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network‑based modeling of drug 
effects on disease module 
in systemic sclerosis
Ki‑Jo Kim1,3*, Su‑Jin Moon2 & Kyung‑Su park1

The network‑based proximity between drug targets and disease genes can provide novel insights 
regarding the repercussions, interplay, and repositioning of drugs in the context of disease. Current 
understanding and treatment for reversing of the fibrotic process is limited in systemic sclerosis (SSc). 
We have developed a network‑based analysis for drug effects that takes into account the human 
interactome network, proximity measures between drug targets and disease‑associated genes, 
genome‑wide gene expression and disease modules that emerge through pertinent analysis. Currently 
used and potential drugs showed a wide variation in proximity to SSc‑associated genes and distinctive 
proximity to the SSc‑relevant pathways, depending on their class and targets. Tyrosine kinase 
inhibitors (TyKIs) approach disease gene through multiple pathways, including both inflammatory and 
fibrosing processes. The SSc disease module includes the emerging molecular targets and is in better 
accord with the current knowledge of the pathophysiology of the disease. In the disease‑module 
network, the greatest perturbing activity was shown by nintedanib, followed by imatinib, dasatinib, 
and acetylcysteine. Suppression of the SSc‑relevant pathways and alleviation of the skin fibrosis was 
remarkable in the inflammatory subsets of the SSc patients receiving TyKI therapy. Our results show 
that network‑based drug‑disease proximity offers a novel perspective into a drug’s therapeutic effect 
in the SSc disease module. This could be applied to drug combinations or drug repositioning, and be 
helpful guiding clinical trial design and subgroup analysis.

Cells must act like a well-orchestrated group, thus, genes, proteins and other chemical compounds seldom 
operate separately but instead act together to perform the various biological functions of the cellular  network1. 
In the context of disease, various combinations of dysregulated genes converge to activate common pathways 
and perturb the shared network states, resulting in complex diseases with similar  phenotypes2,3. Similarly, drugs 
exert their therapeutic effects by modulating molecular pathways or networks linked with their primary target 
molecule(s)4. It is also thought that system-wide molecular actions of drugs are partially responsible for off-target 
effects, adverse effects, or beneficial effects in off-label  indications5. Direct study of the respective pathways and 
biological processes is cumbersome. However, systemic analysis of large integrated datasets has recently pro-
vided opportunities to reveal missing connections, and hence to bridge gaps in the existing knowledge, to better 
understand human  diseases6,7. Using knowledge of the proximity of compounds and their targets to key disease 
genes has emerged as a possible method to identify potential compound-disease pairs. These analyses are based 
on the hypothesis that the closer a drug’s target is to the disease-associated network, the higher the chance it will 
influence the disease’s state and  progression8. This principle can guide drug topology in the network module of 
the disease and the drug’s utilization in personalized medicine.

Systemic sclerosis (SSc) is a chronic autoimmune disease characterized by a distinctive pathogenetic triad 
of microvascular damage, dysregulated autoimmunity and generalized fibrosis of the skin and multiple internal 
organs, usually resulting in permanent functional impairment associated with high morbidity and  mortality9. 
Current therapeutic approaches consist of treatments against the vasculopathy, general immunosuppression and 
organ-specific therapies for the affected organs, although no single therapy has yet proven to effectively reverse 
or alleviate the fibrotic process in  SSc9. Many past clinical trials have produced negative results, which may be 
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due to: being driven by the wrong choice of target pathways or molecules, the chronic and irreversible nature 
of the fibrosis, the lack of indices properly evaluating the treatment response, and the heterogeneity of the trial 
 participants10,11. Hence there is a need for a systematic, in-depth view of the status of currently used or inves-
tigational drugs in the mechanistic network of disease. Analyzing drug action from the viewpoint of network 
biology may provide insights into how we can improve drug discovery and use in complex diseases such as SSc.

In this study, we analyzed the relationship between currently used and potential drugs and SSc-associated 
subnetworks, using proximity measures in an unsupervised and unbiased network-based framework. First, we 
explored the distance from key molecules, which are targeted by the drugs, to the SSc-associated genes. Then 
we concentrated on the pertinent pathways and associated biological processes, based on the distance metrics 
with a focus on the degree to which the drug-perturbed pathways cover pathogenic processes of SSc. Finally, 
we investigated how the drugs work to disturb the network of the disease module, validated the simulated drug 
actions in the gene-expression profiles of SSc skin tissue, and considered how this result could be applied to 
clinical research or practice.

