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ABSTRACT OF THE THESIS

Fourier Representations with Sequentially-Trained, Shallow Neural Networks for
Real-Time Odometry and Object Tracking

by

Frank C Rodriguez

Master of Science, Graduate Program in Mechanical Engineering
University of California, Riverside, September 2022

Dr. Luat T. Vuong, Chairperson

Fourier-domain correlation approaches have been successful in a variety of image

comparison approaches. However, these correlation approaches also lose performance when

patterns, objects or scenes in images are distorted. Current Fourier correlation approaches

also require high-power in order to produce accurate results. With our approach we utilize

Fourier-domain preprocessing with shallow neural networks to infer the 3-D movement

or position of the camera relative to an object or scene. This approach enables us to

demonstrate potential for novel Fourier-plane cameras, which use sequential frames for

visual odometry. We also propose a potential future study for a hybrid vision “event

camera” system capable of position inference by using an optical encoder imaged in the

Fourier-plane.
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Chapter 1

Introduction

Introduced in 1975, Fourier-domain image processing approach, known as phase

correlation (PC), has been used for a range of applications. The applications of PC include

image analysis, object detection and classification, pattern comparison, visual odometry

(VO) and motion estimation [1, 2, 3, 4]. PC approaches have advantages over other corre-

lation techniques, which include improved resolution and computational efficiency, insensi-

tivity to brightness, contrast and frequency-limited corruptions and results independent to

scene and objects [5, 6, 7, 8, 9].

Theoretically, Fourier-domain PCs provide information about the scaling and ro-

tations of image patterns[3, 10, 11]. However, a major drawback of Fourier-domain methods

is their sensitivity and susceptibility to frequency-dependent distortions, which are caused

by disjoint segments between the two images and vibration or jitter. Approaches to ad-

dress this issue include space-domain windowing [12], frequency filters [10, 13], sampling,

and image gradients [14]. This latter method enables robust estimations of the translation,
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rotation, and scaling appearing as spatial displacements between pairs of images.

Currently, motion estimation approaches are more commonly accomplished via

deep learning, which has rapidly been adopted for VO applications such as scene tracking

or optical flow for unmanned aerial vehicle (UAV) and robotics navigation [15, 16, 17], many

of which incorporate Fourier-domain or PC methods [18, 19, 20, 21, 22]. Supervised [23]

and unsupervised [24] learning approaches have been demonstrated to predict the speed,

depth, and position of system objects, even with a monocular imaging system. Although

current motion estimation techniques can be applied accurately, a major limiting factor is

the speed of the algorithms during implementation [25]. The state-of-the-art techniques

achieve 40-60 frames per second (FPS) [26, 27], however this raises questions of practicality,

especially in real-time applications for obstacle avoidance algorithms, which aim to use this

sensor data for further inference [28].

Another concern with the current state-of-the-art approaches is the high power

consumption that is required for VO algorithms implementing deep learning, particularly

for remote-powered applications. In [29], the 2D motion problem is estimated by 1D Markov

chains to simplify and parallelize analysis before the neural network, however this method

requires a 250-W GPU. Wang et al. implement pyramidal processing, spatial warping, and

a cost volume estimate for high-accuracy, large spatial disparity optical flow calculations,

however this approach uses 8 650-W GPUs. [30]. For applications that involve small-

platform, communication-deprived, autonomous, real-time systems, we are interested in VO

methods that are able to infer position with low-power. The task-specific engineering of

such high-speed, low-power systems would integrate hybrid optical-electronic architectures,
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to include encoding optics, algorithms and camera sensors or hardware.

