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ABSTRACT

Motivation: Genome-wide association studies (GWAS) have largely

failed to identify most of the genetic basis of highly heritable diseases

and complex traits. Recent work has suggested this could be because

many genetic variants, each with individually small effects, compose

their genetic architecture, limiting the power of GWAS, given currently

obtainable sample sizes. In this scenario, Bonferroni-derived thresh-

olds are severely underpowered to detect the vast majority of associ-

ations. Local false discovery rate (fdr) methods provide more power to

detect non-null associations, but implicit assumptions about the ex-

changeability of single nucleotide polymorphisms (SNPs) limit their

ability to discover non-null loci.

Methods: We propose a novel covariate-modulated local false dis-

covery rate (cmfdr) that incorporates prior information about gene

element–based functional annotations of SNPs, so that SNPs from

categories enriched for non-null associations have a lower fdr for a

given value of a test statistic than SNPs in unenriched categories. This

readjustment of fdr based on functional annotations is achieved em-

pirically by fitting a covariate-modulated parametric two-group mixture

model. The proposed cmfdr methodology is applied to a large Crohn’s

disease GWAS.

Results: Use of cmfdr dramatically improves power, e.g. increasing

the number of loci declared significant at the 0.05 fdr level by a factor

of 5.4. We also demonstrate that SNPs were declared significant using

cmfdr compared with usual fdr replicate in much higher numbers,

while maintaining similar replication rates for a given fdr cutoff in de

novo samples, using the eight Crohn’s disease substudies as inde-

pendent training and test datasets.

Availability an implementation: https://sites.google.com/site/covmo

dfdr/

Contact: wes.stat@gmail.com

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Large-scale hypothesis testing has emerged as a critical compo-
nent of genetic analysis with the advent of high-throughput

microarrays (Efron and Tibshirani, 2002). For example, it is

now possible to survey a large number of single nucleotide poly-

morphisms (SNPs) across the entire genome in an attempt to
locate genetic variations associated with trait variability or dis-

ease risk. An advantage of large-scale genome-wide association

studies (GWAS) is the ability to discover the potential effect of
any number of variants across the genome, without making

strong a priori hypotheses about the subset of the genome to

consider (Risch and Merikangas, 1996). A disadvantage is that

a large number of false positives may occur when many hypoth-
esis tests are conducted simultaneously (Devlin and Roeder,

1999). Consequently, modern GWAS have adopted a stringent

Bonferroni-derived multiple testing threshold of P � 5� 10�8

for declaring individual SNP associations significant.
Unfortunately, these GWAS have largely failed to identify sub-

stantial portions of the genetic basis of highly heritable diseases

and complex traits (Collins, 2010; Manolio et al., 2009). Recent

work has strongly suggested this could be because many genetic
variants, each with individually small effects, compose their gen-

etic architecture, limiting the power of GWAS to detect true

associations, given currently obtainable sample sizes (Yang

et al., 2010). This scenario is especially damaging to power if
all SNPs are treated as a priori exchangeable and hence equally

likely to be related to the phenotype of interest, an implicit as-

sumption of Bonferroni thresholds and false discovery rate
(FDR) control (Benjamini and Hochberg, 1995).

Other work has placed an emphasis on characterizing the bio-
logical function of genetic variants across the genome

(Torkamani et al., 2011). Typically, this work has focused on

understanding how differences in the protein-coding region of

genes may damage or alter the corresponding protein structure.
However, recent efforts have attempted to characterize the po-

tential effect of variants within non-coding elements, which may

alter the timing, amount or location of gene expression

(ENCODE Consortium, 2012). Emerging from this research is
a picture of widespread heterogeneity in the potential biological

functionality of variants across the genome. A number of re-

searchers have suggested that this heterogeneity of function*To whom correspondence should be addressed
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translates to association studies, with certain genetic elements or
categories of variants containing more or less trait-associated
variants (Hindorff et al., 2009; Schork et al., 2013; Smith et al.,

