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Abstract 
Prediction error, both at the level of sentence meaning 

and at the level of the next presented word, has been 
shown to successfully account for N400 amplitudes. 
Here we address the question of whether people differ 
in the representational level at which they implicitly 
predict upcoming language. To this end, we computed 
a measure of prediction error at the level of sentence 
meaning (magnitude of change in hidden layer 
activation, termed semantic update, in a neural network 
model of sentence comprehension, the Sentence 
Gestalt model) and a measure of prediction error at the 
level of the next presented word (surprisal from a next 
word prediction language model). When using both 
measures to predict N400 amplitudes during the 
reading of naturalistic texts, results showed that both 
measures significantly accounted for N400 amplitudes 
even when the other measure was controlled for. Most 
important for current purposes, both effects were 
significantly negatively correlated such that people 
with a reversed or weak surprisal effect showed the 
strongest prediction of N400 amplitudes by semantic 
update. Moreover, random-effects model comparison 
showed that individuals differ in whether their N400 
amplitudes are driven by semantic update only, by 
surprisal only, or by both, and that the most common 
model in the population was either semantic update or 
the combined model but clearly not the pure surprisal 
model. The current approach of combining large-scale 
models implementing different theoretical accounts 
with advanced model comparison techniques provides 
a novel approach in the language sciences. It enables 
fine-grained investigations into the computational 
processes underlying N400 amplitudes, including 
interindividual differences in the involved 
computations, which to the best of our knowledge have 
not been addressed before. 

 
Keywords: N400, neural network models, prediction, 

prediction error, surprisal, sentence meaning, interindividual 
differences, random effects 

Introduction 
Language processing is often assumed to be predictive in 

the sense that readers and listeners routinely and 
probabilistically anticipate upcoming language input. One 
crucial piece of evidence supporting this assumption is the 

N400 component of the event-related brain potential (ERP), 
a negative component measured at centro-parietal electrode 
positions, whose amplitude increases with decreasing fit or 
predictability of a given word in a given context (Kutas & 
Federmeier, 2011). Even though the component’s relation 
to prediction and prediction error is now widely 
acknowledged, there is still an active debate about the 
specific cognitive mechanisms underlying this brain signal. 

After early verbally descriptive theories, recent years 
have seen a surge of computationally explicit theories on 
the functional basis of the N400. While many of them link 
the N400 to prediction error, they vary in terms of its 
assumed representational level (e.g., Rabovsky & McRae, 
2014; Frank et al., 2015; Rabovsky et al., 2018; Fitz & 
Chang, 2019). Specifically, one important dimension along 
which these models differ concerns whether they link N400 
amplitudes to prediction error at the word or sentence level. 
Word-level prediction error has been often modeled by 
surprisal, that is the inverse probability of a given word in 
a given context. Surprisal from computational language 
models has been shown to predict N400 amplitudes during 
the reading of naturalistic texts (e.g., Frank et al., 2015; 
Heilbron et al., 2022; Michaelov et al., 2023). Prediction 
error at the sentence level has instead been modeled as the 
activation change in a hidden layer representation implicitly 
representing predicted sentence meaning (a measure called 
semantic update) within the Sentence Gestalt (SG) model, 
a neural network model of sentence comprehension 
(McClelland et al., 1989). Semantic update has been found 
to reproduce a broad range of empirically observed N400 
effects, establishing a connection between this component 
and prediction error at the level of sentence (or more 
generally: message) meaning (Rabovsky et al., 2018).  

Thus prediction error both at the level of sentence 
meaning and at the level of the next presented word has 
been shown to successfully account for N400 amplitudes. 
What does this mean? Because these two forms of 
prediction error are positively correlated, it seems possible 
that only one of the measures constitutes the “real” 
cognitive correlate of the N400, and that the other measure 
explains variance in N400 amplitudes via its correlation 
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with this “real” cognitive correlate. Alternatively, N400 
amplitudes might reflect prediction error both at the word 
and at the sentence level. Here, we specifically investigate 
the possibility that people might differ in their level of 
implicit prediction, with some people more focused on 
predicting sentence meaning and others more focused on 
predicting the next upcoming word. 