Here, we combine Fourier image processing approaches with a shallow neural net-

work. Our efforts run parallel to recent approaches with focal-plane sensor processing units

where image preprocessing is integrated into the detection hardware [31]; such units have

achieved VO at a rate of 300 FPS [32] using a small laptop CPU. There has also been signif-

icant advances with 3-D imaging with optically-encoded imaging or deep optics [33, 34] and

hybrid optical-electronic systems [35, 36, 37], which build off extensive research knowledge

developed for optical computers from the 1970s [38, 39, 40, 41, 42, 43, 44]. In [33], a siphon-

shaped U-net dense neural network [45] is used and in [34], a U-Net with residual learning

integrating additional spectral representations is implemented. Both [33] and [34] achieve

reconstructed depth maps for lidar-like image reconstruction using chromatic dispersion and

color sensors. In contrast, with our approach towards Fourier optical preprocessing with

even simpler machine learning [36], we take a step back and study object tracking with a

monochromatic source and sensor.

In our work, we build on spectral and Fourier representations of data, which in-

fluence convergence in machine learning neural networks [46]. To build axioms for design,

we aim to answer, what are the simplest optical encoders needed to deconvolve information

from Fourier-plane data? If there is information encoded in the Fourier-plane, where is it

most likely to be located and how should it be sampled? With our approach, we avoid deep

learning, which represents a strong departure from current efforts with VO. We instead im-

plement computationally simpler models that converge with smaller data sets; this classical

approach is like LASSO [47] and regression based algorithms[48], with shallow and dense
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neural networks. In pairing Fourier preprocessing with machine learning, we find that the

simplest neural networks are capable of learning from fringe-like patterns produced by tak-

ing the CPS computationally. The approach is successful because simple neural networks

are capable of taking the inverse Fourier transform of the CPS to rapidly infer the fringe

spacing or shifted movement of spectral features.

The work in this paper is motivated by recent bio-inspired ”event cameras”, which

employ a sensor that incorporates temporal data streams to determine the difference be-

tween images [49]. Here we describe an approach using the cross power spectra (CPS)

of high-speed, high-resolution drone flight simulation video captured by a forward facing

camera as shown in Fig. 1.2. The CPS is the normalized Fourier transform of the cross-

correlation of two images. With the CPS inputs, we train a regression-based neural network,

as opposed to using deep learning, to infer velocity data. We retrain the model with different

trajectories and different scenes to achieve generalized predictions for unseen trajectories.

While our model achieves high-frame-rate video processing, the image preprocessing at 95

FPS is significantly slower than the model inference, which can reach speeds upwards of

52,000 FPS. The computational Fourier-domain pre-processor is able to operate in real time

for image capture within 95 Hz, but becomes the bottleneck at 50 orders of magnitude lower

than the inference rates of the NN. The error for the sequentially trained Neural Network

is 3% and 5% for the no-hidden layer and one-hidden layer model, respectively.
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(A)

(B)

Re ReIm Im

Figure 1.1: A) Schematic showing the pipeline for Experiment 1. The inputs to a shallow,
dense, neural network are the cross power spectra (CPS) Eq. 2.1 or the normalized Fourier
transform of the cross correlation from sequential images from drone video. B) Illustration
of inputs to the simple neural network composed of CPS real and imaginary half-planes.
The images here demonstrate sequential frames mid flight, with a change in angle of ¡
0.06 degrees, which is visible in the downsized CPS. The difference between each pair of
sequential frames, as well as the CPS are shown here.

𝐼1 𝐼2

Figure 1.2: Schematic showing potential application of the approach with a drone. Drone
captures images, Fourier pre-processor is applied computationally to pairs of images, and a
small brain neural network infers position as illustrated in Fig. 1.1.
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Chapter 2

Towards a Fourier-Plane Event

Camera

2.0.1 General Approach

The Blackbird dataset is an indoor UAV simulation dataset containing several

large flight sequences taken at high speeds (120 FPS) [50]. The dataset consists of a total

of 18 trajectories across five different environments and includes optical sensors applicable

to monocular, stereo and down-facing VO cameras with approximately 60-degree field-of-

view, high-definition images [50]. We implement the approach described in Fig. 1.1(A).