2011; Yang et al., 2011). Given this, it is potentially of use to
leverage functional annotations or other locus-specific covariates
to improve gene discovery and replication of associations in de

novo samples.
Classical multiple-comparison procedures, such as the

Bonferroni correction, control the family-wise error rate
(FWER) or the probability of committing one or more Type I

errors in a family of hypothesis tests. These procedures tend to be
underpowered in large-scale testing paradigms (Efron, 2007). In
other words, FWER procedures can be excessively conservative

when thousands or millions of cases are tested. Benjamini and
Hochberg (1995) proposed an alternative approach to Type I
error control termed the FDR, defined as the expected propor-

tion of errors among the rejected hypotheses. Variants of their
algorithm are applied to P-values of test statistics (null hypoth-
esis tail probabilities) from many tests to control FDR to a

specified level under various conditions. Efron and Tibshirani
(2002) developed an extension of FDR called the local false dis-
covery rate (fdr) from an empirical Bayes point of view, defining

fdr as the posterior probability that the null hypothesis is true,
given the observed test statistic. The empirical Bayes approach to
fdr is closely related to the Benjamini and Hochberg (1995) al-

gorithm for FDR control (Efron and Tibshirani, 2002).
These groundbreaking methodologies for controlling multipli-

city under large-scale hypothesis testing have received

widespread attention and development (Brown et al., 2005;
Efron, 2007; Ferkingstad et al., 2008; Genovese et al., 2002;
Lawyer et al., 2009; Lewinger et al., 2007; Miller et al., 2001;

Ploner et al., 2006; Sun et al., 2006; Tusher et al., 2001). Lewinger
et al. (2007) proposed a mixture model of non-central �2 test
statistics, where the probability of being associated with a pheno-

type (having a non-centrality parameter different from zero) de-
pends on multiple covariates. Ferkingstad et al. (2008) proposed
an estimator that allows for modulating the fdr of each null

hypothesis based on external covariates. If fdr depends on
levels of a measured covariate, then the exchangeability assump-
tion implicit in the definition of fdr is not optimal, and sizeable

gains in power can be realized by accounting for this dependence
(Efron, 2010; Sun et al., 2006). The key technique to account for
the dependence of fdr on the covariate x in the approach of

Ferkingstad et al. (2008) was to bin the data into B sets according
to ordered values of x. The assumption was that the influence of
x on the posterior probability is nearly constant in each bin if

bins are small enough (in practice, B ¼ 10 to 20). The fdr is then
estimated in each bin, possibly with smoothing across the bins.
This approach works best for one covariate and becomes imprac-

tical as the number of covariates increases. It has been applied to
large-scale testing of neuroimaging data (Lawyer et al., 2009).
In prior work, we have developed a scheme to assign gene

element–based functional annotations for SNPs genome-wide,
which takes into account the locus–locus correlations [linkage
disequilibrium (LD)] that GWAS depend on for whole genome

coverage (Schork et al., 2013). This LD-weighted annotation
scheme provides multiple scores for each SNP in several genic
categories, including exon, intron, 50 untranslated regions

(50UTR) and 30 untranslated region (30UTR). Scores incorporate

not only the category of a given variant but also the categories of

all variants for which it is in LD (correlated with). Intergenic

SNPs are defined as having zero scores in all functional cate-

gories and being4100kb away from a protein-coding gene, pro-

viding a hypothesized ‘null’ collection. Using these functional

annotations and summary statistics from 14 large GWAS, we

showed that test statistics resulting from SNPs that are in LD

with the 50UTR of genes show the largest abundance of associ-

ations, while SNPs in LD with exons and the 30UTR are also

enriched. SNPs in LD with introns are modestly enriched and

intergenic SNPs show a depletion of associations, relative to the

average SNP (Schork et al., 2013). A more detailed description of

how the LD-weighted genic annotations were produced is given

in the Supplementary Materials.

