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Abstract

Spinal metastasis, a metastatic cancer of the spine, is the most common malignant disease in the 

spine. In this study, we investigate the feasibility of automated spinal metastasis detection in 

magnetic resonance imaging (MRI) by using deep learning methods. To accommodate the large 

variability in metastatic lesion sizes, we develop a Siamese deep neural network approach 

comprising three identical subnetworks for multi-resolution analysis and detection of spinal 

metastasis. At each location of interest, three image patches at three different resolutions are 

extracted and used as the input to the networks. To further reduce the false positives (FPs), we 

leverage the similarity between neighboring MRI slices, and adopt a weighted averaging strategy 

to aggregate the results obtained by the Siamese neural networks. The detection performance is 

evaluated on a set of 26 cases using a free-response receiver operating characteristic (FROC) 

analysis. The results show that the proposed approach correctly detects all the spinal metastatic 

lesions while producing only 0.40 FPs per case. At a true positive (TP) rate of 90%, the use of the 

aggregation reduces the FPs from 0.375 FPs per case to 0.207 FPs per case, a nearly 44.8% 

reduction. The results indicate that the proposed Siamese neural network method, combined with 

the aggregation strategy, provide a viable strategy for the automated detection of spinal metastasis 

in MRI images.
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1. Introduction

Spinal metastasis, a metastatic cancer to the spine, is a malignant process in the spine. It is 

25–35 times more common than any other malignant diseases in the spine [1] and affects 

more than 100,000 individuals in the U.S. annually [2]. The spine is the third most common 

site for cancer cells to metastasize [3], following the lung and the liver [4]. More than 80% 

of spinal metastasis in adults came from the primary tumors, including breast (72%), 

prostate (84%), lung (31%), thyroid (50%), kidney (37%), and pancreas (33%) [5]; and 30–

90% of cancer patients who die are found to have spinal metastasis in cadaver studies [6]. In 

addition, spinal metastases can also have a huge impact on quality of life, with 

complications including pain, fracture, and spinal cord and nerve root compression [7]. 

Therefore, the detection, diagnosis, and treatment of spinal metastases are clinically 

important both to save patients’ lives and to improve their quality of life.

Due to its excellent soft tissue resolution, magnetic resonance imaging (MRI) is the most 

sensitive imaging modality for evaluating spinal lesions [8,9]. Various studies have shown 

that early stages of spinal metastasis in the bone marrow can be detected with MRI before 

any bone deterioration [5]. In MRI images, neoplastic involvement in the vertebral body 

typically shows focal bone marrow replacement with tumorous tissue, resulting in lower T1 

signal than adjacent skeletal muscle and accompanying high T2 signal. Therefore, MRI 

images acquired with different pulse sequences (denoted as MRI sequences) can be used to 

locate lesions and evaluate the extent of the disease (e.g. involving single or multiple 

segments). However, despite the advantages mentioned above, the manual detection of 

spinal metastasis in MRI is time-consuming and tedious considering the large number of 

slices in each MRI sequence, as well as the large number of MRI sequences usually acquired 

for each patient. Therefore, it is now becoming essential to develop computerized algorithms 

for automated detection of spinal metastases in MRI sequences.

Especially, as image acquisition speed improves, many more images with a higher spatial 

resolution can be acquired during an examination, and as such developing computer-aided 

analysis methods is essential to assist radiologists in making a thorough evaluation of the 

entire image set within a reasonable reading time. This is a trend for all imaging modalities 

(and all pathologies), and particularly true for MRI because of the multiple sets of images 

acquired using different sequences. Although at the present time computer-aided analysis 

cannot yet replace visual inspection by trained radiologists, nonetheless it can already 

provide an important tool for displaying the most critical information from hundreds of 

images, in a convenient way, to assist radiologists during diagnosis. In time, computerized 

methods may become as good, or even better than human experts and lead to significant 

economies of scale and accuracy. Thus, in short, it is important to develop computerized 

methods to analyze MRI and other imaging modalities in medicine.

Given the importance of automated spinal metastasis detection, a few approaches have been 

developed in the literature. For example, Roth et al. [10] used a deep convolutional neural 

network (CNN) as the 2nd tier of a two-tiered, coarse-to-fine, cascade framework to refine 

the candidate lesions from the first tier for sclerotic spine metastasis detection in computer 

tomography (CT) images. Wiese et al. [11] developed an automatic method based on a 
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watershed algorithm and graph cut for detecting sclerotic spine metastases in CT images. 

And Yao et al. [12] applied a support vector machine to refine the initial detections produced 

with a watershed algorithm for lytic bone metastasis detection in CT images. However, as 

can be seen, these studies are based on CT images and do not use spinal MRI sequences.

