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Abstract

There are conflicting results regarding how APOE genotype, the strongest genetic risk factor 

for Alzheimer’s disease (AD), influences spatial and longitudinal amyloid-β (Aβ) deposition 

and its impact on the selection of biomarker cut-points. In our study, we sought to determine 

the impact of APOE genotype on cross-sectional and longitudinal florbetapir positron emission 

tomography (PET) amyloid measures and its impact in classification of patients and interpretation 

of clinical cohort results. We included 1,019 and 1,072 Alzheimer’s Disease Neuroimaging 

Initiative participants with cerebrospinal fluid Aβ1–42 and florbetapir PET values, respectively. 

623 of these subjects had a second florbetapir PET scans two years after the baseline visit. 

We evaluated the effect of APOE genotype on Aβ distribution pattern, pathological biomarker 

cut-points, cross-sectional clinical associations with Aβ load, and longitudinal Aβ deposition 

rate measured using florbetapir PET scans. 1) APOE ε4 genotype influences brain amyloid 
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deposition pattern; 2) APOE ε4 genotype does not modify Aβ biomarker cut-points estimated 

using unsupervised mixture modeling methods if white matter and brainstem references are 

used (but not when cerebellum is used as a reference); 3) findings of large differences in Aβ 
biomarker value differences based on APOE genotype are due to increased probability of having 

AD neuropathology and are most significant in mild cognitive impairment subjects; and 4) APOE 
genotype and age (but not gender) were associated with increased Aβ deposition rate. APOE 
ε4 carrier status affects rate and location of brain Aβ deposition but does not affect choice of 

biomarker cut-points if adequate references are selected for florbetapir PET processing.

Keywords

Alzheimer’s disease; amyloid-β; cerebrospinal fluid; diagnosis; mild cognitive impairment; 
positron emission tomography

INTRODUCTION

The presence of the apolipoprotein E gene (APOE) ε4 allele is considered to be the 

strongest sporadic genetic risk factor for Alzheimer’s disease (AD). The presence of one 

or two APOE ε4 allele copies leads to earlier amyloid-β (Aβ) deposition as measured by 

cerebrospinal fluid (CSF) and positron emission tomography (PET) Aβ biomarkers [1, 2], 

but not to brain structural changes in the preclinical disease phase [3]. In addition, CSF 

Aβ1–42 decrease seems to precede an increase in Aβ PET standardized uptake value ratio 

(SUVR) [4], although CSF and PET Aβ measures show a high agreement to classify healthy 

and cognitively impaired subjects based on amyloid pathology [5, 6].

Previous studies have reported that APOE genotype modifies the association between CSF 

Aβ1–42 values and PET SUVRs in the same subjects [6, 7]. This could indicate that based on 

the APOE genotype brain amyloid deposition is captured differently by these two different 

Aβ amyloid biomarkers. The gold standard to assess amyloid brain deposition is through 

neuropathology and several studies have shown that CSF Aβ1–42 values [8] and Aβ PET 

measures [9] are strongly correlated with brain amyloid deposits. However, there are no 

large studies with CSF and PET amyloid measures obtained at the same time, close to time 

of death, and with quantitative neuropathological brain amyloid deposition assessment.

In addition, even if the association between APOE genotype and AD risk has been 

consistently replicated, the results regarding its association with biomarker measures are 

conflicting. The results in clinically diagnosed AD subjects on the effects of APOE genotype 

on Aβ PET burden [10–13] are inconsistent, and there is additional conflicting data on 

how APOE ε4 carrier status affects the overall Aβ burden and deposition in cognitively 

impaired subjects [11, 14–16]. Contradictory results could be related to sample selection, 

analytical methods, and the disease stage at which patients are recruited. Finally, there is 

limited evidence on spatial differences in APOE-related Aβ PET distribution patterns, based 

on small samples of clinically diagnosed AD subjects [12, 13]. For all of the analyses, it is 

important to account for age in the model of biomarker changes, since age is the strongest 

demographic AD risk factor. This important adjustment for dementia biomarker research 
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would call for studies with larger sample sizes and detailed imaging as well as genotyping 

approaches.

