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Abstract

MMPBSA methods have become widely adopted in estimating protein-ligand binding affinities 

due to their efficiency and high correlation with experiment. Here we investigated different 

computational alternatives on their impact to the agreement of MMPBSA calculations with 

experiment. Seven receptor families with both high-quality crystal structures and binding affinities 

were selected. We first studied the performance of nonpolar solvation models and found that the 

modern approach that separately models hydrophobic and dispersion interactions dramatically 

reduces RMSD’s of computed relative binding affinities. The numerical setup of the Poisson-

Boltzmann methods was analyzed next. Our data shows that the impact of grid spacing to the 

quality of MMPBSA calculations is small: the numerical error at the grid spacing of 0.5 Angstrom 

is already small enough to be negligible. We further analyzed the impact of different atomic radius 

sets and different molecular surface definitions and found weak influences on the agreement with 

experiment. The influence of solute dielectric constant was also analyzed: a higher dielectric 

constant generally improves the overall agreement with experiment, especially for highly charged 

binding pockets. Our data also show that the converged simulations cause slight reduction in the 

agreement with experiment. Finally we briefly explored the direction of estimating absolute 

binding free energies. Upon correction of the binding-induced rearrangement free energy and the 

binding entropy lost, the errors in absolute binding affinities are also reduced dramatically when 

the modern nonpolar solvent model was used, though further developments are apparently 

necessary to further improve the MMPBSA methods.
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The modern nonpolar solvent model that separately models solvation hydrophobic and dispersion 

interactions dramatically reduces RMSDs of computed relative binding affinities in Molecular 

Mechanics Poisson-Boltzmann Surface Area (MMPBSA) methods.

Introduction

It is widely accepted that high-level quantum approaches provide the most detailed and 

accurate description of molecular structures, dynamics, and functions. However, for many 

biochemical systems that are often too large and/or processes that are too long, classical 

approaches have proven to be sufficiently accurate and are now more commonly applied due 

to their efficiency. To model biochemical systems classically, both long-range polar and 

short-range non-polar interactions are important for accurate and transferrable models1–3.

Most biomolecules exist and function in aqueous environments. Interactions between 

biomolecules and their surrounding play important roles in the structures, dynamics, and 

functions of biomolecular systems, so that molecular models and simulations must account 

relevant solute-solvent interactions. To mimic the solvent-solute interactions, explicit and 

implicit models are both applicable. In explicit solvent models, all atoms are treated 

explicitly in a pair-wise fashion. These models need a large amount of computational 

resource to compute and sample the interactions of individual atoms of both solute and water 

molecules. Implicit solvation models attempt to model the solute and solvent interactions in 

a mean-field fashion, saving the computational and sampling time in simulating water 

explicitly. Although the implicit models are less accurate, their performance in many 

biological applications is remarkably good and reproducible.

Many widely used implicit models are based on the Poisson-Boltzmann (PB) equation2–18, 

which models the polar solvation interactions as classical electrostatic interactions19–40. In 

this method the water is set as a high dielectric region and the solute is set as a low dielectric 

region19. Most biological applications of the PB equation rely on numerical solutions of the 

underlining partial differential equation, which can now be obtained routinely for 
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biomolecules and their complexes. Among the numerical methods, finite-difference 

method24, 33, 34, 41–50, finite-element method51–59 and boundary-element method60–75 are 

mostly used. The PB-based solvent models have widely biological applications. For 

example, they have been applied to prediction of pKa values for ionizable groups in 

biomolecules76–80, solvation free energies81, 82, binding free energies83–87, and protein 

folding and design88–96. The nonpolar solvation is typically estimated by the surface area 

(SA) method. Recently, deficiencies of the classical surface area-dependent models to 

estimate the total nonpolar solvation contribution in the case of macromolecules have been 

discussed97–116. These deficiencies mainly arise due to overlooking solvation contributions 

of interior (buried) atoms. Modern nonpolar solvation models rely on separate terms to 

model cavity and van der Waals contributions to overcome these limitations97–116. However, 

it is yet to be widely adopted for practical biomolecular applications.

