
Lawrence Berkeley National Laboratory
LBL Publications

Title
Neural Networks for Nuclear Reactions in MAESTROeX

Permalink
https://escholarship.org/uc/item/26f7f9gj

Journal
The Astrophysical Journal, 940(2)

ISSN
0004-637X

Authors
Fan, Duoming
Willcox, Donald E
DeGrendele, Christopher
et al.

Publication Date
2022-12-01

DOI
10.3847/1538-4357/ac9a4b

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
availalbe at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/26f7f9gj
https://escholarship.org/uc/item/26f7f9gj#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

Neural Networks for Nuclear Reactions in MAESTROeX

Duoming Fan1 , Donald E. Willcox1 , Christopher DeGrendele2 , Michael Zingale3 , and Andrew Nonaka1
1 Lawrence Berkeley National Laboratory, Center for Computational Sciences and Engineering, One Cyclotron Road, MS 50A-3111, Berkeley, CA 94720, USA

AJNonaka@lbl.gov
2 University of California Santa Cruz, Applied Mathematics Department, 1156 High Street, Santa Cruz, CA 95060, USA

3 Stony Brook University, Department of Physics and Astronomy, Stony Brook, NY 11794-3800, USA
Received 2022 July 21; revised 2022 October 10; accepted 2022 October 12; published 2022 November 29

Abstract

We demonstrate the use of neural networks to accelerate the reaction steps in the MAESTROeX stellar
hydrodynamics code. A traditional MAESTROeX simulation uses a stiff ODE integrator for the reactions; here, we
employ a ResNet architecture and describe details relating to the architecture, training, and validation of our
networks. Our customized approach includes options for the form of the loss functions, a demonstration that the
use of parallel neural networks leads to increased accuracy, and a description of a perturbational approach in the
training step that robustifies the model. We test our approach on millimeter-scale flames using a single-step,
3-isotope network describing the first stages of carbon fusion occurring in Type Ia supernovae. We train the neural
networks using simulation data from a standard MAESTROeX simulation, and show that the resulting model can
be effectively applied to different flame configurations. This work lays the groundwork for more complex
networks, and iterative time-integration strategies that can leverage the efficiency of the neural networks.

Unified Astronomy Thesaurus concepts: Neural networks (1933); Reaction models (2231); Nucleosynthesis
(1131); Computational methods (1965); Hydrodynamical simulations (767)

1. Introduction

In stellar astrophysics simulations, nuclear reactions are
often the most computationally demanding aspect. Even in
moderately complex networks, the timescales of the stiffest
reactions can be on the order of pico- or even femtoseconds. In
explicit reaction integration schemes, this leads to an overly
restrictive (compared to advective, acoustic, or diffusive scale)
time step, and for implicit schemes, can require hundreds or
thousands of evaluations of the rates per time step. Thus,
reactions can be orders of magnitude more expensive than
advection and/or implicit global solvers such as self-gravity,
momentum, or mass diffusion.

One burgeoning approach to computational fluid dynamics
(CFD) is the use of machine-learning techniques to replace
various computational kernels such as advection (Papapicco
et al. 2022), diffusion (Sirignano & Spiliopoulos 2018), and
the Poisson equation (Tang et al. 2017) (for self-gravity,
electrostatics, or projection-based decomposition techniques for
incompressible flow). In particular, the use of deep neural
networks (DNNs) for surrogate modeling in the framework of
partial differential equations (PDEs) and ordinary differential
equations (ODEs) has been especially popular in recent years.
However, while the literature on using DNN models in areas of
CFD such as turbulence modeling is increasing rapidly
(Echekki & Mirgolbabaei 2015; Duraisamy et al. 2019;
Grimberg & Farhat 2020; Lye et al. 2020), there is notably
less investigations in using them for chemical kinetics. In
terrestrial combustion, this approach has been used for
moderate-sized systems of ∼10 species and ∼20 reactions.
Astrophysical nuclear reaction networks share a lot in common
with terrestrial chemical networks, although the astrophysical

rates tend to have much stronger temperature dependence, and
hence can be stiffer.
In the context of using a DNN to accelerate or replace

computationally expensive PDE or ODE solver, the DNN
model is trained to approximate the mapping from input states
of the differential equation solver to its solution states. The
learning problem then aims at tuning the weights of the DNN
model to train it to a high degree of accuracy. Examples of
DNN for surrogate modeling include Residual Neural Network
(ResNet; He et al. 2016), physics-informed neural network
(PINN) (Raissi et al. 2019; Karniadakis et al. 2021), and
fractional DNN (Antil et al. 2020). Among them, PINN has
achieved success in a wide range of applications by encoding
physics constraints into the loss functions of the neural network
such that the governing equations are satisfied. However, recent
investigations by Ji et al. (2021) and Wang et al. (2021) have
shown that the performance of using PINN in stiff chemical
kinetic problems with governing equations of stiff ODEs is
suboptimal and can often fail due to both numerical and
physical stiffness. Hence, our approach to constructing a
surrogate model for the reaction computational kernel is more
similar to that of Brown et al. (2021) where the goal is to learn
from physics/chemistry. In addition, we still want to include
physics-based constraints in the loss function whenever
possible, but they will not be expressed in the form of the
governing equations and instead be specific to the problem (for
example, conservation of mass).
In this paper we use the astrophysical hydrodynamics code,

MAESTROeX (Nonaka et al. 2010; Fan et al. 2019a), to
perform millimeter-scale nuclear flame simulations using a
neural network to accelerate the reaction steps. We demonstrate
that we can train neural networks using data from a traditional
MAESTROeX simulation that utilizes stiff ODE integration for
the reactions, and run new simulations utilizing this neural
network at a reduced computational cost. This particular
problem is extremely challenging due to the delicate balance

The Astrophysical Journal, 940:134 (15pp), 2022 December 1 https://doi.org/10.3847/1538-4357/ac9a4b
© 2022. The Author(s). Published by the American Astronomical Society.

Original content from this work may be used under the terms
of the Creative Commons Attribution 4.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

1

https://orcid.org/0000-0002-3246-4315
https://orcid.org/0000-0002-3246-4315
https://orcid.org/0000-0002-3246-4315
https://orcid.org/0000-0003-2300-5165
https://orcid.org/0000-0003-2300-5165
https://orcid.org/0000-0003-2300-5165
https://orcid.org/0000-0002-7815-1496
https://orcid.org/0000-0002-7815-1496
https://orcid.org/0000-0002-7815-1496
https://orcid.org/0000-0001-8401-030X
https://orcid.org/0000-0001-8401-030X
https://orcid.org/0000-0001-8401-030X
https://orcid.org/0000-0003-1791-0265
https://orcid.org/0000-0003-1791-0265
https://orcid.org/0000-0003-1791-0265
mailto:AJNonaka@lbl.gov
http://astrothesaurus.org/uat/1933
http://astrothesaurus.org/uat/2231
http://astrothesaurus.org/uat/1131
http://astrothesaurus.org/uat/1131
http://astrothesaurus.org/uat/1965
http://astrothesaurus.org/uat/767
https://doi.org/10.3847/1538-4357/ac9a4b
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/ac9a4b&domain=pdf&date_stamp=2022-11-29
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/ac9a4b&domain=pdf&date_stamp=2022-11-29
http://creativecommons.org/licenses/by/4.0/

between advection, thermal diffusion, and reactions. We have
implemented a training scheme that is highly accurate and
sensitive to this balance, and describe our design decisions
below.

