fact, retrospective tuning was found even for the 
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unidirectional cells, even though the tuning was not significant in one of the revolution 

directions, resulting in weaker correlations (Fig. 2.3i-k). The range of latencies was larger for the 

unidirectional cells than bidirectional cells (Fig 2.3f, j), but median latency in cross correlations 

(19.9o, or 276.2ms temporal latency of response) was comparable to bidirectional cells. Thus, the 

retrospective coding does not arise due to difference in tuning strengths. The larger range of 

latencies and weaker correlations for unidirectional cells could arise because significant tuning is 

present in only one direction. Small but significant temporal bias was observed in the untuned-

stable cells but not for the unstable cells (Extended Data Fig. 2.12). 

Fig. 2.3 | Retrospective nature of stimulus angle coding (SAC). (a) For bidirectional 

tuned cells, the peak angle in the CW (y-axis) direction was greater than that in the 

CCW (x-axis). (b) Histogram of difference (CW-CCW, restricted to ±50
o
) of the peak 

angles in two directions of a cell was significantly (t-test, p=0.003) positive indicating a 

retrospective shift. (c-g) For bidirectional cells: (c) Stack plots of normalized population 

responses of cells, sorted according to the peak angle in the CCW (left). The 

corresponding responses of cells in the CW direction (right). (d) Example cell showing 

Fig. 2.3 Retrospective nature of stimulus angle coding (SAC). 
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retrospective latency between the CCW (blue) and CW (red) tuning curves, 

corresponding to the horizontal white boxes in (c). (e) Cross correlation between the 

CCW and CW responses in (d) had a maximum at positive latency (+27o). (f) Cell wise 

cross correlations between CW and CCW tuning curves, sorted according to their peak-

lag. Majority (80%) of lags were positive, i.e., retrospective. The ensemble median lag of 

19.9o ±49.8o was significantly positive (Circular median test at 0o, p=4.8x10-16). (g) The 

firing rate, averaged across the entire ensemble of bidirectional cells at -30o in the CCW 

direction was misaligned with the ensemble averaged responses in the CW direction at 

the same angle (top), but better aligned with the ensemble averaged responses in the 

CW direction at -10o (bottom, vertical boxed in (c)), showing retrospective response. (h) 

Population vector overlap of SAC across all cells. At all angles, these population vector 

correlation coefficients had a peak at a positive lag (CW peak–CCW peak, 

median=+54.3o ±25.3o t-test p=0.007) showing a retrospective shift. Black marker (+) 

indicates the correlation coefficient between the population responses at black boxes, 

i.e., the population response in (g). (i) Same as (c) for uni-directional cells with CCW 

tuned cells (top row) and CW tuned cells (bottom row) sorted according to their SAC 

peak in the tuned direction. (j) Same as in (f) Cross correlations from the uni-directional 

tuned cells were combined and sorted according to the peak-lag. Majority (67%) of the 

cross correlations had a significantly positive lag (median latency=19.9o±86.1o, circular 

median test at 0o, p=1.8x10-10). (k) Same as (h) for unidirectional cell population vector 

cross-correlation. For all angles the population vector cross correlation coefficients had 

a peak at a positive lag (CW peak–CCW peak, median= +56.2o ±23.7o t-test p=0.001) 

showing retrospective coding, which was not significantly different from the 

retrospective lag in bidirectional cells (KS-test, p=0.28). 

Invariance of SAC tuning 

When the distal visual cues are changed by even a small amount, hippocampal CA1 neurons 

show remapping, i.e. large changes in place cells’ firing rate, degree of spatial selectivity and the 

preferred location or receptive field38,39. On the other hand, primate hippocampal neurons show 

selectivity to a combination of object identity and its retinotopic position40. 
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To address this in a systematic fashion we recorded the responses of the same set of neurons, on 

the same day to bars of light with different visual features (see methods), without any other 

changes in stimuli or behavior. In one experiment, we changed the stimulus minimally (green-

black stripes vs green-black checkered pattern 2.4a, e-g). Neural firing rates, strength of SAC, 

preferred tuning location and tuning curve profiles were largely invariant and comparable to 

spontaneous fluctuations (Fig. 2.4a, see methods). To further test this invariance, we changed the 

vertical bar substantially by changing both color and pattern (green-black horizontal stripes vs 

blue with one vertical black line 2.4b). This resulted in significantly more changes in all 

measures of SAC, though this too was far less than expected by chance. Thus, unlike complete 

remapping with change in visual cues, SAC was invariant to substantial changes in visual cues. 

Fig. 2.4 | Dependence of SAC on stimulus pattern, color, movement predictability 

and time. (a) Response of the same cell shows similar SAC for green striped pattern 

(left) and green-checkered pattern (right).  (b) Similar to (a), but for changes of stimulus 

color, green and blue, and pattern (horizontal vs vertical stripe). (c) same as (a), but for 

changes to predictability of the stimulus, termed ‘systematic’ (left) for predictable 

Fig. 2.4 Dependence of SAC on stimulus pattern, color, movement predictability and 
time. 
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movement of the stimulus, as compared to ‘random’ (right, see methods). (d) Same as 

(a), but for the same cell’s response to the same systematic stimulus across 2 days. (e) 

Firing rate remapping, quantified by FR change index (mean ± SEM), was significantly 

(p< 8x10-6) smaller for the actual data (dark-pink) than for shuffle data (gray) for all 

conditions. (f) Similar to (e), but correlation coefficient between the tuning curves across 

different conditions (mean values: pattern=0.48, color =0.39, predictability =0.28, 

day=0.19. All correlations were significantly greater (t-test p<7.7x10-9) than shuffle. (g) 

Same as (e), using angular lag in cross correlation to quantify amount of shift between 

tuning curves across the two conditions (pattern=48o, color=59o, predictability=63o, 

day=74o). All were significantly lesser (t-test p<0.003) than shuffle. All example cells 

here are chosen from CW condition for clarity. 

Sequential tasks can influence neural selectivity in the hippocampus14,41 and visual cortex42. 

Hippocampal neurons also show selectivity in sequential, non-spatial tasks15,16,18 and sequential 

versus random goal-directed paths induce place field remapping43. Hence, the above experiments 

did not include any systematic behavior or rewards related to the moving bar. To compute the 

contribution of the sequential movement of the bar of light to SAC, we designed experiments 

where the movement of the vertical bar was less predictable. The bar moved only 56.7o in one 

direction on average, and then abruptly changed speed and direction. We call this the randomly 

moving bar paradigm (Fig. 2.4c). Here, 26% neurons showed significant SAC, which was far 

greater than chance, though lesser than the systematic condition (Extended Data Fig. 2.14). The 

other results were qualitatively similar to systematically moving bar of light, including the 

percentage of unidirectional, bidirectional and untuned-stable cells. (Extended Data Fig. 2.14). 

Thus, the SAC cannot arise entirely from sequential movement of the bar, and the retrospective 

latencies were unaffected (Extended Data Fig. 2.13) by systematic or random motion of the bar. 

To directly ascertain the effect of predictability on SAC, we separately analyzed the randomly 

moving bar data in the first 1-second after stimulus direction flip, and an equivalent subsample of 

data from later when the stimulus had moved in the current direction for at least 3 seconds 

(Extended Data Fig. 2.14, see methods). SAC was similar in these two conditions. Further, SAC 

were not systematically biased by the angular movement speed of stimulus, nor did hippocampal 

firing encode stimulus speed beyond chance (Extended Data Fig. 2.14). 
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Recent studies have reported spontaneous, slow remapping of place cells over several days44. We 

measured the activity of the same cells for more than one day, and measured changes in SAC 

without any changes in stimuli or their predictability. There was substantial remapping across 

two days, evidenced by very low correlation between the tuning curves of the same neuron 

across two days (Fig. 2.4d). This was not due to difference in novelty, because rats had 

experienced this stimulus for at least one week. 

There was a consistent pattern of remapping across these experiments, as measured by the 

correlation coefficient of the tuning curves (Fig. 2.4f). The smallest change in tuning curves 

occurred with the smallest change in stimulus, i.e., pattern change. Greater change with change 

in color, even greater change with alteration in stimulus predictability and the largest change 

occurred spontaneously across two days. This occurred due two mechanisms. First, the preferred 

tuning angle rotated across different conditions, with the lowest amount of change for pattern 

change, larger for color, followed by predictability and time. Second, even when this change in 

the preferred tuning angle was factored out, similar pattern of changes in correlations persisted 

(Extended Data Fig. 2.14). 

Overlapping neural populations encode stimulus angle, distance, and spatial 

position.   

During spatial exploration majority of rodent hippocampal neurons show spatially selective 

responses, aka place cells. What is the relationship between SAC vs spatial selectivity of 

neurons? In additional experiments we measured the activity of the same set of CA1 neurons, on 

the same day, during the SAC protocol and while rats freely foraged for randomly scattered 

rewards in two-dimensional environments (Fig 2.5a, see methods). Out of 341 pyramidal cells, 

56% were active in both experiments, whereas 29% and 15% were active only during 

exploration or during SAC, respectively. Firing rates during exploration and SAC experiments 

were strongly correlated (Extended Data Fig. 2.15). Of the population of cells active in both 

experiments, 44% showed significant tuning to both spatial position and stimulus angle, whereas 

51% showed significant tuning to only space. The strength of tuning was significantly correlated 

between these two experiments (Fig. 2.5c). Thus, the majority of SAC cells were also place cells. 
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Fig. 2.5 | Overlapping neural populations encode stimulus angle, distance, and 

spatial position. (a) Two cells recorded on the same day showing significant SAC in 

the revolving bar of experiment and (b) spatial selectivity during free foraging in two-

dimensional maze. Top panel shows the position of the rat (grey dots) when the spikes 

occurred from that neuron (red dots). Bottom panel shows the firing probability or rate at 

each position. (c) Strength of SAC and spatial selectivity measured by z-scored sparsity 

were significantly correlated (r=+0.22 p=0.014). (d) Schematic of the stimulus distance 

experiment.  The same green stripped bar moved between -225cm to +675cm in 10 

seconds, towards and away from the rat at a fixed angle (0o). (e) Raster plots and firing 

rates of a bidirectional cells with significant tuning to the approaching (pink, top) as well 

as receding (dark blue, bottom) movement of the bar of light. Trial number (y-axis on the 

Fig. 2.5 Overlapping neural populations encode stimulus angle, distance and spatial position. 
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left) and firing rates (y-axis on the right) (f) Same as (e), but for a unidirectional cell, 

tuned for stimulus distance only during the approaching stimulus movement. (g) Pie 

chart depicting fraction of cell tuned (bidirectional and unidirectional) as well as untuned 

but stable, similar to Figure 2. (h) Stimulus distance tuning is higher during approaching 

epochs, even after down sampling spike trains to have same firing rate (t-test actual 

p=4.6x10-4, shuffle p=0.7). (i) For same cells recorded in angular and linear stimulus 

movement experiments, tuning was positively correlated (r=0.36 p=5x10-4). (j) 

Population vector overlap computed using all cells, between responses in approaching 

and receding stimulus movement shows retrospective response, with maxima at values 

above the diagonal, similar to Fig. 2.3(h). 

Spatial exploration involves not only angular optic flow but looming signals too. Hence, we 

measured 147 place cells where the stimulus moved towards or away from a body-fixed rat, 

completing one lap in 10 seconds, without any change in angular position (illustration - Fig 2.5d, 

example cells - Fig. 2.5e, f). The firing rates of 41% of neurons showed significant modulation as 

a function of the stimulus distance (Fig. 2.5g) and 27% of cells had untuned but stable responses. 

Neurons not only encoded distance but also direction of movement, with 17% and 8% of neurons 

showing significant tuning to only the approaching (coming closer) or receding (moving away) 

bar of light, respectively. Neural firing rates were very similar for approaching and receding 

stimuli, but stimulus distance coding was much stronger for approaching movements (Fig 2.5h). 

For matched cells recorded in both stimulus distance and angular experiments (see methods), 

firing rates (Extended Data Fig. 2.15) as well as the strength of tuning were correlated, 

suggesting that the same population of neurons can encode both distance and angle (Fig. 2.5i). 

The preferred distance (i.e., the position of maximal firing) for the bidirectional cells, was not 

uniform but bimodal, with majority of neurons active near the rat (0 cm) or farthest away 

(500cm), and very few neurons representing the intermediate distances (Extended Data Fig. 

2.15). Retrospective response was also seen in these experiments, with the population overlap 

between approaching and receding responses shifted to values above the diagonal (Fig. 2.5j, 

Extended Data Fig. 2.15) corresponding to a retrospective shift of 70.6cm or 196.1ms. 
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Discussion 

These results demonstrate that a moving bar of light can reliably modulate the activity of 

majority of hippocampal place cells, without any task demand, memory, reward contingency or 

locomotion requirements (see Extended Data Fig. 2.16 for reward related controls, 2.17 for 

behavior related controls and 2.18 for GLM estimates). Neurons encoded both the angular 

position and linear distance of the bar of light, with respect to the rat. In addition, neurons were 

selective to the direction of angular or linear movement.  Thus, these responses provided a 

vectorial representation of the stimulus positions around the rat. Only a few hundred neurons 

were sufficient to accurately decode the angular position of visual stimulus. Positions in front of 

the rat and near him were overrepresented. Majority of neurons that encoded the bar position 

were also spatially selective during real world exploration and the strength of SAC and spatial 

tunings were correlated across neurons.  However, unlike place cells that remap when the 

behavior is sequential vs. random43, the stimulus angle tuning was relatively unchanged when the 

predictability or sequential nature of stimuli was altered. Even more striking, while place cells 

are predictive or prospective 35,37,45, including in virtual reality setup similar to that used here29 

the stimulus angle tuning was retrospective in nature (Extended Data Figure. 2.10). 

These results have similarities and important differences compared to recent findings of social 

neurons in the hippocampus 15,16 where a small subset of neurons encoded the linear position of a 

demonstrator animal. However, those experiments required strong training, task, or reward. 

Without these behavioral requirements there was no significant modulation of hippocampal 

activity17–20. Other experiments showed that a small subset of hippocampal neurons could 

respond to sensory cues during auditory discrimination task, but robust responses required 

stimulus locked rewards and behavior18,19,26. Thus, hippocampal selectivity in those experiments 

cannot be attributed solely to the stimulus position. In contrast, in our experiments, the neural 

responses can be attributed solely to the stimulus angle. Indeed, the stimulus angular tuning was 

relatively invariant to changes in the pattern or color of the bar of light, or the randomness of 

stimulus movement. Further, a majority of neurons showed significant modulation in our 

experiments, enough to decode the bar position from a few hundred neurons. The differences 

between the prior results and ours could be because the hippocampus is involved in creating 

spatial representations from the visual cues and our experiments created stimulus movement 
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while eliminating nonspecific cues. This is supported by the strong correlation between the 

degree of visual stimulus angle position tuning and allocentric spatial tuning across neurons.  

These results show that during passive viewing, rodent hippocampal activity patterns fit the 

visual hierarchy46. For example, the SAC show similar angular dependence as visual cortex, e.g. 

larger tuning curve width for more peripheral stimuli, and over-representation of the nasal 

compared to temporal positions30. This nasal-temporal magnification increases with increasing 

processing stages from the retina to thalamus and striate cortex30, but the hippocampal 

magnification we report is much smaller. Further, like the visual cortex, hippocampal neurons 

too showed retrospective responses, but with larger response latency, suggesting visual cortical 

inputs reached hippocampus to generate SAC. The larger latency is consistent with the response 

latencies in the human hippocampus47 and the progressive increase in response latencies in the 

cortico-entorhinal-hippocampal circuit during Up-Down states48–50. However, there were no off 

responses in the SAC and the tuning curves were broader and more unidirectional than in the 

primary visual cortex. This could arise due to processing in the cortico-hippocampal circuit, 

especially the entorhinal cortex50, or due to the contribution of alternate pathways from the retina 

to the hippocampus51.  

