
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Estimation of the Topology, Parameters, and Distributed Energy Resources in Power 
Distribution Systems

Permalink
https://escholarship.org/uc/item/26h820k2

Author
Wang, Wenyu

Publication Date
2021

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
NonCommercial-NoDerivatives License, availalbe at 
https://creativecommons.org/licenses/by-nc-nd/4.0/
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/26h820k2
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA
RIVERSIDE

Estimation of the Topology, Parameters, and Distributed Energy Resources in Power
Distribution Systems

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Electrical Engineering

by

Wenyu Wang

June 2021

Dissertation Committee:

Dr. Nanpeng Yu, Chairperson
Dr. Yingbo Hua
Dr. Weixin Yao



Copyright by
Wenyu Wang

2021



The Dissertation of Wenyu Wang is approved:

Committee Chairperson

University of California, Riverside



Acknowledgments

First and foremost, I would like to express my sincere gratitude to my Ph.D. advisor, Dr.

Nanpeng Yu, for his excellent supervision, continuous support, and kind patience. I am extremely

grateful for his guidance with profound knowledge, insightful advice, and hearty encouragement,

which make my research explorations into wonderful adventures. His expertise, dedication, and

persistence in scientific research and education have inspired me to push myself to a higher level in

work and life.

I greatly appreciate my committee members, Dr. Yingbo Hua and Dr. Weixin Yao for

their service and help. They have provided invaluable suggestions and comments, which help a lot

to shape my research work.

I am thankful to all the collaborators in academia and industry for providing valuable data,

consultation, and comments. I would also like to thank all my labmates and friends for numerous

discussions, sincere advice, and mutual support.

I am grateful to all the professors and educators who have instructed or taught me during

and before my study in UCR. Without them I would not be making progress in my study.

Finally and most importantly, I would like to express my deep gratitude to my family,

especially my parents, Fugui Wang and Huimin Sun. They not only have raised me up with all

the best they have, but also respect my own decision and encourage me to chase my dreams. I

would have not been able to complete this work without their love, understanding, and unconditional

support.

The content of this dissertation is a reprint of the materials that appeared in the following

publications:

iv



• W. Wang, N. Yu, B. Foggo, J. Davis, and J. Li, “Phase identification in electric power dis-

tribution systems by clustering of smart meter data,” in Machine Learning and Applications

2016, 15th IEEE International Conference on. IEEE, Dec. 2016, pp. 259–265. (Chapter 2.3)

• W. Wang and N. Yu, “Advanced metering infrastructure data driven phase identification in

smart grid,” in The Second International Conference on Green Communications, Computing

and Technologies, Sep. 2017, pp. 16–23. (Chapter 2.4)

• W. Wang and N. Yu, “Maximum marginal likelihood estimation of phase connections in

power distribution systems,” IEEE Transactions on Power Systems, vol. 35, no. 5, pp.

3906–3917, 2020. (Chapter 3)

• W. Wang and N. Yu, “Parameter estimation in three-phase power distribution networks using

smart meter data,” in 2020 International Conference on Probabilistic Methods Applied to

Power Systems (PMAPS). IEEE, Aug. 2020, pp. 1–6. (Chapter 4)

• W. Wang and N. Yu, “Estimate three-phase distribution line parameters with physics-informed

graphical learning method,” arXiv preprint arXiv:2102.09023 [cs.LG], Feb. 2021.[Online].

Available: https://arxiv.org/pdf/2102.09023v1.pdf (Chapter 5)

• W. Wang, N. Yu, and R. Johnson, “A model for commercial adoption of photovoltaic systems

in California,” Journal of Renewable and Sustainable Energy, vol. 9, no. 2, p. 025904, 2017.

(Chapter 6)

• W. Wang, N. Yu, J. Shi, and N. Navarro, “Diversity factor prediction for distribution feed-

ers with interpretable machine learning algorithms,” in 2020 IEEE Power & Energy Society

General Meeting (PESGM). IEEE, Aug. 2020, pp. 1–5. (Chapter 7)

v

https://arxiv.org/pdf/2102.09023v1.pdf


To my parents for all the support and love.

To my grandparents, in loving memory.

vi



ABSTRACT OF THE DISSERTATION

Estimation of the Topology, Parameters, and Distributed Energy Resources in Power Distribution
Systems

by

Wenyu Wang

Doctor of Philosophy, Graduate Program in Electrical Engineering
University of California, Riverside, June 2021

Dr. Nanpeng Yu, Chairperson

Distributed energy resources (DERs), such as distributed solar photovoltaic (PV) systems,

electric vehicles, distributed energy storage, and demand response, are being deployed in the power

distribution system at an unprecedented pace. Though DERs bring environmental and technological

benefits, challenging technical problems arise as well. Distribution networks must be actively man-

aged and planned/upgraded accordingly to accommodate DERs and coordinate their operations. All

of these depend on the solving of the technical problems of accurate phase identification, network

parameter estimation, DER adoption prediction, and long-term load forecasting in the distribution

system. In this dissertation, I use machine learning and data analytic techniques to address these

challenging problems, which are critical to the adoption of DERs.

To address the problem of phase identification, we study multiple methodology approaches.

Two unsupervised learning algorithms are developed based on smart meter data and supervisory

control and data acquisition (SCADA) data. The first algorithm leverages linear dimension reduc-

tion and centroid-based clustering. The second algorithm further improves the phase identification

accuracy by nonlinear dimension reduction and density-based clustering. In the third approach, a

vii



maximum marginal likelihood estimation approach based on physics-informed model is proposed,

which is physically interpretable and more accurate.

To address the problem of three-phase network parameter estimation, we develop a max-

imum likelihood estimation approach based on a physics-informed model to estimate the serial

impedance of three-phase lines. A more advanced method based on graphical learning model is

then developed to provide more accurate parameter estimation.

To address the problem of DER adoption prediction, we study the adoption of distributed

commercial solar PV systems by developing a generalized Bass diffusion model. This model is ca-

pable of forecasting solar PV adoptions and quantifies the impact of solar PV costs and government

incentive programs on the adoption.

To address the problem of long-term load forecasting, we develop comprehensive models

based on supervised learning to forecast the diversity factor (DF) of distribution feeders at high

accuracy. We also quantifies the importance of different influential factors and analyze how they

affect DF.
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Chapter 1

Introduction

1.1 Background

Our power distribution system is experiencing a tremendous transformation in the last

decade. Driven by stricter environmental regulations, technological advances, business model in-

novations, declining system costs, and the government’s supporting policies and incentives, there

is a rapid expansion of distributed energy resources (DERs) in the distribution system. DERs are

power generation resources or controllable loads connected to a local distribution system. Examples

of DERs include distributed solar photovoltaic (PV) systems, electric vehicles, distributed energy

storage, demand response, etc. The DERs are expected to have faster growth than the centralized

generation. According to a report by Guidehouse [1], the annual new DER capacity additions are

expected to grow from 200 GW in 2020 to 500 GW in 2030; in comparison, the new centralized

generation capacity additions are expected to grow from 220 GW in 2020 to 270 GW in 2030.

DER technology brings both environmental and technological benefits. First, by using

more renewable energy resources, DER technology produces less greenhouse gas and pollution to
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the environment, reducing global warming and health risks. Second, DER technologies improve

the distribution system’s reliability, power supply quality, and energy efficiency. Third, by conserv-

ing and providing more flexible energy resources, DERs reduce the overcrowding on the grid and

reduces the pressure of needing more generation and transmission capacity.

However, challenging technical problems arise with the rapid growth of DERs, due to their

impacts on the distribution system in terms of network operation and planning/upgrading. First,

to monitor and coordinate the operations of DERs, utility operators must rely on accurate three-

phase distribution network models, including network phase connections and parameters, which

are usually unavailable [2, 3, 4, 5, 6, 7, 8, 9, 10]. Second, to accommodate DERs, the distribution

networks must be planned/upgraded according to the growth of DERs and customer load. Thus, it

is very critical to solve the technical problems of accurate phase identification, network parameter

estimation, DER adoption prediction, and long-term load forecasting in the distribution system.

The widespread installation of smart meters and sensors in the distribution system pro-

vides the hardware basis to use data-driven techniques in solving the research problems introduced

by DERs. Smart meters can record users’ data such as power consumption, voltage level, current,

and power factor at a high resolution and they also enables two-way communication with the cen-

tral system. The distribution networks world-wide are experiencing a fast expansion of advanced

metering infrastructure (AMI). The smart meter penetration level in North America is expected to

reach 81% in 2024 [11]. In European countries such as Italy, Sweden, Finland, and the Netherlands,

smart meter penetration levels reached 80% by 2019 and are still increasing [12].

New research opportunities to study the problems in distribution system are created by

advances in data mining and machine learning techniques. Data mining and machine learning show

2



strong potential in discovering hidden data patterns and relationships, modeling complicated sys-

tems, and decision making, which inspires many researchers. For example, decision tree and clas-

sification techniques are used for fault detection in microgrids [13]; deep reinforcement learning

techniques are used for volt-var control [14, 15, 16] and network reconfiguration [17, 18]. In this

dissertation, techniques in data mining and machine learning are leveraged to study the research

problems introduced by DERs.

1.2 Technical Challenges and Research Opportunities

The rapid growth of DERs bring technical challenges and new research opportunities at

the same time. These challenges and research opportunities originate from the DERs’ impacts on

distribution network operation and planning/upgrading. In this section, the two kinds of impacts

will be explained first, then the details of the challenging technical problems will be elaborated.

The first kind of impacts is on the operation and management of the distribution system.

DERs introduce bidirectional power flow to the distribution network, while the traditional distribu-

tion network has one-way power flow from the centralized power source to the electricity users. In

addition, DERs introduce high variability and dynamics to the distribution system. For example, the

varied load/generation patterns of distributed solar PV systems, wind turbine, and electric vehicles

are either highly dynamic or intermittent [19, 20]. To coordinate the operations of a large num-

ber of heterogeneous DERs, advanced distribution system control applications such as Volt-VAR

control, network reconfiguration, and three-phase optimal power flow need to be implemented. All

of these applications rely on accurate three-phase distribution network models, of which the phase

connections and network parameters are critical information.
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The second kind of impacts is on the planning and upgrading of distribution networks.

On one hand, the fast expansion of DERs impacts the voltage, power quality, and protection coordi-

nation of distribution networks. To mitigate these impacts, system planners must upgrade or adjust

the distribution system according to the deployment of DERs. Thus, system planners must have ac-

curate predictions of the future DER adoptions. On the other hand, with the increasing penetration

of DERs, forecasting the long-term load of distribution networks becomes more complicated. The

network planners must rely on accurate forecasts of the long-term load to determine the network

design and equipment ratings of new distribution feeders.

1.2.1 Identification of Phase Connections in Power Distribution Systems

The electric power distribution system is the final portion of the power delivery infras-

tructure, which carries electricity from highly interconnected, high-voltage transmission systems to

end-use customers. The power distribution system serves electricity in three phases: A, B, and

C. The electricity users such as family houses are connected to one, two, or three phases of the

wires of the distribution system. Different from the transmission system, the distribution system

is usually unbalanced, thus the phase connection is very important in the modeling of distribution

systems. However, utility companies typically do not have accurate phase connectivity information;

moreover, the phase connections may change over time during distribution system maintenance.

Traditionally, to determine phase connections, electric utilities need to send field crews to

measure phase angles with special equipment such as phase meters [21]. Such practice is not widely

applicable because it is very labor-intensive, time-consuming, and expensive. With the widespread

availability of smart meter and sensor data, data-driven methods become a promising approach for

efficient and inexpensive phase identification.
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1.2.2 Network Parameter Estimation in Power Distribution Systems

Similar to phase connections, the network parameter such as the wire impedance is an-

other important part of distribution network modeling. Utility companies typically do not have

accurate information of network parameters because their geographic information system (GIS)

may contain errors due to unreliable documentation during the system modifications and upgrades.

The network parameter estimation in distribution systems is more challenging than in

transmission systems. Although many studies have examined the network parameter estimation

in transmission systems [22, 23, 24, 25], they cannot be easily applied to the distribution system.

This is because, different from the transmission system, distribution lines are rarely transposed.

Untransposed lines will lead to unequal diagonal and off-diagonal terms in the phase impedance

matrix. Thus, instead of single-phase models, three-phase line segment models need to be devel-

oped. Specifically, the elements of a 3 × 3 phase impedance matrix need to be estimated for each

three-phase distribution line segment. The readily available smart meters open up opportunities to

estimate distribution network parameters from data-driven approaches.

1.2.3 Predicting the Growth of DER Adoptions

Predicting the growth of DER adoptions is very important to the planning and upgrading

of both distribution and transmission systems. Failing to incorporate accurate DER forecasts in the

power system planning can lead to wide-ranging consequences [26]. First, inaccurate forecast of

DER growth may lead to a mismatch between generation resources and the demand. In the case

of over-forecasting, there may not be adequate bulk generation resources due to the predicted DER

contribution, which will lead to a less reliable and resilient system. In the case of under-forecasting,
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unnecessary bulk generation resources and infrastructure could be added, which will result in over-

building. Second, DERs may impact the voltage, power quality, and protection coordination of

distribution networks. For these reasons, planners need accurate forecasts of DER adoptions in

order to mitigate the aforementioned impacts accordingly. The mitigation measures include up-

grading the equipment, changing settings of existing devices, and applying new coordination and

management tools.

Predicting the growth of future DER adoptions is challenging because it is influenced

by multiple factors such as installation cost, government incentive programs, DER types, DER

capacity, etc. In the study of product adoptions, adoption growth models such as the Bass diffusion

model [27] and the generalize Bass model [28] have been widely used and thus have the potential

to enable the prediction of DER adoptions.

1.2.4 Long-Term Load Forecast of Distribution Feeders

Determining the maximum diversified demand is one of the most important parts of long-

term load forecast of distribution feeders. The maximum diversified demand is the maximum of the

sum of demands of a group of electricity customers over a particular period. It is a critical factor

to consider when utilities develop plans to build new distribution systems. Both network topology

design and equipment ratings depend on the maximum diversified demand. Underestimating the

maximum diversified demand will cause reliability and safety issues. If the peak load exceeds the

circuit rating, then equipment such as transformers and cables will be overloaded, which results in

shortened lifespan and premature failure. Overestimating the maximum diversified demand often

leads to installation of oversized distribution system equipment and under-utilization of system

assets.
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The maximum diversified demand is usually estimated by using the maximum noncoinci-

dent demand and the diversity factor (DF). The DF is defined as the ratio of maximum noncoincident

demand to the maximum diversified demand [29]. Here, the maximum noncoincident demand is the

sum of each individual customer’s maximum demand.

Estimating DF is challenging, while the maximum noncoincident demand is straightfor-

ward to estimate. In current practice, DF is often estimated based on a simple relationship with the

number of customers and this relationship is often derived by load surveys. However, DF is influ-

enced by many other factors, such as customer demographics and climate conditions. The rapid

growth of DERs should also be considered when estimating DF. It will be very handy to system

planners if a DF prediction model accounts for a variety of influential factors and can explain how

different factors affect the DF. Thanks to the technical advances in machine learning, new opportu-

nities arise to build such forecasting models.

1.3 Contributions

This dissertation studies the four targeted topics mentioned in Section 1.2. The main

contributions are elaborated as follows.

1.3.1 Phase Identification by Unsupervised Learning

Two works on unsupervised machine learning algorithms are developed to identify the

phase connectivity of customers based on smart meter data and supervisory control and data acqui-

sition (SCADA) data. In the first work [30], an innovative constrained k-means clustering algorithm

of smart meter data is proposed to solve the phase identification problem. First, unique features
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are extracted from the voltage time series of smart meters instead of directly using the voltage time

series data. Then customer phase constraints are defined based on the known information about

line configurations in the network connectivity model. At last, a constrained k-means clustering

algorithm is applied to accurately identify the phase connection of each customer.

In light of the existing literature, the unique contributions of this work are as follows.

First, the proposed algorithm utilizes the known information of line configurations in the network

connectivity model to avoid mislabeling of the customers on the same secondary feeder, which can

occur in the existing methods. Second, the proposed algorithm is computationally efficient com-

pared with the 0-1 integer linear programming method and the correlation-based methods. Third,

the proposed algorithm is highly accurate in distribution circuits where the majority of loads are

connected to two-phase laterals. Fourth, the proposed algorithm can still determine the phase con-

nections of metered customers when the distribution circuit has some unmetered customers.

In the second work [31], an AMI data driven machine learning algorithm is developed

to solve the phase identification problem. First, key features are extracted from the voltage time

series by a nonlinear dimension reduction technique. A constraint-driven hybrid clustering (CHC)

algorithm is then designed to group smart meters/structures into various clusters. Finally, the phase

connection of each cluster is identified by field validations on the phase connections of very few

smart meters. In comprehensive case studies on 5 distribution circuits, the proposed data driven

machine learning algorithm yields high accuracies. In addition, this work reveals that more granular

voltage readings will lead to even more accurate phase identification results.

Compared to the existing data-driven phase identification algorithms, the proposed method

has the following advantages. First, the proposed algorithm does not require prior knowledge about
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the number of phase connections in the distribution system, which is required by most of the existing

AMI data driven methods. Second, the proposed algorithm works well with distribution feeders that

have both phase-to-neutral and phase-to-phase connections, while most of the existing techniques

works only with one of the two kinds of connections. Third, the accuracy of the proposed phase

identification algorithm is insensitive to the level of unbalance in a distribution feeder.

1.3.2 Phase Identification by the Physics-Informed Model Approach

To further improve the phase identification accuracy and provide a theoretical foundation

for the problem, a physically inspired machine learning method is developed for phase identifica-

tion [32]. First, a physical model linking phase connections to the smart meter measurements is

developed by linearizing the three-phase power flow manifold. Then the phase identification task is

formulated as a maximum likelihood estimation (MLE) problem and the correct phase connection

is proved to yield the highest log likelihood value. The MLE problem is difficult to solve due to

the nonlinearity and nonconvexity nature. Thus, the MLE problem is reformulated as a maximum

marginal likelihood estimation (MMLE) problem and it is proved that the correct phase connec-

tion also yields the highest marginal log likelihood value. Finally, an efficient solution algorithm is

developed for the MMLE problem by dividing it into sub-problems, which can be solved by least

squares integer programming.

Compared to the existing data-driven phase identification algorithms, this approach has

the following advantages. First, the physically interpretable MMLE formulation brings a solid the-

oretical foundation to the phase identification problem. Second, the proposed algorithm works for

not only radial distribution feeders, but also heavily meshed networks. Third, the proposed algo-

rithm is more accurate for complex circuits with both single-phase and two-phase connections and
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a lower level of unbalance, while existing data-driven methods have a lot of problems in such cir-

cuits. Fourth, the proposed algorithm is robust with respect to inaccurate feeder models, incomplete

measurements, and bad measurements.

1.3.3 Parameter Estimation by the Physics-Informed Model Approach

A data-driven algorithm is proposed to estimate the serial conductance and serial sus-

ceptance of the π equivalent model for three-phase distribution lines by using the readily available

smart meter measurements of voltage magnitude, real power consumption, and reactive power con-

sumption [33]. First, a physical model linking smart meter measurements and the three-phase serial

conductance and susceptance is built by linearizing the three-phase power flow manifold. Then

the three-phase parameter estimation problem is formulated as a maximum likelihood estimation

(MLE) problem and it is proved that the correct network parameters yield the highest likelihood

value. At last, the stochastic gradient descent (SGD) algorithm with early stopping is adopted to

solve the MLE problem.

Compared to the existing parameter estimation methods, the proposed algorithm has two

advantages. First, the proposed approach takes unequal self and mutual serial conductance and sus-

ceptance into consideration, which is specifically designed to estimate parameters of three-phase

distribution networks. Second, the proposed approach can be easily applied in real-world distribu-

tion circuits because it only uses readily available smart meter data.

1.3.4 Parameter Estimation by the Graphical Learning Model Approach

A physics-informed graphical learning algorithm is developed to estimate the 3×3 series

resistance and reactance matrices of three-phase distribution line model using readily available smart
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meter measurements [34]. The proposed method is inspired by the emerging graph neural network

(GNN), which is designed for estimation problems in networked systems. Three-phase power flow-

based physical transition functions are designed to replace the ones based on deep neural networks

in the GNN. The gradient of the voltage magnitude loss function with respect to the line segments’

resistance and reactance parameters is then derived with an iterative method. Finally, the stochastic

gradient descent (SGD) approach is used to estimate distribution network parameters by minimizing

the error between the physics-based graph learning model and the smart meter measurements. Prior

estimates and bounds of network parameters are also leveraged to improve the estimation accuracy.

To improve computation efficiency, partitions can be introduced so that parameter estimations are

executed in parallel in sub-networks.

The main technical contributions of this work are as follows. First, a physics-informed

graphical learning method is developed to estimate line parameters of three-phase distribution net-

works. Second, the proposed algorithm can be easily applied to real-world distribution circuits

because it only uses readily available smart meter data. Third, the proposed approach is more ac-

curate on test feeders than the state-of-the-art benchmark because it preserves the nonlinearity of

three-phase power flows in the graphical learning framework.

1.3.5 Modeling of Commercial Adoption of Photovoltaic Systems

The solar PV system is one of the fast expanding DER types. A model for commercial

solar PV adoption is developed with explanatory variables such as government incentive programs

and solar PV system installation costs to quantify their impacts [35]. The adoption model is built

on top of the generalized Bass diffusion framework and is applied to forecast commercial solar PV

adoption in Southern California. The nonlinear least squares approach is used to estimate the model
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parameters and their asymptotic standard errors. The proposed model yields a lower root-mean-

square error (RMSE) than the basic Bass diffusion model.

Compared with other related work, this work makes the following unique contributions.

First, this work develops a model for commercial PV adoption, which quantifies the impact of so-

lar PV costs and government incentive programs on the adoption. Second, the proposed model is

also capable of forecasting the eventual commercial PV adoption rate and quantifying the delayed

effect of explanatory variables on adoption. It is found that the eventual adoption rate of solar PV

system is higher for large commercial customers. Third, the model is applied to fit the empirical

commercial PV adoption data in Southern California. The empirical results show that large com-

mercial customers are more susceptible to the influence of PV costs and government incentives than

small commercial customers. Fourth, by changing the cost and incentive rates fed into the model,

adoption curves can be forecasted under different cost and policy conditions. This can be a useful

tool for the government to evaluate its renewable energy technology incentive policies.

1.3.6 Diversity Factor Prediction for Distribution Feeders

A set of comprehensive models based on supervised machine learning algorithms are

developed to predict the DF of distribution feeders, accounting for a variety of influential factors,

such as customer type, weather, demographics, and socioeconomic conditions [36]. The machine

learning algorithms not only yield high prediction accuracy on real-world distribution feeders but

also provide useful insights on how input features influence DF. The key factors that affect the

DF are identified by using the interpretation method called SHapley Additive exPlanations (SHAP)

[37].
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1.4 Thesis Organization

The remainder of this dissertation is organized as follows. Chapter 2 presents the work

of phase identification by unsupervised learning, including the algorithm using linear dimension

reduction with centroid-based clustering [30] and the algorithm using nonlinear dimension reduc-

tion with density-based clustering [31]. Chapter 3 presents the work of phase identification by the

physics-informed model approach [32]. In Chapter 4, a physics-informed model approach is pro-

posed for parameter estimation[33]. In Chapter 5, the parameter estimation problem is solved by

a graphical learning model approach [34]. Chapter 6 presents a model for commercial adoption

of solar photovoltaic systems [35]. In Chapter 7, the diversity factor of distribution feeders is pre-

dicted by using a set of comprehensive supervised machine learning models [36]. Chapter 8 states

the conclusion.
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Chapter 2

Phase Identification by Unsupervised

Learning

2.1 Introduction

Driven by stricter environmental regulations, technological advances, and business model

innovations, distributed energy resources (DERs) are being deployed in the electric power distri-

bution systems at an unprecedented pace. According to a technical report from Navigant Research

[38], the annual installed capacity across the global DER market is expected to grow from 136.4

GW in 2015 to 530.7 GW in 2024.

To fully exploit the benefits of the DERs, the distribution network must be actively man-

aged. To operate the distribution system in an efficient and reliable manner, the distribution system

operators typically rely on a set of tools and applications including three-phase power flow, distri-

bution system state estimation, three-phase optimal power flow, distribution system restoration and
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distribution network reconfiguration. All of these applications require an accurate distribution net-

work and phase connectivity model. Although the network connectivity model is mostly accurate,

phasing errors are common [39]. Therefore, an accurate phase identification method is in critical

need.

Electric utility companies typically do not have accurate phase connectivity information.

Moreover, the phase connectivity of the distribution network changes over time when new customers

are connected to the system. With more DERs connected to the power distribution systems, correct

phase connectivity data become increasingly important to efficient and reliable operations of power

distribution systems. In this chapter, we develop two unsupervised machine learning algorithms to

identify the phase connectivity of customers based on smart meter data and supervisory control and

data acquisition (SCADA) data. The first algorithm leverages the technique of linear dimension

reduction with centroid-based clustering; the second algorithm leverages the technique of nonlinear

dimension reduction with density-based clustering.

The rest of this chapter is organized as follows. Section 2.2 introduces the background

and defines the problem of phase identification. Section 2.3 presents the phase identification algo-

rithm by linear dimension reduction with centroid-based clustering. Section 2.4 presents the phase

identification algorithm by nonlinear dimension reduction with density-based clustering.

