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ABSTRACT  Ocular surface disorders, such as dry eye disease, ocular rosacea, and allergic 

conjunctivitis, are a heterogeneous group of diseases that require an interdisciplinary approach to 

establish underlying causes and develop effective therapeutic strategies. These diverse disorders 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
Yañez-Soto 

2 

 

share a common thread in that they involve direct changes in ocular surface chemistry as well as 

the rheological properties of the tear film and topographical attributes of the cellular elements of 

the ocular surface. Knowledge of these properties is crucial to understand the formation and 

stability of the preocular tear film. The study of interfacial phenomena of the ocular surface 

flourished during the 1970s and 1980s, but after a series of lively debates in the literature 

concerning distinctions between the epithelial and the glandular origin of ocular surface 

disorders during the 1990s, research into this important topic has declined. In the meantime, new 

tools and techniques for the characterization and functionalization of biological surfaces have 

been developed. This review summarizes the available literature regarding the physicochemical 

attributes of the ocular surface, analyzes the role of interfacial phenomena in the pathobiology of 

ocular surface disease, identifies critical knowledge gaps concerning interfacial phenomena of 

the ocular surface, and discusses the opportunities for the exploitation of these phenomena to 

develop improved therapeutics for the treatment of ocular surface disorders. 

KEY WORDS dry eye disease, evaporation, glycocalyx, interfacial phenomena, mucins, 

microvilli, rheology, surface energy, tear film, tear film lipid layer 
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I. INTRODUCTION 

Surfaces or interfaces are the thin boundary regions separating macroscopic phases. 

Knowledge of the phenomena occurring at these interfaces is essential, since the properties of 

materials near these regions differ profoundly from those in the bulk of the substance and the 

interactions of matter with its environment depend on these interfacial characteristics.1 Most of 

the reactions and interactions in biology occur at interfaces, bringing attention to the importance 

of interfacial science for the advancement of knowledge and the development of technology in 

biology and medicine.2 

For this review of the interfacial phenomena of the ocular surface, we define the “ocular 

surface” as comprising all cellular constituents that cover the exposed regions of the eye (corneal 

epithelium, limbus, conjunctiva), as well as the lid margin and the tear film, a complex fluid 

phase (Figure 1). As detailed below, our use of the term “ocular surface” thus encompasses a 

complex mixture of interfaces possessing varying degrees of distinct borders.  

The earliest written record of tears dates from the fourteenth century BC, from the Ras 

Shambra clay tablets found in Syria containing a poem about the response of the virgin goddess 

Anat to the death of her brother Baal, when she “drinks her tears like wine.”3 Among the 

functions of the tear film are the delivery of nutrients and control of oxygenation of the cornea, 

the physical protection by the trapping and removal of particles, and the antimicrobial protection 

by some tear components.4 The tear film components have a glandular origin (lacrimal and 

meibomian glands) and a cellular origin (goblet and epithelial cells), and its main constituents 

are water, proteins, electrolytes, mucins, and insoluble lipids.5-7 It is difficult to arrive at a 

consensus value for the thickness of the tear film for a given species and, surprisingly, no value 

could be located in the literature for a number of species used in ocular drug development.8  This 

difficulty is in part due to the dynamic nature of its thickness profile associated with blinking and 

its obligatory thinning during the interblink interval. Furthermore, tear film thickness is affected 

by numerous other factors, including sex, age, and relative humidity.9 Additionally, the 

definition of “thickness” of the tear film is complicated by a lack of consensus in the literature as 

to 1) the best method for determining tear film thickness (with differing approaches yielding 

differing values), and 2) exactly how cellular surface features such as microvilli and the 

glycocalyx with intrinsically associated mucin elements are accounted for in the measurement 

process9. Keeping these confounding variables in mind, for the human, there is general 
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agreement that the tear film ranges in thickness between 3-10 µm,9,10 while for rabbit the range is 

7-11 µm.11-13  

This review is focused on the human tear film with the inclusion of studies involving 

other species limited to a very small number of commonly employed laboratory and agricultural 

animals. In the investigation of interfacial properties of the ocular surface, these animals have 

largely served as specimen donors rather than being used for in vivo investigations. It should be 

noted that the tear film in general and the interfacial properties of the ocular surface in particular 

have been markedly understudied from a comparative perspective. There are likely numerous 

unique adaptations in tear film biology that are yet to be discovered, given the enormous 

variation in evolutionary history and environmental niches populated by the >50,000 species of 

vertebrates with whom humans share the planet. Also, studies involving laboratory/agricultural 

animals are not necessarily transposable to the human condition due to inherent differences in the 

biology of the ocular surface (tear chemical composition, blink rates, tear film hydrodynamics, 

cellular elements, relative age and state of ocular surface health).14  

As noted above, the tear film is a complex system that has been recognized since 1946 as 

a multi-layered structure.15 The identity and number of layers has been largely disputed, 

especially the characteristics and existence of the ocular mucus layer. We note that the term 

mucus is used throughout the literature and in this work refers to the gel-forming secreted mucins 

that are hydrated (a more detailed description of the mucins is provided in section 3 below). The 

use of the term mucus predates the identification of the individual mucins that are integral to the 

ocular surface and tear film. Several distinct schemes for the structure of the tear film have been 

proposed:  

1. One-layer Model: This simple model predates detailed information available regarding the 

complex nature of the composition of the tear film. Many tear film models utilize a single-

layer approach that represents only the aqueous layer, which constitutes the majority of the 

tear film.16-18 

2. Two-layered model. Since a sharp interface does not exist between the mucus and the 

aqueous components of the tear film, a mucoaqueous gradient layer with an insoluble lipid 

film on top has been proposed,14,19 supported by the electron microscopic observation of a 

homogeneous structure throughout the aqueous layer in rats.20 Additionally, in one report, the 

electrical potential difference measured between the tear surface and an electrode placed at 
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100 nm intervals across the thickness of the tear film in the mouse yielded a constant value, 

supporting a single-phase model (i.e., if distinct phases existed in situ, the authors suggest 

that differences in potential would be anticipated).21  

3. Three-layered model. Composed of a mucus layer, an aqueous layer, and a thin lipid film, 

this was originally proposed by Wolff15 and has been the classical model.22-24 Although there 

is no sharp interface between the mucus layer and the aqueous layer, some authors still 

advocate for the existence of a distinct mucus layer, as recently proposed by Khanal and 

Millar.25 These authors introduced and traced quantum dots in tears. The quantum dots close 

to the ocular surface exhibited different flow dynamics than the quantum dots in the aqueous 

layer, suggesting the absence of a gradient and the existence of a discrete layer (which may 

be a thick glycocalyx).25 

4. Other models: Some authors have used alternative schemes for the modeling of the tear film, 

such as a two-layer model, consisting of a mucous layer and an aqueous layer,23,26,27 or a 

three-layer model in which the lipids are structured in a duplex film (polar lipid monolayer 

and a layer of non-polar lipids) over a mucoaqueous film.28-31 

Abnormalities in the interfacial properties of the ocular surface can result from a large 

group of disorders. Distinct yet not necessarily separate diagnoses that have been implicated in 

contributing to perturbations in the interfacial phenomena of the ocular surface include aqueous 

tear deficiency,32 meibomian gland dysfunction,33 tear hyperosmolarity,34 unstable preocular tear 

film,35 ocular rosacea,36 exposure keratopathy,37 microbial keratitis,37 chemosis,37 allergic 

conjunctivitis,38 pemphigoid,36 metaplasia,39 inflammation,40 and ocular irritation.41 These 

require an interdisciplinary approach to better understand the causes, diagnosis, and treatment. A 

key aspect of the challenge arises from a complex interplay between these disorders, interfacial 

phenomena and the stability of the tear film (Figure 2): 

1. These disorders can interfere with the production of constituents of the ocular surface, the 

dynamics of blinking and drainage or the rate of evaporation.  

2. The disturbances modify the physical and chemical properties of the ocular surface that 

are essential for the formation and stability of the tear film. 

3. The disruption of the tear film aggravates the conditions following multiple feedback 

loops. 
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Whereas the symptoms of ocular surface disease is usually assessed with the aid of 

questionnaires,42 numerous tests have been employed to characterize ocular surface pathologies, 

including Schirmer’s tear test,43 lissamine green staining,44 rose bengal staining,45 tear 

osmolarity,46 specular microscopy,47 tear meniscus height,48 a variety of biomarkers49 such as 

inflammatory cytokines (interleukin [IL]-1α, IL-1β, IL-6, IL-8, tumor necrosis factor [TNF]-

α)50,51 or other proteins (S100A8, S100A9, α-1 antitrypsin, metalloproteinase-9, lacrimal proline-

rich protein 4),52-54 evaporation,55 meibometry,56 interferometry,57 mucus ferning test,58 

mucopolysaccaride degrading enzymes,59 and tear film breakup time (TFBUT)60. Many of these 

endpoints provide specific information regarding a narrowly defined attribute but do not provide 

an integrated assessment of the state of the ocular surface. Arriving at a definitive assessment of 

the ocular surface using any single endpoint is analogous to the parable of blind men examining 

an elephant and being asked to describe it, each with limited information based on their 

individual experience. It should be noted that the complexity and dynamic interdependence of 

the constituents of the tear film and their interaction with the cellular elements of the ocular 

surface is not reflected in the multiple diagnostic tests currently in use. 