Based on the described conflicting results, we aimed to investigate in a large biomarker 

cohort with longitudinal CSF and PET Aβ biomarkers measurements if APOE genotype 

differentially affects: 1) Aβ spatial distribution patterns, 2) Aβ biomarker cut-points, 3) Aβ 
burden in the different clinically defined groups, and 4) Aβ PET deposition rate.

MATERIAL AND METHODS

Subjects

1,396 Alzheimer’s Disease Neuroimaging Initiative (ADNI) participants with CSF Aβ1–42 

(n = 1,019) and/or florbetapir PET scans (n = 1,072) were included in this study (Table 

1). Cognitively normal (CN) subjects with and without subjective memory complaints were 

analyzed together in the same group. A diagnosis of mild cognitive impairment (MCI) 

and AD was established as previously described [17]. Data was downloaded August 2015. 

The ADNI has been extensively reviewed elsewhere [18] (http://www.adni-info.org and 

Supplementary Methods).

Standard protocol approvals, registrations, and patient consents

Protocols were submitted to Institutional Review Boards for each participating location 

and their written unconditional approval obtained and submitted to Regulatory Affairs 

at the ADNI Coordinating Center (ADNI-CC) prior to commencement of the study. 

Written informed consent for the study was obtained from all subjects and/or authorized 

representatives.

CSF collection and Aβ1–42 measurement

CSF samples were processed as previously described [19] (http://www.adni-info.org/ and 

Supplementary Methods). Aβ1–42, was measured using the multiplex xMAP Luminex 

platform (Luminex Corp, Austin, TX) with Innogenetics (INNO-BIA AlzBio3; Ghent, 

Belgium; for research use–only reagents) immunoassay kit–based reagents.

Florbetapir PET scans processing

As previously described [6], we included florbetapir adjusted SUVRs developed in two 

different laboratories, i.e., the University of Utah (UU) and the University of California (UC) 

Berkeley.

The UU laboratory processed images using 3-dimensional stereotactic surface projections 

computed using Neurostat [20]. PET scans were downloaded from LONI using the post

processed group 4 images, i.e., coregistered and averaged frames, standardized image 

orientation and voxel size, and uniform resolution smoothed to 8 mm. Neurostat aligned 

the brain images along the AC-PC line and non-linearly warped the image into standard 

Talairach space. Longitudinal scans, for each subject, were coregistered to the baseline scan 

and a multi-step normalization was used to create a mean template. A peak pixel template 

was created from the mean template and applied to intra-subject serial scans to produce 
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surface projection maps, SSPs. Neurostat pre-defined brain regions in Talairach space were 

used to calculate the ROI regional values based on the SSP maps. Florbetapir images were 

normalized using both cerebellar and white matter (WM) values. Neurostat automatically 

defined the averaged cerebellar value. WM values were determined by sampling pixels from 

the amyloid image, in Talairach-space, starting at a much greater depth, thus bypassing 

the cortical ribbon. The Neurostat generated global value was used for the whole brain 

WM value. Averaged regional values from medial and lateral frontal, temporal and parietal 

cortices were normalized either using the cerebellum (CB) or WM as reference regions, to 

obtain the average CB and WM measures, respectively.

UC Berkeley laboratory used SPM5 software to co-register the florbetapir PET scans 

with the corresponding MRI scans, that previously were segmented and parcellated with 

Freesurfer (v 4.5) as described [21]. Fully pre-processed format (series description in LONI 

Advanced Search: “AV45 Coreg, Avg, Std Img and Vox Siz, Uniform Resolution”) were 

downloaded. Each subject’s first florbetapir image was coregistered using SPM5 to that 

subject’s MRI image (series description: ADNI 1scans *N3;* and ADNI GO/2 scans *N3*) 

that was closest in time to the florbetapir scan. Freesurfer processing was carried out 

to skull-strip, segment, and delineate cortical and subcortical regions in all MRI scans. 