2.2 Background and Problem Definition of Phase Identification

To understand the phase identification problem, we first briefly introduce the electric

power distribution system. The electric power distribution system is the final portion of the power

delivery infrastructure that carries electricity from highly interconnected, high-voltage transmission
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systems to end-use customers. An illustration of a simple electric distribution system is depicted

in Figure 2.1. The starting point of the distribution system is the distribution substation. In the

distribution substation, a step-down transformer lowers the transmission-level voltage (35 to 230

kV) to a medium-level voltage (4 to 35 kV) in the primary distribution circuits [40]. The electric

power then flows through the primary feeders and laterals (L1-L5) to distribution transformers (T1-

T8), which further step down the voltage to low-voltage secondary circuits. The secondary circuits

serve end-use customers and operate at 120/240 V three-wire, 120/208 V three-phase, or 277/480

V three-phase. Laterals can be single-phase (L2), two-phase, also called “V” phase (L3, L4), or

three-phase (L1, L5).

Figure 2.1: Illustration of a distribution system. Labels a, b, and c represent the three phases. L
stands for a lateral, T stands for a transformer, and x denotes a customer.
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The majority of the electric power is supplied by three-phase generators. In balanced con-

ditions, the electric power circuits are 3-phase circuits and the three voltage phasors, Van, Vbn, and

Vcn, differ only in their angles, with 120-degree differences between any pair. Residential customers

can be served by either a 120/240 V three-wire secondary through a center-tapped transformer (e.g.,

T3, T4, T7) or a 120 V single-phase secondary through a single-phase transformer (e.g., T1, T2,

T5, T6). Commercial customers are typically served by a 208 V or 480 V three-phase four-wire

secondary through a three-phase transformer (e.g., T8).

The phase identification problem is defined as identifying the phase connectivity of each

customer and structure in the power distribution network.

2.3 Phase Identification by Linear Dimension Reduction With Centroid-

Based Clustering

2.3.1 Literature Review and Contributions of Our Work

Very few studies on phase identification have been carried out. The existing methods

for solving the phase identification problem can be separated into two general approaches. In the

first approach, only smart meter data and SCADA information are assumed to be available [39,

41, 42, 43]. In the second approach, special equipments such as micro-synchrophasors [44], signal

generators and discriminators [45] need to be installed to accurately identify the phase of distribution

system customers and/or structures.

In the first approach, 0-1 integer linear programming and correlation-based methods are

proposed to solve the phase identification problem. The phase identification problem is formulated
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as a 0-1 integer linear programming problem where the phase connection of smart meters are treated

as binary variables. Tabu search [41] and branch & bound search [42] are used to solve the inte-

ger optimization problem. There are two drawbacks associated with the 0-1 integer programming

method. The first drawback is its computational complexity. A typical distribution feeder serves

1000 to 3000 customers on average. Therefore, the 0-1 integer programming problem for phase

identification has thousands of binary decision variables, which requires daunting computational

time. The second drawback is its low tolerance for erroneous and missing measurements. The

existing methods only work when there are no unmetered loads or erroneous load measurements.

In correlation-based methods [39, 43], correlation coefficients or R2 (coefficient of de-

termination) are calculated between the voltage profile of individual smart meters and the voltage

profile of the substation on each phase. These correlation coefficients or R2 are assumed to have

the highest value when the customer’s phase is correctly labeled. Although correlation-based meth-

ods have been shown to be effective in identifying single-phase customers, it is not clear if the

method can be successfully applied in the distribution circuits where the majority of the loads are

connected to two-phase laterals. In addition, the algorithm may incorrectly label customers on the

same single-phase secondary differently.

In the second approach, micro-synchrophasors, signal generators and discriminators are

leveraged to accurately identify the phase of each customer. In [44], micro-synchrophasors are

deployed at the target bus for phase identification. Micro-synchrophasors can measure voltage

phase angles in addition to voltage magnitude. The main idea behind the method is that the correct

customer phase label should yield the highest voltage magnitude and phase correlation with the

corresponding phase at the substation. The advantage of the micro-synchrophasor approach is that
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the method is applicable to all types of customer phase connections. In [45], a signal generator is

deployed at the distribution substation and signal discriminators are deployed at the target customer

sites to accurately identify the phases of smart meters. The disadvantage of the methods in the

second approach is the expensive capital and maintenance costs for the additional equipments.

In this work, an innovative constrained k-means clustering algorithm of smart meter data

is proposed to solve the phase identification problem. Instead of directly using the voltage time

series data, we propose to first extract unique features from the voltage time series of smart meters.

Then we define customer phase constraints by exploiting the known information about line config-

urations in the network connectivity model. At last, a constrained k-means clustering algorithm is

applied to accurately identify the phase connection of each customer.

In light of the existing literature, the unique contributions of this work are as follows:

1. The proposed phase identification algorithm utilizes the known information about line

configurations in the network connectivity model to avoid mislabeling of the customers on the same

secondary feeder which can occur in the existing methods.

2. The proposed phase identification algorithm is computationally efficient compared with

the 0-1 integer linear programming method and the correlation-based methods.

3. The proposed phase identification algorithm can identify phase connections with high

accuracy in distribution circuits where the majority of loads are connected to two-phase laterals.

4. The proposed phase identification algorithm can still determine the phase connections

of metered customers when the distribution circuit has some unmetered customers.
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2.3.2 Technical Methods

The framework of our proposed phase identification algorithm by clustering smart meter

data is illustrated in Figure 2.2. In the first step, voltage measurements are collected from smart

meters and the SCADA system. In the second step, we normalize the customer voltage time series

by their standard deviations and apply principal component analysis (PCA) on the normalized time

series to extract the top q components. In the third step, we define the constraints in the clustering

process by inspecting the network connectivity data. The k-means constrained clustering method is

then applied to partition customers into clusters. At last, we identify the phase of each cluster by

solving a minimization problem. The rest of this section is divided into three parts. First, we briefly

review the methods in clustering of time series data. Second, the k-means constrained clustering

algorithm for smart meter data is presented. Third, the algorithm for identifying the phase of each

cluster is introduced.

Figure 2.2: Diagram of the phase identification procedure.
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2.3.2.1 Brief Review of Clustering Time Series Data

The goal of clustering is to identify the structure in an unlabeled dataset by objectively

organizing data into homogeneous groups such that the objects in the same group are more similar

to each other than those in different groups [46]. Various algorithms have been developed to cluster

time series data. One of the widely used clustering algorithms is k-means, in which the objects are

divided into k clusters so that the within-cluster sum of squares is minimized. Though typically it

is not practical to find the minimal sum of squares among all possible partitions, many algorithms

have been proposed to find local optimal solutions [47].

Almost all clustering algorithms require a similarity or distance function. There are many

different types of distance functions. We only consider two of them here. The first one is Euclidean

distance. If ai and aj are two p-dimensional time series, then their Euclidean distance is defined by

dE =

√√√√ p∑
k=1

(aik − ajk)2 (2.1)

Another type of distance function is related to Pearson’s correlation coefficient. For two p-dimensional

time series ai and aj , their Pearson’s correlation factor is defined by

cc =

∑p
k=1(aik − µi)(ajk − µj)

sisj
(2.2)

where µi and µj are the mean values of ai and aj , and si =
√∑p

k=1(aik − µi)2 [46]. Then the

distance between ai and aj can be defined based on cc as d1 = 1 − cc or d2 = (1−cc
1+cc)

β , (β > 0)

[48].

Smart meter time series data are high-dimensional. It is not desirable to work with high-

dimensional noisy raw data in practice [46]. Therefore, we adopt a feature-based clustering method

for the phase identification problem. Drawing features from data often requires expert knowledge
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of the data, but in the phase identification problem, little knowledge is known on what features are

important. PCA is a useful tool to reduce the data dimension and extract key features hidden in the

time series data. PCA transforms a dataset into a new set of uncorrelated variables called principal

components (PCs). PCs are ordered such that the first component retains the most of the variation

in the original variables, the second component retains the second most of the variation, and so on

[49]. In this work, PCA is used to select the most important features of the voltage time series data

by picking the first q components. Euclidean distance in the chosen principal components’ space

will be used as the distance metric in the subsequent clustering process.

2.3.2.2 Clustering of Smart Meter Data with Constraints

The intuition behind identifying phase connectivity through clustering of voltage time

series data is that the distribution system is typically operated in an unbalanced manner. The unbal-

anced impedances and electric loads on three phases lead to unbalanced line currents and voltages

[29]. This implies that the trajectory of voltage time series of customers with the same phase con-

nectivity will have more similar behavior than those with different phase connectivity. Instead of

working directly with the raw voltage data, a feature-based clustering approach is used with features

extracted from the voltage time series by PCA. Preprocessing including normalization and center-

ing of the raw voltage data is conducted before applying PCA. We will show in the case study in

Section 2.3.3 that a small number of features can yield very accurate clustering results.

The goal of clustering the voltage data from smart meters is to identify distinct groups

of customers such that all customers in the same group have the same phase connectivity. Using

the distribution feeder shown in Figure 2.1 as an example, customers x7, x8, x9, x10, x15, and

x16 are all connected to phase BC through a three-wire system (120/240 V) and they should be

22



clustered into the same group. Similarly, consumers x1, x2, x3, and x4 should also be in one cluster

because they are all connected to phase A and have the same voltage level (120 V). Before applying

the clustering algorithm, we first separate customers based on their service voltage levels (120 V,

120/240 V, 208 V, 277 V, 480 V). These voltage levels can be easily identified by inspecting the

voltage magnitude data from smart meters. The algorithm proposed in this work aims at clustering

customers of the same voltage level. For example, meters of 120/240 V three-wire service have

6 possible phase connections: AB, BC, CA, AN , BN , and CN ; meters of 120 V single phase

service have 3 possible phase connections: AN , BN , and CN .

Various studies have been carried out to improve clustering/learning performances by uti-

lizing constraints from background knowledge [50, 51, 52, 53]. In reference [50], two kinds of hard

constraints are introduced: must-link constraints and cannot-link constraints. Must-link constraints

specify that two data points have to be in the same cluster; cannot-link constraints specify that two

data points cannot be in the same cluster. The must-link or cannot-link constraints for the phase

identification problem can be formed based on the network connectivity information, which is typ-

ically available for power distribution systems. The network connectivity information includes line

segment configurations and the connectivity between customers, distribution transformers, laterals,

and primary feeders. If two customers are connected to the same secondary laterals and have the

same voltage level, then they must have the same phase connectivity and should be linked together

in the clustering process. For example, in Figure 2.1, customers x7, x8, x9, and x10 are all con-

nected to the same lateral L3, and receive power through a three-wire (120/240 V) configuration.

Therefore, these customers should be grouped into the same cluster. On the other hand, customers

x7 and x15 should not be linked to each other because they are connected to different laterals.
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A scheme is introduced in [51] for constrained k-means clustering. It is similar to the

standard k-means clustering algorithm except that in the constrained clustering algorithm, each

data point is assigned to the closest cluster such that it does not violate the constraints. The

phase identification problem has must-link constraints where certain data points must be in the

same cluster. We first put customers on the same laterals into a subset. Then an augmented k-

means clustering algorithm is performed to the subsets themselves to obtain the full partition. Let

D = D1
⋃
D2
⋃
...
⋃
Dn be the whole dataset, and D1, ..., Dn are the subsets in which every data

point is linked together by the constraints. If a data point is not linked to any other data point, then

it forms a subset in D itself. The constrained k-means clustering algorithm for phase identification

is described in Algorithm 1, which is a modification of the scheme in [51]. As mentioned in Section

2.3.2.1, it is difficult to find the optimal result(s) by k-means clustering. To get a relatively good

clustering result in our approach, the clustering algorithm is performed multiple times with differ-

ent sets of random initial cluster centers. The clustering result with the smallest sum of squared

distances is selected in the end.

Algorithm 1 Constrained k-means clustering algorithm
1: procedure CON-K-MEANS(D = D1

⋃
D2
⋃
...
⋃
Dn)

2: Choose data points randomly from D as the initial cluster centers C1, ..., Ck.
3: Calculate each subset Di’s distance to each cluster. The distance is defined as the sum of

squared distances of all the data points in Di with the cluster center.
4: Assign each subset to the cluster that has the minimum summed distance.
5: For each clusterCi, update its center by averaging all the data points that have been assigned

to it.
6: Iterate between (3) and (5) until convergence.
7: return {C1, ..., Ck}.
8: end procedure
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2.3.2.3 Identify the Phase Connectivity of Each Cluster

Once the customers are clustered as described in Section 2.3.2.2, the next and last step

is to identify the phase of each cluster. Since the customers in the same cluster should have the

same phase connection, we can identify the phase of each cluster by picking a small number of

customers from that cluster and identify their phase. This is a huge workload reduction compared

with performing phase identification on every single customer. One may identify the phase of these

few customers by micro-synchrophasors, signal generators and discriminators as in [44, 45].

However, to further reduce the computational workload, and to save the expense of equip-

ments used in [44, 45], we can identify the phase of each cluster by a one-to-one matching be-

tween the set of clusters and the set of possible phase connections. The one-to-one matching

can be found by solving the following minimization problem. Suppose there are k clusters to be

identified with centers C1, ..., Ck, and there are k substation voltage time series on the k possi-

ble phases. The k substation voltage series are centered and normalized by their standard devi-

ations, and then projected onto the chosen principal components’ space used for clustering. Let

V1, ..., Vk be the coordinates of the k voltage series in the chosen principal components’ space, and

let f : {C1, ..., Ck} → {V1, ..., Vk} be an unknown bijection between the cluster set and the sub-

station voltage set. The solution of the minimization in (2.3) is the one-to-one matching for phase

identification. The phase of each cluster’s paired voltage data is the cluster’s identified phase.

arg min
∀ bijection f :{C1,...,Ck}→{V1,...,Vk}

k∑
i=1

dE(Ci, f(Ci))
2 (2.3)

Here dE(Ci, f(Ci)) is the Euclidean distance between Ci and f(Ci). The minimization can be

solved by exhaustive search, because there are only k! possible bijections, where k is small (e.g.,

k = 3 at 120/240 V level).
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Compared to the load matching approach in [42], which assumes aggregated electricity

consumption of all customers matches that of the substation, our proposed method is less sensitive

to the presence of unmetered customers.

2.3.3 Case Study

In this section, the proposed phase identification method is validated through a case study

of a distribution feeder in Southern California Edison’s service territory. The results show that the

constrained k-means clustering algorithm yields highly accurate phase connectivity on a typical

distribution feeder.

2.3.3.1 Description of Datasets and Preprocessing of Data

The distribution feeder used for case study is a 12.47 kV network with a peak load of about

5.2 MW. The feeder serves about 1500 customers. The majority of the customers are residential

customers.

The raw data collected to test the phase identification algorithm include: 1) hourly smart

meter readings of voltages; 2) feeder line-to-line voltage readings of three phases from the SCADA

system; 3) network connectivity of the distribution system. The number of a smart meter’s readings

varies by month. In months with 30 days, there are 720 readings (yielding measurement vectors

of dimension 720), while months with 31 days have 744 reading hours. The SCADA system only

records new feeder measurements when the difference between the new measurement and the pre-

vious measurement exceeds certain threshold. For example, the threshold setting for the line-to-line

voltage is 0.02 kV. At last, to evaluate the accuracy of the proposed phase identification method, the

correct phase connectivity of each meter is also gathered to serve as the ground truth.
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Since the SCADA readings are recorded at nonuniform timestamps, linear interpolation is

used to create a new set of voltages that have the same timestamps as the smart meter readings. All

the readings are centered and normalized by their standard deviations. PCA and k-means clustering

are performed on the readings of the same time period with the same timestamps. The timestamps

are chosen such that most meters have a complete set of measurements. A smart meter is removed

from the case study if it has missing readings at the chosen timestamps in the study period. In

the testing distribution feeder, most of the customers are served by a three-wire system (120/240 V)

based on the smart meter voltage levels, and all of them are connected to phasesAB,BC, orCA. A

few customers are served by three-phase laterals and there is no need to perform phase identification

for these customers. Less than 1% of the customers are served by two-wire single-phase systems

(120 V). Due to the small number of datasets, they are removed from the clustering process and

their phase connectivity can be identified using methods introduced in [44, 45].

After preprocessing the test data, about 1500 customers/meters need to be clustered into

3 groups: phase AB, phase BC, and phase CA. PCA is conducted on the preprocessed time series

data. Only the first two principal components are used to calculate Euclidean distances among

customers. Based on the simulation results, including additional principal components does not

further improve the performance of the phase identification results. The phase of each cluster is

identified by finding the bijection described in Section 2.3.2.3. In this case, the bijection is between

3 clusters and the substation voltages of phases AB, BC, and CA.
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Table 2.1: Clustering Result

Unconstrained Clustering Results of August 2015
Cluster Identified Phase Number of Meters Accuracy Overall Accuracy

1 AB 674 92.58%
2 BC 518 87.64% 87.55%
3 CA 246 73.58%

Constrained Clustering Results of August 2015
Cluster Identified Phase Number of Meters Accuracy Overall Accuracy

1 AB 636 98.27%
2 BC 560 87.68% 90.40%
3 CA 242 76.03%

Unconstrained Clustering Results of September 2015
Cluster Identified Phase Number of Meters Accuracy Overall Accuracy

1 AB 678 93.36%
2 BC 547 93.60% 93.12
3 CA 244 91.39%

Constrained Clustering Results of September 2015
Cluster Identified Phase Number of Meters Accuracy Overall Accuracy

1 AB 645 98.29%
2 BC 559 97.67% 97.28%
3 CA 265 93.96%

Unconstrained Clustering Results of October 2015
Cluster Identified Phase Number of Meters Accuracy Overall Accuracy

1 AB 662 95.02%
2 BC 531 93.60% 93.09%
3 CA 254 87.01%

Constrained Clustering Results of October 2015
Cluster Identified Phase Number of Meters Accuracy Overall Accuracy

1 AB 630 99.84%
2 BC 550 98.36% 97.86%
3 CA 267 92.13%
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Figure 2.3: Principal components of August voltage time series data.

Figure 2.4: Principal components of October voltage time series data.
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Figure 2.5: Phase identification results.
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2.3.3.2 Clustering Results

Three months of SCADA, smart meter, and network connectivity data are collected from

August 1, 2015 to October 31, 2015. 1438 smart meters’ data are available in August. According

to the ground truth, 629 of them are connected to phase AB laterals, 557 of them are connected to

phase BC laterals, and 252 of them are connected to phase CA laterals. In September, 1469 smart

meters’ data are available. According to the ground truth, 638 of them are connected to phase AB

laterals, 571 of them are connected to phase BC laterals, and 260 of them are connected to phase

CA laterals. In October, 1447 smart meters’ data are available. According to the ground truth, 633

of them are connected to phase AB laterals, 562 of them are connected to phase BC laterals, and

252 of them are connected to phase CA laterals.

The clustering and phase identification results are shown in Table 2.1, which can be in-

terpreted as follows. The clustering and phase identification algorithms group the smart meters into

three clusters. The phase identified for each cluster is listed in the identified phase column. If a

meter is assigned to a cluster whose identified phase is the same as the meter’s actual phase, then it

is assigned to the correct cluster. The accuracy column shows the percentage of correct assignments

in each cluster and the overall accuracy column shows the overall accuracy of the algorithm.

Table 2.1 shows that the phase identification algorithm of both unconstrained and con-

strained clustering achieve at least 90% overall accuracy in September and October. In addition,

in all months, the constrained clustering algorithm yields a higher accuracy than the unconstrained

k-means clustering algorithm. The constrained clustering outperforms the unconstrained clustering

by letting must-link constraints pull a linked meter back to the correct cluster when it is near the

boundary of two clusters.
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Figure 2.3 and 2.4 show the distributions of two months’ voltage data points in the space

of the first two principal components. Dashed lines are the boundaries of Voronoi cells associated

with cluster centers derived from the constrained clustering algorithm. Figure 2.4 also shows an

example of how the constrained clustering algorithm improves the accuracy. In Figure 2.4, a set of

blue data points grouped by must-link constraints are connected by solid lines. Although this set of

data points are separated by a boundary, they are closer to the CA cluster as a whole. Therefore,

they are assigned to the CA cluster, which is the correct phase. Without these must-link constraints,

some of the data points will be assigned to the BC cluster, which is incorrect. Figure 2.3 and

2.4 show that data points of different phases are separated in the space of the first two principal

components. However, there are more data points of phase BC and CA overlapped in Figure 2.3

than Figure 2.4. As a result, the overall accuracy of phase BC and CA are lower when using data

from August, compared with October.

Figure 2.5 shows the clustering results on the distribution circuit map based on the smart

meter data of October 2015. In Figure 2.5, each line is colored according to its actual phase. Each

structure (e.g., transformer) is represented by a small dot. The three-phase black lines are primary

feeder lines. Structures can be connected to primary feeder lines through a three-wire (120/240 V)

system, so they can be connected to phases of AB, BC, and CA. A colored rectangle is overlayed

on top of a structure if it is assigned to a wrong cluster. The color of the rectangular shows the

identified phase of the cluster. Note that the number of structures is smaller than the number of

smart meters/customers as a distribution transformer typically serves several customers.

In summary, the results above show that the constrained k-means clustering algorithm

groups the meters by phase at high accuracy, and the identification method correctly identifies the
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phase of each cluster, in a circuit where the majority of customers are connected to two-phase

laterals.

The proposed algorithm is computationally more efficient than the integer linear program-

ming method. The running time of the proposed algorithm is the sum of the running time of the

PCA step and the k-means clustering step. The running time of the PCA is O(p2m+ p3) [54], and

the running time of Lloyd’s algorithm for k-means clustering is given by as O(mkqi). Here p is the

number of dimensions of the raw time series data, m is the number of data points (i.e., the number

of meters), k is the number of clusters, q is the number of principal components used in clustering,

and i is the number of algorithm iterations. In the case study, the typical value for i is less than 10.

Therefore, the total running time of the proposed algorithm increases linearly with m. On the other

hand, the running time of branch and bound search, which solves the integer linear programming

problem, is not bounded by a polynomial function of m [55].

2.3.4 Conclusion

An innovative distribution system phase identification algorithm using constrained k-

means clustering of smart meter data is proposed in this work. The proposed algorithm leverages

the network connectivity information to avoid mislabeling customers on the same secondary feeder.

Utilizing only the smart meter and SCADA information, the proposed algorithm is not only compu-

tationally efficient but also yields high accuracy. A real-world distribution feeder is used to validate

the algorithm. Case study results show that the constrained k-means clustering algorithm outper-

forms the unconstrained algorithm. The overall accuracy of the proposed algorithm is at least 90%.

Table 2.1 shows that this algorithm performs better during some months than others. Fu-

ture research is needed to determine over which time periods the phase identification algorithm
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performs best. In addition, it is desirable to develop algorithms that not only perform phase identi-

fication but also estimate the confidence level of clustering result for each individual meter.

2.4 Phase Identification by Nonlinear Dimension Reduction With Density-

Based Clustering

2.4.1 Literature Review and Contributions of Our Work

Currently, most electric utilities conduct phase identification using special phase meters

[56][21]. Typically, two phase meters/units are used. One unit is located at the substation to serve as

the reference. The other is called the field unit and is located at the smart meter/structure of interest

in the distribution feeder. The working mechanism of these special phase meters is very similar

to that of the phasor measurement units except that the phase meters are mobile. With GPS time,

the phase angle difference between the reference point and the field structure can be accurately

measured, which then determines the phase connectivity of the field structure. Although phase

meters provide highly accurate phase identification results, this solution is very time consuming and

labor intensive, which make it unsuitable for large-scale deployment.

The existing data-driven algorithms use electric load and voltage magnitude measure-

ments from the AMI to identify the phase connections of the smart meters and structures in the

distribution network. These algorithms include supply and consumption balancing [41][42], linear

regressions and correlation analysis [39][57], and constrained k-means clustering algorithm (CK-

Means) [30]. However, the existing data-driven algorithms have three drawbacks. First, all these

methods assume that the number of phase connections are known in advance. Second, these meth-
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ods can not provide accurate phase identification when there is a mix of both phase-to-neutral and

phase-to-phase connected smart meters and structures. Third, the existing methods are quite sensi-

tive to the level of unbalance in a distribution feeder. The proposed AMI data driven phase iden-

tification algorithm addresses these drawbacks by leveraging a nonlinear dimensionality reduction

technique that can extract hidden features from voltage time series and using the CHC algorithm to

dynamically create smart meter clusters with arbitrary shapes. Field validation results show that the

proposed algorithm outperforms the existing methods in all of the 5 distribution feeders.

In this work, an AMI data driven machine learning algorithm is developed to solve the

phase identification problem. This algorithm leverages voltage magnitude data recorded by the AMI

to identify the phase connection of each smart meter and structure. A nonlinear dimensionality

reduction technique is first used to extract key features from the voltage time series. A constraint-

driven hybrid clustering (CHC) algorithm is then developed to separate smart meters/structures into

various clusters. Finally, the phase connection of each cluster can be identified by performing field

validations on the phase of very few smart meters. Comprehensive case studies are conducted on 5

distribution circuits, which went through detailed field validations. The AMI data driven machine

learning algorithm has yielded high accuracies on all circuits. In addition, this work discovers that

more granular voltage readings will lead to even more accurate phase identification results.

Compared to the existing data-driven phase identification algorithms, the proposed method

has the following advantages:

1. The proposed algorithm does not require prior knowledge about the number of phase con-

nections in the distribution system. Most of the existing AMI data driven methods need the

number of phase connections as an input parameter.
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2. The proposed algorithm works well with distribution feeders that have both phase-to-neutral

and phase-to-phase connections. Most of the existing techniques are only capable of identi-

fying the phase connections in distribution feeders with only phase-to-neutral connections or

phase-to-phase connections.

3. The accuracy of the proposed phase identification algorithm is not very sensitive to the level

of unbalance in a distribution feeder.