Results
SSc‑associated genes and enriched biological processes. The overarching methodology for our data 
collection and proximity analysis performed was depicted in Fig. 1. We identified the 179 SSc-associated genes 
from the Phenotype-Genotype Integrator (PheGenI)12, the  DisGeNET13, and the Comparative Toxicogenomics 
Database (CTD)14 (Supplementary Table 1). In the human interactome network, the largest connected compo-
nent (LCC) consisted of 88 SSc-associated genes, 20 genes that were paired off and 71 genes that were scattered 
(Fig. 2a). Enriched biological processes for the 179 SSc-associated genes were searched using the DAVID[The 
Database for Annotation, Visualization and Integrated Discovery]  tool15, resulting in 55 gene ontology (GO)-
biological process terms. Chemokine synthesis, apoptosis-associated processes, the transforming growth factor 
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Figure 1.  Overview of the computational approach, with network proximity data sources and methodology. 
Drug targets, SSc-associated genes and relevant pathways were curated from the literature. The SSc-associated 
genes were used as seeds for identification of the SSc disease module, using the DIAMOnD module-finding 
algorithm on the human interactome network. Once the SSc disease module had been constructed, GO analysis 
was performed with DAVID software, for assessment of the related biological processes. Network-based closest 
proximity between two molecular groups was calculated, and attack vulnerability of the disease module network 
by drugs was assessed.
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(TGF)-β signaling pathway, extracellular matrix organization, and some immune response-related processes 
(MHC class II biosynthesis process, T-cell proliferation) were captured as the main features (Fig. 2b). This result 

Figure 2.  Proto-module with SSc-associated genes and their enriched processes. (a) A graphical representation 
of all the interactions between SSc-associated genes. The size of each node was determined by its degree. (b) 
Functional enrichment analysis was done using DAVID software, resulting in 55 gene ontology—biological 
process terms. The top 20 terms, by expression analysis systematic explorer (EASE) score, are shown.
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indicates that the list of genes and molecules studied to-date as involved in the pathogenesis of SSc is incomplete 
and that there are missing nodes and links.

Proximity between the SSc‑targeted drugs and SSc‑associated genes in the interac‑
tome. Currently used and potential drugs for SSc were identified from the  literature10,16–18 and drug-target 
information was gathered from the DrugBank  database19 (Supplementary Table 2). Anti-diabetic agents, H2 
receptor blockers, and statins were compared as controls because these drugs are far from the mechanistic fea-
tures of SSc. The relative proximity between the drugs and the SSc-associated genes is plotted in Fig. 3a. The 
relative proximity between the drugs and the SSc-associated genes is plotted in Fig. 3a. Anti-diabetic agents and 
H2-receptor blockers were located far from the SSc-associated genes, whereas statins were probably proximal to 
the SSc-associated genes (zc <  −1.282, P value < 0.10). Rituximab, abatacept, peroxisome proliferator-activated 
receptor (PPAR)-γ agonists, and cannabinoids were not significantly adjacent to the SSc-associated genes. Phos-
phodiesterase-5 inhibitors, endothelin receptor blockers, and some of the immunosuppressive agents (sirolimus, 

