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ARTICLE

Dissecting transition cells from single-cell
transcriptome data through multiscale stochastic
dynamics
Peijie Zhou1,2, Shuxiong Wang 2, Tiejun Li 1✉ & Qing Nie2,3✉

Advances in single-cell technologies allow scrutinizing of heterogeneous cell states, however,

detecting cell-state transitions from snap-shot single-cell transcriptome data remains chal-

lenging. To investigate cells with transient properties or mixed identities, we present

MuTrans, a method based on multiscale reduction technique to identify the underlying

stochastic dynamics that prescribes cell-fate transitions. By iteratively unifying transition

dynamics across multiple scales, MuTrans constructs the cell-fate dynamical manifold that

depicts progression of cell-state transitions, and distinguishes stable and transition cells. In

addition, MuTrans quantifies the likelihood of all possible transition trajectories between cell

states using coarse-grained transition path theory. Downstream analysis identifies distinct

genes that mark the transient states or drive the transitions. The method is consistent with

the well-established Langevin equation and transition rate theory. Applying MuTrans to

datasets collected from five different single-cell experimental platforms, we show its cap-

ability and scalability to robustly unravel complex cell fate dynamics induced by transition

cells in systems such as tumor EMT, iPSC differentiation and blood cell differentiation.

Overall, our method bridges data-driven and model-based approaches on cell-fate transitions

at single-cell resolution.
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Advances in single-cell transcriptome techniques allow us
to inspect cell states and cell-state transitions at fine
resolution1, and the notion of transition cells (aka. hybrid

state, or intermediate state cells) starts to draw increasing
attention2–4. Transition cells are characterized by their transient
dynamics during cell-fate switch3, or their mixed identities from
multiple cell states5, different from the well-defined stable cell
states6,7 that usually express marker genes with distinct biological
functions. Transition cells are conceived vital in many important
biological processes, such as tissue development, blood cell gen-
eration, cancer metastasis, or drug resistance8.

Despite the rapid algorithmic progress in single-cell data
analysis9, it remains challenging to probe transition cells accu-
rately and robustly from single-cell transcriptome datasets. Often,
the transition cells are rare and dynamic, and herein difficult to be
captured by static dimension-reduction methods10. High-
accuracy clustering methods (e.g., SC311 and SIMLR12) tend to

enforce distinct cell states, placing transient cells into different
clusters, therefore only applicable to the cases of sharp cell-state
transition (Fig. 1a). While popular pseudo-time ordering
methods13, such as DPT7, Slingshot14 and Monocle15, presumes
either discrete (Fig. 1a) or continuous cell-state transition
(Fig. 1a), quantitative discrimination between stable and transi-
tion cells is lacking7. Recently, soft-clustering techniques provides
a way to estimate the level of mixture of multiple cell states16,
however, the linear or static models embedded in such approach
make it difficult to capture dynamical properties of cells.

Dynamic modeling provides a natural way to characterize
transition cells3, allowing multiscale description of cell-fate
transition (Fig. 1a and Supplementary Fig. 1). Such models ana-
logize cells undergoing transition to particles confined in multiple
potential wells with randomness17,18, for which the transient
states correspond to saddle points and the stable cell states cor-
respond to attractors19–21 of the underlying dynamical system
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Fig. 1 Brief introduction to MuTrans. a–c Theoretical foundation of MuTrans - the multi-scale stochastic dynamics approach to model cell-fate transitions. a
Three possible perspectives to describe cell-fate transition, as either entirely discrete or continuous process, or as the multi-scale switch process between
attractors mediated by transition cells. The first two perspectives correspond to clustering or pseudotime ordering commonly adopted in single-cell
analysis. b Biophysical foundation of the multi-scale perspective to treat cell-fate transition as over-damped Langevin dynamics in the multi-stable potential
wells. The stable states correspond to the attractor basins while the transition states are modelled by the saddle points of underlying dynamical system. c A
typical gene expression trajectory of multi-scale dynamics. The expression of driver genes fluctuates within the stable cells, while witnesses the continuous
yet temporary change within transition cells, forming a transition layer in trajectory. d, e The procedure and downstream analysis of MuTrans. d The
procedure of iterative multi-scale learning. The input is the pre-processed single-cell gene expression matrix. The three major steps (indicated by the
number on arrow) for iterative learning of the stochastic dynamics across three different scales: (1) learning the cell-cell scale random walk transition
probability matrix (rwTPM) from expression data, (2) learning the cluster-cluster scale rwTPM by coarse-graining the cell-cell scale rwTPM, and
(3) learning the cell-cluster scale rwTPM by soft-clustering the cluster-cluster scale rwTPM. The output of iterative multi-scale learning includes the cell
attractor basins and their mutual transition probabilities, as well as the membership matrix indicating relative cell positions in different attractors. e
Downstream analysis (Transcendental Procedure). Given the output of iterative multi-scale learning, MuTrans constructs the cell lineage, dynamical
manifold and transition paths manifesting the underlying transition dynamics of cell-fate. For each state-transition process, MuTrans explicitly
distinguishes between stable and transition cells via transition cell score (TCS). The transition cells are marked with dashed squares. Based on the TCS
ordering of cells, MuTrans identifies three types of genes (MS, IH and TD) during the transition whose expression dynamics differ in stable and transition
cells. MS: meta-stable genes. IH: intermediate-hybrid genes. TD: transition-driver genes.
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(Fig. 1b). In such description, the stochastic gene dynamics at
individual cell scale can induce cell-state switch at macroscopic
cell cluster or phenotype scale, and the transition cells form
bridges between different attractors (Fig. 1c). Despite widely use
of dynamical systems concepts to illustrate cell-fate decision4,
direct inference via dynamical models for transitions from single-
cell transcriptome data is lacking.

Here we employ noise-perturbed dynamical systems22 with a
multiscale approach on cell-fate conversion23 to analyze single-
cell transcriptome data. By characterizing stable cells in attractor
basins and placing the transition cells along transition paths
connecting attractors through saddle points, our multiscale
method for transient cells (MuTrans) prescribes a stochastic
dynamical system for a given dataset (Fig. 1b). Using the single-
cell expression matrix as input, through iteratively constructing
and integrating cellular random walks across three scales (Fig. 1d
and Supplementary Fig. 2), MuTrans finds most probable tran-
sition paths for cell transitions in a reconstructed cell-fate
dynamical manifold (Fig. 1e, Methods). Such manifold, similar to
the classical Waddington landscape24 often used to highlight
transitions, provides an intuitive visualization of cell dynamics
compared to commonly adopted low-dimension geometrical
manifold. In the dynamical manifold, the barrier height naturally
quantifies the likelihood of cell-fate switch, and the Transition
Cell Score (TCS) and transition entropy allows us to distinguish
between attractors and transition cells (Fig. 1e, Methods). We
then illustrate the complex cell transition trajectories on dyna-
mical manifold using the dominant transition paths obtained for
the coarse-grained dynamics. With such quantification, we are
able to identify critical genes that are transition drivers (TD
genes), mark the intermediate/hybrid states (IH genes) or meta-
stable cells (MS genes) (Fig. 1e and Supplementary Fig. 3). To
speed up calculations for datasets consisting of large number of
cells25,26, MuTrans provides an additional (and optional) aggre-
gation module in pre-processing. This module aggregates cells
into many small groups that share similar dynamical properties,
thus MuTrans can take the transition probabilities among these
coarse-grained cells as the input, instead of the random walk on
original cells, in order to reduce the computational cost (Method
and Supplementary Note 2).