Among these endpoints, TFBUT is considered to best reflect a measure of tear film 

stability, although other methods have also been employed, such as Tear Film Breakup 

Dynamics (TBUD), tear film particle assessment, topographical analysis systems, interferometry 

of the lipid layer, confocal microscopy, visual acuity testing, functional visual acuity, wavefront 

aberrometry, or integrated multimodal metrology.61 TFBUT measurement either employs 

fluorescein (fluorescein is instilled to show breakup under blue light)60,62 or TFBUT is assessed 

noninvasively (evaluating the breakup time and the location of the defects by measuring 

distortions of a projected grid on the cornea).63,64 Problems in the reproducibility of TFBUT 

measurement65,66 have limited its use for the assessment of the effectiveness of treatments,4 but 

some effort have been made to standardize these measurements, including the use of defined 

minimal amounts of fluorescein67 and the inception of the corneal protection index (CPI = 

TFBUT/length of the interblink).68 

The importance of studying interfacial phenomena of the ocular surface has been 

recognized since the late 1960’s69-71; however, active investigation of the physicochemical 

surface attributes of the ocular surface has subsided significantly since the 1990s.72 During these 

recent “quiet decades,” it is noteworthy that a number of new experimental techniques for the 
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study of molecular interactions and surface attributes in biological materials have been 

developed. These techniques have been underexploited in investigations of interfacial 

phenomena of the ocular surface. Examples include: X-ray photoelectron spectroscopy (XPS, a 

surface-sensitive quantitative technique that measures elemental composition, chemical state and 

electronic state of elements on a surface)73,74; time-of-flight secondary ion mass spectrometry 

(ToF-SIMS, a semi-quantitative technique that provides information on single ions, individual 

isotopes and molecular compounds from a surface)73,75-77; surface-enhanced Raman spectroscopy 

(SERS, a technique that allows the fingerprinting of molecules that adsorb onto metallic surfaces 

or are brought to close proximity to metal nanoparticles)78,79; attenuated total reflectance-Fourier 

transform infrared spectroscopy (ATR-FTIR, which allows fingerprinting with infrared 

spectroscopy on solid samples)73,74; atomic force microscopy (AFM, which provides information 

on biophysical attributes, such as topography and relative stiffness)73,80; scanning ion-

conductance microscopy (SICM, a technique related to AFM that allows the force-free imaging 

of biological samples)81; surface plasmon resonance (SPR, a technique that measures the 

refractive index near a sensor surface, and enhances the surface sensitivity of spectroscopic 

methods)82,83; and high throughput surface characterization techniques.75,84,85 These tools can 

provide fundamental data regarding the elemental composition and changes after surface 

modification (e.g., XPS86), spatial localization of specific molecular species across the ocular 

surface (e.g., ToF-SIMS87, ATR-FTIR88), high-sensitivity immunoassays to determine specific 

biomarkers in the aqueous tears (SERS using gold nanoparticles functionalized with antibodies89 

or label-free immunoassays using SPR90) and characterization of the nano/micron-sized 

topography of the ocular surface (AFM91, SICM92). 

A key conclusion of this review is that these techniques should be evaluated for their 

potential to provide insight into ocular surface phenomena, as they may provide critical data 

needed for identifying optimal paths forward in the development of therapeutics for the treatment 

of ocular surface disorders. In the following review, we highlight knowledge gaps involving 

interfacial phenomena of the ocular surface and identify opportunities in research and the 

development of therapies for ocular surface disorders.  

 

II. HISTORICAL PERSPECTIVE  
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A timeline in the study of interfacial phenomena in the eye is shown in Figure 3. Early 

studies on the physicochemical properties of the ocular surface characterized tear film instability 

as the appearance of dry spots,93-95 which was later identified as “insufficient wetting” of the 

epithelial surface by Holly.96 In 1965, Mishima recognized the presence of a substance on the 

ocular surface that helped retain the fluid layer.71 This “hydrophilic” material was incorrectly 

proposed by Ehlers to be lipids from the meibomian glands,70 but was later identified as 

mucins.97 In 1968, Norn made a distinction between two different phenomena observed in dry 

eyes. 1) A “hole” in the tear film developed after the eye had been kept open for some time, 

which occurred at random sites and was not related to any ocular pathology60 (which is now 

recognized as the time point at which TBUT is determined). 2) A permanent local dryness (or 

“dellen”) noticed at the moment the eye is opened was attributed to local surface discontinuities 

or protuberances raised above the tear film thickness.98 

During the 1970s and 1980s, Holly led the systematic investigation of the 

physicochemical properties of the ocular surface when his laboratory started measuring tear 

surface tension99-101 and ocular surface energy96 for different corneal layers.102 During this 

period, the corneal epithelium was believed to be inherently hydrophobic, but an adsorbed layer 

of mucus was thought to act as a wetting agent in the interface between the epithelium and the 

aqueous tears.96 The dominant model of the tear film was a three-layered model, and mucus was 

also regarded as a lubricant, protectant, and surfactant at the aqueous-lipid interface,22 and the 

contamination of this mucus layer by lipids was believed to be the cause of tear film 

instability.103,104  

The first formal mathematical analysis of tear film stability and rupture was proposed in 

1974 by Berger, based on the suggestion that a gradient in surface tension is the driving force for 

the formation of the tear film after a blink.105 Lin and Brenner later proposed that flow due to 

gradients in surface tension (Marangoni effects, see inset II) and viscosity are the origin of 

stabilizing stresses in the tear film,106 while the interactions arising from van der Waals and other 

intermolecular forces destabilize the tear film and are responsible for the dewetting of the ocular 

surface.16 Following this direction, in 1985 Sharma and Ruckenstein proposed the rupture of the 

mucus layer of the tear film as the mechanism leading to the exposure of the hydrophobic 

epithelium.23  
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During the 1980s, following electron microscopy studies of the apical surface of the 

ocular epithelium,107-109 the postulated characteristics of the epithelial surface were 

questioned.110,111 New measurements on the wettability of the corneal epithelium and the 

discovery of a hydrophilic glycocalyx demonstrated that gel-forming mucins were not needed for 

the spreading of tears.112 Furthermore, the proposed role of mucins as surfactants that stabilize 

the spreading of the lipid layer was also debated after tear lipocalin was identified as the most 

surface-active molecule in this interface.113 

During the 1990s and the first decade of the 2000s, many different thermodynamic and 

hydrodynamic models for the formation and destabilization of the tear film were proposed. For 

example, Sharma characterized the surface energy of the corneal epithelium and the mucus 

layer,114 and this strategy allowed the calculation of all the surface and interfacial energies of the 

ocular surface, and the work of adhesion of several tear film interfaces.115 Using these values, 

Sharma proposed the role of mucus as a lipid trap that collects contaminants from the tear film 

that are then removed from the ocular surface through blinking, rather than a surfactant for the 

corneal epithelium.116  

Recent hydrodynamic models incorporate phenomena that are more realistic for the 

modeling of the tear film, such as shear-thinning viscosity (non-Newtonian rheology),26 slippage 

(the fluid “slips” on the boundary with the epithelium),18 2D models of the tear film,117,118 and 

the incorporation of evaporation.17 However, despite the efforts to study the ocular surface in 

terms of fundamental interfacial phenomena, the functional role played by the various 

components of the ocular surface remains elusive. 

In recent efforts to provide a consensus for the definition and treatment of the dry eye, 

such as the International Dry Eye Workshops32,119, and the Delphi Panel,120 two major categories 

of dry eye syndrome were defined: tear-deficient dry eye (TDDE) and evaporative dry eye 

(EDE). Subsequent efforts have focused on meibomian gland disorders,28,30,33,121-134 tear film 

evaporation,28,126,135-138 osmolarity,34,139,140 inflammation,40,141-143 and stem cell 

transplantation,144,145 as highlighted in a recent citation analysis in the dry eye literature,146 while 

the investigation of interfacial phenomena in the ocular surface has taken a secondary role.147  

 

III. ROLE OF SURFACE CHEMISTRY (INTERMOLECULAR AND SURFACE 

FORCES) IN OCULAR SURFACE DISORDERS 
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The formation and stability of liquid thin films over a surface is highly dependent on the 

chemical composition and associated intermolecular forces acting between the constituents of the 

different phases involved.148 As noted above, the ocular surface is a complex composite system 

comprised of a multilayered tear film, supported on a soft cellular substrate that is 

topographically and chemically heterogeneous.107,108,149 The development of a complete 

understanding of thin liquid films on such complex interfaces represents a substantial challenge 

and requires the integration of diverse disciplines, including chemistry, physics, biology and 

engineering,and the knowledge of surface properties such as the energies of the interfaces that 

comprise the ocular surface. 

A. Surface Energy and Contact Angle 

At a surface of a liquid or solid exposed to a vapor, molecules experience intermolecular 

forces directed toward the bulk phase, drawing surface molecules toward the interior and causing 

the surface to seek minimum area. This contractile tendency can be quantified as force per unit 

length or energy per unit area, termed “surface tension” and “surface energy,” respectively.148 

These cohesive forces between liquid molecules at a surface with a gas are responsible for the 

generation of surface energy. It is the surface energy that gives rise to the force that enables a 

needle to float on the surface of water in a glass or, alternatively, for a water strider to skim 

across the surface of a pond. Surface energy can also be interpreted as the mechanical energy 

that must be invested to create a unit area of a surface.1 When two condensed phases (e.g., two 

liquids) are in contact, they define an “interface” and the terminology introduced above is 

modified accordingly (e.g., to “interfacial energy”). 