This situation is illustrated in Fig. 1, which displays Q–Q plots

of � log10 transformed P-values from a GWAS of Crohn’s

Disease (CD) of 51 109 subjects, obtained through a publicly

accessible database (Franke et al., 2010). Enrichment for true

associations is expressed as a leftward deflection of the Q–Q

plots stratified by genic category, representing an overabundance

of low P-values compared with that expected under the global

null hypothesis of no associations. Leftward deflections are dir-

ectly related to decreased fdr for a given P-value threshold. The

50UTR SNPs are most enriched, followed by exons, 30UTR and

introns. Intergenic SNPs are impoverished for true effects. These

results were consistent across all assessed phenotypes (Schork

et al., 2013) and strongly suggest that all SNPs should not be

treated as a priori exchangeable for purposes of hypothesis test-

ing but that certain categories are much more likely to show an

association.
The current article leverages the information available in genic

annotation categories for large-scale GWAS hypothesis testing

Fig. 1. Q–Q plot of enrichment by functional annotation category for

CD. The x-axis displays �log10 transformed empirical P-values, and the

y-axis the -log10 transformed nominal P-values
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by presenting a novel, fully Bayesian approach for generalized
covariate-modulated local false discovery rate (cmfdr) estima-

tion, implemented using a Markov chain Monte Carlo

(MCMC) sampling algorithm. Through this approach, we are

able to model the influence of a vector of covariates on the dis-

tribution of the test statistics and hence on the fdr. Section 2

gives a brief review of fdr (Efron and Tibshirani, 2002) and

introduces cmfdr, constructed from a Bayesian two-group mix-

ture model that incorporates covariates. Section 3 presents the

MCMC algorithm for fitting the model and drawing inferences

and applies cmfdr to examples involving both simulated and real

data. The last section is devoted to a discussion of results and

future work.

2 METHODS

Review of fdr

Efron and Tibshirani (2002) made the assumption that the test statistic zi,

1 � i � n, has a different distribution based on whether the null hypoth-

esis H0, i is true or false, where n is the total number of tests (SNPs). The

non-null distribution will tend to have more extreme values of the test

statistic. Hence, zi follows a two-group mixture model

fðziÞ ¼ �0f0ðziÞ þ �1f1ðziÞ, ð1Þ

where �0 is the proportion of true null hypotheses, �1 ¼ 1� �0 is the

proportion of true non-null hypotheses, f0 is the probability density func-

tion if H0 is true and f1 is the probability density function if H0 is false.

Local false discovery rate (fdr) is the posterior probability that the ith test

is null given zi, which by Bayes rule is given by

fdrðziÞ ¼
�0f0ðziÞ

fðziÞ
¼

�0f0ðziÞ

�0f0ðziÞ þ �1f1ðziÞ
: ð2Þ

The null density was assumed to be standard normal (theoretical null)

or normal with mean and variance estimated from the data (empirical

null). The mixture density �0f0ðzÞ þ �1f1ðzÞ was estimated by fitting a

high-degree polynomial to histogram counts (Efron, 2010). If a set of

SNPs are selected with an estimated fdr � � for some � 2 ð0, 1Þ, then

we expect that on average ð1� �Þ � 100% of these will be true non-null

SNPs.

Covariate-modulated fdr

A set of external covariates observed for each hypothesis test may influ-

ence the distribution of the test statistic (Efron, 2010; Sun et al., 2006).

Under this scenario, incorporating the covariate effects into fdr estima-

tion can dramatically increase power for gene discovery. For example, the

distribution of GWAS z-scores may depend on SNP-level functional an-

notations (Schork et al., 2013), pleiotropic relationships with related

phenotypes (Andreassen et al., 2013a, b), gene expression levels in certain

tissues, evolutionary conservation scores and so forth. These external

covariates can be used to break the exchangeability assumption implicit

in Equation (1) and potentially increase the power for gene discovery over

using standard fdr given in Equation (2).

Let xi ¼ ð1,x1i, x2i, :::,xmiÞ
T, where xi denotes an ðmþ 1Þ-dimensional

vector of covariates (including intercept) for the ith SNP. The cmfdr is

defined as

cmfdrðziÞ ¼
�0ðxiÞf0ðziÞ
fðzi jxiÞ

¼
�0ðxiÞf0ðziÞ

�0ðxiÞf0ðziÞþ�1ðxiÞf1ðzi jxiÞ

ð3Þ

where �1ðxiÞ ¼ 1� �0ðxiÞ is the prior probability that the ith test is non-

null given xi and f1ðzijxiÞ is the non-null density of zi given xi. By

Bayes’ rule, cmfdr is the posterior probability that the ith test is null

given both zi and xi. We assume that the density under the null hypothesis

does not depend on covariates. Both the probability of null status and the

non-null density are allowed to depend on covariates, as described below.