On the MRI side, efforts for analyzing MRI sequences have focused on different problems. 

For example, Carballido-Gamio et al. [13] developed a normalized cut method for vertebra 

segmentation in spinal MRI. Huang et al. [14] proposed an AdaBoost method for vertebra 

detection and an iterative normalized cut algorithm for vertebra segmentation in spinal MRI. 

Neubert et al. [15] designed an automatic method using statistical shape analysis and 

registration of gray level intensity profiles for 3D intervertebral disc and vertebral body 

segmentation in MRI. However, in spite of these efforts and to the best of our knowledge, 

there is no study in the literature that is focused on detecting spinal metastases in MRI 

sequences.

Automated and accurate spinal metastasis detection in MRI is a difficult task, in large part 

because of the considerable variability in the size of vertebrae. Spinal metastases usually 

grow in the vertebrae, which are divided into five regions: cervical, thoracic, lumbar, sacrum, 

and coccyx. The size of the vertebrae varies considerably both within an individual, as well 

as across individuals. For example, Zhou et al. [16] investigated the lumbar vertebrae from 

126 CT images and found that the upper vertebral width is 40.9 ± 3.6 mm in females and 

46.1 ± 3.2 mm in males at L3, 46.7 ± 4.7 mm in females and 50.8 ± 3.7 mm in males at L4, 

and 50.4 ± 4.4 mm in females and 54.5 ± 4.9 mm in males at L5.

In recent years [17], neural networks and deep learning have been used to successfully tackle 

a variety of problems in engineering, ranging from computer vision [18–20] to speech 

recognition [21], as well as in the natural sciences, in areas ranging from high energy 

physics [22,23], to chemistry [24,25], and to biology [26,27]. Thus it is natural to consider 

applying deep learning methods also to biomedical images. For example, Ciresan et al. 

applied a deep learning architecture to each pixel for addressing problems of membrane 

segmentation in electron microscopy images [28]; Shen et al. developed multi-scale 

convolutional neural network for lung nodule detection in CT images [29]; Wang et al. 

adopted a GoogLeNet-based method for automated detection and diagnosis of metastatic 

breast cancer in whole slide images of sentinel lymph node biopsies [30]; and Wang et al. 

devised a 12-layer convolutional neural network for cardiovascular disease detection in 

mammograms [31]. Therefore it is natural to hypothesize that neural networks and deep 

learning methods can be harnessed for the effective detection of spinal metastases in MRI 

sequences.

Thus, in short, the purpose of this study is to develop an accurate computerized method to 

locate metastatic cancer in the spine using deep learning methods. Specifically, a multi-

resolution analysis is proposed to deal with the large variability of vertebral sizes, and a 

Siamese neural network [32,33] is developed to incorporate the multi-resolution 

representation of each MRI slice. More precisely, for each location under consideration, a 

set of image patches centered at this location and at different resolutions are extracted from 

the MRI slice, resulting in a multi-resolution representation of the input. Then the multi-
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resolution image patches are fed into a Siamese neural network to predict the probability 

that the corresponding location corresponds to a metastatic lesion. The Siamese neural 

network is composed of several identical networks, each dealing with patches of a different 

resolution. To further remove false positives (FPs) in spinal metastasis detection, we 

consider the structural similarity of neighboring slices in MRI sequences and aggregate the 

outputs of the Siamese neural networks using a weighted averaging approach.

The rest of paper is organized as follows. The proposed Siamese neural network and slice-

based aggregation methods for spinal metastasis detection are descried in Section 2 together 

with other methodological aspects. The data collection and experiments are described in 

Section 3. Finally, the results are presented in Section 4 and discussed in Section 5.

2. Methods

2.1. Motivation

As previously mentioned in Section 1, there is considerable variability in vertebral size. 

Such variability results in great variations in the sizes of the metastatic lesions, thus yielding 

the difficulty in the metastatic lesion detection. In Fig. 1, we provide examples of metastatic 

lesions with different sizes, in which each image window represents a region of 55 × 79 

mm2. As can be seen, the size of the metastatic lesion varies hugely, in which the first 

lesions cover almost 55 mm in width, while the last lesions only has less than half of 55 mm 

in width.

In real application, such variability as mentioned above poses a major challenge for 

metastatic lesion detection. This is because most detectors (if not all) are usually designed to 

examine only a relatively small image patch around the location under consideration. Having 

local detectors can be computationally efficient. However, in our case, if the local image 

patch is too small and the vertebra is large, then the detector sees only a fraction of the 

vertebra and cannot accurately distinguish between lesion and normal. In contrast, if the 

local image patch is big and the vertebra is small, then most of the information contained in 

the patch is not relevant for the discrimination. Therefore, to accommodate for large 

variations in vertebral size, we propose a multi-resolution approach for spinal metastasis 

detection. Specifically, for each location of interest, we extract three image patches with 

same size in pixels from each MRI slice, corresponding to three different resolutions, 

yielding three different local representations of the location under consideration. The goal is 

to make sure that when metastatic lesions are present, they are salient in at least two image 

patches. Furthermore, in order to control the number of parameters and regularize the overall 

model, we use the same parameters in the networks associated with each resolution.