2. Model and Prior Numerical Approach

MAESTROeX is a finite-volume code that solves the
equations of low Mach number reacting flow in astrophysical
environments. Since the low Mach number model does not
contain acoustic waves, the time step is limited by an advective
Courant–Friedrichs–Lewy (CFL) constraint, which is()1 Ma
larger than an acoustic CFL constraint in compressible
approaches, where Ma is the characteristic Mach number.
The code is suitable for both stratified environments (planar
regions or full stars) as well as small-scale simulations without
stratification (where it reduces to the system described in Bell
et al. 2004c). Here, we focus on the latter case (a millimeter-
scale flame); thus, we do not account for gravitational
stratification and the model is simpler than the full
MAESTROeX equation set,

· () ()
r

r rw
¶
¶

= - +U
X

t
X , 1k

k k

· () · ()r
r r

¶
¶

= - + +U
h

t
h k T H , 2th nuc

· ()
r

p
¶
¶

= - -
U

U U
t

1
, 3

· () =U S. 4

Here, ρ is the fluid density, Xk is the mass fraction of species k
with associated production rate wk, U is the fluid velocity, h is
the enthalpy per unit mass, kth is the thermal conductivity, T is
the temperature, Hnuc is the nuclear energy generation rate per
unit mass, and π is the perturbational (or dynamic) pressure.
The divergence constraint is derived directly from the equation
of state by taking the Lagrangian derivative and substituting in
the equations of mass and energy evolution. The constraint
represents a linearized approximation of the velocity field
required so that the thermodynamic variables evolve such that p
(ρ, h, X)= p0, where p0 is a constant ambient pressure. The
expansion term, S, accounts for local compressibility effects
resulting from nuclear burning, compositional changes, and
thermal conduction; see Fan et al. (2019a). Millimeter-scale
flame instabilities with this algorithm have previously been
studied in Bell et al. (2004a, 2004b) and Zingale et al. (2005).

The MAESTROeX algorithm utilizes a projection methodol-
ogy for the velocity integration, and Strang splitting for the
thermodynamic variable integration. The projection algorithm
involves an explicit hydrodynamic step followed by a global
geometric multigrid Poisson solve to correct the solution so that
it satisfies the divergence constraint. The Strang splitting
algorithm alternates between a reaction half-step, an advection-
diffusion full step, and a reaction half-step to achieve second-
order accuracy. Advection is treated explicitly with a second-
order accurate Godunov approach based on the corner transport
upwind scheme of Colella (1990), and thermal diffusion is
treated implicitly using a global Helmholtz linear solver using
geometric multigrid. Reactions are integrated using the stiff
ODE solver VODE (Brown et al. 1989).

We use a publicly available equation of state (Timmes &
Swesty 2000), which includes contributions from electrons,
ions, and radiation. We select a simple 3-isotope network
describing the first stages of carbon fusion occurring in Type Ia
supernovae (SNe Ia). In the simmering and deflagration stages
of common SNe Ia models, 12C nuclei fuse with other 12C
nuclei to form predominantly either 4He + 20Ne or 1H + 23Na.
Because both of these sets of reaction products can be thought
to proceed from the decay of a short-lived 24Mg nucleus in an
excited state, our network describes these reactions as a single
12C + 12C→ 24Mg reaction to reduce the number of equations
and isotopes we track. We evolve 12C and 24Mg mass fractions
using screening as described in Graboske et al. (1973), Weaver
et al. (1978), Alastuey & Jancovici (1978), and Itoh et al.
(1979). This particular network contains timescales on the
order of 10−14 s so implicit integration with VODE is required
when using large time steps afforded by the MAESTROeX
algorithm. Because common SNe Ia models also generally
contain about 50% 16O by mass in the progenitor white dwarf,
we include this quantity of 16O in our network, comprising the
third species in our network. However, we do not evolve 16O in
the network as we are only interested in modeling the early
stages of 12C fusion in SNe Ia models and have not extended
the current study to account for later 16O burning.

3. Deep Neural Network

3.1. Problem Formulation

As stated in Section 2, the MAESTROeX algorithm
integrates the reactions using the stiff ODE solver VODE,
which evolves the species and enthalpy from X Xk k

in out and
(ρh)in→ (ρh)out by solving the following system of equations
over a time interval of Δt,

()
r

rw
¶
¶

=
X

t
, 5k

k

() ()r
r

¶
¶

=
h

t
H , 6nuc

where in the absence of weak interactions, the nuclear energy
generation rate can be expressed in terms of the specific
binding energies, qk, as

()å w= -H q . 7
k

k knuc

We note that in Fan et al. (2019a) we integrated temperature
rather than enthalpy; it was later shown in Zingale et al. (2021)
that integrating energy is a more robust approach, which we
have subsequently adopted. In the Strang-split time-integration
algorithm for MAESTROeX, we evolve only Equations (5) and
(6) in our reaction step. Furthermore, we integrate internal
energy, e, rather than enthalpy h, since the time derivatives of
these quantities from reactions alone are identical for our
constant-pressure simulations.
We seek to replace the current reaction solver using DNNs

such that the updated mass fractions and enthalpy are
determined by the following:

() ()r= DX X T tDNN , , , , 8out
1

in in in

() () () ()r r r r= + DXh h T tDNN , , , . 9out in out
2

in in in

Note that the inputs to both DNNs are the same, which
allows the two models to be combined during the runtime. Also

2

The Astrophysical Journal, 940:134 (15pp), 2022 December 1 Fan et al.

note that the density remains unchanged during this reaction
step, hence the enthalpy update can be expressed simply as

() ()r= + DXh h T tDNN , , , . 10out in
2

in in in

Combining Equations (8) and (10) into a single neural network
gives

[] [] () ()r= + DX X Xh h T t, , DNN , , , . 11out in
full

in in in

3.2. Architecture

To accurately represent the functionality of the ODE solver
VODE, the inputs of the DNNs are density, temperature, and
mass fractions. Note that in this work, we use a constant time
step in each of our simulations, and hence Δt is not used as an
input. For more general problems, Δt will also need to be
considered. The input dimension is then given by

()
() () ()

= + + = +
#

n M M1 1 2, 120
density temperature of species

where M= 2 for our reaction network as discussed in Section
2. Due to the sensitivity of the nuclear energy generation
(expressed in erg per gram), eenuc, to the accuracy of the species
mass fractions (refer to the Appendix for a detailed discussion),
the output will include both the species mass fractions and
nuclear energy generation enuc for a total output dimension
of M+ 1.