Central to the estimation of the null proportion is the assumption that

�0 is large (say40.90) and that the vast majority of SNPs with test stat-

istics close to 0 are in fact null. These assumptions are reasonable for

GWA data (Hon-Cheong et al., 2010).

A Bayesian Two-group model

Summary statistics fromGWAS are often made publicly available only as

2-tailed P-values, and hence, the magnitude of the z score is recoverable

but not the sign. Moreover, the sign of the z score is a result of arbitrary

allele coding. Hence, we formulate the mixture model for the absolute

z-scores. The extension of our method to signed z-scores is

straightforward.

Folded normal-gamma mixture model The distribution of z under

H0 is assumed to have the folded normal distribution, with null density

f0ðzÞ ¼ 2��0 ðzÞIz�0, where �ðzÞ is the normal density with mean 0 and

standard deviation �0, and Iz�0 is an indicator function that takes the

value 1 when z � 0 and 0 otherwise. The density of z under the alternative

hypothesis H1 is assumed to have a gamma distribution with shape par-

ameter aðxÞ and rate parameter �. Figure 2 gives a graphic presentation

of these distributions. We chose a parametric non-null density for com-

putational efficiency in modeling the effects of covariates. Parametric

estimates of the non-null density also potentially provide more power

than non-parametric estimates. We chose the gamma density because

of its flexible shape and ability to model right-skewed heavy-tailed

distributions.

Covariates x are allowed to modulate the shape parameter of the

gamma distribution

aðxÞ ¼ expfxT�g

where � ¼ {�0,�1,�2, :::, �m}
T is an unknown parameter vector. The rate

parameter � is an unknown scalar not depending on x. While it is possible

to model the rate parameter as a function of x, we have found that this

leads to poor model convergence in the sampling algorithm, perhaps

because of the lack of identifiability with other model parameters.

Fig. 2. Null and non-null distibutions. Mixture model Equation (1) con-

sists of weighted mixture of folded normal (dotted line) and gamma

densities (solid line)
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Additionally, we specify a location parameter �40 to bind the non-

null gamma densities away from zero. The ‘zero assumption’ of Efron

(2007) states that the central peak of the z-scores consists primarily of null

cases. Such an assumption is necessary to make the non-null distribution

identifiable and for the MCMC sampling algorithm to converge. The

assumption that the vast majority of SNPs with z-scores close to 0 are

null is already commonly made in GWAS. Hence, we set the location

parameter � ¼ 0:68 in the gamma distribution, corresponding to the

median of the null density f0. All SNPs with absolute z-scores 50.68

are thus a priori considered null.

We complete the mixture model formulation by positing a latent indi-

cator vector 	 ¼ ð	1, . . . , 	nÞ, where 	i ¼ 1 if the ith SNP is non-null and 0

otherwise. Then �1ðxiÞ is the prior probability that 	i ¼ 1 given covariates

xi. The dependence of �1 on x is modeled via a logistic regression

�1ðxiÞ ¼ Prð	i ¼ 1jxiÞ ¼
expðxTi 
Þ

1þ expðxTi 
Þ
,

where 
 ¼ f
0, 
1, 
2, :::, 
mg
T is a vector of unknown parameters. The

augmented likelihood function is then given by

Lð�,�, 
, �20 j	, z,XÞ ¼
Yn
i¼1

f0ðzij�
2
0 Þ�0ðxij
Þ

� �1�	i�
� f1ðzij�, �Þ�1ðxij
Þ½ �

	i
�
,

ð4Þ

where z ¼ ðz1, . . . , znÞ
T is the vector of test statistics and X is the

n� ðmþ 1Þ design matrix. Integrating out the latent indicators 	 gives

the mixture model corresponding to Equation (3).

Prior distributions We apply weakly informative priors to unknown

parameters f�, �, 
, �20g:

� � Nð0,��Þ,


 � Nð0,�
 Þ,

� � Gammaða0, b0Þ,

�20 � InverseGammaða�0 , b�0 Þ,

ð5Þ

where �� and �
 have large values on the diagonal, a0 and b0 are shape

and rate parameters of gamma distribution and a�0 and b�0 are shape and

scale parameters of inverse gamma distribution, respectively.