More precisely, to incorporate the input of the three image patches into a unified 

classification framework, we use a Siamese neural network. The Siamese neural network 

consists of three identical subnetworks, one for each image patch. Each subnetwork is a 

multilayer convolutional neural network, where the lower convolutional layers are used to 

learn and extract features which in turn are used to produce a classification by several the 

higher, fully connected (FC) layers. The output of the Siamese neural network can be 

interpreted as the probability of a metastatic lesion being associated with the central pixel in 
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the input patch. The advantages of such an architecture are the ability to automatically learn 

and extract relevant features, and the combination of multi-resolution features for 

classification. In addition, by the Siamese neural network design, the three subnetworks 

share the same weight parameters. Thus the number of trainable parameters remains 

manageable and independent of the number of resolution patches.

2.2. Siamese neural network architecture

The subnetworks of the overall Siamese architecture comprise stacks of convolutional layers 

(Conv), batch normalization layers, nonlinearity layers, and max-pooling layers (Pooling). 

Each convolutional layer is followed by a batch normalization layer and a non-linear 

transformation. The convolutional layers are feature extractors, and the max-pooling layers 

enable the combination of low-level features into high-level features. In Fig. 2, we display 

the Siamese neural network architecture used in this study. Each subnetwork includes five 

convolutional layers. To avoid cluttering the figure, the batch normalization layer and the 

non-linearity layer, associated with each convolutional layer, are not shown. Finally, the 

features learned by the subnetworks are concatenated and fed into two fully connected layers 

for the final classification. The details of each layer are as follows.

In the development phase, we experimented with subnetworks by using many other 

architectures and in Fig. 2 we only report the one with the best performance. The 

architecture of the subnetworks has a sequence of 1, 2, and 2 convolutional layers before the 

first three max-pooling layers, respectively. In one experiment, for instance, we started from 

an architecture with a sequence of 1, 1, and 1 convolutional layers for subnetworks, and then 

we gradually increased the number of convolutional layers and stopped when no further 

improvement was observed.

Convolutional layers are the core layers for feature learning and extraction. Each 

convolutional layer produces a feature map by convolving its input with a set of 

convolutional kernels. Mathematically, let x be the input, yk be the kth feature map in output, 

and wk (k = 1, 2, …, K, where K is the number of convolutional kernels) be the kth 

convolutional kernel, then the convolutional layer can be described by:

yk = x ∗ wk + bk (1)

where * denotes the convolution operation and bk is the bias. Usually, there are several 

convolutional kernels in each convolutional layer (i.e. K > 1). In Fig. 2, the number of 

convolutional kernels corresponds to the number preceding the symbol “@” in the line at the 

top. For example, 16 convolutional kernels are used in the first convolutional layer in Fig. 2. 

In this study, the size of all of the convolutional kernels is set as 3×3.

Batch normalization layers independently normalize the feature values to zero mean and unit 

standard deviation in each training batch. These are introduced to deal with the internal 

covariate shift, which refers to the phenomenon that the distribution of each layer’s inputs 

changes during training when the parameters of the previous layers change [34]. This 

normalization step can speed up learning and improve classification accuracy [34]. Batch 
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normalization layers preserve both the number and the size of the feature maps; to save 

space, they are omitted in Fig. 2.

Nonlinearity layers consist of units which apply a non-linear activation function to their 

input, producing in the end a non-linear classifier. In this study, we use rectified linear units 

(ReLU), with a non-linear activation function:

f (x) = max (0, x) (2)

While similar results could be obtained with sigmoidal transfer functions, ReLU units can 

lead to faster training [18,35] and yield sparse representations [35]. Just like the batch 

normalization layers, the nonlinearity layers also preserve both the number and the size of 

the feature maps; to save space, they are omitted in Fig. 2.

Max-pooling layers serve as a method of non-linear down-sampling, by providing a 

summary of the outputs of a set of neighboring elements in the corresponding feature maps, 

simply by retaining the maximum value of the elements in each pool [36]. In this study, two 

types of max-pooling layers are considered. The first type of max-pooling layer generates its 

output by considering the 3×3 neighborhood region of the same feature map, thus reducing 

the size of the feature maps by nearly 50%; the second type of max-pooling layer produces 

its output by considering a feature map and its next feature map at the same location, thus 

reducing the number of feature maps by half. In this study, the first type is used for the first 

three max-pooling layers, and the second type is used for the last max-pooling layer. In Fig. 