Figure 3.  Proximity between drug targets and SSc-associated genes and pathways. (a) Given a set of disease 
proteins S, and the set of drug targets T, the closest distance d is the shortest path-length between all members 
of S and T in the network. The relative proximity (z) was calculated by comparing the distance d, between T 
and S, to a reference distribution of distances between SSc-associated proteins and the  103 groups of randomly 
selected proteins matching the sizes and degrees of the drug targets in the network. The red dotted lines 
correspond to the significance thresholds. If zc ≤  −1.645 (one-sided P value < 0.05), a drug was considered to 
be significantly proximal to the disease and if zc ≤  −1.282 (one-sided P value < 0.10), a drug was considered 
to be probably proximal to the disease. (b) Heatmap of drugs and SSc-relevant pathways based on proximity 
metrics. ADA, anti-diabetic agent; H2RB, H2-receptor blockers; BcI, B-cell inhibitor; TcI, T-cell inhibitor; IMS, 
immunosuppressive agents; PCA, prostacyclin analogs; PDEI, phosphodiesterase-5 inhibitors; ETRB, endothelin 
receptor blockers; PPARA, PPAR-g agonists; CANNAB, cannabinoids; TyKI, tyrosine kinase inhibitors; Misc, 
miscellaneous drugs.
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tocilizumab and methotrexate), prostacyclin analogs (tranilast and iloprost), tyrosine kinase inhibitors (TyKIs: 
ninedanib, imatinib and dasatinib) and hydroxyfasudil were all found to be located significantly proximal to the 
SSc-associated genes (zc <  −1.645, P value < 0.05).

Proximity between SSc‑targeted drugs and SSc‑relevant pathways. To investigate further the 
network-based mechanism of drug action, we examined the pathways that are proximal to the SSc-targeted drugs 
using the gene sets of the KEGG [Kyoto Encyclopedia of Genes and Genomes] and Reactome  pathways20,21. We 
curated the SSc-relevant pathways or processes from the  literatures22–26. Figure 3b depicts the heatmap analysis 
for the SSc-relevant pathways (see the Supplementary Table 3 for the detailed values). TyKIs, such as dasat-
inib, imatinib and nintedanib, significantly covered the broadest range of the signaling and extracellular-matrix 
organizing pathways (zc <  −1.645, P value < 0.05): toll-like receptor signaling pathway, chemokine-, JAK-STAT-, 
Fc-εRI-, B-cell receptor-, vascular endothelia growth factor (VEGF)-, mTOR-, platelet-derived growth factor 
(PDGF)-, type I and II interferon-signaling pathways and keratan sulfate/chondroitin sulfate/dermatan sulfate 
biosynthesis. Among the TyKIs, nilotinib showed the weakest accessibility to the SSc-relevant pathways. Nilo-
tinib was defined to target only two tyrosine kinases, ABL1 and KIT, whereas the TyKIs listed above had 9 or 
10 molecular targets (see the Supplementary Table 2). Endothelin receptor blockers were found to be located 
close to chemokine-, VEGF-, hypoxia-inducible factor (HIF)-1-, Apelin- and sphingolipid-signaling pathways 
(zc < −1.645, P value < 0.05), but not significantly close to extracellular-matrix organizing processes, which is 
consistent with previous  results27–29. Among the immunosuppressive agents, methotrexate, sirolimus and toci-
lizumab showed the potential to perturb extracellular-matrix organization by interfering with biosynthesis of 
glycosaminoglycans. Halofuginone, having two targets, COL1A1 and MMP2, was significantly close to extracel-
lular-matrix organizing processes.

Disease module identification. Known disease-associated genes tend to be investigated most extensively, 
which might introduce a bias and, thereby, produce an incomplete explanation of the disease pathogenesis. 
To counter that limitation, we based the disease module on the established SSc-associated genes. A cluster of 
88 highly interconnected seed genes was observed on the interactome of the 179 SSc-associated genes from 
three  sources12–14 shown in Fig. 2a, which we called the “proto-module”. Proteins that are involved in the same 
disease tend to interact with each  other30. We prioritized the putative SSc-relevant genes forming the disease 
module on the interactome using the Disease Module Detection (DIAMOnD) algorithm (Fig. 4a, Supplemen-
tary Table 4)31,32. The DIAMOnD algorithm prioritizes the proteins in the network based on their topological 
proximity to seed proteins. Hence, the order in which the DIAMOnD proteins are selected can be interpreted as 
a network-based ranking criterion. DIAMOnD ranks the entire network in consecutive order and we, therefore, 
needed an additional stopping criterion to define the boundary of the disease module. For this, we used four 
different SSc-specific validation details: human SSc gene expression data, gene-sets from the KEGG and Reac-
tome pathways, and GO-biological process terms. The first item comprises the differentially expressed genes, 
and the three latter items were assembled from the significantly enriched pathways or processes, based on the 
SSc-associated seed genes. The DIAMOnD gene in each iteration was considered a “hit” if it was incorporated 
in the gene-sets. (Fig. 4b). There was no further significant gain beyond the 450th iteration in terms of hit rate 
and P value (Fig. 4b), so 450 DIAMOnD genes were added to the 179 seed genes to make the final SSc disease 
module (Fig. 4c). The top 30 hits are listed in Fig. 4d. The SSc disease module from the KEGG pathways was 
most strongly enriched with the MAPK-signaling pathway (P value = 2.85 × 10−80), PI3K-Akt-signaling pathway 
(P value = 8.09 × 10−69) and tumor necrosis factr (TNF)-signaling pathway (P value = 1.55 × 10−64), followed by 
the chemokine-signaling pathway (P value = 7.70 × 10−42), Fcε RI-signaling pathway (P value = 3.32 × 10−45) and 
the JAK-STAT signaling pathway (P value = 2.09 × 10−40).