We demonstrate the effectiveness and robustness of MuTrans
in multiple single-cell transcriptome datasets, including simula-
tion datasets and sequencing data generated by five different
experimental platforms. Comparisons with existing single-cell
lineage inference tools demonstrate the capability and scalability
of MuTrans in probing complex, sometimes subtle, cell-fate
transition dynamics. We also perform mathematical analysis to
show consistency of MuTrans with the over-damped Langevin
dynamics27 - a popular model for state transitions in physical or
biochemical systems22.

Results
Overview of MuTrans workflow and theoretical foundations.
MuTrans depicts cells and their transitions in each single-cell
transcriptome dataset as a multiscale dynamical system
(Fig. 1a–c). The dynamics of cell fates can be described by the
stochastic differential equations (SDEs) as

dXt ¼ f Xt

� �
dt þ σ Xt

� �
dWt ; ð1Þ

where Xt 2 Rp denotes the cell’s gene expression state at time t,
f(x) denotes the nonlinear gene regulations, σ(x) denotes the
noise strength due to both biochemical reactions and environ-
mental fluctuations, and Wt is the standard Brownian motion
representing the noise. Usually, f(x) may have multiple zeros,
corresponding to the multi-stable attractors of the dynamical

system. At long time scale in coarse-grained state space, the Eq.
(1) can be reduced to capture the transitions among different
attractors28.

To ensure the description is well-posed for single-cell
transcriptome data, regularizations or additional prior knowledge
(e.g., cell growth rate) needs to be enforced or provided. Similar
to previous studies29, here we make two important assumptions:
(a) The multi-stable drift term f(x) can be well-approximated by
the gradient of a potential field with multiple wells, and (b) the
single-cell data is sampled from nearly stationary distribution (or
a system is fully ergodic without rapidly growing populations).
This indicates that the data is sampled from a stationary system, a
reasonable assumption if no prior knowledge is provided29. From
the decomposition analysis of differential equations30, the
potential-field assumption (a) is valid when the non-gradient
term of drift f(x) is small in the large regions of state space, which
holds in many biological systems with multi-stability31. Compu-
tationally, instead of fitting or solving the high-dimensional Eq.
(1) directly, here we recover the dynamical structure of its
solution using a multi-scale data-driven approach, as
described below.

Taking the input as pre-processed single-cell gene expression
matrix, MuTrans first learns the cellular random walk transition
probability matrix (rwTPM) on the cell-cell scale through a
Gaussian-like kernel (Fig. 1d and Methods), which yields the
continuous limit as over-damped Langevin equation (Methods
and Supplementary Note 1). Enforced by Gaussian-like kernel,
the constructed rwTPM is in detailed-balance, consistent with the
assumption (a). Next, the method performs coarse-graining on
the cell–cell scale rwTPM to learn the dynamics on the cluster-
cluster scale, and acquires attractor basins and their mutual
conversion probabilities simultaneously (Fig. 1d and Methods).
Theoretically, this step is asymptotically consistent with the
Kramers’ law of reaction rate for over-damped Langevin
equations if assumption (b) holds (Methods and Supplementary
Note 1). Finally, we specify the relative position of each cell in the
attractor basins with the cell-cluster resolution view of Langevin
dynamics, which is constructed via optimizing a cell-cluster
membership matrix (Fig. 1d and Methods).

To robustly depict the lineage relationships, we use the
transition path theory to quantify the likelihood of all possible
transition trajectories between cell states, based on the coarse-
grained transition probabilities (Fig. 1e, Methods and Supple-
mentary Note 2).

Combining the optimized cell-cluster membership matrix,
MuTrans fits a dynamical manifold using a mixture distribution
to make stable cells reside in the attractor basins while assign
transition cells along the transition paths connecting different
basins (Fig. 1e and Methods), which is based on the Gaussian
mixture approximation toward the steady-state distribution of the
Fokker-Planck equation associated with the over-damped Lange-
vin dynamics (Methods and Supplementary Note 2).

For each cell-state transition, we can calculate a transition cell
score (TCS) ranging between one and zero to quantitatively
distinguish attractors and transition cells (Fig. 1e and Methods).
Finally, we systematically classify three types of genes (MS, IH
and TD) during the transition whose expression dynamics differ
between stable and transition cells (Fig. 1e and Methods).
Specifically, the TD genes varies accordingly with the TCS within
transition cells, and the IH genes co-express in both stable and
transition cells, while MS genes express uniquely near the
attractors.

To deal with the large-scale datasets, in addition to common
strategies such as sub-sampling cells, we provide an option to
speed up calculation by introducing a pre-processing aggregation
module DECLARE (dynamics-preserving cells aggregation). This
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module assigns the original individual cells into many (e.g.,
hundreds or thousands) microscopic stable states and computes
the transition probabilities among them, and thus it can be used
as an input to MuTrans instead of the cell-cell rwTPM (Methods
and Supplementary Note 2). Both theoretical and numerical
analysis suggest that, compared to the common strategy of
averaging of gene expression profiles of a small group of cells,
DECLARE better preserves the structure of dynamical landscape
with a good approximation to the transition probabilities
calculated without using DECLARE (Methods and Supplemen-
tary Note 2).

Evaluation of MuTrans using simulation datasets. To test
accuracy and robustness of MuTrans, we evaluated its perfor-
mance on simulation datasets generated from known dynamical
systems. First we simulated the stochastic state-transition process
using a bifurcation model in the regime of intermediate noise
level32. The gene expression of each cell was simulated with over-
damped Langevin equation driven by an extrinsic signal and

noise (Supplementary Note 3). In certain parameter range, the
model consists of two stable states and one saddle state (Fig. 2a).
Noise in gene expression induced the switch prior to the bifur-
cation point, resulting in a thin layer of transition cells (Fig. 2a).
Applying MuTrans to the known transition cells and stable cells
in the model, we found the computed transition cell score (TCS)
captured the underlying saddle-node bifurcation structure
(Fig. 2a). For cells fluctuating around the two stable branches, the
TCS approaches one or zero respectively, indicating the meta-
stability of cell states. The transition cells that pass the saddle
point region in the trajectory yields a continuum of TCS between
zero and one, with scores consistent with the relative positions of
cells along the trajectory (Fig. 2a).