In this study, we focus on the applications of PB-based solvent models to the protein ligand 

binding interactions, particularly via coupling with explicit solvent molecular dynamics 

simulations, in the Molecular Mechanics Poisson-Boltzmann Surface Area (MMPBSA) 

approach117–121. The MMPBSA approach allows addressing contributions from electrostatic 

and van der Waals interactions and changes in solvation to binding affinities. If 

conformational entropy can be estimated, its contribution to binding can also be included 

following standard thermodynamics principle. Of course, computation of solvation 

contributions to binding affinity, both polar and nonpolar components, are not as 

straightforward as the intramolecular electrostatic and van der Waals interactions. In 

addition estimation of entropic contributions to binding affinity is equally challenging if not 

more than the estimation of solvation contributions.

Here we investigated different existing computational alternatives to estimate protein-ligand 

binding affinities within the MMPBSA framework117–121. Specifically we focused our 

discussion on the performance of nonpolar solvation models, the numerical PB setup 

(particularly the grid spacing effect). Other related issues, such as the atomic radius 

definitions, molecular surface definitions, solute dielectrics, and simulation length, were also 

analyzed in the context of the modern nonpolar solvent model. Both relative and absolute 

binding affinities were analyzed following the single-trajectory MMPBSA approach, or a 

revised MMPBSA approach to properly model the entropic contribution to absolute binding 

affinities.

Materials and Method

System Selection

The complexes of proteins and ligands were selected from the PDBBind database122. 

Experimental crystal structures and binding affinities were reported for all seven selected 

systems, including trypsin β, thrombin α, cyclin-dependent kinase (CDK), cAMP-dependent 

kinase (PKA), urokinase-type plasminogen activator, β-glucosidase A, and coagulation 

factor Xa, with numbers of complexes of 57, 25, 11, 8, 19, 18 and 15, respectively. Here 

complexes of cyclin-dependent kinase and cAMP-dependent kinase were combined into one 

group “CDK+PKA” due to their similar structures, so final data analyses were reported for 

six groups. For each receptor, the complexes were selected based on the following rules: (a) 
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the number of heavy atoms of a ligand is < 50; (b) the number of rings in a ligand is < 5; (c) 

the maximum number of atoms in a ring in a ligand is < 30; and (d) the number of rotatable 

bonds in a ligand is < 10.

Molecular Dynamics Simulation

Crystal structures were downloaded from the RCSB protein databank. For each crystal 

structure of the complex, only the single protein chain and the ligand for the complex, and 

structural waters close to the chosen ligand or protein chain (less than 4 Å) were used in 

subsequent simulations. Structural ions were also retained if needed. Missing residues were 

modeled with Modeller123 version 9.11 with sequences given in the PDB file. The Amber 

FF14SB force field was used for the proteins and the Amber GAFF parameters were 

employed for the ligands124, 125. Hydrogen atoms of ligand were modeled by the REDUCE 

program in Amber 14125. The ligand atomic partial charges were then generated by the 

empirical charge model - AM1-BCC126 by using the ANTECHAMBER program of Amber 

14127. Each complex was solvated in a TIP3P water box with a minimum distance 8.0 from 

the surface of the complex to the edge of the simulation box. Each system was neutralized 

by adding Na+ or Cl− ions.

The solvated complexes undergo two stages of energy minimization: first with the 

backbones of proteins restrained and followed with a completely free minimization with no 

restraint. Each minimization stage consisted of 2500-step steepest descent minimization first 

and then another 2500-step conjugated gradient. Subsequently a 100-ps MD simulation was 

conducted to heat the system from 0 to 300K in the NVT ensemble. This was followed with 

a 100-ps simulation equilibrate the density to 1g/cc at 300 K and 1 bar. Finally production 

MD was run for 10-ns and atomic coordinates were saved as snapshots every 10-ps.

MM-PBSA Calculation

After molecular dynamics simulations, the snapshots were utilized to post-process binding 

free energies by the single-trajectory MMPBSA method117–121. Specifically, for a non-

covalent binding reaction in the aqueous phase

(1)

where R, L, and R:L represent receptor, ligand, and complex, respectively, the binding free 

energy, ΔGbind,aqu, can be computed as

(2)

where ΔGbind,vac is the binding free energy in the vacuum phase, and ΔGbind,solv is the 

solvation free energy change upon binding

(3)
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where ΔGR:L,solv, ΔGR,solv and ΔGL,solv are solvation free energies of complex, receptor and 

ligand, respectively.