Perturbation of disease modules by drugs. To understand the pathways or cellular processes, as guided 
by the disease module, we performed functional enrichment analysis for all seed and DIAMOnD genes, using 
the DAVID  software15 and constructed the enrichment map33. The graph of enriched GO-biological processes 
was made up of 160 nodes with 1,086 edges, and the LCC comprised 155 nodes (Fig. 5a and Supplementary 
Fig. 1). To check how close a drug was to each node enough to perturb the process, we calculated the network-
based proximity of drug targets to the gene set of each node in the same way for disease and pathway proteins. 
We regarded the node proximal to a certain drug (zc < −1.282, P value < 0.10) as being perturbed.

In an attempt to understand the mechanisms of action of the respective drugs, we analyzed the biological 
processes and molecular functions of the GO terms in the disease network. To illustrate, nintedanib, the most 
perturbing agent for this network, is cited as an example. The terms most proximal to nintedanib were ‘JAK-
STAT cascade’ (zc = −6.11, P value < 1 × 10−5), ‘regulation of interferon-γ-mediated signaling pathway’ (zc = −5.45, 
P value < 1 × 10−5), ‘regulation of phosphatidylinositol 3-kinase signaling’ (zc = −4.87, P value < 1 × 10−5), and 
‘TNF-mediated signaling pathway’ (zc = −4.42, P value < 1 × 10−5). Nintedanib perturbed 83 (51.8%) nodes, which 
are shown in red in Fig. 5b. The distribution of nodes perturbed by each drug is provided in Fig. 5c and Sup-
plementary Fig. 2.

In a network context, robustness refers to the system’s ability to carry out its basic functions even with 
the breakdown of some network nodes or links. The connectivity of the LCC is regarded as the foundation of 
 robustness34. To investigate the robustness of the disease-module network, we computed the evolution of the size 
of the LCC under random failures of network nodes (Fig. 5d)34,35. Our results (1,000 simulations) argue that half 
of the network would collapse when at least 27% of the nodes are disturbed, on average. Nintedanib showed the 
most perturbing activity (51.8%), followed by imatinib (40.6%), dasatinib (38.1%) and acetylcysteine (36.2%).
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Clinical response in SSc patients receiving nilotinib therapy. To test the applicability of network-
based proximity of drugs, we imported the gene expression dataset of SSc skin tissues, which was obtained from 
6 SSc patients on 2 separate occasions, before and after 12 months of treatment with nilotinib (GSE65405)36. To 
compare the paired samples before and after nilotinib treatment, a single sample version of gene-set enrichment 
analysis (ssGSEA) was used to generate enrichment scores for gene sets of SSc-relevant pathways or processes. 
Patients with a decrease in modified Rodnan skin score > 20% from baseline to 12  months were defined as 
 improvers36. An intrinsic molecular subset was assigned according to the previous  study37, and three fibropro-
liferative, two inflammatory, and one normal-like subsets were identified. All patients in the inflammatory and 
normal-like subsets, and in one of the three fibroproliferative subsets were classified as improvers. Seven main 
signaling pathways or processes targeted by nilotinib on the SSc disease-module network were compared for the 
improvement and intrinsic subsets (Fig. 6). A decreasing pattern was found in most of the improvers (Fig. 6a), 
and was particularly notable in the two inflammatory subsets (Fig. 6b).