In addition to the uni-directional transition simulation dataset,
we next consider back-and-forth stochastic state-switching, a
common scenario in multi-stable systems. We constructed a
triple-well potential field and simulated the dynamics with over-
damped Langevin equations (Supplementary Note 3). Three
saddle points lie between the attractor basins in its potential field,
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Fig. 2 Evaluation of MuTrans in dynamical system simulation datasets. a MuTrans distinguishes the stable and transition cells simulated using a
stochastic saddle-bifurcation model. (Blue lines) The simulated trajectories of model. (Black Lines) Bifurcation plot of the underlying dynamical system.
(Red Lines) The trajectory points corresponding to the transition cells that are switching between two states as the input to MuTrans (N=2,000). (Purple
Lines) The transition cell score (TCS) values for transition cells calculated by MuTrans. The stable cells have TCS of value 0 or 1, while the TCS of transition
cells decrease from 1 to 0 during transition. b, c The simulation dataset of over-damped Langevin dynamics in two-dimensional, triple potential-well
system. b Simulated trajectories (red lines) and potential field (values indicated by color bars) in two-dimensional phase space. c Time series of the
simulated trajectories, where the abrupt changes of values indicate state-transitions among attractor basins. d, e MuTrans reveals the transitions in triple-
well system solely from sampled, snap-shot datasets (N= 2,001). d The method detects three attractor basins and coarse-grained transition probability
matrix among them. Cells are colored by attractors. e The transition cells near saddle points have larger MuTrans transition entropy than the cells near
fixed points. The calculated membership functions quantify the relative cell positions in each attractor. Entropy and membership values are indicated by
color bars.
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with another maximum point (order-2 saddle) at the origin
(Fig. 2b). Time series indicate that the state-hopping among three
attractor basins can be frequent when large enough noise
amplitudes are used (Fig. 2b, c). Using the simulation trajectories
as snap-shot data points for inputs, MuTrans correctly infers
three attractor basins from the dataset (Fig. 2d and Supplemen-
tary Fig. 4). The coarse-grained transition probabilities (Fig. 2d)
suggest that the cells most likely remain in their original attractors
other than transitioning into other attractors.

Consistent with previous studies of similar systems33, as noise
amplitude increases, the transitions between different attractors
become more frequent as indicated by the larger coarse-grained
probabilities. The direct transitions between attractors 1 and 3 are
dominant compared with the state-switch mediated by attractor 2
(Supplementary Fig. 4). The calculated transition entropy and
attractor membership functions accurately highlight the transi-
tion cells moving across various saddle points (Fig. 2e). Interest-
ingly, the cells near the global maximum point have larger
transition entropies than those near the first-order saddle points,
indicating more mixed or hybrid identities.

Revealing the cell-state transitions during EMT of squamous
cell carcinoma. We then applied MuTrans to a single-cell RNA
sequencing dataset34 of Squamous Cell Carcinoma (SCC)
epithelial-to-mesenchymal transition (EMT) generated by Smart-
Seq2 platform (Fig. 3 and Supplementary Fig. 5). Five attractors
are detected by MuTrans (see Supplementary Fig. 5b for the
corresponding EPI analysis), including one epithelial state (E),
two mesenchymal states (M1 and M2) and two intermediate cell
states (ICS). The cell states are annotated by comparing marker
genes expression with those in the original study (Fig. 3a–d and
Supplementary Fig. 5). Streams of transition cells moving
between various attractor basins are observed in the constructed
dynamical manifold (Fig. 3e).

The transition path analysis shows the major portion of the
transition flux (more than 50%) from E state to M states goes
through one of the ICS (Fig. 3f, g), indicating the significant role
of ICS to mediate state-transitions in EMT35,36. Interestingly,
there are also transitions within the two mesenchymal attractors,
an observation consistent with the concept of quasi-mesenchymal
states reported in the original study, suggesting that the M
attractors here may also serve as intermediate nodes in
transitions.

The transition gene analysis along the path E-ICS2-M2
characterizes the transition cells in their gene expression
dynamics (Fig. 3h, i). Compared with MS genes that are highly
expressed in stable cells, the IH genes may express in both
transition cells and stable cells. The expressions of TD genes vary
gradually within the transition cells (Fig. 3h, i).

Scrutinizing bifurcation dynamics during iPSC induction. We
next used MuTrans to investigate cell fate bifurcations (Fig. 4a) in
a single-cell dataset for induced pluripotent stem cells (iPSCs)
toward cardiomyocytes37. In the learned cellular random walk
across different scales, the rwTPM on cell-cluster scale recovers
finer resolution of rwTPM on the cell-cell scale than the cluster-
cluster scale (Fig. 4b). MuTrans identified nine attractor basins
under this resolution (Fig. 4c and Supplementary Fig. 6), and the
constructed tree (Supplementary Fig. 6) reveals a lineage with
bifurcation into mesodermal (M) or endodermal (En) cell fates.
Two attractor basins, locating before the bifurcation of primitive
streak (PS) into differentiated mesodermal (M) or endodermal
(En) cell fates, are denoted as Pre-M and Pre-En states (Fig. 4d
and Supplementary Fig. 7). On the inferred dynamical manifold
(Fig. 4e–g), the cells make transitions between two states,

suggesting possible dynamic conversion between the two types of
precursor cells that seem to be very plastic. In comparison, the
transition between mature En and M states are rare, indicating
the stability of En and M cells. Along the differentiation trajectory
from PS to Pre-M, the coarse-grained transition probability,
quantified by the heights of barrier, shows a stronger transition
capability from PS to Pre-M than from Pre-M to PS (Fig. 4c). In
addition, the transition from Pre-M to M was found to be sharper
than the one from PS to Pre-M. The transitions from PS to Pre-
En and from Pre-En to En exhibit similar behavior. This analysis
suggests that the initial cell-fate bifurcation at PS state (mostly on
day 2–2.5, Fig. S6) is not terminal. This is consistent with the
transition path analysis (Fig. 4e), showing that prior to the final
commitment into M fate, some cells in PS take a detour by
passing through the pre-En attractor basins first. The trend of
transition entropy defined by MuTrans is found to be consistent
with the critical transition index defined in original publication37

for bifurcations. Indeed, the MuTrans transition entropy of cells
first increases toward the bifurcation point from day 1 to 2.5, and
then decreases as the final cell-fates are committed and estab-
lished at day 3 (Fig. 4f, S6).

Downstream analysis on gene expression profiles indicates
three transition stages from Pre-M to M (Fig. 4h). The initial
stage was characterized by downregulation of meta-stable (MS)
genes from the Pre-M state markers (enriched in the pathways of
endodermal development) and upregulation of intermediate-
hybrid (IH) genes (enriched in pathways of MAPK cascade and
metabolic process) from the M state markers (Fig. 4i and
Supplementary Table 4). This process by first losing En identity
enables a conversion of Pre-M stable cells toward the transition
cells. The second stage of the transition marked by the gradual
down-regulation of TD genes mainly involves negative regulation
of cardiac muscle cell differentiation and cardiac muscle tissue
development (Fig. 4i and Supplementary Table 4). The final stage
completes the transition process with the down-regulation of Pre-
M state IH genes, along with up-regulation of MS genes (enriched
in the cardiac muscle cell myoblast differentiation and outflow
tract morphogenesis process) in the M state (Fig. 4i and
Supplementary Table 4), making transition cells to finally convert
into the mesodermal cells and establish the stable cell fate. The
ordering of cells based on TCS has an overall increasing trend
from Day 2 to Day 3 via the time point of Day 2.5 within the
transition cells, corresponding to the noticed three-stage transi-
tion (Supplementary Fig. 8). Together, the transition cells locating
near the saddle points connecting Pre-M (or Pre-En) and M (or
En) reflect the temporal orderings of cell-fate conversion, which
are well characterized by TD and IH genes in a system consisting
of one pitchfork bifurcation.