We consider two different types of neural networks for this
problem: one single neural network DNNfull satisfying
Equation (11), and two parallel neural networks DNN1 and
DNN2 satisfying Equations (8) and (10), respectively, which
will be combined during the runtime to approximate the entire
solution. It is shown in Section 4 that the single neural network
does not seem to perform as well as the parallel network.
Additional advantages of training the networks in parallel
include decreasing the total training time and avoiding potential
memory limitations.

All DNNs are implemented using a ResNet (He et al. 2016)
architecture with a differing number of hidden layers and
shortcut connections. Although ResNets are most commonly
used in classification problems instead of surrogate models,
they have been shown to perform well in modeling problems
where there are many inputs and few outputs. ResNets differ
from fully connected neural networks in that they include
additional connections between nonconsecutive hidden layers,
usually skipping two or more layers. In very intricate networks,
these shortcut connections help to alleviate the vanishing
gradient problem, which is when the gradients become
increasingly small during backpropagation causing suboptimal
convergence of the first few layers of the network. After
experimenting with varying the number of hidden layers,
hidden nodes, and shortcut connections, we chose to use the
architectures specified in Figure 1 for the DNNs that we are
training and testing. Note that the single and parallel neural
networks contain the same number of total hidden nodes.

The activation function used in each hidden layer is the
hyperbolic tangent activation function due to its derivatives
being continuously differentiable. As a side note, the CELU
activation function, which is also continuously differentiable,
can be used to obtain faster convergence, but we found that it
does not necessarily result in better accuracy in practice.
Finally, a ReLU activation function is added to the output layer

of DNN1 to satisfy the physical constraint that mass fractions
must be positive values.

3.3. Loss Function and Scaling

Since one of our chosen neural networks forms a parallel
ResNet architecture, each parallel DNN would use a separate
loss function: one for the mass fractions and one for the nuclear
energy generation. In the case of a single DNN, the total loss
function would be the sum of the two parallel loss functions.
Due to the fact that these neural networks are modeling systems
of ODEs describing physical phenomena, there are many
opportunities to incorporate physics constraints into the loss
functions. In this particular problem, there are two such
constraints we consider when constructing the loss function: (1)
the sum of the mass fractions must be conserved in DNN1, and
(2) the nuclear energy generation must be of the same sign in
DNN2. Letting X̃k and ẽnuc be the model-predicted values of the
mass fractions and energy generation, and Xk and enuc the
solution states from the ODE solver, the loss functions for the
two neural networks are

(˜) ˜

˜ ()

(˜)

= å å -

+ å å - å

=

=

X
N

X X

C
N

X X

DNN :
1

1
13

k k i
N

k k

X X

X i
N

k k k k

1 1 2
2

MSE ,

1 2

2

mass conservation constraint

k k

(˜) ˜

(˜) () ()

(˜)

= å -

+ å -

=

=

e
N

e e

C
N

e e

DNN :
1

1
sign sign 14

i
N

e e

e i
N

2 nuc 1 nuc nuc 2
2

MSE ,

1 nuc nuc 1

physical constraint

nuc nuc

 ([˜ ˜]) (˜) (˜) ()= +X e X eDNN : , 15k kfull nuc nuc

for data points i= 1,...,N, where CX and Ce are cost factors for
the physical constraints of mass fractions and energy
generation, respectively. Here, MSE refers to the mean square
error between the ground truth solutions and the model-
predicted values.
In order for neural networks to perform optimally, the inputs

and outputs should be scaled such that they are close to order
()1 . This is easily achievable for density, temperature, and
nuclear energy generation, all of which are normalized with
their respective maximum values. However, the mass fractions
vary widely from()-10 30 to()-10 1 (see Figure 5) and hence
cannot be normalized in a similar manner. Instead, we employ
two potential approaches to alleviate this scaling problem. In
the first approach, we convert all mass fractions to their inverse
log equivalents, which will significantly reduce the range of
scale. In the second approach, we use a loss function with
exponentially increasing weights that is symmetric around a
mass fraction of 0.25, which is motivated by mass
conservation. The results of using these two approaches will
be discussed further in Section 4. The first approach to
addressing the mass fraction scaling problem is to transform
both input and output mass fractions (in DNN1) to their
negative inverse log equivalent, () -X X1 logk k . This
reduces the mass fractions to a much more narrow range of

3

The Astrophysical Journal, 940:134 (15pp), 2022 December 1 Fan et al.

()-10 2 to()1 as shown in Figure 2. This transformation can
be applied to the input mass fractions in DNN2 as well.

The second method is to note that in this particular 3-species
network, the sum of XC12 and XMg24 is conserved. Therefore,

when either mass fraction approaches 0, the other must
approach 0.5. In the previous approach where the inverse log
form of mass fraction was used, we considered the scaling
problem only near 0. However, due to the fact that the sum of
the species is conserved, we realized that there is a scaling issue
near 0.5 as well. In fact, we need a loss function that penalizes
errors near 0 and 0.5 in a symmetric manner as well as takes
into account the scaling problem. This can be accomplished by
using custom weights w(Xk) in the loss function such that

 (˜) () ˜ () åå= -
=

X
N

w X X X
1

, 16w k
i

N

k
k k k

1
2
2

where the weight is a function of the mass fraction that is
symmetric about Xk = 0.25 and exponentially increases toward
0 and 0.5. More specifically, after some initial testing of the
accuracy needed for the mass fractions during the real-time
simulation, the modified loss function must heavily penalize
errors within the mass fraction ranges of (0, 0.1] and [0.4, 0.5).
Therefore, the weight function that we selected is similar to a
double sigmoid function centered at Xk = 0.05 and 0.45, and

Figure 1. ResNet architectures for (a) single neural network and (b) parallel neural networks, where DNN1 has output of mass fractions Xk and DNN2 nuclear energy
generation enuc. The solid lines represent standard ResNet shortcut connections while the dashed lines are additional connections.

Figure 2. Profile of mass fractions in negative inverse log form at t = 4.8 μs.