Discussion
Advances in high-throughput platforms, the continuing accumulation of knowledge about diseases, and the 
availability of organized biomedical data add to the clinical and mechanistic insights into disease from a wide 
and systemic  perspective38,39. The resolution of tissue fibrosis remains an unmet clinical need in patients with 
SSc. In the present study, we tried to understand the disease and currently used and potential drugs’ action in 

Figure 4.  Disease-module identification and validation. (a) Schematic network configuration from seed genes 
to the SSc disease module. Seed genes (red) and their neighbor nodes (yellow) are identified iteratively. The 
proto-module consists of the seed genes only, whereas the final disease module incorporates all genes identified 
by the DIAMOnD method. (b) Validation of the identified genes through cross-reference with orthogonal data 
sources. The upper row depicts the number of DIAMOnD genes found in the different validation datasets (SSc 
gene expression data, gene sets from KEGG, Reactome pathways, and GO biological process terms), with the 
corresponding statistical significance (P value) shown on the lower row. No significant gain was noted beyond 
450 iteration steps (vertical gray dotted lines). In the upper row, a sliding-window approach was used to adjust 
for the dependence of P values on the underlying set size. (c) The 179 seed genes and the resulting network 
once the 450 DIAMOnD-identified genes were added to create the 629-gene SSc disease module. (d) List of the 
DIAMOnD genes from the first 30 iterations.
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terms of network biology, to reduce the gaps in the existing knowledge, and to provide clues into the challeng-
ing issue in SSc.

One hundred seventy-nine SSc-associated genes were identified from the database. Eighty-eight molecules 
constituted the largest subnetwork and others were sparsely connected or isolated on the interactome. This con-
tributed to an incomplete interactome, false positives and missing disease  genes32. Moreover, enriched processes 
of those genes were limited to chemokine synthesis, apoptosis-associated processes, the TGF-β signaling pathway, 
extracellular-matrix organization, and some immune response-related processes (MHC class II biosynthesis 
process and T-cell proliferation), and they do not fully cover the current knowledge about SSc. To make up for 
the lack of completeness, we reconstituted the SSc disease module using the DIAMOnD algorithm, and the final 
SSc disease module and enriched processes better explained the pathophysiology of SSc. It is noteworthy that 
 SP140,  FN141, and apoptosis-related molecules including BCL2  family42, the emerging small molecular targets 
of SSc, were incorporated early by priority into DIAMOnD genes, although those were not assigned as seed 
genes. In particular, it is notable that inhibition of BCL-XL reversed the established fibrosis in a mouse model 
of SSc by inducing myofibroblast apoptosis, and that that provided a new therapeutic avenue for treating  SSc42. 
Taken together, this principle of disease gene prioritization might be applicable to discovering novel or critical 
molecules involved in the development of SSc but not well-defined before.

To understand the action of drugs and their status with relation to SSc on the interactome, the proximity 
between drug targets and disease genes was evaluated. Proximity between the currently used or potential drugs 
and disease genes was variable and not all of the proximity value showed statistical significance. Non-significant 
closeness would mean that the drug’s targets are located far from the disease module or that the drug has an 
indirect effect on the disease module. It could be also ascribed to its different target among the etiopathogenetic 
domains (immune-inflammatory, vascular, or fibrotic process) or to its limited indication for a specific clinical 

Figure 5.  SSc disease module and perturbation by drugs. (a) Enriched pathway map of the SSc disease module. 
Nodes represent distinct GO terms. Node size is proportional to the number of genes in the respective GO term. 
The edge was determined by the Jaccard similarity coefficient (edge cut-off is 0.1 distance). (b) Perturbation of 
the disease module by nintedanib. Nodes significantly proximal to drug targets are red (z ≤ −1.282), insignificant 
nodes are blue (z > −1.282). If zc ≤  −1.645 (one-sided P value < 0.05), a node was considered to be significantly 
proximal to the disease and if zc ≤  −1.282 (one-sided P value < 0.10), a node was considered to be probably 
proximal to the disease. (c) The ratio of nodes, based on the proximity between the drugs and the disease 
module, indicates the specificity and generalization of the respective drugs. (d) The percentage of the largest 
connected component (LCC) that remains when treated by drugs (points) or under random node failure (red 
line,  103 simulations).
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manifestation (interstitial lung disease, pulmonary arterial hypertension or cutaneous involvement). Proximity 
of the pathways offered a complementary explanation for this difference. Endothelin receptor blockers exhib-
ited a good proximity to disease genes as a whole, but were limited to several key pathways such as VEGF- and 
HIF-1-signaling pathways. In contrast, TyKIs, especially those with multiple targets, approached disease genes 
through multiple pathways, including both inflammatory and extracellular-matrix organizing processes. Even 