Here the solvation free energies were computed by calculating two different components 

separately, polar and non-polar, both within the implicit solvation framework

(4)

The polar part, ΔGsolv,polar, can be calculated by solving the Poisson-Boltzmann (PB) 

equation. In cases where both the ionic strength and solvent potential are low, and when 

symmetric electrolytes are considered, the PB equation can be linearized to:

(5)

where . Here ν denotes the solvent, I represents the ionic strength of the 

solution, and is defined as I = z2c. After solving potential ϕ, ΔGsolv,polar can be computed as

(6)

The non-polar part, ΔGsolv,non−polar, is typically estimated by the surface area (SA) method. 

Modern nonpolar solvation models use separate terms to model cavity and van der Waals 

dispersion contributions to overcome the reported limitations of the classical approach. Both 

the classical (INP=1) and the modern nonpolar solvent model (INP=2) have been 

implemented in Amber. This gives us an opportunity to assess the performance of both 

nonpolar solvent models in this analysis. The INP=1 option uses the solvent accessible 

surface area (SAS) to correlate the total nonpolar solvation free energy as

(7)

The INP=2 option only uses the solvent accessible surface area/or its enclosed volume 

(SAV) to correlate the repulsive (hydrophobic/cavity) term, and applies a surface-integration 

approach to compute the attractive (dispersion) term as97

(8)

Absolute Binding Free Energy Calculation

The standard free energy change, ΔG0, for binding can be expressed as128–130
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(9)

where R is the gas constant, T is the temperature, C0 is the standard state concentration 

(1M). ZR:L, ZR, and ZL are the configuration integrals of the complex, receptor, and ligand, 

respectively. Here the first term of Eqn (9), in theory, accounts for full energetic and 

configurational changes of all involved molecules upon binding.

The configurational integrals are apparently very difficult to compute for typical proteins or 

protein complexes due to the extremely high dimensionalities of the integrals. In this study, 

it is approximated by the sum of the free energy change given the assumption of no 

configurational rearrangement and the free energy change upon configurational 

rearrangement, ΔGConf. The free energy change without configurational rearrangement is 

approximated by the single-trajectory MMPBSA method, ΔGmmpbsa. The free energy 

change upon configurational rearrangement, ΔGConf, is taken from a previous analysis by 

Gao et al.131. Therefore Eqn (9) can be approximated as

(10)

where  is a constant, with a value of 7.0 kcal/mol at the standard condition128–130.

Results and Discussion

Influence of Nonpolar Solvent Modeling

As reviewed in Introduction, deficiencies of the classical solvent-accessible surface area-

dependent models lie in their negligence of solvation contributions of interior (buried) 

atoms97–116. Modern nonpolar solvent models addressing the overlook exist, but they are yet 

to be widely adopted for practical biomolecular applications. Here we intend to study the 

effect of these newer nonpolar solvent models in the context of protein ligand binding 

affinity modeling.

Table 1 and Figure 1 summarize the performance analytics of both classical (INP=1) and 

modern methods (INP=2) in reproducing the relative binding free energies for the six tested 

receptor groups. Our initial attention to relative binding free energies is mainly due to the 

widely used assumptions in the MMPBSA approach that often ignores conformational 

rearrangement upon binding. Figure 1 plots the correlations of ΔΔG between experimental 

data versus simulation data for both INP=1 and INP=2. The detailed data of RMSD, R 

(Pearson product-moment correlation coefficient) and linear regression slope are listed in 

Table 1. Overall, all simulation data display visible correlations with the experimental data 

for both INP =1 and 2.
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However it is also apparent that the INP=2 data are closer to the perfect agreements, i.e. the 

diagonal line, even if the correlation measures are quite similar between the two. The better 

correlation is reflected in the higher slopes of linear regression: the slope ranges from 0.18 to 

0.23 for INP=1, and they ranges from 0.23 to 0.33 for INP=2. The RMSD’s of ΔΔG are 

1.94–4.26 kcal/mol for INP=2, also smaller than those with INP=1: 4.43–11.02 kcal/mol as 

shown in Table 1. It is worth noting that Pearson correlation coefficients (R in Table 1) are 

higher with INP=1. This is mainly due to the fact that the ranges of data are larger in INP=1, 

which tend to lead to better looking correlation, a trick that was often exploited in choosing 

binding test cases.