4

The Astrophysical Journal, 940:134 (15pp), 2022 December 1 Fan et al.

defined as

{ ()}

()

()

()

=
-

- + +
+ <

- + +

w X
p

X
p X

p

X
X

log

exp 100 5 1
if 0.25

exp 100 5 1
if 0.25

, 17

k

k
k

k
k

10

⎧

⎨
⎪

⎩⎪

where p is the order of precision such that 10p is the maximum
value of the weight function. In other words, p dictates the
precision where the modified loss function starts to loosen
penalties for any values less than order ()-10 p . Figure 3
shows an example of the weight function with p= 8. During
training, we set p= 10, but based on some preliminary testing,
any value of p� 8 gives stable results. Using this approach to
solve the mass fraction scaling problem, the modified loss
function for DNN1 then becomes

 (˜) (˜) ˜ ()å å å= + -
=

X X C
N

X X
1

. 18k w k X
i

N

k
k

k
k

1 2

2

3.4. Training and Validation

We define the initial conditions for our simulation as
follows. In each simulation, the computational domain is
Lx= 0.625 cm× Ly= 5 cm with 128× 1024 grid cells so the
grid spacing is Δx≈ 49 μm. To initialize the problem, we
define the fuel-state density (ρfuel= 5× 107 g cm−3), temper-
ature (Tfuel= 108 K), and composition (XC12,fuel= XO16,fuel=
0.5, XMg24,fuel= 0) and use the equation of state to compute the
corresponding ambient pressure used throughout the domain,
p0. We define the ash-state temperature (Tash= 3× 109 K) and
composition (XC12,ash= 0). We define profiles for the
temperature and species using a smooth hyperbolic tangent,

[((˜()))] ()a

= +
-

´ + - -

T T
T T

y y x
2

1 tanh 5 , 19

fuel
ash fuel⎛

⎝
⎞
⎠

[((˜()))] ()a

= +
-

´ + - -

X X
X X

y y x
2

1 tanh 5 , 20

C12 C12,fuel
C12,ash C12,fuel⎛

⎝
⎞
⎠

()= - =X X X0.5 , 0.5, 21Mg24 C12 O16

where α= 8 cm−1 is a parameter that controls the steepness of
the transition. Then we use the equation of state to compute ρ

and h throughout the domain using the temperature,
composition, and ambient pressure. The term ˜()y x represents
a spatial perturbation to the initial flame front. In our first tests,
˜() =y x 0 so the flame front is on one plane (one-dimensional).
The x-boundary conditions are periodic, and the y-boundary
conditions are inflow and outflow. The inflow boundary
conditions use a prescribed velocity of U= (0, 105) cm s−1

with the fuel-state condition for the remaining variables. The
initial profiles of the species, temperature, and density for the
one-dimensional case are shown in the top two panels in
Figure 4.
Using the MAESTROeX algorithm with VODE, we model

12 μs of evolution over 500 time steps with Δt= 24 ns, which
corresponds to an advective CFL condition of ∼0.5. The peak
velocity in this simulation is very close to the inflow velocity,
105 cm s−1, which corresponds to a Mach number of()-10 4 .
The final configuration of the species is shown in the bottom
two panels in Figure 4. Over this time, the burning front speed
is much smaller than the inflow velocity, so the front travels
∼1 cm to the right, which is roughly 20% of the length of the
domain.
The data we use to train and validate the DNN models is

based on reaction data from this simulation. The inputs and
outputs of the ODE solver VODE are saved to plotfiles that are
then used to train the neural networks offline. These plotfiles
are generated every 10 time steps starting from the time
t= 4.8 μs to the final time of t= 12 μs. Figure 5 shows the
profiles of the relevant variables at t= 4.8 μs.
We found in preliminary testing that simulations using

neural networks that are trained using data directly from the
MAESTROeX simulation tend to perform poorly for inputs
that are slightly perturbed from the training data. This indicates
that the model is most likely overfitting since it only sees a
small set of the possible solution space of the ODE solver. To
improve the robustness, stability, and overall performance of
the DNNs, we present an approach to diversify the training data
by slightly perturbing the fluid state just before using VODE to
solve the system. The procedure to perturb the states is as
follows.

1. Apply a random perturbation within ±0.005 to XC12.
2. Subtract the same perturbation from XMg24 to ensure mass

conservation. If any of the resulting mass fractions is
negative, set the perturbation to zero (i.e., do not perturb
this cell).

3. Randomly perturb both density and temperature within
±0.02% and ±0.06%, respectively.

4. Repeat steps 1−3 in 75% of the cells in the computational
domain.

The overall process to generate the training data is shown by
the gray arrows in Figure 6. Note that we still run the actual
simulation using unperturbed data; the perturbed data is passed
in through separate, additional calls to VODE that do not feed
back into the main simulation. Also note that we complete

Figure 3. Weights associated with the modified loss function of mass fractions.
Note the symmetry around a mass fraction of 0.25.

5

The Astrophysical Journal, 940:134 (15pp), 2022 December 1 Fan et al.

training over a representative set of data over all time steps
before using the trained model to start a DNN-based
simulation. In future work, we may explore training on the
fly to further improve the efficiency of the workflow. In the
one-dimensional case, the data set we chose is the solution
along x-slices located at x= [0.1, 0.2, 0.3] cm, and in the two-
dimensional case, the training data is taken from half of the
domain (x� 0.3125 cm).

The validation data is a subset of the training data that is not
used to update the neural network but is instead used to measure
the performance of the neural network during training time. The
neural network makes predictions on this data to give an
indicator of the error of the predictions to the ground truth, but
does not actually backpropagate gradients to optimize for this
data. Usually, a different loss function is used for validation. For
simplicity, we chose to use the MSE as the validation loss
function. We then split the total training data set into 10% for
validation and 90% to be used to actually train the DNNs.

In Figure 7 we show the training and validation losses during
the first 500 epochs of training the full DNN model using
negative inverse log scaling of the inputs. There are two
important things to point out here. First, the validation data loss
is slightly higher, but follows a downward trend similar to the
training data during the training time. This is because the neural
network has not been optimized for this validation data, so it
will never achieve the same loss as that of the training data;
however, this gives us confidence that the model is learning.
Second, the validation loss of this neural network has not
diverged from the training loss. If the validation loss were to
increase while the training loss continues to decrease, this
would be evidence of overfitting. On the other hand, if the
validation loss was simply not decreasing in the same manner
as the training loss (i.e., the validation loss plateaus at a higher
loss cost), this would be evidence that our model is not
complex enough to capture the intricacies of our data such that
it generalizes well. This is a well-known phenomena called the

Figure 4. Profile of species mass fractions, density, and temperature at initial time t = 0 (top row) and final time t = 12 μs (bottom row) for the planar case.

Figure 5. Profiles of species mass fractions, density, and temperature at t = 4.8 μs, the time starting from when the training data is generated.

6

The Astrophysical Journal, 940:134 (15pp), 2022 December 1 Fan et al.

bias-variance trade-off. Here, we show our model is simple
enough to generalize well in addition to being sophisticated
enough to accurately capture the dynamics of the problem.