The difference in position from millimeter-accurate (360 FPS) motion capture data is used

to train the neural network. The CPS is generated from sequential frames taken from the

Blackbird dataset to estimate 3D motion of the drone. The cross power spectra (CPS) for

two 2D images I1 and I2 is defined:
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CPS(kx, ky) =
F{I1(x, y)}F∗{I2(x, y)}
|F{I1(x, y)}F∗{I2(x, y)}|

, (2.1)

and F∗ is the complex conjugate of the Fourier transform F . The numerator of Eq. 2.1

is the Fourier transform of the 2D cross-correlation between two real images, I1 and I2.

Given the camera field of view and high-definition images, the CPS is capable of capturing

small-tilt changes due to the jitter of the drone before take-off [Fig. 1.1]. The input consists

of half of the real component and half of the imaginary component of the CPS stacked side

by side and is shown in Fig. 1.1B. Since the input images are all real valued, the resulting

CPS is symmetrical and only half of the CPS array is needed to retain the relevant features

of the changing scene. Although an edge is produced in the input due to stacking the CPS

components, the 2D data is reshaped into a 1D array when input to the neural network.

This is one advantage of using spectral representations and shallow neural networks: the

order of the input data does not matter. In fact, the shallow neural network does not

assign a heavy weight to edges in the in input, but instead the majority of the higher neural

network weights are associated with the lower-frequency Fourier components.

The PC method for VO—to determine the offset or spatial disparity between two

images—typically refers to the inverse discrete Fourier transform of the CPS, which obtains

a Dirac delta function, which shifts in location with the spatial disparity. Conventionally,

if there is a simple spatial disparity between the images or features, then

I2(x, y) = I1(x− x0, y − y0), (2.2)

and in this specific case, we apply the shift property of the Fourier transform, F{I(x−x0, y−

y0)} = F{I(x, y)}e−ikxx0−ikyy0 = Ĩ(kx, ky)e
−ikxx0−ikyy0 , where Ĩ is the Fourier transform
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of the shifted image, in order to achieve a highly compressed signal. The PC classifies the

shift with a scaled δ-function,

PC = F−1{CPS(kx, ky)} (2.3)

= Aδ(x+ x0, y + y0) + F−1{CPS∆}. (2.4)

Even with smooth 2D motion and a downward-facing camera, there is power outside of

the δ-function magnitude, A, which is likened to noise; for an N × N CPS, the signal-to-

noise ratio SNR = NA√
1−A2

[1]. This noise arises because each image has a different outer

boundary, so there are disjoint portions of each image, or portions associated with each

image that have no relation to the other, denoted by CPS∆. The challenge with applying

PC approaches to VO with aerial drones lies largely in the fact that the drone does not

strictly translate a uniform distance x0, y0; the drone also tilts and moves forward, leading

to significant CPS∆ as well as distortions in the the δ−function. Additionally, rather than

using a downward facing camera, it makes sense to have a forward-facing camera that would

avoid objects or obstacles that lie in the direction of motion of the UAV. Therefore, we focus

on applying Fourier-domain PC methods using forward-facing camera images to infer the

3D motion as shown in Figure 1.2.

2.0.2 Video Preprocessing and Dataset Alignment

Simulation video files and gyroscope data for three flight paths from the Blackbird

dataset are used in our approach. Each frame from the video is downsized and appended

to an array to ensure the images remain in the correct order over the course of the flight

path. Two of the flight paths used traverse through two environments each, giving a total
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of 5 datasets that are used to sequentially train the neural network model.

The image preprocessing for the neural network is shown in Fig. 2.1 and consists

of first downsizing by 50% and applying a Gaussian blur with a kernel size of (21,21) to the

video frames. The Fourier transform of each image is taken and convolved with a super-

Gaussian filter in order to eliminate high frequency noise. The CPS is then calculated using

the filtered Fourier transform of the preprocessed images, and subsequently cropped to a

size of 34 by 25, due to the CPS compressing the necessary data into a small section in

the low frequency region. The left half of both the real and imaginary component of the

CPS are appended into a single matrix to retain the necessary information for inferring the

change between each set of frames. The gyroscope data is processed by taking the difference

in position between the corresponding frames and normalized on the interval [0, 1].