2, the size of the feature maps is displayed in the top line, right after the “@” sign. By 

comparing the number and size of the feature maps between the input and the output at each 

stage, one can determine the type of max-pooling layer in Fig. 2. For example, it can be seen 

that for the first max-pooling layer, the number of feature maps does not change from input 

to output, but the size of the feature maps decreased from 55×79 to 27×39, thus it is the first 

type of max-pooling layer.

Fully connected layers correspond to pairs of consecutive layers with full connectivity 

between their units. The input of the first fully connected layers is concatenation of all of the 

features from the three subnetworks.

After the last fully connected layer, a softmax activation function [19] is introduced, the 

output of which can be interpreted as the probability that the central pixel in the input image 

patch is associated with a metastatic lesion.

2.3. Model training

In total, the Siamese neural network in Fig. 2 has around 733.4K trainable parameters. The 

parameters are learnt by stochastic gradient descent in order to minimize the cross entropy 

between true class labels and predicted outputs, together with standard L2 regularization. Let 

(xi, yi), i = 1, 2, …, M (M is the number of training samples) be the input and true label 

training pairs, and pi the corresponding predicted output for input xi, then the objective 

function can written as:
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J(w) = − ∑
i = 1

m
[yi log pi + (1 − yi) log (1 − pi)] + λ‖w‖2

2 (3)

where w denotes all the weight parameters in the model and λ is a constant which controls 

the trade-off between the classification error on the training samples and the complexity of 

the model.

To further reduce the potential for overfitting, we use dropout [37,38], which can be viewed 

as a regularization technique. Dropout randomly drops neural units during training to 

prevent any unit from being too reliant on any other unit (unit co-adaptation). In this study, 

dropout with probability 0.5 is applied to the first fully connected layer.

2.4. Training samples extraction

As input to the proposed Siamese neural network architecture, we choose image patches 

with size of 55×79 pixels from the MRI slices at three different resolutions, i.e. 0.5 mm/

pixel, 1 mm/pixel, and 2 mm/pixel, as shown for the input layers in Fig. 2. Such choice 

ensures that at least two out of the three image patches cover more than one vertebra. It is 

based on two observations: (1) vertebrae have roughly a square shape, and the width of the 

majority of the lumbar vertebrae is in the range of 37.3–59.4 mm [16]; and (2) during the 

diagnostic process, radiologists usually compare the vertebra under consideration with other 

vertebrae in the same MRI slice. More importantly, when single image resolution is 

considered, the image patch size 55×79 achieves the best detection performance at the 

resolution of 1 mm/pixel.

As examples, in the first column of Fig. 3(a), we show the multi-resolution image patches 

from a big metastatic lesion. The image resolutions for the image patches in the first, second, 

and third rows are 0.5 mm/pixel, 1 mm/pixel and 2 mm/pixel, respectively. As can be seen, 

the metastatic lesion is salient in the image patches with resolutions of 1 mm/pixel and 2 

mm/pixel. Similarly, in the first column of Fig. 3(b), we also show the multi-resolution 

image patches from a small metastatic lesion. It can be seen that the metastatic lesion is 

salient in the image patches with resolutions of 1 mm/pixel and 0.5 mm/pixel.

The training of the Siamese neural network requires a large number of training samples. For 

this purpose, we extracted training samples from the MRI sequences in the training set, 

described in Section 3.1, as follows: for an MRI slice under consideration, to maximize the 

number of metastatic lesion samples, we extract image patches from each pixel in the spinal 

metastatic region. Then to obtain corresponding normal samples, we randomly extract the 

same number of image patches from the normal region in the slice, to prevent imbalance 

between the two classes. To reduce the variation among the samples, a z-score normalization 

is applied to each image patch such that each component has zero mean and unit standard 

deviation.

Note the samples associated with the normal class mainly include two types of samples, the 

ones from the normal vertebral regions, and the ones from the non-vertebral background 
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regions. For spinal metastasis detection, it is much more difficult to discriminate between 

metastatic lesions and normal vertebrae than to discriminate between metastatic lesions and 

background. For this reason, we select more normal samples from the normal vertebral 

regions. In this study, 70% of the normal samples are randomly selected from the normal 

vertebral regions, while the remaining 30% normal samples are randomly selected from the 

background regions.

In Fig. 4, we show an MRI slice and its spinal metastatic region marked by a radiologist with 

a red contour together with vertebral regions marked with blue contours. Specially, for this 

MRI slice, all of the spinal metastasis samples are extracted from the region indicated by the 

red contour, 70% of normal samples are extracted from the region outside the red contour 

but inside the blue contours, and 30% of normal samples are extracted from the region 

outside the blue and red contours. It has to be noted that both the spinal metastatic and 

vertebral regions are only used for sample extraction, they are unknown at test time.