Influence of numerical PB methods

In the MMPBSA calculations, the finite-difference Poisson-Boltzmann (FDPB) methods are 

often employed. Overall finer grid spacing always lead more accurate calculations. However, 

finer grid spacing or higher accuracy also asks for higher memory and longer CPU time. 

Indeed, straightforward estimation shows that the memory scales as the number of the grid 

nodes that is proportional to (1/h)3. Basically 8 times more memory would be needed when 

the grid spacing is halved. Even if the convergence rate remains the same (i.e. iteration 

number is independent of the number of grid nodes), the CPU time would also be 8 times 

longer.

Prior studies by the community have shown that a grid spacing of 0.50 Å is a good 

compromise for modern FDPB solvers. Here we want to demonstrate that the effect of grid 

spacing on the quality of the MMPBSA performance with the testing data of the INP=2 runs 

as examples. For easy comparison, three sets of calculations, with spacing of 0.25, 0.50, and 

1.00 Å, were used in the otherwise same calculations for the same tested target groups and 

are summarized in Table 2. The detailed correlation measures are reported in Table S1 and 

Figure S1 & S2 in Supplementary Materials. Overall the simulation agrees with experiment 

quite similarly regardless of the three tested grid spacings. Inspect of the correlation plots for 

the 0.25 Å and 1.00 Å calculations (Figure S1 & S2) shows that their overall trends are quite 

similar to those in Figure 1, conducted at 0.50 Å. This confirms the community default 

spacing that was often used in prior studies, 0.50 Å, is a very good choice, at lest for the 

tested FDPB solvers implemented in Amber/PBSA.

It is worth pointing out that the conclusion above does not rule out numerical differences 

when different grid spacing is used. Table 3 summarizes the numerical differences for 

selected complex in each group by listing detailed EPB energies of ΔG, Gcomplex, Greceptor 

and Gligand. Here ΔG = Gcomplex − Greceptor − Gligand. Every complex has the same 

converged trend that ΔG becomes more positive when grid spacing is reduced from 1.00 to 

0.25 Å. This trend is same as observed in our previous studies on model molecules tested 

with the same FDPB method37, 39. Overall, Gcomplex and Greceptor differ by 1% between the 

0.25 and 0.50 Å calculations and around 2% between the 0.50 and 1.00 Å calculations. The 

Gligand converges better with around 0.5% differences between the 0.25 and 0.50 Å 

calculations and around 1% differences between the 0.50 to 1.00 Å calculations. In 

summary, the numerical convergence errors do exist in FDPB calculations at the commonly 

used grid spacing, but are far less than other errors in MMPBSA calculations and their 
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influence on the MMPBSA quality is not significant as demonstrated by the highly 

consistent correlation plots in Figures 1, S1, and S2.

Influence to molecular surface definitions

Influence of Atomic Radius Set and Solvent Probe Radius—In this analysis, we 

first addressed the most apparent choice in the construction of molecular surface, i.e. the 

choices of atomic radii and solvent probe radius. Here we tested two atomic sets as provided 

in Amber, that of default mbondi radius set125 and those optimized by Tan and Luo with 

respect to TIP3P electrostatic free energy simulations26. Tan and Luo also pointed out that 

electrostatic interaction free energy profiles depend on solvent probe radius and 0.6 Å was 

found to better reproduce molecular interaction energies of tested dimers in the TIP3P 

explicit solvent model, so this was also tested here and compared with the default 1.4 Å 

value widely used in the literature. All together four combinations were tested and 

summarized in Table 4. The detailed performance for each receptor with each combination 

of setups is shown in Table S2. Table 4 shows that all these reasonable radius choices lead to 

overall comparable performance with respect to experiment. However, the use of 0.6 Å for 

the solvent probe (dprob=0.6) does lead a consistently better agreement (albeit a small 

improvement) with experiment. As shown by Tan and Luo, the issue with the default solvent 

probe of 1.4 Å is its overestimation of energy barrier upon formation of dimers26. This 

appears to play some role in the protein-ligand complexes even if the crystal structures, i.e. 

tightly bound structures, were used in simulations. Of course, not every ligand atoms are in 

tight contact with protein atoms upon binding, which may explain the benefit with the 

optimized solvent probe value.

On the other hand, the optimized protein radii do not seem to help too much. One reason is 

that the ligand atoms were always set to use the same mbondi radii since the optimized 

radius set only covers naturally occurring protein and nucleic acid residues26. Further 

parameterization studies are apparently needed to fully address this issue in a more 

consistent manner.