Hyperparameters are fixed by the user. In the applications below, we

set the dispersion matrices �� and �
 to be diagonal with variance

10 000; ða0, b0Þ and ða�0 , b�0 Þ were both set to (0.001,0.001).

Sampling scheme We sample the parameters �, �, 
 and �20 in turn

from their full conditional distributions via a Gibbs sampler using

Metroplis–Hastings (M-H) steps. Combining (4) and (5), the full condi-

tional distributions are given as follows:

fð�j . . .Þ /
Y
i:	i¼1

jzi � �j
aðxiÞ

� aðxiÞð Þ
�aðxiÞ

" #
expf�

�T��1� �

2
g

fð
j . . .Þ /
Yn
i¼1

expfxT
g	i

1þ expfxT
g

" #
exp �


T��1
 


2

( )
ð6Þ

fð�j . . .Þ / �
a0�1þ

P
i:	i¼1

aðxiÞ

� exp �� b0 þ
X
i:	i¼1

jzi � �j

 !( )
:

fð�20 j . . .Þ / ð�20 Þ

�

Pn
i¼1

Ið	i¼0Þ

2 þa�0þ1

0
@

1
A

2
666664

3
777775

� exp
1

�20
ð

P
i:	i¼0

z2i

2
þ b�0 Þ

8><
>:

9>=
>;

where Ið	¼0Þ is an indicator function, and fð�j . . .Þ denotes the probability

density of a parameter conditional on all other parameters and the data.

The full conditional posteriors for � and 
 in (6) do not take standard

forms and are sampled using a multiple-try M-H sampler (Givens and

Hoeting, 2005) with a multivariate t-distribution candidate. The full con-

ditional for � has a gamma distribution and for �20 an inverse gamma

distribution, so that both can be sampled directly. Each iteration of the

Gibbs sampler also includes generation of 	, with a Bernoulli full condi-

tional distribution. For k 2 f0, 1g

pð	i ¼ kj . . .Þ / f0ðzij�
2
0 Þ

1�kf1ðzijaðxiÞ,�Þ
k expðxTi 
Þ

k

1þ expðxTi 
Þ
:

We can obtain an a posteriori estimate of cmfdr(zi) for each zi as

follows. Assume we have L draws fð�ðlÞ,�ðlÞ, 
ðlÞ, �2ðlÞ0 Þ : 1 � l � Lg from

the posterior distribution of the parameters. For each draw l,

cmfdrðlÞðziÞ ¼
�0ðxij


ðlÞÞf0ðzij�
2ðlÞ
0 Þ

�0ðxij
ðlÞÞf0ðzij�
2ðlÞ
0 Þ þ �1ðxij


ðlÞÞf1ðzij�ðlÞ, aðxij�ðlÞÞÞ
:

Then, for example, the posterior median of cmfdr(zi) can be estimated

by taking the median of cmfdrðlÞðziÞ across all L posterior draws. The

algorithm has been implemented in the R statistical package and is avail-

able at https://sites.google.com/site/covmodfdr/.

3 RESULTS

Simulation

We simulated phenotypes under different settings of generative

parameters from real genotype data available for n¼ 3719

healthy individuals. For each permutation of simulation settings,

we generated 100 unique phenotypes. We restricted our simula-

tions to chromosome 1 (N¼ 191 128 SNPs) for computational

efficiency, assuming it was representative of the whole genome.

These simulations allow us to evaluate the performance of our

method in scenarios that approximate realistic GWAS condi-

tions, including correlated SNPs according to true LD patterns.

A detailed description of the simulations and an expanded table

including comparisons with the methods of Efron (2007) and

Lewinger et al. (2007) are given in the Supplementary Materials.

Table 1 displays the median number of SNPs rejected and the

false discovery proportion (FDP), or the proportion of rejected

SNPs not in LD with a causal SNP. The cmfdr performs rea-

sonably well across enrichment settings for more highly poly-

genic phenotypes, rejected SNPs conservatively for �1 ¼ 0:05,
but becoming progressively worse at controlling the FDP for

phenotypes with low �1. The fdr of Efron (2007) controls the

FDP at similar levels but also has less power than cmfdr

(Supplementary Table S5). The �2 mixture model of Lewinger

et al. (2007) rejects more SNPs than either fdr or cmfdr, but also

exhibits considerably higher FDP across the range of polygeni-

city levels. In particular, their model is unstable for null GWAS.