Hippocampal spatial maps are thought to rely on the distal visual cues5. Rats can not only 

navigate using only vision in virtual reality, but they preferentially rely on vision28. Robust 

hippocampal coding for visual cue position, angle and movement direction reported here without 

any movements further supports these findings. But these findings cannot be explained by path 

integration. Instead, they can be explained by a refinement of the multisensory-pairing 

hypothesis14,21. In the absence of any correlation between physical stimuli, rewards and internally 

generated self-motion, hippocampal neurons can generate robust, invariant, non-abstract 

responses to as the visual stimulus angle, distance and direction, akin to cortical regions.  

Consistently, these responses are retrospective in nature, similar to cortical responses, with 

additional latency. However, these responses are less robust than place cells. Visual cues 

combined with uncorrelated locomotion cues can generate direction head-selectivity but not 

spatial selectivity21, whereas consistency between locomotion, reward and visual cues generates 

spatial selectivity in the hippocampus13,14 and primary visual cortex42. Place cells robustly 

respond to not only visual52,53 but also multisensory cues on the track37,45,54 and to self-motion 



29 
 

cues14,29,55. We hypothesize that the greatly enhanced correlations between all the cues could be 

encoded more robustly via synaptic plasticity to generate anticipatory or prospective coding of 

absolute position31,56. This is further supported by the finding that robust responses and 

prospective coding were also seen in purely visual virtual reality, but for relative distance, not 

absolute position, since only the optic flow and locomotion cues were correlated at identical 

distance29. Thus, the retrospective coding of moving stimulus angle, position and direction could 

form the basis for generating a wide range of invariant, anticipatory spatial maps via 

multisensory associations. 

 

Methods 

Subjects  

Eight adult male Long-Evans rats (3 months old at the start of experiments) were individually 

housed on a 12-hour light/dark cycle. Their total food intake (15-20 g of food per day) and water 

intake (25-35 ml of water per day) were controlled and monitored to maintain body weight. Rats 

received 10-12ml of water in a 20-minute experiment. All experimental procedures were 

approved by the UCLA Chancellor's Animal Research Committee and were conducted in 

accordance with USA federal guidelines. 

Experimental apparatus 

Rats were body restricted with a fabric harnesses as they ran on an air-levitated spherical 

treadmill of 30cm radius. The rat was placed at the center of a cylindrical screen of radius 33cm 

and 74 cm high. Visual cues were projected on the screen. Although the rat was free to run and 

stop voluntarily, his running activity was decoupled from the projector and hence had no effect 

on the visual cues. Body restriction allowed the rat to scan his surroundings with neck 

movements. Running speed was measured by optical mice recording rotations of the spherical 

treadmill at 60Hz. Head movement with respect to the harnessed and fixed body was recorded at 

60Hz using an overhead camera tracking two red LEDs attached to the cranial implant using the 

methods described before29. Rewards were delivered at random intervals (16.2 sec ±7.5s, 2 
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rewards, 200ms apart) to keep the rats motivated and the experimental conditions similar to 

typical place cell experiments.  

Behavioral pre-training 

All experiments were conducted in acoustically- and EMF-shielded rooms. The rats were 

conditioned to associate a tone with sugar-water reward. They were gently body-fixed in the 

apparatus that allowed them to move their heads with respect to the body, but the body could not 

turn around. In order for the rats to remain calm in the apparatus for long periods, they were 

trained to navigate in a visually rich virtual maze where a suspended, striped pillar indicated 

rewarded position. After surgery, rats were exposed to the revolving bar environment for the first 

time, where the movement of the rat had no impact on the movement of the revolving bar. Six 

out of eight rats never experienced virtual reality after the revolving bar experiments began.  

Experiment Design 

The salient visual stimulus was a 13 degrees wide vertical bar of light which revolved around the 

rat at a constant speed (10s per revolution) without any change in shape or size (Fig 2.1A). We 

used three different textures of visual cues as shown in Fig. 4. The results were qualitatively 

similar for all of them hence the data were combined. Each block of trials consisted of four 

clockwise (CW) or four counterclockwise (CCW) revolutions of the bar of light. There were 13-

15 blocks of trials in each session.  During the random bar of light experiment, the bar revolved 

at one of the six speeds: ±36o, ±72o, or ±108o per second and spanning angles ranging 30o to 70o 

at any given speed, before changing the speed at random. Reward dispensing was similar to the 

systematic bar of light experiment, with no relation to the angular position or speed of the 

stimulus. Manipulations of stimulus color, pattern, movement predictability and linearly moving 

stimulus were performed in a pseudo-random order in the same VR apparatus. Real world two-

dimensional random foraging experiments and stimulus angle experiments were performed in a 

pseudo-random order, with an intermittent baseline of 25-40 minutes. 

Surgery 

All rats were implanted with 25-30g custom-built hyperdrives containing up to 22 independently 

adjustable tetrodes (13μm nichrome wires) positioned bilaterally over dorsal CA1 (-3.2 to -
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4.0mm A.P., ±1.75 to ±3.1mm M.L. relative to Bregma). Surgery was performed under 

isoflurane anesthesia and heart rate, breathing rate, and body temperature were continuously 

monitored. Two ~2 mm-diameter craniotomies were drilled using custom software and a CNC 

device with a precision of 25μm in all 3 dimensions. Dura mater was manually removed and the 

hyperdrive was lowered until the cannulas were ~100 µm above the surface of the neocortex. 

The implant was anchored to the skull with 7-9 skull screws and dental cement. The occipital 

skull screws were used as ground for recording. Rats were administered ~5mg/kg carprofen 

(Rimadyl bacon-flavored pellets) one day prior to surgery and for at least 10 days during 

recovery. 

Electrophysiology 

The tetrodes were lowered gradually after surgery into the CA1 hippocampal sub region. 

Positioning of the electrodes in CA1 was confirmed through the presence of sharp-wave ripples 

during recordings. Signals from each tetrode were acquired by one of three 36-channel head 

stages, digitized at 40 kHz, band pass-filtered between 0.1Hz and 9 kHz, and recorded 

continuously. 

Spike sorting  

Spikes were detected offline using a nonlinear energy operator threshold, after application of a 

non-causal fourth order Butterworth band pass filter (600-6000Hz). After detection, 1.5ms spike 

waveforms were extracted. Spike sorting was performed manually using an in-house clustering 

algorithm written in Python.  

Tuning curves and z-score calculation 

Procedures similar to that described previously were used29. We binned the angular occupancy of 

the vertical bar and spikes in N=120 bins of width 3o each and smoothed it with a Gaussian of σ 

=12o. Clockwise and counterclockwise movement directions were treated separately. To quantify 

the degree of modulation we computed sparsity s of an angular rate map where rn is the firing 

rate in the 𝑛𝑡ℎ angular bin:  
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To assess the statistical significance of sparsity, we used a bootstrapping procedure, which does 

not assume a normal distribution. Briefly, for each cell, in each movement direction, spike trains 

as a function of the vertical bar from each block of trials were circularly shifted by different 

angles and the sparsity of the randomized data computed. This procedure was repeated 250 times 

with different sets of random value shifts. The mean value and standard deviation of the sparsity 

of randomized data was used to compute the z-scored sparsity of actual data using the function 

zscore in MATLAB. The observed sparsity was considered statistically significant if the z-scored 

sparsity of the observed spike train was greater 2, which corresponds to p < 0.0228 in a one 

tailed t-test. 

Similar procedure was employed for testing the significance angular tuning in the random bar of 

light condition. To keep the analysis comparable to systematic condition, spike trains were 

circularly shifted with respect to behavioral data by different random amounts for each block of 

40 seconds, which is comparable to the time taken by the systematic visual cue to undergo four 

revolutions.  

In addition to sparsity, we quantified SAC using several other measures.  

Angle Selectivity index 𝐴𝑆𝐼 =  
𝐴2

𝐴2 +  𝐴0
⁄  

where 𝐴2 is the second harmonic component from the Fourier transform of the binned SAC 

response and 𝐴0is the DC level. This formulation of ASI is analogous to Orientation selectivity 

index (OSI), which is widely used in visual cortical selectivity quantification57–59  

Mean resultant length  (𝑀𝑉𝐿)  = ∑ 𝑟𝑛. (𝑒𝑖𝜃𝑛)𝑛  

Where rn is the firing rate in the 𝑛𝑡ℎ angular bin 𝜃𝑛 is the angular position corresponding to this 

bin and n is summed over 120 bins. 

Coherence(𝐶𝐻)  =  correlation coefficient({𝑟𝑛,𝑟𝑎𝑤}, {𝑟𝑛,𝑠𝑚𝑜𝑜𝑡ℎ𝑒𝑑}) 
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Mutual information (𝑀𝐼)  = ∑ 𝑝(𝐶|𝜃𝑛)𝐶 . log2
𝑝(𝐶|𝜃𝑛)

𝑝(𝐶)
  

Where 𝑝(𝐶)  = ∑ 𝑝(𝜃𝑛). 𝑝(𝐶|𝜃𝑛)𝑛  

and 𝐶 is the average spike count in 0.083 second window which corresponds to 1 angular bin 

that is 3o wide. Statistical significance of these alternative measures of selectivity was computed 

similar to that for sparsity and is detailed in Extended Data Fig. 2.1. 

Tuning curve width quantification 

Full width at quarter maxima of the SAC rate map was computed around the maxima of the 

firing rate, i.e., the preferred angle, as the width at which the tuning curve first crossed 0.25 

times the peak value. We chose 0.25 of maximum and not 0.5, i.e. FWHM as commonly done, 

because the tuning curves are often very broad with nonzero activity at nearly all angles, which 

is missed by FWHM. 

Modulation Index calculation 

Firing rate modulation index of stimulus angle tuning (used in Fig. 2.1g) was quantified as 

(FRwithin- FRoutside) / (FRwithin + FRoutside), where FRwithin and FRoutside are average firing rates in 

their respective zones. Similar definition of FR modulation index was used in Fig. 2.2g, to 

quantify the effect of uni-directional tuning inside and outside of the preferred zone, as (FRtuned - 

FRuntuned) / (FRtuned + FRuntuned), where FRtuned and FRunturned are the average firing rates in the 

respective directions. Similarly in Fig. 4k, to quantify the effect of stimulus speed, as (FRfast – 

FRslow) / (FRfast + FRslow), where FRfast and FRslow are the average firing rates during stationary 

epochs of respective stimulus movement speeds. 

Spike Train thinning  

Neurons with larger number of spikes, e.g., due to longer experiments, have greater sparsity than 

when the number of spikes is less. To remove this artifact and compare the degree of SAC across 

all neurons and conditions, we employed a spike thinning procedure. Randomly chosen spikes 

were removed such that that the effective firing rate became 0.5 Hz for all neurons and then 

computed the sparsity of this thinned spike train (Extended Data Fig. 2.8). This procedure was 
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used separately for CW and CCW directions to allow comparison of the degree of tuning in both 

directions, independent of the firing rate changes.  

Stability Analysis 

Stability of neural angular tuning was quantified for CW and CCW directions separately. All the 

trials were split into two randomly chosen equal and non-overlapping groups (~30 trials each) 

and separate tuning curves computed for each half, with 120 equally spaced, non-overlapping 

angular bins. The correlation coefficient was computed between these two groups (Cactual), which 

is a measure of stability. To compute the significance of stability, this procedure was repeated 30 

times, with different random grouping of trials, and correlation coefficient computed between the 

two groups computed each time. This provided a distribution of thirty values of stability Cactual. 

Same procedure was used for rate maps computed using random data (see z-score methods 

above) and correlation computed between two groups to obtain thirty different values of Crandom. 

A cell’s SAC was considered significantly stable if the following conditions were met: the 

nonparametric rank-sum test comparing the thirty Cactual with thirty Crandom was significant at 

p<0.05 and Cactual > Crandom. Untuned-stable responses were identified as responses with 

significant stability, but non-significant tuning (sparsity (z) < 2) and treated as a separate 

population in Fig. 2.2.  

Population Vector Overlap 

To evaluate the properties of a population of cells, sessions were divided into trials in the CCW 

and CW movement directions of the visual bar. Population vector overlap between CCW and 

CW movement direction at angles (Ɵr , Ɵm) for N single units was defined as the Pearson 

correlation coefficient between vectors (µ1,r , µ2,r ,… µN,r ) & (µ1,m , µ2,m ,… µN,m ) where µi,p is the 

normalized firing rate of the ith
 neuron at pth angular bin. Correlation coefficient of these sub-

populations taken across angles indicates the existence of retrospective coding (Fig. 3h, k and 

Fig. 2.5j.). Similarly, for computing coherence in either direction, population vector overlap 

between two groups of trials of the same bar movement direction (as defined above, stability 

analysis methods) was computed separately for CCW and CW trials (Extended Data Fig. 2.9). 

Populations of tuned, untuned but stable and untuned-unstable cells were treated separately.  
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Decoding analysis 

Using the stability labels as obtained from above, recorded cells were divided into three 

populations: tuned (sparsity z>2), untuned (sparsity z<2) and stable, untuned and unstable. All 

the trials across all the cells within each population were separated into two groups: ten, 

randomly chosen trials were treated as the ‘observed trials’ and these data were decoded using 

the firing rate maps obtained from the remaining trials or the ‘lookup trials’. Commonly used 

population vector overlap method was used between the lookup and observed trials using a 

window of 250ms.  Briefly, at each 250ms time point in the ‘observed data’, the correlation was 

computed between the observed population vector and the lookup population vectors at all 

angles. The circularly weighted average of angles, weighted by the (non-negative) correlations 

provided the decoded angle. The entire procedure was repeated 30 times for different sets of 10 

trials.  The error was computed as the circular difference between the decoded and actual angle 

at the observed time. Decoding of the stimulus distance (Extended data Fig. 2.15) was done 

similarly but by finding the distance corresponding to maximum correlation between ‘lookup’ 

and ‘observed’ data, since circular averaging is unavailable for linear distance close and away 

from the rat. 

Same cell identification 

Spike sorting was performed separately for each session using custom software29.  Identified 

single units were algorithmically matched between sessions to enable same cell analysis (Fig 

2.4&2.5). All the isolated cells in one session were compared with all the isolated cells in 

another session under investigation. Each putative unit pair was assigned a dissimilarity metric 

based on the Mahalanobis distance between their spike amplitudes, normalized by their mean 

amplitude. Dissimilarity numbers ranged from 2.5x10-5 to 17.2 across all combinations of units 

between two sessions. Putative matches were iteratively identified in an increasing order of dis-

similarity, until this metric exceeded 0.04. These putative matches were further vetted, using an 

error index defined on their average spike waveforms.  
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Estimating the independent contribution of head position, running speed and stimulus 

angle using GLM  

To compute the independent contributions of head position, running speed and stimulus angle, 

we employed an GLM based estimation of firing, using the glmfit function in MATLAB, as 

described recently21 . Head position and running speed were decoded in GLM using basis 

functions consisting of sinusoids. The log of running speed was used to ensure similar amount of 

data in each bin, and bins with zero speed were assigned an arbitrary, small value, which was on 

average equal to half the minimum non-zero running speed. Spike train and behavior data were 

downsampled to 100ms bins. The extreme one percentile of head position data and top one 

percentile of running speed data was excluded to remove the effects of outliers and ensure a good 

fit.  CCW and CW tuning curves for stimulus angle were computed seperately. The statistical 

significance of the resulting tuning curves was estimated by computing sparsity and a 

bootstrapping method described above and used recently21.  

