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TRANSCRIPTIONAL REPORTERS

Watching gene expression in
color
A combination of two fluorescent proteins with different half-lives

allows gene expression to be followed with improved time resolution.

JULIE H SIMPSON

C
ells are dynamic places and the levels

of gene products – RNA molecules and

proteins – inside a given cell change

over time. Moreover, different types of cells con-

tain different constellations of RNA molecules

and proteins. These aspects of cell identity are

controlled by gene expression – the process by

which genes are transcribed to form messenger

RNA (mRNA) molecules, some of which are then

translated to produce proteins.

Many techniques are available to study gene

expression in cells. Single-cell RNA sequencing

provides a global view of the transcriptional pro-

files of cells (Bates et al., 2019). In fixed tissue

samples, in situ hybridization can be used to

detect mRNA molecules, while immunohis-

tochemistry techniques involving antibodies can

detect proteins. ’Enhancer bashing’ methods

have been used to identify the regulatory ele-

ments that govern when and where particular

genes are expressed (Borok et al.,

2010). ’Enhancer traps’ and ’protein traps’ rely

on reporters – this is, genes that produce an eas-

ily detectable protein – to provide information

on the expression of neighboring genes of inter-

est (St Johnston, 2002).

Fluorescent proteins are widely used as

reporters for gene expression. When illuminated

with certain wavelengths of light, these proteins

emit fluorescent light of a characteristic color

that can then be detected. There are also fluo-

rescent proteins that change color over time or

when exposed to light of a specific wavelength

(Lin and Tsien, 2010). Most cells do not pro-

duce their own fluorescent proteins, so DNA

constructs containing the sequence for the fluo-

rescent protein have to be introduced. The

insertion can happen either at the normal locus

of the gene or at a defined landing site. Fluores-

cent proteins placed under the regulatory

sequences of a gene of interest can then be

used to report on the expression of that gene.

Previously, relationships between cells could

be detected by inducing dividing cells to

express one of several fluorescent proteins at

specific time-points during development

(Lee and Luo, 1999; Cachero and Jefferis,

2011). Now, in eLife, Li He, Norbert Perrimon

and colleagues at Harvard Medical School,

Chongqing University and Tufts University report

how they have combined two fluorescent pro-

teins with different half-lives to make a reporter

(which they call a transcriptional timer or Trans-

Timer) that can be used to explore the dynamics

of gene expression in fruit flies (He et al., 2019).

A bright, fast-folding version of green fluores-

cent protein was selected and modified to

speed up its translation. First, He et al. opti-

mized protein synthesis by ensuring that the

most common triplet codons available in the fly
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were used to make the protein. Next, sequences

were added to make more of the fluorescent

protein by increasing translation initiation,

increasing transport of mRNA to the cytoplasm,

and efficiently poly-adenylating the mRNA so it

could be found by the translation machinery

(Pfeiffer et al., 2012). Last, they added a

sequence to target the protein for degradation

in order to ensure a short half-life. This kind of

careful protein engineering – with emphasis on

temporal precision of the off switch – is similar

to that which led to dramatic improvements in

the calcium sensors that can report action

potentials in neurons (Dana et al., 2019).

In vitro and in vivo tests showed that these

modifications resulted in a rapid increase and

decrease of the fluorescent signal, with green

fluorescence being detected within 10 minutes

and disappearing inside of two hours. A slow-

folding, stable red fluorescent protein which can

be detected after 1.5 hours, and which lasts for

more than 20 hours, was added to generate the

TransTimer reporter.

Due to the different folding and degradation

times of the two proteins in the TransTimer, the

onset of the green fluorescence is fast, followed

by a more gradual rise in red fluorescence. If a

gene is stably expressed, both green and red

fluorescence will be detected. On the other

hand, if a gene is dynamically expressed, after

an initial period during which both colors can be

detected, only red fluorescence will be

observed. These fluorescent proteins are bright

enough that the changes in color can be

watched in living tissue, and potentially tracked

in experiments involving long-term imaging of

developing embryos (Royer et al., 2016).

He et al. demonstrated some of the applica-

tions of the TransTimer in the fruit fly. First, they

showed that it can be used to detect short

bursts of gene expression in fixed tissues (by

measuring the proportions of green to red fluo-

rescent proteins), and that it can help identify

new genes with dynamic regulation through a

TransTimer enhancer trap. Next it was shown

that the TransTimer can be used to follow the

gene expression history of different cell types.

For example, neurons are sequentially produced

by neuroblast stem cells, and key genes in this

differentiation are transiently expressed. With

the TransTimer, cells that currently express a

gene will fluoresce both green and red, while

cells that have already switched it off will only

emit red fluorescence. In tissues like the eye or

wing disc, this resulted in a leading edge of

green/red cells followed by a wave of red ones.

The TransTimer could also have other appli-

cations in flies. First, it could allow the study of

gene expression in dynamic processes such as

circadian rhythms and metamorphosis. Second,

it could provide real-time information about

gene expression during cell fate assignments,

complementing mRNA sequencing data, which

only provides a snapshot of this process

(Bates et al., 2019). Finally, the TransTimer’s

ability to record gene expression history could

be used to answer mechanistic questions about

the gene expression cascades that establish neu-

ron identity in developing Drosophila brains

(Doe, 2017). It should also be possible to adapt

the TransTimer for use in other organisms.

The regulation of gene expression is complex

and many questions remain. By showing when,

where and how much a gene is expressed,

reporters such as the TransTimer will be valuable

tools in our efforts to better understand this

process.
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