The gyroscope data from the file is assigned to a dataframe using the Pandas

library and the index value is set to the timestamp column to match measurements with

the corresponding images. Since the downloaded lengths of the gyroscope data and the

timestamp files for each flight path are not synchronized, it is necessary to determine the

offset between the gyroscope and video data. Once the offset is determine, six position and

orientation values are extracted and the calculated and normalized x, y and z-direction data

is fed into the neural network as training data.

The dense neural network is built using a sequential model with a linear activation

and mean squared error loss function. The model is also developed by varying preprocessing

parameters and comparing the results to determine the highest performing model. Multiple

downsizing and cropping parameters were selected and tested in training the model. The

9



𝐼1

𝐼2

(A) (B) (C)

(D)

Figure 2.1: (A) The super-Gaussian low-pass filter. (B) Log of the absolute value of the
Fourier transform of I1 (C) Log of the absolute value of the Fourier transform of I1 when
convolved with the super-Gaussian filter. (D) The pipeline for the preprocessing and com-
putation of the input to the neural network. I1 and I2 are downsized, blurred and the
Fourier transform of each image is computed. Each Fourier transform is convolved with the
super-Gaussian filter and the CPS is calculated from these filtered Fourier transforms. The
left half of each resulting real and imaginary component are cropped and stacked horizon-
tally as the neural network input.

model is trained through each flight path using architectures with both no hidden layers

and one hidden layer, the latter of which consisted of the number nodes equal to the

product of the input dimensions. The number of training epochs for each model is also

kept proportional to the downsizing parameter in pre-processing for each trial by setting

the value as the product of the input CPS dimensions. For the CPS generated from video

frames from the Blackbird dataset, the model is trained on three unique flight paths set in
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Figure 2.2: A) Prediction results for testing segment of Ampersand flight path, using no
hidden layers and one hidden layer model. B) The actual and predicted trajectory of the half
moon flight path with the real and imaginary components of the at 3 positions. Convergence
of the error after sequential training with different flight paths for C) no hidden layers and
D) one hidden layer.

five unique environments. Each model is trained and saved on three flight paths using a

validation split of 0.1, which uses 90% of the data to train and 10% to test the model. For

the prediction phase, we use only the CPS on a fourth dataset, the model is never ”shown”

this dataset.

The neural network model is initially trained with 90% of the Ampersand flight

path in a single enfironment. The data is shuffled for training the neural network and the

x and y- velocity values are predicted during the testing segment of the neural network.

(See Supporting Information for details on the neural network training.) Figure 2.2(A)

shows the initial prediction results for the Ampersand flight path. Performance for the z-

direction inference improves most significantly of the predicted directions by the inclusion

of the single neural-network hidden layer in the model architecture. After a single training
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on the Half Moon flight path in a single environment, the x and y-direction prediction is

high. With one hidden layer, the average error is 9-15% and with no hidden layers, the the

average error is 32-54%.

We train the neural network model sequentially using the input CPS from dif-

ferent flightpaths, building upon the previously saved model during each iteration. The

error decreases and then flattens, which indicates a coarse generalization. As the model is

sequentially trained, it shows better accuracy in the predicted results and a greater ability

to reconstruct the flightpath after each iteration. The generalization of the model is shown

in 2.2 (C) and (D), which demonstrates the decrease in error for the predicted velocity

values over the course of the sequential training. The model with one hidden layer initially

outperforms the model with no hidden layers but when retraining on other sets, the error

increases again. The model with no hidden layers converges to an error of 5% and the model

with one hidden layer converges to an error of 3%.