Figure 6.  Validation of network-based proximity of nilotinib. ssGSEA was performed for paired skin biopsy 
samples obtained from SSc patients receiving 12 months of nilotinib treatment (GSE65405). The enrichment 
scores of seven main signaling pathways or processes were compared for before- and after-treatment. (a) 
Comparison by improvers versus non-improvers. Improvers were defined as those patients with a decrease 
in modified Rodnan skin score of > 20% from baseline to 12 months. (b) Comparison by intrinsic molecular 
subsets. Statistical tests were not possible due to the small number of samples.
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as a control, statins showed a fair proximity to disease genes and several pro-fibrosing pathways. Statins have 
been reported to be associated with the development and exacerbation of lung  fibrosis43,44.

We investigated the size and range of the disease module differentially covered by each drug, to understand 
its mode of action and topology in the network-based framework. We noticed variable sizes and differential 
coverage of the disease network by the drugs. This helped provide a comprehensive view of each drug’s action 
and repercussions within the disease module. As a single agent, nintedanib showed the best performance in 
perturbing the disease module, followed by imatinib, dasatinib, and acetylcysteine. Acetylcysteine, a precursor 
of the antioxidant glutathione, was defined to target ACY1, CHUK, GSS, IKBKB, SLC7A11 and the glutamate 
receptor family. In a randomized controlled trial, the addition of acetylcysteine to prednisone and azathioprine 
worked in preserving pulmonary function in patients with idiopathic pulmonary  fibrosis45 although this is not 
generally recommended due to the concern for harmful  effects46. Acetylcysteine may be more beneficial in 
individuals with idiopathic pulmonary fibrosis with specific genotype such as  TOLLIP47. This approach can also 
be applied to estimation of the combined or synergistic effects across drugs. Combinations of two drugs could 
create a synergistic or additive effect if their coverage for the disease-module network is complementary to each 
other, and could increase the success rates of drug  repositioning48.

TyKIs were promising agents because experimental studies in murine models of SSc have shown that TyKIs 
can prevent the development of  fibrosis16, and this was corroborated by our network-based simulation. But 
discrepancies exist between encouraging preclinical results and disappointing clinical  trials11. A vital clue can 
be obtained from a pilot study using the gene expression dataset of SSc skin tissues, which was obtained from 
6 SSc patients receiving 12 months of nilotinib  treatment36. Effective suppression of the SSc-relevant pathways 
and good response alleviating the skin fibrosis was observed in the inflammatory subsets of SSc patients. This 
implied that TyKIs are more effective in on-going pro-fibrotic inflammation and less in the fibroproliferative 
phase over the threshold. Lower effectiveness could partly be attributed to the lower dose (400 mg qd, rather 
than 400 mg q12 hour for chronic myeloid leukemia)36, the narrow selectivity of nilotinib targets and the low 
levels of the target  molecules49. Unfortunately, toxicity and tolerability issues limited the further use of imatinib 
and  nilotinib11. Taken together, TyKIs with less selectivity and a broad range of tyrosine kinase targets, such as 
dasatinib and nintedanib, would have greater efficacy and less toxicity, especially in the subset of SSc patients in 
the early inflammatory phase. This could guide clinical trial design and subgroup analysis.

Our results argue that network-based drug-disease proximity offers a novel perspective into a drug’s therapeu-
tic effect in the refined disease module. In our network-based model, many drugs failed to have a comprehensive 
capability to subdue the SSc disease module although they are able to perturb a few key pro-fibrosing pathways. 
This limitation could be overcome with combination therapy or the use of drugs with multifarious activities, 
like TyKIs. In this work, we investigated just one of the dimensions that need to be taken into account when 
determining the feasibility of drugs for each case, as the actual clinical outcome is determined by a plethora of 
variables, including disease status, genetic susceptibility, comorbidity, pharmacokinetics and/or pharmacody-
namics. Significant additional research is needed to translate these findings into clinical applications.