2.4.2 Drawbacks of the Existing Data-driven Phase Identification Methods

Three main drawbacks of the existing phase identification methods are studied in detail

below. As the CK-Means method is the most promising algorithm among the existing data-driven

phase identification methods, it will be used as an example in the performance evaluation. A com-

prehensive study is conducted on 5 distribution feeders and 18 data sets to analyze the impact of

unbalance level and the mix of phase connection types on the phase identification accuracy for the

CK-Means method.

The general descriptions of the 5 distribution feeders and 18 data sets are shown in Table

2.2. The feeder and smart meter data is provided by the Pacific Gas & Electric Company and South-

ern California Edison. The number of customers, feeder voltage level, proportion of the major phase

connection types, and feeder peak load are listed in the second column of the table. A distribution

feeder can have 3 possible phase-to-neutral connections, AN , BN , and CN , and/or 3 possible

phase-to-phase connections, AB, BC, and CA, where A, B, C, and N denote the three phases’

wires and the neutral wire. 2 months of smart meters’ voltage data with 5-minute granularity is

gathered from feeder 1, 2, and 3. 6 months of smart meters’ voltage data with hourly granularity is
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Table 2.2: Descriptions of the Distribution Feeders

Feeder
Number of Customers,

Month
Data

Feeder Voltage, and Peak Load Set

1
3200 customers (99.8% phase-to-neutral), Nov 2016 s1

12.47 kV, 4.4 MW. Dec 2016 s2

2
4800 customers (98.8% phase-to-neutral), Nov 2016 s3

12.47 kV, 8.3 MW. Dec 2016 s4

3
4000 customers (97% phase-to-neutral), Nov 2016 s5

12.47 kV, 6.4 MW. Dec 2016 s6

4

Aug 2015 s7

Sep 2015 s8

1500 customers (100% phase-to-phase), Oct 2015 s9

12.47 kV, 5.2 MW. Nov 2015 s10

Dec 2015 s11

Jan 2016 s12

5

Aug 2015 s13

Sep 2015 s14

2400 customers (84% phase-to-phase), Oct 2015 s15

12.47 kV, 8.5 MW. Nov 2015 s16

Dec 2015 s17

Jan 2016 s18

gathered from feeder 4 and 5.

In feeder 1, 2, and 3, some meters have missing voltage readings at different time intervals,

making up 9%, 21%, and 18% of the total customer population respectively. The missing readings

are filled in using the k-nearest neighbor (k-NN) imputation method. A meter’s missing readings

are imputed using the average values of the five nearest neighbor meters’ corresponding readings.

The distance between meters are measured by the Euclidean distance of the voltage time series of

the corresponding meters.

In order to make the results comparable, the hourly average voltage magnitudes are cal-

culated for feeder 1, 2, and 3. The hourly average voltage magnitudes are used as inputs in this

section. Each of the 18 data sets includes one month of voltage magnitude data from a feeder. The
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drawbacks of the existing data-driven phase identification algorithms are explored in the next three

subsections.

2.4.2.1 Number of Phase Connections

In order to solve the phase identification problem, the supply and consumption balanc-

ing approach [41][42] requires the number of phase connections in the distribution feeder as an

input. In fact, the problem formulation in [41][42] only allows the identification of phase-to-neutral

connections where the number of phase connections is 3. In the linear regression and correlation

analysis [39][57], the number of phase connections in the feeder is also a mandatory input. In fact,

both linear regression and correlation analysis work well when there are only three phase-to-neutral

connections. The k-means clustering algorithm is used in the CK-Means method [30], where the

number of phase connections/clusters needs to be known as prior knowledge. When applying the

CK-Means method to identify the phase connections of the 5 distribution feeders, the number of

clusters is set to be 3 for feeders 1 to 4, given that over 97% of the smart meters in these feeders

only have 3 connection types. The number of clusters is set to be 6 for feeder 5.

2.4.2.2 Impact of Unbalance Level on the Phase Identification Accuracy

This subsection evaluates the impact of the distribution feeder’s unbalance level on the

phase identification accuracy of the CK-Means algorithm. The CK-Means algorithm works as fol-

lows: The voltage magnitude measurements are first standardized. Linear features are then extracted

by using principal component analysis (PCA) and the top d components are selected. To provide

a fair comparison with the proposed phase identification algorithm in Section 2.3.3, the number of

principal components is set to 30. Next, the data points in the low-dimensional space are clustered
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by using a constrained k-means clustering algorithm. Must-link constraints are derived from the

distribution feeders’ connectivity information, which is typically available from the Geographical

Information System (GIS). The must-link constraints state that if some smart meters are connected

to the same lateral or transformer, then they must be linked together and grouped into the same

cluster. To identify the phase of each cluster, field validations are performed on a must-link group

of at least 20 smart meters that has the least mean squared distance to the cluster center.

The CK-Means algorithm is applied on the 18 voltage time series from the 5 distribution

feeders. The phase identification accuracy is calculated based on independent field validations con-

ducted by the electric utility companies. To measure the level of unbalance of a distribution feeder,

define u(t) as the level of unbalance of a feeder at time interval t:

u(t) =
|IA(t)− Im(t)|+ |IB(t)− Im(t)|+ |IC(t)− Im(t)|

3Im(t)
(2.4)

where Im(t) = 1
3(IA(t) + IB(t) + IC(t)) is the mean of the distribution substation line currents of

the three phases. u(t) can be interpreted as the ratio of the average three-phase current deviation to

the mean. The average level of unbalance for u(t) over a month is calculated for each data set.

Figure 2.6: The phase identification accuracy of the CK-Means method under different levels of
unbalance.
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Figure 2.6 plots the phase identification accuracy against the level of unbalance. It shows

that the CK-Means algorithm is very accurate for the highly unbalanced data sets. As the level of

unbalance decreases, the phase identification accuracy drops quickly. This result is very intuitive.

Imagine there is a perfectly balanced distribution feeder whose three phase wires have the same

load distribution all the time. In this case, the level of unbalance should be zero. Therefore, it

is impossible to distinguish the phase connections of the smart meters on the three phases with

unsynchronized voltage magnitude measurements.

2.4.2.3 A Mix of Phase-to-Neutral and Phase-to-Phase Connections

In general, the existing data-driven phase identification algorithms do not perform well

for the distribution feeders with a mix of phase-to-neutral and phase-to-phase connections. For

example, Figure 2.6 shows that the phase identification accuracy is the lowest for feeder 5. This

is because feeder 5 not only has a lower degree of unbalance, but also has all 6 possible phase

connections types, AN , BN , CN , AB, BC, and CA. In this case, the default phase identification

accuracy is only 16.7% instead of 33.3% for the distribution feeders with only three possible phase

connections.

2.4.3 Technical Methods

The overall framework of the proposed phase identification algorithm is illustrated in Fig-

ure 2.7. The phase identification methodology involves three stages. In stage 1, voltage magnitude

measurements are collected from the smart meters. Each smart meter’s readings are centered and

normalized by their standard deviation. Key features are then extracted from the preprocessed volt-
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age time series with a nonlinear dimensionality reduction method. In stage 2, the CHC algorithm

is leveraged to cluster the low-dimensional data points generated in stage 1. In stage 3, the phase

connection of each cluster is identified by performing field validations on a very small number of

smart meters. The three stages are explained in detail below.

2.4.3.1 Stage 1: Feature Extraction from Voltage Time Series

It is undesirable to directly work with raw voltage readings, which are high-dimensional

and noisy. Therefore, in the first stage, dimensionality reduction techniques will be applied to extract

key features from the raw voltage time series. The extracted features will then be fed into the CHC

algorithm in stage 2.

Dimensionality reduction techniques can be divided into two categories, linear dimen-

sionality reduction methods and nonlinear ones. Linear dimensionality reduction techniques, such

as PCA, are restricted to learning only linear manifolds. However, high-dimensional data typically

lies on or near a low-dimensional, nonlinear manifold [58]. Furthermore, it is very difficult for linear

Figure 2.7: The overall framework of the proposed phase identification algorithm.
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mappings to keep the low-dimensional representations of very similar points close together. This

explains the lower accuracy of the phase identification algorithm using linear features for less un-

balanced feeders. To address this problem, we turn to nonlinear dimensionality reduction methods.

Many nonlinear dimensionality reduction techniques have been proposed, e.g., Sammon mapping

[59], curvilinear components analysis (CCA) [60], Isomap [61], and t-distributed stochastic neigh-

bor embedding (t-SNE) [58]. This work adopts t-SNE, because it has been shown to work well with

a wide range of data sets and captures both local and global data structures. t-SNE improves upon

SNE [62] by 1) simplifying the gradient calculation with a symmetrized version of the SNE cost

function and 2) adopting a Student’s t-distribution rather than a Gaussian distribution to compute

the similarity between two points in the low-dimensional space [58].

The basic idea of t-SNE is to convert the high-dimensional Euclidean distances between

data points into joint probabilities and represent the data points in a low-dimensional space, so that

similar joint probabilities are preserved. Suppose we need to map a high-dimensional data set X =

{x1, x2, ..., xn} to a low-dimensional data set Y = {y1, y2, ..., yn}. Define pji as a joint probability

of X . pji is a symmetric approximation of the conditional probability that xi would pick xj as

its neighbor. The neighbors are picked in proportion to their probability density under a Gaussian

distribution centered at xi with a variance σi. pji is calculated as pji = pij = (pj|i + pi|j)/2n,

where pj|i is calculated as:

pj|i =
exp(−‖xi − xj‖2/2σ2

i )∑
l 6=i exp(−‖xi − xl‖2/2σ2

i )
(2.5)

In the same way, define qji as a joint probability in Y , but under a Student’s t-distribution with one

degree of freedom. Then qji can be calculated as:

qji = qij =
(1 + ‖yi − yj‖2)−1∑
l 6=m(1 + ‖yl − ym‖2)−1

(2.6)
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Then given X , the mapping Y is found by minimizing the Kullback-Leibler divergence between

joint probability distribution P , in the high-dimensional space, and the joint probability distribution

Q, in the low-dimensional space:

C = DKL(P‖Q) =
∑
i

∑
j

pij log
pij
qij

(2.7)

The t-SNE algorithm requires three input parameters: 1) the output dimension dout (typ-

ically selected to be either 2 or 3); 2) the initial dimension din, which is the dimension that the

original data set is reduced to by PCA before performing t-SNE; 3) perplexity p, which is a measure

of effective number of neighbors and controls σi. Since the objective function (2.7) is minimized us-

ing a gradient descent optimization that is initiated randomly, each run of t-SNE produces a slightly

different mapping result. In practice, it is recommended to run t-SNE multiple times and select the

result with the lowest cost function value in (2.7). More details of the t-SNE algorithm can be found

in [58].

2.4.3.2 Stage 2: Group Data Points with the CHC Algorithm

After the preprocessed voltage time series are mapped to a 2-dimensional or 3-dimensional

feature space through t-SNE, they need to be grouped into clusters. Three features of the phase iden-

tification problem need to be considered when designing the clustering algorithm. First, many utility

companies do not know the number of phase connections for each of their distribution feeders. Sec-

ond, the customers with the same phase connection in the low-dimensional feature space do not

necessarily form a convex-shape cluster, which is very common in t-SNE applications [58][63][64].

Third, valuable distribution network connectivity information that defines the mapping between

smart meters and laterals/transformers should be incorporated into the clustering algorithm.
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In order to leverage the features of the phase identification problem, the CHC algorithm is

developed and applied to solve the smart meter clustering problem. The proposed CHC framework

synergistically combines the merits of an unsupervised density-based clustering algorithm and a

supervised classification algorithm. This work selects the density-based spatial clustering of appli-

cations with noise (DBSCAN) [65] as the unsupervised clustering algorithm in the CHC framework,

because it naturally incorporates the first two features of the phase identification problem. Unlike

centroid-based or medoid-based methods, DBSCAN does not need the number of clusters as an

input parameter. In addition, DBSCAN is capable of discovering clusters with arbitrary shapes.

DBSCAN separates data points into different clusters and noise/outliers. The noise/outliers

do not belong to any cluster. However, in the phase identification application, all smart meters must

have a particular phase connection. To mitigate this drawback, k-nearest neighbor (k-NN) classifica-

tion is adopted as the supervised machine learning algorithm in the CHC framework to assign these

outliers and points in the low-density region into one of the existing output clusters from DBSCAN.

At last, the must-link constraints defined by the feeder connectivity model will be considered in

reassigning smart meters connected to the same lateral/transformer to the same cluster.

2.4.3.2.1 Review of DBSCAN A brief review of DBSCAN is provided here. DBSCAN is one

prominent example of density-based clustering approach with high computational efficiency. The

good efficiency of DBSCAN is crucial for deploying phase identification algorithms in electric

utilities with thousands of distribution feeders. The DBSCAN algorithm defines clusters and out-

liers based on four key concepts: ε neighborhood of a point, directly density-reachable, density-

reachable, and density-connected. The algorithm requires two parameters: ε, the radius of neigh-

borhood, and MinPts, the minimum number of data points in an ε neighborhood. The ε neigh-
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Algorithm 2 The CHC algorithm
1: Run the DBSCAN algorithm on a preprocessed data set D with n data points with parameters
ε and MinPts.

2: Define a threshold coefficient α ∈ (0, 1). Given the output of step 1, keep the data points from
the clusters of size greater than or equal to αn as the training data set. Suppose there are c
clusters kept. All the data points outside these clusters are “un-clustered” data points.

3: Assign all un-clustered data points to one of the c clusters with the k-NN algorithm.
4: With must-link constraints, the data set D can be divided into N groups D1, ..., DN . If a data

point has no links to others, it forms a group itself. In each group Di, the data points may have
been assigned to different clusters. To enforce the constraints, assign all data points in group
Di to the cluster that contains the largest number of data points in Di.

5: Return the final clustering result.

borhood of a point p is defined as the set of points in the data set with a distance to p less than

ε. A point p is a core point if it has at least MinPts neighbors within the radius ε. These neigh-

bors are directly density-reachable from p. A point q is density-reachable from p if there is a path

p, p1, p2, ..., pm, q such that each point is directly reachable from the previous point. Two points are

considered density-connected if they have a distance of less than ε. These four definitions allow us

to define the transitive hull of density-connected points, forming density-based clusters. The points

on the border of the clusters are called border points. Any point(s) not reachable from a core point

is counted as an outlier or noise.

2.4.3.2.2 The CHC Algorithm The framework of the algorithm is shown in Algorithm 1. It

requires four input parameters, α, k, ε, and MinPts. α is a threshold used to filter out very small

clusters. k is the parameter in the k-NN algorithm representing the number of nearest neighbors.

The CHC algorithm has 5 steps. Step 1 runs the DBSCAN algorithm on features extracted

by the t-SNE algorithm. Depending on the distribution of data points in the low-dimensional feature

space, the DBSCAN output may include large clusters, small clusters, and noise/outliers. Step 2

filters out the points in the small clusters and noise/outliers and only keeps the large clusters as the
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training data set for the next step. Step 3 classifies the points from small clusters and noise/outliers

with k-NN algorithm using the training data points from the large clusters. Step 4 enforces the

must-link constraints by assigning all smart meters connected to the same lateral/transformer to the

same cluster. The final clustering results will be returned in step 5.

Note that researchers have proposed alternative approaches, such as C-DBSCAN [66] to

integrate constraints into density-based clustering algorithms. In the C-DBSCAN algorithm, the

data points from different clusters involved in a must-link constraint are simply forced to merge

together. However, when the preprocessed voltage time series are mapped to the low-dimensional

space, we often encounter cases where a very small number of meters connected to one phase are

spread over two clusters representing two phases. To address this issue, in step 4 of the proposed

CHC algorithm, we only reassign all the data points connected by a must-link constraint to the same

cluster without affecting the grouping of other data points.

2.4.3.3 Stage 3: Phase Identification for Clustered Customers

The final stage identifies the phase connection of the clusters determined in stage 2. This

can be accomplished by performing field validations on a small number of samples of smart meters

with phase measurement tools [56][21]. The cost associated with the field validation is minimal as

the number of customers that require phase measurement is quite small. To achieve the highest ac-

curacy, the small sample of customers should be chosen as close to the clusters’ centers as possible.

Depending on the availability of must-link constraints, two sampling strategies can be implemented:

1. If there are no must-link constraints, then in each cluster choose m smart meters that are

closest to the cluster center. Field validations can then be performed on thesem smart meters.
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The most frequent phase connection of these m meters is selected as the phase connection of

all the customers in the cluster.

2. If must-link constraints are available, then in each cluster choose the group Dg that contains

at least w customers and has the least mean squared distance to the cluster center. Field

validations will be performed on any of the smart meters in group Dg. The phase connection

of the group is selected as the phase connection of all the customers in the cluster.

2.4.4 Numerical Study

2.4.4.1 Experimental Design

Two types of experiments are designed below to 1) examine the performance of the pro-

posed phase identification algorithm and 2) explore the impact of smart meter data granularity on

the phase identification accuracy.

The first set of experiments compare the performance of the constrained k-means clus-

tering algorithm with linear dimensionality reduction [30] and the CHC algorithm with nonlinear

dimensionality reduction proposed in this work. The constrained k-means clustering algorithm with

linear dimensionality reduction is referred to as “CK-Means” method. Both methods are evaluated

over 18 hourly voltage time series gathered from 5 distribution feeders as described in Table 2.2.

The second set of experiments evaluate the impact of smart meter sampling frequency on

the accuracy of the proposed phase identification algorithm. The experiments are conducted over

6 voltage time series gathered from 3 distribution feeders. The smart meters on distribution feeder

1-3 were configured to record voltage magnitudes every 5 minutes. The average voltage magnitudes

with hourly, 15-minute, and 5-minute granularity are used as inputs.
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2.4.4.2 Parameter Selection

A few parameters need to be set up in order to run the proposed phase identification

algorithm. In the feature extraction stage, three parameters from the t-SNE algorithm need to be

selected. The dimensionality of the PCA output and t-SNE input din is set to be 30. The perplexity

p is set to be 100. Note that these two parameters can be tuned by running the optimization several

times on a data set and picking the parameters that yield the best map [58]. The dimensionality of

the t-SNE output dout is typically set to be 2 or 3. For better visualization, we set dout to 2. In fact,

the case study results with dout = 2 and dout = 3 are very similar.

In the proposed CHC algorithm, three key parameters MinPts, ε, and α need to be tuned

first. The typical ranges for the three parameters are 8 to 20 for MinPts, 1 to 3 for ε, and 0.005

to 0.01 for α. When tuning these parameters, the aim is to see the data points in the t-SNE space

being clustered appropriately. For example, assume we select some initial settings for MinPts, ε,

and α, and get the clustering results as shown in Figure 2.9. Intuitively, cluster 11 and 15 should be

two separate clusters. If the initial parameter setting merges these two clusters, then the parameters

need to be tuned so that they are separated in the clustering results. In this particular case, we

should decrease ε and/or increase MinPts to separate cluster 11 and 15. Note that ε is the radius of

neighborhood and MinPts is the threshold for determining if a point p is a core point or a border

point in a cluster. The parameter α controls the number of output clusters. If the value of α is too

large, then the phase identification accuracy will be lower. However, if the value of α is too small,

then a large number of meters need to be field validated, which increases implementation costs. k,

the parameter of the k-NN, can be selected to be equal to MinPts. At last, in the field validation,

choose the must-link group with at least w = 20 customers.
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2.4.4.3 Performance of the Proposed Phase Identification Algorithm

The phase identification accuracies of the CK-Means method and the proposed phase

identification algorithm are calculated based on field validation results. For the proposed algorithm,

30 runs of t-SNE are conducted. 10 runs with the lowest cost function values are kept. The average

accuracy over the 10 runs are reported in Table 2.3 and Figure 2.8.

As shown in the table, the proposed phase identification algorithm significantly outper-

forms the CK-Means method with all the data sets in terms of accuracy. On average, the proposed

phase identification algorithm improves the identification accuracy by 19.81% over the CK-Means

algorithm. Figure 2.8 shows that the improvement in phase identification accuracy varies by the

Table 2.3: Phase Identification Accuracies

Feeder
Data Level of CK-Means Proposed Algorithm
Set Unbalance Accuracy (%) Accuracy (%)

1
s1 0.0785 81.21 93.06
s2 0.0776 81.18 93.62

2
s3 0.0514 69.67 87.55
s4 0.0617 57.51 87.79

3
s5 0.0956 54.91 83.94
s6 0.1019 72.78 82.83

4

s7 0.1109 89.29 98.60
s8 0.1141 97.82 98.94
s9 0.1131 97.79 99.63
s10 0.1190 88.42 99.66
s11 0.1043 87.49 99.88
s12 0.1250 88.34 99.65

5

s13 0.0673 29.80 73.18
s14 0.0668 38.80 73.32
s15 0.0705 59.07 67.01
s16 0.0742 40.56 88.19
s17 0.0846 60.49 87.11
s18 0.0842 52.02 89.84
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Figure 2.8: The phase identification accuracy with CK-Means and proposed algorithm.

unbalance level of the distribution circuit. The improvement is more significant for periods when

the distribution feeder is less unbalanced.

The combinations of phase connections in the 5 testing feeders include 3 phase-to-neutral

connections, 3 phase-to-phase connections, and a mix of all 6 possible connections. The accuracy

of the proposed phase identification algorithm is very high under most cases. s13, s14, and s15 have

relatively lower accuracy, because they have lower levels of unbalance and they have all 6 possible

connections, which is more difficult to identify than other feeders. When the level of unbalance

is higher, the accuracy is greatly improved in s16, s17, and s18, whose accuracies are very decent

for a feeder with all the 6 possible phase connections. Figure 2.9 illustrates the clustering result

of data set s18 in the 2-dimensional t-SNE map, using the proposed phase identification algorithm.

In the figure, each dot represents a smart meter. Figure 2.10 depicts the actual phase connection

of each smart meter. By comparing Figure 2.9 and Figure 2.10, it is shown that the proposed

phase identification algorithm not only groups phase-to-phase meters accurately, but also groups
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phase-to-neutral meters with a high accuracy. Cluster 2, 11, 12, 13, and 15 each represents one of

the phase-to-neutral connections AN , BN , and CN , as indicated by the arrows in Figure 2.9 and

Figure 2.10.

As a comparison, Figure 2.11 shows the distribution of smart meters from data set s18 in

the 2-dimensional PCA map. The data points are not well separated according to phase connection.

From Figure 2.11 and Figure 2.10, it is clear that the nonlinear dimensionality reduction technique,

t-SNE, does a much better job in extracting hidden features from the voltage time series during a

less unbalanced period for the feeders.

As shown in Figure 2.9, the clusters are in different sizes and shapes. Some of the clusters

are non-convex. The proposed CHC algorithm has a great advantage in identifying clusters with

such data point distributions. Figure 2.9 also shows how the must-link constraints could improve

the phase identification accuracy. In the top right cluster 8, a few data points are linked together.

Figure 2.9: The clustering result in the 2-dimensional t-SNE map on data set s18.
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Figure 2.10: Field validated phase connections of data set s18 in the 2-dimensional t-SNE map.

Although a small number of the data points are located in cluster 14, they will eventually be assigned

to cluster 8 due to the must-link constraint. From Figure 2.10, these data points should belong to

cluster 8, which is connected to phase CA instead of phase AB.

Figure 2.11: Field validated phase connections of data set s18 in the 2-dimensional PCA map.
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Table 2.4: Impact of Sampling Frequency on the Phase Identification Accuracy

Feeder
Data Granularity of Meter Readings
Set 1 hour 15-minute 5-minute

1
s1 93.06% 93.93% 93.88%
s2 93.62% 94.32% 94.40%

2
s3 87.55% 88.86% 92.03%
s4 87.79% 90.47% 89.93%

3
s5 83.94% 90.02% 91.56%
s6 82.83% 84.51% 87.16%

2.4.4.4 Impact of the Smart Meter Sampling Frequency on the Phase Identification Accuracy

The phase identification accuracies of the proposed algorithm under 3 different meter

reading granularity levels are calculated and summarized in Table 2.4. It shows that as the granu-

larity of meter readings increases from hourly to every 15 minutes and then 5 minutes, the phase

identification accuracy increases. The average increase in the phase identification accuracy over the

3 distribution circuits is 3.36% when the meter reading granularity increases from hourly to 5 min-

utes. More granular voltage readings allow extractions of features/patterns that may not be present

in coarse data sets. However, it should be noted that there are additional costs associated with gath-

ering more granular smart meter data. Note that the phase identification accuracy decreases slightly

for data set s1 and s4 when the sampling frequency increases from 15-minute to 5-minute. This is

partly due to the randomness of the t-SNE mapping.

2.4.5 Conclusion

This work develops an AMI data driven phase identification algorithm that addresses the

drawbacks of the existing solutions. Compared to the existing solutions, the proposed algorithm has

three main advantages. First, the proposed algorithm does not require prior knowledge about the
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number of phase connections in the distribution system. Second, the proposed algorithm works well

with distribution feeders that have both phase-to-neutral and phase-to-phase connections. Third, the

accuracy of the proposed phase identification algorithm is not very sensitive to the level of unbalance

in a distribution feeder. Comprehensive field testing results on 5 distribution feeders show that the

proposed algorithm significantly outperforms the existing methods. In addition, we discover that

more granular voltage time series leads to higher phase identification accuracy.

In the proposed CHC algorithm, a few parameters need to be tuned manually. To im-

plement the proposed AMI data driven phase identification algorithm on thousands of distribution

feeders, future work can be done to develop an automatic parameter tuning algorithm.
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Chapter 3

Phase Identification by the

Physics-Informed Model Approach

3.1 Introduction

With declining costs, distributed energy resources (DERs) such as energy storage sys-

tems, distributed generation, and electric vehicles are rapidly penetrating power distribution systems

world-wide. To coordinate the operations of a large number of heterogeneous DERs, advanced

distribution system control applications such as Volt-VAR control, network reconfiguration, and

three-phase optimal power flow are necessary. The successful implementation of these applications

requires accurate information about the phase connectivity of power distribution systems. However,

the phase connectivity information in electric utilities is usually missing or highly unreliable.