Until very recently, addressing such issues would have 
been difficult. This is because, aside from surprisal, which 
can be derived from deep learning language models, other 
computationally explicit models of the N400, especially the 
cognitively motivated neural network models, were small-
scale models trained on toy corpora and thus could only be 
related to the N400 in a qualitative way. To overcome these 
limitations and to be able to relate the model’s N400 
correlate directly and quantitatively to EEG data collected 
from human participants presented with the same stimuli, 
we have recently trained a SG model on a large-scale 
corpus. Specifically, we trained a SG model and a next 
word prediction language model that were as similar as 
possible in terms of architecture and number of parameters, 
on the same large-scale language corpus (Sayeed et al., 
2018) in order to enable a fair quantitative comparison 
between both measures of interest and thus between both 
theoretical accounts of the N400. We then used semantic 
update (SU) from the SG model and surprisal from the 
language model to predict N400 amplitudes obtained 
during the reading of naturalistic text, that is text that does 
not contain any specific manipulations but rather just 
natural variations of expectancy as encountered in everyday 
life (using an existing EEG dataset that has previously been 
used to demonstrate the influence of surprisal on the N400; 
Frank et al., 2015). Results show that both semantic update 
and surprisal account for N400 amplitudes even when the 
other measure is controlled for (Lopopolo & Rabovsky, in 
press). 

Here, in order to investigate whether people differ in 
whether they implicitly focus on predicting word or 
sentence meaning, we use linear mixed-effects models to 
specifically investigate random effects correlations 
between the effects of semantic update and surprisal. 
Moreover, a novel and exciting approach to model 
comparison of neuro-cognitive models is to allow the true 
computational model and its parameters to differ between 
individuals, effectively treating the model as a random 
effect in a hierarchical variational Bayesian approach (Piray 
et al., 2018). Here, we use this random-effects Bayesian 
model comparison approach to study whether the true 
computational model generating N400 amplitudes differs 
between individuals.  

To foreshadow our results, we find a negative random 
effects correlation between semantic update effects and 
surprisal effects, suggesting that for those people whose 
N400 amplitudes were most strongly predicted by semantic 
update, there was a weaker (and partly reversed) prediction 
by surprisal. Moreover, random-effects model comparison 
shows that for a similar percentage of people N400 

amplitudes are elicited by (i) only semantic update versus 
(ii) semantic update and surprisal combined, whereas for 
only few people only surprisal elicits N400 amplitudes.  
Thus, people may differ in their implicit prediction 
strategies with some people focusing more on expected 
sentence meaning and others focusing on both levels of 
words and sentence meaning at the same time, whereas only 
few people seem to focus purely on predicting the next 
word (surprisal). These fine-grained analyses of 
interindividual differences in computational processes 
during language comprehension provide a conceptually 
novel approach in the cognitive (neuro)science of language 
enabled by the combination of large-scale models 
implementing different cognitive theories and advanced 
model comparison techniques allowing for differences in 
computational strategies between participants. 

Methods 

Model architecture 
Model architectures are depicted in Figure 1. The 

Sentence Gestalt (SG) model maps sentences to a 
representation of the described event (McClelland et al., 
1989; see ‘Model tasks’ for details). It comprises two main 
components: an update network and a query network. The 
update network sequentially processes each incoming word 
to update the activation of the SG layer. This layer 
represents the meaning of the sentence after the 
presentation of each word, functioning as a combination of 
its previous activation and the activation induced by the 
new incoming word. The update network consists of an 
input layer, generating a vectorial representation wt for each 
input word it in the incoming sentence. It also includes a 
recurrent Long Short-Term Memory (LSTM) layer that 
generates an SG representation sgt as a function of wt and 
the previous gestalt sgt-1. It maintains a hidden state that 
evolves as each new word is processed, enabling the model 
to retain information from earlier parts of the sequence. On 
the other hand, the query network extracts information 
about the event described by the sentence from the 
activation of the SG layer. The sentence comprehension 
mechanism is implemented in the update network, while the 
query network is primarily used for training purposes. It is 
composed of a hidden state ht, generated by combining the 
SG vector sgt and probe vectors pi. The output oi of the 
query network is then generated from the hidden state ht. 