The 3D flight path reconstruction is shown in Fig. 2.2(B) and is calculated by

integrating the predicted velocity and multiplying the value by the change in time between

each point and multiplying by a factor of 10−6. This 3D reconstruction demonstrates the

effectiveness of our approach in determining the position of the drone using the CPS of

the sequential video frames as input to the neural network. As the model is subsequently

trained, the error decreases with the Mean Absolute Error (MAE) for the no-hidden and

one-hidden layer models shown in Fig. 2.2 (C) and (D) respectively.

Our results indicate that our simple, Fourier-domain preprocessing approach pro-

vides a model with generalizability within a few hours on a laptop CPU. One disadvantage

12



Table 2.1: Summary of results.

Preprocessing time (ms) NN Latency (ms) Hidden Nodes MAE

No Hidden layers 1 0.025 - 0.06

1 Hidden layer 1 0.06 850 0.04

to our approach is that it is a supervised approach and trains with labeled gyroscope

data. Additionally, while our model achieves high-frame-rate video processing, the image

preprocessing (95 FPS) is up to 500 times slower than the model inference (52,000 FPS),

the Fourier-domain preprocessing is the bottleneck in our approach. Table 2.1 shows the

reconstruction speeds for our approach.

The key to successful training of our shallow neural network lies in adequate com-

pression and downsizing of images to reduce the signal to noise ratio (SNR) and the min-

imization of the size of the neural network inputs. With further downsizing, the model

is trained faster at the expense of accuracy. (See Supporting Information for details on

downsizing and sampling.) Notably, the compressed features reside at locations where the

light intensities are very low. In other words, the correlations specific to VO are not present

in the direct line-of-sight intensity patterns. With this understanding, we may better sam-

ple or ”drop out” sensor data to minimize the back-end electronic processing. Our results

advance understanding of object tracking with Fourier-domain PC and CPS methods, and,

because they are centered on the axiomatic design, may be useful to the future development

of focal plane sensor preprocessors [31].
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Figure 2.3: Phase correlation (PC) [Eq, 2.4] δ-function peak height, A, with 0, 20, and
40-pixel blur as a function of (A) x, y, and z components of the velocity and the velocity
magnitude. (B) Real and imaginary half-planes of the Cross Power Spectra (CPS) and
corresponding PC at 3 sample locations (C) Actual and predicted normalized x-velocity
values using the maximum pixel position of the PC. (D) Comparison of convergence rates
for CPS and PC inputs to the neural network with no hidden layers. The PC converges
faster and with lower error due to the higher degree compression of the PC.

2.1 Analysis and PC vs CPS

As previously addressed, the PC is the discrete Fourier transform of the complex-

valued CPS, includes a δ-function with amplitude A that representing the shift between the

two images [Eq. 2.4]. Figure 2.3A relates the PC peak value amplitude, A and velocity for

the Half-Moon flight path images (first environment). The highest values of A occur with

low velocities, but this relationship between A and velocity varies with scene and trajectory.

In this way, prior analyses with SNR and phase correlation methods are not relevant, since

in those prior efforts noise is considered to be independent of the signal [1]. Figure 2.3A

tells us that the δ-function peak is heavily distorted with lower amplitude over a larger area

14



when the drone is moving. Three samples of the input are shown in Fig. 2.3 B for the real

and imaginary half-planes of the CPS and corresponding PC. Again, the PC is plot for the

left half planes of the real and imaginary components of the PC.

Figure 2.3C illustrates this distortion; here we plot the disparity prediction based

solely on the location of the highest-amplitude pixel in the PC. The discretization of the

prediction reflects the sampling in the PC. What Fig. 2.3C illustrates is that the neural

network will not accurately predict position solely from the maximum-value pixel of the

PC. The neural network provides interpolation of the intensity pattern as well as the peak.