Examples of intermolecular forces that play an important role in determining 

surface/interfacial energies are 1) van der Waals (VdW) forces, which are attractive interactions 

between neutral molecules that originate from the presence of dipoles in the molecules 

(permanent, induced or transient),1 and 2) coulombic forces at interfaces possessing immobilized 

charges (such as in the corneal and conjunctival epithelia150), where ions of the opposite charge 

(or counterions) gather in the vicinity of the interface, forming an “electrical double layer.”1  

The surface tension (or interfacial tension) of fluids can be sharply reduced by certain 

solutes called surfactants (or surface active agents). Generally, a solute is deemed “surface-

active” if it reduces the surface tension.1 In the respiratory system, surfactants decrease the 

surface tension and thus the amount of work required for expansion of alveoli. Infants born prior 
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to 26 weeks of gestation are typically deficient in lung surfactant, and that deficiency is 

associated with Infant Respiratory Distress Syndrome.151-154 In the tear film, complexes of 

molecules interact to function as surfactants, such as polar lipids113 and lipocalins155 in 

combination with mucins and other proteins.99  

A common assay used to characterize surface properties of biological molecules (e.g., 

lipids) is based on a Langmuir trough. A monolayer of the species of interest (often a mixture) is 

spread onto the surface of water and then compressed using a barrier that is moved across the 

surface. Measurement of the surface tension before, during, and after compression and expansion 

provides an assessment of the stability of the film under conditions that mimic the blink cycle. 

Use of these assays has been proposed as a diagnostic tool in the assessment of ocular surface 

disorders.156,157 

A central property that is used to characterize the wetting of a liquid on a solid is Young’s 

contact angle (the angle measured at the point of contact between the liquid and the surface).158 

Ideal surfaces (smooth, rigid, chemically homogeneous, insoluble, nonreactive surface) present a 

3-phase contact line (solid, liquid, and vapor) with a single well-defined Young’s contact angle 

(Figure 4 ).159 The balance of forces at the contact line is described by Young’s equation, which 

connects the surface and interfacial energies to the contact angle (Inset I). These situations are 

relevant to the development of topical therapeutic agents. The values of the surface/interfacial 

energies in Young’s equation can be altered by the addition of agents that modify the interfaces 

of the ocular surface. For example, Young’s equation predicts that decreasing the surface energy 

(increasing the contact angle) of the cellular constituents of the ocular surface will decrease its 

wettability by the tear film (which would result in dewetting of the ocular surface should the tear 

film break). 

The contact angle provides a way to characterize the lyophilic (solvent-loving) nature of 

a surface. Depending on the magnitude of the contact angle, we can encounter different regimes 

of wetting: complete wetting (when the liquid fully covers the solid, contact angle of zero); 

partial wetting (contact angle between zero and 90°); partial nonwetting (contact angle between 

90° and 180°); and total nonwetting (contact angle of 180°).1 However, to fully characterize the 

wettability, knowledge of the specific interfacial energy components are required. Liquid surface 

tensions are relatively easy to determine, but the solid-liquid interfacial energy cannot be directly 

measured. For that purpose, other approaches to have been developed.1,148,160 
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B. Characterization of the Ocular Surface Energetics 

1. Whole Tear Surface Tension 

As established above, knowledge of the surface tension of tears is necessary in order to 

understand the wetting of tear films on the ocular surface. The measurement of the surface 

tension of tears, however, is challenging. The volume of tears that can be acquired from a single 

patient is limited, and thus tears are usually pooled from a large number of donors or from 

repeated sampling from a single or small number of donors. Trying to optimize the collection 

could induce reflex lacrimation and change the intrinsic attributes of the tears collected 

confounding analysis. Another problem is the structured character of the tear film, which poses 

difficulties for the sampling and reproduction of the native state of tears for the measurement of 

its surface properties. Some collection techniques include the use of Schirmer strips and other 

absorbent-based methods, eye washes, and glass capillary tubes.41 It should be noted that 

collection of tears in general and with capillary tubes in particular is challenging in patients with 

a reduced tear volume. The handling and storage of the collected tears could also have an 

influence on the measurement of the surface tension, due to adsorption of components to the 

walls of the containers.41,161 

Despite challenges in collection and analysis, there has been some success in the 

characterization of the aqueous tear surface properties. One of the first experimental 

determinations of the surface tension of tears was done on stimulated tears from calves, using a 

capillary rise method, where the surface tension measured was 72.3 dynes/cm (almost identical 

to water).162 In 1926, Miller used a scleral contact lens carved with a trough, where tears 

collected from the patient were deposited and the surface tension measured with a du Nouy ring 

as 48 dynes/cm.163 A method requiring a low volume of tears is the determination of surface 

tension by contact angle on standard polyethylene surfaces. Following this procedure, the surface 

tension of normal tears measured 40.1±1.5 dynes/cm.100 Holly proposed that the surface tension 

of the tear film is dependent on the palpebral fissure width, because the compression of lipid 

layer upon blinking increases the surface concentration and reduces surface tension.164 This 

dynamic character of the surface tension was demonstrated using a pulsating bubble 

surfactometer, which measured the dynamic surface tension of whole tears as 35 dynes/cm at 

minimum bubble size and 45 dynes/cm at maximum bubble size.165  In aggregate, the modern 

literature suggests a value of 35-40 dynes/cm. This is approximately half the value of water and 
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indicates the presence of surface-active components that decrease surface tension and facilitate 

the wetting of tears on the ocular surface.  

In an attempt to elucidate the role of the surface tension of tears in dry eye conditions, 

Holly found very small differences from patients with a wide array of dry eye conditions relative 

to tears collected from normal subjects, and attributed the differences to changes in the 

components of tears, specifically the generation of inflammation-related molecules.100 Later, 

Tiffany et al found a moderate correlation between TFBUT and surface tension, whereby higher 

surface tensions correlated with less stable films. They found the surface tension of tears to be 

43.6±2.7 dynes/cm for normal eyes and 49.6±2.2 dynes/cm for dry eyes.166 Zhao et al proposed 

the measurement of surface properties using a Langmuir trough as a tool to diagnose dry eye 

syndromes157 and obtained significant differences in the surface tension at maximum 

compression (20% of the original surface area) of 46.6 ±3.8 dynes/cm for normal eyes and 52.9 

±7.4 dynes/cm for female patients with Sjögren syndrome.156 Contrary to widely held views, 

Peng et al have proposed that tear films with a lower value for surface tension are more prone to 

disruption than films with higher surface tension.31 In their model, the presence of lower surface 

tension encourages tear film breakup through evaporation-driven mechanisms. They propose that 

locally increased regions of evaporation associated with a thinned/absent tear film lipid layer 

(TFLL) would induce negative curvature (meniscus formation) in the tear film. At relatively low 

surface tensions, the curvature-driven healing flow is impaired, reducing the thickness of the tear 

film locally and decreasing the TFBUT value.31 All other parameters being held constant, 

conditions that increase evaporative loss would decrease TFBUT values.31 

In summary, the surface tension of tears likely plays a significant role in ocular surface 

disorders, such as dry eye, but, as addressed below, substantial uncertainty remains as to which 

components of the ocular surface are responsible for the changes in surface tension. 

 

2. Influence of Tear Components on Surface Tension 

a. Lipids 

Tear lipids were the first constituents of the tear film thought to make a major 

contribution to tear film surface tension. The surface pressure (the reduction of surface tension) 

of tear lipids was estimated by Brown in 1965 to be between 15 and 33 dynes/cm.167 However, 

Langmuir monolayers of meibomian gland-derived lipids showed surface pressures of only 13 
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dynes/cm,168 and extracting lipids from tears only increased the surface tension of the thus 

modified tear film from 46.0 dynes/cm to 53.6 dynes/cm.113 This low surface activity has been 

attributed to the high percentage of wax and sterol esters and the low content in polar lipids in 

meibomian secretions.129,130,169 Furthermore, Nagyová et al added meibomian secretions to lipid-

depleted tears and found a poorer recovery of the surface activity compared to normally resident 

tear lipids, suggesting that the source of lipids in tears is not solely from meibomian glands.113 

Adding model lipids to these depleted tears showed that while wax esters and sterol esters 

reduced the surface tension, phospholipids had the greatest impact on altering surface tension.113
 

 Other studies on the influence of the composition of the lipid layer have shown that 

nonpolar lipids destabilize the lipid film spreading properties and polar lipids act as stabilizers.170 

While the broad class of phospholipids have been shown to have the greatest effect in lowering 

surface tension,113 zwitterionic (neutral molecules with a positive and a negative charge in 

different locations within the same molecule) phospholipids, in particular, better increased tear 

film stability as measured by TFBUT in an artificial eye model.171  

In summary, polar lipids originating from the meibomian glands and alternative sources 

(such as phospholipids from the cellular membrane of shed cells) appear to be primarily 

responsible for the low surface tension of tears. 

b. Mucins 

 The effect of mucins in modulating tear film surface tension is complex, and the 

literature is populated with conflicting reports. An indication of the role of mucins in lowering 

the surface tension in tears was given by Lemp et al, where the surface tension of artificial tears 

was reduced from 71.1 dynes/cm to 43.2 dynes/cm with the addition of 0.5% bovine submaxillay 

gland-derived mucin (BSM).97 Holly investigated mucins, albumin, globulin, and lysozyme as 

the surface-active components of tears and determined mucins to be the most surface active 

molecules, with surface pressures up to 35 dynes/cm at 1% concentration.99  

Holly’s work identifying mucins as the major contributors for the tear surface tension 

was done using BSM as a model, due to its accessibility. However, mucins are a heterogeneous 

group of glycoproteins whose properties depend on their amino acid sequence and their post-

translational glycosylation,172,173 as well as their purity,174 concentration, pH, and electrolytes in 

the media.175 Results obtained with BSM may not be directly transposable to the effect of ocular 

surface mucins.  
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To test whether ocular mucins were indeed the greatest contributors to the surface tension 

of tears, Pandit et al hypothesized that basal tears should have a lower surface tension than 

stimulated tears due to the increased contact time. They observed no significant differences 

(43.0±2.1 dynes/cm and 46.0±1.46 dynes/cm for basal and stimulated tears, respectively).161 

Mucins have been shown to reduce surface tension, but their surface activity is not as high as 

initially reported, and a significant reduction in surface tension is achieved only when mucins are 

present at very high concentrations113 not found in normal tears.174 Millar et al proved that while 

BSM has a surface activity dependent on the concentration, purified bovine ocular mucins had 

no surface activity even at concentrations 100 times higher than normal.176 However, ocular 

mucins may play an indirect role in increasing the surface pressure of the lipid layer by 

compressing the lipids and restricting mobility. Such an effect would contribute to the rigidity 

and stability of the lipid film between blinks.176 In summary, mucins from nonocular sources 

have been shown to affect surface tension, but ocular surface/tear mucins have not been 

validated to have the same magnitude of effect when employed at physiologic concentrations. It 

appears likely that the effect of mucins on surface tension-related phenomena in the eye occurs 

indirectly via their influence on the distribution of lipids. 