Influence of Molecular Surface Definition—Next we intend to go beyond the classical 

SES definition that has become the default molecular surface definition since the early days 

of FDPB methods. Numerous computational studies with this definition have been shown to 

be consistent with experiment for a wide range of calculations. Nevertheless, there are also 

suggestions that van der Waals surface may present partial solvation reality especially when 

static structures were used132. In addition, modern surface definitions that intend to improve 

the electrostatic modeling using pseudo density functions also become readily 

available30, 133.

In MMPBSA calculations, the surface definition directly influences the dielectric 

distribution, so that the electrostatic binding free energies are directly impacted by the 

choice of the surface definitions. Here we compared three available surface definitions in 

Amber/PBSA (Table 5/S3): solvent excluded surface (SES), van der Waals surface (VDW), 

and a recently proposed smoothed revised density surface (DEN). To simplify the 

comparison, all surfaces were constructed with the optimized solvent probe radius 

Wang et al. Page 8

J Comput Chem. Author manuscript; available in PMC 2017 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(dprob=0.6) as in the previous subsection26. Furthermore, we tested these surfaces with both 

available atomic radius sets and found all of them perform rather similarly. Indeed there are 

minor numerical differences in all three quality measurements deployed, but the changes are 

rather minute. This is an interesting observation since both VDW and DEN surfaces are 

much faster to compute than the classical SES surface, whose usage is virtually 30% of the 

FDPB calculations, almost the same as the CPU time of high-performance iterative solvers. 

This is consistent with prior studies as conducted by Zhou and coworkers, who showed that 

the VDW surface delivers quite impressive agreement with experiment for their tested 

systems132.

Sensitivity to Solute Dielectric Constant

The effects of solute dielectric constant in MMPBSA calculations and pure PBSA 

calculations have been analyzed before120, 134, 135. It was shown that a solute dielectric 

constant higher than that used in molecular dynamics (i.e. 4 instead of 1) often leads to 

better agreement with experiment. Here we intend to analyze whether a similar strategy can 

be adopted when the modern nonpolar solvent treatment (INP=2) is used. Table 6 

summarizes the performance measures by using dielectric constant 4 as in Table 1, the 

default molecular mechanics dielectric constant 1, as well as the “high” dielectric constant 

of 20 that was often used in pKa predictions by the PB models. Similar to previous analyses, 

the performance of dielectric constant 4 is apparently better than 1 when the modern 

nonpolar solvent model is used, consistent with previous findings with classical nonpolar 

solvent models120, 134. As shown in Table S4, the linear regression slopes are around 0 when 

dielectric constant 1 was used for 4 out of 6 receptors. The positive correlations are also lost. 

In addition, relative free energy RMSDs are around 2 or 3 times larger than those with 

dielectric constant 4, showing significantly larger disagreement with experiment. For the two 

remaining receptors CDK+PKA and thrombin α, the ε = 1 performance measures are also 

worse than those of ε = 4, though the slopes are still positive. When the dielectric constant is 

increased to 20, the performance measures are quite similar to those of calculations with 

dielectric of 4, with only one dramatic improvement for receptor β-glucosidase A.

The results of β-glucosidase A complexes are interesting due to their distinctive 

sensitiveness to dielectric constant: for both INP=1120 and INP=2 the correlations with 

experiment are significantly higher with ε = 20. This, in part, can be explained by the charge 

state of the binding pocket, where there are two GLU residues (GLU166 and GLU351) with 

their carboxyl groups pointing to each other. The contribution of these acidic groups to 

electrostatic potential is apparently sensitive to the solute dielectric constant as well as the 

protonation states. In this study one GLU (166) is protonated but the other GLU (351) is 

charged as in other catalytic dyads136. Still the electrostatic polarization effects (both 

electronic and others) in binding interactions cannot be fully accounted for until the 

dielectric constant is raised to a value much higher than 4.