Quantification of population remapping 

To compute the amount of remapping of firing rate, strength of tuning, preferred angle of firing 

and similarity between CCW and CW SAC, we used the responses of the same cells recorded 

from different experimental conditions and defined remapping metrices as  firing rate modulation 

index, difference between z-scored sparsity, circular distance between the angles corresponding 

to maximal firing, correlation coefficient between the firing rate responses and the peak value 

and angular latency corresponding to the cross correlation between their tuning curves in the two 

conditions. This calculation was repeated 100 times using a random permutation to break the 

same cell pairing, to obtain a null distribution. The mean and standard deviation of this 

distribution was plotted in Fig. 2.4e-g and Extended Data Fig. 2.14 and compared with the actual 

value of the corresponding remapping metric.   

Quantification of trial to trial variability of SAC  

Angular movement of the visual stimulus was separated into different trials starting and ending 

at 0o, which is the angular position in front of the rat. Mean firing rate in each trial was obtained 

by binning the spikes in that trial into 120 angular bins (3 degrees wide), and finding the average 

value of firing rates in each bin. Similarly, mean vector angle and mean vector length were 
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obtained using circ_r and circ_mean functions of the Circular Statistics toolbox in MATLAB59 

either by using all trials or only those trials when atleast 5 spikes were recorded (each trial was 

10s long, yeilding 0.5Hz lowerbound on mean firing rate).  

To determine if the varibility was correlated across simultaneously recorded tuned cells,  a co-

fluctuation index for firing rate was defined for all cell pairs as the Spearman correlation 

between the trial-wise firing rate vectors of both cells. Co-Fluctuation FR= 

spearman({F1,k},{F2,k}) where Fi,k denotes the mean firing rate of ith cell on the kth trial. 

Bootstrapping procedure to access significance of this index was employed by obtaining 100 

shuffled indices when the  order of trials was randomly reassigned. Similarly, to estimate the co-

fluctation of SAC, we defined a similarity metric for each trial as Si,k = crcf(rn,k ,Rn) where n 

denotes the angular bins, Rn overall tuning curve, and rn,k is the firing rate in the nth bin for the kth 

trial and crcf is the correlation coefficient function. Co-fluctuation of tuning was defined 

analogously as Co-Fluctuation SAC = spearman({S1,k},{S2,k}), and bootstrapped similarly as the 

firing rate co-fluctuation index. 
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Extended Data Figures 

Extended Data Fig. 2.1 | Relationship between different properties of SAC (a) (top) 

SAC quantified by z-scored sparsity is significantly correlated (r=0.82, p<10-150) with, but 

significantly greater than the z-scored direction selectivity index (DSI) (41% z>2 for 

sparsity vs. 31% for DSI, KS-test p=9.3x10-10). (Bottom) Cumulative histogram (cdf) of 

z-scored metric of sparsity and DSI. (b) Similar as (a), (1- (circular variance)) is 

significantly correlated (r=0.84, p<10-150) but significantly weaker (33% z>2 for (1- 

circular variance)) than sparsity. (KS-test p=7x10-6).  (c) Similar to (a) coherence is 

significantly correlated (r=0.89 p<10-150) but significantly weaker (26% z>2 for 

coherence KS-test p=6.3x10-16) than sparsity. (d) Similar to (a), but mutual information 

is significantly correlated (r=0.47 p=8.6x10-132) but significantly smaller than sparsity 

(37% z>2 for mutual information, KS-test p=7.2x10-5) 

  

Extended Data Fig. 2.0.1 Relationship between different properties of SAC 
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Extended Data Fig. 2.2 | Unimodality of SAC. Majority of (a) uni-directional as well as 

(b)bi-directional tuning curves were unimodal with only one significant peak (top row), 

whereas (c) untuned responses did not have significant peaks, as expected. Both tuned 

responses were used for the bi-directional cells, and only the tuned response was used 

for the uni-directional cells. Significant troughs, i.e. off-responses were not found for 

unidirectional or bidirectional cells (bottom row). Significance of a peak (or trough) was 

determined with the spike train shuffling analysis, similar to that performed to compute 

the z-scored sparsity. A peak (trough) was determined to be significant if it was larger 

(smaller) than the median value of peaks in all shuffles and had a height of at least 20% 

of the range of firing rate variation in the shuffle data. These criteria resulted in zero 

significant peaks for some tuned responses. 

  

Extended Data Fig. 2.0.2 
Unimodality of SAC 
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Extended Data Fig. 2.3 | Trial-to-trial variability and co-fluctuation of 

simultaneously recorded cells. For each cell, in each trial, we computed the mean 

firing rate (MFR), mean vector length (MVL) and mean vector angle (MVA) of SAC 

(see methods). (a) (Top) Trial to trial variation of firing rate was significantly (T-test 

p=3.4x10-12) higher for untuned cells (gray, mean coefficient of variation (CV)=1.22), 

compared to tuned cells (maroon, mean CV=1.02), when using all trials. (b) (Top) 

The difference in variability was not significantly correlated with SAC tuning strength 

(after factoring out firing rate, partial correlation r=-0.04, p=0.14). (a) (Bottom) The 

rate-variability was qualitatively similar between tuned and untuned cells when using 

only the responsive trials (firing rate above 0.5Hz, T-test p=0.2), and (b) (Bottom) 

uncorrelated (partial correlation after factoring out mean firing rate p=0.85) with the 

degree of SAC. (c) The variance of mean vector length, which is a measure of the 

non-uniformity of spiking as a function of the stimulus angle, was significantly greater 

for untuned cells (T-test p=0.002) than tuned cells and (d) was inversely related to 

SAC tuning strength (r=-0.19, p=7.3x10-10). (e) The circular standard deviation of 

MVA, which signifies the instability of SAC tuning from trial to trial, was significantly 

(p=4.1x10-94) smaller (11%) for tuned than untuned cells and (f) strongly anti-

correlated with SAC (r=-0.77 p=7.4x10-192). (g) This standard deviation of MVA was 

Extended Data Fig. 2.0.3 Trial-to-trial variability and co-fluctuation of 
simultaneously recorded cells 

 

 



41 
 

inversely correlated with MVL for tuned (r= -0.15 p=0.004), and for untuned cells (r= -

0.12 p=0.003). (h) It was also positively correlated with the location of tuning (r=0.18 

p=3.5 x 10-4), with lower variation for cells tuned to the front angles (abs. avg. MVA 

around 0o) than behind (±180o). Standard deviation of MVA was uncorrelated with 

location of tuning for untuned cells (p=0.64). (i) Two simultaneously recorded cells 

showing SAC in the CCW direction, (j) and zoomed in for trial numbers 53 to 59, 

showing mostly uncorrelated rate variability. (k) Only 17% of tuned cell-pairs showed 

significant (z>2) co-fluctuation of mean firing rates across trials, while 7% cell pairs 

had significantly opposing fluctuations (z<2). (see methods). (l) Only 9% of cell pairs 

showed significant co-fluctuation of SAC. SAC and firing rate co-fluctuations were 

computed between simultaneously recorded cell-pairs of tuned or untuned cells in 

only trials when the rat was stationary (see methods). CCW and CW tuning curves 

were treated as separate responses throughout these analyses. (m) The strength of 

rate co-fluctuation was positively correlated with overlap between the two tuning 

curves, quantified as the correlation coefficient between their SAC (r=0.178 p=0.004).   
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Extended Data Fig. 2.4 | Continuity of stability and sparsity measures. (a) across 

all neurons, the z-scored sparsity, i.e., degree of tuning, and stability varied 

continuously, with no clear boundary between tuned and untuned neurons. (b) Same 

distribution as (a), with color-coding of stable and tuned responses separated. (c) 

Detailed breakdown of SAC properties that had significant sparsity (i.e., tuned) or 

significant stability and whether these were observed in both directions (e.g., 

bidirectional stable) or only one direction (e.g., unidirectional tuned). If unidirectional, 

whether CW or CCW direction was significant. Nearly all cells that were significantly 

tuned in a given direction were also stable in that direction. 

Extended Data Fig. 2.0.4 Continuity of stability 
and sparsity measures 
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Extended Data Fig. 2.5 | Additional Examples of SAC tuned cells. For clarity, the 

CCW (blue) and CW (red) trials are stacked separately in all raster plot figures, even 

though these alternated every four trials. First five examples are of bi-directionally tuned 

cells (green y-axis); next four examples are of uni-directionally tuned cells (orange-

yellow y-axis). 

 

 

  

Extended Data Fig. 2. 0.5 Additional Examples of SAC tuned cells. 
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Extended Data Fig. 2.6 | Additional Examples of bi-directionally stable but 

untuned cells. These cells did not have significant sparsity (z<2) in either direction but 

had significant stability.  

 

 

  

Extended Data Fig. 2.0.6 Additional Examples of bi-directionally stable 
but untuned cells 
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Extended Data Fig. 2.7 | Firing rate differences between CW and CCW revolution 

direction. Firing rate of (a) unidirectional cells in tuned versus untuned directions shows 

significantly higher (paired t-test p=4.5x10-10) firing rates in the tuned direction (b) Same 

as (a), for bidirectional cells showing higher firing rate (paired t-test, p=2.0x10-6) in the 

revolution direction with better tuning. (c) Cumulative histogram of ratio between firing 

rate in untuned to tuned direction was less than one for 67% (65%) of cells. (d) Same as 

Extended Data Fig. 2.0.7 Firing rate differences between CW and CCW 
revolution direction. 
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(c), but for bidirectional cells (other/better since both directions are tuned) showing 65% 

of firing rate ratios were less than one. (e) To remove the contribution of firing rate to 

sparsity, the strength of tuning (z-score sparsity) difference was computed with spike 

thinning procedures (similar to Extended Data Fig. 2.8, see methods) ensuring equal 

firing rate in both directions. The difference in tuning strength (z-scored sparsity) was 

not significantly correlated with firing rate ratio for unidirectional (r=-0.09 p=0.16) as well 

as (f) bidirectional (r=0.005 p=0.95) populations. For bi-directionally tuned cells, SAC 

with higher z-scored sparsity was labeled as the ‘better’ response, and the SAC with 

lower z-scored sparsity was called ‘other’ response. 
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Extended Data Fig. 2.8 | The relative number of bidirectional cells increases with 

mean firing rate, but not the fraction of tuned cells. To remove the effect of firing 

rate on z-scored sparsity computation, we randomly subsampled spike trains to have a 

firing rate of 0.5 Hz (see methods). (a) The fraction of cells with significant sparsity, i.e., 

fraction tuned, increased with the firing rate for the actual data (r=0.11 p=2.2x10
-6

), but 

after spike thinning, there was no correlation (r=0.01, p=0.77). Thus, the true probability 

of being tuned was independent of the firing rate of neurons. (b) Proportion of 

bidirectional and uni-directional tuned neurons is comparable (10% vs 13%) with and 

without spike thinning. (c) Fraction of bi-directional cells compared to uni-directional 

cells increases with original firing rate, even after spike train thinning. (d) Spike thinning 

procedure reduces the sparsity of the tuning curves, as expected, due to loss of signal. 

After spike thinning, sparsity was significantly correlated in both directions of revolution 

(r=0.39, p=3.8x10-31) and this was not due to the rate changes because sparsity was 

uncorrelated with firing rates (r=0.01, p=0.72 for CCW sparsity and firing rate, r=0.02, 

p=0.54 for CW sparsity and firing rate).

Extended Data Fig. 2.0.8 The relative number of bidirectional 
cells increases with mean firing rate, but not the fraction of 
tuned cells. 
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Extended Data Fig. 2.9 | Population vector stability and decoding of stimulus 

angle. (a) Stability for CCW tuned responses (n=310).  Color indicates correlation 

coefficient between two non-overlapping groups of trials’ population responses (see 

methods). The maximum correlation values were pre-dominantly along the diagonal. 

Maxima along x-axis and y-axis were significantly correlated (Circular correlation 

coefficient r=0.97, p<10
-150

) (b) Same as (a) but using untuned stable cells (n=266) 

showed significant ensemble stability (r=0.91, p<10
-150

). (c) Same as (a) but using 

untuned and unstable cells (n=306). This was not significantly different than chance (r= -

0.16, p=0.09). (d) Same as (a), using tuned cells with their spike trains circularly shifted 

in blocks of four trials, showed no significant stability (r=1.1x10
-3

, p=0.99). (e)- (h) Same 

as (a)-(d), but for CW data. (i) Decoding CW direction shows similar results as in CCW 

direction (shown earlier in Figure 2). Similar analysis as shown in Fig 2 for the stimulus 

movement in CW direction. (Left) Decoding cue angle in 10 trials of CW cue movement, 

using all other CW trials to build a population-encoding matrix. Gray trace indices 

Extended Data Fig. 2.0.9 Population vector stability and decoding of 
stimulus angle. 
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movement of visual bar, colored trace is the decoded angle. (Right) Same as left, for 

shuffle data. (j) Same as (i) but using the untuned-stable cells in CW movement 

direction. (k) Median error between stimulus angle and decoded angle over 10 

instantiations of decoding 10 trials each for actual and cell ID shuffle data. Green 

dashed line indicates width of the visual cue; black dashed line indicates median error 

expected by chance.  
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Extended Data Fig. 2.10 | Retrospective coding of SAC cells versus prospective 

coding in place cells. (a) Top- A bidirectional cell responds with a latency after the 

stimulus goes past the angular position of the bar of light depicted by the green stripped 

bar. Bottom- Population overlap is above the 45o line, indicating retrospective 

response. (b) Same as (a) but for a prospective response, where the neuron responds 

before the stimulus arrives in the receptive field. Such prospective responses are seen 

in place fields during navigation in the real world, where the population overlap is 

maximal below the 45o line (adapted from earlier work29). Prospective coding was seen 

in purely visual virtual reality, but those cells encoded prospective distance, not position. 

  

Extended Data Fig. 2.0.10 Retrospective coding of SAC cells versus prospective coding 
in place cells. 
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Extended Data Fig. 2.11 | Photodiode experiment to measure the latency 

introduced by the equipment. Instead of a rat, we placed a photodiode where the rat 

sat. (a) The signal from the photodiode (purple trace) synchronized with bar position 

(black) was extracted and (b) cross correlation computed between the CW and CCW 

tuning curves of photodiode response. The cross correlation had maxima at a latency of 

-2.8o, which corresponds to a temporal lag of 38.9ms. This was much smaller than the 

latency between neural spike trains (median latency 22.7o, corresponding to a temporal 

latency of 315.3ms before accounting for the recording apparatus latency). For all the 

latency numbers reported in the main text, this small latency introduced by the recording 

apparatus was removed. 

  

Extended Data Fig. 2.0.11 Photodiode experiment to measure the latency 
introduced by the equipment. 
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Extended Data Fig. 2.12 | Significant retrospective SAC in the untuned stable cells 

but not unstable cells. (a) Average strength of tuning in CCW and CW direction is 

inversely related to the peak angular lag between the two SAC for bidirectional (r=-0.19 

p=0.04) as well as unidirectional cells (r=-0.16 p=0.02). (b) Absolute difference between 

strengths of tuning between CCW and CW directions was not significantly correlated 

with the peak angular lag in their cross correlation for bidirectional (r=0.13 p=0.14) or 

unidirectional cells (r=0.03 p=0.64).  This analysis was restricted to cells with 

retrospective lags, which were in majority. (c) Untuned stable cells too show significant 

retrospective bias, quantified using the cross correlation between the tuning curves in 

CCW and CW directions (median lag =13.6o circular t-test p=0.02). (d) This is not seen 

for the untuned unstable population (median =4.6o, circular t-test p=0.39).  