3.5. Testing

The testing phase comes after the training and validation of
the neural networks. In order to determine the best scaling
approach and loss functions to use, when running with trained
DNN in place of VODE, we rerun the same flame diffusion
simulation in Section 3.4 starting with the configuration at

t= 4.8 μs to the final time of t= 12 μs. After determining the
best training approach, we train a new DNN with a perturbed
flame with a V-shaped front, and test this model on three
different configurations: the same V-shaped front, a one-
dimensional flame, and a sinusoidally varying flame front. The
V-shaped front is defined using

˜() ()
=

-
- +

y x
x x L
L x

if 2
else

, 22x

x

⎧
⎨⎩

where ˜()y x is used in Equations (19) and (20) and again,
Lx= 0.625 cm is the width of the domain. For our simulations
involving a sinusoidally varying flame front, we use a domain
that is twice as wide (with twice as many grid cells in x so that
Δx remains the same) and define the flame front using

˜() ()p
=y x

L

L
x

2

4
sin

2

2
. 23x

x

⎜ ⎟
⎛
⎝

⎞
⎠

The results of these simulations are discussed in detail in
Section 4.

3.6. Software Implementation

The initial simulations used to generate the plotfiles that contain
the training data is run using MAESTROeX (Fan et al. 2019a,
2019b, https://github.com/AMReX-Astro/MAESTROeX hash
717e4bc), which uses Starkiller Microphysics libraries
(AMReX-Astro Microphysics Development Team et al. 2022,
https://github.com/AMReX-Astro/Microphysics) tag 22.07),
and the AMReX framework (Zhang et al. 2019, 2021; AMReX
Development Team et al. 2022, https://github.com/AMReX-
Codes/amrex) tag 22.07).

Figure 6. Illustrated overview of our machine-learning approach. The gray arrows indicate the steps involved in generating the training data, the blue arrows the
training and validation process, and the orange arrows the testing phase.

Figure 7. Total loss of training and validation data for 500 epochs during the
validation phase.

7

The Astrophysical Journal, 940:134 (15pp), 2022 December 1 Fan et al.

https://github.com/AMReX-Astro/MAESTROeX
https://github.com/AMReX-Astro/Microphysics
https://github.com/AMReX-Codes/amrex
https://github.com/AMReX-Codes/amrex

The training and validation of the neural networks are
implemented in Python using the PyTorch library (Paszke et al.
2019) and yt (Turk et al. 2011) is used to extract the training
data from the plotfiles. The main reason we chose to use
PyTorch over other machine-learning libraries is due to the
simplicity of its C++ API LibTorch for integration into our
existing C++ codes. By using PyTorch’s tracing JIT and
LibTorch library, we are able to export the trained neural
networks to a model file that can then be imported and used in
C++. The integration of LibTorch into the AMReX frame-
work allows the user to take advantage of AMReX’s
parallelism capability on both host (MPI+OpenMP) and
MPI+GPU. We have implemented the use of the LibTorch
library in AMReX and, by extension, MAESTROeX in order to
test the trained neural networks. The problem setup is found in
/Exec/science/flame_ml/ directory of MAESTROeX.

4. Results

As outlined in Section 3.5, we will first analyze the
performance of the full DNN and parallel DNNs by training
and testing with the same one-dimensional planar problem.
Then after determining the best model to use, we will train a
new model using data from a flame with a V-shaped front and
test it on three different configurations: the same V-shaped
front, a one-dimensional flame, and a sinusoidally varying
flame front. For each of the test cases, the final solution at
t= 12 μs is compared between using VODE and the trained
DNN. In addition, plots of the model prediction versus the
ground truth solution of the output variables are included to
show how well the model performs on the testing data at the
end of the training phase. The closer the points are to the y= x
line, the closer the prediction is to the ground truth.

Figure 8. (a) Profile of species mass fractions and nuclear energy generation rate at final time t = 12 μs, and (b) validation results using the negative inverse log form
of Xk as input for full DNN. Note that each point in the profile plot is every five data points on the grid in the y-direction.

Figure 9. (a) Profile of species mass fractions and nuclear energy generation rate at final time t = 12 μs, and (b) validation results using symmetric mass fraction loss
function for full DNN.

8

The Astrophysical Journal, 940:134 (15pp), 2022 December 1 Fan et al.

4.1. Full DNN

The full DNN was trained using data from the one-
dimensional planar flame problem for 3000 epochs, and the
results are shown in Figures 8 and 9. Of the two scaling
strategies discussed in Section 3.3, the negative inverse log
transformation of Xk inputs seems to be the better choice,
although both neural networks show similar shortcomings in
performance. The first issue is the emergence of oscillations at
the front of the flame, which suggests that the solution has
become unstable. The oscillations are clearly more pronounced
when using the symmetric mass fraction loss function. The
second issue is that both full DNN models have underestimated

the peak nuclear energy generation rate by a noticeable margin.
In this case, the log transformation of Xk inputs underestimated
the peak by ∼11% while the symmetric loss function
underestimated by ∼4%.

4.2. Parallel DNN

Similar to the full DNN, each parallel DNN was trained
using data from the one-dimensional planar flame problem for
3000 epochs, and the results are shown in Figures 10 and 11.
From these results, we can easily conclude that the parallel
DNN performed much better than the full DNN. There is no
longer any discernible oscillations at the front of the flame and

Figure 10. (Left) Final profiles of mass fractions and nuclear energy generation rate at t = 12 μs, and (right) parallel validation results using the negative inverse log
form of Xk as input for both DNNs. Note that each point in the profile plot is every five data points on the grid in the y-direction.

Figure 11. Final profiles of mass fractions and nuclear energy generation rate at t = 12 μs (left), and parallel validation results (right) using symmetric mass fraction
loss function for DNN1.

9

The Astrophysical Journal, 940:134 (15pp), 2022 December 1 Fan et al.

the profiles of all three neural network outputs (dotted lines) are
very similar to the original Strang solution using VODE (solid
lines). However, the scaling strategy using the negative inverse
log transformation of Xk inputs underestimated the peak nuclear
energy generation rate by ∼6% while the symmetric mass
fraction loss function only underestimated the peak by <1%.

The improvement in the performance of the parallel DNNs
over the full DNN is likely due to the fact that the loss function
of the mass fractions can be derived independently from that of
the nuclear energy generation. By defining completely separate
neural networks for the mass fractions and enuc, the resulting
parallel neural networks are able to model each output state with

Figure 12. Solutions to the two-dimensional V-shape problem at final time t = 12 μs. Note that each point in the profile plot is every five data points on the grid in the
y-direction. (a) Contour plots of species mass fractions and nuclear energy generation rate. Each pair of contour plots shows the Strang solution using VODE on the
left and the trained DNN model on the right along the vertical dashed line. (b) Profiles along the vertical dashed line.

10

The Astrophysical Journal, 940:134 (15pp), 2022 December 1 Fan et al.

higher accuracy. Interestingly, the time it takes to train one epoch
of data on the parallel neural network is only 4% faster than the
full neural network, which is much less of a speedup than
expected. This is most likely caused by the uneven distribution
of nodes and hidden layers in DNN1 and DNN2 with the former
containing two-thirds of the total number of hidden nodes and
much wider hidden layers than the latter. See the Appendix for a

more detailed discussion on the use of the parallel DNN for
separating the mass fraction and enuc neural networks.