MuTrans reveals complex lineage dynamics in blood cell dif-
ferentiation. The hematopoiesis has been conceived as a hier-
archy of discrete binary state-transitions, while increasing
evidence alternatively supports a continuous and heterogeneous
view of such process38. To investigate the complex dynamics in
blood differentiation where transition cells likely play key roles,
we applied MuTrans to different single-cell datasets with different
sequencing depths and sample sizes.

We first analyzed the single-cell RNA data during myelopoiesis
sequenced with Fluidigm C1 platform39. The number of
attractors and cell label annotations are selected to recover the
label resolutions in original publication. Notably MuTrans
highlights the hub states—multi-lineage cells, which are capable
of becoming three types of blood cells through a shallow basin
resided in the highest terrain of the entire dynamical manifold
(Fig. 5a and Supplementary Figs. 9–10). The low barriers between
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the multi-lineage basin and the downstream basins (granulocytic
or monocytic states) suggest probable transitions from the multi-
lineage state, consistent with the observed transition cells across
the saddle point. Interestingly, the transition cells during Multi-
lin to Gran conversion were previously identified as the multi-
lineage cells in ICGS clustering39 (Supplementary Fig. 10).
Similarly, during the megakaryocytic cell differentiation, while
the transition cells consist of both HSPC1 and Meg types in our
analysis, they were previously identified as the hematopoietic
progenitor cells by the ICGS criterion (Supplementary Fig. 10).
Such discrepancy could be explained by the gene expression
dynamics in gradual transition of cell states. For example, during
transition from multi-lineage cells to granulocytic cells (Fig. 5c),
we observed the typical expression pattern of TD, MS and IH
genes as conceptualized in Fig. 1e. Despite the similarity between
the transition cells and their departing multi-lin state as
manifested in the co-expression of down-regulated IH genes

(Fig. 5c, yellow lines), we also detected the up-regulated IH genes
(Fig. 5c, yellow lines), suggesting the resemblance of transition
cells with their targeting gran cell state (Supplementary Table 5).
We observed a similar gene expression pattern in the transition
from HSPC to Meg state (Supplementary Fig. 12 and Supple-
mentary Table 6). For this dataset, MuTrans is able to capture the
established attractor cell states, in addition to finding transition
cells that were classified in some stable states by a previous
study39.

Focusing on the dataset of cell-fate bias toward lymphoid
lineage, MuTrans resolves the complex lineage dynamics under-
lying single-cell RNA data of mouse hematopoietic progenitors
differentiation sequenced from Cel-Seq2 platform40. Consistent
with the major findings of FateID algorithm, the constructed
dynamical manifold reveals that lymphoid progenitor (LP) cells
(red balls) give rise to both B cells (pink balls) and plasmacytoid
dendritic cells (pDCs) (Fig. 5b and Supplementary Fig. 13). The
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inferred dynamical manifold also suggests that certain transition
cells in the attractors of pDCs originate directly from multi-potent
progenitor (MPP) cells (yellow balls, Supplementary Fig. 13).
MuTrans resolves the details in B cell differentiation, capturing the
transition cells from Pro-B toward Pre-B basins (Supplementary
Fig. 13 and Supplementary Table 7). Downstream analysis

suggested the transition cell features by the co-expressed IH genes
(yellow lines, Fig. 5d) and the dynamically expressed TD genes
(green lines, Fig. 5d). Overall, MuTrans can provide a global cell-
fate transition picture with marked transition cells in this dataset
of highly complex lineages, in addition to the local transition
routes inferred by FateID40.
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Application to large-scale datasets with complex trajectory. To
test the scalability of MuTrans, we studied on the single-cell
hematopoietic differentiation data in human bone marrow gen-
erated by 10x Chromium platform41 (Fig. 6a). To make the
comparison, we applied MuTrans to both the complete (original)

data, and the one after using the pre-processing module
DECLARE. We found DECLARE could reduce the calculation
time by one magnitude for this dataset.

For both cases MuTrans identified the expected bifurcations
from hematopoietic stem cells (HSC) into the monocytic

Fig. 4 MuTrans scrutinizes the cellular bifurcation and gene expression dynamics during iPSC differentiation. a The schematic development landscape
during iPSCs differentiation, with cell states and lineage relationship inferred by MuTrans. EPI: epiblast cells. PS: primitive-streak cells. En: endodermal cells.
M: mesenchymal cells. b, c The multi-scale quantities learned by MuTrans. b The learned cellular random walk transition probability matrix (rwTPM).
Elements in red circle indicate that cell-cluster scale rwTPM recovers the finer resolution of cell-cell scale rwTPM than the cluster-cluster scale rwTPM. c
The cell-cluster assignment, cluster-cluster transition probability and cell-cluster membership matrix learned by MuTrans. d MuTrans outputs shown in
UMAP dimension reduction plot, including attractor basins, transition entropy of each cell and gene expression values of endodermal (En) marker Sox17
and mesodermal (M) marker Hand1. e The transition path analysis by setting epiblast (EPI) attractor as start state and the mesodermal (M) attractor as
target state, overlaid on the two-dimensional dynamical manifold. The numbers indicate the relative likelihood of each transition path. The cells are colored
by MuTrans attractors. The grayness indicates energy values of dynamical manifold, with darker colors representing lower energy values. f The violin plot
of transition entropy distributions grouped and colored by different cell collection time points (days). g The constructed dynamical manifold. The color of
each individual cell is computed based on the value of its soft clustering membership. h The Transcendental analysis of the transition from Pre-M state to
M-state. The TCS (transition cell score) are shown with transition cells marked by dashed rectangles. Transition cells are marked by dashed squares. The
average gene expression of top 5 MS (meta-stable genes, blue), IH (intermediate-hybrid genes, yellow) and TD (transition-driver genes, green) are
displayed over the ordered cells in transitions. The full gene name list is shown in Supplementary Table 4. The thin lines represent the raw normalized
expression value and thick lines denote the smoothed data. i GO (gene ontology) enrichment analysis of MS, IH and TD genes during Pre-M to M state
transition indicates a gradual loss of endodermal property and gain of mesodermal property in the cell-fate switch.
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precursors and erythroid cells, as well as the differentiation from
precursor cells into monocytic and dendritic cells. The con-
structed dynamical manifold (Fig. 6b, c and Supplementary
Fig. 14) shows a continuous stream of transition cells among
different basins (such as those moving between dendritic and
monocytic potential wells) suggesting the hematopoietic differ-
entiation may be a continuous process. The transition trajectories
obtained with the large-scale pre-processing step are consistent
with the complete dataset analysis (Fig. 6d, e). This indicates the
major transition trajectories toward dendritic cell fate not only
consist of the path mediated by monocytic precursor states but
also include a considerable flux of transition cells from
differentiated monocytic cells. Interestingly, the existence of both
stable states and transition cells reconciles a previously noted
discrepancy41 caused by treating the underlying cellular transition
dynamics as either a purely continuous processing (e.g.,
using Palantir) or a discrete process (using other clustering-
based lineage inference methods such as Slingshot14 and
PAGA42).