In this chapter, by linearizing the three-phase power flow manifold, we develop a physics-

informed model, which links the phase connections to the smart meter measurements. The phase

55



identification problem is first formulated as a maximum likelihood estimation problem and then

reformulated as a maximum marginal likelihood estimation problem. We prove that the correct

phase connection achieves the highest log likelihood values for both problems. An efficient solution

method is proposed by decomposing the original problem into subproblems with a binary least-

squares formulation. The numerical tests on a comprehensive set of distribution circuits show that

our proposed method yields very high accuracy on both radial and meshed distribution circuits with

a combination of single-phase, two-phase, and three-phase loads. The proposed algorithm is robust

with respect to inaccurate feeder models, incomplete measurements, and bad measurements. It also

outperforms the existing methods on complex circuits.

The rest of this chapter is organized as follows. Section 3.2 reviews the literature and sum-

marizes our work’s contribution. Section 3.3 formulates the phase identification problem. Section

3.4 presents the linearized three-phase power flow model. Section 3.5 derives the physics-informed

model that links the phase connections to the smart meter measurements. Section 3.6 formulates

the phase identification problem as an MLE and MMLE problem and presents an efficient solution

algorithm. Section 3.7 performs a comprehensive numerical test to evaluate the performance of the

proposed MMLE-based phase identification method. Section 3.8 states the conclusion.

3.2 Literature Review and Contributions of Our Work

Traditionally, electric utilities send field crews to measure phase angles and determine

phase connections with special equipment such as phase meters [21]. Although such practices pro-

vide very accurate phase connections information, they are very labor-intensive, time-consuming,

and expensive. The time synchronized measurements from micro-phasor measurement units (µPMUs)
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can also provide highly accurate estimations of phase connections [44, 67]. However, a system-wide

installation is cost prohibitive. State estimation can also be used to verify phase connection informa-

tion [68]. However, this method only applies to circuits with mostly accurate phase connections and

the area of incorrect phase connections needs to be known. In order to develop more cost effective

phase identification algorithms, researchers have turned to data-driven methods, which use measure-

ments from the advanced metering infrastructure (AMI). The existing data-driven approaches can

be categorized into three approaches: energy supply and consumption matching, correlation-based

analysis, and clustering-based analysis.

The energy supply and consumption matching approach is based on the principle of con-

servation of energy. With complete coverage of load measurements, the aggregate power consump-

tion of downstream loads in each phase plus losses is equal to the corresponding phase’s power

flow measured at the upstream point. In this approach, Ref. [41] formulates the problem as inte-

ger programming and solves it using tabu search. Ref. [69] uses relaxed integer programming and

improves the phase identification accuracy by actively managing the power injections of DERs. In

[70], principal component analysis (PCA) and its graph-theoretic interpretation are used to infer

phase connections. However, algorithms in this approach cannot identify phase connections in the

presence of delta-connected two-phase loads.

In the correlation-based analysis approach, correlation analysis is performed using smart

meters’ and the substation’s measurements or the three-phase primary line’s measurements. Each

smart meter is assigned to a phase, which has the highest correlation coefficient with it. In this

approach, Ref. [39, 57] use voltage magnitude profiles for the correlation analysis. In [71], salient

features are extracted from load profiles for the correlation analysis. Although the correlation-based
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analysis has achieved good performance on radial circuits with only single-phase loads, it does not

work well for a meshed circuit, which has all seven possible phase connections of single-phase,

two-phase, and three-phase loads.

In the clustering-based approach, smart meters are grouped based on the mutual similarity

of their voltage magnitude profiles. It is assumed that each resulting cluster represents a single phase

connection. Ref. [30, 31] project the voltage magnitude profiles onto low-dimension spaces and

leverage constrained clustering algorithms to identify both single-phase and two-phase connections.

Ref. [72] designs an algorithm by combining clustering and the minimum spanning tree method to

identify phase connections. However, it has been shown that the performance of the clustering-based

approach deteriorates as the feeder becomes more balanced [31].

To further improve the phase identification accuracy and provide a theoretical foundation

for the problem, we develop a physically inspired method for phase identification. By linearizing the

three-phase power flow manifold, we first develop a physical model, which links phase connections

to the smart meter measurements. We then formulate the phase identification task as a maximum

likelihood estimation (MLE) problem and prove that the correct phase connection yields the highest

log likelihood value. The nonlinearity and nonconvexity nature of the MLE problem makes it diffi-

cult to solve. Thus, we reformulate the MLE problem as a maximum marginal likelihood estimation

(MMLE) problem and prove that the correct phase connection also yields the highest marginal log

likelihood value. Finally, an efficient solution algorithm is developed for the MMLE problem by

dividing it into sub-problems, which can be solved by least squares integer programming.

Compared to the existing data-driven phase identification algorithms, our approach has the

following advantages: first, the physically interpretable MMLE formulation brings a solid theoreti-
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cal foundation to the phase identification problem; second, our proposed algorithm not only works

for radial distribution feeders, but also heavily meshed networks; third, our proposed algorithm

achieves higher accuracy for complex circuits with both single-phase and two-phase connections

and a lower level of unbalance, which create a lot of problems to existing data-driven methods;

fourth, our proposed algorithm is robust with respect to inaccurate feeder models, incomplete mea-

surements, and bad measurements.

3.3 Problem Formulation

3.3.1 Problem Setup

We intend to identify the type of phase connection for all loads on a distribution feeder.

The distribution feeder’s three-phase primary line contains N + 1 nodes, indexed as node 0 to N ,

in which node 0 is the source/substation. A load can connect to a three-phase node directly, or

indirectly through a single-phase or two-phase branch (e.g., the dashed lines and dash-dot lines in

Fig. 3.1). Note that nodes and loads are two different concepts. In the technical derivation, all

variables are in per unit or radian angles unless otherwise specified.

3.3.2 Assumptions

Note that the assumptions described below are only used to prove that the correct phase

connection yields the highest log likelihood value of the MLE/MMLE problem formulated in this

chapter. Some of these assumptions may not hold in the real world. However, the numerical study

will show that our proposed algorithm works well even when some of these assumptions no longer

hold. In these cases, we can no longer guarantee that the algorithm will result in 100% accuracy.
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Figure 3.1: Schematic of a modified IEEE 123-node test feeder.

3.3.2.1 Data and Model Availability

First, the information about whether the load is single-phase, two-phase, or three-phase

is assumed to be available. Usually, this information can be deduced by examining the distribution

transformer configuration and customer billing information. Second, for a single-phase load on

phase i, we know its power injection (both real and reactive power) and voltage magnitude of phase

i. Third, for a two-phase delta-connected load between phase i and j, we know its power injection

and voltage magnitude across phase i and j. Fourth, for a three-phase load, we know its total power

injection and the voltage magnitude of one of the phases, which needs to be identified. Fifth, for the

source node, we know the voltage measurement. Sixth, the connectivity model and the parameters

of the primary feeder are known. Finally, we assume that the distribution feeder is not severely

unbalanced. The task of phase identification is to determine which phase(s) each single-phase or

two-phase load connects to and which phase’s voltage magnitude the three-phase smart meter mea-
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sures. Note that our proposed algorithm does not assume a 100% smart meter penetration rate. The

numerical study will show that our algorithm is robust with respect to incomplete measurements.

3.3.2.2 Statistical Assumptions

First, it is assumed that the incremental changes in measured real, reactive power, and

voltage magnitudes across one time interval are independent over time. Second, it is assumed that

the noise terms which represent the model errors and the measurement errors are i.i.d. Gaussian.

Note that the noise terms will be derived later in Section 3.6. Third, it is assumed that theses noise

terms are independent of the incremental changes in smart meter measurements. Note that these

statistical assumptions will be verified in the numerical study section.

3.4 Linearized Three-Phase Power Flow Model

The very first step of our phase identification framework is to build a three-phase power

flow model for the primary feeder. To do so, we need a procedure that we call reduction, and

the resulting network is called a reduced network. The reduction is simply converting any loaded

single-phase or two-phase branch into an equivalent load so that the reduced network contains only

three-phase lines. The details of the reduction procedure is explained in Appendix A.1. In the rest

of the chapter, we use M to denote the number of loads in the reduced network and load refers to

the equivalent load in the reduced network.

Based on the reduced primary feeder, by following [73], we can derive the linearized

three-phase power flow model shown in (3.1), in which the variables organized by phase. In the lin-

earized model, shunt admittance is ignored because its value is very small. Later on in the numerical
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study, it will be verified that ignoring shunt admittance does not affect the phase identification ac-

curacy.

A

[
v − v

θ − θ

]
=

[
A11 A12

A21 A22

] [
v − v

θ − θ

]
=

[
p
q

]
(3.1)

Here A11, A12, A21, and A22 are 3(N + 1) × 3(N + 1) matrices. v, θ, p, and q are the nodes’

voltage magnitude, voltage angle, and real and reactive power of three phases. v = 13(N+1) and

θ = [0×1TN+1,−
2π
3 ×1TN+1,

2π
3 ×1TN+1]T are the flat feasible solution for the underlying nonlinear

power flow model. Let α = e−j
2π
3 , define Φ , diag(I(N+1), αI(N+1), α

2I(N+1)) and define

Y ,

Y aa Y ab Y ac

Y ba Y bb Y bc

Y ca Y cb Y cc

 (3.2)

where Y ij is the (N+1)×(N+1) nodal admittance matrix between phase i and j. ThenA11, A12,

A21, andA22 can be calculated asA11 = −A22 = Re(Φ−1Y Φ) andA12 = A21 = −Im(Φ−1Y Φ).

It has been shown in [74] that for a connected three-phase network, rank(Y ) = 3N . Thus,

rank(A) is at most 6N . For subsequent derivations, we need to transformA into a nonsingular form.

Following Appendix A.2, the transformed power flow model becomes

Ǎ

[
v̌

θ̌

]
=

[
Ǎ11 Ǎ12

Ǎ21 Ǎ22

] [
v̌

θ̌

]
=

[
p̌
q̌

]
(3.3)

where Ǎmn is a 3N × 3N matrix obtained by removing the rows and columns corresponding to

the substation node in Amn. We denote the difference of voltage magnitudes and voltage angles

between the non-substation nodes and the substation nodes as v̌, θ̌. We denote the non-substation

nodes’ real and reactive power as p̌ and q̌.

In theory, Ǎ is not guaranteed to be invertible. However, for the majority of real-world

distribution feeders, rank(Ǎ) = 6N . It will be shown in the numerical study section that for all

IEEE distribution test feeders, Ǎ has a full rank.
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Solving for v̌ with p̌ and q̌ from (3.3), we have

v̌ = (Ǎ11 − Ǎ12Ǎ
−1
22 Ǎ21)−1p̌− (Ǎ11 − Ǎ12Ǎ

−1
22 Ǎ21)−1Ǎ12Ǎ

−1
22 q̌

(3.4)

or in condensed form as

v̌ = Kp̌− Lq̌ (3.5)

It can be shown that (Ǎ11 − Ǎ12Ǎ
−1
22 Ǎ21) is invertible if Ǎ is invertible. Similarly, we can link θ̌

with p̌ and q̌ as

θ̌ =(Ǎ12 − Ǎ11Ǎ
−1
21 Ǎ22)−1p̌− (Ǎ12 − Ǎ11Ǎ

−1
21 Ǎ22)−1Ǎ11Ǎ

−1
21 q̌

(3.6)

or in condensed form as

θ̌ = Kp̌− Lq̌ (3.7)

3.5 Physics-Informed Model for Phase Identification

In this section, we develop a mathematical model that relates the phase connections of

loads to voltage magnitude and power injection measurements. Section 3.5.1 explains how to ex-

press smart meter measurements in terms of nodal voltages and power injections of the three-phase

power flow model. Section 3.5.2 derives the phase connection model, which relates phase connec-

tions to network measurements.

3.5.1 Link Smart Meter Measurements with the Nodal Voltages and Power Injec-

tions

The linearized three-phase power flow models (3.5) and (3.7) are derived in terms of

nodal voltages and power injections v̌, θ̌, p̌, and q̌, which are often not directly measured by
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smart meters. Thus, we need to embed the smart meter measurements into these two equations.

This is straightforward for single-phase and three-phase loads. For a single-phase load m on node

n, its voltage measurement v̂m is equal to one of the three phase-to-neutral voltage magnitudes

vin (i = a, b, c), which is related to v̌in in (3.3) via v̌in , vin − vi0, where vi0 is the source voltage

magnitude in phase i. Similarly, a single-phase load’s power injection measurement p̂m + jq̂m

corresponds to the power injection of one of the three phases p̌in + jq̌in at node n. For a three-

phase load m at node n, the single-phase voltage measurement v̂m is equal to one of the three nodal

voltage magnitudes vin (i = a, b, c). We can assume that the three-phase power injections p̂m+ jq̂m

is distributed relatively evenly to three phases at node n. For a delta-connected two-phase load, we

need the following derivations to link its measurements to the three-phase power flow model.

3.5.1.1 Link Power Injection Measurements with Power Flow Model

Without loss of generality, we use a phaseAB load as an example. Suppose the two-phase

power injection measurement is Sab = Pab + jQab = Sa + Sb = (Pa + jQa) + (Pb + jQb). Here,

Sa and Sb are the power injections at the phase A and phase B ports. We can estimate Sa and Sb

based on Sab as follows: (see the proof in Appendix A.3)

Sa ≈
(

1

2
Pab +

√
3

6
Qab

)
+ j

(
1

2
Qab −

√
3

6
Pab

)
(3.8)

Sb ≈
(

1

2
Pab −

√
3

6
Qab

)
+ j

(
1

2
Qab +

√
3

6
Pab

)
(3.9)
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3.5.1.2 Link Voltage Magnitude Measurements with Power Flow Model

Here we need to establish a relationship between the phase-to-phase voltage magnitude

measurements and the nodal phase-to-neural voltage magnitudes in (3.5) and (3.7). For a load m

across phase ij (ij ∈ {ab, bc, ca}) at node n, the relationship can be written as: (see the proof in

Appendix A.4)

v̂m − vij0 ≈
√

3

2
(vin − vi0) +

√
3

2
(vjn − v

j
0) +

1

2
(θin − θi0)− 1

2
(θjn − θ

j
0) (3.10)

where v̂m is load m’s voltage magnitude measurement. vij0 is the voltage magnitude across phase ij

at the substation. vin and vi0 are the voltage magnitudes of phase i at node n and the substation. θin

and θi0 are the voltage angles of phase i at node n and the substation. Note that in above derivations,

voltages are in per unit and angles are in radian.

3.5.2 Modeling Phase Connections in Three-phase Power Flow

3.5.2.1 Decision Variables for Phase Connections

We use three decision variables, x1
m, x2

m, and x3
m to denote the phase connection for each

load m. xim = 0 or 1, and
∑

i x
i
m = 1, ∀ m. If load m is single-phase, then x1

m, x2
m, and x3

m

represent AN , BN , and CN connections. If m is two-phase, then x1
m, x2

m, and x3
m represent AB,

BC, and CA connections. If m is three-phase, and the measured voltage is between one phase and

the neutral, then x1
m, x2

m, and x3
m represent which of the phasesAN , BN , and CN is measured. As

stated in the assumptions, we know whether a load is single-phase, two-phase, or three-phase from

the distribution transformer configuration and customer billing information. The phase connection

decision variables form an M × 3M matrix X defined as X , diag([x1
1 x

2
1 x

3
1], ..., [x1

M x2
M x3

M ]).
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3.5.2.2 Additional Definitions

Several matrices and variables are defined here to build the model for phase connections.

Define matrices W1 and W2 as

W1 ,

1 1 0
0 1 1
1 0 1

 , W2 ,

 1 −1 0
0 1 −1
−1 0 1

 (3.11)

Let In denote an identity matrix of size n, 0k×l denote a k × l all-0 matrix, and 1k×l

denote a k × l all-1 matrix. Define U1 and U2 as 3M × 3N matrices of 3 × 3 blocks. Define Û1

and Û2 as 3N × 3M matrices of 3× 3 blocks. Define U1
mn and U2

mn as the mn-th block of U1 and

U2. Define Û1
nm and Û2

nm as the nm-th block of Û1 and Û2. If load m is not connected to node

n, then U1
mn, U2

mn, Û1
nm, and Û2

nm are equal to 03×3. If load m is connected to node n, then U1
mn,

U2
mn, Û1

nm, and Û2
nm are defined based on load m’s phase connection type, as shown in Table 3.1.

Table 3.1: Values of 3× 3 Blocks by Phase Connection Type if Load m is Connected to Node n

Load m’s
Phase Connection Type

U1
mn U2

mn Û1
nm Û2

nm

single-phase I3 03×3 I3 03×3

two-phase
√

3
2 W1

1
2W2

1
2W

T
1

√
3

6 W
T
2

three-phase I3 03×3
1
313×3 03×3

Define v̂ref , [v̂ref
1 , . . . , v̂

ref
M ]T , where v̂ref

m = [va0 , v
b
0, v

c
0] if load m is single-phase or

three-phase; v̂ref
m = [vab0 , v

bc
0 , v

ca
0 ] if load m is two-phase. Here, vi0 denotes the substation’s voltage

magnitude of phase i, and vij0 denotes the substation’s voltage magnitude across phase ij.

3.5.2.3 Phase Connection Model

Now we can build the model, which links phase connections with the smart meter mea-

surements. Let v̂, p̂, and q̂ be M × 1 vectors of measured voltage magnitudes, real power, and
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reactive power of the M loads. From (3.8) - (3.10), Section 3.5.2.1, and 3.5.2.2, we have:

p̌ ≈ Û1XT p̂+ Û2XT q̂ (3.12)

q̌ ≈ −Û2XT p̂+ Û1XT q̂ (3.13)

v̂ ≈ Xv̂ref +XU1v̌ +XU2θ̌ (3.14)

With a slight abuse of notations, the entries of p̌, q̌, v̌, and θ̌ are organized by node in (3.12)-

(3.14) (instead of by phase as in (3.5) and (3.7)). Equations (3.12) and (3.13) map the measured

power injection of each load to the corresponding nodal power injections in the linearized power

flow model. Take load m connected to node n as an example and suppose x1
m = 1. If load m is

single-phase, then its power injection is mapped to phase A at node n. If load m is two-phase, then

its power injection is distributed to phase A and B at node n according to (3.8) and (3.9). If load m

is three-phase, then its power injection is evenly distributed to all three phases of node n.

Equation (3.14) links the voltage measurement v̂ with v̌ and θ̌, i.e., the nodal line-to-

neutral voltage magnitude and angle difference with the substation in the linearized power flow

model. Take load m connected to node n as an example and suppose x1
m = 1. If load m is single-

phase or three-phase, then (3.14) can be reduced to v̂m = va0 + (van − va0), where van is node n’s

voltage magnitude in phase A. If load m is two-phase, then (3.14) is equivalent to (3.10).

Substituting (3.5), (3.7), (3.12) and (3.13) into (3.14) yields

v̂ ≈Xv̂ref +XK̂XT p̂+XL̂XT q̂ (3.15)
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where K̂ , [(U1K+U2K)Û1+(U1L+U2L)Û2] and L̂ , [(U1K+U2K)Û2−(U1L+U2L)Û1].

Here, with a slight abuse of notations, K, L, K, and L’s entries are organized by node (instead of by

phase as in (3.5) and (3.7)). Thus, (3.15) provides the physical model, which relates power injection

measurements and phase connections to voltage magnitude measurements.

To remove trends and seasonality in time series data, we define the difference of the

voltage measurement and its lagged variable as ṽ(t), with ṽ(t) , v̂(t)− v̂(t−1). ṽref(t), p̃(t), and

q̃(t) are defined in a similar way. Thus, we have the time difference version of the physical model:

ṽ(t) = Xṽref(t) +XK̂XT p̃(t) +XL̂XT q̃(t) + n(t) (3.16)

where n(t) is the “noise term” representing the error of the linearized power flow model, the mea-

surement error, and all the other sources of noise not considered. In (3.16), ṽ(t), p̃(t), q̃(t), and

ṽref(t) can be calculated from the smart meter and substation measurements. K̂ and L̂ can be de-

rived from the feeder model. Thus, the task of phase identification is to estimate the phase decision

variables in X .

3.6 Maximum Marginal Likelihood Estimation of Phase Connections

In this section, we first formulate phase identification as an MLE problem and then as

an MMLE problem. Next, we prove that the correct phase connection is a global optimizer of the

MMLE problem. Lastly, we develop a computationally efficient algorithm to solve the MMLE

problem.
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3.6.1 MLE Problem Formulation

Let x , [x1
1, x

2
1, x

3
1, ..., x

1
M , x

2
M , x

3
M ]T be the phase connection decision variable vector.

Define ṽ(t,x) as the theoretical differenced voltage measurement ṽ(t) with phase connection x:

ṽ(t,x) , Xṽref(t) +XK̂XT p̃(t) +XL̂XT q̃(t) (3.17)

Then ṽ(t) = ṽ(t,x) + n(t), where x is the phase connection decision variable vector

that we need to estimate. As stated in Section 3.3.2, we assume that the noise n(t) is independent

of ṽref(t), p̃(t), and q̃(t) and is i.i.d. Gaussian n(t) ∼ N (0M×1,Σn), where Σn is an unknown

underlying covariance matrix. Given these conditions, n(t) is also independent of ṽ(t,x). Thus,

the likelihood of observing {ṽ(t)}Tt=1 given {ṽref(t)}Tt=1, {p̃(t)}Tt=1, and {q̃(t)}Tt=1 is a function of

x:

Prob({ṽ(t)}Tt=1|{ṽref(t)}Tt=1, {p̃(t)}Tt=1, {q̃(t)}Tt=1;x) =

|Σn|−
T
2

(2π)
MT
2

×exp
{
− 1

2

T∑
t=1

[ṽ(t)−ṽ(t,x)]TΣ−1
n [ṽ(t)−ṽ(t,x)]

} (3.18)

Taking the negative logarithm of (3.18), removing the constant term, and scaling by 2
T , we get

f(x) ,
1

T

T∑
t=1

[ṽ(t)− ṽ(t,x)]TΣ−1
n [ṽ(t)− ṽ(t,x)] (3.19)

It will be shown in Lemma 1 that the correct phase connection x∗ maximizes the likeli-

hood function (3.18) and minimizes f(x) under two mild assumptions.

Lemma 1. Let x∗ be the correct phase connection. If the following two conditions are satisfied,

then as T →∞, x∗ is a global optimizer to minimize f(x).

1. n(tk) is i.i.d. and independent of ṽref(tl), p̃(tl), and q̃(tl), for ∀tk, tl ∈ Z+.

2. ṽref(tk), p̃(tk), and q̃(tk) are independent of ṽref(tl), p̃(tl), and q̃(tl), for ∀tk, tl ∈ Z+, tk 6=

tl
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The proof of Lemma 1 can be found in Appendix A.5. By substituting (3.17) into (3.19),

we can see that directly minimizing f(x) is very difficult due to its nonlinearity and nonconvexity.

Furthermore, the actual value of Σn is unknown. To address this technical challenge, in Section

3.6.2, we will convert the phase identification problem into an MMLE problem and prove that the

correct phase connection is also a global optimizer of the MMLE problem.

3.6.2 MMLE Problem Formulation

Let ṽm(t) be themth entry of ṽ(t), ṽm(t,x) be themth entry of ṽ(t,x), and nm(t) be the

mth entry of n(t). The marginal likelihood of observing {ṽm(t)}Tt=1 given {ṽref(t)}Tt=1, {p̃(t)}Tt=1,

and {q̃(t)}Tt=1 is a function of x:

Prob({ṽm(t)}Tt=1|{ṽref(t)}Tt=1, {p̃(t)}Tt=1, {q̃(t)}Tt=1;x)

=
Σn(m,m)−

T
2

(2π)
T
2

exp
{
− 1

2

T∑
t=1

[ṽm(t)−ṽm(t,x)]2

Σn(m,m)

} (3.20)

where Σn(m,m) is themth diagonal entry of Σn. Taking the negative logarithm of (3.20), removing

the constant term, and scaling by 2Σn(m,m)
T , we have

fm(x) ,
1

T

T∑
t=1

[ṽm(t)− ṽm(t,x)]2 (3.21)

Lemma 2. Let x∗ be the correct phase connection. If the two conditions in Lemma 1 hold, then

x∗ is a global optimizer to minimize fm(x) as T →∞. In addition, any x is a global optimizer of

fm(x) if it satisfies all the following conditions:

1. xim = x∗im, ∀i;

2. xik = x∗ik,∀i, k 6= m and load k is not three-phase.

The proof of Lemma 2 can be found in Appendix A.6.
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3.6.3 Solution Method for the MMLE Problem

Directly minimizing fm(x) from (3.21) is still a difficult task. Thus, we further sim-

plify the optimization problem by first solving three subproblems minfm,i(x−m), i ∈ {1, 2, 3}.

fm,i(x−m) are defined as

fm,i(x−m) , fm(x)

subject to xim = 1 and xjm = 0 for j 6= i

(3.22)

where x−m is a (3M − 3)× 1 vector containing every element in x except x1
m, x2

m, and x3
m. Since

xim = 0 or 1, and
∑

i x
i
m = 1, then from (3.22) we have:

min
x
fm(x) = min

i=1,2,3
min
x−m

fm,i(x−m) (3.23)

To solve the sub-problems, we first define ṽm,i(t,x−m) as

ṽm,i(t,x−m) , ṽm(t,x)

subject to xim = 1 and xjm = 0 for j 6= i

(3.24)

Substituting (3.17) into (3.24), we have

ṽm,i(t,x−m) =ṽref
m,i(t) + K̂m,iX

T p̃(t) + L̂m,iX
T q̃(t)

subject to xim = 1 and xjm = 0 for j 6= i

(3.25)

where ṽref
m,i(t) is the entry of ṽref(t) corresponding to xim, K̂m,i and L̂m,i are the row vectors of K̂

and L̂ corresponding to xim.