4.3. Two-dimensional Flame Problems

Based on the results in Sections 4.1 and 4.2, we chose to
train the parallel neural network using the symmetric mass

Figure 13. Solutions to the planar problem at final time t = 12 μs using an machine-learning model trained using data from the V-shape problem. (a) Contour plots of
species mass fractions and nuclear energy generation rate. Each pair of contour plots shows the Strang solution using VODE on the left and the trained DNN model on
the right along the vertical dashed line. (b) Profiles along the vertical dashed line.

11

The Astrophysical Journal, 940:134 (15pp), 2022 December 1 Fan et al.

fraction loss function on the two-dimensional flame with a
V-shaped front problem. The DNNs were trained using data
from half of the domain (x� 0.3125 cm) for 500 epochs, and
the results at the final time are shown in Figure 12. The mass
fraction solutions and location of the flame front using the
parallel DNN are comparable to those using VODE. However,
the peak Hnuc prediction has an overshoot of approximately
28%. One possible explanation for this subpar performance is
that the solution space of the ODE near the peak of the
V-shaped flame front makes up only a small portion of the
training data set. This is especially true near the end of the
simulation as the peak Hnuc increases over time and would only
exist in the last couple of plotfiles used to generate the training
data set. Hence, because the neural network does not see as
many instances of the solution near the peak Hnuc, it is possible
that the model does not have enough information to make good
predictions there.

By contrast, when we tested this trained DNN on the one-
dimensional planar problem, the solution at peak Hnuc is
almost indistinguishable from the VODE solution as shown in
Figure 13. Again, this could be attributed to the fact that there

are many more instances of solutions closer to those
encountered in the planar problem in the training data set
and as a result the neural network is able to produce much
more accurate predictions. Given these results, a potential
solution to improve the performance of the DNN for the
V-shaped flame problem is to include more instances of the
flame near the peak Hnuc either by expanding the training data
set to include data from two-thirds of the domain (x� 0.4167
cm) or to output multiple plotfiles with varying solution
perturbations (as described in Section 3.4) near the end of the
simulation.
As the final test, we test the trained parallel DNN on another

two-dimensional problem that differs from the training set data,
which is a flame with a sinusoidally varying flame front. In this
problem, the computational domain is 1.25× 5 cm with
256× 1024 grid cells so that the grid spacing stays the same
as in the previous problems. Figure 14 shows that the neural
network solutions of both mass fractions and nuclear energy
generation rate are close to the VODE solutions, with a slight
overshoot in the peak Hnuc of approximately 7%.

Figure 14. Solutions to the sine wave problem at final time t = 12 μs using a machine-learning model trained using data from the V-shape problem. (a) Contour plots
of species mass fractions and nuclear energy generation rate. Each pair of contour plots shows the Strang solution using VODE on the left and the trained DNN model
on the right along the vertical dashed line. (b) Profiles along the vertical line.

12

The Astrophysical Journal, 940:134 (15pp), 2022 December 1 Fan et al.

4.4. Timing Comparisons

To compare the runtime performance of MAESTROeX
when using a neural network instead of the ODE solver VODE
for the computational reaction kernel, we run the three
previously defined flame problems (planar, V-shaped, and
sinusoidally varying flame fronts) on four cores (pure MPI) on
an AMD EPYC 7702P processor and record the time it takes to
complete the reactions subroutine per time step. The left plots
in Figure 15 show that in our simulations using VODE, the
runtime is dominated by reactions, using 59.5% of total
runtime, whereas using DNN reduced the reactions runtime to
29.4%. In terms of the time it takes to run the reaction kernels
per time step, using the neural network results in speedups of
3.14–3.45, depending on the test problem (see the right plot in
Figure 15). We note that more complex networks using neural
networks should result in larger speedups on both a CPU
and GPU.

5. Conclusions and Future Work

We have demonstrated that we can train DNNs with a
ResNet architecture using data obtained from the ODE solver
VODE given that the data have been perturbed slightly to
represent a larger portion of the possible solution space of the
solver. In terms of accuracy and stability during simulation
using MAESTROeX, the parallel DNN showed much better
performance than the full DNN. In addition, the trained neural
network can be used successfully in a test case that it has never
seen before (i.e., a flame with a sinusoidally varying front)
given that the training data was obtained from a similar test
(i.e., a flame with a V-shaped front). We also presented two
strategies to mitigate the mass fraction scaling problem. Of the
two strategies, the one that uses the symmetric mass fraction
loss function performed slightly better than transforming the
mass fraction inputs to its negative inverse log form.
One area of potential future work that looks promising is

using a neural network model to compute the reaction solution
in the predictor steps of a high-order numerical algorithm such
as the spectral deferred corrections (SDC) method. Even in the
second-order Strang splitting algorithm that MAESTROeX
currently uses, a slight speedup of 1.32 over all reactions steps
can be seen if we replace the reaction ODE solve in the
predictor step with our trained DNN. We would expect to see
larger speedups in high-order methods that consists of multiple
predictor steps. To demonstrate the potential of this idea, when
we applied this approach in the two-dimensional flame with a
V-shape front problem using the same parallel DNN that we
previously trained in Section 4.3, the final solution is
exceedingly close (<0.2% error) to the one from the original
Strang splitting algorithm (see Figure 16).
Another topic for future work could be to develop and train

neural networks with an additional input of the time step, which
would lead to the potential implementation of PINNs.
However, in the case of stiff ODEs like the ones describing
the nuclear reaction networks used in MAESTROeX, we would
most likely need to consider a relaxation constraint instead of

Figure 15. (Left) Relative timing plots of subroutines in MAESTROeX. (right) Comparison of runtimes of the computational reaction kernel using VODE and DNN
models.

Figure 16. Profiles of mass fractions and nuclear energy generation rate along
the x-center line for the V-shaped flame problem at final time t = 12 μs using a
parallel DNN in the predictor step of second-order Strang splitting algorithm.

13

The Astrophysical Journal, 940:134 (15pp), 2022 December 1 Fan et al.

directly computing the gradients in the ODE (Ji et al. 2021).
Finally, we could look to model more complex nuclear reaction
networks with 13 or 19 isotopes in the future.

The work at LBNL was supported by the U.S. Department of
Energyʼs Scientific Discovery Through Advanced Computing
(SciDAC) program under contract No. DE-AC02-05CH11231.
The work at Stony Brook was supported by DOE/Office of
Nuclear Physics grant DE-FG02-87ER40317. This research
used resources of the National Energy Research Scientific
Computing Center (NERSC), a U.S. Department of Energy
Office of Science User Facility operated under contract
No. DE-AC02-05CH11231. The authors thank A. Harpole for
valuable contributions to the Starkiller Microphysics library.

Facility: NERSC.
Software: Refer to Section 3.6.