The UC Berkeley laboratory estimated florbetapir means from grey matter in subregions 

were extracted within 4 large regions (frontal, anterior/posterior cingulate, lateral parietal, 

lateral temporal) [22]. Conventional (nonweighted) average of whole CB was selected as 

reference for the summary CB measure. Means from three Freesurfer-defined reference 

regions (whole CB, brainstem/pons, and eroded subcortical WM) were selected as reference 

for the summary composite measure. In addition, uptake values for 19 regions of interest 

(ROIs) in each brain hemispheres were estimated using Freesurfer software defined areas 

[23], and normalized using whole CB and composite reference.

623 and 621 participants had a second scan processed after a two-year follow-up at the UU 

and UC Berkeley laboratories, respectively.

Statistical analysis

Cut-points were estimated using an unsupervised mixture modeling approach that 

empirically estimates the presence of different populations in the data [6, 24]. To compare 

the cut-points between the APOE ε4 carrier and non-carrier groups, we calculated 1,000 

bootstrapped samples with replacement for each APOE group and calculated the cut-point in 

each of the 1,000 bootstrapped samples. Linear regression models were applied to analyze 

associations with quantitative variables, as was the case of the comparison of amyloid 

burden in the different ROIs. Power transformations were applied as needed to normalize 

data distributions. A squared SUVR term was included to account for the nonlinear rate of 

amyloid deposition. False discovery rate (FDR) Benjamini-Hochberg correction was applied 

when multiple non hypothesis-based comparisons were performed. Results were considered 

significant if two-tailed p-values were ≤0.05. Analyses were performed using R v. 3.2.2.
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RESULTS

Florbetapir PET deposition patterns based on APOE genotype

APOE ε4 carriers showed higher amyloid burden in all studied PET ROIs compared to 

non-carriers in analyses adjusted for age and clinical diagnosis (p < 0.0001 for all areas). 

However, when adjusting for total amyloid burden instead of clinical diagnosis, APOE ε4 

non-carriers showed higher adjusted SUVRs for both CB and composite summary in two of 

the three parietal lobe regions compared to APOE ε4 carriers who showed higher adjusted 

SUVRs in anterior cingulate and frontal regions (Table 2).

Unbiased evaluation of Aβ biomarker cut-points based on APOE genotype

The distribution of the 1,000 calculated CSF Aβ1–42 and florbetapir PET cut-points 

overlapped between APOE ε4 carriers and non-carriers for the CSF Aβ1–42 values and 

the PET SUVRs when using WM and brainstem as references (average WM and summary 

composite) (Supplementary Figure 1), which lead to insignificant differences in cut-point 

values (<0.6%) between genotypes and less than 0.4% of the subjects were reclassified 

(Supplementary Table 1). Conversely, cut-points for PET indices with CB as reference 

(average CB and summary CB) showed a non-overlapping distribution, differing 3.2–7.9% 

based on APOE ε4 carrier status, which led to a reclassification of 2.5 to 5.6% of the 

participants.

Cross-sectional associations of Aβ biomarker measures

Figure 1A and B depicts the distribution of CSF Aβ1–42 and the summary composite SUVR 

values in the complete cohort as well as stratified by APOE ε4 carrier status (Supplementary 

Figure 2 shows all biomarkers). Most of the Aβ biomarker measures showed bimodal 

distributions for the three groups, although the frequencies, depicted by the height of the 

peaks, were reversed in APOE ε4 carrier versus non-carrier groups. When further stratified 

by clinical diagnosis (Fig. 1C–H), subjects diagnosed as MCI and AD had more pathological 

Aβ biomarker values and presented a higher peak in the pathological range (higher for 

PET adjusted SUVRs and lower for CSF Aβ1–42 values) than CN participants indicating an 

increase of amyloid biomarker positivity across diagnostic categories.