 

Extended Data Fig. 2.0.12 Significant retrospective SAC in the untuned 
stable cells but not unstable cells. 
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Extended Data Fig. 2.13 | Comparable retrospective coding in systematic and 

randomly revolving bar experiments. (a) Cross-correlations between CCW and CW 

tuning curves were averaged across all the bidirectional cells (green curves) for the 

systematic (latency for peak=25.7o) and random (16.7o) condition and showed a similar 

pattern of retrospective coding. (two sample KS-Test to ascertain if the distribution of 

latencies was significantly different, p=0.75). Unidirectional cells showed similar pattern 

for systematic (19.7o) and random (31.8o) conditions, but correlations were weaker than 

bidirectional cells. (b) Cumulative distributions show that under systematic and random 

conditions comparable number of cells had positive latency (80% each) for bidirectional 

cells, and (67% and 68%) unidirectional cells, respectively. 

Extended Data Fig. 2.0.13 Comparable retrospective coding in systematic and 
randomly revolving bar experiments. 
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Extended Data Fig. 2.14 | Additional properties of SAC invariance. (a) (Row 1) For 

same cells recorded in response to the movement of a green striped and green 

checkered bars of light, mean firing rate during stationary epochs (running speed< 

5cm/sec), was significantly correlated (r=0.48 p= 2 x 10-5). Preferred angles of SAC 

between the two stimulus patterns were also significantly correlated (circular correlation 

r=0.32 p= 5 x 10-3). Solid red dots denote preferred angles of cells tuned (sparsity (z) > 

2) in both conditions; gray dots are for cells with significant tuning in one of the 

Extended Data Fig. 2.0.14 Additional properties of SAC invariance. 
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conditions. (Row 2) Same as (a-Row 1), but for responses to changes of stimulus color, 

green and blue. Firing rate (r=0.45 p= 1 x 10-4) & preferred angle (r=0.36 p= 0.01) were 

correlated. (Row 3) Same as (a-Row 1), but for changes to predictability of the stimulus, 

also called ‘random’ vs. ‘systematic’. Firing rate (r=0.55 p= 2 x 10-13) & preferred angle 

(r=0.27 p= 0.01) were significantly correlated between systematic and random stimuli 

movement. (Row 4) Same as (a-Row 1), but for responses recorded across 2 days. 

Firing rate (r=0.28 p=3.2 x 10-5) & preferred angle (r=0.22 p=0.006) were correlated. (b) 

Similar to Fig 2.4, we computed the population remapping indices based on sparsity 

difference, preferred angle difference and peak value of cross correlation. The sparsity 

difference did not show a systematic pattern, but the other two metrics showed 

increasing remapping going from pattern (r=0.69, angle difference=49.1o) to color (r 

=0.64, angle difference=63.3o) to predictability (r =0.60, angle difference=68o) and 

across days (angle difference=77.9o).  (c) Percentage of tuned responses in the random 

stimulus experiments, showing, comparable bidirectionality (10% here vs 13% for 

systematically moving bar). (d) For same cells recorded in random and systematic 

stimulus experiments, the distributions of firing rates and SAC, quantified by z-scored 

sparsity, were not significantly different (cyan-systematic, purple-random, KS-test for z-

scored sparsity p=0.14, for firing rate p=0.27).  (e) Cross correlation between CCW and 

CW tuning curves showing lagged response for the majority of bidirectional cells in the 

random condition. (f) Same as (e), but for unidirectional cells. (g) Cross correlation of 

tuning curves (for tuned cells in the random stimulus experiment) between fast- and 

slow-moving stimulus was calculated from the subsample of data for a particular speed 

in CW and CCW direction separately and stacked together after flipping the CCW data, 

and was not significantly biased from zero (Circular median test at 0o, p=0.56). (h) 

Example cell showing similar SAC for data within 1 second of stimulus direction 

change(left), or an equivalent, late subsample(right). (i) Firing rate (KS-test p=0.73) and 

sparsity (KS-test p=0.87) were not significantly different for these two subsamples of 

experimental recordings. (j) In the randomly moving stimulus experiments, stimulus 

speed modulation index (see methods) was not significantly biased away from zero. (k) 

This modulation index was z-scored (see methods), and only 5.2% of cells had 

significant firing rate modulation beyond z of ±2.  
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Extended Data Fig. 2.15 | Relationship between SAC cells place cells and 

stimulus distance tuned cells. (a) The mean firing rates of cells was significantly 

correlated (r =0.43 p=4.5x10-10) between the SAC and spatial exploration experiments. 

(b) Majority of cells active during the SAC experiments were also active during random 

foraging in real world. (c) Almost all of the SAC cells were also spatially selective during 

spatial exploration. (d) Between the approaching and receding directions, the mean 

firing rates, computed when the rats were immobile, were highly correlated (r=0.96 

p=4x10-81) and not significantly different (t-test p=0.93). (e) Firing rates, computed when 

rats were stationary, during the stimulus angle and stimulus distance experiments were 

significantly correlated (r=0.22 p=0.008). (f) Population vector decoding of the stimulus 

distance (similar to stimulus angle decoding, Fig 2), was significantly better than 

chance. (KS-test p=5.5x10-10 for approaching and p=4.7x10-9 for receding data). 

Approaching stimulus decoding error (mean=204cm) was significantly lesser than that 

for receding (mean=231cm) (KS-test p=4.2x10-5). These errors were 63% and 74% of 

the error expected from shuffled data, which was greater than that for SAC decoding, 

Extended Data Fig. 2.0.15 Relationship 
between SAC cells place cells and stimulus 
distance tuned cells. 
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where the error was 33% of the shuffles, when controlling for the number of cells. (g) 

More than twice as many cells were unidirectional tuned for approaching (coming 

closer) movement direction, as compared to receding (moving away).  (h) For 

bidirectional cells, location of peak firing in the approaching and receding direction 

shows bimodal response, with most cells preferring either the locations close to the rat, 

i.e., 0 cm or far away, ~500cm. Unidirectional cells preferred locations close to the rat. 

(i) Population vector overlap, (Fig. 5h), was further quantified by comparing the values 

along the diagonal for actual tuning curves, with the spike train shuffles. The actual 

overlap was significantly above two standard deviations of the shuffles for distances 

close to the rat (around 0) and far away (beyond 400cm). 
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Extended Data Fig. 2.16 | Rewards and reward related licking are uncorrelated 

with SAC. (a) Example cells showing SAC from Figure 1, with reward times overlaid 

(black dots), showing random reward dispensing at all stimulus angles. (b) The average 

rate of rewards was uncorrelated with visual stimulus angle (circular test for uniformity 

p=0.99) (c) Rat’s consumption of rewards, estimated by the reward tube lick rate, was 

measured by an infrared detector attached to the reward tube28. As expected, lick rate 

increased after reward delivery by ~4 fold and remained high for about five seconds 

(green shaded area). This duration is termed the ‘reward zone’. (d) Lick rate inside the 

reward zone (green) was significantly larger than that outside (red, KS-test p= 2.3 x 10-

54). Inside as well as outside reward-zone lick rates were uncorrelated with visual 

stimulus angle (circular test for uniformity p=0.99 for both). 

 

Extended Data Fig. 2.0.16 Rewards and reward related licking 
are uncorrelated with SAC. 
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Extended Data Fig. 2.17 | Behavioral controls of SAC. To ascertain whether 

systematic changes in behavior caused SAC, we employed a ‘behavioral clamp’ 

approach and estimated tuning strength using only the subset of data where the 

hypothesized behavioral variable was held constant. (a) Example SAC tuned cells 

maintained its tuning even if we used only the data when the rat was (b) stationary 

(running speed <5cm/sec, blue, left). This was comparable to a random subsample of 

behavior, obtained by shuffling the indices of spikes and behavior when the animal was 

stationary (orange, middle) (see methods). 38% of cells were SAC tuned (sparsity z>2) 

when using only the stationary data which is substantially greater than chance, whereas 

Extended Data Fig. 2.0.17 Behavioral controls of SAC 
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42% were significantly tuned in the equivalent, random subsample and this difference 

was significant (KS-test p=0.02).  (c) Similar to (b) but using only the data when the rat’s 

head was immobile (head movement velocity < 10mm/sec). 43% and 42% of cells were 

significant tuned in actual behavioral clamp and equivalent subsample, and these were 

not significantly different (KS-test p=0.93) (d) Similar to (b) but using only the data 

beyond 5 seconds after reward dispensing, called non-reward. 43% SAC were tuned for 

non-reward, 43% for equivalent subsample, KS-test p=0.56.  (e) Using a subsample of 

data, from when the rat’s head was within the central 20 percentile of head positions 

(typically <10o), rat was stationary and there were no rewards in the last 5 seconds. This 

condition was called ‘analytical head fixation’. 28% of cells were SAC tuned under this 

behavioral clamp, which was lesser than that in an equivalent subsample (31%, KS-test 

p=0.05) (f) Tuning curves for head positions to the leftmost 20 percentile and rightmost 

20 percentile were correlated (circular correlation r=0.67 p=1.3x10-11, with 31% and 

32% cells tuned in the two conditions (KS-test p=0.67). The preferred angles of tuning 

were highly correlated and did not have significantly different concentration (circular t-

test p=0.86). (g) SAC tuning was recomputed in the head centric frame, by accounting 

for the rat’s head movements (obtained by tracking overhead LEDs attached to the 

cranial implant) and obtaining a relative stimulus angle, with respect to the body centric 

head angle. Overall tuning levels were comparable, between allocentric and this head 

centric estimation. First panel of (g) is the same as that in (a) since all SAC tuning 

reported earlier was in the allocentric or body centric frame. Using a subset of data 

when both overhead LEDs were reliably detected, 25% and 26% of cells were 

significantly tuned for the stimulus angle in the allocentric and egocentric frames (KS-

test p=0.9). Preferred angle of SAC tuning for tuned cells was highly correlated (r=0.81 

p=1.8x10-15) and not significantly different between the two frames (circular t-test 

p=0.82).  
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Extended Data Fig. 2.18 | GLM estimate of SAC tuning. To estimates the independent 

contribution of stimulus angle to neural activity, while factoring out the contribution of 

head position and running speed, we used the generalized linear model (GLM) 

technique (see methods)21. (a) Tuning curves obtained by binning methods were 

comparable with those from GLM estimation, for the same cells as used in Fig. 2.1. (b) 

Sparsity levels were comparable (KS-test p=0.07) and 40% of cells were found to be 

significantly tuned for stimulus angle using GLM based estimated, compared to 43% 

from binning in this subset of data (n=991). (c) Preferred angle of firing between GLM 

and binning based estimates of SAC were highly correlated (circular correlation test 

r=0.86 p<10-150) (d) Correlation between the SAC tuning curves from the two methods 

was significantly greater than that expected by chance, computed by randomly shuffling 

the pairing of cell ID across binning and GLM (KS-test p<10-150). (e-h) Properties of 

SAC tuning responses based on GLM estimates were similar to those based on binning 

method, as shown in Fig. 2.1. (e) Distribution of tuned cells as a function of the 

preferred angle (angle of maximal firing). There were more tuned cells at forward angles 

Extended Data Fig. 2.0.18 GLM estimate of SAC tuning. 
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than behind. (f) Median z-scored sparsity and its variability (SEM, shaded area, here 

and subsequently) of tuned cells as a function of their preferred angle. (Correlation 

coefficient r=-0.17 p=0.004). (g) Median value of the full width at quarter maxima across 

the ensemble of tuned responses increased as a function of preferred angle of tuning. 

(r=+0.33 p<10-150). (h) CDF of firing rate modulation index within versus outside the 

preferred zone (see methods) for tuned cells were significantly different (Two-sample 

KS test p=2.9x10-37).  
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CHAPTER 3: HIPPOCAMPAL REPRESENTATIONS FOR REAL WORLD 

SPACE DURING VIRTUAL ENVIRONMENT NAVIGATION 

Introduction 

 Body fixed virtual reality (VR) introduces a dissociation between distal visual cues, and other 

sensory cues, raising the question of whether hippocampal neurons would encode the virtual 

visual space, or the real world, room space. Here we show that, CA1 neurons of rats performing 

VR navigation have small, highly precise, 2cm2 place fields in the real-world space explored by 

head movements. These results imply that multisensory association present in the real world 

plays a stronger role in hippocampal firing than navigational demands tied to virtual navigation. 

Rodent hippocampal neurons are believed to support cognitive mapping, with spatially selective 

responses observed in the CA1 region, called place fields23. This selectivity is posited to be 

governed by distal visual cues6, although other sensory-motor cues also contribute60,61. Prior 

report of body-fixed rodents exploring a two-dimensional virtual reality (Fig. 3.1a) showed 

markedly reduced spatial selectivity to the virtual space14. This was true even while the subject 

was performing successful navigation in that space, indicated by edge avoidance and reward 

guided movements. On the other hand, VR systems allowing 360o rotation of the subject found 

significantly larger fraction of cells showing spatial selectivity13, similar to free foraging in open 

arenas. 

Simultaneous exploration of constrained real world (c-RW) and virtual reality 

(VR) spaces 

Owing to the body fixation, the range of head movements in our VR setup was substantially 

smaller than real world (RW) experiments. Head movements typically spanned positions around 

a semi-circular arc (Fig. 3.1b-c). We called this space explored by head movements as the 

constrained real world (c-RW) space. In 35 sessions from 4 rats performing random foraging in a 

2-meter diameter virtual reality (VR) environment, the range of exploration of the c-RW space 

was 4 orders of magnitude smaller than the virtual space (Fig. 3.1d-e). On the other hand, the 

incremental exploration with time for both the VR and the c-RW spaces was comparable with a 

faster time course for the c-RW space (Fig. 3.1f), suggesting that the lack of exploration of the  

c-RW space was not due to short experiment durations.  
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Do hippocampal neurons have spatial selectivity to this c-RW space? We recorded extracellular 

spiking activity of 626 putative pyramidal neurons from the dorsal CA1 region of the 

hippocampus using tetrodes (see Methods). c-RW tuning curves were obtained by spatial binning 

of spikes and occupancy (see Methods). Multiple neurons showed elevated firing in limited 

regions of the c-RW space, with almost no firing outside (Fig. 3.2a, Extended Data Fig. 3.1, 3.2). 

Often, neurons had a gradient in their firing response along the X-axis as well, suggesting 

encoding of the two-dimensional c-RW space, rather than merely a response to the angle of head 

with respect to the fixed body. After using partial correlations to factor out neuronal firing rates, 

strength of tuning in the c-RW was found to be uncorrelated with the tuning in the VR space 

(Fig. 3.2b). Out of the population of pyramidal cells recorded, 212 (or 33.9%) were deemed 

spatially selective to c-RW space, based on the z-scored sparsity of their tuning curves (see 

Methods). This fraction was significantly greater than that expected by chance (z=2 

corresponding to p=0.0228) as well as compared to the degree of spatial selectivity to the VR 

space (19%, Fig. 3.2c).  