Appendix
Nuclear Energy Generation Sensitivity Analysis

Theoretically, the enthalpy could be updated using only the
mass fractions. This is because after the evolving the mass
fractions from Xin→ Xout, the resulting reaction rates are
computed as

() () ()rw
r

=
-

D
X X

t
A1k

k kout
out out in

and the nuclear energy generation rate becomes

() () ()år rw= -H q . A2
k

k knuc
out

Substituting Equations (A1) and (A2) into the simplest discrete
form of Equation (6) gives

() () ()

() ()

år r rw

r r

= - D

= +

h h t q

h e , A3
k

k k
out in out

in out
nuc

where enuc is a function of (Xin, Xout, qk) and satisfies

=
¶
¶

H
e

t
.nuc

nuc

Comparing Equations (10) and (A3), it can be easily seen that
DNN2 is used to model enuc. The question then is whether this
additional DNN2 is necessary given that enuc can be computed
directly using the updated mass fractions from DNN1.
To answer this question, we want to analyze the sensitivity

of enuc with respect to changes in the updated mass fractions
(i.e., the accuracy of DNN1). Figure 17 plots the error in enuc
relative to the errors in Xk

out at two different initial conditions:
(left) at peak enuc of the flame and (right) approximately 0.2 cm
behind the peak. Note that due to mass conservation, any
change in XC12 will result in the same exact (but opposite)
change in XMg24. The left plot in Figure 17 shows that at peak
energy generation of 6.0954× 1012 erg g−1, to achieve ∼99%
accuracy for enuc (i.e., ∼1% error) requires an error
of∼3× 10−5% for XMg24 and∼1.5× 10−5% for XC12. Even
worse, with the initial conditions shown in the right plot of
Figure 17, achieving a ∼99% accuracy for enuc requires errors
of∼1× 10−9% and∼1× 10−10% for XMg24 and XC12,
respectively. In practice, obtaining such high precision for
neural networks is difficult and potentially unreasonably
expensive due to memory limitations and longer training

Figure 17. Percentage error of nuclear energy generation enuc with respect to percentage error of updated mass fractions Xk
out at different initial conditions.

14

The Astrophysical Journal, 940:134 (15pp), 2022 December 1 Fan et al.

times. Therefore, we conclude that a second DNN is necessary
to efficiently model the nuclear energy generation.

ORCID iDs

Duoming Fan https://orcid.org/0000-0002-3246-4315
Donald E. Willcox https://orcid.org/0000-0003-2300-5165
Christopher DeGrendele https://orcid.org/0000-0002-
7815-1496
Michael Zingale https://orcid.org/0000-0001-8401-030X
Andrew Nonaka https://orcid.org/0000-0003-1791-0265

References

Alastuey, A., & Jancovici, B. 1978, ApJ, 226, 1034
AMReX-Astro Microphysics Development Team, Bishop, A., Fields, C. E.,

et al. 2022, AMReX-Astro/Microphysics: Release 22.07, Zenodo, doi:10.
5281/zenodo.6787059

AMReX Development Team, Almgren, A., Beckner, V., et al. 2022, AMReX-
Codes/amrex: AMReX 22.07, Zenodo, doi:10.5281/zenodo.6788444

Antil, H., Khatri, R., Lohner, R., & Verma, D. 2020, MLS&T, 2, 015003
Bell, J. B., Day, M. S., Rendleman, C. A., Woosley, S. E., & Zingale, M.

2004a, ApJ, 606, 1029
Bell, J. B., Day, M. S., Rendleman, C. A., Woosley, S. E., & Zingale, M.

2004b, ApJ, 608, 883
Bell, J. B., Day, M. S., Rendleman, C. A., Woosley, S. E., & Zingale, M. A.

2004c, JCoPh, 195, 677
Brown, P. N., Byrne, G. D., & Hindmarsh, A. C. 1989, SJSC, 10, 1038
Brown, T. S., Antil, H., Löhner, R., Togashi, F., & Verma, D. 2021, High

Performance Computing (Cham: Springer), 23
Colella, P. 1990, JCoPh, 87, 171
Duraisamy, K., Iaccarino, G., & Xiao, H. 2019, AnRFM, 51, 357
Echekki, T., & Mirgolbabaei, H. 2015, CoFl, 162, 1919

Fan, D., Nonaka, A., Almgren, A. S., Harpole, A., & Zingale, M. 2019a, ApJ,
887, 212

Fan, D., Nonaka, A., Almgren, A., et al. 2019b, JOSS, 4, 1757
Graboske, H. C., Dewitt, H. E., Grossman, A. S., & Cooper, M. S. 1973, ApJ,

181, 457
Grimberg, S. J., & Farhat, C. 2020, in AIAA Scitech 2020 Forum (Reston, VA:

AIAA), 0363
He, K., Zhang, X., Ren, S., & Sun, J. 2016, in 2016 IEEE Conf. on Computer

Vision and Pattern Recognition (CVPR) (Piscataway, NJ: IEEE), 770
Itoh, N., Totsuji, H., Ichimaru, S., & Dewitt, H. E. 1979, ApJ, 234, 1079
Ji, W., Qiu, W., Shi, Z., Pan, S., & Deng, S. 2021, JPCA, 125, 8098
Karniadakis, G. E., Kevrekidis, I. G., Lu, L., et al. 2021, NatRP, 3, 422
Lye, K. O., Mishra, S., & Ray, D. 2020, JCoPh, 410, 109339
Nonaka, A., Almgren, A. S., Bell, J. B., et al. 2010, ApJS, 188, 358
Papapicco, D., Demo, N., Girfoglio, M., Stabile, G., & Rozza, G. 2022,

CMAME, 392, 114687
Paszke, A., Gross, S., Massa, F., et al. 2019, in 33rd Conf. on Neural

Information Processing Systems (NeurIPS 2019), ed. H. Wallach et al.
(Curran Associates), 8024, http://papers.neurips.cc/paper/9015-pytorch-
an-imperative-style-high-performance-deep-learning-library.pdf

Raissi, M., Perdikaris, P., & Karniadakis, G. E. 2019, JCoPh, 378, 686
Sirignano, J., & Spiliopoulos, K. 2018, JCoPh, 375, 1339
Tang, W., Shan, T., Dang, X., et al. 2017, in 2017 IEEE Electrical Design of

Advanced Packaging and Systems Symp. (EDAPS) (Piscataway, NJ:
IEEE), 1

Timmes, F. X., & Swesty, F. D. 2000, ApJS, 126, 501
Turk, M. J., Smith, B. D., Oishi, J. S., et al. 2011, ApJS, 192, 9
Wang, S., Teng, Y., & Perdikaris, P. 2021, SJSC, 43, A3055
Weaver, T. A., Zimmerman, G. B., & Woosley, S. E. 1978, ApJ, 225, 1021
Zhang, W., Almgren, A., Beckner, V., et al. 2019, JOSS, 4, 1370
Zhang, W., Myers, A., Gott, K., Almgren, A., & Bell, J. 2021, Int. J. High