Define an M × 3M matrix D as:

D , diag([1 1 1], . . . , [1 1 1]︸ ︷︷ ︸
repeat M times

) (3.26)
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Then matrix X can be expressed by decision vector x as X = D diag(x). Thus, we can

simplify the second term on the right-hand-side (RHS) of (3.25) as

K̂m,iX
T p̃(t) = K̂m,i diag(x) DT p̃(t)

=xT diag(K̂m,i) D
T p̃(t) = xT ζm,i(t) = ζTm,i(t) x

(3.27)

where ζm,i(t) , diag(K̂m,i) D
T p̃(t). Similarly, simplify the third term on the RHS of (3.25) as

L̂m,iX
T q̃(t) = ξTm,i(t) x (3.28)

where ξm,i(t) , diag(L̂m,i) D
T q̃(t).

Substituting (3.27) and (3.28) into equation (3.25), we have

ṽm(t)− ṽm,i(t,x−m)

=ṽm(t)− ṽref
m,i(t)− ζTm,i(t)x− ξTm,i(t)x

=ṽm(t)− ṽref
m,i(t)−ψTm,i(t)x

=ṽm(t)− ṽref
m,i(t)− [ϕTm,i(t)x−m + ηm,i(t)]

=vtot
m,i(t)−ϕTm,i(t)x−m

(3.29)

Where ψm,i(t) , ζm,i(t) + ξm,i(t). ϕm,i(t) is a vector containing all the elements in ψm,i(t)

except the three elements corresponding to x1
m, x2

m, and x3
m. ηm,i(t) is the element in ψm,i(t)

corresponding to xim. In the last line of (3.29), vtot
m,i(t) is defined as vtot

m,i(t) , ṽm(t) − ṽref
m,i(t) −

ηm,i(t).

Note that our proposed phase identification method still works even if there is a topology

change in the primary feeder. If such topology change occurs at time tc, then we can simply update

vtot
m,i(t) and ϕm,i(t) in (3.29) according to the new primary feeder topology.
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With (3.29), the function fm,i(x−m) can be transformed into

fm,i(x−m) =
1

T

T∑
t=1

[vtot
m,i(t)−ϕTm,i(t)x−m]2 (3.30)

Now each MMLE sub-problem in (3.23) can be formulated as

find x†−m,i = arg min
x−m

fm,i(x−m)

subject to xjk = 0 or 1 ∀j and k 6= m∑
j

xjk = 1 ∀k 6= m.

(3.31)

This is a binary least-square problem. To solve it efficiently, we can further relax the problem by

replacing the binary constraint by its convex hull. Now the problem is equivalent to convex quadratic

programming, which can be solved in polynomial time [75]. The continuous solution of x−m in the

convex hull can then be rounded to binary values as follows: for each load k 6= m, round xjk to 1 if

it is the largest among x1
k, x2

k, and x3
k, and round the other two variables to 0.

3.6.4 Phase Identification Algorithm

Our proposed MMLE-based phase identification algorithm is summarized in Algorithm 3

and explained as follows. From step 1 to 6, we solve M MMLE problems, each of which contains

three binary least-square sub-problems. Step 3 solves the sub-problems of MMLE based on (3.31).

Based on (3.23), step 5 solves the mth MMLE problem by finding which of the three x†−m,i (i =

1, 2, 3) minimizes fm(x). The chosen x†−m,i, combined with the corresponding xim = 1 and xjm =

0 (j 6= i), forms the 3M × 1 solution x†m of the mth MMLE problem. The M sets of x†m may

not be all correct due to the limited number of measurements and measurement noise. Thus, in step

7, we design two approaches to integrate M sets of x†m into two phase identification solutions:

73



1. Target-only Approach. The phase connection of each load m is the corresponding connection

shown in the mth solution x†m.

2. Voting Approach. For a single-phase or two-phase load m, the phase connection is the cor-

responding phase connection that receives the most votes in the M sets of x†m. For a three-

phase load m, the phase connection is still determined by the target-only approach.

In step 8, we calculate
∑M

m=1 fm(x) based on the phase identification solution of both the target-

only and the voting approaches. The final phase identification solution is the one that has the lower

sum of square error.

Algorithm 3 Phase Identification Algorithm

Input: ṽ(t), ṽref(t), p̃(t), q̃(t), K̂, and L̂, t = 1, ..., T .
Output: Estimated phase connections for the M loads.

1: for m = 1 to M do
2: for i = 1 to 3 do
3: Use the input to calculate vtot

m,i(t) and ϕTm,i(t) and find the solution x†−m,i to the sub-
problem in (3.31).

4: end for
5: Use x†−m,i, i ∈ {1, 2, 3} to find the x that minimizes fm(x) in (3.21). Record the solution

as x†m.
6: end for
7: Generate two phase identification results based on M sets of x†m using two approaches: the

target-only approach and the voting approach.
8: Calculate

∑M
m=1 fm(x) based on both the target-only and the voting approach. Select the

solution with the lower sum of square error.
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3.7 Numerical Study

3.7.1 Setup for Numerical Tests

The performance of our proposed MMLE-based algorithm is evaluated using the IEEE

37-bus, 123-bus, and 342-bus test circuits. Fig. 3.1 illustrates the schematic of the 123-bus circuit.

The results show that the proposed algorithm works well for distribution networks with either tree

structured feeders (37-bus and 123-bus) or heavily meshed primary feeders (342-bus). The 342-

bus feeder represents meshed distribution systems that are often used in urban centers, which have

a high load density and require very high reliability. In North America, about 80 cities currently

operate such distribution systems [76]. To make the task more difficult, we modify the test feeders to

include all possible phase connection types (single-phase, two-phase, and three-phase). The number

of loads by phase connection type is summarized in Table 3.2.

Table 3.2: Number of Loads Per Phase in the IEEE Test Circuits and Level of Unbalance

Feeder
Phase Connection Level of

A B C AB BC CA ABC Total Unbalance
37-bus 5 5 6 3 2 2 2 25 0.027
123-bus 18 17 17 9 9 10 5 85 0.0164
342-bus 30 38 31 35 31 33 10 208 0.0097

The hourly average real power consumption measurements from smart meters of a dis-

tribution feeder managed by FortisBC are used in test feeders. The length of the real power con-

sumption time series is 2160, which represents 90 days of hourly smart meter measurements. The

reactive power time series are generated by randomly sampling power factors from a uniform dis-

tribution U(0.9, 1) to represent lagging loads. The peak loads for the three IEEE test circuits are 2.4

MW, 4 MW, and 43 MW. The power flows of the test circuits are simulated using OpenDSS. All
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smart meter measurements contain noise that follows zero-mean Gaussian distributions with three-

sigma deviation matching 0.1% to 0.2% of the nominal values. The 0.1 and 0.2 accuracy class smart

meters established in ANSI C12.20-2015 are typical in real-world implementations. To make the

phase identification task even more challenging, we assume that older generations of smart meters

are adopted. That is to say, after adding measurement noise, the voltage measurements are rounded

to the nearest 1 V for primary line loads and 0.1 V for secondary loads. The real and reactive power

measurements are rounded to the nearest 0.1 kW or 0.1 kVAr. The relaxed optimization problems

in equation (3.31) are solved using CPLEX on a DELL workstation with 3.3 GHz Intel Xeon CPU

and 16 GB of RAM.

In the simulation, the power consumption time series are allocated relatively evenly to

each phase so that the test feeders are close to balance. Following [31], the level of unbalance of a

feeder at time interval t can be measured as

u(t) =
|IA(t)−Im(t)|+ |IB(t)−Im(t)|+ |IC(t)−Im(t)|

3Im(t)
(3.32)

where Im(t) = 1
3(IA(t) + IB(t) + IC(t)) is the mean of the distribution substation line current

magnitudes of the three phases at time interval t. u(t) represents the power deviation of each phase

from the average value at time interval t. We use the 90-day average value of u(t) in this simulation

to measure the level of unbalance of a feeder. The level of unbalance of the three feeders are shown

in Table 3.2.

Before presenting the main numerical results, we first verify the Gaussianity assumption

for the noise term n(t) in equation (3.16). The Kolmogorov-Smirnov test is used to verify the

Gaussianity assumption. With a significance level of 5%, the noise terms for all loads pass the test

except 9 loads at 0.1% meter accuracy level and 1 load at 0.2% meter accuracy level in the 342-bus
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circuit. By checking the normalized auto-correlations of n(t), we found the noise to be uncorrelated

over time. For Gaussian random variables, this indicates independence over time.

3.7.2 Performance of the Proposed Phase Identification Method

The phase identification accuracy of our proposed MMLE-based algorithm is shown in

Table 3.3, which covers three IEEE test feeders, two meter accuracy classes (0.1% and 0.2%), and

three time windows (30 days, 60 days, 90 days). With 90 days of hourly meter measurements and

both accuracy class meters, the proposed algorithm achieved 100% accuracy for all three IEEE

distribution test circuits. The proposed algorithm works well not only for radial feeders (37-bus,

123-bus), but also the meshed circuit (342-bus). As shown in the table, the accuracy of the MMLE-

based phase identification algorithm increases as the smart meter measurement error decreases.

When additional smart meter data becomes available, the phase identification accuracy of the pro-

posed algorithm also increases as expected. The average computation time of the algorithm with

90 days of data is only around 1.3 seconds, 6.5 seconds, and 256 seconds for the three circuits,

respectively.

Table 3.3: Accuracy of the Proposed Phase Identification Method in Feeders Close to Balance

Feeder Meter Class 30 Days 60 Days 90 Days

37-bus
0.1% 100% 100% 100%
0.2% 92% 100% 100%

123-bus
0.1% 96.47% 100% 100%
0.2% 63.53% 96.47% 100%

342-bus
0.1% 96.63% 100% 100%
0.2% 72.60% 99.52% 100%

We also test our proposed method with higher unbalance levels by adjusting the load lev-

els in each phase of the test feeders. The result shows that the method is very accurate even if the
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feeder is severely unbalanced. Table 3.4 shows the phase identification accuracy using 0.1% meter

class in three unbalance levels: the original close-to-balance level, 0.05, and 0.1. The feeders are

considered to be moderately unbalanced when the unbalance level is 0.05. The feeders are deemed

as severely unbalanced, when the unbalance level is 0.1. As shown in Table 3.4, the phase iden-

tification accuracy of our proposed algorithm gradually decreases as the unbalance level increases

for the 123-bus feeder. This is because our proposed method is derived from an approximate model

of distribution feeders that are close to balance. Thus, the approximation error will increase when

the feeder becomes more unbalanced. However, at 0.1 unbalance level, our proposed method still

attains high accuracy with sufficient smart meter data.

Table 3.4: Accuracy of the Proposed Phase Identification Method With Different Unbalance Levels
(Meter Accuracy Class 0.1%)

Feeder Level of Unbalance 30 Days 60 Days 90 Days

37-bus
0.027 100% 100% 100%
0.05 100% 100% 100%
0.1 100% 100% 100%

123-bus
0.0164 96.47% 100% 100%
0.05 95.29% 100% 100%
0.1 85.88% 100% 100%

342-bus
0.0097 96.63% 100% 100%
0.05 96.63% 99.52% 100%
0.1 96.63% 99.52% 100%

We verify the robustness of our proposed phase identification algorithm against bad data.

We assume that a meter with bad data has erroneous voltage and power measurements in 10% of

the hours. The erroneous voltage measurements are assumed to have a uniform distribution within

±20% of the true values. The erroneous real and reactive power measurements are assumed to

follow uniform distributions within ±100% of the true values. We test our method when 1%, 5%,

and 10% of the smart meters have bad data on the 123-bus and 342-bus feeders. The 37-bus feeder
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only has 25 smart meters. Thus, we increase percentage of meters with bad data to 4%, 8%, and

12%. Table 3.5 shows the phase identification accuracy of our proposed method using 0.1% meter

class when the feeders are close to balance. The average accuracy of 30 test cases are reported in

the table. In each test case, we randomly select the meters with bad data. As shown in Table 3.5,

the phase identification accuracy of our proposed algorithm gradually decreases as more meters are

compromised with bad data. However, even with 10% bad meters, our algorithm can still achieve

over 93% accuracy on the most complex circuit with 90 days of smart meter data.

Table 3.5: Average Accuracy of the Proposed Phase Identification Method With Bad Data (Meter
Accuracy Class 0.1%)

Feeder
% of Meters

with Bad Data
30 Days 60 Days 90 Days

37-bus

0% 100% 100% 100%
4% 98.53% 98.53% 100%
8% 96.53% 97.20% 99.07%
12% 91.47% 95.73% 97.87%

123-bus

0% 96.47% 100% 100%
1% 94.94% 99.80% 99.92%
5% 90.51% 99.33% 99.76%
10% 88.51% 98.43% 99.61%

342-bus

0% 96.63% 100% 100%
1% 95.06% 98.93% 99.17%
5% 91.54% 96.47% 97.15%
10% 86.71% 93.35% 93.83%

3.7.3 Comparison With Existing Methods

The phase identification accuracy of our proposed MMLE-based method is compared

with two state-of-the-art methods: the correlation-based approach [71] and the clustering-based

approach [31]. We also evaluate the robustness of the phase identification algorithms with respect

to inaccurate feeder models, incomplete measurements, and bad data.
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The 123-bus and 342-bus test feeders with 90 days of 0.1% accuracy class smart meter

measurements are used for the comparison. To introduce incomplete smart meter measurements,

we gradually decrease the penetration ratio of smart meters from 100% to 10% with a 10% step. To

create inaccurate feeder models, we introduce noisy network parameters and inaccurate topology

information. Specifically, we add zero-mean Gaussian noise with three-sigma deviation matching

30% of the nominal values to the actual line admittance of the 123-bus and 342-bus feeders. Eight

secondary branches are assumed to be missing in the topology model of the 342-bus feeder.

Note that the correlation-based method [71] was originally designed to handle single-

phase loads only. Thus, we extend it to accommodate two-phase loads. To make it a fair comparison,

we assume that the information of whether a particular load is one-phase, two-phase, or three-phase

is known to all algorithms. Inaccurate feeder models and incomplete measurements do not affect

the correlation-based and clustering-based algorithms directly. This is because these two methods

do not rely on the primary feeder model. Similarly, the MMLE-based method simply constructs a

formulation with a smaller decision vector x when dealing with incomplete meter measurements.

The average phase identification accuracies of the proposed algorithm and two benchmark

algorithms with different smart meter penetration ratios and inaccurate feeder models are shown in

Fig. 3.2. When the smart meter penetration rate is not 100%, we randomly select the location of

smart meters around 50 times and calculate the average accuracies.

As shown in Fig.3.2, our proposed MMLE-based algorithm achieves around 97% accu-

racy on the 342-bus feeder at the 100% smart meter penetration rate. This is lower than the 100%

accuracy reported in Table 3.3 due to an inaccurate primary feeder model. Our proposed algorithm

yields higher accuracy for the 123-bus radial feeder when the smart meter penetration rate is at 70%
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Figure 3.2: Average phase identification accuracy of three methods with inaccurate feeder models
(0.1% meter class, 90 days’ data).

or higher. Note that the smart meter penetration level is already higher than 70% in hundreds of

thousands of distribution circuits and keeps increasing around the world. In the U.S., more than

40 electric companies have fully deployed smart meters [77] by the end of 2016. The smart meter

penetration level in North America is expected to reach 81% in 2024 [11]. In European countries

such as Italy, Sweden, Finland, and the Netherlands, smart meter penetration levels have reached

80% and are expected to pass 95% in 2020 [12]. As the penetration level of smart meters continues

to increase around the world, the comparative advantage of our proposed algorithm will become

more pronounced.

For the more complex 342-bus feeder, which is heavily meshed, our proposed algorithm

outperforms both existing algorithms across all smart meter penetration levels. Our proposed al-

gorithm is more robust with respect to incomplete measurements on the heavily meshed 342-bus

feeder than on the radial 123-bus feeder. To explain this phenomenon, we examine the sensitivity

of ṽm(t,x), the smart meter voltage measurement for load m, with respect to the phase connection
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decision vector x. It turns out that in the 342-bus feeder, load m’s voltage measurement is more

sensitive to its own phase connection decision variables and less sensitive to the phase connection

decision variables of other loads.

Finally, we compare the performance of all three phase identification methods when there

is bad data in the smart meter measurements. Table 3.6 shows the phase identification accuracy

under different ratios of meters with bad data, using 90 days of 0.1% accuracy class meter measure-

ments. The result is based on 100% smart meter penetration level and accurate feeder parameters.

The average accuracies over 30 test cases are reported. In each test case, we randomly select the

meters with bad data. As shown in Table 3.6, in the presence of bad data, our proposed phase

identification algorithm always yields higher accuracy than the two benchmark algorithms when the

smart meter penetration level is 100%.

Table 3.6: Average Accuracy of Three Phase Identification Methods With Bad Data (Meter Accu-
racy Class 0.1%, 90 Days’ Data)

Feeder
% of Meters

with Bad Data
Correlation-Based

Approach [71]
Clustering-Based

Approach [31]
MMLE-Based

Algorithm

37-bus

0% 92% 100% 100%
4% 91.87% 98.40% 100%
8% 92% 97.60% 99.07%
12% 91.73% 96.40% 97.87%

123-bus

0% 92.94% 96.47% 100%
1% 88.35% 96.43% 99.92%
5% 89.14% 94.24% 99.76%
10% 89.33% 92.51% 99.61%

342-bus

0% 77.88% 93.27% 100%
1% 80.51% 51.76% 99.17%
5% 80.54% 49.55% 97.15%
10% 79.25% 48.51% 93.83%
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3.8 Conclusion

In this chapter, we develop a physics-informed data-driven algorithm for the phase iden-

tification in power distribution systems. The phase identification problem is first formulated as an

MLE and MMLE problem based on the three-phase power flow manifold. We prove that the correct

phase connection is a global optimum for both the MLE and the MMLE problems. A computation-

ally efficient algorithm is developed to solve the MMLE problem, which involves synthesizing the

solutions from the sub-problems via the voting and the target-only approaches. The sub-problems

are further transformed into an equivalent binary least square form and solved efficiently by relax-

ing the binary constraints. Comprehensive simulation results with real-world smart meter data and

IEEE distribution test circuits show that our proposed phase identification algorithm yields high ac-

curacy and outperforms existing methods. The proposed algorithm is also fairly robust with respect

to inaccurate feeder models, incomplete measurements, and bad measurements.

3.9 List of Symbols in Chapter 3

In n× n identity matrix.

Im(·) Imaginary part of a complex variable.

M Number of loads in a circuit.

N Number of three-phase non-substation nodes in the distribution network.

Re(·) Real part of a complex variable.

Y ij Bus admittance matrix between phase i and j.
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diag(·) diag(x) of a vector x is a diagonal matrix with x on the main diagonal.

diag(X1, ..., Xn) is a block diagonal matrix with diagonal matrices of X1, ..., Xn.

v, θ, p, q Vector of voltage magnitudes, voltage angles, real power injections, and reactive

power injections of 3 phases of the nodes.

v̌, θ̌, p̌, q̌ Non-substation nodes’ voltage magnitude and angle difference with the substation,

and their real and reactive power.

v̂, p̂, q̂ Vectors of load measurements of voltage magnitudes, real power, and reactive power

injections.

ṽ, p̃, q̃ Time differenced load measurements of voltage magnitudes, real, and reactive power

injections.

v, θ Flat voltage solution of three-phase power flow.

v̂ref Vector of reference voltage for loads.

xim Decision variable of load m’s phase connection.

x Vector of decision variables xim.

x∗ True value of the decision variable vector x.

α Rotation operator, α = e−j
2π
3 .

1n An all-1 vector of size n.

(·)i A variable in phase i.

(·)ij A variable between phase i and j.

(·)n A variable at node or load n.

(·)−n A variable excluding node or load n.

·(t) The value of a variable at time t.
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Chapter 4

Parameter Estimation by the

Physics-Informed Model Approach

4.1 Introduction

Accurate modeling of three-phase power distribution systems is gaining importance with

the the rapid increasing penetration of distributed energy resources (DERs). To monitor and co-

ordinate the operations of DERs in distribution networks, distribution system operators need key

applications such as three-phase power flow, distribution system state estimation, three-phase opti-

mal power flow, and distribution network reconfiguration. All of these applications rely on accurate

models of three-phase distribution networks, which include the network topology and parameters.

However, the distribution network parameters and topology in the geographic information system

(GIS) may contain errors due to unreliable documentation during the system modifications and up-

grades.
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Though the topic of topology estimation for distribution networks has been studied exten-

sively [30, 31, 78, 67, 79], the estimation of distribution network parameters such as line impedance

has not received sufficient attention. The task of parameter estimation in power distribution net-

works is more challenging than that in transmission networks because the distribution lines are

almost always not transposed. Untransposed lines will lead to unequal diagonal and off-diagonal

terms in the phase impedance matrix. Thus, instead of single-phase models, three-phase line seg-

ment models need to be developed. Specifically, the elements of a 3 × 3 phase impedance matrix

need to be estimated for each three-phase distribution line segment.

In this chapter, we propose a parameter estimation approach, which considers three-phase

series impedance and only leverages readily available smart meter measurements. We first build

a physical model based on the linearized three-phase power flow manifold, which links the net-

work parameters with the smart meter measurements. The parameter estimation problem is then

formulated as a maximum likelihood estimation (MLE) problem. We prove that the correct network

parameters yield the highest likelihood value. A stochastic gradient descent (SGD) method with

early stopping is then adopted to solve the MLE problem. Comprehensive numerical tests show that

the proposed algorithm improves the accuracy of the network parameters.

The rest of this chapter is organized as follows. Section 4.2 reviews the literature and

summarizes our work’s contribution. Section 4.3 formulates the problem of network parameter

estimation. Section 4.4 presents the physics-informed model linking network parameters with smart

meter measurements. Section 4.5 formulates the parameter estimation problem as an MLE problem

and proposes an SGD algorithm to solve it. Section 4.6 shows the results of numerical study. Section

4.7 states the conclusion.
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4.2 Literature Review and Contributions of Our Work

Many technical methods have been developed to estimate transmission network param-

eters. However, very few of them can be applied to the three-phase distribution networks with

readily available sensor data. The existing parameter estimation literature can be roughly classi-

fied into three groups based on the sensor data used. The sensor data that were used for parameter

estimation include supervisory control and data acquisition (SCADA) system information, phasor

measurement unit (PMU) data, and smart meter data.

The first group of literature [22, 23] uses SCADA data such as power and current injec-

tions to estimate network parameters of the transmission system with a single-phase model. Most

of these works perform joint state and parameter estimation by residual sensitivity analysis, state

vector augmentation, and Kalman filter.

The second group of literature uses time synchronized measurements such as voltage and

current phasors to estimate single-phase line models in transmission systems and three-phase line

models in distribution networks [80, 81, 82, 83, 84]. Although these algorithms can achieve highly

accurate network parameter estimates, they require widespread installation of PMUs, which are

extremely costly.

The third group of literature uses readily available smart meter data to estimate network

parameters of distribution systems [39, 85, 86]. Linear regression models are fitted based on voltage

magnitude and complex power consumption measurements to estimate line parameters of single-

phase secondary feeders [39, 86]. By solving power flow equations with voltage magnitude and

complex power measurements, the parameters of a single-phase distribution line model can be esti-

mated [85].
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In this chapter, we propose a data-driven algorithm to estimate the serial conductance and

serial susceptance of the π equivalent model for three-phase distribution lines by using the readily

available smart meter measurements of voltage magnitude, real power consumption, and reactive

power consumption. The serial conductance and susceptance are the real and imaginary part of the

inverse of a line’s phase impedance matrix. By linearizing the three-phase power flow manifold,

we first build a physical model, which links smart meter measurements and the three-phase serial

conductance and susceptance. We then formulate the three-phase parameter estimation problem

as a maximum likelihood estimation (MLE) problem and prove that the correct network parameters

yield the highest likelihood value. At last, we adopt the stochastic gradient descent (SGD) algorithm

with early stopping to solve the MLE problem.

Compared to the existing parameter estimation methods, our proposed algorithm has two

advantages. First, our proposed approach is specifically designed to estimate network parameters

of three-phase distribution networks, which takes unequal self and mutual serial conductance and

susceptance into consideration. Second, our proposed approach only uses readily available smart

meter data and can be easily applied in real-world distribution circuits.

4.3 Problem Formulation

4.3.1 Problem Setup

We aim to estimate the serial conductance and susceptance (i.e., the real and imaginary

part of the inverse of the phase impedance matrix) of three-phase primary lines of a distribution

feeder’s network. The network contains L lines/edges and N + 1 nodes, indexed as node 0 to N ,

in which node 0 is the substation. In the distribution feeder, there are M loads connected to the
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primary lines through the non-substation nodes. The loads in the distribution feeder can be single-

phase, two-phase, or three-phase.

4.3.2 Assumptions

4.3.2.1 Availability of Measurement Data and Network Model

First, for a single-phase load on phase i, we know its power injection (both real and

reactive power) and voltage magnitude of phase i. Second, for a two-phase delta-connected load

between phase i and j, we know its power injection and voltage magnitude across phase i and j.