Finally, to increase the number of training samples, we use a data augmentation strategy. 

Data augmentation has been shown to be effective in many cases [18,39]. To preserve the 

resolution of the image patches, we consider the following two data augmentation strategies 

for the samples in the training set: (1) flipping image windows from left to right and (2) 

flipping image windows from top to bottom. In combinations, these strategies can lead to a 

four-fold increase in the size of the training set. Examples of augmented data are shown in 

the second to fourth columns of Fig. 3 for two representative metastatic lesions.

2.5. Testing

2.5.1. Likelihood map—During testing, the trained model is applied to each pixel of an 

MRI slice in the testing set. The output is a likelihood map, denoted by l, with the same size 

as the MRI slice under consideration. The value of each pixel in the likelihood map is the 

estimated probability, according to the network, that the pixel corresponds to a metastatic 

lesion. When the locations are close to the boundary of the slice, the image patches extend 

beyond the slice boundaries and symmetric padding is used to fill any region of the patches 

falling outside the boundaries.

2.5.2. Slice-based aggregation—Spinal metastases can be recovered by processing the 

likelihood map of each MRI slice and finding regions of high probability. However, using a 

single likelihood map tends to yield many FPs when all the true positives (TPs) are detected. 

To further reduce the number of FPs, we take advantage of the 3D information associated 

with MRI sequence and generate an aggregated likelihood map, denoted by L, for each slice.

Examination of MRI sequences reveals that slice may vary greatly but neighboring slices 

tend to be very similar. Based on this observation, for the ith slice and location (x, y) in an 

MRI sequence, we generate an aggregated likelihood using a weighted convex combination 

as follows:

Li(x, y) = ∑
j ∈ 𝒩(i)

α jl j(x, y) (4)
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where (i) denotes the neighboring slices of the ith slice and αj is the weight of the jth 

slice. The weights must be positive and satisfy Σj∈ (i) αj = 1 and αi > αj, j ≠ i. The 

constraint αi > αj, j ≠ i, indicates that when obtaining the aggregated likelihood map for the 

ith slice, more emphasis should be put on its likelihood map li as compared to the likelihood 

maps lj of its neighbors. In this study, for a slice under consideration, we consider its 

previous and next slices as neighboring slices used for aggregation. When the slice is the 

first or last slice in the MRI sequence, its next two slices or previous two slices are 

considered as its neighboring slices. In the experiments, we considered identical weights for 

both of the neighboring slices. We did a grid search on the weights of the slice on the values 

1/3, 0.4, 0.5, and 0.6. In the end, the best performance was obtained at 0.4, thus the weight 

of the slice and its two neighboring slices were set to be 0.4, 0.3, and 0.3 respectively.

Finally, a threshold is applied to the aggregated likelihood map for spinal metastasis 

detection. To further reduce the number of FPs, detected regions of size smaller than 5 cm2 

are considered to be FPs and are removed from the list of positives. The use of 5 cm2 is 

based on two observations: (1) the average abnormal segment area in the dataset is 5.07 cm2, 

as described in Section 3.1 and (2) the proposed method tends to produce detected regions 

that are larger than those marked by radiologists, as shown in Figs. 6 and 8.

3. Experiments

3.1. Dataset

In this study we made use of sagittal MRI images of the spines from 26 cases, including 14 

males and 12 females, with an age range of 58 ± 14 years (mean ± standard deviation). They 

were obtained from the clinical database of the Peking University Third Hospital. MR scans 

were performed on a 3.0 T Siemens Trio scanner. Only the set of sagittal images acquired by 

using the fat-suppressed T2-weighted inversion recovery pulse sequence, in which the 

metastatic cancer was most clearly visible, was analyzed. The imaging parameters were: 

TR=4780 ms, TE=64 ms, TI=200 ms, Echo Train length=9, Field of View=340 mm × 340 

mm, slice thickness=3 mm. The resolution of the images is 0.88 mm/pixel, 0.94 mm/pixel, 

or 1.13 mm/pixel.

In this dataset, the primary cancers were 15 lung, 5 thyroid, two liver, one breast, one 

prostate, one esophagus, one urinary tract. All patients were symptomatic with spinal pain 

but without any known cause; thus they were referred for diagnosis by MRI. Biopsies were 

subsequently taken from all patients and the diagnosis of metastatic cancer was confirmed 

through pathological examination of all biopsy specimens. For this initial study, all the cases 

under consideration were carefully selected based on confined disease in only one or two 

vertebral body segments. Among these cases, the area of the smallest abnormal segment was 

1.65 cm2, the area of the largest abnormal segment was 9.54 cm2, and the average area of the 

abnormal segments was 5.07 cm2.