 

c. Lipocalin 

Until the 1990s, tear-specific prealbumin had not been studied as a factor in tear surface 

tension because it had not been recognized as a lipid-binding protein, or lipocalin.177 Proteins 

alone and in combinations with lipids reduced surface tension; however, any combination of 

lipocalin with lipids reduced surface tension to tear levels, while mucins reduced surface tension, 

but only at very high concentrations not found in natural tears.113 Glasgow further demonstrated 

the surface activity of tear lipocalin155 and the role of tear lipocalin to bind, cover, and remove 

lipids from the ocular epithelial surface,178 and tear lipocalin has been shown to be reduced in 

patients with Sjögren syndrome.179 Phospholipid transfer protein has also been proposed as a 

scavenger of lipophilic substances from ocular mucins.180  

 

d. Other Tear Constituents 

The contribution of other components to the low surface tension characteristic of normal 

tears has also been studied. Lactoferrin and β-lactoglobulin have demonstrated surface activity 
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by inserting and forming complexes in the lipid film, which may contribute to its stability.170 In 

Langmuir troughs, most tear protein monolayers show surface pressure hysteresis behaviors very 

similar to monolayers prepared with whole tears, while meibomian gland-derived lipids and 

mucins show distinctly different behaviors. The authors of these studies suggested that in ocular 

surface diseases, the profile of proteins changes (due to production of interleukins or antibodies), 

which might disrupt the tear stability.181 Certain polysaccharides (xanthan gum and chondroitin 

sulfate C) did not alter the lipid film surface pressure, but sodium hyaluronate (which is not 

surface-active by itself) promoted a marked reduction of the surface area of lipid films at 

constant surface pressure, suggesting the interaction of the sodium hyaluronate with the lipids 

(possibly with phospholipids).170 In a study by Mudgil and Millar, the concentration or type of 

divalent electrolytes in the subphase did not show an effect on the surface tension of meibomian 

gland derived lipids.182  

In summary, controversy exists with regard to the contribution and role of specific 

constituents of tears in determining surface tension. As detailed above, tears represent a complex 

milieu, and the individual constituents never occur or act in isolation. Rather, surface tension can 

be viewed as an “area-under-the-curve” outcome that integrates the individual contributions and 

differing mechanisms, as well as the impact of interactions between constituents. Changes in tear 

surface tension relevant to ocular surface disease remain markedly underexplored. Lipid and/or 

mucin deficiencies as a consequence of meibomian gland dysfunction or cicatrization of the 

ocular surface may produce changes in tear surface tension that are quantifiable. If this is proven 

to be true, alterations in surface tension could assist in diagnosing qualitative tear film disorders 

and could prove useful in monitoring response to therapy. By understanding the role of surface 

tension in tears, it may also be possible to predict their spreading behavior and optimally design 

artificial tear formulations that best interact with the ocular surface. 

 

3. Cellular Contributions to Ocular Surface Energy and the Cell-Tear Film Interface 

The surface energy of the cellular elements of the ocular surface is a major determinant 

of the behavior of the tear film and can affect the spreading of the tear film across its surface, as 

well as tear film stability and kinetics of dewetting. Here, we review the literature that provides 

conflicting reports with regard to the relative surface energy/hydrophilicity of the cellular 

surface, as well as the impact of exogenous lipids, mucins, and cell injury.  
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a. Physicochemical Properties of Cellular Constituents of the Ocular Surface 

The first formal attempt to characterize the physicochemical properties of the cellular 

constituents of the ocular surface was made by Lemp et al in 1970.97 The maximum surface 

tension needed for a liquid to wet the surface (critical surface tension) of wiped corneas from 

rabbits was estimated to be 31 dynes/cm with the Zisman method using solutions of electrolytes 

containing variable concentrations of proteins and mucins. Applying meibomian gland-derived 

lipids to the surface of rabbit wiped corneas did not alter the contact angle; however, by rubbing 

BSM over the surface, complete wetting was achieved. The authors suggested a significant role 

of mucins for the alteration of interfacial energetics and the promotion tear film coverage of the 

cellular surface.97 They later hypothesized that the spreading and maintenance of the tear film 

required the production of mucus by goblet cells and the redistribution of the mucus layer across 

the cornea by blinking.62 We note, however, that the caveats previously mentioned relating to the 

use of BSM for study apply here also and results obtained may not be directly transposed to the 

effect of native tear film mucins.  

Of equal interest to the effect of adding extrinsic mucins is the study of the effect of 

depleting mucins from the cell/tear film interface. Holly and Lemp measured contact angles of 

hydrophobic liquids on corneas depleted of mucus and established the effects of mucin solutions 

on contact angle.96 Following this characterization, they suggested that mucins play the role of 

surfactants for both the epithelial-aqueous and the aqueous-lipid interfaces besides working as 

lubricants and protectants.96 Their proposed mechanism for achieving tear film stability 

implicates the interaction of mucins with lipids to decrease the surface tension of tears, and the 

spreading and adsorption of mucins over the epithelium by blinking, increasing the surface 

energy of the cellular component.96  

The model advanced by Holly and Lemp is supported by the observation of decreased 

goblet cell population in certain ocular surface diseases, such as ocular pemphigoid and Stevens-

Johnson syndrome.183 In contrast, however, no significant decrease in mucus production was 

observed by other investigators for the pathologies mentioned above.184 Furthermore, Cope et al 

suggested that confounding issues were present in the methodologies employed by Holly et al. 

The epithelial surface appeared to be damaged by drying, by wiping to remove surface mucus, 

and by the “inert” liquids used.110 Liotet and colleagues disagreed on the role of mucus as a 

surfactant, because conjunctival mucoproteins polymerize and form a high molecular weight 
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insoluble gel, incapable of interacting with the lipid layer.111 However, mucus may play an 

important role in the formation and maintenance of the tear film through a “lipid trap” 

mechanism, as proposed by Sharma (described below). 

 

b. Role of the Glycocalyx 

  The presence of a glycocalyx (an intrinsic surface-associated cellular coating rich 

in polysaccharides) on the surface of epithelial cells has been recognized since the 1960s.185 

However, the studies proposing the dewetting of the tear film due to the development of a 

relatively more hydrophobic corneal epithelium in disease states failed to consider this intrinsic 

membrane-associated hydrophilic coating as part of the cellular surface. Blumcke and 

Morgenroth provided an early report of the ultrastructural characteristics of the corneal epithelial 

surface in 1967,186 and in 1981, Dilly and Mackie identified the presence of surface 

glycoproteins that are heavily glycosylated on the surface of conjunctival epithelial cells.107 The 

scanning electron microscopy studies of the ocular surface by Nichols et al revealed a thick 

glycocalyx, on the order of 300 nm,109 and the layer of secreted mucins associated with the cell 

surface was found to be thicker than previously thought (1-7 microns).187  

We note here that mucins can be categorized as membrane-associated mucins (e.g., 

MUC1, MUC4 and MUC16), which are an intrinsic constituent of the glycocalyx, and secreted 

mucins. which can be subdivided into gel-forming (e.g., MUC5AC) and soluble (e.g., MUC7). 