Third, for a three-phase load, we know its total power injection and the voltage magnitude of a

known phase i. Fourth, for the source node, we know the voltage measurement. Fifth, it is assumed

that each load’s phase connection is known. Sixth, the topology of the primary line network is

known. Seventh, we assume that the GIS has rough estimates of the network parameters, which are

inaccurate but not far from the correct values. Finally, we assume that the distribution feeder is not

severely unbalanced. Assumptions one to four are based on the typical measurement configurations

of smart meters and SCADA. Assumptions five to seven are based on the available information

in GIS. The last assumption holds for distribution feeders under normal operations. The task of

network parameter estimation is to estimate the 3× 3 serial conductance and susceptance matrices

of the three-phase primary line segments.

4.3.2.2 Statistical Assumptions

First, we assume that the incremental changes in measured real, reactive power, and volt-

age magnitudes across different time intervals are independent. Second, we assume that the noise
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term which represents the model errors and the measurement errors is i.i.d. Gaussian. Note that the

noise term will be derived later in Section 4.4.1. Third, we assume that the noise term is independent

of the incremental changes in smart meter measurements. These statistical assumptions have been

verified in [32].

4.4 Physics-Informed Model for Network Parameter Estimation

4.4.1 Linearized Power Flow Model of Distribution Feeders

In order to build the model of network parameter estimation, we first introduce a linearized

three-phase power flow model [32] as shown in (4.1). This linearized model links three parts of a

distribution system: the first difference of smart meter measurement time series (ṽ(t), ṽref(t), p̃(t),

and q̃(t)), the load phase connection X , and the primary feeder’s topology and parameters (U1, U2,

Û1, Û2, P , and Ǎ). Next, we will explain these three parts in detail. For the detailed derivation of

the linearized three-phase power flow model, please refer to [32]. Note that n(t) is the noise term,

which represents the model errors and the measurement errors and is assumed to be i.i.d. Gaussian.

ṽ(t) =Xṽref(t) +X

[
U1 U2

]
PǍ−1P T

 Û1 Û2

−Û2 Û1

 ·
XT

XT


p̃(t)

q̃(t)

+ n(t) (4.1)

4.4.1.1 The Smart Meter Measurements

The measurements are modeled as follows. Let v̂(t), p̂(t), and q̂(t) denoteM×1 vectors

of the measurement of voltage magnitude, real power, and reactive power of the M loads at time

t. Let vi0 denote the substation’s voltage magnitude of phase i, and let vij0 denote the substation’s
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voltage magnitude across phase ij. Define a 3M × 1 vector v̂ref(t) , [v̂ref
1 (t), . . . , v̂ref

M (t)]T , where

v̂ref
m (t) = [va0(t), vb0(t), vc0(t)] if load m is single-phase or three-phase; v̂ref

m = [vab0 (t), vbc0 (t), vca0 (t)]

if load m is two-phase. ṽ(t) , v̂(t)− v̂(t− 1). p̃(t), q̃(t), and ṽref(t) are defined in a similar way

as ṽ(t).

4.4.1.2 The Load Phase Connection

The M × 3M block diagonal matrix X , diag([x1
1 x

2
1 x

3
1], ..., [x1

M x2
M x3

M ]) represents

the loads’ phase connections. xim = 0 or 1, and
∑

i x
i
m = 1, ∀ m. If load m is single-phase, then

x1
m, x2

m, and x3
m represent AN , BN , and CN connections. If m is two-phase, then x1

m, x2
m, and

x3
m represent AB, BC, and CA connections. If m is three-phase and one of AN , BN , and CN

voltages is measured, then x1
m, x2

m, and x3
m represent which phase is measured.

4.4.1.3 The Primary Feeder’s Topology and Parameters

The primary feeder’s topology and parameters are modeled as follows. Let α = e−j
2π
3

and let I(N+1) be an identity matrix of size N + 1. Let’s first define matrix Y as follows:

Y ,


Y aa Y ab Y ac

Y ba Y bb Y bc

Y ca Y cb Y cc

 (4.2)

where Y ij is the (N + 1)× (N + 1) nodal admittance matrix between phase i and j. Define a block

diagonal matrix Φ , diag(I(N+1), αI(N+1), α
2I(N+1)) and define matrix A as

A ,

 Re(Φ−1Y Φ) −Im(Φ−1Y Φ)

−Im(Φ−1Y Φ) −Re(Φ−1Y Φ)

 (4.3)
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By removing the rows and columns corresponding to the substation from A, we obtain a 6N × 6N

matrix Ǎ. P is a known constant 6N × 6N permutation matrix that regroups the rows and columns

of Ǎ by nodes instead of by phases.

U1 and U2 are 3M × 3N matrices. Û1 and Û2 are 3N × 3M matrices. These four

matrices represent which of the N non-substation nodes each load is connected to and how many

phases each load is connected to. Please refer to [32] for the details on the calculation of these

matrices. The elements of these matrices are determined once each load’s location and the number

of phases are given. In this work, these four matrices are treated as constant matrices.

4.4.2 Explicit Model of Distribution Line Parameters in Linearized Power Flow

Model

The distribution line parameters are implicitly considered in Ǎ−1 of the linearized power

flow model (4.1) derived in Section 4.4.1. In this subsection, we explicitly model the distribution

line parameters in the linearized power flow model.

A three-phase line segment l’s serial conductance and susceptance can be represented by

two symmetric matrices, the serial conductance matrix [g]l and the serial susceptance matrix [b]l:

[g]l ,


gaal gabl gacl

gbal gbbl gbcl

gcal gcbl gccl

 , [b]l ,


baal babl bacl

bbal bbbl bbcl

bcal bcbl bccl

 (4.4)

Since both matrices are symmetric, only 12 independent parameters need to be derived for

each line segment. Define Λ as the set of all line parameters, i.e., Λ , {gijl , b
ij
l | l ∈ {1,. . . ,L}, ij ∈

{aa,ab,ac,bb,bc,cc}}. Define gij and bij as gij , [gij1 , . . . , g
ij
L ] and bij , [bij1 , . . . , b

ij
L ]. Then, the

serial conductances can be grouped in a 3L × 3L matrix as in (4.5). Λb can be defined in a similar
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way for serial susceptances. Next we define four 3L× 3L matrices as in (4.6). Define two rotation

matrices R(Φ−1) and R(Φ) as in (4.7).

Λg ,


diag(gaa) diag(gab) diag(gac)

diag(gab) diag(gbb) diag(gbc)

diag(gac) diag(gbc) diag(gcc)

 (4.5)

sin(Φ−1) , diag
(

sin(0)·IL, sin(
2π

3
)·IL, sin(−2π

3
)·IL

)
cos(Φ−1) , diag

(
cos(0)·IL, cos(

2π

3
)·IL, cos(−2π

3
)·IL

)
sin(Φ) , diag

(
sin(0)·IL, sin(−2π

3
)·IL, sin(

2π

3
)·IL

)
cos(Φ) , diag

(
cos(0)·IL, cos(−2π

3
)·IL, cos(

2π

3
)·IL

)
(4.6)

R(Φ−1) ,

 cos(Φ−1) sin(Φ−1)

− sin(Φ−1) cos(Φ−1)



R(Φ) ,

 cos(Φ) sin(Φ)

− sin(Φ) cos(Φ)


(4.7)

Let A denote the (N + 1)× L incidence matrix representing the topology of the primary

feeder. If line segment l connects node i and j (i < j), thenAil = 1,Ajl = −1, andAkl = 0,∀k 6=

i, j. By removing the row corresponding to the substation, we obtain a N × L matrix Ǎ. Define

Ǎ6N as Ǎ6N , diag(Ǎ, Ǎ, Ǎ, Ǎ, Ǎ, Ǎ) and define Λy as:

Λy ,

 Λg −Λb

−Λb −Λg

 (4.8)

Then, it can be shown that

Ǎ = Ǎ(Λ) = Ǎ6NR(Φ−1)ΛyR(Φ)T ǍT6N (4.9)

93



By plugging (4.9) into (4.1), we can obtain an explicit model of network parameters in the linearized

power flow model.

4.5 Maximum Likelihood Estimation of Distribution Network Param-

eters

In this section, we first show how to formulate the network parameter estimation problem

using maximum likelihood estimation (MLE). Then, we derive the gradient of the negative log

likelihood function with respect to network parameters. Lastly, we develop an SGD-based algorithm

with early stopping to solve the MLE problem.

4.5.1 MLE Problem Formulation

Define ṽ(t,Λ) as the theoretical value of ṽ(t), i.e., the first difference of voltage time

series with network parameters Λ as in (4.10). Then, ṽ(t) = ṽ(t,Λ) + n(t), in which Λ is the set

of network parameters to estimate.

ṽ(t,Λ) ,Xṽref(t) +X

[
U1 U2

]
PǍ(Λ)−1P T

 Û1 Û2

−Û2 Û1



·

XT

XT


p̃(t)

q̃(t)


(4.10)

As stated in Section 4.3.2.2, we assume that the noise n(t) is independent of ṽref(t),

p̃(t), and q̃(t) and is i.i.d. Gaussian n(t)∼N (0M×1,Σn), in which Σn is an unknown underlying

covariance matrix. Given these conditions, n(t) is also independent of ṽ(t,Λ). Thus, the likelihood
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of observing {ṽ(t)}Tt=1 given X , {ṽref(t)}Tt=1, {p̃(t)}Tt=1, and {q̃(t)}Tt=1 is a function of Λ show in

(4.11):

Prob({ṽ(t)}Tt=1|X, {ṽref(t)}Tt=1, {p̃(t)}Tt=1, {q̃(t)}Tt=1; Λ) =

|Σn|−
T
2

(2π)
MT
2

×exp
{
− 1

2

T∑
t=1

[ṽ(t)−ṽ(t,Λ)]TΣ−1
n [ṽ(t)−ṽ(t,Λ)]

} (4.11)

Taking the negative logarithm of (4.11), removing the constant term, and scaling by 2
T ,

we get

f(Λ) ,
1

T

T∑
t=1

[ṽ(t)− ṽ(t,Λ)]TΣ−1
n [ṽ(t)− ṽ(t,Λ)] (4.12)

It will be shown in Lemma 3 that the correct network parameters Λ maximize the likelihood function

(4.11) and minimizes f(Λ) under two mild assumptions.

Lemma 3. Let Λ∗ be the correct network parameters. If the following two conditions are satisfied,

then as T →∞, Λ∗ is a global minimizer of f(Λ).

1. n(tk) is i.i.d. and independent of ṽref(tl), p̃(tl), and q̃(tl), for ∀tk, tl ∈ Z+.

2. ṽref(tk), p̃(tk), and q̃(tk) are independent of ṽref(tl), p̃(tl), and q̃(tl), for ∀tk, tl ∈ Z+, tk 6=

tl

For the proof of Lemma 3, please refer to Appendix E of Ref. [32]. The only difference is

that in this work, the decision variable is the network parameter Λ, while in Ref. [32], the decision

variable is the phase connection x. In real-world applications, Σn is unknown, so we can use IM

instead. With IM , Lemma 3 still holds and the proof is similar.

By substituting (4.10) into (4.12), we can see that directly minimizing f(Λ) is very diffi-

cult because it is nonconvex and highly nonlinear. Thus, we adopt SGD to solve the problem.
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4.5.2 Derive Gradient of the Negative Log-likelihood Function

In this subsection, we derive the gradient of f(Λ), which will be used to find the Λ that

minimizes f(Λ). To derive the gradient in matrix form, we define the following terms:

y(t) , ṽ(t)−Xṽref(t), z(t) ,

p̃(t)

q̃(t)



C , X

[
U1 U2

]
P, D , P T

 Û1 Û2

−Û2 Û1


XT

XT


(4.13)

Then ṽ(t)− ṽ(t,Λ) = y(t)− CǍ(Λ)−1Dz(t). Using the chain rule, for ∀λ ∈ Λ, we have

∂f(Λ)

∂λ
= Tr

([
∂f(Λ)

∂(CǍ(Λ)−1D)

]T
× ∂(CǍ(Λ)−1D)

∂λ

)
(4.14)

where

∂f(Λ)

∂(CǍ(Λ)−1D)
=− 2

T
Σ−1
n ·

T∑
t=1

(
y(t)−CǍ(Λ)−1Dz(t)

)
z(t)T (4.15)

Calculating ∂(CǍ(Λ)−1D)/∂λ is equivalent to calculating every element’s derivative ∂[CǍ(Λ)−1D]i,j/∂λ,

in which [CǍ(Λ)−1D]i,j is the ijth element of (CǍ(Λ)−1D) , i=1,. . .,M and j=1,. . . ,2M . Using

the chain rule, we have

∂[(CǍ(Λ)−1D)]i,j
∂λ

=Tr

([
∂[CǍ(Λ)−1D]i,j

∂Ǎ(Λ)

]T
× ∂Ǎ(Λ)

∂λ

)
(4.16)

Define E(i,j)
m×n as an m× n matrix, in which the ij-th element is 1 and the rest of elements are all 0.

Using the rules of matrix derivatives [87], we have

∂[CǍ(Λ)−1D]i,j

∂Ǎ(Λ)
= −Ǎ(Λ)−TCTE(i,j)

M×2MD
T Ǎ(Λ)−T (4.17)

Let [Ǎ(Λ)]i,j be the ijth element of Ǎ(Λ). Using the chain rule, we get

∂[Ǎ(Λ)]i,j
∂λ

= Tr

([
∂[Ǎ(Λ)]i,j
∂Λy

]T
× ∂Λy

∂λ

)
(4.18)
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Using the rules of matrix derivatives [87], we have

∂[Ǎ(Λ)]i,j
∂Λy

= R(Φ−1)T ǍT6NE
(i,j)
6N×6N Ǎ6NR(Φ) (4.19)

From (4.8), we have

∂Λy
∂λ

=

 ∂Λg/∂λ −∂Λb/∂λ

−∂Λb/∂λ −∂Λg/∂λ

 (4.20)

The calculation of ∂Λg/∂λ is straightforward. By (4.5), we have

∂Λg
∂λ

=



03L×3L if λ /∈ Λg

E
(i,i)
3L×3L if λ is the ii-th diagonal element in Λg

E
(i,j)
3L×3L + E

(j,i)
3L×3L if λ is the ij-th and ji-th

off-diagonal elements in Λg

(4.21)

∂Λb/∂λ can be calculated in a similar way. Based on the derivations above, we can

calculate the gradient ∇f(Λ) for any given Λ by calculating ∂f(Λ)/∂λ for all λ ∈ Λ as follows.

First, calculate ∂[Ǎ(Λ)]i,j/∂λ for ∀i, j using (4.18), (4.19), (4.20), and (4.21). Next, calculate

∂[(CǍ(Λ)−1D)]i,j/∂λ for ∀i, j using (4.16) and (4.17). Lastly, calculate ∂f(Λ)/∂λ using (4.14)

and (4.15).

4.5.3 The SGD Algorithm

We design an SGD-based algorithm with early stopping to minimize f(Λ) and estimate

the network parameters Λ. As shown in Algorithm 4, in step 1, the parameters Λ are initialized

with their original values in the GIS. The initial values for the parameters are assumed to be not far

from the correct values. In steps 2 to 17, we iteratively update Λ using SGD, in which we update Λ

by descending f(Λ)’s gradient over a small group of samples (i.e., a batch) of size nbatch. We use
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patience npatience to decide when to stop the iterative process. That is to say, the algorithm will be

stopped if f(Λ) over all T samples is not improved in npatience epochs (an epoch goes through all

T samples in batches). Steps 4 to 9 show the procedure of updating Λ over each batch of samples,

in which we use the backtracking line search of parameters astep, α, and β to determine the step

size in each move. In step 18, the parameters Λ with the lowest f(Λ) is selected as the output.

Algorithm 4 Network Parameter Estimation Algorithm

Input: First difference of smart meter measurements ṽ(t), ṽref(t), p̃(t), and q̃(t), t = 1, ..., T ;
feeder constant matrices C, D, R(Φ), R(Φ−1); hyperparameters nbatch, npatience, astep, α, and
β; an initial estimate of Λ for the L primary line segments.

Output: Updated estimates of Λ.
1: Let Λbest = Λ and fbest = f(Λ), in which f(Λ) is calculated over all T measurements.
nepoch = 0.

2: while nepoch < npatience do
3: Randomly divide the T measurements into batches of size nbatch.
4: for each batch do
5: Calculate∇f(Λ) over the batch following Section 4.5.2. The descent direction is ∆Λ =
−∇f(Λ). s = astep.

6: while f(Λ + s∆Λ) > f(Λ) + αs∇f(Λ)T∆Λ do
7: s = βs
8: end while
9: Λ = Λ + s∆Λ

10: end for
11: Calculate f(Λ) over all T measurements.
12: if f(Λ) < fbest then
13: fbest = f(Λ), Λbest = Λ, nepoch = 0.
14: else
15: nepoch = nepoch + 1
16: end if
17: end while
18: Output the Λbest.
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4.6 Numerical Study

4.6.1 Setup for Numerical Tests

We evaluate the performance of our proposed parameter estimation algorithm with the

modified IEEE 13-bus test feeder, which is shown in Figure 4.1. We modify the standard 13-bus

test feeder by introducing loads with all 7 types of phase connections, AN , BN . CN , AB, BC,

CA, and ABC. The test circuits’ primary feeder contains 6 line segments and 7 nodes, which serve

10 loads.

Figure 4.1: Schematic of the modified IEEE 13-bus test feeder.

We aggregated the hourly average real power consumption data from the smart meters of

a distribution feeder managed by an electric utility in North America, as the hourly loads on the test

feeder. The length of the real power consumption time series is 2160, which represents 90 days of

measurements. The reactive power time series of the lagging loads are calculated with power factors

randomly sampled from a uniform distribution U(0.9, 1) (a typical range for distribution network

loads). The peak load of the feeder is 3 MW. The power flow results are generated using OpenDSS.

All smart meter measurements contain noise, which follows a zero-mean Gaussian distribution with

three-sigma deviation matching 0.1% to 0.2% of the nominal values. The 0.1 and 0.2 accuracy
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class smart meters established in ANSI C12.20-2015 represent the typical noise levels in real-world

systems. To make the parameter estimation task more challenging, we assume the smart meters

have limited precision. That is to say, after adding measurement noise, the voltage measurements

are rounded to the nearest 1V. The real and reactive power measurements are rounded to the nearest

0.1 kW and 0.1 kVar. We assume that the initial estimates for network parameters Λ are randomly

sampled from a uniform distribution within ±50% of the correct values, which are very inaccurate

starting values.

We set hyperparameters of the SGD algorithm as nbatch = 10, npatience = 10, astep =

1e8, α = 0.3, and β = 0.5. These values are set empirically so that the algorithm updates f(Λ)

adequately and stops when it saturates. The SGD algorithm is implemented using MATLAB on a

DELL workstation with 3.3 GHz Intel Xeon CPU and 16 GB RAM.

4.6.2 Performance of Parameter Estimation Algorithm

We demonstrate the effectiveness of our proposed network parameter estimation algo-

rithm with two meter accuracy classes (0.1% and 0.2%) and two time windows (30 days and 90

days). We use the mean absolute deviation ratio (MADR) to measure the parameter estimation

error. The MADR between the estimated Λ and the correct value Λ∗ is defined in (4.22).

MADR ,

∑12L
i=1 |λi − λ∗i |∑12L

i=1 |λ∗i |
× 100% (4.22)

The percentage of MADR improvements resulting from applying our proposed algorithm is re-

ported in Table 4.1. In other words, we report (MADRinitial−MADRfinal)/MADRinitial × 100%,

where MADRinitial and MADRfinal represent the MADR of the initial and the final network pa-

rameter estimates. The maximum possible MADR improvement is 100% with perfect estimation,
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i.e., MADRfinal = 0%. As shown in the table, our proposed algorithm significantly reduces the

network parameter estimation error. The improvement is more pronounced with longer periods of

more accurate smart meter data.

Table 4.1: Improvement in MADR of the Network Parameter Estimates of the Proposed Algorithm

Meter Class Number of Days MADR Improvement

0.1%
30 12.53%
90 13.54%

0.2%
30 8.76%
90 11.64%

To quantify the estimation error of each network parameter, we define the absolute devia-

tion percentage (ADP) of a parameter λi as |λi − λ∗i |/|λ∗i | × 100%. Figure 4.2 shows the improve-

ment in ADP due to the proposed algorithm, i.e., ADPinitial − ADPfinal. As shown in the figure,

our proposed algorithm reduces ADP for most of the network parameters. The improvement is more

significant for line segments 1 and 2, which are the “backbones” of the feeder. Some parameters’

estimation deteriorates with negative improvement, indicating that the algorithm may converge to a

local minimum.

4.6.3 Performance with Different Smart Meter Penetration Levels

We also evaluate the performance of our proposed method with different smart meter pen-

etration levels. In the 13-bus test feeder, there are 10 and 45 possible meter placement combinations

with 90% and 80% smart meter penetration levels. The reduction in MADR are calculated for each

case and the average reduction in MADR due to our proposed algorithm are reported in Table 4.2.

As shown in the table, the improvement in MADR decreases when the penetration level of the smart

101



1 2 3 4 5 6

Line Number

-40

-20

0

20

40

60
Im

p
ro

v
e
m

e
n

t

o
f 

A
D

P
 (

%
)

aa

ab

ac

bb

bc

cc

(a) Serial Conductance

1 2 3 4 5 6

Line Number

-20

0

20

40

60

Im
p

ro
v
e
m

e
n

t

o
f 

A
D

P
 (

%
)

aa

ab

ac

bb

bc

cc

(b) Serial Susceptance

Figure 4.2: Improvement in ADP of all network parameter estimates due to the proposed algorithm
(0.1% meter class, 90 day data).

meters decreases. When the smart meter penetration level drops to around 80%, our proposed al-

gorithm is no longer effective. This is because the linearized power flow model becomes inaccurate

when we have incomplete smart meter measurements. Note that this limitation of our proposed

algorithm will be less concerning as the penetration level of smart meters continues to increase.

Table 4.2: Impact of Smart Meter Penetration Level on the Performance of the Proposed Algorithm

Meter Class 100% Penetration 90% Penetration 80% Penetration
0.1% 13.54% 6.24% -1.41%
0.2% 11.64% 2.23% -7.70%

4.7 Conclusion

In this chapter, we develop a data-driven parameter estimation algorithm for three-phase

power distribution networks. Our proposed algorithm uses only the readily available smart meter

data to estimate the three-phase serial conductance and susceptance of the primary line segments.

The network parameter estimation problem is first formulated as an MLE problem based on the
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linearized three-phase power flow. It can be proven that the correct network parameters yield the

highest likelihood value. We design an SGD-based algorithm with early stopping to solve the MLE

problem. The comprehensive numerical study results show that our proposed algorithm is capable

of improving the accuracy of the parameter estimates.

Future works can be done to develop an algorithm to jointly estimate network parameters

and phase connections of distribution feeders.

4.8 List of Symbols in Chapter 4

E
(i,j)
m×n An m× n matrix, in which the ij-th element is 1 and the rest of elements are all 0.

In n× n identity matrix.

Im(·) Imaginary part of a complex variable.

Re(·) Real part of a complex variable.

diag(·) diag(x) of a vector x is a diagonal matrix with x on the main diagonal. diag(X1, ..., Xn)

is a block diagonal matrix with diagonal matrices of X1, ..., Xn.

0m×n An m× n all-0 matrix.
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Chapter 5

Parameter Estimation by the Graphical

Learning Model Approach

5.1 Introduction

Accurate modeling of three-phase power distribution systems is crucial to accommodat-

ing the increasing penetration of distributed energy resources (DERs). To monitor and coordinate

the operations of DERs, several key applications such as three-phase power flow, state estima-

tion, optimal power flow, and network reconfiguration are needed. All of these depend on accurate

three-phase distribution network models, which include the network topology and parameters [30].

However, the distribution network topology and parameters in the geographic information system

(GIS) often contain errors because the model documentation usually becomes unreliable during the

system modifications and upgrades [79]. Thus, the network topology and parameters need to be

accurately estimated.
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Although topology estimation for distribution networks has been studied extensively [67,

32], the estimation of distribution network parameters such as line impedances still needs further

development. It is more challenging to estimate parameters of power distribution networks than that

of transmission networks. This is because the distribution lines are rarely transposed, which lead to

unequal diagonal and off-diagonal elements in the impedance matrix. Thus, three-phase line models

need to be developed instead of single-phase equivalent models. Specifically, the elements of the

3× 3 phase impedance matrix need to be estimated for each three-phase line segment.

In this chapter, we develop a physics-informed graphical learning algorithm to estimate

network parameters of three-phase power distribution systems. Our proposed algorithm uses only

readily available smart meter data to estimate the three-phase series resistance and reactance of the

primary distribution line segments. We first develop a parametric physics-based model to replace

the black-box deep neural networks in the conventional graphical neural network (GNN). Then we

derive the gradient of the loss function with respect to the network parameters and use stochastic

gradient descent (SGD) to estimate the physical parameters. Prior knowledge of network parameters

is also considered to further improve the accuracy of estimation. Comprehensive numerical study

results show that our proposed algorithm yields high accuracy and outperforms existing methods.

The rest of this chapter is organized as follows. Section 5.2 reviews the literature and

summarizes our work’s contribution. Section 5.3 formulates the problem of network parameter es-

timation. Section 5.4 presents the overall framework of the proposed method and briefly introduces

the GNN. Section 5.5 provides the technical methods for construction and parameter estimation

based on the physics-informed graphical model. Section 5.6 evaluates the performance of the pro-

posed algorithm with a comprehensive numerical study. Section 5.7 states the conclusion.

105



5.2 Literature Review and Contributions of Our work

Many methods have been proposed to estimate transmission network parameters. How-

ever, very few of them can be applied to the three-phase distribution networks using readily available

sensor data. The existing parameter estimation literature can be roughly classified into three groups

based on the type of sensor data used.