Next, we analyzed another dataset containing over 15,000 cells
collected during blood emergence in mouse gastrulation43 (Fig. 7a).
Consistent with the PAGA42 low-dimensional embedding of the
data (Fig. 7b), the constructed dynamical manifold (Fig. 7c) and

derived Maximum Probability Flow Tree (MPFT) suggest three
major transition branches from haemato-endothelial (Haem) cells
into endothelial cells (EC), mesoderm cells (Mes) or erythroid cells
(Ery). Specifically, the transition path analysis indicates that the
endothelial cells and erythroid cells are originated through discrete
trajectories from haemogenic endothelium (Fig. 7e), and such
trajectories are mediated by the intermediate state of blood
progenitor (BP) cells (Fig. 7f). These results are consistent with
the experimental findings on endothelial and erythroid cells43.

Comparison and consistency with other methods. MuTrans is
designed specifically to identify transition cells, with its theory
rooted in multi-scale dynamical systems and allowing natural
visualization and quantification of cell-state transitions. To
compare with other methods which may provide information on
transitions, we performed further analysis with pseudo-time
ordering and cell-fate bias probability methods on their capability
of detecting transition cells, using existing methods, such as
PAGA, FateID and VarID (Supplementary Note 4).

In iPSC data, we found that MuTrans, PAGA and VarID are
consistent in recovering the bifurcation dynamics toward En and
M states (Supplementary Fig. 15). While the projected lineage tree
of StemID2 shows transition cells between precursor and mature
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En/M states (Supplementary Fig. 15), the reconstructed spanning
tree does not reveal the overall bifurcation structure.

For the myelopoiesis dataset, we found that both MuTrans and
VarID recover the bifurcations toward granulocytic and mono-
cytic states (Supplementary Fig. 16). Consistent with MuTrans,
FateID also captures the differentiation paths toward monocytic
states (Supplementary Fig. 16).

Close inspection into the transition from precursors to mature
En/M states in iPSC dataset suggests that based on existing
approaches (such as tracking the changes along pseudotime or
fate bias probability) could not distinguish the transition cells
from stable cells as accurately and reliably as MuTrans. Both
Monocle3 and DPT have a sharp increase in the pseudotime
during the transitions (Supplementary Fig. 17), therefore lacking
resolution in probing the transition cells linking multiple
attractors. Fate ID suggests a gradual change of En/M fate
probability in precursor cells (Supplementary Fig. 17), not
discriminating the transition cells within Pre-En and Pre-M
states. Such problem was also observed when using Palantir,

which depicts the entire cell-state transition as a highly
continuous and gradual process (Supplementary Fig. 17).

Discussion
Overall, MuTrans provides a unified approach to inspect cellular
dynamics and to identify transition cells directly from single-cell
transcriptome data across multiple scales. Central to the method
is an underlying stochastic dynamical system that naturally
connects (1) attractor basins with stable cell states, (2) saddle
points with transient states, and (3) most probable paths with cell
lineages. Instead of the widely used low-dimensional geometrical
manifold approximation for the high-dimensional single-cell
data, our method constructs a cell-fate dynamical manifold to
visualize dynamics of cells development, allowing direct char-
acterization of transition cells that move across barriers amid
different attractor basins. Adopting the transition path theory to
the multiscale dynamical system, we quantify the relative like-
lihoods of various transition trajectories that connect a chosen
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root state and the target states. In addition, we provide a quan-
titative methodology to detect critical genes that drive transitions
or mark stable cells.

In this study a key theoretical assumption for modeling cell-state
transition is a barrier-crossing picture in multi-stable dynamical sys-
tems, a concept which has been adopted for describing cell develop-
ments through dynamical system language3,44,45. Indeed, the notions
of barriers, saddles and potential landscape underlying the actual
biological process are the emergent properties of the complex inter-
actions, such as gene expression regulation and signal transduction
during a developmental process28. The driving force that overcomes
the barrier and induces the transition may arise from both the
extrinsic environment and the fluctuations within the cells46. Multi-
scale reductions used by MuTrans naturally capture the transition
cells, allowing inference of the corresponding transition processes.

Pseudo-time ordering and low-dimensional trajectory embed-
ding may serve as intuitive tools to trace the progression of cell
fates by comparing similarity of gene expression among cells.
Such approaches often adopt the deterministic point of view and
rely on the low-dimensional projection of datasets, lacking the-
oretical insights to the underlying dynamical processes of cell-
state transitions. In contrast, MuTrans is based on multi-stable
dynamical system approach in characterizing cell-state transi-
tions. While cells reside and fluctuate within attractor basins for
majority of time, it is the temporal ordering of transition cells,
rather than stable cells, reflect the actual process of cell transitions
(Fig. 1c and Supplementary Fig. 17).

Methods such as Palantir41, Population Balance Analysis (PBA)29

and Topographer47 also treat cell-fate transition as Markov random
walk process. These methods depict the dynamics at the individual
cell level, then compute pseudo-time ordering based on the first
passage time or absorbing probabilities of the Markov Chain. In
comparison, MuTrans can dissect the intrinsic multiscale features of
the system and derive the coarse-grained dynamics, distinguish
between stable and transition cells quantitatively, and characterize
multiple and complex routes of transition paths.

Several other methods2,48 define the transition probabilities
between clusters based on entropy difference or summing up the
cell-cell transition probabilities. Here the coarse-grained transition
probability in MuTrans is an emergent quantity derived from multi-
scale reduction. The transition probability is shown to be consistent
with Kramers’ reaction rate theory for over-damped Langevin
dynamics if steady-state assumption and detailed-balanced condition
are satisfied (Methods and Supplementary Note 4).

To describe the smooth state transitions, some methods49,50

adopt the soft-clustering strategy based on the soft K-means or
factor decomposition for gene expression matrix. In comparison,
the soft cell assignment of MuTrans is obtained from multiscale
learning of cell-cluster rwTPM, which can be more robust against
technical noise than using gene expression matrix directly for
clustering7. Such robustness is critical to detecting transition cells
in datasets with lower sequencing depth, such as 10X data.
Beyond interpreting the soft membership function as the indi-
cator of cell locations in attractor basins, it remains an interesting
problem to derive its continuum limit in the embedded over-
damped Langevin dynamical systems.

To deal with the emerging large-scale scRNA-seq datasets,
MuTrans introduces a pre-processing method (DECLARE) to
aggregate the cells and speed up computation. The aggregation
method uses the coarse-grain approach consistent with MuTrans,
and it is different from other methods often used for large
scRNA-seq datasets, such as down-sampling convolution51 or
kNN partition52 that is based on the averaging or summation of
cells with similar gene expression profiles. As a result, DECLARE
can be naturally integrated with dynamical manifold construction
and transition trajectory inference.