Although the gel-forming mucin MUC5AC may be proteolytically degraded on the ocular 

surface188,189 and not form a true gel layer,190 it likely interacts loosely with the cell surface (and 

associated glycocalyx),115,191 and it may also interact with microorganisms present in the tear 

film.192 Smaller fractions of MUC5AC have also been found dispersed in the aqueous phase.193 

MUC7 is a smaller molecule, found predominantly in human saliva, and it is widely believed 

that it does not form gels.191 While MUC7 is also expressed by acinar cells of lacrimal glands,194 

its role in the ocular surface is largely unknown. This is because, to our knowledge, it has not 

been detected in the aqueous component of tears.193,195,196 

Many functions were initially attributed to the glycocalyx of the ocular surface, including 

maintenance of a negative surface charge, masking of surface antigenicity, cellular recognition, 

pinocytosis, organ differentiation, and the regulation of cellular adhesion.197 In 1992, Gipson et 

al developed the H185 antibody that binds sugar epitopes in highly glycosylated glycoproteins, 
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demonstrating that all the apical cells of the ocular surface possess a glycocalyx in rat198 and 

human.199 The membrane-associated MUC1 was the first mucin to be identified as an important 

component of the ocular glycocalyx200 (it is expressed by both corneal and conjunctival epithelial 

cells), but the presence of the membrane-associated mucins MUC4191,201 and MUC16 was later 

determined.202 The expression pattern of membrane-associated mucins depends on its location on 

the ocular surface (cornea or conjunctiva) and in the epithelial layer.203 A disrupted glycocalyx 

can be rapidly regenerated,204 and if the tight junction of apical epithelial cells are disrupted, 

underlying cells differentiate into superficial cells and start secreting glycocalyx components.205
 

 Royle et al partially analyzed the polysaccharide components in ocular mucins of human, 

dog, and rabbit, and found simple tetra- tri- or disaccharide structures.150 In their studies, they 

lysed the entire epithelium; thus, their results analyzed the effects of mucins en toto, not 

distinguishing between mucins of differing origin. In humans, the majority of saccharides were 

negatively charged (terminated in sialic acid), while in dog and rabbit they were neutral 

(terminated in α 1-2 fucose and/or 1-3 N-acetylgalactosamine).150 Guzman-Aranguez et al 

confirmed this finding by determining that 66% of the glycan pool in humans consisted in mono-

sialyl O-glycans.173 Alterations in the mucin distribution or mucin glycosylation have been 

extensively observed in dry eye pathologies.196,206-209.  

Subsequent work done by Tiffany in 1990 recognized the corneal and conjunctival 

epithelial glycocalyx as responsible for the hydrophilic properties of the ocular surface.112 

Tiffany measured the wettability of epithelium using different methods and concluded that the 

surface energy of the intact epithelium (68.3 ± 0.8 dynes/cm) and the epithelium with mucus 

removed (67.5 ± 0.6 dynes/cm) were not significantly different.112 When drying was allowed to 

occur, the contact angle increased, suggesting a change in structure and denaturation of the 

components of the cell membrane.112 Although wiping the epithelium disrupts the structure, 

complicating the measurements, Tiffany determined a surface energy of wiped corneas of 40 

dynes/cm, attributing the low surface energy to the release of cytosolic proteins and lipids, which 

may have a role in the rupture of the tear film.112  

Sharma performed a more complete characterization of the various contributions to the 

ocular surface energy.114,210,211 Measurements of the surface energy of rabbit corneas with mucus 

coating were 49.5 dynes/cm, while for corneas with mucus removed were 54.4 dynes/cm, 

confirming that mucus is not needed to increase the surface energy of the epithelial surface.114 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
Yañez-Soto 

21 

 

He also determined that damaging and drying of the epithelium reduced the polar component of 

the surface energy.114 The measurement of the polar component of the surface energy allowed 

the calculation of the interfacial energy between the corneal surfaces and the tears, making it 

possible to evaluate the energy of adhesion of different substrates. The energy of adhesion of gel-

forming mucins-glycocalyx in water is 39.0 dynes/cm; the value for mucus adhesion to damaged 

cells in water is -17.8 dynes/cm, and for mucus adhesion to mucus in water it is 42 dynes/cm. 

The positive values of adhesion imply that the gel-forming mucus does not strongly adhere to the 

glycocalyx or to itself, instead forming a very hydrated loose glycopolymer that is mobile on the 

ocular surface.115 However, when cells are damaged, the adhesion of mucus to the ocular surface 

is greater (indicated by the negative value of the energy of adhesion), lowering lubrication and 

leading to more cell damage and promoting desquamation by the shear forces acting on the 

adhered mucus.115  

Sharma also proposed a “lipid-trap” role for mucus, hypothesizing that nonpolar particles 

adhering to mucus make the mucus more cohesive. Mucins are negatively charged and repel 

themselves. The integration of lipids is suggested to oppose this tendency, allowing the creation 

of larger aggregates/threads of mucus and subsequently promoting removal from the corneal 

surface by blinking. Furthermore, although nonpolar particles can adhere to the glycocalyx in an 

aqueous media, the adhesion of nonpolar particles in mucus is not thermodynamically 

favorable.115 In later papers, Sharma expanded his theory and concluded that the corneal 

epithelium can be rendered hydrophobic by lipids in the tear fluid attaching directly to the 

epithelium whenever there is absence of mucus. These hydrophobic areas could lead to 

dewetting, even in cases where the patches are micron-sized (the size of a cell).116 Some 

experimental evidence of the adhesive/anti-adhesive characteristics of mucins was provided by 

Berry et al, when AFM tip-tethered mucins showed little/no adherence to mucins deposited on 

mica212; and by Sumiyoshi, et al, who demonstrated increased adhesion between epithelial cells 

when the glycosylation of mucins was disrupted.213 The adhesive properties of the ocular surface 

are also important for the modulation and selectivity of the bacterial strains that compose the 

ocular microbiome.192 

In summary, the glycocalyx of the corneal and conjunctival surface epithelial cells 

contributes to the wettability of the cellular surface as well as to the relative adherence/non-

adherence properties of the ocular surface. The glycocalyx plays a role in the removal of 
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particulate contaminants (through promotion of appropriate mucin dynamics across the ocular 

surface), and, by resisting adhesion of microorganisms, serves as an innate barrier to infection. 

The impact of diverse ocular surface diseases on the glycocalyx and concomitantly on the 

interfacial properties of the ocular surface remains under-investigated. Knowledge of ocular 

surface energetics may contribute to the development of a new set of diagnostics, as well as 

therapeutic strategies whereby the ocular surface is optimally engineered to render it pathogen-

resistant and promote stability of the native tears. 

 

4. Formation and Stability of the Tear Film Lipid Layer  

The TFLL is mainly constituted by meibomian gland-derived lipids,125 with an 

approximate composition of 60-70% nonpolar lipids (wax esters, cholesterol, and cholesterol 

esters) and 15% polar lipids (phospholipids and glycolipids).214 Meibomian gland-derived lipids 

exhibit a melting range of 19.5-32.9±0.9 °C215 and a high viscosity of 9.7-19.5 Pa sec, with non-

Newtonian behavior (viscosity increases with applied stress). TFLL thicknesses of 32-200 nm 

have been reported.124,216,217 Thickness depends on many factors, such as the stability of the lipid 

layer, the dynamics of blinking (the TFLL thickens and thins throughout the cycle), or 

meibomian gland health.124 We agree with the suggestion of Nagyová et al113 and Sharma116 that 

another source of tear film lipids is from the epithelial constituents of the ocular surface. The 

ocular surface is constantly renewed with frank epithelial cell sloughing, as well as continuous 

microtrauma associated with blinking and rubbing.218,219 Additionally, a varying population of 

inflammatory cells is present in the tear film.220  

Reported functions of the TFLL include: the maintenance of the lid margins in a 

hydrophobic state helping to prevent overflow of tears,124 the lowering of the surface tension of 

tears (acting as a surfactant) to impart stability,22 and the retardation of evaporation.221 Since the 

TFLL is compressed by blinking with the lid not traveling over the lipid surface, it likely does 

not play a role in lubrication. 

To investigate the role of the TFLL on the formation and stability of the tear film, Brown 

and Dervichian performed qualitative in vitro experiments simulating blinking, and proposed a 

two-step process for the formation of the tear film.222 In the first step, the opening upper lid pulls 

water by capillary action, wetting the ocular surface. In the second step, the TFLL spreads over 

the aqueous layer, thickening the film by Marangoni flow (see inset II).222 When the eye opens, 
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the lipid first spreads as a monolayer against the upper eyelid. Excess lipid subsequently flows 

across the ocular surface and a multimolecular lipid film is formed dragging aqueous fluid with 

it, thickening the tear film.104 Berger and Corsin provided evidence for this mechanism by 

tracking particles in the tear film following an upward movement.105  

A duplex film structure for the TFLL was introduced by McCulley and Shine,30 with a 

monolayer of polar lipids between the mucoaqueous and a thick nonpolar phase (Figure 5). The 

polar phase is made from sphingolipids and phospholipids (phosphatidylethanolamine, 

phosphatidylcholine, sphingomyelin), and the stability of this phase depends on the balance and 

type of phospholipids, fatty acids, ions, and pH.30 Recently, Rosenfeld et al advanced the duplex 

model of the tear film by proposing a viscoelastic suspension with lipid lamellar-quasicrystals 

imparting mechanical structure.223 Low levels of phospholipids in meibomian gland secretion has 

been associated with dry eye syndrome.171 The nonpolar phase forms the bulk of the lipid layer 

and is dominated by long-chain fatty acids, fatty alcohols, and hydrocarbons. Although the 

primary function of the nonpolar phase is thought to control the transmission rate of gases, a 

secondary function is to act as reservoir of triglycerides, wax esters, and other lipids to maintain 

the stability of the polar phase.224 TFLL abnormalities have been demonstrated to correlate with 

evaporative dry eye disease.125 

In summary, the TFLL contributes to the formation and stability of the tear film and 

provides an important barrier to evaporative loss of the aqueous component of the tear film. The 

spreading and quality of the TFLL depends on the surface properties of this thin film, thus those 

properties are critical for the stability of the tear film overall. 