Small place fields in the c-RW space 

The size of these c-RW place fields was quantified using full-width at half maxima (FWHM, see 

Methods). Median FWHM was 17.3% of the total space explored, which is comparable to typical 

place fields in free foraging29,56 (Fig. 3.2d). The small size of the c-RW space resulted in 

exceedingly small place fields, with a median value of 2.1cm2. To the best of our knowledge, 

these are the smallest place fields reported from the CA1 region, and at least an order of 

magnitude smaller than the other place fields reported in other constrained spaces17. In contrast 

to those experiments, as well as other experiments in VR13, rats in our experiments were not able 

to completely turn around. Hence, these highly precise place fields in our experiments arise even 

without the complete range of rotational movements and accompanying vestibular cues. Neurons 

with higher firing rates had better c-RW tuning (Fig. 3.2f) and larger place fields (Fig. 3.2g). 

Majority of neurons were non-directional (Extended Data Fig. 3.3), showing similar c-RW 

tuning in responses computed separately for up and downward head movements (corresponding 

to increasing and decreasing c-RW Y-position, respectively). 
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Fig. 3.1 | Simultaneous exploration of constrained real world (c-RW) and virtual 

reality (VR) spaces (a) Top- Experimental apparatus depicting the body-fixed rat 

running on an air levitated spherical treadmill. Bottom- Image of the rat, which is free to 

move its head, but not body, while the VR is immersive and projected all around the 

animal, as well as on the floor. (b)Illustration of the top view in the constrained RW 

space, showing head movements around a semi-circular arc. (c) Three example 

sessions showing head position occupancy in gray, and best fit circle in red. (d) The 

range of movements was defined as extent of pixels explored along X or Y direction, 

after excluding the bottom and top 1 percentile values of occupancy. c-RW range 

(mean=4.14cm and 8.42cm along X and Y directions) was 40 times smaller than for VR 

space (166.3 and 156.7cm X and Y respectively).(e) The area explored by head 

movements (mean=38.7 cm2) was more than 500 times smaller than the area explored 

by leg movements, in the virtual space. (mean=20005cm2) (f) Fraction of the total area 

explored increased with time, as expected and this increase was similar for c-RW and 

VR space.  

Fig. 3.1 Simultaneous exploration of constrained real world (c-RW) and virtual 
reality (VR) spaces 
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Rats explored the c-RW space using head movements, which may or may not be accompanied by 

leg movements. Less prevalent but significantly greater than chance c-RW tuning was observed 

during non-running epochs, compared to epochs when head movements were accompanied by 

running. (Extended Data Fig. 3.4) 

Fig. 3.2 | Small place fields in the c-RW space (a) Eight example cells showing c-RW 

place fields spanning different positions and have a gradient along the X-direction. Color 

corresponds to firing rates, whose range is denoted at the top. (b) c-RW tuning, 

quantified by z-scored sparsity was not significantly correlated with the VR space tuning 

(c) Significantly higher sparsity for c-RW space (33%), compared to the VR space 

(18%). (d) c-RW place fields were extremely small with a median value of 2.3cm2 but 

covered 20% of the region explored by the head movements, on average. (e) More c-

RW tuned cells were recorded for positions away from the center, along the y direction. 

(f) c-RW tuning was recomputed after ‘spike thinning’, to an effective firing rate of 

0.5Hz. c-RW tuning thus obtained was positively correlated (r=0.3 p=9.8x10-8) with the 

Fig. 3.2 Small place fields in the c-RW space 
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actual firing rate. (g) Firing rate was also positively correlated with the size of place 

fields (r=0.332 p=3.5x10-5) 

Independent contributions of head and leg movements on theta oscillations 

In free foraging experiments, navigation from one location to other is driven by self-generated 

running epochs. This changes the constellation of distal visual as well as proximal cues, which 

are consistently paired together. In our body fixed apparatus, leg movements control the changes 

in distal visual cues, whereas head movements enable a rotated sampling of the same visual cues 

along with other, uncorrelated, proximal, non-VR cues. Head movements could be initiated at 

different positions in the virtual space leading to inconsistent pairing between distal visual cues 

and proximal cues. What is the relation between the speeds of these head and leg movements? 

We found epochs of behavior when the two movements speeds were either correlated or 

inversely related. (Fig. 3.3a). To quantify their relation, we computed the correlation coefficient 

between leg and head movement speeds. Majority (91%) of movement bouts had positive 

instantaneous correlation between leg and head speeds, compared to the null distribution (Fig. 

3.3b, see Methods). Cross correlation between these speeds revealed that head movements 

typically preceded leg movements in vast majority (89%) of movement bouts with a median 

latency of 0.9 seconds (Fig. 3.3c). Such initiation of head movements prior to running is 

presumably to enable scanning of the virtual environment and locate the next virtual location of 

reward. Rats spent 25% and 23% of the non-reward time being stationary and engaging in head 

movements without running, respectively (Fig. 3.3d-e). 

Individual neurons as well as theta band oscillation of hippocampal ensemble is known to be 

affected by running speed29,62,63 and head movements are expected to have smaller effects64. 

Hence, we quantified the independent contributions of head and leg speeds to the excitation 

(Exc) and inhibition (Inh) ensemble activity (see Methods). Exc as well as Inh ensembles showed 

increased firing at higher leg speeds, as expected, but Inh showed stronger modulation than Exc 

(Fig. 3.3f). Modulation by head movements was weaker as evidenced by smaller partial 

correlation values, but majority of correlations were positive. Theta (6-12Hz, see Methods) 

power had a positive relation with leg as well as head movement speeds, but theta frequency had 

a negative correlation with both (Fig. 3.4g, Extended Data Fig. 3.5). This report of negative 

correlation between running and theta frequency is in apparent conflict with prior reports29 in the 
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same apparatus during one-dimensional VR track foraging, where no significant correlation was 

reported. Unlike those analyses which excluded stationary and low (v<10 cm/sec) speed epochs, 

we used all behavioral data, binned on a logarithmic scale of speeds. This led to results similar to 

recent report65 as well as the reported negative correlation between running speed and theta 

frequency by others66. Hence, leg movements exerted greater control over theta oscillations 

ensemble firing and head speed showed similar but weaker effect. But spatial selectivity was 

found in the space explored with head movements and not leg movements. 

Fig. 3.3 | Firing and theta oscillation dependence on leg and head movements.   

(a) Instances of leg and head movement across 2 second windows showing similar (left) 

responses, and head movement signal(red) preceding the leg movements in 

green(right). (b) Cumulative histogram showing majority of bouts having positive 

instantaneous correlation between leg and head movements, (c) but peak cross 

correlation at negative latency for 88% of actual data. (d) 2-D histogram on log scale of 

behavior, binned using logarithmically spaced bins for leg and head speeds. Vertical 

line indicated the cutoff for head movement vs stationary 20mm/sec and horizontal line 

denotes the cutoff on leg speed for running vs stationary 5cm/sec (e) Average 
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percentage of time spent in different behavioral epochs. (f) 2D histograms, averaged 

over excitatory or inhibitory neurons of firing, after normalizing by the 1st bin, 

corresponding to lowest leg and head speeds. (g) Similar as (f) but for theta power and 

frequency, computed from the local field potential (see Methods).  

Place cells firing during free foraging is modulated by the phase of the theta-cycle67,68 and this 

relation between phase and position transforms the firing rate code into a temporal code69. 

Hence, we analyzed the populations of c-RW spatially tuned as well as untuned cells for theta 

phase modulation (see Methods). Population average responses of phase modulation were 

comparable (Extended Data Fig. 3.6) for tuned and untuned cells. Further, we classified the 

spikes of a tuned cell to be inside and outside its c-RW place field, defined as the region within 

its FWHM. Again, theta phase modulation was comparable for the spikes inside and outside the 

c-RW field suggesting that the theta phase modulation was independent of c-RW space tuning. 

No significant difference was found between autocorrelation theta periods, both for inside vs. 

outside the c-RW place field, as well as for cells tuned and untuned for the c-RW space. Theta 

phase precession was also seen for firing in the c-RW place fields, but this effect was only 

significant in 31% of the c-RW tuned cells. Hence, theta phase modulation is independent of the 

c-RW tuning, and phase precession in c-RW is only seen in a subset of tuned neurons. Burst 

spiking was more common inside the place field than outside, even after accounting for the 

differential firing rates inside and outside the c-RW place field, but theta-range frequency of 

firing was unaffected (Extended Data Fig. 3.7). 

Hippocampal neurons have previously been shown to encode spatial information in multiple 

frames of reference70. Abrupt changes of the environment drive bi-stable flickering between past 

and present representations71. Although spatial selectivity was impaired, directional selectivity 

has been reported in the VR setup used in these recordings21. We wondered if spiking 

corresponding to the VR-angle, determined by distal visual cues is sequestered with respect to 

the c-RW spiking. Fraction of neurons tuned for both angles was comparable to that expected by 

chance due to independent processes. We also did not find evidence of c-RW tuned and VR-

angle tuned units occupying separate theta neither cycles nor different phases of the theta cycle 

(Extended Data Fig. 3.8). The VR-angle selectivity was causally governed by distal visual cues, 

but c-RW tuning was found in VR environments with blank as well as rich distal visual cues. 
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Further, c-RW tuning found during passive presentation of a moving bar of light was inversely 

related to hippocampus representation to the angle of the bar of light72. (Extended Data Fig. 3.9) 

Although distal visual cues in the VR suffice to guide navigation, they are insufficient to create 

spatial selectivity. In spite of cognitive and navigational demands of the visual VR, spatial 

selectivity is found for the c-RW space, where multisensory cues are consistently paired together 

(for example, self-motion and olfactory). c-RW tuning is non-directional and present during 

epochs of immobility when the distal visual cues, controlled by running do not change. These 

results can be explained by the hypothesis that multisensory association drives hippocampal 

firing more strongly than cognitive mapping. This hypothesis also bridges the gap between our 

experiments and others13 where the animals were afforded 360o rotation. The pairing of self-

motion cues with visual cue changes in VR in those experiments lead to spatial selectivity for the 

VR space.  
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Methods 

Electrophysiology:  

Data previously reported14,21 from VR experiments was reused in these analyses. The virtual 

environment was a 200-cm diameter circular platform at the center of a 300 cm × 300 cm room 

with rich set of distal visual cues. There were either two or three fixed reward locations. 

Electrophysiological data from the dorsal CA1 were obtained using hyperdrives with 22 

independently adjustable tetrodes. Spike extraction and sorting were done offline using custom 

software. 

Head position and leg movement tracking: 

Rats were body restricted with a fabric harnesses as they ran on an air-levitated spherical 

treadmill of 30cm radius. The rat was placed at the center of a cylindrical screen of radius 50cm 

and 74 cm high. Body restriction allowed the rat to scan his surroundings with neck 

movements. Running speed was measured by optical mice recording rotations of the spherical 

treadmill at 60Hz with an accuracy of 0.1mm. Head movement with respect to the harnessed and 

fixed body was recorded at 55Hz using an overhead camera tracking two red LEDs attached to 

the cranial implant using the methods described above. (Chapter 2, Methods)  

Rate map, z-score and FWHM calculation:  

c-RW rate maps were obtained by binning the head position and spikes in a square grid of       

300 x 300 mm, where the actual range of the head positions was limited to a smaller region of 

this grid. Firing rate responses were computed by excluding bins with less than 0.3 seconds of 

occupancy as well as excluding data within 3 seconds after reward dispensing. Resultant rate 

responses were smoothed by applying a 6 mm2 Gaussian smoothing window on the occupancy 

and spike responses. To quantify the degree of modulation, we computed sparsity s of rate map. 

First, we restricted the analysis to only those bins where sufficient occupancy of head position 

was observed, and these bins were linearized, leading to rn as the firing rate in the 𝑛𝑡ℎ bin and 

sparsity as:  
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To assess the statistical significance of sparsity, we used a bootstrapping procedure, which does 

not assume a normal distribution. Briefly, for each cell, spike trains were circularly shifted by 

different random amounts of time and the sparsity of the randomized data computed. This 

procedure was repeated 100 times with different sets of random value shifts. The mean value and 

standard deviation of the sparsity of randomized data was used to compute the z-scored sparsity 

of actual data using the function zscore in MATLAB. The observed sparsity was considered 

statistically significant if the z-scored sparsity of the observed spike train was greater 2, which 

corresponds to p < 0.0228 in a one tailed t-test. Full width at half maxima (FWHM) was 

computed as the bins in which the response was above 50% of the range of C-RW firing rate 

response. 

Head and leg movement analysis: 

Head and leg movement speeds were obtained by taking the temporal derivative of the head 

position measured through LED-tracking (see above) and leg movements from the optic sensors. 

Entire session was divided into different behavioral bouts, which were demarcated by instances 

of reward dispensing. Cross correlation between leg speed and head-movement speed was 

computed using the xcorr function in MATLAB. Analysis was restricted to bouts which were at 

least 30 seconds long. The corresponding null distribution was obtained by circular shifting of 

the head speed, with respect to leg speed. Correlation between the two speeds was computed by 

using the corrcoef function. 

Excitation and Inhibition firing dependence on speed:  

Single units of excitation and inhibition were labeled based on their mean firing rates (MFR) and 

complex spiking index (CSI) which is the fraction of burst spiking instances with second spike 

having smaller amplitude than the first one. Excitatory units were identified as having a CSI 

above 15 and MFR between 0.2 and 8Hz. Inhibitory units were identified as those having CSI 

below 10 and MFR above 10Hz. These populations of cells were treated separately in Fig. 3.3. 

Theta band power, frequency, and phase calculations: 
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Signals from each tetrode were acquired by one of three 36-channel head stages, digitized at 40 

kHz, band pass-filtered between 0.1Hz and 9 kHz, and recorded continuously. To obtain theta-

band properties from this local field potential (LFP), this signal was first band passed between  

6-12Hz. Theta power was computed by applying the Hilbert transform on the band passed signal 

and taking its magnitude. Theta phase was computed as the corresponding phase of the band 

passed signal. Instantaneous frequency was calculated from the zero crossings of theta phase. 

Phase modulation of spiking was computed by assigning theta phase from the same tetrode and 

then binning the corresponding phases into 30 bins. 
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Extended Data Figures 

 

Extended Data Fig. 3.1 | Response of the eight cells in Fig. 3.1, shown here for the 

VR space, depicted with the same color scale. 

  

Extended Data Fig. 3.0.1 Response of the eight cells in Fig. 3.1, 
shown here for the VR space, depicted with the same color 
scale. 
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Extended Data Fig. 3.2 | 12 simultaneously recorded cells showing different c-RW 

tuning curves. 

  

Extended Data Fig. 3.0.2 Simultaneously recorded cells showing different c-
RW tuning curves. 
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Extended Data Fig. 3.3 | c-RW place fields are not directional. (a) 3 example cells 

showing similar c-RW tuning during downwards head movement (decreasing Y position 

values, left) and upwards (increasing Y position values, right). (b) Center of mass (CoM) 

of place fields using the data in upward or downward only head movement was highly 

correlated. (c) Similarly, the mean firing rate in the two movement directions was 

unbiased and highly correlated (r=0.98 p<10-100). (d) We further quantified this by 

computing a Firing rate modulation index as (FRDown – FRUp)/ (FRDown + FRUp). This 

index was bootstrapped by randomly shuffling the head movement direction IDs. The 

indices for actual data were not significantly different from shuffle. (d) Similar to the 

firing rate modulation index we also bootstrapped the correlation between the tuning 

curves in two directions. These were also not significantly different from chance levels.  