In a multivariate model, we evaluated the association between different APOE genotypes 

and Aβ biomarker values (Table 3). Overall the presence of one or more ε4 alleles was 

associated with increased Aβ burden and the ε2 allele was only associated with a lower 

amyloid burden in the absence of the ε4 allele. An interaction with clinical diagnosis 

was observed only in the APOE ε4 carrier/non-carrier model (Supplementary Table 2). 

Interestingly, AD APOE ε4 non-carriers showed a bimodal distribution of CSF and PET 

Aβ values that was not present in APOE ε4 carriers, while MCI subjects showed different 

frequencies of the bimodal distribution peaks based on APOE ε4 carrier status (Fig. 1C–H). 

Older age and female gender were also associated with pathological Aβ biomarker values.

Longitudinal Aβ burden changes associated with APOE

The baseline PET SUVRs plotted as a function of yearly changes showed the characteristic 

inverted “u” shape (Fig. 2). We observed that APOE ε4 carriers (one or two copies) showed 
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a statistically significant upward shift of the values in three of the four analyses indicating 

that this group has a faster Aβ deposition rate compared to APOE ε4 non-carriers when 

accounting for baseline biomarker values (Table 3), whereas the was no significant effect for 

the ε2 allele. Gender was not associated with longitudinal florbetapir PET changes in any of 

the analyses, whereas age was associated with increased deposition rates for measures that 

included WM as a reference.

DISCUSSION

In this study, we found that 1) APOE ε4 influences brain amyloid deposition pattern, 

2) APOE ε4 does not modify Aβ biomarker cut-points estimated using unsupervised 

mixture modeling methods when WM and brainstem were included as references, 3) 

large differences in Aβ biomarker values based on APOE genotype are due to increased 

probability of having AD neuropathology and are most significant in MCI subjects and 4) 

APOE ε4 and age (but not gender) were associated with Aβ deposition rate.

Aβ distribution patterns

Different brain Aβ deposition patterns based on APOE genotype were only identified when 

the analysis was adjusted for total Aβ burden. Two previous studies, including 52 and 

84 AD subjects described increased Aβ PET values in frontal and lateral frontotemporal 

regions [12, 13] in APOE ε4 carriers whereas a third one described overall greater diffuse 

cortical Aβ PET values in APOE ε4 carriers [25]. Subject selection criteria and analytical 

approaches can explain differences between our results and these studies: two studies 

included only demented subjects [13], when APOE ε4 carriers and non-carriers are close to 

the biomarker plateaus, in addition one of the former studies included atypical AD cases. 

The third study did include CN subjects for a wide range of ages, but did not adjust for 

global amyloid burden [25].

There are several explanations for discordant results between the adjusted and unadjusted 

models. Because the APOE ε4 allele is such a strong risk factor for sporadic AD, the 

odds of having preclinical AD pathology in CN subjects and of having underlying AD 

pathology in cognitively impaired subjects is increased and therefore PET SUVRs may be 

higher [2, 26, 27]. Previously, APOE genotype has been described to be associated with 

different patterns of cognitive impairment and brain atrophy [28] with varying frequencies in 

different neuropathologically defined AD subtypes [29]. Therefore, it is not surprising that 

APOE genotype is associated with differences in amyloid deposition. This might indicate 

that vulnerability varies based on the presence or absence of APOE ε4 and this can lead 

to differences in clinical expression. Nevertheless, the putative mechanisms suggested to 

lead to increased amyloid deposition in AD, such as decreased amyloid clearance [30], and 

the association of CSF ApoE levels with cognitive and MRI structural changes [31] do not 

explain why there is a preferential spatial vulnerability associated with APOE genotype.

Selections of Aβ biomarker cut-points based on APOE genotype

The mixture modeling analysis that we applied is an unsupervised, unbiased statistical 

approach to study independently the effect of APOE genotype with each studied Aβ 
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biomarkers cut-points, which has been successfully applied to estimate Aβ biomarker cut

points and has shown less than 1% difference with previous cut-points estimated based on 

neuropathological cases [6, 9, 19]. This approach has not been applied separately to APOE 
ε4 carriers and non-carriers.