 

C. Dewetting, Evaporation and Stability/Instability of Liquid Films 

1. General Concepts 

  Liquid films are formed when two interfaces of a liquid are at close proximity. The 

spreading coefficient (see inset III) determines whether or not a liquid spreads on a surface. The 

stability of a thin film depends on parameters such as the spatial variation of temperature or 

surfactant (Marangoni effects, see inset II), the chemical heterogeneity of the surface, the 

evaporation of the liquid, the segregation and adsorption of liquid film constituents, and the 

intermolecular forces acting in the system.225 Thin films are often unstable, tending to thin or to 

thicken spontaneously due to the interactions of the differing phases (solid/liquid/gas). 
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An important consideration for the stability of thin films of volatile liquids is the rate of 

evaporation, which is dependent on the chemical potential and the transport resistance between 

the liquid surface and the surrounding gas.135 The transport resistance can be increased 

(decreasing evaporation) by lipid monolayers, a phenomenon that has been recognized since the 

early 1920s.226 Suppression of evaporation is achieved through inhibition of diffusion of aqueous 

elements across the lipid layer residing at the air-tear film interface.227 Diffusion across the thin 

lipid layer is modulated by a variety of factors, including temperature and surface pressure, as 

well as the carbon chain length and saturation level of the lipids.228 In biological systems, such as 

the respiratory tract, the skin, and the ocular surface, lipid layers serve to impede water loss from 

the thin fluid films intimately associated with mucous membranes and, in turn, from the 

underlying cellular constituents.229 

The lipid layer of the tear film, rather than being a monolayer, is duplex. In duplex lipid 

films, a polar monolayer is intercalated between a thicker external nonpolar layer (at the air/lipid 

interface) and the internally located aqueous interface. In considering the thickness of lipid films 

in isolation, duplex lipid films (which are thicker and contain nonpolar lipids as well as insoluble 

polar lipids acting as surfactants) theoretically should provide more resistance to evaporation 

than monolayers. This is not the case, however, as duplex films are usually less stable than 

monolayers, and they dewet relatively rapidly into lenses (discrete islands of continuous lipid 

separated by lipid-free zones in the fluid film). When islands form, the regions devoid of a lipid 

layer experience much higher rates of evaporation loss.135
 

 

2. Dewetting, Evaporation, and Stability/Instability of the Tear Film 

a. Nonevaporative Models 

  Holly proposed a model in which the lipids from the superficial layer of the tear film 

migrate to the epithelial surface, contaminating the mucin layer and transforming it into a 

hydrophobic surface resulting in tear film breakup.22 In this model, the thinner the starting 

thickness of the tear film at the end of a blink, the faster the tear film will be destabilized and the 

smaller the value for TFBUT. Lin and Brenner considered this explanation to be physically 

inconsistent, because Marangoni flow in the tear film due to surfactant concentration gradients 

during the migration of lipids will oppose, at least in part, the proposed diffusion of lipids and 

will assist to stabilize the film.106 Instead, they proposed a mechanism in which the VdW forces 
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are responsible for the instability of the tear film and calculated, using a static modeling 

paradigm, that it is theoretically possible to have unstable films on the order of microns in 

thickness, depending on the specific strength of these VdW forces.16  

Subsequently, Sharma and Ruckenstein proposed (on the basis of calculation) that the 

dewetting process advanced by Lin and Brenner would require months to take place. Using the 

same values for VdW forces as Lin and Brenner, but applied to a dynamically thinning mucus 

layer, they proposed that an increase in the relative hydrophobicity of the cell/tear film interface 

as the mucus layer thins to be the underlying destabilizing mechanism that results in breakup of 

the tear film.23,230 This model considered a starting mucus layer thickness of 20-50 nm, although 

it was later recognized that the mucus forms a much thicker film, between 1.0 and 7.0 µm.187 

Subsequently, Sharma was unable to generate empirical evidence in support of the proposed 

theory that thinning of the mucus layer was responsible for tear film destabilization.231  

Other models that have been proposed to explain the development of tear film instability 

include the exposure of cells with a relatively immature glycocalyx immediately after 

desquamation of the apical layer111 and rupture due to changes in the mechanical properties of 

the tear film.232 Given that a variety of models have been proposed, the majority of more modern 

publications have focused on tear film instability arising from events related to 

evaporation.137,233,234 

 

b. Evaporative Models 

In 1961, Mishima and Maurice discovered that upon the removal of the TFLL by 

washing or the destruction of the meibomian glands, the rabbit corneal surface would dry 17 

times more rapidly.221 Iwata et al determined a 20-fold increase in evaporation rate when the 

lipid layer was removed.235 There has been extensive research on the measurement of 

evaporation in dry eye disorders, which has been recently reviewed in a meta-analysis by 

Tomlinson et al.236 The evaporation in aqueous-deficient type of dry eye disease increased 30% 

with respect to normal eyes, whereas in the evaporative type of dry eye it increased by 87%.236  

Some studies tried to measure the specific influence of the lipid layer on evaporation. 

Craig and Tomlinson found a 4-fold increase of evaporation when the lipid layer was absent or 

abnormal,237 and King-Smith et al found weak correlations between the TFLL thickness and the 

rate of evaporation.217 However, most in vitro studies show only a moderate reduction of 
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evaporation by meibomian gland-derived lipids, a finding that does not account for the 

impressive results observed in vivo.126,135,238,239 In aggregate, these findings suggest that the 

composition and the structuring of the TFLL are extremely important in the inhibition of 

evaporation.126,217  

Recent work by Rantamaki et al suggests that the evaporation-retarding effects depend on 

the physical properties of the wax esters of the TFLL; specifically their melting point.240 For the 

retardation effect to occur, the temperature of the lipid film has to be very close to the melting 

point of these materials. If the wax esters are too solid, a large area of the interface is not 

covered. If the wax esters are too fluid, the intrinsic motion of the lipid is proposed to provide 

random, transient generation of minute, spatially discrete lipid-free zones in this highly dynamic 

film allowing the passage of water molecules.240 

Most evaporation models considered the thinning of the tear film and subsequent 

thermodynamic instability to be responsible for the breakup of the tear film.17 However, Peng et 

al recently proposed a breakup mechanism based on locally elevated evaporation (i.e., spatially 

discrete regions of increased evaporative loss occurring in spatially discrete regions of a thinner 

lipid layer).31 In this model, the TFLL retards evaporation and is very thin, unstable, and 

imperfect, as described in a number of reports.127,135,217,241 At discrete regions of thinning and/or 

discontinuities in the TFLL, the rate of evaporation is increased, and if it is high enough, it 

overpowers the stabilizing forces arising from surface tension and osmotic-driven flow 

(concentration of salts increases locally in regions of evaporation).31  

Formation of spatially discrete dry spots is also influenced by wind speed, relative 

humidity, shape of the TFLL defect, and VdW forces. If the spatially discrete discontinuities in 

the lipid layer of the tear film did not form, and an adequate tear film thickness (of about 7 

microns) could be maintained, then a steady state would be achieved (evaporative loss through 

the TFLL compensated by tear production and conditions of flow), and disruption of the tear film 

would not occur.31 King-Smith et al provided experimental evidence supporting this hypothesis 

by comparing fluorescein images with interferometric TFLL images and showing a degree of 

correspondence between areas of tear film thinning and abnormalities in the lipid layer.29  

In summary, the exact processes leading to the breakup of the tear film remains 

controversial, with two main concepts having adherents in the literature: 1) Tear breakup is 

incited by instability and dewetting of the tear film due to changes in the energy of the ocular 
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surface, and 2) tear breakup is incited by abnormalities/defects/thinning of the TFLL, which, in 

turn, promotes evaporative processes. Both mechanisms may be important for the 

stability/instability of the tear film, and both mechanisms are highly influenced by surface 

properties.  

 

D. Opportunities to Exploit Surface Phenomena Related to the Ocular Surface 

Chemistry  

Studies characterizing the intrinsic surface energy of the epithelium have not been 

reported for the human cornea, and only limited studies are available for other species.96,112,114 

This introduces the opportunity to further our knowledge of the interfacial properties of the 

ocular surface of humans. Comparing results of studies from different species could provide the 

key to understanding the differences known to exist in tear film stability.242-250 The dynamic 

nature of the tear film presents significant challenges for readily translating findings obtained 

using in vitro and ex vivo models to the in vivo condition. However, better understanding of the 

nature of the interfacial phenomena of the ocular surface may enable the development of more 

relevant in vitro and ex vivo models for investigating the spreading, stability/instability, and 

evaporation of tear fluid. No mathematical, in vitro, or ex vivo tear film breakup model 

developed to date appears adequate, due to the complexity of the systems, lack of consensus with 

regard to the underlying mechanisms, and the need for integration of the different elements 

involved in the formation and maintenance of the tear film. The creation of more relevant models 

will likely promote the development of novel therapeutics to improve the stability of the tear 

film. 

 

IV. PHYSICAL AND CHEMICAL HETEROGENEITY 

A. General Principles 

In the previous section, we discussed the wetting phenomena, using models in which the 

interfaces are idealized as planar, chemically homogeneous, isotropic, and nonreactive surfaces. 

In reality, biological surfaces are topographically patterned, chemically heterogeneous, and can 

interchange solutes/ions and present reactive moieties. Ideal surfaces can be characterized by a 

single value for the contact angle, but in situ, the heterogeneity of the ocular surface can lead to 

spatial variation in contact angle. Additionally, the contact line can be pinned by 
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heterogeneities.251 This effect produces hysteresis between an advancing and a receding contact 

line,252 and Young’s contact angle is no longer applicable.158 

Topographic features of surfaces can have a significant impact on the wetting 

phenomena. The Wenzel model (inset IV) provides a good model for characterizing the influence 

of topographic features on the contact angle when the liquid follows the surface topography 

(Figure 6a).253 This model implies that if the surface has hydrophobic properties, the apparent 

contact angle is higher for rough surfaces, making the surface more hydrophobic. This underlies, 

in part, the idea of superhydrophobicity, documented for several materials.254 The Wenzel model 

also implies that if a surface has hydrophilic properties, the apparent contact angle of water is 

lower for rough surfaces, making the surface more hydrophilic (superhydrophilicity or hemi-

wicking surfaces).252  

Chemically heterogeneous surfaces, such as the cornea, behave such that the contact 

angle of liquids on the surface represents an average of the distinct spatially discrete regions 

(Cassie-Baxter model, inset IV, Figure 6b).158 In short, topographic attributes of the ocular 

surface will interact with the intrinsic surface chemistry to determine the interfacial properties.  