Real data application

The data consist of n¼ 942 772 SNP summary test statistics

(SNP z-scores) from a GWAS meta-analysis of eight substudies

of CD on n ¼ 21 389 subjects (6333 cases), obtained through a
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publicly accessible database (Franke et al., 2010). CD is a type of

inflammatory bowel disease that is caused by multiple factors in

genetically susceptible individuals. For this example, we selected

the five SNP annotations from Schork et al. (2013) displayed in

Fig. 1 to serve as covariates: intron, exon, 30UTR, 50UTR and

intergenic; all annotation scores with the exception of Intergenic

were first log transformed. These were entered together into the

covariate-modulated mixture model, with the empirical null

setting. The MCMC algorithm was run for 25 000 iterations

with 20000 retained draws. Plots of posterior draws showed con-

vergence to stable posterior distributions for all parameters.

Figure 3 shows the histogram of z-scores (all cases), the null

subdensity �0f0 and the posterior median fit of the mixture dens-

ity. The estimated overall non-null proportion �1 is 0.014. The

fdr for each z-score is given by the height of the null subdensity

at that score divided by the height of the mixture density. The

parameter estimates are shown in Table 2. The 30UTR and

50UTR categories are associated with higher values of the

shape parameter (and hence higher variance). Intron, exon,

30UTR and 50UTR are all associated with higher probability of

non-null status. In contrast, intergenic SNPs are associated with

higher values of the shape parameter and much lower probability

of non-null status (0.001 non-null proportion for intergenic SNPs

compared with the overall �1 ¼ 0:014). The positive �̂ coefficient

for intergenic SNPs is a reflection of this sparsity because inter-

genic SNPs require more extreme z-scores than genic SNPs to

obtain a high-posterior probability of being non-null.

Figure 4 compares the number of non-null SNPs rejected using

usual fdr (Efron, 2007), and cmfdr with the five annotation cate-

gories. cmfdr rejected far more SNPs than fdr (Efron, 2007). For

example, for a 0.05 cutoff, cmfdr rejects 3194 SNPs, whereas fdr

rejects only 592, a factor of 5.4 times as many rejected SNPs.

These 3194 SNPS consisted of 108 independent loci (leading SNP

cmfdr � 0:05 and41Mb apart from each other). Of these 108

independent loci, 66 had been previously described in Franke

et al. (2010). Franke et al. (2010) described an additional five

loci that were not discovered using a 0.05 cutoff; however, in our

analysis, each of these loci had a cmfdr 50:06. We found 42

novel loci where the leading SNP had a cmfdr � 0:05. Reporting

these findings as discoveries in accordance with the best practices

in GWAS would require replication in an independent sample

and a detailed characterization of their biological significance,

Table1. Simulation study results

�1 Enr. Strat. Rejected FDP

0.00 None None 1 [0,5] 1.00 [0.00,1.00]

0.00 None Low 4 [0,15] 1.00 [0.00,1.00]

0.001 None None 79 [45,137] 0.25 [0.11,0.42]

0.001 None Low 19 [4,70] 0.55 [0.19,0.79]

0.001 Low None 92 [62,149] 0.30 [0.00,0.46]

0.001 Low Low 17 [4,77] 0.44 [0.00,0.70]

0.001 High None 90 [63,132] 0.28 [0.13,0.41]

0.001 High Low 17 [5,47] 0.46 [0.21,0.67]

0.01 None None 7 [1,19] 0.00 [0.00,0.17]

0.01 None Low 6 [1,18] 0.25 [0.00,0.85]

0.01 Low None 43 [17,101] 0.10 [0.00,0.20]

0.01 Low Low 9 [1,38] 0.23 [0.00,0.67]

0.01 High None 60 [16,124] 0.11 [0.00,0.23]

0.01 High Low 8 [1,28] 0.14 [0.00,1.00]

0.05 None None 4 [0,17] 0.00 [0.00,0.17]

0.05 None Low 4 [0,15] 0.00 [0.00,1.00]

0.05 Low None 39 [8,106] 0.00 [0.00,0.07]

0.05 Low Low 8 [2,25] 0.00 [0.59,0.23]

0.05 High None 47 [18,101] 0.00 [0.00,0.07]

0.05 High Low 8 [1,27] 0.00 [0.00,0.23]

Note: Median number of SNPs rejected (Rejected) and FDP for the proposed cmfdr

methodology. Settings include level of polygenicity (�1), level of covariate enrich-