Methods
The human interactome. A previous  study30 constructed a model of the human interactome based on 
its protein–protein interaction (PPI) network built based on the experimentally documented human physical 
interactions from the reputable  database21,50–57, as well as a separately published large-scale signaling  network58. 
This human interactome dataset contains 141,150 interactions among 13,329 proteins, and was found to per-
form better in capturing the therapeutic effect of drugs than did functional networks from  STRING59 and other 
high-throughput binary  screens8. We used this human interactome network as the basis for conducting our 
proximity analysis.

Systemic sclerosis‑associated genes and drug targets. SSc-associated genes were retrieved from 
 PheGenI12,  DisGeNET13, and  CTD14. Forty-five, 70 and 105 genes were found to be associated with SSc in Phe-
GenI, DisGeNET, and the CTD, respectively. One hundred seventy-nine unique genes belong to human inter-
actome elements (Supplementary Table 1). Information on drug-target molecules was extracted from the Drug-
Bank database (Supplementary Table 2)19.

Network‑based proximity measure. To quantify the network-based relationship between drug targets 
and disease proteins, we used the metric of closest proximity dc, which is defined as the average shortest path-
length between the drug’s targets and the nearest disease  protein8. Briefly, given S, the set of disease proteins, T, 
the set of drug targets and d(s, t), the shortest path-length between nodes s and t in the network, dc between S 
and T is given by:

To evaluate the significance of the network distance between a drug and a given disease, we constructed a 
reference distance distribution corresponding to the expected distance between two randomly selected groups of 
proteins of the same size and degree distribution as the original disease proteins and drug targets in the network. 
This procedure was repeated 1,000 times. The mean d and standard deviation (σd) of the reference distribu-
tion were used to calculate a z-score (zd) by converting an observed (non-Euclidean) distance to a normalized 
(non-Euclidean) distance. The detailed description of network proximity was provided in the previous  study8. 
According to the standard normal distribution, if zc ≤  −1.645 (one-sided P value < 0.05), a drug was considered 

dc(S,T) =
1

T

∑

t∈T

mins∈sd(s, t)
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to be significantly proximal to the disease and if zc ≤  −1.282 (one-sided P value < 0.10), a drug was considered to 
be probably proximal to the disease.

Network‑based pathway proximity analysis. To identify the biological pathways affected by a drug in 
the human interactome, we used the closest distance measure to assess the proximity between drugs and path-
ways. The drug pathway proximity is the normalized distance between the drug targets and the proteins belong-
ing to a given pathway. As in our calculation of drug-disease proximity, 1,000 randomly selected protein sets, 
matching the original protein sets in size and network degree, were used to calculate the mean and the standard 
deviation of the z-score. We used gene sets from all of the  KEGG21 and Reactome  pathways20.

Disease module detection method. To derive the SSc-specific disease module in the human interac-
tome, we used the Disease Module Detection (DIAMOnD)  algorithm31,32, which is robust over a wide range of 
noise and shows superior performance relative to other methods. This algorithm is based on the observation that 
potential disease genes have a propensity to interact with the known disease genes, and prioritizes the proteins 
in the network based on their topological proximity to seed  proteins30. The detailed description of DIAMOnD 
algorithm was provided in the previous  studies31,32.

This analysis identified the statistically significant enrichment of SSc-relevant genes among the designated 
DIAMOnD genes. Because there was no significant further gain beyond 450 iterations, we considered the first 
450 DIAMOnD genes to have the most significant SSc association (Supplementary Table 4). The module, the 
LCC in the network, which started at 88 directly connected seed genes, was incremented by 450 DIAMOnD 
genes and was further connected to 62 isolated seed genes through the link by DIAMOnD genes. As a result, a 
putative SSc disease module of 600 genes, in total, was created.