The next-word prediction language model (LM) is 
designed to predict the probability distribution of the next 
word in a sequence given the context of preceding words. It 
also employs a recurrent neural network based on a LSTM 
architecture. The LM consists of an input layer, a recurrent 
layer, a feed-forward hidden layer and an output layer. The 
input layer encodes the word representations. The recurrent 
layer processes the sequential input and captures contextual 
information. The output layer produces a probability 
distribution over the vocabulary, indicating the likelihood 
of each word being the next in the sequence. 
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Figure 1. The architectures of the SG model (a) and 
the LM (b). 

 

Model tasks 
The task of the SG model is to map a sentence to its 

corresponding event, defined as a list of role-filler pairs 
representing an action or state, its participants (e.g., agent, 
patient, recipient), and eventual modifiers. The event is 
implemented as a set of role-filler pairs represented as 
vectors oi, each formed by concatenating the feature 
representation of a word and a one-hot vector indicating the 
role of that word in the context of the sentence. For instance, 
the sentence ``the boy ate soup at lunch'' consists of a 
sequence of six one-hot word representation vectors. Its 
event structure, however, contains four role-filler vectors 
representing each role of its event (agent, action, patient, 
time) with its corresponding concept filler (boy, eat, soup, 
lunch); see Lopopolo & Rabovsky (in press) for details. 
During training, the model is presented with sentences fed 
word by word to the input layer. Every time a word is 
presented, the model is probed regarding the event 
described by the sentence. The model is probed for the 
complete event, even if the relevant information has not yet 
been presented at the input layer. Thus, during training the 
model’s connection weights are optimized for predicting 
the meaning of the complete sentence based on the 
information provided so far at the input layer and its 
experience of the statistical regularities in the training 
corpus. A probe consists of a vector pi of the same size as a 
corresponding role-filler vector p, but with either the 
thematic role identifier zeroed (if probing for roles) or filler 
features zeroed (if probing for fillers). Responding to a 
probe involves completing the role-filler vector. When 
probed with either a thematic role (e.g., agent, action, 
patient, location, or situation, each represented by an 
individual unit at the probe and output layer) or a filler, the 
model is expected to output the complete role-filler vector. 

The task of a next-word prediction LM is to predict the 
most likely word to follow a given context. This model 
processes input sentences one word at a time, predicting the 
next word based on the context established by preceding 
words. The training involves presenting the model with 
sequences of words and adjusting its connection weights to 
optimize the accuracy of predicting the next word.  

Model-based variables 
We compute two main measures from our models: 

Semantic Update (SU) and surprisal. Semantic Update 

(SU) refers to the update of the SG model's recurrent layer's 
internal representations after the presentation of each word 
in a sentence. It is computed as the mean absolute error 
between the activation of the SG layer before and after the 
presentation of a word. SU quantifies the amount of change 
driven by the new incoming word to the implicit predictive 
representation of sentence meaning. Surprisal instead is 
the negative log-probability of the new incoming word 
given the previous words: surp(wt)=-logP(wt|w1:t-1). It is 
computed from the probability distribution generated as 
output of the LM. Surprisal operates on lexical items, and 
not on the semantic representations. 

Training corpus 
Both models were trained on the British National Corpus 

section of the Rollenwechsel-English (RW-eng) corpus 
(Sayeed et al., 2018). The RW-eng corpus is annotated with 
semantic role information based on PropBank roles (Palmer 
et al., 2015). The SG model in this study is trained on 
mapping each RW-eng sentence to its PropBank-style event 
structure, while the LM is trained on predicting the next 
word in the sequence of each RW-eng sentence. 

EEG data 
The electrophysiological recordings of the N400 were 

obtained from an EEG dataset provided by Frank et al. 
(2015). The dataset consists of data collected from twenty-
four participants (10 female, mean age 28.0 years, all right 
handed and native speakers of English) while they were 
reading sentences extracted from English narrative texts. 
The stimuli consist of 205 sentences from the UCL corpus 
of reading times (Frank et al., 2013), and originally from 
three little known novels. The sentences were presented in 
random order, word by word. The N400 amplitude for each 
participant and word token was defined as the average scalp 
potential over a 300-500 ms time window after word onset 
at electrode sites in a centro-parietal region of interest. Each 
word was presented for a period of time dependent on its 
number of characters (190 ms + 20 ms for each character) 
followed by a 390 ms between-word interval. The EEG 
signal was recorded continuously at a rate of 500 Hz from 
32 scalp sites using silver/silver-chloride electrodes. The 
signal was band-pass filtered between 0.05 and 25 Hz and 
downsampled to 250 Hz. The signal was then epoched into 
trials lasting between 100 ms before and 924 ms after each 
word onset. For further details regarding the stimuli see 
Frank et al. (2013). More detailed information regarding the 
EEG dataset, its stimulation paradigm and preprocessing 
can instead be found in Frank et al. (2015). 