 

Extended Data Fig. 3.0.3 c-RW place fields are not directional. 
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Extended Data Fig. 3.4 | Effect of movements on c-RW tuning. (a) Three example 

cells showing c-RW tuning. These cells showed higher firing rates at higher running 

speeds (first column), but head speed did not have a similar effect (middle column).     

c-RW position was converted to an angle estimate, by fitting a circle to obtain c-RW 

Angles. (b) Sessions were bifurcated into 4 epochs, based on the leg speed (Run= leg 

speed>5cm/sec) and head movement speed (Scan=head speed>2cm/sec). Maximum 

c-RW tuning is seen for epochs with running and head movements (27%), followed by 

those epochs with only head scanning (21%). Epochs without head movements had low 

c-RW selectivity (7 and 10%). Only epochs which had 300 seconds of data or more 

were used herein. (c) Strength of c-RW tuning was positively correlated (r=0.131 

p=0.003) during head scanning epochs with and without running. (d) Peak location of 

tuning was not significantly correlated between these two epochs.  

Extended Data Fig. 3.0.4 Effect of movements on c-RW 
tuning 
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Extended Data Fig. 3.5 | Same tetrode comparison in RW and VR. (a) 2 examples of 

tetrodes recorded on the same day in RW and VR, showing different relationship 

between theta frequency (red traces) and running speed (shown on log10 scale). (b) 6 

tetrodes showing similar response of theta frequency to running speed in VR and RW 

environments. (c) 7 tetrodes showing opposite effects of running speed on theta 

frequency with decreasing theta frequency in VR (red) but increasing theta frequency in 

RW (blue). 

  

Extended Data Fig. 3.0.5 Same tetrode comparison in 
RW and VR. 
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Extended Data Fig. 3.6 | Precession in c-RW space. (a) Average theta phase 

modulation for tuned as well as untuned cells had comparable profiles during running 

and non-reward epochs (mean ± std = 68.4o ± 77.2o tuned, 72.4o ± 78.0o untuned). (b) 

Theta phase modulation was similar for spikes inside and outside the c-RW place field 

(mean ± std = 73.8o ± 77.4o inside, 62.6o ± 77.2o outside), using only the tuned cells with 

at least 100 spikes inside as well as outside the c-RW tuning zone. (c) Phase 

modulation was further quantified by the mean vector length (MVL) and angle (MVA). 

MVL values were highly correlated (r=0.68 p<10-100) but not significantly different for 

spiking inside vs outside the c-RW place field (T-test p=0.81). (d) MVA were biased to 

values between 50 o to 100o but correlated for spiking inside and outside c-RW place 

fields (Circular correlation test r=0.5 p=1.7x10-7). (e) Majority of tuned as well as 

untuned units had larger local field potential (LFP) period than spiking period obtained 

from the peak in autocorrelation in the 50-200ms range14. LFP-ST θ period differences 

were not significantly different between tuned and untuned cells (KS-test p=0.25 µtuned= 

+4.1ms and µuntuned= +6.5ms). (f) Autocorrelation peak differences were also not 

Extended Data Fig. 3.0.6 Precession in c-RW space 
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significantly different for spiking inside vs. outside the c-RW place fields (KS-test p=0.28 

µinside= +9.7ms and µoutside= +15.1ms). (g) Two c-RW tuned example cells showing 

negative correlation between the epochs of time spent inside the c-RW place field and 

theta phases. An epoch of entry and exit of the animal’s head in and out of the c-RW 

place field was considered valid if it lasted at least 500ms, had more than 1 spike and 

running speed>5cm/sec throughout. Time spent inside each epoch was mean adjusted, 

by the average spike time of spikes in the current epoch. (h) Circulo-linear correlation 

between ‘time inside c-RW field’ and theta phase was bootstrapped by obtained 

different circularly shifted theta phases in each epoch. This correlation, called 

‘precession’ was significant for 31% of neurons at a z-score level of 2. (i) Strength of    

c-RW tuning was positively correlated with precession, after factoring out the mean 

firing rates (partial correlation r=0.25 p=0.02) 
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Extended Data Fig. 3.7 | Burst-firing properties of c-RW cells. (a) Similar to free 

foraging experiments, spiking in the body constrained VR was also observed to have 

transient bursts of spiking, earlier called ‘Motifs’14. Fraction of spikes inside the Motif 

was higher for cells with higher firing rates, but this could occur because the Motif 

threshold was fixed at 5Hz. (b) We recomputed the fraction of spikes inside a burst, 

using an adaptive threshold, which accounted for the number of spikes inside or outside 

the c-RW zone, to find similar trend as (a). (c) Fraction of spikes emitted inside of bursts 

was significantly higher inside than outside the c-RW place field for majority of cells, 

such that (d) the ratio was above unity for 70% of cells. (e) The theta frequency of 

spiking, computed by finding the median of the ISIs in the theta range (6-12Hz and 

hence 83-166ms range in ISI time). This was not significantly biased for spikes inside or 

outside the c-RW fields or by (f) slow or fast running epochs. 

  

Extended Data Fig. 3.0.7 Burst-firing properties of c-RW 
cells 
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Extended Data Figure 3.8 | Conjunctive representations of c-RW angle and VR- 

angle. (a) 3 example cells showing elevated firing at specific c-RW angles but all VR-

angles resulting in horizontal tuning curves. (b) 33.2 and 34.3% of all cells were tuned 

for c-RW angle and VR angle, resulting in an expected overlap of 11.4%. This was 

comparable to the actual fraction of cells having VR angle as well as c-RW tuning 

(12.8%). (c) Three examples of cross correlation between spikes of c-RW and VR-angle 

tuned cell pairs, showing comparable central correlation of spiking for small 

latencies(±70ms) and first harmonic of theta period range latencies (+70 to +210ms and 

-210 to -70ms). (d) Spike train correlation within the same theta cycle (±70ms) were 

correlated (r=0.95 p<10-100) and not significantly different from those in a preceding       

(-210 to -70ms) or succeeding theta cycle (+70 to +210ms) (KS-test p=0.68). (e) 

Example of spiking from one VR-angle tuned cell (blue) and two c-RW tuned cells (red 

and magenta) showing no evidence of theta cycle sequestering. (f) Co-spiking in theta 

cycles was further quantified by computing the fraction of theta cycles shared by tuned 

Extended Data Fig. 3.0.8 Conjunctive representations of c-RW angle and VR- 
Angle. 
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cell pairs of the same category (c-RW pair or VR-angle) and comparing the overlap with 

that expected by chance.  These were not significantly different (T-test p=0.14). (g) 

Similar to (f), for cell pairs of C-RW and VR-Angle tuned cells (T-test p=0.21). (h) C-RW 

tuned cells and VR-Angle tuned cells had comparable and highly overlapping theta 

phase modulation profiles. 
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Extended Data Figure 3.9 | c-RW tuning persists in VR environments with and 

without distal visual cues. (a) Using GLM framework to estimate independent 

contributions of VR-angle, VR-Space, running speed and C-RW position (converted to 

one dimensional c-RW angle estimate using best-fit circle) to single unit firing, we 

replicated prior results that VR angle tuning is at chance levels when distal visual cues 

are either absent or ‘symmetric’ i.e., similar on all 4 virtual walls. Maximal tuning to VR-

angle was obtained in a ‘passive VR/SAC’ experiment where a bar of light rotated 

around the animal, independent of their movements72 (See Chapter 2 above). VR-angle 

in this experiment corresponded to the angular position of the bar of light. (b) Significant 

c-RW tuning was observed in all types of VR environments. (c) VR angle and c-RW 

tuning of single units was not correlated in the active VR experiments (r=0.004 p=0.87), 

but significantly anti-correlated for the passive VR experiments (r=-0.06 p=0.01). (d) 

The relation between VR-angle tuning and c-RW tuning was re-computed on a per-

session basis, by computing the median sparsity (z-scored) in sessions with at least 10 

Extended Data Fig. 3.0.9 c-RW tuning persists in VR environments with and without 
distal visual cues. 

 



85 
 

units. This correlation was negative but not significant for active VR experiments         

(r=-0.11 p=0.4) but significantly anti-correlated for the passive VR sessions (r=-0.254 

p=0.04). 
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CHAPTER 4: STREAMING VISUAL STIMULI ELICIT SELECTIVE RESPONSES 

IN RODENT HIPPOCAMPUS 

Introduction  

Primate hippocampus is believed to be involved in object place association3, whereas in humans, 

the hippocampus is believed to be the centrally involved in formation of short-term memories1. 

In rodents, on the other hand, hippocampus is primarily studied in the context of spatial 

memories, and the seat of a cognitive map of space23. This cognitive map is believed to be 

abstract and allocentric, creating a distinction between the hippocampus and cortical regions, 

which respond to sensory stimuli in the retinotopic frame.  Recent work has shown selectivity in 

hippocampal regions to non-spatial variables, but this selectivity goes away upon removal of 

task18 or memory41 demands.  

We recently reported that neurons from hippocampal subregion CA1 can encode the distance, 

angle and movement direction of a simple visual stimulus – a vertical bar of light, without active 

movement, rewards or memory requirements72. This reinstates hippocampus at the apex of the 

visual processing hierarchy46 and suggests that it shows selective responses to simple sensory 

stimuli, akin to the cortical areas. But hippocampus does not show selective responses to other 

simple visual stimuli like Gabor patches and drifting gratings73, which are traditionally used to 

study visual cortical responses. However, these artificial stimuli lack the spatial or temporal 

characteristics of natural visual stimuli and might not be predictive of neural responses to 

complex visual scenes. Hence it is necessary to ascertain the response and selectivity of 

hippocampal neurons to complex visual scenes, having naturalistic spatio-temporal associations, 

to understand the hierarchical processing of visual information from lateral geniculate nucleus to 

the hippocampus. 

Rodent hippocampus shows selective responses to streaming visual stimuli. 

To answer these questions, we investigated single neuron responses in hippocampal as well as 

visual cortical areas to the presentation of a 30 second clip from the movie Touch of Evil 

(Welles, 1958) from a publicly available dataset73. Awake, head fixed mice were shown 60 

repetitions of the movie split in 2 blocks of 30 trials each. Movie presentation was part of an 

experimental protocol where a battery of other, simple visual stimuli were also presented. The 
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animals were head-fixed but free to run on a circular disk throughout the visual stimulus 

presentations. Movie was contrast and luminance normalized (see Extended Data Fig. 4.1 for 

snippets and details). 4-6 Neuropixels probes simultaneously recorded single unit spiking from 

contralateral hemisphere to the visual stimulus. Similar results were seen in wild-type as well as 

mutant genetic lines, and data from all mice was combined (17 rats, 4 female, 11 wild type, 6 

from transgenic Cre lines (3- Sst IRES-Cre, 2- Vip-IRES-Cre, and 1- Pvalb-IRES-Cre lines)). A 

total of 12010 broad spiking neurons were analyzed, which were identified by an automated 

clustering algorithm (see Methods), in 17 sessions, each from a separate subject. Running affects 

the neural firing in visual74 as well as hippocampal75,76 areas. To avoid confounding effects of 

running on neural spiking, we only used data from the stationary epochs (see Methods) and only 

from sessions with at least 50% of data obtained in stationary behavior.  

Mean tuning responses were obtained by averaging firing responses to different movie frames 

across all stationary epochs and significance of the response was obtained by bootstrapping 

procedures (see Methods). As expected and reported earlier33,77–79, large fraction of visual 

cortical neurons showed selective responses to different movie frames (Extended Data Fig. 4.2). 

Highest prevalence of selectivity at p=0.0228 level was seen in antero-median and posterior-

medial higher visual areas (95.6%), which is quite higher than that reported earlier33 (~40%). 

This higher selectivity could be because of our strict criteria of excluding running epochs as well 

as using extra-cellular spiking instead of the calcium transients, as done previously. More 

surprisingly, we found single unit responses in hippocampal regions showing succinct, bar code 

like firing rate responses (Fig. 4.1a), similar to that in visual areas reported in anesthetized 

cats77,78,80.  We call this streaming movie selectivity (SMS) or tuning.  Largest prevalence of 

tuning was seen in subiculum (23.1%) followed closely by dentate gyrus (21.6%). Selectivity 

was lower but still greater than that expected by chance in CA3 (10.1%) (Fig. 4.1b). During free 

foraging, hippocampal firing responses typically have a single peak called its place field81. 

Similarly, bar of light selective neurons in CA1 were also unimodal72. To further characterize 

SMS, we computed the full width at half maxima (FWHM, see Methods) for the hippocampal as 

well as cortical tuned neurons.  Since we observed many SMS neurons to have multiple peaks as 

well as troughs, we did not require FWHM to be contiguous. In all regions, peak-FWHM 

(elevated mean firing frames) was narrower than troughs (dips in mean firing) and hence the 
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better FWHM was predominantly of the peak type (Extended Data Fig. 4.3). For all regions, 

median FWHM was < 60 frames, or <7% total length of each clip (30 seconds, 900 frames). 

Hence SMS tuning was sharper than place cells whose fields typically cover a third of the 

experimental arena on one-dimensional tracks32. 
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Fig. 4.1 | Hippocampal neurons show selective responses to movie frames. (a) 

Example raster plots (top) and mean rate responses (blue, bottom) as a function of the 

frame number of movie presented. Gray background in raster signifies the stationary 

epochs used in analysis to compute mean rate responses. White gaps represent 

epochs when the animal was moving, and hence that occupancy as well as spiking was 

excluded from analysis. Red line and shaded area signify mean and standard deviation 

of firing rate response expected by chance obtained by bootstrapping procedures (see 

Methods). 2 example cells each from 4 hippocampal regions shown, with increased 

spiking responses to different frames in the movie. (b) Largest prevalence of selectivity 

in broad spiking neurons was seen in subiculum (23.1%, 161 out of 696) followed 

closely by dentate gyrus (21.6%, 283 out of 1310) then CA1 (14.9%, 764 out of 5142) 

and least by CA3 (10.1%, 79 out of 783). Green vertical line indicates threshold of z>2 

(see Methods) and the green horizontal line indicates chance level of 5%. (c) Stack 

plots of all tuned cells, arranged in the increasing order the frame corresponding to 

highest firing rates. Response of each cell was normalized to ±1 and smoothed with a 

moving Gaussian window of 300ms.  

How do the visual features of the movie affect SMS? For each neuron, we identified frames with 

a ‘significant response’, where the actual SMS response was outside the mean±2std range 

obtained from the bootstrap data. Peaks and troughs of response were quantified from this 

significant response (see Methods). Unlike visual cortical areas, the distribution of maximal 

firing was more biased in hippocampal regions. DG and CA1 had greater prevalence of minima 

in firing between frames 100 to 400, when the view was panning rightwards following the person 

running in the same direction in the movie (Extended Data Fig. 4.4). This effect was also 

observed in the stack plots of tuned cells (Fig. 4.1c), where a large fraction of dentate and CA1 

neurons showed reduced firing in that range of frames. Subiculum neurons showed the opposite 

effect with larger concentration of peaks in this range of frames. 
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Fig. 4.2 | Deeper layers of CA1 have larger mean firing rates as well as streaming 

movie selectivity (SMS) (a) Location of all broad spiking neurons from CA1 region 

were assigned to a Neuropixel recording site corresponding to the channel with largest 

spike amplitude. These were fitted with a circular arc in the medio-lateral and inferior-

superior plane, to obtain depth values; blue deepest (0), yellow superficial. (b) Similar to 

(a), fitting in 3D yielded distance along the major axis, cyan anterior-medial, pink 

posterior-lateral. (c) Mean firing rate, averaged over all frames from the stationary 

epochs was inversely related to the depth (Spearman correlation r=-0.1 p=1.27x10-13) 

(d) Mean firing rate, was also weakly inversely related to the distance along the major 

axis (Spearman correlation r=-0.03 p=0.02) (e) SMS was inversely correlated to depth, 

even after factoring out the effect of firing rate by partial correlation (r=-0.14 p=1.76x10-

Fig. 4.2 Deeper layers of CA1 have larger mean firing rates as well as streaming 
movie selectivity (SMS) 
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23) (f) SMS was uncorrelated with distance along the major axis (partial correlation with 

firing rate r=-0.004 p=0.77) (g) Joint distribution of firing rate with depth and distance 

along major axis. (h) Same as (g), for SMS.  