ment (Enr.) and level of population stratification (Strat.). Numbers in brackets give

middle 95% of distributions across 100 simulations for each setting. A SNP was

rejected if its cmfdr was � 0:05. Details of simulation settings and more extended

comparisons are given in the Supplementary Materials.

Fig. 3. Histogram of CD absolute z-scores. Solid line gives estimated null

subdensity �0ðxÞf0ðzÞ, where x was set to the sample mean. Dashed

line gives estimated overall mixture model fðzÞ ¼ �0ðxÞf0ðzÞ þ

�1ðxÞf1ðzjðxÞÞ. The fdr for each z score is given by the height of the

null subdensity at that score, divided by the height of the mixture density.

Local FDR � 0:05 for z-scores44.05 (vertical bar)

Table 2. Parameter estimates with 95% posterior credible intervals from

CD GWAS

Parameters �̂ 
̂

Intercept 0.33 [0.45,0.57] �4.58 [�4.81,�4.35]

Intron �0.04 [�0.01,0.01] 0.22 [0.17,0.27]

Exon �0.13 [�0.16,�0.10] 0.82 [0.76,0.89]

30UTR 0.05 [0.02,0.08] 0.27 [0.21,0.34]

50UTR 0.23 [0.17,0.28] 0.40 [0.31,0.50]

Intergenic 0.77 [0.56,0.98] �2.4 [�2.83,�1.97]

Rate parameter (�̂) 1.50 [1.48,1.53]

Note: All estimates are presented in the form of median [95% credible interval].
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both of which are beyond the scope of this article. However, to

demonstrate that our proposed method identifies plausible can-

didate SNPs that might warrant this further investigation, we

undertook a pleiotropy analysis. Given that CD is known to

share etiology, including pleiotropic genetic factors (Cho and

Brant, 2011) with ulcerative colitis, it is likely that causal SNPs

would show joint associations. We found significant enrichment

for nominal associations (p50:05) with ulcerative colitis

(Anderson et al., 2011) for both the 71 previously discovered

loci (Bonferroni adjusted hypergeometric P�value ¼

1:33� 10�36) and the 42 novel loci (Bonferroni adjusted hyper-

geometric P�value ¼ 6:24� 10�5). A complete list of previously

discovered and novel gene names is given in the Supplementary

Materials.

We performed further analyses on CD substudies to determine

whether this observed increase in the number of loci declared

significant translates to increased number of replicating SNPs

in de novo samples. The CD meta-analysis was composed of

summary statistics from eight substudies (Franke et al., 2010).

We computed z-scores from each of the 70 possible combinations

of four substudies, leaving the z-scores computed from the re-

maining four independent substudies as test samples. We then

estimated fdr and cmfdr for each training sample. For a given fdr

cutoff, we determined the number of SNPs that replicated in the

test sample. Replication was defined as one-sided P � 0:05 and

with the same sign as the corresponding z score in the training

sample.
Number of replicated SNPs was much higher using cmfdr

compared with fdr. For example, for usual fdr there was an

average of 365 replicated SNPs (94.6% of SNPs declared signifi-

cant) with an fdr cutoff of 0.05 in the training sample. In con-

trast, with the same cutoff using cmfdr, there was an average of

2956 SNPs (92.5% of declared significant SNPs) that replicated

according to this definition, or almost 8.1 times as many SNPs.

Similar increases in the number of replicated SNPs was observed
for other cutoffs in the range. The larger number of SNPs
declared significant for cmfdr compared with usual fdr largely

remained when matched with empirical replication rates rather
than nominal fdr threshold. For example, there was an average
of 339 SNPs declared significant using usual fdr with an empir-

ical replication rate of 0.95, compared with 2769 using cmfdr, or
8.2 times as many SNPs. In general, and in contrast to some of
the simulation settings, replication rates were close to nominal

for both usual fdr and cmfdr, across a range of cutoffs.