The introduction of a higher solute dielectric constant is a reasonable but crude treatment to 

account for the screening of electrostatic interactions due to polarization of electronic, 

orientational, and solvent-exchange origins. Since our method has explicitly sampled 

protein-ligand motion, the use of high dielectric constant is arguably unnecessary. However 
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the electronic polarization does contributes to binding affinity. In addition, typical short MD 

simulations utilized for MMPBSA calculations are probably insufficient for sampling all the 

orientational and solvent-exchange effects. Thus, the use of a high dielectric constant is still 

a reasonable practice for rapid assessment of protein-ligand binding interactions in 

MMPBSA calculations. Nevertheless, the use of a polarizable force field57, 137–139 would 

arguably offer a more self-consistent treatment of electronic polarization effects for 

MMPBSA, at least for protein-ligand binding systems involving charges in the binding sites.

Convergence of Free Energy Simulation versus Accuracy

There are reports in the literature indicating that longer MD simulations tend to cause 

reduced agreement between MMPBSA calculations and experiment120. However, even with 

the relatively straightforward single-trajectory method analyzed here, nontrivial MD 

simulations appear to be necessary so that average values are converged in MMPBSA 

calculations. Figure 2 shows the convergence of binding free energies (ΔG) of six selected 

complexes chosen from the six groups. It is clear that the short 1ns MD simulation is not 

enough to reach convergence in average binding affinities. Thus all simulations for all six 

groups were extended up to 10ns and the MMPBSA analysis was rerun to see the impact of 

long MD simulations upon the agreements with experiment. The comparison of the 

“converged” MMPBSA results and those with just the first 1ns is shown in Table 7. It is 

clear that the agreements with experiment do appear to be slightly reduced, especially in 

relative free energy RMSD’s, though not that dramatic. On the other hand, the correlation 

coefficients and slopes are not uniformly reduced: sometimes higher when convergence is 

achieved. Overall correlation coefficients and the linear regression slopes remain in the 

highly similar ranges.

Of course, all the tested complexes are with good crystal structures. This is probably why 

the differences between the two sets are so small because the structures are quite stable 

throughout the 10ns simulations. This in part supports the initial structural model setups in 

the calculations. However, it is unclear the difference would remain this small if docked 

complexes were utilized in these types of simulations. It is possible that much longer 

simulations would be necessary to fully observe “convergence” or to fully relax/optimize the 

docked complex structures.

Influence of Nonpolar Solvent Modeling on Absolute Binding Free Energies

In the single trajectory approach utilized in the above analyses, the entropic term was 

assumed to remain constant throughout a wide range of ligands for the same receptor. This is 

apparently an approximation, but without it, significantly more computation is needed. 

Nevertheless, we have investigated the possibility of augmenting the single-trajectory 

MMPBSA results by calculating the entropic contributions explicitly. Since our previous 

analysis shows that the normal mode approximation does not benefit too much to the quality 

of the MMPBSA calculations120, we resorted to the analysis by Gao et al.131, who 

developed a sophisticated method to account for the both the entropic and enthalpic effects 

of ligand conformational restriction to protein-ligand binding free energy, ΔGconf. In their 

method, multiple conformational energy wells were sampled, followed by the calculation of 

configuration integral based on the quasi-harmonic approximation of each well131.
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The ΔGconf from Gao et al.’s work was employed in this study as in our previous analysis of 

the classical method (INP=1)120, to augment the MMPBSA analysis presented here for the 

modern method (INP=2). Note that the data by Gao et al. do not cover every complex that 

was analyzed here. For those covered by both studies, we estimated the absolute binding free 

energies as outlined in Eqn (10) (Table 8/Figure 3). The comparison of the classical and 

modern nonpolar models in Table 8 show that the RMSD’s of absolute binding free energies 

are clearly smaller by INP=2 for all five groups of receptors analyzed. The modern nonpolar 

solvent model improves the MMPBSA performance for Thrombin α, trypsin β, urokinase-

type plasminogen activator, and coagulation factor Xa dramatically, with RMSD’s reduced 

by around 3–4 times over those by the classical model. The improvement is more apparent 

in the correlation plots in Figure 3, supporting the use of the modern nonpolar solvent model 

in protein ligand binding calculations. Of course errors are still quite large, indicating further 

developments are needed o improve the MMPBSA method.

Conclusion

In this study we first investigated how well the different nonpolar solvation models behave in 

protein-ligand binding affinity modeling by the MMPBSA methods. For both the classical 

and the modern methods, all simulation data display visible correlations with the 

experimental relative binding affinities. It is clear that the RMSD’s of relative binding 

affinities can be improved dramatically when the modern nonpolar solvent model is used. 