Only CB-referenced florbetapir PET values showed differences in the distribution of 

the cut-points based on APOE genotype, which led to 2.5–5.6% of the participants 

being reclassified, whereas similar cut-points (<0.6% difference) were obtained for WM

referenced florbetapir PET and CSF Aβ1–42 values in APOE ε4 carriers and non-carriers.

A previous study analyzed the effect of APOE genotype on CSF and PET amyloid values 

[32] reporting no effects of APOE genotype using a different approach. This study was 

conditioned by the a priori choice of using CSF Aβ1–42 cut-points to stratify PET Aβ values, 

therefore conditioning the comparison of PET values based on APOE genotype and did not 

analyze each of these Aβ biomarkers independently. In addition, the previous study looked 

at differences based on APOE genotype and not at changes in cut-points values. Last, it 

might have been underpowered to detect differences as the population with PET values 

included only 165 subjects and only one PET processing pipeline was evaluated.

There are several biological and technical factors such as acquisition, instrument, and image 

processing factors that can lead to differences between studies, which could explain why 

florbetapir PET cut-points were only affected when CB was selected as a reference [33]. 

Recent studies involving the same study population have evaluated differences based on 

the selected reference region to calculate Aβ PET SUVRs [6, 34, 35]. Although there is a 

high correlation between cross-sectional amyloid measures using different pipelines on the 

same PET scans [6] and between scans of the same subjects obtained using different ligands 

[36], this is not the case for longitudinal changes [6, 34]. CB has been the most commonly 

used reference to calculate SUVRs, but it has several potential drawbacks [33, 35]: it is 

located close to the scanner’s field of view limit (and therefore susceptible to truncation and 

scatter-related noise), has low signal level (cerebellar gray matter), and Aβ deposits in CB 

are present in the latest Aβ deposition stages, Thal phase 5 [37]. The latter would lead to 

lower SUVR values in the most advanced cases due to the presence of Aβ deposition in the 

CB.

Using WM as the reference region has been compared to CB showing that reference 

selection may be important to detect alterations that are more likely linked to AD 

pathobiology [34] and increase statistical power to detect longitudinal changes [35]. Our 

results regarding Aβ PET cut-points add further evidence for the use of WM references 

when florbetapir scans are processed.

Cross-sectional associations with baseline biomarker values

Associations with APOE genotype have been reported to vary depending on the clinical 

status of the studied subjects. Whereas CN and MCI APOE ε4 carriers consistently show 

higher Aβ PET SUVRs than APOE ε4 non-carriers, studies that included AD participants 

have described higher Aβ PET SUVRs in APOE ε4 carriers [10], higher Aβ PET SUVRs in 

APOE ε4 non-carriers [12], or a lack of differences [11].
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Our results showed that in the different groups stratified by clinical diagnosis APOE 
ε4 carriers had more pathological Aβ biomarker values compared to APOE ε4 non

carriers with patterns that clearly showed bimodal distributions belonging to two different 

populations, one with normal and another with pathological Aβ values. MCI and AD APOE 
ε4 non-carriers showed a large variance in Aβ biomarker values with two distinct peaks 

(Fig. 1E–H), whereas only MCI APOE ε4 carriers showed a low frequency for the peak 

in the normal range of values and no bimodal distribution was observed in AD APOE ε4 

carriers. Interestingly, the peaks in the pathological Aβ range had a similar mode in APOE 
ε4 carriers and non-carriers, indicating a similar distribution of the values in this population.