Results 
Data and code for all analyses will be made available on 

OSF upon publication. We ran a linear mixed-effects model 
(LMM) to explain N400 amplitudes based on the fixed 
effects baseline EEG response, the semantic update (SU) of 
the SG model, and the surprisal calculated from a LM. As 
random effects, we incorporated correlated random 
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intercepts and random slopes for the semantic update and 
the surprisal effects across subjects, as well as random 
intercepts across words. The lmer package (Bates et al., 
2015) together with the lmerTest package (Kuznetsova, 
Brockhoff, & Christensen, 2017) were used to obtain p-
values for the fixed effects. 

As we reported before (Lopopolo & Rabovsky, in press), 
the results showed a strong effect of semantic update on 
N400 amplitudes (b = 0.213, SE = 0.035, df = 40.2, t = 
6.012, p = 4e-7, standardized β = 0.055, 95% CI [0.036 
0.074]. Moreover, there was a clear effect of surprisal (b = 
0.163, SE = 0.056, df = 44.9, t = 2.902, p = .006, 
standardized β = 0.042, 95% CI [0.013 0.072]. These results 
show that both theoretical quantities – surprisal from a LM 
and semantic update from the SG model overall predict the 
size of the N400 even when the other quantity is taken into 
account. Here, we next looked at interindividual differences 
that were estimated by the linear mixed-effects model. First, 
the results showed interindividual variability for both 
effects: the semantic update effect on the N400 showed a 
standard deviation of 0.118 across participants, which with 

a mean of b = 0.213 suggests that the variation in the effect 
size was not too large. Indeed, Figure 2a (left panel) shows 
that the predicted effect size (i.e., individual regression 
coefficient predicted from the LMM) was positive in all 24 
participants, suggesting that variation exists in how strongly 
semantic update predicts the N400, but that the effect goes 
in the same direction for all participants. Next, we looked 
at individual variability of the surprisal effect across 
participants, and found a by-participant standard deviation 
of 0.216, which is already larger, given the mean estimate 
of b = 0.163. Indeed, Figure 2a (right panel) shows that 
while in the majority of participants, high surprisal values 
lead to a larger N400, there is a subset of 5 participants 
(shown in red) for which the effect flips sign, and becomes 
(at least qualitatively) negative, such that high surprisal 
values are associated with a smaller N400. This interaction 
between surprisal and participant thus qualifies the 
interpretation of the fixed effect of surprisal, since surprisal 
effects cannot be concluded to be positive in all 
participants.

 
 

 
Figure 2. Interindividual differences in computations underlying N400 amplitudes. (a) Random slopes for semantic update and 
surprisal effects on N400 amplitudes. The predicted regression coefficient from a linear mixed-effects model is shown for each 
participant, error bars indicate 95% prediction intervals. Green color indicates participants with a positive regression 
coefficient, red color indicates participants with a negative regression coefficient. Black triangles and error bars at the bottom 
of the panels show fixed effects estimates with 95% CI. (b) Posterior model probabilities (i.e., responsibilities, that is the 
probabilities by which each participants’ data was generated by a given model) for each participant from a hierarchical Bayesian 
analysis, treating models and their parameters as random effects (Piray et al., 2018). Each of the three models is a linear model 
with the computational predictors semantic update / surprisal / both. (a+b) Participants are sorted by the size of their semantic 
update effect in the linear mixed-effects model. 
 