Deeper layers of CA1 have higher mean firing rates as well as streaming movie 

selectivity (SMS)  

In primates and other higher mammals, cortical areas show feature maps in general and cortical 

columns in particular, where preference of cells for stimulus parameters is topographically 

mapped22,82. In rodents, the preference of neurons is arranged randomly, albeit with some weak 

spatial clustering83. On the other hand, spatial encoding in hippocampus is non-topographic since 

a local cluster of neurons can cover the entire testing environment84.  But spatial encoding is 

more prevalent in dorsal, compared to ventral hippocampus85; the latter is believed to be 

involved in emotion and stress processing86. Also, neurons in deeper sub layers of CA1 show 

different firing properties and oscillation entrainment than superficial layers87. Hence we 

leveraged the high density recording capabilities of Neuropixels probes combined with 

registration of recording sites to a common coordinate framework88, to investigate the neural 

firing and SMS dependence on depth (Fig. 4.2a) and along the major (longitudinal) axis of CA1 

(Fig. 4.2b). Mean firing rates of broad spiking, putatively pyramidal neurons were higher in 

deeper sub-layers than superficial (Fig. 4.2c), showing continual increase with depth, similar to 

that shown for CA1 neurons during free foraging87. No clear pattern was seen along the major 

axis (Fig. 4.2d). Interestingly, neurons in deeper layers were also better tuned for SMS, with 

prevalence of ~40% (Fig. 4.2e), similar to better coupling of place cells to landmark cues in 

deeper than superficial layers45. No clear pattern was seen along the major axis (Fig. 4.2f) 

suggesting that visual information is equally encoded by dorsal as well as ventral CA1 neurons, 

in contrast to spatial information. Hence mean firing rate responses (Fig. 4.2g) as well as SMS 

(Fig. 4.2h) distribution was non-uniform in CA1 neurons. 

Sub-Poisson variability of streaming movie selectivity (SMS)  

Neural responses in cortical as well as hippocampal regions are typically noisy, with the 

presentation of same stimulus causing varied responses, even in tuned cells, which is not 

necessarily driven by membrane potential variability89,90. It has been reported that the onset of 

preferred stimulus (one which causes selective responses) leads to reduction of spiking 
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variability across multiple cortical regions91. Hence, we quantified the trial-to-trial variability of 

SMS. For tuned cells with at least 30 trials where the animal was stationary throughout, we 

computed the coefficient of variation (cov) as the ratio of mean and standard deviation of the 

SMS response. cov calculations can be biased by different number of total spike count inside and 

outside the FWHM defined earlier. Hence, we divided all frames into 2 zones- inside (higher 

firing rates) and outside (lower) such that expected spikes in each group was approximately 

equal.  cov was low in visual(Fig. 4.3a) as well as hippocampal (Fig. 4.3b) areas, and neurons 

were sub-Poisson (cov<1), unlike earlier reports33,72,91 where cov was greater than or close to 

unity. SMS variability was comparable in visual as well as hippocampal regions (Fig. 4.3c), 

which, to the best of our knowledge, is the first direct comparison of variability in both brain 

regions in the same experiments and to the same stimulus. Stability of SMS was quantified for 

tuned cells as the correlation between movie tuning curves obtained from 2 non-overlapping sets 

of first and last 30 trials. In all brain regions, stability was greater than that expected by chance 

(see Methods), but lesser in hippocampal regions than cortical (Fig. 4.3d). Trial to trial variability 

was negatively related with strength of movie tuning (Fig. 4.3e) as well as the stability (Fig. 

4.3f), as expected. Tuned cell pairs from dentate gyrus showed higher co-fluctuation of firing as 

well as SMS, compared to chance levels, and to other brain regions (Extended Data Fig. 4.5). 

Population vector decoding reflects visual structure of movie presented. 

Drifting gratings or Gabor patch are simple stimuli which lend high control of stimulus 

properties to ensure sampling over the entire stimulus space. These are typically presented in a 

pseudo-random order. On the other hand, a continuous streaming visual movie led to high 

correlations between consecutive frames, as well as between some non-contiguous frames (Fig. 

4.4a, e). Ensemble of a few hundred tuned neurons is sufficient to decode the rat’s position 

during free-foraging as well as to decode the position of a visual cue during passive viewing 

using population vector decoding34,72. Using similar methods, we decoded the movie frame using 

tuned responses from different brain regions (see Methods). Population vector decoding was 

near-perfect using cortical responses (Fig. 4.4b, d), as reported earlier92. Decoding of movie 

frames was less accurate but better than chance using hippocampal responses (Fig. 4.4c, d). 
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Fig. 4.3 | Sub-Poisson variability of Streaming Movie Selectivity (SMS) (a) 

Coefficient of variation of firing across trials in the 3 cortical regions was highly 

correlated (r>0.88 p<10-80) for spikes inside and outside of ‘tuning zone’, defined based 

on a threshold to ensure comparable spikes in both said zones. (b) Similar to (a) for 

hippocampal variability (r>0.95 p<10-30). (c) Across the population of broad spiking 

neurons, in-zone variability was not significantly different between cortical and 

hippocampal units (KS-Test, p=0.08). (d) Stability of SMS was greater than chance level 

for all brain regions (KS-test actual vs. shuffle p<10-12), with average sparsity across all 

units in primary visual cortex being highest at 0.62 and lowest for dentate gyrus at 0.12. 

(e) cov of in-zone firing was inversely related to Movie tuning (SMS) (r=-0.1 p=5.4x10-

12). (f) For tuned cells, cov of in-zone firing was also inversely and significantly 

correlated with stability (r=-0.19 p=8.7x10-9).  

Fig. 4.3 Sub-Poisson variability of Streaming Movie Selectivity (SMS) 

 

 



94 
 

These differences cannot necessarily be accounted for by the difference in the number of tuned 

cells, since, for example, lateral geniculate nucleus and dentate gyrus had comparable number of 

cells (279 vs. 281), but their decoding errors were an order of magnitude different (0.34 vs. 6.3). 

To account for the correlated nature of frames, we computed a frame-to-frame correlation vector, 

as the correlation between 2 consecutive frames (one-off diagonal entries from Movie correlation 

matrix, 4.4a). Apart from the drop of correlation from the end of trial n to start of trial n+1, there 

were 3 other instances within the first 300 frames where the correlation drops considerably (Fig. 

4.4e). Remarkably, decoding score in cortical regions (primary visual and higher visual areas 

AM-PM) reflected this structure of the stimulus presented (Fig. 4.4f). This effect was largely 

missing in the hippocampal regions (Fig. 4.4g) where decoding scores were lower than in 

cortical regions, but better than chance levels (Fig. 4.4h).  

Small but systematic eye movements cannot fully explain SMS. 

To avoid confounding effects of self-motion on firing, we restricted our analysis to the stationary 

epochs. But we wondered if the animals made systematic eye-movements in response to the 

movie, especially from frame #70 to 370 when the person in the movie runs across the screen. 

Such movements would be expected from the opto-kinetic reflex, which is seen is almost all 

mammals during monocular horizontal movement, and is believed to help stabilize the image on 

the retina93. The (99 percentile) range of horizontal as well as vertical eye-gaze was less than 10o, 

which is an order of magnitude less than the dimensions of the movie presented on a 120o x 95o 

screen. More than half of the sessions had significant gaze bias with respect to different frames 

of the movie (Extended Data Fig. 4.6, see Methods), while around a third had biased pupil 

dilation, which is linked to arousal and altered cortical activity94,95. Eye-movement bias had little 

effect on SMS in the cortical areas but had significant and mixed effect on hippocampal SMS. 

Horizontal gaze bias reduced SMS, while vertical gaze and pupil dilation bias increased SMS 

(Extended Data Fig. 4.6). But movie frames had a stronger effect on firing when considered with 

gaze and pupil dilation, causing vertical bands of firing when considered in a 2D space of frame 

number (x-axis) and eye-movements(y-axis) (Extended Data Fig. 4.7). Further, firing response to 

gaze on screen or pupil dilation during gray-screen presentation was not predictive of SMS 

responses obtained during movie-presentation. (Extended Data Fig. 4.7). 
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Fig. 4.4 | Population vector decoding reflects visual structure of movie presented 

(a) Correlation between all possible pairs from the 900 frames in the movie represented 

as a (symmetric) matrix, with unity values along the diagonal. Note higher correlation 

values away from the diagonal after frame 370 when the scene largely stabilizes. (b) 

Population vector decoding matrix for cortical regions, showing highest correlation along 

Fig. 4.4 Population vector decoding reflects visual structure of movie presented. 
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diagonal. For each input frame, we compute a correlation coefficient for the spiking 

activity at that frame and the encoding vector corresponding to all frames. These 

correspond to each column in the matrix. Color scale is same as (a). See Methods for 

more details. (c) Same as (b), for hippocampal regions, showing weaker decoding. (d) 

Frame corresponding to the largest correlation in (c) and (d) was called the decoded 

frame and RMS error between input and decoded frames was computed. Shuffle values 

were obtained by a random permutation of the encoding matrix to break association 

with the decoding vector of the same cell. Decoding errors in visual areas were small 

(<1 frame, z-score compared to shuffles <-4) but larger in hippocampal regions (5.3 to 

8.1 frames, z-score -1.9 to-3.7). (e) Correlation coefficient between consecutive frames, 

with large drops in correlations marked with orange dotted lines. (f) Decoding score 

variation with frame number for visual cortical areas. Decoding score was computed as 

the weighted average of the correlation between encoding and decoding values of any 

two frames weighted by the correlation between said frames. (g) Same as (f), for 

hippocampal neurons. (h) Average decoding score across all frames was significantly 

higher than shuffle for cortical (score>0.79, KS-test between actual and shuffle 

decoding scores, p<10-140) as well as hippocampal neurons (score>0.29, KS-test 

between actual and shuffle decoding scores, p<10-67) 

Lack of selectivity to static visual scenes and reduced selectivity to scrambled 

movie presentation in hippocampus but not visual neurons. 

Is the streaming nature of movies (where 2 consecutive frames are typically correlated) causal to 

SMS? Or do hippocampal neurons in rodents show selective responses to random presentation of 

static natural scenes? We investigated this question by analyzing the neural responses to 118 

images of natural scenes, which were part of a complementary dataset. Analysis was again 

restricted to only the stationary epochs. We did not find selectivity beyond chance levels (5%) to 

natural scenes in hippocampal neurons (Fig. 4.5b). As a control, we found majority of neurons in 

the visual areas to be selective to these visual scenes (Fig. 4.5a), as reported earlier96. To better 

understand the effect of contiguous nature of the movie stimulus, we analyzed SMS to a 

scrambled presentation of the movie, where the same sequence of shuffled frames was presented 

in 20 trials. For a fair comparison, we re-analyzed SMS using only the first 20 trials of the 

regular, sequential movie presentation. 
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Fig. 4.5 | Lack of selectivity to static visual scenes and reduced selectivity to 

scrambled movie presentation in hippocampus but not visual neurons. (a) 

Fraction of tuned cells in visual areas was highest for movie presentations when 

calculated using all trials and significantly larger than the calculation based on first 20 

trials (84.1% vs. 72.3% LGd, 93.9% vs. 92.8 V1, 95.6% vs. 87.8% AM-PM, KS-test 

p<3.2x10-9). Tuning to scrambled movie presentation was not significantly different than 

sequential presentation for lateral geniculate nucleus neurons (KS-test p=0.22), but 

significantly lower in other cortical regions (92.8% vs. 88.4% V1, 87.9% vs. 70.5% AM-

PM, KS-test p<3x10-23). (b) Similar to (a), selectivity reduced upon using 20 instead of 

60 trials (KS-test p<0.008). Static images (fraction tuned <3.7%, KS-test with sequential 

Fig. 4.5 Lack of selectivity to static visual scenes and reduced selectivity to scrambled movie 
presentation in hippocampus but not visual neurons. 
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movie, 60 trials p<10-6) as well as scrambled movies (fraction tuned <5.2%, KS-test with 

sequential movie, 20 trials is not significantly different for CA3, but p<0.002 for other 

regions) elicit selectivity below chance level (green dashed line). (c) 2 example cells 

from hippocampal regions showing selective responses to sequential movies (left) and 

greater than chance variation leading to statistically significant response to scrambled 

movies (right). Raster and mean response format same as Fig. 4.1a. (d) Mean firing 

rate of hippocampal neurons in sequential and scrambled movie presentation for all 

cells is significantly correlated (r=0.79 p<10-150) but not different (KS-test p=0.002). (e) 

Range normalized by mean of firing was correlated (r=0.75 p<10-150) but higher for 

sequential than scrambled movie presentation (KS-test p=2.1x10-24) (f) SMS tuning was 

correlated (r=0.07 p=1.4x10-7) but higher for sequential than scrambled movie 

presentation (KS-test p=9.2x10-37) 

Selectivity for scrambled movies was slightly lower but significantly above chance levels in 

visual areas (Fig. 4.5a) but fell below the 5% chance level for the population of hippocampal 

neurons (Fig. 4.5b). Nevertheless, some of the hippocampal SMS neurons showed selective 

responses above chance levels to the scrambled movie presentation as well (Fig. 4.5c). Mean 

firing rates were highly correlated during sequential and scrambled movie presentations, 

suggesting that the lack of selectivity was not accompanied by shutting down of neural spiking 

(Fig. 4.5d). Mean rates were slightly but significantly higher in sequential than scrambled movie 

presentation. Movie tuning (Fig. 4.5f) as well as range/mean of firing (Fig. 4.5e) was lower but 

highly correlated in scrambled movie presentation suggesting reduction in firing modulation by 

movies when the streaming nature is lost, and the spatiotemporal structure of stimuli begins to 

resemble random presentation of static images. 

Discussion 

Here we show that similar to visual cortical areas, hippocampal broad spiking neurons also have 

selective responses to different frames of a movie. This selectivity is less prevalent than visual 

cortical areas and lateral geniculate nucleus neurons. Selectivity as well as firing rates vary 

through the depth of CA1 sub layers, similar to the dependence of place cell selectivity on 

landmarks45,87, suggesting a common mechanism for processing of sensory cues in spatial 

navigation and passive viewing experiments. SMS drops to chance levels when the frames of the 
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movie are presented in a scrambled fashion, suggesting a causal role of sequential stimuli in 

hippocampal firing. This is consistent with the lack of selectivity to random presentation of 

images; furthering the view that hippocampus is involved in generation and processing of 

sequences97–99.  

These results have apparent similarities and important differences with the recently reported 

selectivity in CA1 to the position, angle and movement direction of a bar of light72. Both these 

experiments were performed in rodents, whose movements were decoupled from the visual cues. 

Those experiments demonstrated that a simple visual cue could elicit selective responses in CA1, 

whereas the current results pertain to complex streaming visual cues. In V1, response of neurons 

to simple stimuli, like drifting gratings, is not necessarily predictive of their response to natural 

(and hence complex) visual scenes77. Moreover, the bar of light in our prior work covered all 

angles, and hence was presented binocularly, whereas the movie presentation herein was 

monocular. Secondly, animals in current analyses were head fixed, whereas earlier they were 

only body fixed and afforded neck movements. Lastly, we report selective responses in all major 

sub regions of the hippocampus herein, whereas the prior work pertained only to CA1 region.  