Visual inspection of the correlation plots also show that the relative affinities by the modern 

method agree with experiment better in that the scatter plots are closer to the diagonal line 

even if the correlation coefficients are quite similar between the two. Of course it is worth 

pointing out that the tested modern nonpolar solvent model was optimized for small 

molecules or protein side chains, where a single scaling constant was found to best 

reproduce the correlation of hydrophobic cavity free energy and molecular surface or 

volume97. Its handling of larger “ligands” as in protein-protein or protein-nucleic acid 

complexes remains to be investigated and improved. Further development is apparently 

necessary in this area.

An often-raised concern in MMPBSA calculations is the numerical accuracy in the 

numerical FDPB methods. Our testing of different grid spacings of 0.25, 0.50, and 1.00 

Angstrom show that the agreement with experiment is quite similar regardless of the grid 

spacing used. This confirms the community-wide practice of using 0.50 Angstrom spacing 

in many prior studies. Detailed PB energetic analysis shows that electrostatic binding free 

energies do depend on the grid spacing used. However, the numerical convergence errors 

observed in the numerical FDPB calculations are far less than other errors in MMPBSA and 

the influence on the MMPBSA quality is not significant as demonstrated by the virtually 

identical correlation scatter plots with different grid spacings tested.

We further analyzed the impact of molecular surface upon the MMPBSA performance via 

two different perspectives. First we investigated the choices of atomic and solvent probe 

radii. Our comparison shows that all reasonable radius choices lead to overall comparable 

performance with respect to experiment. Nevertheless our data does show a consistent, albeit 

small, improvement when previously optimized solvent probe of 0.6 Angstrom was used in 
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PB calculations. As shown by Tan and Luo, the limitation with the default 1.4 Angstrom is 

its overestimation of free energy barrier upon formation of dimers26. However the optimized 

protein radii do not seem to help too much. One reason is that the ligand atoms were always 

set to use the same mbondi radii since the optimized radius set only covers naturally 

occurring protein and nucleic acid residues. We next investigated the impact of molecular 

surface definitions by comparing the SES definition with the VDW and DEN definitions. 

Our data show that all of them perform rather similarly. Indeed there are only minor 

numerical differences in all the quality measures deployed. This is interesting because both 

VDW and DEN surfaces are much faster to compute than the classical SES surface. Their 

usage would potentially improve the efficiency of the MMPBSA methods.

The choice of solute dielectric is also surveyed and its impact on MMPBSA calculations is 

investigated when the modern nonpolar solvent model is used. Consistent with the findings 

for the classical nonpolar solvent model, the use of dielectric constant of 4 is better than the 

default molecular mechanics value of 1. Worth noting is the significant improvement in the 

RMSDs of relative binding affinities, which are 2 to 3 times smaller times than those with 

the vacuum dielectric constant. When the dielectric constant is increased to 20, the 

performance measures remain quite similar to those of calculations with the dielectric 

constant of 4, with only one dramatic improvement observed in β-glucosidase A due to its 

highly charged binding pocket.

Our convergence analysis shows that 1ns MD trajectory is apparently not enough to reach 

convergence in the averaged binding free energies. The comparison of the “converged” 

MMPBSA results and those with just the first 1ns trajectory shows that the agreements with 

experiment do appear to be slightly reduced, especially in relative binding free energy 

RMSD’s, though not that dramatic. On the other hand, correlation coefficients and the linear 

regression slopes remain in the highly similar ranges.

Finally we touched the issue of estimating absolute binding free energies via the MMPBSA 

methods. We estimated absolute binding affinities upon correction of binding-induced 

configurational arrangement, ΔGconf, and also the entropy lost upon binding. The 

comparison with experiment shows that the errors in absolute binding affinities can be 

reduced dramatically when the modern nonpolar solvent model was used. The improvement 

shows that it is promising to further explore the feasibility to use the MMPBSA methods to 

estimate absolute binding affinities of protein-ligand systems given the initial success of 

incorporating binding entropy lost, configurational rearrangement, electronic polarization, 

and long-range effect in nonpolar solvation. Of course the disagreement is still noticeable, 

indicating further rooms for improvement. We are working actively to address alternatives to 

further improve the MMPBSA methods.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Correlation between MMPBSA predicted and experimental relative binding affinities (kcal/

mol). Left and right columns are for INP=1 and INP=2, respectively. See Table 1 for more 

details. A through F refer to the following protein targets, respectively: CDK+PKA, β-

glucosidase A, thrombin α, trypsin, urokinase-type plasminogen activator, and coagulation 

factor Xa.
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Figure 2. 
Convergence of simulated binding free energies of selected complexes from 0ns to 10ns. 