In the first group of literature, supervisory control and data acquisition (SCADA) system

data such as power and current injections are used to estimate transmission network parameters

of a single-phase model. Most of the algorithms in this group perform joint state and parameter

estimation by residual sensitivity analysis and state vector augmentation [23]. Parameter errors

are detected by identification indices [24, 88], enhanced normalized Lagrange multipliers [25], and

projection statistics [89]. Adaptive data selection [90] is used to improve estimation accuracy.

In the second group of literature, phasor measurement unit (PMU) data such as voltage

and current phasors are used to estimate line parameters of transmission and distribution systems

[91, 92, 93, 94, 95, 96, 84]. Although these methods achieve highly accurate parameter estimates,

they require costly and widespread installation of PMUs. Linear least squares is used to estimate

transmission line parameters [91]. Parallel Kalman filter for a bilinear model is used to estimate

both states and line parameters of the transmission system [92]. With single-phase transmission line

models, nonlinear least squares is used to estimate line parameters and calibrate remote meters [93].

Traveling waves are used to estimate parameters of series compensated lines [94]. An augmented

state estimation method is developed to estimate three-phase transmission line parameters [95].

Maximum likelihood estimation (MLE) is used to estimate single-phase distribution line parameters

[96]. Lasso is adopted to estimate three-phase admittance matrix in distribution systems [84].
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In the third group of literature, smart meter data such as voltage magnitude and complex

power consumption are used to estimate distribution line parameters [97, 98, 99, 100, 33]. Particle

swarm [97] and linear regression [86, 99] are used to estimate single-phase line parameters. Linear

approximation of voltage drop [98] is used to estimate the parameters of single-phase and balanced

three-phase distribution lines. Multiple linear regression model is used to estimate three-phase line

impedance in [100], but it does not work with delta-connected smart meters with phase-to-phase

measurement. In [33], three-phase line parameters are estimated through MLE based on a linearized

physical model.

The existing methods for parameter estimation either assume a single-phase equivalent

distribution network model or require widespread installation of micro-PMUs, which are cost pro-

hibitive. To fill the knowledge gap, this work develops a physics-informed graphical learning algo-

rithm to estimate the 3×3 series resistance and reactance matrices of three-phase distribution line

model using readily available smart meter measurements. Our proposed method is inspired by the

emerging graph neural network (GNN), which is designed for estimation problems in networked

systems. We develop three-phase power flow-based physical transition functions to replace the ones

based on deep neural networks in the GNN. We then derive the gradient of the voltage magnitude

loss function with respect to the line segments’ resistance and reactance parameters with an iterative

method. Finally, the estimates of distribution network parameters can be updated with the stochastic

gradient descent (SGD) approach to minimize the error between the physics-based graph learning

model and the smart meter measurements. Prior estimates and bounds of network parameters are

also leveraged to improve the estimation accuracy. To improve computation efficiency, partitions

can be introduced so that parameter estimations are executed in parallel in sub-networks.
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The main technical contributions of this work are:

• A physics-informed graphical learning method is developed to estimate line parameters of

three-phase distribution networks.

• Our proposed algorithm only uses readily available smart meter data and can be easily applied

to real-world distribution circuits.

• By preserving the nonlinearity of three-phase power flows in the graphical learning frame-

work, our proposed approach yields more accurate parameter estimates on test feeders than

the state-of-the-art benchmark.

5.3 Problem Formulation

5.3.1 Problem Setup

The objective of this work is to estimate the series resistance and reactance in the 3×3

phase impedance matrix of three-phase primary lines of a distribution feeder. The impedance matrix

of a line l can be written as, Zl=Rl+jXl, where

Rl ,


raal rabl racl

rabl rbbl rbcl

racl rbcl rccl

 , Xl ,


xaal xabl xacl

xabl xbbl xbcl

xacl xbcl xccl

 . (5.1)

Since Zl is symmetric, for each line segment there are 6 resistance and 6 reactance parameters. The

network contains L lines and N + 1 nodes, indexed as node 0 to N . Node 0 is the source node (e.g.,

a substation). In total, there are 12L parameters to estimate. M loads are connected to the primary

lines through the non-source nodes. The loads can be single-phase, two-phase, or three-phase.
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5.3.2 Assumptions

The assumptions of measurement data and the network model are summarized below.

First, for a single-phase load on phase i, the smart meter records real and reactive power injections

and voltage magnitude of phase i. Second, for a two-phase delta-connected load between phase

i and j, the smart meter records the power injection and voltage magnitude across phase i and j.

Third, for a three-phase load, the smart meter records total power injection and voltage magnitude

of a known phase i. Fourth, SCADA system records the voltage measurements at the source node.

Fifth, it is assumed that the phase connections of all loads are known. Sixth, the topology of the

primary three-phase feeder is known. Seventh, we assume that the GIS contains rough estimates of

the network parameters. The first four assumptions one to four are based on the typical measurement

configurations of smart meters and SCADA. Assumptions five to seven are based on the available

information in GIS.

5.4 Overall Framework and Review of GNN

5.4.1 Overall Framework of the Proposed Method

The overall framework of the proposed graphical learning method for distribution line

parameter estimation is illustrated in Fig. 5.1. As shown in the figure, a physics-informed graphical

learning engine is constructed based on nonlinear power flow. The inputs to the graphical learning

engine include power injection measurements from smart meters, distribution network topology, and

distribution line parameters. In the graphical learning engine, each node corresponds to a physical

bus in the distribution network. The nodal states, i.e., the three-phase complex voltage are iteratively

updated by a set of transition functions. The graphical learning engine’s outputs are the estimated
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smart meter voltage magnitudes, which are used to calculate the graphical learning engine’s loss

function. The gradient of the line parameters is computed from the loss function and subsequently

used to update the line parameters using stochastic gradient descent. The technical details of the

proposed method will be explained in Section 5.5.

Topology Line Parameters
Series resistance 

and reactance

admittance 

matrices 

Transition functions

for .

Real and Reactive 

Power Measurement

complex nodal 

power injection 

Graphical 

Learning Model

Initial nodal 

state , 
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Solve by 

iterations
Output function 

Estimated Voltage 

Magnitude

Voltage 

Magnitude 

Measurement
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Function

SGD-Based 

Parameter 

Update

Figure 5.1: Framework of the method. The bold boxes with red titles represent higher-level el-
ements. Green boxes represent smart meter data, and blue boxes represent distribution network
information.

5.4.2 A Brief Overview of the GNN

A GNN is a neural network model, which uses a graph’s topological relationships be-

tween nodes to incorporate the underlying graph-structured information in data [101]. GNNs have

been successfully applied in many different domains, such as social networks, image processing,

and chemistry [102]. Our proposed physics-informed graphical learning model is developed by

embedding physics of power distribution networks into the standard GNN.
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The GNN is comprised of nodes connected by edges. The nodes represent objects or

concepts, and the edges represent the relationships between nodes. Two vectors are attached to a

node n: the state vector xn and the feature vector ln. A feature vector l(m,n) is attached to edge

(m,n). The state xn, which embeds information from its neighborhood with arbitrary depth, is

naturally defined by the features of itself and the neighboring nodes and edges through a local

parametric transition function fw,n. A local output on of node n, representing a local decision, is

produced through a parametric output function gw,n. The local transition and output functions are

defined as follows:

xn = fw,n(ln, lco(n),xne(n), lne(n))

on = gw,n(xn, ln)

(5.2)

Here, lco(n), xne(n), and lne(n) are the features of edges connected to node n, the states of node n’s

neighbor nodes, and the features of node n’s neighbor nodes. w is the set of parameters defining the

transition and output functions. An example of a node and its neighbor area in a GNN is depicted in

Fig. 5.2. The local transition function for node 1 isx1 = fw,1(l1, l(1,2), l(1,3), l(1,4),x2,x3,x4, l2, l3, l4).

The implementation of the transition and output functions are flexible. They can be modeled as lin-

ear or nonlinear functions (e.g., neural networks). Let [x], [o], [l], and [lN ] represent the vectors

The rest of

the graph

Neighbor area

Figure 5.2: An illustration of a node and its neighbor area in a GNN.
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constructed by stacking all the states, all the outputs, all the features, and all the node features,

respectively. Then (5.2) can be represented in a compact form:

[x] = Fw([x], [l])

[o] = Gw([x], [lN ])

(5.3)

Here, Fw and Gw are the global transition function and global output function, which stacks all

nodes’ fw,n and gw,n, respectively.

With the sufficient condition provided by the Banach fixed point theorem [103], one can

find a unique solution of the state [x] for (5.3) using the classic iterative scheme:

[x]τ+1 = Fw([x]τ , [l]) (5.4)

Here, [x]τ is the τ -th iteration of [x]. The dynamic system of (5.4) converges exponentially fast to

the solution of system (5.3) for any initial value [x]0.

The parameters w of a GNN’s global transition and output functions Fw and Gw are up-

dated and learned such that the output [o] approximate the target values, i.e., minimizing a quadratic

loss function:

loss =
M∑
m=1

(om − ǒm)2 (5.5)

Here, M is the number of elements (number of measurements) in [o], and om and ǒm are the m-th

output and target value. The learning algorithm is based on a gradient-descent strategy. Since the

iterative scheme in (5.4) is equivalent to a recurrent neural network, the gradient is calculated in a

more efficient approach based on the Almeida-Pineda algorithm. Additional technical details of the

GNN can be found in [101, 104, 105].
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5.5 Technical Methods

This section is organized as follows. Section 5.5.1 describes the construction of transi-

tion function Fw. Section 5.5.2 describes the formulation of the output function Gw and the loss

function. Section 5.5.3 derives the gradient of the loss function. The use of prior knowledge of

line parameters is described in Section 5.5.4. Section 5.5.5 presents the parameter estimation algo-

rithm. The network partition method, which improves the scalability of the algorithm is described

in Section 5.5.6.

Our proposed physics-informed graphical learning model is different from the GNN [101].

In the GNN, Fw andGw are often represented by neural networks whose weights are being learned.

However, in our proposed framework, Fw and Gw are built based on the physical model of the

power distribution system. The parameters to be estimated are the line resistance and reactance.

5.5.1 Construction of the Transition Function

The transition function is constructed based on the nonlinear power flow model of the

distribution system. Let sn , [san, s
b
n, s

c
n]T be a 3×1 vector of nodal three-phase complex power

injection of node n. sin , pin + jqin, i = a, b, c, where pin and qin are node n’s real and reactive

power injection of phase i. sn can be derived from smart meters’ power consumption data and

phase connections as described in Section III-A of [32]. Similarly, we define three-phase complex

nodal voltage as un , [uan, u
b
n, u

c
n]T , uin , αin + jβin, i = a, b, c. Let Ynk = Z−1

nk be the 3×3

admittance matrix of the line between node n and k, which can be calculated by using the topology

and line parameters of the distribution network. Ignoring the negligible shunt, the three-phase power

flow equation of node n can be written as in (5.6). Here, Ynn =
∑

k∈ne(n) Ynk, � is the element-
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wise multiplication, ne(n) is the set of n’s neighbor nodes, and (·)∗ represents complex conjugate.

An equivalent form of (5.6) is (5.7).

sn = un �
(
Y ∗nnu

∗
n −

∑
k∈ne(n)

Y ∗nku
∗
k

)
(5.6)

un = Y −1
nn

(
(s∗n � u∗n) +

∑
k∈ne(n)

Ynkuk

)
(5.7)

Here, � represents element-wise division.

Next we convert (5.7) from a complex equation to a real-valued equation. For a matrix A,

we define

〈A〉 ,

Re(A) −Im(A)

Im(A) Re(A)

 (5.8)

Here, Re(A) and Im(A) are the real and imaginary part of A. Then, (5.7) can be rewritten as the

local transition function:Re(un)
Im(un)

=〈Znn〉
(Re(s∗n�u∗n)

Im(s∗n�u∗n)

+
∑
k∈ne(n)

〈Ynk〉

Re(uk)
Im(uk)

) (5.9)

Here Znn,Y −1
nn . We define 6×1 state vector xn and feature vector ln of node n as

xn ,

Re(un)

Im(un)

 , ln ,

Re(sn)

Im(sn)

 (5.10)

Now, we can convert the local transition function (5.9) into the standard form and the

global compact form:

xn = fw,n(xn, ln,xne(n)) (local form of node n)

[x] = Fw([x], [l]) (global compact form)

(5.11)
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For each node in a distribution system, we can derive a local transition function and stack them to

obtain the global form of Fw as in (5.11). Note that [l] only contains all the nodes’ features and

does not contain any edge features. The model’s parameter w is the set of all lines’ three-phase

resistance and reactance, which is embedded in 〈Znn〉 and 〈Ynk〉 of (5.9).

Given line parameterw, we can calculate the theoretical node state values of each time in-

stance t by iteratively applying the transition function (5.11). This iteration procedure is formulated

as a function called FORWARD shown in Algorithm 5. In the algorithm, step 1 initializes all nodes’

states. In step 2, the global transition function is constructed. Step 3–6 estimate the nodes’ states

iteratively, while x0(t) is fixed to its initial value because it is the measurement at the reference

node. The iteration continues until convergence, which is controlled by a small ratio εforward.

Algorithm 5 FORWARD(w, t)
Input: Current line parameter w and the time instance t.
Output: Theoretical [x(t)] of the distribution system with line parameter w.

1: Initialize the source nodes’ state x0(t) with the known measurement at the source node. Ini-
tialize the other nodes’ state xn(t) as defined in (5.10) with balanced flat node voltage, i.e.
un(t) = [1, e−j

2π
3 , ej

2π
3 ]T , (n = 1, ..., N).

2: Construct the initial [x(t)]0 by stacking all the initial xn(t), (n = 0, ..., N). Construct function
Fw with w.

3: repeat
4: [x(t)]τ+1 = Fw([x(t)]τ , [l(t)]) and fix x0(t) to its initial value.
5: τ = τ + 1
6: until ‖[x(t)]τ − [x(t)]τ−1‖2 < εforward · ‖[x(t)]τ−1‖2
7: return [x(t)] = [x(t)]τ .

115



5.5.2 Construction of the Output and Loss Function

The output of our proposed graphical learning model is the estimated smart meters’ volt-

age measurements. For smart meter m, the estimated output om is in the form of:

om = gm(xno(m)) (local form of meter m)

[o] = G([x]) (global compact form)

(5.12)

Here, xno(m) is the state of the node, which the smart meter m is connected to. Suppose we have

a solution of the state [x(t)] = FORWARD(w, t), then [o(t)] = G([x(t)]). Though xno(m) has 6

elements from 3 phases, a smart meter only measures one single-phase or one phase-phase voltage

magnitude. Based on the assumptions in Section 5.3.2, if k = no(m), then gm is defined as follows:

gm(xk)=



√
(αik)

2+(βik)
2 if meter m is single-phase or

three-phase, measuring phase i√
(αik−α

j
k)

2+(βik−β
j
k)

2 if meter m is

two-phase, measuring phase ij

(5.13)

Note that in the line parameter estimation formulation, gm does not depend on the parameter vector

w. Thus, it is not a parametric function.

Next we derive the loss function. To remove trends, instead of directly using the voltage

output [o], we use the first difference of the output time series. The estimated first difference of

output time series for meter m is:

õm(t) , om(t)− om(t− 1) (5.14)
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The loss of first difference voltages at time t is:

ew(t) =
1

M

M∑
m=1

(
ṽm(t)− õm(t)

)2 (5.15)

Here, M is the number of meters, ṽm(t) = vm(t)−vm(t−1) is the first difference of actual voltage

magnitude measured by meter m. In the graphical learning model, we need to calculate the loss

function over both the whole data set (i.e., all first difference instances) and mini-batch data (i.e., a

smaller set of first difference instances). Thus, we define the gross loss function over a batch of data

with time index set T as:

ew(T) ,
1

|T|
∑
t∈T

ew(t) (5.16)

Here, |T| is the size of T. Suppose we have measurement data over t = 0, ..., T , and define Tfull ,

{t|t = 1, ..., T} as the full batch for first difference time series. Then the gross error of the model

over all first difference instances is ew(Tfull).

5.5.3 Gradient of the Loss Function With Respect to the Line Parameters

We design a new algorithm to calculate the gradient of the loss function (5.16) of first dif-

ference voltage time series with respect to the line parameters w. The gradient calculation formula

in the GNN cannot be directly applied because it is derived for the data of a particular time instance,

and not for time series. To derive the gradient of the loss function (5.16), we define an equivalent

graphical learning model, with new state and feature vectors as follows:

x̂n(t) ,

xn(t− 1)

xn(t)

 , l̂n(t) ,

ln(t− 1)

ln(t)

 (5.17)
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The corresponding equivalent transition function is:

x̂n(t) = f̂w,n(x̂(t)n, l̂(t)n, x̂(t)ne(n))

,

fw,n(xn(t− 1), ln(t− 1),xne(n)(t− 1))

fw,n(xn(t), ln(t),xne(n)(t))

 (5.18)

The compact form of (5.18) is:

[̂x(t)]= F̂w([̂x(t)], [̂l(t)]),

Fw([x(t− 1)], [l(t− 1)])

Fw([x(t)], [l(t)])

 (5.19)

Here,

[x̂(t)] ,

[x(t− 1)]

[x(t)]

 , [̂l(t)] ,
[l(t− 1)]

[l(t)]

 (5.20)

The output function of first difference voltage time series for meter m is:

õm(t)= ĝm(x̂no(m)(t)),gm(xno(m)(t))− gm(xno(m)(t−1)) (5.21)

The compact form of (5.21) is:

[õ(t)] = Ĝ([x̂(t)]),G([x(t)])−G([x(t− 1)]) (5.22)

Using the equivalent graphical learning model defined in (5.17)-(5.22), we can calculate

the gradient of ew(T) over any batch of data T with respect tow using an efficient function BACK-

WARD shown in Algorithm 6. The iterative FORWARD function can be represented as a recurrent

neural network. Thus, ew(T)’s gradient is difficult to calculate in the conventional way. To evaluate

the gradient more efficiently, we design Algorithm 6 following the same backpropagation principle

in [101] based on the Almeida-Pineda algorithm [104, 105]. Algorithm 6 calculates the gradient

by using an intermediate variable z(t) through iterative applications of steps 5–10. The theoretical
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details of designing such algorithms can be found in [101, 104, 105]. In Algorithm 6, the lengthy

derivations of Â(t), b̂(t), and ∂F̂w([x̂(t)],[̂l(t)])
∂w are omitted. Please refer to the detailed derivations

in Appendix B.1, B.2, and B.3, respectively. εbackward is a small ratio controlling the convergence

threshold and T̃ is the backward shift batch index defined as:

T̃ , {t− 1|t ∈ T} (5.23)

Algorithm 6 BACKWARD(w, T)
Input: Current line parameter w and the first difference instance batch index T.
Output: Gradient ∂ew(T)

∂w .
1: [x(t)]=FORWARD(w, t), t ∈ T ∪ T̃.
2: Construct [x̂(t)] as (5.20), t ∈ T.

3: Calculate [õ(t)] = Ĝ([x̂(t)]), Â(t) = ∂F̂w([x̂(t)],[̂l(t)])
∂[x̂(t)] , b̂(t) = ∂ew(t)

∂[õ(t)] ·
∂Ĝ([x̂(t)])
∂[x̂(t)] , for t ∈ T.

4: for t ∈ T do
5: Initialize z(t)0 = 01×12N , τ = 0.
6: repeat
7: z(t)τ+1 = z(t)τ · Â(t) + b̂(t)
8: τ = τ + 1
9: until ‖z(t)τ − z(t)τ−1‖2 < εbackward · ‖z(t)τ−1‖2

10: ∂ew(t)
∂w = z(t)τ · ∂F̂w([x̂(t)],[̂l(t)])

∂w , for t ∈ T.
11: end for
12: ∂ew(T)

∂w = 1
|T|
∑

t∈T
∂ew(t)
∂w

13: return ∂ew(T)
∂w

5.5.4 Utilization of Prior Distribution of Line Parameters Through MAP and Con-

straints

Electric utilities often have reasonable estimates of distribution systems’ line impedance

in GIS, which serve as key statistics for the prior distributions of the line parameters. This subsection

describes how to use these information to improve estimates of line parameters using maximum a

posteriori probability (MAP) and parameter constraints.
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5.5.4.1 Use of Prior Line Parameter Distribution in MAP Estimate

The posterior distribution of the line parameters is:

P (w | [ṽ(t)]Tt=1) =
P ([ṽ(t)]Tt=1 | w)P (w)

P ([ṽ(t)]Tt=1)
(5.24)

Here [ṽ(t)] represents a stack of ṽm(t), (m = 1, ...,M), and [ṽ(t)]Tt=1 represents [ṽ(t)] of t =

1, ...,M , i.e., the observed first difference voltage time series over the entire time period. Maximiz-

ing (5.24) is equivalent to the minimization in (5.25):

min
w
− logP ([ṽ(t)]Tt=1 | w)− logP (w) (5.25)

We assume ṽm(t) ∼ N(õm(t), σ2
vm) and are independent across smart meters m = 1, ...,M and

time steps t= 1, ..., T . We also assume a Gaussian prior of the line parameters wi ∼N(µi, σ
2
wi),

i = 1, ..., |w|. õm(t) is the output of the graphical learning model with parameter w, i.e., the

theoretical ṽm(t) with parameter w. For simplification, we further assume σvm ≈ σv, ∀m, so that

(5.25) can be approximated by:

min
w

T∑
t=1

M∑
m=1

(ṽm(t)− õm(t))2

σ2
v

+

|w|∑
i=1

(wi − µi)2

σ2
wi

(5.26)

By scaling (5.26), we have:

min
w

1

TM

T∑
t=1

M∑
m=1

(ṽm(t)− õm(t))2+
σ2
v

TM

|w|∑
i=1

(wi − µi)2

σ2
wi

= min
w

ew(Tfull) +R(w)

(5.27)

where R(w) , σ2
v

TM

∑|w|
i=1

(wi−µi)2
σ2
wi

. The prior distribution of line parameters specifies, µi and σ2
wi .

The only unknown term inR(w) is σ2
v , which needs to be estimated. With the Gaussian assumption

ṽm(t) ∼ N(õm(t), σ2
v), σ2

v can be estimated from data samples by:

σ2
v≈

1

M(T−1)

T∑
t=1

M∑
m=1

(ṽm(t)−õm(t))2 =
T

T−1
ew(Tfull) (5.28)

120



The approximation in (5.28) holds whenw is close to the true parameter value. The MAP estimation

of line parameters consists of two steps. First, we estimatew by minimizing ew(Tfull) without prior

knowledge and calculate σ2
v with (5.28). Second, we obtain the MAP estimate with (5.27).

Since we work with both the entire dataset and mini-batches, we define the loss function

over a data batch T as:

Jw(T) = ew(T) + γR(w) (5.29)

where γ is the regularization factor that controls the weight of prior. (5.24)-(5.27) corresponds to

MAP with γ = 1. Note that R(w) does not depend on |T|, because R(w) is defined on the full

batch size T = |Tfull|. This definition ensures that when Tfull is split into mini-batches, the average

Jw(T) over all mini-batches equals Jw(Tfull).

The gradient of R(w) can be calculated as follows:

∂R(w)

∂wi
=

2σ2
v(wi − µi)
TMσ2

wi

, i = 1, ..., |w| (5.30)

5.5.4.2 Constraints on Line Parameter Estimates

We can also add constraints to the line parameter estimates if we know their upper and

lower limits. Assume that we know wmin,i ≤ wi ≤ wmax,i, i,= 1, ..., |w|. Then we can ap-

ply projected gradient descent to ensure that the learned parameters from the SGD-based esti-

mation procedure stays within the allowable range. Here we denote the projection as wproj =

CONS(w,wmin,wmax), in which wproj,i = min(wmax,i,max(wi, wmin,i)) for i,= 1, ..., |w|.
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5.5.5 SGD-Based Line Parameter Estimation Algorithm

Our proposed SGD-based line parameters estimation method is summarized in Algorithm

7. In step 1, the parameter setwiter is initialized with its original value in the GIS. The initial values

for the parameters are assumed to be not far from the correct ones. In steps 2 to 20, we iteratively

updatewiter by descending Jwiter(Tbatch)’s gradient over a small group of samples (i.e., a mini-batch)

of size nbatch. We use patience npatience to decide when to stop the iterative update process. That

is to say, the algorithm will be stopped if Jbest is not improved in npatience epochs (an epoch goes

through all T samples in mini-batches). Steps 5 to 15 show the procedure of updating witer over

each mini-batch, in which we use the backtracking line search of parameters sinitial, α, and β to

determine the step size in each move. In step 21, the parameters wbest, which has the lowest loss

value Jwbest(Tfull) is selected as the output. The use of prior distribution of the distribution line

parameters is controlled by µi, σ2
wi , i = 1, ..., |w|, γ, wmin, and wmax.

5.5.6 Distributed Parameter Estimation With Network Partition

For large-scale networks, the FORWARD function takes a larger number iterations to

converge and is thus more time consuming. To solve this problem, we propose a network parti-

tioning method to enable parallel computing over smaller sub-networks. The proposed approach

works as follows. First, we identify a few edges of the network, which partition the network into

sub-networks with similar sizes. Second, for each selected edge, one end of it is used as a quasi-

source. The quasi-source’s three-phase power injection, voltage magnitude of each phase, and the

voltage angle difference between phases are measured. Now, each sub-network contains at least

one quasi-source node or substation. Third, each sub-network is treated as an independent network
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Algorithm 7 SGD-Based Line Parameter Estimation
Input: First difference of smart meter voltage magnitude [ṽ(t)] and three-phase nodal power injec-

tion [̃l(t)], t ∈ Tfull; prior distribution information µi, σ2
wi of line parameters, i = 1, ..., |w|,

regularization factor γ, parameter constraints wmin, wmax; hyperparameters nbatch, npatience,
sinitial, α, β and εstop; an initial estimate winitial of w for the 12L line parameters.