A comparison of how the neural network performs with CPS and PC inputs indi-

cates that the method of input PC converges to a higher error than when using the CPS

input and in order to minimize the error longer training times are required. The PC pre-

processing computation also takes over four times as long as the CPS computation, at 23

FPS. When training the neural network, the model with the CPS-input takes converges to

an initial error of 32% while the PC input converges to an initial error of 45%. The CPS

model, when sequentially trained converges to 5% error as shown in [Fig. 2.3 (D)]. The

PC includes the A value, which designates the scaled delta function and presents informa-

tion relating to the translation between two similar images. By simply normalizing both

the x-axis translation of A from the center of the PC and the gyroscope position for the

x-position, the position estimated by A follows a trend similar to the actual position values.
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Chapter 3

Discussion and Conclusions

Unlike 2D motion, which is easily inferred via standard phase correlation ap-

proaches and downward facing cameras, the 3D motion from a forward-directed camera

is neither an analytic relation of the CPS, nor easily obtained from the CPS. Using a

forward-facing camera is relevant in tasks where objects or obstacles in the flightpath of the

UAV need to be avoided. Therefore, we focus on Fourier-domain PC methods with images

captured by forward-facing cameras to infer 3D motion. Although not explicitly defined,

we find the relative 3-D position is extractable from the CPS with regression-based, shallow

neural networks.

Hybrid systems, which combine optical preprocessors with shallow neural networks

should enable faster task-based image processing without requiring deep learning.

Event cameras (with temporal-stream processors [12]) or sensor-based processors

(with additional pooling or Fourier-domain processing [31, 32]) may advance Fourier-domain

processing with the simplest of neural networks. While with perfect images and coherent
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light, it is optimal to use the PC, which enables the most compression for optical odometry,

results in practice are different.

In our demonstration and experiments, we find that while numerically, it is easier

to input the PC into the neural network in practice since a neural network is capable of

decoding patterns that don’t have fringes. Prior work has emphasized the advantage of

robustness to noise with shallow, “small brain’ neural networks [36].

The neural network model converges with a few thousand CPS training images

and also converges faster when the PC is input into the neural network instead of the CPS.

However, calculating the PC requires an extra step during preprocessing, adding to the

limitations of the approach. By sequentially training the same model on different paths or

datasets, the neural network error when tested on unseen data reduces. We achieve MAE

for object tracking within a few percent, which can be smoothed with a low-pass filter to

recreate flight paths or track an object.

Currently, our approach achieves real-time image processing rates. With optically-

computed CPS and Fourier-domain optical processing, the model would achieve even high-

speed video processing rates. Our approach has shown issues handling a large spatial

disparity between sequential images and the method, as implemented, requires supervised

training with a labeled data set. We have not begun to approach issues such as image

segmentation that are needed for self-driving cars nor have we studied the robustness to

noise or conducted any ablation analysis. However, our research opens the door to new

applications of CPS for high-sensitivity gyroscopes.

In conclusion, we perform an experiment using sequential training, image Fourier
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preprocessing, and shallow neural networks for visual odometry and object tracking. In

Experiment 1, we calculate the CPS from sequential images of video across the five flightpath

datasets. In Experiment 2, we sample each Fourier-plane image between diffraction modes

across 8 object-scattered datasets. Our sequential training approach appears to function as

U-net to filter the appropriate spectral representation. Our sequential, CPS preprocessing,

and shallow neural network approach is:

• trainable with smaller batches of trajectories

• low power and requires less energy to train

• generalizable; after each trajectory training, the model demonstrates higher accuracy

on an unseen trajectory or position

• uncertainty-limited; the cropped CPS provides velocity cut-offs and interpretable con-

nections between inputs

• capable of low-latency, optical hybrid imaging processing with coherent light

• capable of high inference rates, 22k-52k FPS

In our study with sequential training, we achieve coarse generalizability with mod-

est error (3-5%). While it remains an open question whether an entire scene may be recon-

structed with shallow neural networks, we believe there is significant potential for real-time

visual odometry or 3-D object tracking applications with our approach. If the CPS prepro-

cessing were to be carried out optically, the inference speed can be increaesed further, as

well as implemented on even more simple systems. Such high-speed inference systems may
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be particularly well-suited for obstacle avoidance in low size, weight, and power applications

that need to function real-time in GPS-denied environments.
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