These as well as our previous72 results support the hierarchical organization of visual processing, 

with hippocampus at the apex position46, and hence showing sensory, non-abstract responses in 

hippocampal neurons. This complements the reports of visual cortical neurons having 

modulation by spatial position and coordinated activity with hippocampal neurons during 

navigation53,100. These results establish a singular experimental paradigm which can be used to 

probe selective responses in cortical as well as hippocampal regions. Evidence for visual 

responses without navigation demands can potentially bridge the gap between rodent and human 

studies101,102, where natural movies can be decoded from fMRI signals103. 
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Methods  
 

Experimental and surgical procedures, spike sorting 

We used neural data and correlated behavior signals recorded by the Allen Brain Institute and 

made publicly available at (https://portal.brain-map.org/explore/circuits/visual-coding-

neuropixels). The details of the experimental pipeline are available at the above link as well as 

with related publications96. Prior to implantation with Neuropixel probes, mice passively viewed 

the entire dataset including drifting gratings, Gabor patches and the natural movies of interest 

here. Neural signal obtained from probes was split into 2 channels one for spiking, and other for 

local field potentials (LFP). Data from the spiking band, sampled at 30 kHz with a 500Hz high 

pass filter was used herein which was referenced to a ground wire inserted in the brain during 

surgery. Videos of the body and eye movements were obtained at 30Hz and synced to the neural 

data and stimulus presentation using a photodiode. Movies were presented monocularly on an 

LCD monitor with a refresh rate of 60Hz, positioned 15cm away from the mouse’s right eye and 

spanned 120ox95o of viewing angle. Presentation of the movies was preceded by various sets of 

visual stimuli including Gabor patches, drifting gratings, and full field flashes. 30 trials of the 

sequential movie presentation were followed by 10 trials of the scrambled movie. There was a 

spontaneous running block of 30 minutes with gray screen of mean luminance, before the other 

block of sequential and scrambled movies was presented.  

Prior to spike sorting, spikes were offset corrected and median adjusted to center the signal 

around zero. Spike sorting was automated using Kilosort294. Output of Kilosort2 was post-

processed to remove noise units which are characterized by templates not possible due to current 

flows associated with action potentials as well as to correct for double counting of spikes. In our 

analysis, we directly used the spikes provided after these steps through the aforementioned 

dataset. 

Neuropixel probes were registered to a common co-ordinate framework88. Each recorded unit 

was assigned to a recording channel corresponding to the maximum spike amplitude. Hence each 

https://portal.brain-map.org/explore/circuits/visual-coding-neuropixels
https://portal.brain-map.org/explore/circuits/visual-coding-neuropixels
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unit inherited the brain region corresponding to the channel on the probe where its spike 

amplitude was largest. 

Stationary epoch identification  

To eliminate the confounding effects of changes in behavioral state associated with running, we 

restricted our analysis to stationary epochs. These were identified as epochs when running speed 

was below 2cm/sec for 5 seconds before as well as after the epoch in question. Analysis was 

restricted to sessions with at least 10 minutes of stationary epochs when computing SMS over 60 

trials, and 5 minutes when using the first 20 trials or for the scrambled movie presentation. 

Movie tuning quantification 

Procedures similar to those used previously were used72. Frames of movie presented during 

stationary epochs were binned in 900 bins, corresponding to each distinct frame. This occupancy 

was used to normalize the corresponding binning of spikes for each individual neuron under 

consideration to obtain a tuning response which was smoothed with a Gaussian window of σ=67 

ms or 2 frames. To quantify the degree of modulation we computed sparsity s of the tuning 

response where rn is the firing rate corresponding to the 𝑛𝑡ℎ frame:  

𝑠 = 1 −
1

𝑁

(∑ 𝑟𝑛𝑛 )2

(∑ 𝑟𝑛
2

𝑛 )
 

To assess the statistical significance of sparsity, we used a bootstrapping procedure, which does 

not assume a normal distribution. Briefly, for each cell, spike trains as a function of the frame 

number from each trial were circularly shifted by different amounts and the sparsity of the 

randomized data computed. This procedure was repeated 100 times with different sets of random 

value shifts. The mean value and standard deviation of the sparsity of randomized data was used 

to compute the z-scored sparsity of actual data using the function zscore in MATLAB. The 

observed sparsity was considered statistically significant if the z-scored sparsity of the observed 

spike train was greater 2, which corresponds to p<0.0228 in a one tailed t-test. Similar method 

was used to quantify significance of image tuning (119 bins for each distinct image shown) as 

well as scrambled movie tuning. Smoothing in scrambled movie tuning was performed over 

frames in the order they were presented which was different from their order in the actual 
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sequential movie. Scrambled movie frames where obtained by randomly re-arranging the frames 

of the original movie, but the same random sequence was presented on all trials. 

Full Width at Half Maxima (FWHM) calculation  

For neurons which were deemed to have significant movie tuning, we quantified the mean, peak, 

and minimum rates across 60 trials. Peak-FWHM was identified as all frames where the tuning 

response was above (peak+mean)/2 rate. Similarly, trough-FWHM was identified as frames 

where the tuning response was below (minimum+mean)/2 rate. This definition allowed for 

FWHM to consist non-contiguous frames, since majority of neurons had multiple peaks. 

Identifying frames with significant response 

The above definition of FWHM led to non-zero count of peaks from each cell since it relied on 

the maximum value of the tuning response to set the threshold (along with the mean response). 

This had no bearing on whether the peak (or trough) could be expected purely by chance.  

Hence, we used the bootstrap tuning curves obtained with the random shifts in each trial, to 

establish a mean±(2*std) level of the expected range of peaks and troughs by chance. Frames 

where the actual movie tuning response exceeded (either on the positive or negative side) this 

range was deemed as a ‘significant response’. Peaks and troughs were identified amongst these 

significant responses using the findpeaks function in MATLAB. Peaks (troughs) were identified 

as to be within the significant response frames, have mean height (depth) of mean+2*std (mean-

2*std for trough) and a minimum prominence of 2*std. 

Stability quantification 

All the trials were split into two blocks of 30 trials each, of which the latter 30 were presented 

after an intermittent gray screen presentation. Separate tuning curves computed for each half, 

with 900 bins used for occupancy and spiking, and resulting tuning response smoothed with a 

Guassian window of σ=67 ms or 2 frames. The correlation coefficient was computed between 

these two groups (Cactual), which is a measure of stability. This procedure was repeated for all 

cells in a given brain region. To compute the significance of stability, this procedure was 

repeated 50 times, with different random pairings, such that movie tuning response of Neuroni in 

the first block is paired with response from the second half from another randomly chosen 
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Neuronj. This provided a distribution of 50 values of stability (Cshuffle). Mean and standard error 

across all neurons for Cactual were plotted in color and for Cshuffle in gray in Fig. 4.3d. 

Population vector decoding, decoding score metric 

Procedures similar to those used previously were used72. All but one trials across all the neurons 

for each brain region were treated as the ‘lookup trials’ and these data were used to decode the 

firing rate maps from the remaining trial called ‘observed data’. Both the observed and lookup 

trials were normalized between 0-1 and smoothed with a Gaussian window of 50 frames or 

1.5seconds. At each frame (corresponding to 33ms) in the ‘observed data’, the correlation was 

computed between the observed population vector and the lookup population vectors for all 

frames. The matrix of these correlations is shown in Fig. 4.4b, c. The maximum correlation at 

each frame is denoted as the decoded value. The entire procedure was repeated at each frame and 

the error was computed as the root-mean square difference between the decoded and actual 

frame. For shuffle data, the above procedure was repeated 50 times, with different random 

pairings, such that the ordering of neurons in the lookup trials was randomly permuted. 

The above procedure treated each frame independently without accounting for the similarity of 

visual content in different frames. To account for this, we developed the ‘decoding score’ metric. 

At each frame, the decoded value from above was used to obtain the correlation between input 

and decoded frames. Perfect decoding, led to high values of decoding score, which were capped 

at 1. This method accounted for the similarity of 2 frames even if they were presented temporally 

apart in the movie. 

Eye movement bias 

An IR dichroic mirror was placed in front the right eye to allow the eye tracking camera to 

operate without interference from the visual stimulus. Pupil movements were mapped onto the 

stimulus screen to obtain gaze locations on screen. Horizontal and vertical changes in gaze 

position were treated separately and binned with respect to the movie frames. Average gaze in 

horizontal and vertical dimension was computed over all stationary epochs and degree of 

modulation of gaze was computed using the sparsity metric, as described above. Significance of 
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the gaze-bias was quantified using bootstrapping methods, similar to that used for movie tuning 

quantification. Pupil area was analyzed in a similar fashion as gaze position on screen.  
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Extended Data Figures 

 

 

Extended Data Fig. 4.1 | Description of movie stimulus. Snippets of the 30 seconds 

clip from the movie and corresponding frame numbers. 

  

Extended Data Fig. 4.0.1 Description of movie stimulus. 
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Extended Data Fig. 4.2 | Streaming movie selectivity (SMS) in visual neurons (a) 

Example raster plots (top) and mean rate responses (bottom) as a function of the frame 

of movie presented. Gray background in raster signifies the stationary epochs used in 

analysis to compute mean rate responses. Red line and shaded area signify mean and 

standard deviation of mean rate response expected by chance obtained by 
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bootstrapping (see Methods). 2 example cells each from dorsal lateral geniculate 

nucleus (blue, LGd), primary visual cortex (red, V1) and higher visual areas (green, 

anteromedial (AM) and posteromedial (PM)), showing increased spiking responses to 

different frames in the movie. (b) Large majority of neurons were tuned for the movie 

frames, with largest selectivity seen in higher visual areas (95.6%, 1988 out of 2080) 

followed closely by primary visual area (93.9%, 1563 out of 1665) and least by lateral 

geniculate nucleus (84.1%, 281 out of 334). Black vertical line indicates threshold of z>2 

(see Methods) and the black horizontal line indicates chance level of 5%. (c) Stack plots 

of all tuned cells, arranged in the increasing order the frame corresponding to highest 

firing rates.  
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Extended Data Fig. 4.3 | peak-FWHMs were narrower than trough-FWHM (a) 

Cumulative histogram of peak-FWHM quantified as number of frames in FWHM zone, 

with narrowest peak in primary visual cortex (27/900, 3%) and the broadest in 

subiculum (47/900, 5.2%). (b) Same as (a), for troughs within FWH-minima, showing 

opposite trend and broader FWHM than peak-FWHM. (c) Best-FWHM was chosen as 

the narrower of peak or trough, and (d) was predominantly the peak-FWHM. 

Extended Data Fig. 4.0.3 peak-FWHMs were narrower than 
trough-FWHM. 
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Extended Data Fig. 4.0.4 Distribution of peaks and troughs 
of SMS and average multi-unit response. 
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Extended Data Fig. 4.4 | Distribution of peaks and troughs of SMS and average 

multi-unit response. (a) Distribution of peaks (purple) and troughs (gray) from the 

frames corresponding to significant responses (see Methods). Each neuron could 

contribute multiple peaks and troughs. Distribution of peaks and trough was correlated 

in visual areas (r>0.67 p<10-8) but anti-correlated in hippocampal populations (r<-0.29 

p<0.03). (b) Average multi-unit activity (MUA) for tuned neurons in different brain 

regions. For each tuned neuron, its response was smoothed with a Gaussian window of 

σ=330ms or 10 bins and normalized by its mean. MUA in primary visual cortex and AM-

PM shows coordinated firing at the beginning of the movie, and around Frame #100. 

Dentate and CA1 MUAs show ensemble reduction in firing rates till ~Frame #370 after 

which the scene in movie stabilizes. (c) MUA of untuned neurons, showing largely 

uniform firing across movie frames for all brain regions. 
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Extended Data Fig. 4.5 | Quantification of co-fluctuation of firing and SMS. (a) For 

simultaneously recorded pairs of cells, we computed a firing rate co-fluctuation metric 

as the correlation between mean firing across trials for different pairs of neurons (see 

Methods). This co-fluctuation was z-scored with shuffle data, where the order of trials 

for one neuron of the pair was mis-matched, to obtain significance levels. Significant co-

fluctuation was widely prevalent in tuned cell pairs from dentate gyrus (70%) and CA3 

(61%) compared to other regions. (b) Same as (a), for untuned cell pairs showing low 

co-fluctuation in primary visual cortex, compared to other regions. (c) Same as (a), for 

pairs of cells where one showed SMS (tuned) and the other did not. (d) For tuned cell 

pairs, we compared the co-fluctuation inside the SMS tuning zone, defined as the 

frames corresponding to mean firing response above 50 percentiles (to ensure equal 

number of bins inside and outside the tuning zone). Dentate gyrus neurons showed 

widespread co-fluctuation. (e) Same as (d), but for spikes outside the respective tuning 

zones of cell pairs. (f) Tuning co-fluctuation was defined analogously as firing co-

fluctuation using the correlation between responses in a trial to the overall movie tuning 

response (see Methods). Significant tuning co-fluctuation was also widespread in 

dentate neuron cell pairs (69%), compared to other brain regions (26-32%) 

Extended Data Fig. 4.0.5 Quantification of co-fluctuation of firing and SMS. 
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Extended Data Fig. 4.6 | Eye movement bias during movie presentation. (a) 2 

example sessions with biased eye position on screen (gaze) as a function of movie 

frames. Dark traces correspond to mean responses across trials, light colors are each 

trial. Session on top has significant bias with horizontal as well as vertical gaze, 

whereas example session at the bottom has bias with pupil area and vertical gaze. (b) 

Across 23 sessions with eye movement recording, 99 percentile range of horizontal 

gaze movement was 8.9o (screen was 120o wide along horizontal), vertical gaze was 

4.7o (screen: 95o) and average range/mean for pupil area was 1.6. (c) Cumulative 

distribution of eye movement bias (see Methods for quantification) across 23 sessions. 

Green dotted line indicates significance threshold of z=2 (d) Fraction of SMS tuned cells 

was separately computed for cells from sessions with and without significant behavioral 

Extended Data Fig. 4.6 Eye movement bias during movie presentation. 
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bias. Population distribution of SMS tuning was significantly different for visual as well 

as hippocampal regions for horizontal gaze (t-test p<1.4x10-8). Vertical gaze and pupil 

area did not significantly affect visual cortical selectivity (t-test p>0.12), but biased 

behavior caused significantly more selectivity in hippocampal neurons (t-test p<8.1x10-

17). Total sessions used in eye movement bias analysis exceed those for computing 

SMS, since some sessions with insufficient stationary epochs were used here. 

 

Extended Data Fig. 4.0.7 Eye movements cannot explain streaming movie selectivity (SMS) 
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Extended Data Fig. 4.7 | Eye movements cannot explain streaming movie 

selectivity (SMS) (a) 4 example cells showing selective firing with respect to movie 

frame number, but no bias of firing with respect to gaze on screen along horizontal 

direction, resulting in vertical bands of spiking with little variance or dependence along 

the y-axis. (b) Same as (a) but comparing firing with respect to frame number and 

vertical gaze. (c) Same as (a) but comparing the effect of pupil dilation (quantified as 

pupil area), on firing of cells tuned for movie frames. (d) For the same example cells as 

a-c, Actual SMS response(black) is drastically different than the response predicted by 

eye movements, based on average response to horizontal and vertical eye movement 

and pupil dilation during stationary epochs in mean-luminance gray screen presentation 

(see Methods).  
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