The stochastic transitions among attractors considered by
MuTrans can be further incorporated with deterministic pro-
cesses to better understand the cell-fate decision53. Despite that
the stochastic switching among cell states might be rare in some
cases, the local fluctuation of microscopic cell states in gene
expression can be prevalent in the microscopic dynamics, there-
fore the cell-cell scale random walk assumption in MuTrans still
holds as a natural assumption. In theory, the stochastic transition
model is consistent with the uni-directional transition process if
the transition probabilities in one direction are dominant, or
when the noise amplitude of system is relatively small.

The theoretical assumptions on equilibrium and steady-state
systems made in MuTrans can be potentially mediated by our
multiscale approach. For example, although the detailed balance
may be violated at the microscopic scale described in Eq. (1) the
estimated coarse-grained (mesoscopic) dynamics in MuTrans can
be sufficient to recover the transitions at larger scale. However,
non-stationary effects due to cell cycle or cell proliferation
dynamics29 were not considered in current method. In addition,
the number of cells in the datasets, in principle, needs to be
sufficiently large in order to obtain high-resolution identification
of transition cells. When the number of cells is relatively small,
such as in the myelopoiesis dataset studied here, special care is
needed to further confirm the analysis of transition cells. Besides,
more effective ways in root cell states detection (e.g., through
entropy methods54 or RNA velocity55–57) can further enhance the
robustness of our approach.

In addition to infer complex cellular dynamics induced by
transition cells from single-cell transcriptome data, MuTrans
along with its computational or theoretical components can be
used for development of other approaches for dissecting cell-fate
transitions from both data-driven and model-based perspectives.

Methods
MuTrans performs three major tasks in order to reveal the dynamics underneath
single-cell transcriptome data (Fig. 1): 1) assigning each cell in the attractor basins
of an underlining dynamical system, 2) quantifying the barrier heights across the
attractor basins, and 3) identifying relative positions of the cells within each
attractor. The first two tasks are executed simultaneously through the coarse-
graining of multi-scale cellular random walks, an alternative approach to the tra-
ditional clustering of cells and inference of cell lineage. The third task is achieved
by refining the coarse-grained dynamics via soft clustering, and serves as a critical
procedure to identifying the transition cells during cell-fate conversion.

Multi-scale analysis of the random-walk transition probability matrix
(rwTPM). We assume the underlying stochastic dynamics during cell-fate con-
version be modeled by random walks among individual cells through the random-
walk transition probability matrix (rwTPM). Dependent on the choices of either
cell-level or cluster-level, the rwTPM can be constructed in different resolutions,
exhibiting multi-scale property and leading the identification of transition cells
from the stable cells.

In describing the method, we use the indices x, y, z to denote individual cells
and i, j, k to represents the clusters (or cell states) for the simplicity of notations.

1. The rwTPM in the cell-cell resolution
The rwTPM p of cellular stochastic transition can be directly constructed
from the gene expression matrix in cell-cell resolution, with the form

p x; y
� � ¼ w x; y

� �
d xð Þ ; d xð Þ ¼ ∑

z
w x; zð Þ ð2Þ

where the weight w(x,y) denotes the affinity of gene expression profile in cell
x and y (Supplementary Note 2). Such microscopic random walk yields an
equilibrium probability distribution μ xð Þ ¼ d xð Þ

∑
z
dðzÞ, satisfying the detailed-

balance condition μ(x)p(x,y) = μ(y)p(y,x). The rwTPM captures the cellular
transition in the cell-cell resolution (Fig. 1d).

2. The rwTPM in the cluster-cluster resolution
The cellular transition rwTPM can be lifted in the cluster-cluster resolution
by adopting a macroscopic perspective. For example, the cell-to-cell rwTPM
can be generated from certain coarse-grained dynamics, by assigning each

cell in different attractors S ¼ SK
k¼1

Sk , and model the transitions as the
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Markov Chain among attractors with the transition probability matrix
P̂ ¼ ðP̂ijÞK ´K

. Here P̂ij denote the probability that the cells reside in the
attractor Si switch to the attractor Sj. The number of attractors K is a
hyperparameter of algorithm selected by the user. We use the Eigen-Peak
Index (EPI) to visualize the multiple eigen-gaps of cell-cell scale rwTPM
(Supplementary Note 2). Different peaks in EPI correspond to the number
of attractors in different resolutions. In practice, the choice of K can also be
determined based on prior biological knowledge such as marker genes
expression or known cell-type annotations.
Denote 1Sk ðzÞ as the indicator function of cluster Sk such that 1Sk ðzÞ = 1 for
cell z∈Sk and 1Sk ðzÞ = 0 otherwise. The cluster-cluster transition based on
probability matrix P̂ can naturally induce another rwTPM p̂ with the form

p̂ðx; yÞ ¼ ∑
i;j
1Si ðxÞP̂ij1Sj ðyÞ

μðyÞ
μ̂j

; ð3Þ

where μ̂j ¼ ∑y 1Sj y
� �

μ y
� �

is the stationary probability distribution of
cluster Sj. Intuitively, the stochastic transition from cell x∈Si to y∈Sj can be
decomposed into a two-stage process: a cell switches cellular state from
cluster Si to Sj with probability P̂ij, and then becomes the cell y in cluster Sj
according to its relative portion at equilibrium

μ yð Þ
μ̂j
. The rwTPM captures the

cellular transition in the cluster-cluster resolution (Fig. 1d).
3. The rwTPM in the cell-cluster resolution

Because some cells, for example the transition cells, may not be
characterized by their locations in one basin, we introduce a membership
function ρðxÞ ¼ ðρ1ðxÞ; ρ2ðxÞ; ¼ ; ρK ðxÞÞT for each cell x to quantify its
uncertainty in clustering. The element ρk(x) represents the probability that
the cell x belongs to cluster S*k with ∑kρkðxÞ ¼ 1. For the cell possessing
mixed cluster identities, its membership function ρ(x) might have several
significant positive components, suggesting its potential origin and
destination during the transition process. In terms of dynamical system
interpretation, the membership function captures the finite-noise effect in
over-damped Langevin equation, which introduces the uncertainty of
transition paths across saddle points58, revealing that cells near saddle points
and stable points may exhibit different behaviors in the state-transition
dynamics.
From the coarse-grained dynamics fSkgKk¼1; fP̂ijgKi;j¼1

� �
and the measure-

ment of cell identity uncertainty ρk(x) in the clusters, one can reinterpret the
induced microscopic random walk ep in a cell-cluster resolution as

~pðx; yÞ ¼ ∑
i;j
ρiðxÞP̂ijρjðyÞ

μðyÞ
~μj

; ~μj ¼ ∑
x
ρjðxÞμðxÞ; ð4Þ

in parallel to Eq. (3) Now the transition from cell x to y is realized in all the
possible channels from attractor basin Si to Sj with the probability ρi(x)ρj(y).
The underlying rationale is that the transition can be decomposed in a three-
stage process: First we pick up cell starting in attractor basin with
membership probability, then conduct the transition with coarse-grained
probability between attractor basins, and finalize the process by picking the
target cell with membership probability in the target attractor basin. Now
the rwTPM captures cellular transition in the cell-cluster resolution
(Fig. 1d).