Chemical heterogeneity of thin film systems can also cause spontaneous instability and 

dewetting, accelerating the breakup of the tear film, depending on the sharpness of the 

heterogeneity.255 Chemically heterogeneous substrates are more sensitive to changes in the rate 

of evaporation and humidity: evaporation can enhance the time of rupture on chemically 

heterogeneous surfaces by an order of magnitude and a chemical heterogeneity can induce faster 

rupture at higher thicknesses than on homogeneous substrates.256 Interestingly, both less wettable 

(more hydrophobic) and more wettable (more hydrophilic) chemical heterogeneities can 

engender rupture.257 It is the spatial differences that induce instabilities in the contact angle and 

promote tear film rupture.257 Chemical heterogeneities can destabilize otherwise stable films, 

reduce the breakup time for thicker films, and produce complex geometries for the defects 

formed in the film.258
 

 

B. Topographic and Chemical Heterogeneity of the Ocular Surface 

1. Topographic Features of Ocular Surface Cells 

  The apical surface of the ocular epithelia presents a rich topography formed by microvilli 

and microplicae that has been characterized by scanning electron microscopy (SEM)107,109,186 
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and atomic force microscopy (AFM)91 (Figure 7). Hoffman and Schweichel distinguished a 

population of corneal epithelial cells rich in microvilli, and a population of smooth surface cells 

with defective membranes.259 After UV radiation, while smooth cells were shed, the cells rich in 

these topographic features regenerated their microvilli, suggesting a connection between cell 

functionality and surface features.259 On SEM studies, a marked difference in the brightness of 

the corneal cells can be observed, which is related to the density and morphology of the 

microplicae and microvilli. The more pronounced the topographic features, the lighter the cell 

appears when viewed by SEM.108 It has been proposed that this difference is correlated with 

different stages of maturation of the cells, the light cells being those most recently exposed to the 

surface.260  

The classically attributed roles of these cellular topographic features include: increasing 

surface area exposure for molecular transport; serving as a membrane reservoir for 

endo/exocytosis; and regulating the cell volume in response to osmotic exposure. More recently 

suggested roles include: 

1. Serving as a diffusion barrier (transport membrane proteins are located just at the top 

of the microvilli, the organized microfilaments that compose the core structure of the microvilli 

proposed to control the influx of solutes and molecules to the bulk cytoplasm); 

2. Active transport of membrane components through myosin motors; 

3. Ca2+ release and influx. Ca2+ is tightly bound to the F-actin in the microfilaments contained 

within the topographic features, serving as a reservoir. Upon receptor stimulation, the F-actin is 

disassembled and Ca2+ is liberated; and 

4. Surface cleaning. Cytotoxic lipophilic substances are trapped on the surface of 

microvilli, and while the microvilli elongate, the substances are then shed by vesiculation.261  

Recent studies have correlated a reduction of size and density of the corneal epithelial 

microvilli to tear film abnormalities262 and dry eye syndromes.263,264 However, to date, no studies 

have been done on the role of the topography of the ocular surface on the wettability and contact 

line pinning during tear film formation and dewetting. The role of microvilli and microplicae in 

the hysteresis of the contact angle was actively downplayed by Holly in 1978, who instead 

attributed it to conformational changes of cell surface molecules from hydrophobic to 
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hydrophilic.102 In the context of interfacial phenomena, we feel it is likely that the presence of an 

amplified surface area for interaction with the tear film may promote its stabilization depending 

on the relative hydrophilicity/hydrophobicity of the surface itself. In other words, if the intrinsic 

nature of the surface is relatively hydrophilic, increasing the surface area through the 

introduction of microplicae will accentuate the hydrophilic nature increasing the likelihood that 

thin aqueous films will wet the surface. This effect has been examined experimentally using 

demixed polymer brushes grafted onto microstructured substrates. By exposing the surface to 

selective solvents, the surface properties are reversibly tuned, and the surface structure amplifies 

the response, enabling the switching between superhydrophilicity and superhydrophobicity.265 

Importantly, the presence of surface topographic features will slow the dewetting process once 

rupture of the tear film has occurred. Topographic features function as “kinetic barriers” and can 

induce “pinning” of the receding contact line, reducing its velocity266. 

 

2. Chemistry of Ocular Surface Cells 

 The cell surface is generally recognized as highly heterogeneous, composed of thousands 

of different lipids, proteins, and carbohydrates that depend on cell type, life stage in the cycle of 

the cell, and state of disease (Figure 8).267 The differential expression of cell surface components 

in the different layers of the corneal epithelium,268 along with its high rate of renewal,269 also 

support a high degree of chemical heterogeneity present within the population. Sharma further 

suggested that heterogeneities in ocular surface chemistry encompassing the size of just one 

epithelial cell could trigger the rupture of the tear film.116,231 Despite the known impact of 

chemical heterogeneity of surfaces on the stability/instability of thin films, there is a paucity of 

information regarding differences in chemical composition across the ocular surface.  

 

C. Opportunities to Exploit the Heterogeneity of the Ocular Surface 

There is a knowledge gap and studies are lacking relating the topographic features of the 

ocular surface cells with the stability of the tear film. Importantly, differences in topographic 

features have been noted in association with ocular surface disease. These intrinsic biophysical 

attributes may be important for determining the stability of the intact tear film and dynamics of 

dewetting once the integrity of the tear film has been compromised. Similarly, the chemical 

characteristics and heterogeneity of the corneal and conjunctival epithelium across the ocular 
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surface need to be further defined, especially the protein and lipid components of the cell 

membranes.  

 

V. RHEOLOGY OF THE TEAR FILM 

A. Rheology and Hydrodynamics 

1. General Concepts 

 Rheology is the study of the flow and deformation of viscoelastic fluids.270 The viscosity 

of Newtonian fluids is not affected by the application of external forces (they lack viscoelastic 

properties).  In contrast, the application of external forces to non-Newtonian fluids results in the 

modulation of their viscosity (they possess viscoelastic properties). Non-Newtonian fluids can be 

further classified as pseudoplastic (shear-thinning), or dilatant (shear-thickening).271 It should be 

noted that viscosity is a term that is distinct from viscoelasticity (see inset V). 

To fully understand the formation and stability of thin liquid films, knowledge of the 

viscoelastic properties of fluids in the vicinity of a contact line is essential. This is because the 

hydrodynamics of wetting/dewetting are controlled in part by the rheological properties of the 

fluid. The viscoelastic properties of the components of the fluid strongly affect thin film 

formation, kinetics of renewal, stability, kinetics of dewetting phenomena, and resistance to 

shear.272 In the case of multilayered films, it has been demonstrated that monolayers of 

viscoelastic surfactants stabilize thin films and decrease the critical thickness for dewetting, 

allowing the formation of a thinner subphase.273 In other words, thin multilayered films will 

intrinsically be more resistant to dewetting if the outermost constituent exposed to air has 

increased viscosity.  

2. Hydrodynamic Models of the Tear Film 

  Hydrodynamics refers broadly to the formation, maintenance, flow, and 

subsequent removal of the tear film on the ocular surface. It includes consideration of tear film 

viscosity, as well as viscoelastic behavior. A detailed account of general tear hydrodynamics can 

be found in the recent review by Braun.274 A variety of mathematical models have been 

subsequently developed,105,222 incorporating differing variables to account for factors that 

influence thin film kinetics, including intermolecular forces,16 time-dependent factors,23 and 

perturbations on the thickness of the tear film.275,276 However, all those models have the intrinsic 

flaw of considering the tear film to behave like water rather than having viscoelastic properties.  
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3. Rheology of Tears 

 Human tears exhibit a shear-thinning viscoelastic (non-Newtonian) behavior that 

prolongs the contact time on open eyes but protects the ocular surface through decreasing 

viscosity during blinking.277 The shearing forces during blinking increase proportionally to the 

thinning of the film.278 These forces may damage the epithelial cell surface and cause painful 

sensations.279 In 1991, Tiffany characterized the viscosity of human tears and found a significant 

difference in the rheological properties between normal and dry eyes.277  

Mucus was initially regarded as the component responsible for the shear-thinning 

behavior of tears280; however, the levels of gel-forming mucins in tear fluid was found to be too 

low,174 and no significant difference in the rheological properties of stimulated and unstimulated 

tears was found, although the amount of mucus was expected to be greater in the unstimulated 

tears.161 Subsequently, other tear constituents have been evaluated as potential candidates for the 

shear-thinning behavior. Single proteins (lysozyme, lactoferrin and sIgA) were found to be 

nonviscoeleastic, whereas mixtures of proteins (lysozyme+lactoferrin and lysozyme+sIgA) 

possessed viscoelastic properties.161 Additional combinations of proteins and peptides have been 

demonstrated to contribute to the viscoelastic properties of tears.281  

Lipids have been identified as the most important determinant of viscoelastic properties 

of the tear film. When lipids were extracted from tears, the viscoelasticity was lost, but returned 

upon reintroduction.282 Lipocalins have also been implicated in contributing to viscoelasticity.283 