Figure 2 orders the subjects by the size of their predicted 
semantic update effect on the N400, with large semantic 
update effects being shown at the top of the Figure. 
Interestingly, it is visible that the subjects with a negative 
surprisal effect (shown in red) are all clustered at the top of 

Figure 2a (right panel). This is suggestive of a random effects 
correlation between semantic update effects and surprisal 
effects. Indeed, the random effects correlation as estimated 
by the LMM shows a negative correlation of r = -0.65 which 
is significantly smaller than zero, 95% CI [-1.00, -0.15], 
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based on profiling. The resulting random effects correlation 
(as estimated from the LMM) is visualized in Figure 3. It 
confirms that individuals with a large surprisal effect show 
small to moderate semantic update effects, whereas in 
individuals with a negative surprisal effect, the semantic 
update effect is enhanced. We further followed up on this 
effect, and tested it using model comparison, by constraining 
all random effects correlations to zero, and then including the 
critical random effects correlation back into the model. The 
resulting model comparison again showed a significant 
effect, 𝛘2(1) = 5.98, p = .014. Also, AIC supported the more 
complex model (M0: AIC = 202855, M1: AIC = 202851, 
delta AIC = 4). To further statistically confirm this random 
effects correlation, we computed the semantic update and the 
surprisal effect for each participant separately, in a separate 
linear model of the N400 signal with predictors EEG 
baseline, semantic update, and surprisal. The resulting 
individual regression coefficients were significantly 
negatively correlated across subjects, with r = -0.47, t(22) = -
2.485, p = 0.021, 95% CI [-0.73, -0.08]. 

 

 
Figure 3. Random effects correlation between surprisal 
effects and semantic update effects. The semantic update and 
surprisal effects are predicted regression coefficients per 
participant from a linear mixed-effects model, with 95% 
prediction intervals. The line shows predictions from a linear 
(unweighted) regression model with 95% confidence bands. 
 

The results from the linear mixed-effects model suggest 
that participants may differ in the computational processes 
that underlie N400 amplitudes, i.e., for some participants, 
N400 amplitudes may be elicited  by both computations 
(semantic update and surprisal), whereas for other groups of 
participants, N400 amplitudes may be generated only by 
surprisal, or only by semantic update. Taking this result 
seriously, this amounts to assuming a random effect for 
models, i.e., that for different participants, different 
(computational) models may underlie N400 amplitudes. A 

statistical method has recently been developed to address 
such situations with random effects for models and their 
parameters (Piray et al., 2018). We next perform hierarchical 
Bayesian model selection and parameter estimation using this 
approach. We allow for the possibility that for different 
participants, one of three different models underlies N400 
amplitudes: (i) only semantic update, (ii) only  surprisal, or 
(iii) a combination of semantic update and surprisal. All 
models contain baseline N400 amplitudes as control 
covariate. Regression coefficients for surprisal and semantic 
update were constrained to be positive using an exponential 
transform, i.e. negative regression coefficients were not taken 
as positive evidence for the respective model. Priors for 
model parameters were uncorrelated normal distributions 
with means of zero and standard deviations of one. 

 
 

 
Figure 4. Results from hierarchical Bayesian random-effects 
model comparison (Piray et al., 2018). Model frequencies 
(left panel) indicate hierarchical variational Bayesian 
estimates of how often each model occurs in the population. 
The combined model (semantic update + surprisal) occurs 
most often, nearly matched by the pure semantic update 
model, whereas pure surprisal seems to occur less often. 
Protected exceedance probability (right panel) indicates the 
probability that a given model is the most common model in 
the population. It is protected against the possibility that 
differences in model probabilities between subjects occur by 
chance. The results show that a pure surprisal model is not 
the most common model in the population. Instead, either the 
combined model or possibly the semantic update model is the 
most common model. 
 

The results from this analysis show that subgroups of 
participants exist for which only semantic update, only 
surprisal, or a combination of both measures underlies N400 
amplitudes. Figure 4 (left panel) shows that for the largest 
percentages of participants, either the combination of both 
models (42%) or the pure semantic update model (38%) 
generates N400 amplitudes, whereas for fewer participants 
the pure surprisal model underlies the N400 (20%). We next 
asked which of the three models is most frequent in the 
population. This can be assessed via the protected exceedance 
probability, which is protected against the possibility that 
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differences in model probabilities between subjects occur by 
chance (Piray et al., 2018). Figure 4 (right panel) shows that 
for the pure surprisal model, the probability that it is the most 
common model in the population is very low (4%). By 
contrast, for the combined model, the probability of being the 
most common model in the population is largest (56%). The 
pure semantic update model has a slightly lower protected 
exceedance probability of 40% and thus there is a somewhat 
smaller chance for this model to be the most common model 
in the population. 