We infer that these observations are the consequence of Aβ biomarker characteristics and/or 

clinical misdiagnosis. Based on the current AD biomarker model [26], it is expected that 

MCI and AD subjects with underlying AD pathology already have Aβ biomarker values 

in the pathological ranges, because AD pathology in described autopsy assessed subjects 

begins decades before the onset of cognitive decline. Therefore, those cognitively impaired 

individuals diagnosed with MCI and AD with values in the normal range would likely not 

have AD pathology. Clinical misdiagnosis has been observed in clinico-pathological studies 

of subjects with a clinical diagnosis of AD [38] and there are several pathologies that can 

lead to MCI. Factors described above and differences in selection criteria and analytical 

approaches can explain divergent results previously observed for AD Aβ biomarker studies.

Longitudinal Aβ deposition

We found a faster amyloid deposition in APOE ε4 carriers, in a model that accounted 

for baseline amyloid levels and non-linear trajectories. There have been conflicting results 

regarding the association between APOE genotype and longitudinal amyloid biomarker 

changes [15, 39–42] that can be attributed to analytical and statistical aspects. For example, 

CSF Aβ1–42 values reach a plateau earlier than PET amyloid values [6]. Therefore, it is not 

surprising that a high percentage of elderly AD and control APOE ε4 carriers have reached 

this plateau and therefore do not show any further decrease in CSF Aβ1–42 [41]. While PET 

SUVRs might reach a plateau at later stage, there is still a decreased amyloid deposition 

rate with increasing brain amyloid load [6, 15, 40]. Another important factor is the inclusion 

of baseline values when longitudinal changes are evaluated, because these lead to a large 

reduction in APOE genotype associated changes [40].

Conclusions

Our results indicate that APOE ε4 carrier status is associated with a preferential distribution 

of amyloid in the frontal cortex and anterior cingulate and leads to increased rate of 

amyloid deposition, which agrees with cross-sectional findings of higher amyloid burden 

in ε4 carriers, without affecting Aβ biomarker cut-points when adequate PET references 

are used in the processing pipeline. The neuropathological heterogeneity underlying subjects 

classified based on a clinical diagnosis can explain conflicting findings regarding APOE 
associations found in different studies.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Cross-sectional Aβ biomarker values. Density distribution of Aβ amyloid biomarker values 

in the whole cohort (red) and stratified by APOE ε4 carrier status (green for non-carriers and 

blue for carriers) for the summary composite florbetapir (A) and CSF Aβ1–42 values (B). 

Distribution of summary composite florbetapir and CSF CSF Aβ1–42 values in the different 

clinical groups in the different clinical groups (C-H). The vertical red line represents the 

cut-point estimated using the whole sample. CB, cerebellum; CSF, cerebrospinal fluid; WM, 

white matter.
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Fig. 2. 
Longitudinal Aβ biomarker deposition. Baseline PET SUVR values (x-axis) versus 

longitudinal PET SUVR changes (y-axis) based on APOE genotype. Bl, baseline; CB, 

cerebellum; CSF, cerebrospinal fluid; SUVR, standardized uptake value ratio; WM, white 

matter.

Toledo et al. Page 14

J Alzheimers Dis. Author manuscript; available in PMC 2021 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Toledo et al. Page 15

Table 1

Demographics of the sample

Participants (n = 1,396)

CSF Aβ1–42 (%) 73.0%

PET scan (%) 76.8%

Age at baseline (y)a 73.3 (7.2)

Gender (% male) 55.4%

Diagnosis 330 CN no SMC

103 SMC

667 MCI

296 AD

APOE ε4 carriers (%) 54.9%

AV-45 Average CBb 1.25 (1.13–1.51)

AV-45 Average WMb 0.71 (0.65–0.84)

AV-45 Summary CBb 1.13 (1.01–1.39)

AV-45 Summary Compositeb 0.80 (0.71–0.99)

Aβ1–42 (pg/mL)b 157.5 (130.0–220.0)

AD, Alzheimer disease; CB, cerebellum; CN, cognitively normal; CSF, cerebrospinal fluid; Coef., coefficient; MCI, mild cognitive impairment; 
SE, standard deviation; WM, white matter.
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