The six complexes with PDB IDs 1Q8W, 2J75, 1VZQ, 1O2Q, 1C5,Z and 1LPZ are chosen 

from each of the six targets, respectively: CDK+PKA, β-glucosidase A, thrombin α, trypsin, 

urokinase-type plasminogen activator, and coagulation factor Xa.
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Figure 3. 
Correlation between MMPBSA predicted and experimental absolute binding affinities (kcal/

mol). The absolute binding affinities by MM-PBSA were computed as described in text. Left 

and right columns are for INP=1 and INP=2, respectively. A through F refer to the following 

protein targets, respectively: β-glucosidase A, thrombin α, trypsin, urokinase-type 

plasminogen activator, and coagulation factor Xa.
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Table 3

The detailed EPB energy changes for six selected complexes for the calculations reported in Table 2. Grid 

spacings are in Angstrom, and the free energies are in kcal/mol.

Spacing 0.25 0.50 1.00

CDK+PKA
(1Q8W)

ΔG=−8.22

ΔGpb 38.22 38.05 37.66

Gcomplex −1015.08 −1009.11 −989.98

Greceptor −1037.07 −1030.98 −1011.63

Gligand −16.23 −16.18 −16.01

Glucosidase
(2J75)

ΔG=−10.01

ΔGpb 18.45 18.16 17.15

Gcomplex −1155.17 −1148.50 −1127.40

Greceptor −1164.35 −1157.53 −1136.03

Gligand −9.26 −9.13 −8.52

Thrombin
(1VZQ)

ΔG=−17.52

ΔGpb 3.75 3.36 2.26

Gcomplex −1013.07 −1008.16 −992.10

Greceptor −998.43 −993.21 −976.32

Gligand −18.39 −18.31 −18.03

Trypsin
(1O2Q)

ΔG=−18.87

ΔGpb 19.87 19.67 18.94

Gcomplex −531.31 −527.06 −513.28

Greceptor −540.93 −536.51 −522.09

Gligand −10.26 −10.22 −10.13

Urokinase
(1C5Z)

ΔG=−13.23

ΔGpb 38.41 38.32 37.97

Gcomplex −660.30 −655.93 −641.54

Greceptor −684.76 −680.31 −665.62

Gligand −13.96 −13.94 −13.89

Factor Xa
(1LPZ)

ΔG=−20.19

ΔGpb 12.93 12.77 12.31

Gcomplex −687.45 −682.79 −668.09

Greceptor −683.83 −679.08 −664.12

Gligand −16.55 −16.48 −16.28
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Table 6

The effects of solute dielectric constant (epsin) upon the performance of MMPBSA. All calculations were 

conducted with the new nonpolar solvent model (inp=2) and the default SES surface (sasopt=0) as in Table 1, 

but with all three tested dielectric constant options. The RMSD’s of ΔΔG are in kcal/mol.

Dielectric
constant

RMSD R Slope

Median Range Median Range Median Range

1 5.82 4.28–7.78 0.20 0.18–0.86 0.05 −0.16–0.34

4 3.28 1.94–4.26 0.60 0.30–0.86 0.31 0.23–0.42

20 3.46 1.79–4.88 0.66 0.46–0.86 0.32 0.27–0.39
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Table 8

Effects of nonpolar solvent modeling (inp) upon the performance of MMPBSA in prediction of absolute 

binding affinities: The RMSD’s of absolute binding free energies (kcal/mol) between simulation and 

experiment for inp=1 and 2, respectively. The absolute binding free energies were estimated as outlined in Eqn 

(10) for those complexes with pre-computed configurational arrangement free energies (in parentheses) from 

Ref131. See Figure 3 for the scatter plots for both sets of data.

Systems INP=1 INP=2

Glucosidase (14) 9.73 8.55

Thrombin (9) 23.90 4.85

Trypsin (30) 18.50 6.16

Urokinase (9) 20.70 4.70

Factor Xa (14) 29.48 6.69
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