4 DISCUSSION

Methods for large-scale hypothesis testing that control Type I
error rates without being overly conservative are crucial in

GWAS (Efron, 2007; Franke et al., 2010). It has become increas-
ingly evident that many complex phenotypes and diseases have
many genetic determinants, each with small effect (Yang et al.,

2010). Hence, traditional FWER correction is too conservative
and severely underpowered. FDR (Benjamini and Hochberg,
1995) and fdr (Efron and Tibshirani, 2002) have come to be

accepted broadly as routine techniques to control for the rate
of false positive in large-scale hypothesis testing settings in a
number of fields. However, even these methods do not account

for the vast majority of phenotypic variance explained by
common variants (Andreassen et al., 2013b). A problem with

these and other multiple testing methods is that all SNPs are
treated as exchangeable. In particular, each SNP is given the
same a priori probability of being non-null. On the contrary,

we (Schork et al., 2013) and others (Hindorff et al., 2009;
Smith et al., 2011; Yang et al., 2011) have shown that the func-
tional role of SNPs has a strong impact on the probability of

association across a broad array of complex phenotypes and
diseases.
This work proposes a novel Bayesian approach (cmfdr) to

incorporate a set of important covariates into the fdr under a
heteroscedastic model, where the probability of non-null status
and the distribution of the test statistic under the non-null hy-

pothesis are both modulated by covariates. The primary advan-
tage of our methodology over traditional fdr methods is that two
SNPs with the same z score can have different values of cmfdr if

one is in a more enriched category than the other. Hence, by
using SNP annotations to modulate fdr, more SNPs can be dis-

covered for a given level of fdr control. In other words, methods
such as cmfdr that break the exchangeability assumption are
potentially more powerful than traditional fdr methods that

assume exchangeability. In the CD example, we discovered 5.4
times as many SNPs (unpruned) using cmfdr compared with
usual fdr for an identical 0.05 cutoff. The increase in number

of replicated SNPs in de novo subsamples from fdr to cmfdr was
even more dramatic. Parameter estimates of covariates can also
be biologically informative about the relative functionality of

different biological classifications of variants.
It is crucial to note that our LD-weighted SNP annotations

were computed independently of the phenotypes investigated.

Thus, modifying the fdr based on information from genic cate-
gories does not bias results toward rejecting more null hypoth-
eses. Moreover, the cmfdr methodology is capable of handling

any relevant source of information, including, for example,
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Fig. 4. Power of fdr versus cmfdr. The x-axis is the cutoff to declare

SNPs significant; the y-axis is number of rejected SNPs times 1-nominal
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pleiotropic relationships of SNPs with multiple phenotpyes
(Andreassen et al., 2013a, b), gene expression levels in various
tissues and evolutionary conservation scores, among others.
The proposed methodology has some drawbacks. First, as

currently formulated, it assumes all hypothesis tests are inde-
pendent. This is not true for SNPs in LD, and our 95% credible
intervals are probably too small. Moreover, it remains unclear

what impact LD has on FDP control because it may be the case
that all or almost all ‘tag SNPs’ are in partial LD with causal
SNPs but are not themselves causal. Correlation across SNPs

can be handled, for example, by repeatedly and randomly prun-
ing SNPs for independence before running the MCMC algo-
rithm, by using a discrete Markov random field formulation

(Li et al., 2010) or by modeling SNPs simultaneously using, for
example, a multivariate mixed-effects model framework
(Carbonetto and Stephens, 2013). We have implemented a
random pruning option available with the R code distribution.

Second, it may be the case for some applications that the gamma
distribution does not fit the tail probabilities of the non-null
distribution well. We have used other distributions (e.g. the

skewed generalized normal) and are currently developing a
non-parametric alternative that produces flexible fits to tail prob-
abilities. Although non-parametric estimates of the non-null

density avoid bias from lack of model fit, parametric alternatives
can be more powerful if the fit is adequate. Finally, it appears
from simulations that the cmfdr methodology can be overly lib-
eral in scenarios where �1 is close to 0. Care must therefore be

taken when applying cmfdr in these circumstances.
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