The metastatic lesions in each MRI slice were identified and manually traced by an 

experienced radiologist, and the boundary of the vertebral bodies was marked manually by 

two of the authors of this study. In each case there are a total of 13 sagittal images covering 
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the entire spine and, depending on the size of the lesion, the radiologist selected 3–7 slices 

that contained the lesion and manually outlined the metastatic lesions.

To facilitate the spinal metastasis detection, all the MRI slices are transformed into 

resolutions of 0.5 mm/pixel, 1 mm/pixel, and 2 mm/pixel for multi-resolution analysis. In 

the development phase, we also considered the multi-resolution analysis in the resolutions of 

0.25 mm/pixel, 1 mm/pixel, and 1.25 mm/pixel and the resolutions of 0.5 mm/pixel, 1 mm/

pixel, and 1.5 pixel, but got worse detection performance. The detection performance is 

evaluated at the resolution of 1 mm/pixel. To speed up the spinal metastasis detection, only 

the half center of the MRI slices along the x-axis of the images, containing the vertebral 

bodies, are considered [13].

3.2. Experimental setup

In our experiments, to get an overall evaluation performance for the whole dataset, we 

applied a case-based 10-fold cross-validation procedure as follows. The dataset was first 

randomly divided into 10 equally sized subsets; in each run, a subset is hold out for 

performance evaluation (i.e. “testing subset”) and the remaining data is randomly partitioned 

into two subsets, one containing 75% of the examples for training (i.e. “training subset”) and 

the other containing 25% of the examples for validation (i.e. “validation subset”). To avoid 

any potential bias, the MRI slices from one case were always assigned together to either the 

training subset, or the validation subset, or the testing subset, but never spread across 

multiple subsets.

The Siamese neural network model was implemented by a Theano-based deep learning 

framework – Lasagne. It was trained by stochastic gradient descent (SGD) [40], with a batch 

size of 128, momentum of 0.9, and learning rate of 0.06. On average, there were 85,503 

training examples in each run based on the sample extraction procedure described in Section 

2.4.

λ in (3) is an important parameter for controlling model complexity and the risk of 

overfitting during training. To determine the optimal parameter λ, a grid search procedure 

was considered by evaluating the classification error on the samples in the validation set. 

Values of 0.001, 0.01, and 0.1 were considered for λ in the grid search and a value of 0.01 is 

used in the final system. To obtain the samples for validation, the sample extraction 

procedure described in Section 2.4 was applied to the MRI slices in the validation set 

(described in Section 3.1).

3.3. Performance evaluation

For performance evaluation, we conduct a free-response receiver operating characteristic 

(FROC) analysis on the detection results. FROC analysis is widely used for detection 

performance evaluation in medical imaging [10,41], and it provides an overall spinal 

metastasis detection performance evaluation with respect to the ground truth provided by the 

radiologists across all possible decision thresholds. In particular, we compute and plot the 

FROC curve corresponding to the true-positive (TP) rate on the y-axis versus the number of 

FPs per case on the x-axis, in which the TP rate is calculated as the ratio of the number of 

TPs over the number of true spinal metastatic regions.
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Very often we find cases where the cancer has spread outside the vertebrae resulting in soft 

tissue lesions with similar signal intensity as the cancer lesions inside the vertebrae. In this 

case, the automatic detection method developed in this work would segment the entire 

lesion, both inside and outside the vertebrae. Therefore, in the FROC analysis, a detection is 

considered to be a TP if its center of gravity falls within 20 mm from the center of gravity of 

the region outlined by the radiologist; otherwise, it is considered to be a FP.

While the spinal metastasis detection is conducted for each MRI slice, the FROC analysis is 

done on a per-case basis as follows. For each case, its TP rate and the number of FPs is 

obtained as the average of the TP rate and the average of the number of FPs, computed over 

the corresponding MRI sequence. For each MRI sequence, its TP rate and the number of FPs 

are obtained by averaging the TP rate and the number of FPs of all its slices. The purpose of 

such case-based FROC analysis is to accommodate for the fact that it is the same lesions that 

are under evaluation for the different slices of the different MRI sequences associated with a 

given case. The case-based analysis is used in general to avoid any potential bias introduced 

by differences in the number of MRI slices and MRI sequences, although in this particular 

study, only one MRI sequence is available for each case.

To accommodate for the variations associated with the distribution of the cases and to 

facilitate statistical comparison, we apply a bootstrapping procedure in the FROC analysis 

[41]. In our experiments, a total of 20,000 bootstrap samples were used, based on which the 

p-value was reported on the detection results.