The hierarchical Bayesian random-effects model also 
estimates responsibilities, i.e., the probabilities by which 
each participants’ data was generated by a given model. 
Comparison of responsibilities (Figure 2b) with parameter 
estimates from the linear mixed-effects model (Figure 2a) 
suggest that the eight participants without an individual 
surprisal effect are classified as purely driven by semantic 
update (Figure 2b, left panel), that four participants with no 
clear semantic update effect are purely driven by surprisal 
(middle panel), and that the remaining ten participants are 
driven by a combination of both measures (right panel). 
Interestingly, the six participants with the strongest semantic 
update effect (the upper six participants in Figure 2) are 
classified into the pure semantic update model (rather than a 
combination of both models), which further corroborates the 
trade-off between computational strategies that was also 
evident in the negative random-effects correlation of the 
LMM. 
 

Discussion 
In the current study, we investigated interindividual 

differences in people’s tendencies to predict words versus 
sentence meaning, as reflected in N400 amplitudes. This 
involves investigating random effects correlations in a linear 
mixed-effects models (LMMs) as well as using a random 
effects model comparison approach suggested by Piray et al. 
(2018) to test whether in most participants N400 amplitudes 
are better explained by prediction error at the level of 
sentence meaning, at the level of the next presented word, or 
both. Our results from the LMM show that a large semantic 
update (corresponding to an implicit prediction error at the 
level of sentence meaning) enhances N400 amplitudes in all 
participants, whereas large surprisal (corresponding to 
prediction error at the level of the next presented word) seems 
to enhance N400 amplitudes in the majority of participants, 
but that in a subgroup of participants, this effect seems to be 
reversed. Interestingly, the two effects seem to be negatively 
correlated, such that participants with a weak or reversed 
surprisal effect indeed show the strongest prediction of N400 
amplitudes by semantic update. Moreover, random-effects 
model selection shows that for large percentages of 
participants, N400 amplitudes are best explained by (i) pure 
semantic update or (ii) a combination of semantic update and 
surprisal, whereas only for few participants N400 amplitudes 
are best explained by a pure surprisal model. 

These results corroborate the notion that N400 amplitudes 
reflect prediction error both at the word and sentence level, 
and that surprisal and semantic update effects cannot be 
reduced to a common factor (Lopopolo & Rabovsky, in 
press). Most important for current purposes, our findings 
tentatively suggest that people may vary in their implicit 
prediction strategies during language comprehension. Some 
participants appear more focused on predicting sentence (or 
message) meaning, while others  focus on predicting both 
sentence meaning and the next upcoming word. Only a few 
participants seem to solely focus on predicting the next 
upcoming word. 

The current approach of comparing large-scale models 
implementing different theoretical accounts allows for 
quantitative prediction of N400 amplitudes and thus 
quantitative model comparison. These quantitative 
predictions and comparisons enable more fine-grained 
investigations of the processes underlying N400 amplitudes 
and thus the processes underlying language comprehension 
and prediction in the brain, including interindividual 
differences. Conceptually, the present analyses provide a 
novel approach to model comparison in the language 
sciences. By considering differences in computational 
strategies between participants, this approach allows the 
identification of trade-offs between computational strategies 
among individuals as well as the recognition of the most 
common computational strategies within the population. A 
limitation of our results is that analysis of protected 
exceedance probabilities did not allow us to unequivocally 
determine which model is most common in the population, 
since two models (pure semantic update versus semantic 
update and surprisal combined) had protected exceedance 
probabilities considerably larger than zero. On the other 
hand, we can clearly conclude that surprisal alone is not the 
most common model in the population.  

Intriguing questions for future research will be to see 
whether the interindividual differences observed here reflect 
stable differences between people or whether the level of 
prediction may vary based on situational factors such as for 
instance attention, cognitive control, or reading strategy. In 
any case, the observed interindividual differences show a 
remarkable flexibility of the language system in the brain in 
terms of the representational level of implicit predictions. 
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