This viscoelastic behavior of the TFLL has been attributed to the structuring of the duplex 

film.223 

The first hydrodynamic model evaluating the influence of viscoelasticity on tear film 

rupture was proposed in 2003 by Zhang et al, who observed a stabilizing influence on the rupture 

of the tear film by the increase of viscosity of the tears during the interblink.26 This result was 

corroborated by Gorla and Gorla in a later publication.284 In 2003 Sharma proposed the presence 

of a nonadherent mucus layer in the tear film and suggested that this mucus layer induces 

slippage (the tear film moves at the boundary in contact with the cell surface) during breakup of 

the tear film.257 Zhang et al. modeled the influence of slip on the rupture of the tear film and 

determined a very significant reduction of the breakup time.18  

In summary, the viscoelastic properties of tears contribute to the stabilization of the tear 

film by altering the hydrodynamics of the rupture of the tear film. 
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B. Opportunities to Exploit the Rheology of Tears 

More research on the interfacial rheology of the tear film, specifically the viscoelastic 

properties of the mucus and the TFLL, may provide advances in the development of materials to 

enhance the spreading and stability of the tear film. Although significant efforts have been made 

in the use of more biomimetic parameters for the modeling of the formation, maintenance, and 

breakup of the tear film, no mathematical model integrates all the features that are involved in 

such events. Models incorporating intermolecular interactions, interfacial rheology, slippage, 

duplex lipid films, evaporation, osmotic flow, and lid motion may significantly contribute to our 

understanding of the tear film. Additionally, the impact of ocular surface disease on viscosity, 

viscoelasticity, and the consequences to tear film formation, stability/instability, and dewetting 

phenomena have been minimally investigated.  

 

VI. CONCLUDING REMARKS 

We have presented a review of the literature concerning the characterization of the 

interfacial phenomena of the ocular surface and its implications for formation and the stability of 

the tear film and ocular health. We have emphasized the knowledge gaps concerning the 

physicochemical attributes of the ocular surface and identified controversies regarding the 

elements and events involved in the formation and breakup of the tear film. This review 

identifies a need for further investigations of interfacial phenomena with the possibility that such 

investigations will point to the development of novel endpoints in the assessment of ocular 

surface health, as well as therapeutics for the treatment of ocular surface disorders. 
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LEGENDS 

Figure 1. The ocular surface is a complex system that includes a series of interfaces. It is 
comprised of the superficial cells that line the exposed regions of the eye (corneal epithelium, 
limbus, and conjunctival epithelium), as well as the lid margin and the tear film. The tear film is 
a complex multilayered fluid phase. This figure represents the classical three-layered model, 
composed of a mucin-gel layer adjacent to the epithelial surface, an aqueous layer containing 
mucin, and other soluble proteins and a thin lipid film on the outermost surface. 

Figure 2. A large group of ocular surface disorders can lead to abnormalities in the interfacial 
properties of the ocular surface that interact with each other through multiple feedback loops. 
Ocular surface disorders interfere with the production of constituents of the tear film, as well as 
the blinking, dynamics of tear drainage, and/or the rate of tear evaporation. In turn, these 
disturbances modify the interfacial properties of the ocular surface that are essential for the 
formation and stability of the tear film. The disruption of the tear film can aggravate a given 
ocular surface disorder.  

Figure 3. The active study of interfacial phenomena in the ocular surface started in the late 
1960s, and developed during the 1970s and 1980s, but has subsided significantly since the 
1990s. 

Figure 4. A property used to characterize the wetting of a liquid on a solid is the contact angle, 
measured at the point of contact (called the contact line) between a liquid and the surface. a) The 
value of the contact angle is a consequence of the equilibrium of surface forces at the contact 
line, and provides a way to characterize the wettability of a surface. b) If the liquid used is water, 
and the contact angle is high, the surface has hydrophobic characteristics. c) If the measured 
contact angle is low, the surface has hydrophilic characteristics. Θ= contact angle; σL=surface 
tension of the liquid; σS= surface energy of the solid; σSL= interfacial energy between the liquid 
and the solid. 

Figure 5. Model of the tear film lipid layer (TFLL). McCulley and Shine introduced a duplex 
film structure for the tear film lipid layer, with a monolayer of polar lipids (polar phase) between 
the mucoaqueous and a thick nonpolar phase. P= phospholipids; TG= triglycerides; WE= waxy 
esters; C= cerebrosides; HC= hydrocarbons; F= free fatty acids; CE= cholesteryl esters. 
Modified from McCulley JP, Shine W. Trans Am Ophthalmol Soc 1997;95:79, and printed with 
permission of the American Ophthalmological Society (reference 30). 

Figure 6. The interaction between fluid films and heterogeneous surfaces. a) For wetting 
systems, the presence of topography and roughness can alter the value of contact angle. In the 
Wenzel model, the liquid follows the surface topography, and the contact angle depends on the 
“roughness” (surface area/projected area), increasing for intrinsically hydrophobic substrates and 
decreasing for intrinsically hydrophilic substrates. b) In the Cassie-Baxter state, the presence of 
chemical heterogeneities (pictured in the figure as different colors) alters the value of the contact 
angle, representing an average of the distinct spatially discrete regions. Θ= contact angle; σL= 
surface tension of the liquid; σS= surface energy of the solid; σSL= interfacial energy between the 
liquid and the solid. 
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Figure 7. The apical surface of the ocular epithelia presents a rich topography. a) Transmission 
electron micrograph (TEM) section of normal conjunctiva, showing the surface (S) covered with 
microvilli. The image shows the presence of goblet cells (g) and nuclei of epithelial cells (n). b) 
Details of microvilli (mv) from the surface of a normal conjunctiva. The hair-like glycocalyx (h) 
extending from their surfaces are shown. Reproduced from Dilly PN, Mackie IA.Br J 
Ophthalmol 1981;65(12):833-842, copyright 1981, with permission from BMJ Publishing Group 
Ltd (reference 107). 

Figure 8. The cell surface is highly heterogeneous, composed of different lipids, proteins, and 
carbohydrates. The section of the cell surface shows lipids (pink), major proteins (blue), and 
carbohydrates (orange). The heterogeneity of the lipid component of the cell membrane is 
omitted for simplicity. Adapted by permission from Macmillan Publishers Ltd from: Mager MD, 
LaPointe V, Stevens MM. Nature Chemistry 2011;3(8):582-589. Copyright 2011 (reference 
267). 
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INSET I:  Young’s equation: 

 

 
 

θ: Young’s contact angle 

γSL:  Interfacial energy between the solid 

and the liquid 

γSG:  Surface energy of the solid 

γLG:  Surface energy of the liquid.   
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INSET II:  Marangoni Flow:  

 

Whenever there are spatially discrete differences in surfactant concentrations 

and/or temperature there are associated spatially discrete differences in surface 

tension.  These differences induce fluid flow from lowest surface tension to 

highest surface tension regions.  This is what happens in creation of “legs (or 

tears) of wine” that is observed after swirling a glass of red wine. In this case 

alcohol reduces the surface tension is first evaporated from the thinnest aspect 

of a continuous film nearest the rim of the glass.  The evaporation decreases the 

alcohol content near the rim and is at a relatively higher concentration in the 

lower (bulk) of the film adjacent to the now settled wine.  Fluid therefore flows 

up to the regions located closer to the rim of the glass that contain less alcohol 

on a per volume basis (cause of evaporation).  When there is enough fluid 

present for gravity to overcome Marangoni flow, the drop flows down creating 

the “legs”.  This same phenomenon occurs on the ocular surface in cases where 

there are spatial discontinuities present as regards surface chemistry, topography 

and temperature. When the lids are open, surfactant is greater in the lower 

dependent portion of the tear film, Marangoni flow therefore occurs upward.  
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INSET III:  Spreading coefficient. 

 

A liquid B over a solid A in a medium C has a spreading 

coefficient: 

 

 
 

SB/AC = Spreading coefficient 

γAC = Surface energy of solid A 

γAB = Interfacial energy between A and B 

γBC = Surface tension of liquid B 

 

If SB/AC ≥ 0, the liquid spreads spontaneously over the solid 

If SB/AC < 0, the liquid does not completely wet the solid 
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INSET IV:  Wenzel and Cassie-Baxter models 

 

Wenzel equation: 

 

 
 

θW:  Apparent contact angle 

θY:  Young’s contact angle 

r:  Roughness ratio.  Total area of the surface 

divided by the projected area (r > 1)  

 

 Cassie-Baxter equation  

 

 
θC:  Apparent contact angle 

θYi:  Young’s contact angle of chemistry i 

xi:  Surface fraction of chemistry i 
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INSET V:  Viscosity and viscoelasticity 
 
Viscosity:  Term that refers to the resistance to flow.  It is 
a measure of the internal friction of a fluid. This friction 
becomes apparent when a layer of fluid is made to move 
in relation to another layer. The greater the friction, the 
greater the amount of force (shear) required to cause this 
movement. Highly viscous fluids, therefore, require more 
force to move than less viscous materials. 
 
Viscoelasticity:  Property of materials that exhibit both 
viscous and elastic characteristics when undergoing 
deformation. A force must be applied to a fluid to 
demonstrate viscoelasticity and the viscosity of changes 
as a result of this.  As paint is applied or ketchup is 
squeezed out of a bottle, its viscosity decreases (shear-
thinning).  Concentrated suspensions of corn starch 
present a resistance to passage that increases 
proportionally with the speed of finger movement (shear-
thickening). 