4. Results

In Fig. 5, we show the FROC curve obtained by the proposed approach, both with and 

without the aggregation procedure for comparison purpose. As can be seen, the FROC curve 

is noticeably improved when information from neighboring slides is aggregated. A statistical 

comparison between the proposed approach with and without the use of aggregation yields 

p-value of 0.0014 for FPs over the range of [0, 0.5] per case. Specifically, at TP rate of 90%, 

the FP rate is reduced from 0.375 per case without aggregation to 0.207 per case with 

aggregation, nearly a 44.8% reduction. Moreover, with a FP rate of 0.20 per case, the 

sensitivity is improved from 72.7% without aggregation to 89.1% with aggregation. Finally, 

it can be seen that the proposed approach yields only 0.40 FPs per case when correctly 

detecting all the spinal metastasis.

In Fig. 6, we show an example of three consecutive slices from an MRI sequence (top) and 

their corresponding aggregated likelihood maps (bottom). To demonstrate the corresponding 

detections, we apply a threshold of 0.6, and the detection boundaries are marked by blue 

contours. For comparison purposes, the boundaries of the metastatic lesions provided by the 

radiologist are marked by red contours. As can be seen, the proposed approach using the 

aggregated likelihood map correctly detects all the metastatic lesions.

For comparison, in Fig. 7, we show the same example of three consecutive slices, as in Fig. 

6 (top) and the corresponding likelihood maps without using the aggregation strategy 

(bottom). As in Fig. 6, the boundaries of the metastatic lesions provided by the radiologist 
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are marked by red contours, while the boundaries of the regions detected using a threshold 

of 0.6 are marked by blue contours. Compared with Fig. 6, one FP contour appears in the 

middle slice, clearly exemplifying how the aggregation procedure can indeed reduce the FP 

rate in spinal metastasis detection.

Finally, to demonstrate the effectiveness of the multi-resolution approach, in Fig. 5, for 

comparison purposes, we also show the best detection performance achieved by the single 

resolution method, using the patch size 55×79 at image resolution 1 mm/pixel. The slice-

based aggregation method was applied as well. As can be seen, the FROC curve of the 

proposed multi-resolution approach is noticeably higher than the single resolution method. 

A statistical comparison between them yields p-value of 0.0083 for FPs over the range of [0, 

0.5] per case. Specifically, with a FP rate of 0.20 per case, the sensitivity is improved from 

55.4% for single resolution method to 89.1% for multi-resolution approach.

5. Discussion

5.1. FP analysis

To better understand the occurrence of FPs in spinal metastasis detection, in Fig. 8 we show 

another example of three consecutive slices from an MRI sequence (top) and the 

corresponding aggregated likelihood maps (bottom). In these plots, the boundaries of the 

spinal metastatic lesions provided by the radiologist are marked by red contours, while the 

boundaries of the regions detected using a threshold of 0.6 are marked by blue contours. As 

can be seen, there is one FP contour in the right slice of Fig. 8. This FP corresponds to the 

cerebellum which typically has a moderate T2 signal intensity similar to that of a spinal 

lesion. Based on this example, we manually examined all the FPs detected at a threshold of 

0.6, and found that most FPs (6 out of 8 cases) occur in the cerebellum. Such FPs which 

have nothing to do with the spine can easily be removed if an algorithm for vertebral region 

detection is applied before spinal metastasis detection. Indeed, we found that only one FP in 

one slice of one MRI sequence happens at the vertebral region, indicating that the proposed 

approach is indeed accurate in spinal metastasis detection.

5.2. Limitations

The results from this study indicate that the proposed approach can detect spinal metastasis 

in MRI accurately. It has to be noted that all the cases considered in this study contain 

metastatic lesions. In the future, it might be desirable to include some normal cases (i.e. 

cases without metastatic lesions) as well. However, we note that in our dataset, the majority 

of local regions in the MRI sequences do not have any metastatic lesions, thus can be viewed 

as substitutes for normal cases in terms of FP detection. Therefore, the reported number of 

FPs per case will likely remain very similar when normal cases are included. Nevertheless, 

the inclusion of normal cases should be helpful for more comprehensive evaluations, in 

particular for estimating positive predictive values (PPV) and negative predictive values 

(NPV) in image screening.

The dataset used in this study consisted of only 26 cases. Although it is labor intensive, it 

would be obviously desirable in the future to curate larger data sets, containing more cases, 
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to evaluate the proposed method more comprehensively. Furthermore, having larger training 

sets may also allow one to train more accurate Siamese networks with similar, or even more 

complex, architectures which may ultimately improve detection performance.