Perform. Comput. Appl., 35, 503
Zingale, M., Katz, M. P., Willcox, D. E., & Harpole, A. 2021, RNAAS, 5, 71
Zingale, M., Woosley, S. E., Rendleman, C. A., Day, M. S., & Bell, J. B. 2005,

ApJ, 632, 1021

15

The Astrophysical Journal, 940:134 (15pp), 2022 December 1 Fan et al.

https://orcid.org/0000-0002-3246-4315
https://orcid.org/0000-0002-3246-4315
https://orcid.org/0000-0002-3246-4315
https://orcid.org/0000-0002-3246-4315
https://orcid.org/0000-0002-3246-4315
https://orcid.org/0000-0002-3246-4315
https://orcid.org/0000-0002-3246-4315
https://orcid.org/0000-0002-3246-4315
https://orcid.org/0000-0003-2300-5165
https://orcid.org/0000-0003-2300-5165
https://orcid.org/0000-0003-2300-5165
https://orcid.org/0000-0003-2300-5165
https://orcid.org/0000-0003-2300-5165
https://orcid.org/0000-0003-2300-5165
https://orcid.org/0000-0003-2300-5165
https://orcid.org/0000-0003-2300-5165
https://orcid.org/0000-0002-7815-1496
https://orcid.org/0000-0002-7815-1496
https://orcid.org/0000-0002-7815-1496
https://orcid.org/0000-0002-7815-1496
https://orcid.org/0000-0002-7815-1496
https://orcid.org/0000-0002-7815-1496
https://orcid.org/0000-0002-7815-1496
https://orcid.org/0000-0002-7815-1496
https://orcid.org/0000-0002-7815-1496
https://orcid.org/0000-0001-8401-030X
https://orcid.org/0000-0001-8401-030X
https://orcid.org/0000-0001-8401-030X
https://orcid.org/0000-0001-8401-030X
https://orcid.org/0000-0001-8401-030X
https://orcid.org/0000-0001-8401-030X
https://orcid.org/0000-0001-8401-030X
https://orcid.org/0000-0001-8401-030X
https://orcid.org/0000-0003-1791-0265
https://orcid.org/0000-0003-1791-0265
https://orcid.org/0000-0003-1791-0265
https://orcid.org/0000-0003-1791-0265
https://orcid.org/0000-0003-1791-0265
https://orcid.org/0000-0003-1791-0265
https://orcid.org/0000-0003-1791-0265
https://orcid.org/0000-0003-1791-0265
https://doi.org/10.1086/156681
https://ui.adsabs.harvard.edu/abs/1978ApJ...226.1034A/abstract
https://doi.org/10.5281/zenodo.6787059
https://doi.org/10.5281/zenodo.6787059
https://doi.org/10.5281/zenodo.6788444
https://doi.org/10.1088/2632-2153/aba8e7
https://doi.org/10.1086/383023
https://ui.adsabs.harvard.edu/abs/2004ApJ...606.1029B/abstract
https://doi.org/10.1086/420841
https://ui.adsabs.harvard.edu/abs/2004ApJ...608..883B/abstract
https://doi.org/10.1016/j.jcp.2003.10.035
https://ui.adsabs.harvard.edu/abs/2004JCoPh.195..677B/abstract
https://doi.org/10.1137/0910062
https://doi.org/10.1016/0021-9991(90)90233-Q
https://ui.adsabs.harvard.edu/abs/1990JCoPh..87..171C/abstract
https://doi.org/10.1146/annurev-fluid-010518-040547
https://ui.adsabs.harvard.edu/abs/2019AnRFM..51..357D/abstract
https://doi.org/10.1016/j.combustflame.2014.12.011
https://doi.org/10.3847/1538-4357/ab4f75
https://ui.adsabs.harvard.edu/abs/2019ApJ...887..212F/abstract
https://ui.adsabs.harvard.edu/abs/2019ApJ...887..212F/abstract
https://doi.org/10.21105/joss.01757
https://ui.adsabs.harvard.edu/abs/2019JOSS....4.1757F/abstract
https://doi.org/10.1086/152062
https://ui.adsabs.harvard.edu/abs/1973ApJ...181..457G/abstract
https://ui.adsabs.harvard.edu/abs/1973ApJ...181..457G/abstract
https://doi.org/10.1086/157590
https://ui.adsabs.harvard.edu/abs/1979ApJ...234.1079I/abstract
https://doi.org/10.1021/acs.jpca.1c05102
https://ui.adsabs.harvard.edu/abs/2021JPCA..125.8098J/abstract
https://doi.org/10.1038/s42254-021-00314-5
https://ui.adsabs.harvard.edu/abs/2021NatRP...3..422K/abstract
https://doi.org/10.1016/j.jcp.2020.109339
https://ui.adsabs.harvard.edu/abs/2020JCoPh.41009339L/abstract
https://doi.org/10.1088/0067-0049/188/2/358
https://ui.adsabs.harvard.edu/abs/2010ApJS..188..358N/abstract
https://doi.org/10.1016/j.cma.2022.114687
https://ui.adsabs.harvard.edu/abs/2022CMAME.392k4687P/abstract
https://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1016/j.jcp.2018.10.045
https://ui.adsabs.harvard.edu/abs/2019JCoPh.378..686R/abstract
https://doi.org/10.1016/j.jcp.2018.08.029
https://ui.adsabs.harvard.edu/abs/2018JCoPh.375.1339S/abstract
https://doi.org/10.1086/313304
https://ui.adsabs.harvard.edu/abs/2000ApJS..126..501T/abstract
https://doi.org/10.1088/0067-0049/192/1/9
https://ui.adsabs.harvard.edu/abs/2011ApJS..192....9T/abstract
https://doi.org/10.1137/20M1318043
https://ui.adsabs.harvard.edu/abs/2021SJSC...43A3055W/abstract
https://doi.org/10.1086/156569
https://ui.adsabs.harvard.edu/abs/1978ApJ...225.1021W/abstract
https://doi.org/10.21105/joss.01370
https://ui.adsabs.harvard.edu/abs/2019JOSS....4.1370Z/abstract
https://doi.org/10.1177/109434202110228
https://doi.org/10.1177/109434202110228
https://doi.org/10.3847/2515-5172/abf3cb
https://ui.adsabs.harvard.edu/abs/2021RNAAS...5...71Z/abstract
https://doi.org/10.1086/433164
https://ui.adsabs.harvard.edu/abs/2005ApJ...632.1021Z/abstract

	1. Introduction
	2. Model and Prior Numerical Approach
	3. Deep Neural Network
	3.1. Problem Formulation
	3.2. Architecture
	3.3. Loss Function and Scaling
	3.4. Training and Validation
	3.5. Testing
	3.6. Software Implementation

	4. Results
	4.1. Full DNN
	4.2. Parallel DNN
	4.3. Two-dimensional Flame Problems
	4.4. Timing Comparisons

	5. Conclusions and Future Work
	AppendixNuclear Energy Generation Sensitivity Analysis
	References