4. Integrating the rwTPM at three levels
To integrate the rwTPM from different resolutions, we next optimize the
rwTPM on cluster-cluster and cell-cluster level through approximating the
original rwTPM in the cell-cell resolution. First, we seek an optimal coarse-
grained reduction that minimizes the distance between p̂

�
Sk; P̂ij

�
and p by

solving an optimization problem:

minSk ;P̂ij
J ½Sk; P̂ij� ¼ kp̂½Sk; P̂ij� � pjj2μ; ð5Þ

where μ is the stationary distribution of original cell-cell random walk p, and
kkμ is the Hilbert-Schmidt norm59 for given transition probability matrix A,

defined as kAk2μ ¼ ∑
x;y

μðxÞ
μðyÞAðx; yÞ2. The optimization problem is solved via an

iteration scheme for Sk and P̂ij respectively (Supplementary Note 2). The

optimal coarse-grained approximation
�
S*k ; P̂

*
ij

�
indicates the distinct

clusters of cells and their mutual conversion probability. Provided with
the starting state, we can infer the cell lineage from the Most Probable Path
Tree (MPPT) approach or Maximum Probability Flow Tree (MPFT)
approach (Supplementary Note 2).

Next, we optimize the membership ρk(x) such that the distance between the
cell-cluster rwTPM ep and the original p is minimized, i.e.,

minρkE½ρk� ¼ k~p½ρk � � pk2μ ð6Þ

s:t: ∑
k
ρkðxÞ ¼ 1; ρkðxÞ≥ 0 for k ¼ 1; ::;K and x 2 S

with the initial condition ρ0i xð Þ ¼ 1S*i xð Þ, and ep ρk
� �

is defined from Eq. (4) by

plugging in the obtained P̂
*
ij . The optimization problem is solved by the quasi-

Newton method (Supplementary Note 2). The obtained membership function

ρ* xð Þ specifies the relative position of the cells within each attractor basin and is
optimal in the sense that it guarantees the closest approximation of cell-cluster level
rwTPM toward the cell-cell level transition dynamics.

Transition entropy. To quantify and compare the transition cells around different
attractors in a global view, we define a transition entropy H(x) for each cell x based
on the obtained membership function ρ*ðxÞ,

HðxÞ ¼ � ∑
K

k¼1
ρ*k xð Þlogρ*kðxÞ: ð7Þ

According to the definition, a stable cell tends to have a relatively small entropy
value close to zero, while a transition cell, which possesses multiple and more
evenly distributed components in its membership function, tends to have a larger
transition entropy. As a result, a large entropy value indicates a cell with highly
mixing identity, a case for transition cells in bifurcating attractors. The increase of
transition entropy value can be utilized as a way to mark cell-state bifurcations.

Transition paths quantification and comparison. To quantify the cell develop-
ment routes, we use the transition path theory based on coarse-grained dynamics

fSkgKk¼1; fP̂ijgKi;j¼1

� �
to compare the likelihood of all possible transition trajectories.

Given the set of starting states A and the targeting state B, we calculate the effective
current fþij of transition paths passing through state Si to Sj based on the inferred
attractor basins and conversion probabilities (Supplementary Note 2), and specify
the capacity of given development route wdr ¼ ðSi0 ; Si1 ; ::; Sin Þ connecting sets A

and B as c wdr

� � ¼ min
0≤ k≤ n�1

f þik ikþ1
. The likelihood of transition trajectory wdr is

defined as the proportion of its capacity to the sum of all possible trajectory
capacities. In the python package of MuTrans, we use the functions in PyEMMA60

for the computations.

Pre-processing by DECLARE and scalability to large datasets. To reduce the
computational cost for large datasets (for instance, greater than 10 K cells), we
introduce a pre-processing module DECLARE (dynamics-preserving cell aggre-
gation). The module first detects the hundreds/thousands of microscopic attractor
states by clustering (e.g., using K-means or kNN partition) and then derive the
coarse-grained transition probabilities among these microscopic attractor states.
Based on such transition probabilities, we then follow the standard multiscale
reduction procedure of MuTrans to find macroscopic attractor states, construct
dynamical manifold, quantify the transition trajectories and highlight the transition
states (Supplementary Note 2).

Transition cells and genes analysis through transcendental. Based on the soft
clustering results, MuTrans performs the Transcendental (transition cells and
relevant analysis) procedure on each transition process to identify the transition
cells from the stable cells and reveal the relevant marker genes.

For the given transition process from attractors S*i to S*j along the transition
path, we first selected the cells relevant to the transition, based on the membership
function ρ* xð Þ (Supplementary Note 2). Then for each relevant cell x, we define the
transition cell score (TCS)

τij xð Þ ¼ ρ*i ðxÞ
ρ*i xð Þ þ ρ*j ðxÞ

; ð8Þ

to measure the relative position of cell x in different clusters. Here the TCS τij takes
the values near zero or one when a cell resides around the attractor in S*i or S

*
j (i.e.,

the cells are stable), whereas yields the intermediate value between zero and one for
the cell that possesses a hybrid or transient identity of two or more clusters. Next
we arrange all the relevant cells in state S*i and S*j according to τij in descending
order, and the reordered τij indicates a sharp transition (Fig. 1a) or a smooth
transition (Fig. 1a) from the value one to zero. For the smooth transition, there is a
group of cells whose value of τij decreases gradually from one to zero (Fig. 1e). This
group of cells in the transition layer are called the transition cells from state S*i to
state S*j , and their order reflects the details of the state-transition process. To
quantify the transition steepness, we use logistic functions to model the transition
and estimate the relative abundance of transition cells (Supplementary Note 2).

Differentially expressed genes analysis is usually applicable when the clusters
are distinct and the state-transition is sharp (Fig. 1a). However, to characterize the
dynamical and hybrid gene expression profiles in transition cells, merely
comparing the average gene expression in different clusters is insufficient. Here we
define three kinds of genes relevant to the state transition of cells: a) the transition-
driver (TD) genes that vary accordingly with the transition dynamics, b) the
intermediate-hybrid (IH) genes marking the hybrid features from multiple cell
states that are expressed in the intermediate transition cells, and c) the meta-stable
(MS) genes that represent cells in the stable states.

The expression of TD genes varies accordingly to the transition, revealing the
driving mechanism of the cell-state conversion. To probe TD genes, we calculate
the correlation between the gene expression values and τij in the ordered transition
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cells. The genes with larger correlation values (larger than a given threshold value)
are identified as TD genes. The IH genes express eminently both in the transition
cells and in the stable cells from one specific cluster, reflecting the hybrid state of
the transition cells, while the MS genes express exclusively in the stable cells from
certain cluster. To distinguish IH and MS genes from all the differentially expressed
genes, we compare the gene expression values between the stable cells and the
transition cells, respectively, within each cluster. The significantly up-regulated
genes in the stable cells are defined as the MS genes, and the rest differentially
expressed genes are identified as the IH genes that express simultaneously both in
stable and transition cells (Supplementary Note 2). Here the selected genes only
reflect the relative gene expression trends amid one specific cell-state transition
process, without considering global comparisons between multiple cell states or
transitions. Therefore, the MS genes, which distinguish the attractors and transition
cells locally in the dynamical manifold, can be different from the conventional
marker genes that are uniquely and strongly expressed in one cell state. Together
with IH and TD genes, they provide useful information to identify genes that are
driving the local transition.