Validation of DIAMOnD genes. To determine the cut-off size of DIAMOnD genes, we used four SSc-rel-
evant validation datasets: the SSc gene expression data, gene sets from KEGG and Reactome pathways and GO 
biological process terms. To obtain RA gene expression data, we searched the NCBI Gene Expression Omnibus 
(GEO, January 2018, https ://www.ncbi.nlm.nih.gov/geo/) and ArrayExpress database (https ://www.ebi.ac.uk/
array expre ss/) for all gene expression datasets using ‘systemic sclerosis’ and ‘skin tissue’ as a search term, result-
ing in eight publicly available human microarray datasets. Because there was a trade-off between the number 
of studies to include and the number of genes that are within the intersection from all datasets, we optimized 
the product of the two by selecting the point where those two trends crossed. We finally selected 8 expres-
sion datasets with GEO series (GSE) IDs: GSE58095, GSE76806, GSE66321, GSE65405, GSE32413, GSE45485, 
GSE59785 and GSE76807. The complete collection included 423 skin samples from 175 SSc patients and 61 
healthy controls. After normalizing and removing the batch effect, we performed differential expression analysis 
and selected the gene candidates that were identified in each of three independent methods (empirical Bayes, 
significance analysis of microarrays, and ranked product), and finally filtered the 2,175 up-regulated genes. The 
gene sets of KEGG, Reactome pathways and GO terms that were significantly enriched within the given set of 
seed genes were obtained using the Database for Annotation, Visualization, and Integrated Discovery (DAVID) 
version 6.8 software and the Reactome Analysis tool (P value < 0.05)15,20. Each DIAMOnD gene was considered a 
“hit” if it had at least one annotation that was in the gene sets significantly enriched within the seed genes (Fish-
er’s exact test, P value < 0.05). To compensate for the dependence of P values on the underlying set size, we used 
a sliding-window approach: at each iteration step i, we considered all DIAMOnD genes in the interval [i − 179/2, 
i + 179/2], thereby obtaining sets of the same size as the seed genes, which could be compared with each other.

Assessment of network robustness. To assess the robustness of the networks against attack, we used 
iterative ‘random’ and ‘targeted’ removal of  nodes34,35. Nodes were deleted randomly from the graph irrespective 
of the degree of the node, or only the nodes targeted by the drugs were selectively removed. After each deletion, 
we computed the evolution of the size of the LCC, which means the minimum path-length under a random or 
targeted attack of a graph. This indicates how much the drug can disrupt the network of the disease module.

Functional enrichment analysis. We performed functional enrichment analysis focusing on the genes 
of interest using DAVID  software15. Terms were considered to be significant if the P value was less than 0.01, the 
gene count more than 3 and the fold enrichment larger than 1.5. The Expression Analysis Systematic Explorer 
(EASE) score was transformed using the absolute base-10 logarithm of the P value. The enrichment results were 
visualized with the Enrichment Map format, where nodes represent gene sets and weighted links between the 
nodes represent an overlap score, which depends on the number of genes that the two gene sets share (Jaccard 
coefficient)33. To intuitively identify redundancies between gene sets, the nodes were connected if their contents 
overlapped by more than 10%.

Single sample gene‑set enrichment analysis. To test for gene enrichment in individual samples from 
SSc patients, we used a single sample version of gene-set enrichment analysis (ssGSEA), which defines an enrich-
ment score as the degree of absolute enrichment of a gene set in each sample within a given  dataset60. The gene 
expression values for a given sample were rank-normalized and an enrichment score was produced using the 
Empirical Cumulative Distribution Functions of the genes in the signature and the remaining genes. This proce-
dure is similar to the GSEA technique, but the list is ranked by absolute expression in one sample.

https://www.ncbi.nlm.nih.gov/geo/
https://www.ebi.ac.uk/arrayexpress/
https://www.ebi.ac.uk/arrayexpress/
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Statistical analysis. For continuous distributed data, between-group comparisons were performed using 
a paired or unpaired t-test. Categorical or dichotomous variables were compared using a chi-squared test or 
Fisher’s exact test. All analyses were conducted in R (version 3.5.2, The R Project for Statistical Computing, 
www.r-proje ct.org).

Data availability
The SSc skin transcriptomic datasets used in this study are freely available on the GEO data portal under the 
access GSE58095, GSE76806, GSE66321, GSE65405, GSE32413, GSE45485, GSE59785 and GSE76807.
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