From the results in Section 4, the proposed method can accurately detect spinal metastases 

in MRI sequences. However, from Figs. 6 to 8, it can be seen that the boundaries of the 

regions detected by the proposed approach tend to be less accurate. Nevertheless, if the need 

were to arise in applications for accurate metastatic boundary segmentation, any semi-

automatic segmentation method – such as level set segmentation [42] or active contour 

model [43,44] – could be included, as a post-processing step for refining the segmentation of 

the spinal metastatic lesions. These segmentation methods would benefit from the 

initialization of seed points provided by the proposed approach. It must be noted, however, 

that the development and evaluation of accurate segmentation methods would face even 

greater data challenges, as not only it would require more curated data, but also the curation 

process itself would pose great challenges (e.g. a reader study). This is because different 

radiologists may easily agree on the presence or absence of a lesion but, when present, may 

disagree on its precise boundaries.

6. Conclusion

In this study, we have investigated the feasibility of automatic spinal metastasis detection in 

MRI by using deep learning methods. For this purpose, we developed and implemented a 

multi-resolution approach using a Siamese convolutional neural network to accommodate 

for the large variability in vertebral body size. The output of the Siamese neural network is 

further aggregated across neighboring slices in an MRI sequence to further reduce the FP 

rate. We have evaluated the detection performance on a set of 26 cases by FROC analysis. 

The results show that the proposed approach is effective and can correctly detect all the 

spinal metastatic lesions while obtaining only 0.40 FPs per case. At TP rate of 90%, the use 

of the aggregation reduces the FPs from 0.375 FPs per case to 0.207 FPs per case, a nearly 

44.8% reduction. Taken together, these results show that the proposed Siamese neural 

network with the aggregation strategy has the potential for providing the basis for an 

automated accurate spinal metastasis detection system that can be clinically deployed. The 

approach and its evaluation will greatly benefit in the future from the aggregation and 

curation of larger datasets.
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Fig. 1. 
Example of the variability of the lesion size. Each image window represents a region of 55 × 

79 mm2.
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Fig. 2. 
Diagram of the Siamese architecture used in this study. There are three identical 

subnetworks, each comprising five convolutional layers, five batch normalization layers, five 

nonlinearity layers, and four max-pooling layers for feature learning. The combination of the 

resulting features is subsequently input into two fully connected layers for classification. 

Each convolutional layer is followed by a batch normalization layer and a nonlinearity layer 

(not shown).
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Fig. 3. 
Examples of multi-resolution image patches from a big metastatic lesion (a) and those from 

a small metastatic lesion (b). The resolutions of the image patches from the first to the third 

rows are 0.5 mm/pixel, 1 mm/pixel, and 2 mm/pixel. In each image patch, the boundary of 

the metastatic lesion is marked by a red contour. For demonstration purposes, the image 

patches after data augmentation are shown as well. (For interpretation of the references to 

color in this figure caption, the reader is referred to the web version of this paper.)
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Fig. 4. 
Example of lesion region, denoted by the red contour, and vertebral region, denoted by the 

blue contour in an MRI slice. (For interpretation of the references to color in this figure 

caption, the reader is referred to the web version of this paper.)
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Fig. 5. 
The detection performance achieved by the proposed approach (with aggregation). To 

demonstrate the effectiveness of the aggregation, the detection performance without the use 

of the aggregation is shown for comparison (without aggregation). To demonstrate the 

effectiveness of the multi-resolution method, the detection performance achieved by using 

only one resolution (i.e. 1 mm/pixel) is shown as well.
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Fig. 6. 
Examples of three consecutive slices in an MRI sequence (top) and their corresponding 

aggregated likelihood maps (bottom). The spinal metastasis boundaries provided by the 

radiologist are marked by red contours, while the boundaries of the detections obtained with 

a threshold of 0.6 are marked by blue contours. (For interpretation of the references to color 

in this figure caption, the reader is referred to the web version of this paper.)
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Fig. 7. 
Example of three consecutive slices in an MRI sequence (top) and their corresponding 

likelihood maps without the use of aggregation (bottom). The spinal metastasis boundaries 

provided by the radiologist are marked by red contours, while the boundaries of the 

detections obtained with a threshold of 0.6 are marked by blue contours. In this case, the 

lack of aggregation results in the false-positive blue contour detection in the middle slide. 

(For interpretation of the references to color in this figure caption, the reader is referred to 

the web version of this paper.)
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Fig. 8. 
Example of three consecutive slices in an MRI sequence (top) and their corresponding 

aggregated likelihood maps (below). The spinal metastasis boundaries provided by the 

radiologist are marked by red contours, while the boundaries of the detections obtained with 

a threshold of 0.6 are marked by blue contours. In this case, there is a false-positive contour 

in the right slide associated with the cerebellum. (For interpretation of the references to color 

in this figure caption, the reader is referred to the web version of this paper.)
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