Constructing the cell-fate dynamical manifold. To better visualize the transition
process and their connections with cell states, MuTrans introduces the dynamical
manifold concept. The construction of the dynamical manifold consists of two
steps: (1) locating the center positions of cell clusters (corresponding to the
attractors) in low dimensional space, (2) assigning the position of each individual
cells according to soft-clustering membership function.

The initial center-determination step starts with an appropriate two-
dimensional representation, denoted as x2D for each cell x (Supplementary Note 2).
Instead of directly utilizing x2D as the cell coordinate, we calculate the center Yk of
each cluster fS*kgKk¼1 by taking the average of x2D over cells within certain range of
cluster membership function ρ*k xð Þ. Having determined the position of attractors,
we define a two-dimensional embedding ξ xð Þ for each cell according to the
membership function ρ* xð Þ, such that ξ xð Þ ¼ ∑

k
ρ*k xð ÞYk 2 R2: For the cell

possessing mixed identities of state S*i and S
*
j , its transition coordinate then lies in a

value between Yi and Yj.
For Fokker-Planck equation of the over-damped Langevin equation, the

expansion of steady-state solution near stable points (attractors) indeed yields a
Gaussian-mixture distribution61. Motivated by this, to obtain the global dynamical
manifold we fit a Gaussian mixture model with a mixture weight μ̂* to obtain the
stationary distribution of coarse-grained dynamics. The probability distribution
function of the mixture model becomes

p zð Þ ¼ ∑
k
μ̂*kN z;Yk;Λk

� �
; ð9Þ

whereN z;Yk ;Λk

� �
is a two-dimension Gaussian probability distribution density

function with mean Yk and covariance Λk. The landscape function of dynamical
manifold is then naturally takes the form in two dimensionsφ zð Þ ¼ �lnp zð Þ.
Specifically, the energy of individual cell x is calculated asφ ξ xð Þð Þ. The constructed
landscape function captures the multi-scale stochastic dynamics of cell-fate
transition, by allowing typical cells that are distinctive to certain cell states
positioned in the basin around corresponding attractors, while the transition cells
laid along the connecting path between attractors across the saddle point.
Moreover, the relative depth of the attractor basin reflects the stationary
distribution of coarse-grained dynamics, depicting the relative stability of the cell
states. The flatness of the attractor basin also reveals the abundance and
distribution of transition cells, indicating the sharpness of cell fate switch.
Theoretically, the constructed dynamical manifold approximates the energy
landscape or quasi-potential30,44,45 of underlying stochastic dynamical system.

Mathematical analysis of MuTrans. With the assumption that the single-cell data
is collected from the probability distribution ν(x) with density of Boltzmann-Gibbs

form, i.e., ν xð Þ / e�
UðxÞ
ε ; we can prove (Supplementary Note 1) that the microscopic

random walk constructed by MuTrans can approximate the dynamics of over-
damped Langevin Equation (OLE)

dXt ¼ �∇U Xt

� �
dt þ

ffiffiffiffiffi
2ε

p
dWt ð10Þ

in the limiting scheme, and the coarse-graining of MuTrans ðSk; P̂ijÞ is equivalent to
the model reduction of OLE by Kramers’ rate formula in the small noise regime,
i.e., kij / e�

4U
ε as ε ! 0,where kij is the switch rate from attractor Si to Sj, and ΔU

denotes the corresponding barrier height of transition - the energy difference
between saddle point and the departing attractor.

Therefore, if the cell transition dynamics can be well-modelled by the OLE
dynamics of Eq. (10) MuTrans is indeed the multi-scale model reduction via the
data-driven approach. In addition, the dynamical manifold constructed by
MuTrans can be viewed as the data realization of potential landscape44 for
diffusion process in biochemical modelling, which incorporates the dynamical
clues about the underlying stochastic system regarding the stationary distribution
and transition barrier heights.

Data simulation and analysis. The simulation data was generated by the Euler-
Maruyama method to solve the overdamped Langevin equations, with the detailed
models and parameters specified in Supplementary Note 3.

The single-cell datasets analyzed were from different systems and platforms,
namely mouse cancer EMT data (Smart-Seq2), mouse myelopoiesis data (Fluidigm
C1), mouse hematopoietic progenitors data (Cel-Seq2), human hematopoietic
progenitors data (10X Chromium),blood differentiation data (10X Chromium) in
mouse gastrulation and iPSC induction data (single-cell RT-qPCR), downloaded
from sources provided in Data availability section below. The detailed analysis for
each dataset was provided in Supplementary Note 3. The full scripts for
reproducing data analysis in main text and Supplementary Information for all the
datasets are uploaded at https://github.com/cliffzhou92/MuTrans-release/tree/
main/Example, with the processed gene expression matrices that could be loaded
directly in MuTrans analysis stored at https://github.com/cliffzhou92/MuTrans-
release/tree/main/Data.

We compared MuTrans with existing lineage inference methods Monocle 362,
Diffusion Pseudotime7, PAGA42, FateID40, RaceID 3 and StemID 240, VarID48,
Palantir41 and PBA29, with detailed settings for each method provided in
Supplementary Note 4.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All the datasets used in this paper are publicly available. The mouse cancer EMT data
(Smart-Seq2) used in this study was downloaded from the Gene Expression Omnibus
(GEO) with accession number GSE110357. The mouse myelopoiesis data (Fluidigm C1)
used in this study was downloaded from the Gene Expression Omnibus (GEO) with
accession number GSE70245. The mouse hematopoietic progenitors data (Cel-Seq2)
used in this study was downloaded from the Gene Expression Omnibus (GEO) with
accession number GSE100037. The processed human hematopoietic progenitors data
(10X Chromium) used in this study was downloaded from https://github.com/dpeerlab/
Palantir/blob/master/data/marrow_sample_scseq_counts.csv.gz and processed blood
differentiation data (10X Chromium) in mouse gastrulation used in this study was
downloaded from https://github.com/MarioniLab/EmbryoTimecourse2018. The iPSC
differentiation data (single-cell RT-qPCR) used in this study was downloaded from
https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/
pnas.1621412114.sd02.xlsx. The codes and trajectories for simulation data, the processed
single-cell data expression matrix, the MuTrans package and scripts to reproduce the
figures and results in main text and repeat the detailed analysis in SI are also available at
Github (https://github.com/cliffzhou92/MuTrans-release).

Code availability
The Matlab implementation of MuTrans and affiliated Transcendental packages are
available from GitHub (https://github.com/cliffzhou92/MuTrans-release). The Python
package for MuTrans (pyMuTrans) compatible with Scanpy package63 is also available in
the repository.
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