Output: Updated estimate of w.
1: Initialize witer =wbest =winitial and Jbest =Jwbest(Tfull) as (5.29). nepoch = 0. Jhistory(nepoch) =
Jbest.

2: repeat
3: nepoch = nepoch + 1
4: Randomly split Tfull into mini-batches of size nbatch.
5: for each mini-batch Tbatch do
6: Calculate ∂R(witer)

∂witer
as (5.30).

7: ∇Jwiter =BACKWARD(witer, Tbatch)+γ ∂R(witer)
∂witer

8: Set s = sinitial and ∆w = −∇Jwiter .
9: wtemp =CONS(witer + s∆w, wmin, wmax)

10: while Jwtemp(Tbatch)>Jwiter(Tbatch)+αs∇JTwiter
∆w do

11: s = βs
12: wtemp =CONS(witer+s∆w,wmin,wmax)
13: end while
14: witer = wtemp
15: end for
16: if Jwiter(Tfull) < Jbest then
17: Jbest = Jwiter(Tfull),wbest = witer.
18: end if
19: Jhistory(nepoch) = Jbest

20: until 1− Jhistory(nepoch)
Jhistory(nepoch−npatience)

< εstop
21: return wbest.

and one quasi-source node or substation is selected as the source node; the other quasi-source nodes

or substations in this sub-network are treated as ordinary nodes with three additional single-phase

pseudo-loads in phase A, B, and C respectively, whose voltage and power injections are measured.

Fourth, we execute Algorithm 7 for all sub-network in parallel.

We can take the IEEE 37-bus test feeder shown in Fig. 5.3 as an example of the network

partition method. The feeder is partitioned into three sub-networks with similar size by edge 702-

703 and 708-733. Node 702 and 708 are used as quasi-sources. Sub-network 1’s source node is
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799, and node 702 has 3 additional pseudo loads. Sub-network 2’s source node is 702, and node

708 has 3 additional pseudo loads. Sub-network 3’s source node is 708. Since sub-network 3 has

no other quasi-source nodes, it does not contain any pseudo loads.

Figure 5.3: Schematic of the modified IEEE 37-bus test feeder.

5.6 Numerical Study

5.6.1 Setup for Numerical Tests

We evaluate the performance of our proposed graphical learning-based parameter estima-

tion algorithm and a few state-of-the-art algorithms on the modified IEEE 13-bus and 37-bus test

feeders. We modify these two test feeders by introducing loads with all 7 types of phase connec-

tions, AN , BN , CN , AB, BC, CA, and ABC. The basic information of the two modified IEEE

test feeders are shown in Table 5.1. The modified 37-bus test feeder is shown in Fig. 5.3 and the
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modified 13-bus feeder is described in [33].

Table 5.1: The Basic Information of the IEEE Test Feeders

Feeder
No. of
Loads

No. of
Edges

Peak
Loads

Level of
Unbalance

13-bus 10 6 3 MW 0.0376
37-bus 25 21 2.4 MW 0.0270

The hourly real power consumptions on the test feeders are calculated based on the real

power consumption time series from the smart meters of a real-world distribution feeder in North

America. The length of the real power consumption time series is 2160, which corresponds to 90

days of measurements. The reactive power time series are calculated by assuming a lagging power

factor, which follows a uniform distribution U(0.9, 1). The peak loads of the 13-bus and 37-bus

test feeders are 3MW and 2.4MW respectively. The nodal voltages are calculated by power flow

analysis using OpenDSS. To simulate the smart meter measurement noise, we use a zero-mean

Gaussian distribution with three standard deviation matching 0.1% to 0.2% of the nominal values.

The 0.1 and 0.2 accuracy class smart meters established in ANSI C12.20-2015 represent the typical

noise levels in real-world advanced metering infrastructure. We assume that the initial estimates for

the distribution line parameters, winitial, are randomly sampled from a uniform distribution within

±50% of the correct values.

When generating simulated time series data, the power consumptions are allocated rela-

tively evenly to each phase so that the test feeders are close to balance. Following [31], the level of

unbalance of a feeder at time interval t can be measured as

u(t) =
|IA(t)−Im(t)|+ |IB(t)−Im(t)|+ |IC(t)−Im(t)|

3Im(t)
(5.31)

where Im(t) = 1
3(IA(t) + IB(t) + IC(t)) is the mean of the distribution substation line current
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magnitudes of the three phases at time interval t. We use the 90-day average of u(t) to measure the

level of unbalance of the test feeders, which are shown in Table 5.1.

The hyperparameters for SGD of the proposed graphical learning model is set up as fol-

lows. nbatch =10, npatience =10, sinitial =1000, α=0.3, β=0.5, and εstop = 0.01. The εforward in the

FORWARD function and εbackward in the BACKWARD function are set to be 1e− 20. These values

are set empirically so that the algorithm updates Jwiter(T) adequately and stops when it saturates.

The setup corresponding to the prior distribution component of the proposed algorithm

is set up as follows. winitial is assumed to be within ±50% of the correct values. Thus, the lower

and upper bounds of the parameter wi are selected to be winitial,i
1+50% = 2

3winitial,i and winitial,i
1−50% = 2winitial,i,

where winitial,i is the ith element in winitial. For the MAP estimation of each parameter wi, we set

µi=winitial,i and σwi =winitial,i×50%×1
3 , which represents a Gaussian distribution centered atwinitial,i

and its three standard deviation matching ±50% of winitial,i. Though this Gaussian assumption is

different from the actual uniform distribution of winitial, simulation results show the MAP is still

effective.

The proposed graphical learning model uses SGD to update line parameter estimates.

To reliably evaluate the performance of the proposed model, we execute the algorithm multiple

times with different random seeds and calculate the average performance. The numerical tests are

implemented using MATLAB on a DELL workstation with two 3.0 GHz Intel Xeon 8-core CPUs

and 192 GB RAM.

5.6.2 Performance Measurement

We use the mean absolute deviation ratio (MADR) to measure the estimation error of

distribution line parameters. The MADR between the estimated w and the correct value w† is
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defined as in (5.32). The performance of a distribution line parameter estimation algorithm is eval-

uated by the percentage of MADR improvement, which is defined as in (5.33). Here MADRinitial

and MADRfinal represent the MADR of the initial and the final line parameter estimates. The

maximum possible MADR improvement is 100%, which corresponds to a perfect estimation (i.e.,

MADRfinal=0%).

MADR ,
12L∑
i=1

|wi − w†i | ÷
12L∑
i=1

|w†i | × 100% (5.32)

MADR improvement ,
MADRinitial−MADRfinal

MADRinitial
× 100% (5.33)

5.6.3 Performance Comparison of the Proposed Graphical Learning Method and

State-of-the-Art Algorithms

The performance of our proposed graphical learning algorithm (GL) with MAP and pa-

rameter constraints (abbreviated as CON) is compared with the state-of-the-art algorithm, linearized

power flow model based maximum likelihood estimation (LMLE) [33]. In addition, we perform an

ablation study to evaluate the relative importance of the MAP and parameter constraints modules

in our proposed graphical learning model. These methods are tested with three smart meter accu-

racy class: noiseless (0%), 0.1%, and 0.2%. Due to the randomness of the SGD component of the

proposed and comparison algorithms, the combination of each algorithm and smart meter class are

tested 20 times with different random seeds. The average MADR improvement of the proposed and

comparison algorithms are reported in Table 5.2.

From Table 5.2, we can see that the MADR improvement of the GL algorithm is sig-

nificantly higher than that of LMLE in both test feeders under all meter classes. The increase in
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Table 5.2: Average MADR Improvement of Parameter Estimation Methods

Feeder
Meter
Class

LMLE GL
GL+
CON

GL+
MAP

GL+
CON&MAP

13-bus
0% 59.9% 69.2% 74.7% 69.5% 75.0%

0.1% 59.3% 68.0% 70.0% 70.3% 73.4%
0.2% 56.4% 64.7% 66.4% 68.0% 70.2%

37-bus
0% 35.8% 40.5% 41.7% 40.5% 41.7%

0.1% 17.0% 22.0% 25.2% 25.4% 25.6%
0.2% -10.9% 10.7% 18.7% 20.3% 20.9%

54 56 58 60 62 64 66 68 70 72

MADR Improve (%)

LMLE

GL

GL+CON

GL+MAP

GL+CON&MAP

Figure 5.4: Box plot of 20 random tests for each different algorithms in the 13-bus test feeder, 0.2%
noise level.

MADR improvement ranges from 8.3% to 9.3% in the 13-bus feeder and 4.7% to 21.6% in the

37-bus feeder. The estimation accuracy of both GL and LMLE increases as the meter noise level

decreases. In the 37-bus feeder under 0.2% meter class, the LMLE has negative MADR improve-

ment, which means the LMLE fails to obtain a more accurate parameter estimation from the initial

parameters. On the other hand, the GL algorithm still obtains a more accurate parameter estimation

under the same condition. These results show that by preserving the nonlinearity of three-phase

power flows, the GL algorithm is significantly more accurate than the LMLE.

In addition to the advantage of GL algorithm, Table 5.2 shows the benefit of CON and

MAP. Compared with GL algorithm, using only CON has a higher MADR improvement by 1.7%

to 5.5% in the 13-bus feeder, and 1.2% to 8% in the 37-bus feeder. Compared with GL algorithm,
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using only MAP has a higher MADR improvement by 0.3% to 3.3% in the 13-bus feeder, and

0% to 9.6% in the 37-bus feeder. The GL algorithm using both CON and MAP has the highest

MADR improvement, which is higher than LMLE by 13.8% to 15.1% in the 13-bus feeder, and

5.9% to 31.8% in the 37-bus feeder. The box plot of Fig. 5.4 compares the accuracy of different

algorithms in the 13-bus test feeder, 0.2% meter class. These results show that both MAP and CON

are effective in utilizing the prior distribution of line parameters to further improve the parameter

estimation accuracy.

The estimation accuracy of all algorithms increases as the meter noise level decreases,

with one exception. In Table 5.2, we note that under meter class 0%, the MAP’s improvement

over the GL algorithm is not as significant as 1% and 2% meter classes. This is because under the

noiseless 0% meter class, the σ2
v for MAP is much smaller than 1% and 2% meter classes. The

smaller σ2
v put less weight on R(w) in (5.27) and thus the MAP is less effective under the 0% meter

class.

In Table 5.2, we also note that the overall accuracy of 13-bus feeder is higher than 37-bus.

This is because the 37-bus feeder has lower meter number to line number ratio and longer aver-

age node-to-node distances (in terms of number of line segments). The material of line segments,

configurations, and load profiles are also different between the two feeders.

5.6.4 Performance on Unbalanced Distribution Feeders

We test our proposed method with higher unbalance levels by adjusting the load levels

in each phase of the test feeders. The result shows that our proposed method is very accurate

even if the feeder is severely unbalanced. Table 5.3 shows the average MADR improvement of

different parameter estimation methods when the feeder’s unbalance level is 0.1, which is deemed
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as severely unbalanced. From Table 5.3, We can draw similar conclusions as in Table 5.2. The

GL algorithm and its combination with CON and MAP significantly outperform LMLE. Compared

with the LMLE, the GL algorithm has a higher MADR improvement by 8.4% to 8.7% in the 13-

bus feeder, and 4.5% to 19.7% in the 37-bus feeder. The GL+CON&MAP has the most accurate

estimation result. Its MADR improvement is higher than LMLE by 14.7% to 16.1% in the 13-bus

feeder, and 6.6% to 29.5% in the 37-bus feeder.

Table 5.3: Average MADR Improvement of Parameter Estimation Methods in Highly Unbalanced
Feeders(Unbalance Level=0.1)

Feeder
Meter
Class

LMLE GL
GL+
CON

GL+
MAP

GL+
CON&MAP

13-bus
0% 58.2% 66.6% 73.1% 67.7% 73.8%

0.1% 57.6% 66.3% 68.8% 69.6% 72.3%
0.2% 54.2% 62.9% 65.2% 67.4% 70.3%

37-bus
0% 35.0% 40.4% 41.6% 40.3% 41.6%

0.1% 17.5% 22.0% 25.3% 25.5% 25.7%
0.2% -8.4% 11.3% 19.2% 20.7% 21.1%

5.7 Conclusion

In this chapter, we develop a physics-informed graphical learning algorithm to estimate

line parameters of three-phase power distribution networks. Our proposed algorithm is broadly ap-

plicable as it uses only readily available smart meter data to estimate the three-phase series resistance

and reactance of the primary line segments. We leverage the domain knowledge of power distribu-

tion systems by replacing the deep neural network-based transition functions in the graph neural

network with three-phase power flow-based physical transition functions. A rigorous derivation of

the gradient of the loss function for first difference voltage time series with respect to line parameters

is provided. The network parameters are estimated through iterative application of stochastic gradi-
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ent descent. The prior distribution of the line parameters is also considered to further improve the

accuracy of the proposed parameter estimation algorithm. Comprehensive numerical study results

on IEEE test feeders show that our proposed algorithm significantly outperforms the state-of-the-art

algorithm. The relative advantage of the proposed algorithm becomes more pronounced when smart

meter measurement noise level is higher.

5.8 List of Symbols in Chapter 5

E
(i,j)
m×n An m× n matrix, in which the ij-th element is 1 and the rest of elements

are all 0.

Im(·) Imaginary part of a complex variable.

M Number of loads in a circuit.

N , L Number of non-substation nodes and lines in the three-phase primary dis-

tribution network.

Re(·) Real part of a complex variable.

T A batch of time difference instances.

co(n), ne(n), no(m) Edge set connected to node n, node neighbor set of node n, node that

meter m connects to.

pin, qin, αin, βin Real and imaginary part of power injection, real and imaginary part of

node n’s voltage at phase i.

u, s 3× 1 Vector of a node’s three-phase complex voltage and complex power

injection.

v Voltage magnitude scalar of a smart meter.
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ṽ, õ Time difference of v and o.

w The set of parameters of the GNN/distribution system.

x, l, o State vector, feature vector, and output scalar of an element in the GNN.

[x], [l], [o] A vector that stacks all the states, features, and output.

x̂n(t), l̂n(t) 12×1 vectors that stack xn(t−1) and xn(t), ln(t−1) and ln(t), respec-

tively.

[x̂(t)], [̂l(t)] Vectors of stacking [x(t−1)] and [x(t)], [l(t−1)] and [l(t)], respectively.

(·)i A variable in phase i.

(·)ij A variable between phase i and j.

(·)n A variable of the n-th node, load, or element.

·(t) The value of a variable at time t.

0m×n All-0 matrix of size m× n.

�, � Element-wise multiplication and division.
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Chapter 6

Modeling of Commercial Adoption of

Photovoltaic Systems

6.1 Introduction

Solar energy, including both the solar thermal and photovoltaic, grew rapidly in the U.S.

from 64 trillion Btu in 2001 to 427 trillion Btu in 2014 [106]. The U.S. solar energy’s share of

total new electricity generation capacity increased from 10% in 2012 to 32% in 2014 [107]. In

particular, the small-scale distributed solar PV system, which accounts for 33% of the total solar

generation has grown significantly in the United States over the past several years [108]. As a vital

component of the U.S. renewable energy portfolio, continuing adoption of solar PV systems is key

to both reducing greenhouse gas emissions and building a clean energy workforce. For example, the

solar industry workforce in the United States grew more than 50% in the past four years and now

employs more than 140,000 workers [109].
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To stimulate the growth of the solar PV market, the federal and state governments have

been supporting research and strengthening U.S. solar manufacturing capabilities to drive down the

installation cost of solar PV [109]. In addition, the U.S. important a significant portion of solar

equipment from Asia [110, 111, 112]. The boom in global solar module production also led to a

precipitous decline in solar PV module prices. In California, the median installed cost for systems

of 10-100 kW-dc in size dropped 56% from $10.7/W-dc in 2001 to $4.7/W-dc in 2013 [113]. In

addition, the federal and state governments developed many incentive programs to directly promote

the adoption of solar PV systems. At the federal level, the Investment Tax Credit (ITC) was im-

plemented in 2006, which provides 30% tax credit for solar systems on residential and commercial

properties [114]. At the state level, California has been leading the way by implementing an array of

incentive programs including the California Solar Initiative (CSI), the New Solar Homes Partnership

(NSHP), the Self-Generation Incentive Program (SGIP), etc [115, 116, 117].

The drop in solar PV cost and direct government incentives have contributed to the rapid

growth in the penetration of small-scale distributed solar PV systems in the energy market. However,

there is a lack of rigorous analyses that quantify the impact of government incentives and solar PV

costs on adoption. Such analyses will provide critical and useful feedback to government agencies

to improve the design of future renewable energy incentive programs, and serve as the basis of

forecasting the adoption.

In this chapter, a model for commercial solar PV adoption is developed with explanatory

variables such as government incentive programs and solar PV system installation costs. The adop-

tion model is built on top of the Generalized Bass diffusion framework. The model is applied to

forecast commercial solar PV adoption in Southern California. Asymptotic standard errors of the
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parameter estimates are calculated to verify the significance of the explanatory variables. Empiri-

cal results show that decreasing solar PV installation costs and government incentive programs are

the main forces that drove the growth of commercial solar PV adoption. In the case of Southern

California, we also discover that government incentive programs and PV installation costs have a

much higher impact on large commercial customers than small commercial customers. Our Gen-

eralized Bass diffusion model of commercial solar PV adoption yields a lower root-mean-square

error (RMSE) than the basic Bass Diffusion model. In addition, the commercial solar PV adoption

model predicted that the eventual adoption rate of solar PV system is higher for large commercial

customers.

The rest of the chapter is organized as follows. Section 6.2 reviews the literature and

summarizes our work’s contribution. Section 6.3 reviews the Bass Model and Generalized Bass

Model. Section 6.4 presents the model for commercial PV adoption. In Section 6.5, the solar PV

adoption model is fitted and validated using historical adoption data. Section 6.6 quantifies the

impact of federal and state incentives on California commercial PV adoption. Section 6.7 presents

the conclusions and policy implications of the work.

6.2 Literature Review and Contributions of Our Work

Several diffusion models have been developed to describe the adoption of new products

and technologies. The Bass Model (BM) [27] is a simple but effective model which described the

empirical adoption of a wide range of products and services. The BM was extended to the Gener-

alized Bass Model (GBM)[28], by including decision variables such as price, marketing effort, etc.

In the BM [27],the model parameters were estimated by ordinary least squares (OLS). A maximum
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likelihood estimation (MLE) approach was proposed by [118], and it fits better to the observations

than OLS and allows for one-step ahead forecasts. A nonlinear least squares approach was pro-

posed by [119], and it corrects the underestimates of standard errors of the estimated parameters in

the MLE approach.

Many researchers have studied the mechanics of residential solar PV adoption using var-

ious approaches. [120] and [121] analyzed multiple factors that influence residential customers’

decisions on solar PV adoption. These factors include government incentives and solar PV costs.

However, these analyses were conducted in the form of surveys and interviews. [122] used BM

without any decision variables to model residential solar PV adoption. The model parameter esti-

mates were not as robust as the MLE and nonlinear least squares approach. GBM was used by [123]

to model adoption patterns of PV systems in many countries. In the GBM, institutional measures,

policies, and government interventions were modeled as perturbations in the form of exponential

shocks and rectangular shocks. The model proposed was helpful in explaining the impact of short-

term interventions, such as a moment of opinion change due to social incidents. However, it did not

clearly explain the effects of long-term interventions such as solar PV incentive programs and the

dropping installation cost of PV systems on adoption.

Since its emergence in 2007, the third-party ownership (TPO) model has earned a sig-

nificant share in the solar PV market [124]. The rapidly growing third-party PV ownership has

prompted a few researchers to study its impact on residential solar PV adoptions. [125] found that

the introduction of third-party PV ownership enticed a new demographic to adopt residential PV

systems which increased the total demand for PV systems. The economics of buy or lease a res-

idential PV system is studied in [126]. It is shown that the choice of contract type and payment
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structure have implications for the total cost to residential solar PV customers over the lifetime of

the contract [127].

To the best of our knowledge, this work is the first to study adoption of distributed com-

mercial PV systems. The adoption of commercial PV systems include both purchasing/owning the

solar PV system and deployment of solar PV system through a TPO contract.[128]. Note that the

drivers and barriers to distributed commercial PV adoption are different from that of residential

adoption. For example, a higher percentage of buildings are leased in the commercial sector than

the residential sector [129, 130]. Therefore, the commercial PV adoption faces bigger challenges in

the form of incentive splitting between the building owner and multiple-tenants. In addition, many

limited liability companies (LLC) that own commercial properties have low credit ratings which

make solar financing more difficult. Finally, though the total number of commercial customers are

smaller than residential customers, their average solar PV size is much larger. Figure 6.1 shows

the number of solar PV installations, and Figure 6.2 shows their average solar PV size each year in

Southern California. From 2001 to 2014, the number of commercial installations were only about

3% of the total installations of all types, but the commercial solar PV capacity was about 40% of

the total installed PV capacity.

Compared with other related work, this work makes the following unique contributions:

1. This work develops a GBM for commercial PV adoption, which quantifies the impact

of solar PV costs and government incentive programs on the adoption.

2. The GBM for commercial PV adoption is also capable of forecasting the eventual com-

mercial PV adoption rate and quantifying the delayed effect of explanatory variables on adoption.

3. The model is applied to fit the empirical commercial PV adoption data in Southern
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Figure 6.1: Average installed PV size by customer type in Southern California

Figure 6.2: Number of solar PV installations by customer type in Southern California
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California. Nonlinear least squares is applied to estimate the model parameters and their asymptotic

standard errors. The empirical results show that large commercial customers are more susceptible

to the influence of PV costs and government incentives than small commercial customers.

4. By changing the cost and incentive rates fed into the model, adoption curves can be

forecasted under different cost and policy conditions. This can be a useful tool for the government

to evaluate its renewable energy technology incentive policies.

6.3 Overview of Bass Model, Generalized Bass Model and Parameter

Estimation Approaches

6.3.1 Bass Model and Generalized Model

The Bass diffusion model is a well-established model of innovation and technology adop-

tion in the market. It can be described by the following formulation [27]:

f(t)

1− F (t)
= p+ qF (t) (6.1)

F (t) is the cumulative adoption function. F (t) → 1 as t → ∞. f(t) = dF (t)
dt is the adoption

rate. The left hand side of the function describes the conditional adoption rate at time t, and it is

controlled by two factors: p and q. p is the innovation factor, describing innovative adopters who

are willing to adopt the product themselves, and q is the imitation factor, describing the adopters

who follow other adopters’ use of the product. Both p and q are positive.

The solution of equation (6.1) is as following [27]:

F (t) =
1− e−(p+q)t

1 + q
pe
−(p+q)t

(6.2)
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f(t) =

(p+q)2

p e−(p+q)t

(1 + q
pe
−(p+q)t)2

(6.3)

To include marketing effort factors in the diffusion model, Frank M. Bass introduced the

generalized Bass model [28]. The GBM is described as follows:

f(t)

1− F (t)
= [p+ qF (t)]x(t) (6.4)

where x(t) is called “current marketing effort”, reflecting the influence of market factors on the

adoption rate at time t. Define the cumulative marketing effortX(t) =
∫ t

0 x(τ)dτ and letX(0) = 0.

The solution of (6.4) is given by:

F (t) =
1− e−X(t)(p+q)

1 + q
pe
−X(t)(p+q)

(6.5)

f(t) = x(t)

(p+q)2

p e−X(t)(p+q)

(1 + q
pe
−X(t)(p+q))2

(6.6)

x(t) is a function of one or more decision variables. For example, product price was

chosen as a decision variable by [28]. Under the argument of diminishing returns, x(t) can be

defined as below:

x(t) = 1 + [(dPr(t)/dt)/Pr(t)]β0 (6.7)

where Pr(t) is the price at time t, and β0 is a weight coefficient expected to be negative. Let

Φ0(t) = ln Pr(t)
Pr(0) , then

X(t) = t+ β0Φ0(t) (6.8)
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6.3.2 Parameter Estimation Methods

In this subsection, we describe how to perform parameter estimations for diffusion mod-

els. Let M denote the total customer population. The eventual cumulative solar adoption de-

noted by m is only a portion of M . Define the eventual adoption rate c (0 ≤ c ≤ 1) such that

m = Mc. To estimate the parameters, we use the observation of a series of historical adoption

si, (i = 1, 2, 3, ..., N ), which is the number of solar PV systems installed in time interval i. For

example, let si be the number of adopted solar PV systems in month i and let ti = i. Then from

(6.1), the following is derived:

mf(ti) = mp+ (q − p)(mF (ti))− (q/m)(mF (ti))
2 (6.9)

In the work of [27, 122], mf(ti) was replaced by si , and mF (ti) was replaced by∑i
j=1 sj . Then OLS estimation can be applied to (6.9) to estimate parameters p, q, and m. The

OLS approach has two drawbacks. First, the replacement is not precise because it uses the aggre-

gated adoption of time intervals to replace instantaneous adoption rates. The diffusion model is time

continuous, but it is estimated using discrete time series data. Second, disturbances such as noise

and parameter misspecifications were not appropriately modeled. [118] showed that there is bias in

such methods.

To overcome these drawbacks, nonlinear least squares estimation was proposed by [119],

which also yields valid estimation of the standard errors of the estimators. The disturbance is mod-

eled as follows:

si = m[F (ti)− F (ti−1)] + ui (6.10)

where F (ti) can be in forms of either (6.2) or (6.5). ui is the net disturbance of sampling errors, the

impact of excluded factors, misspecified parameters, etc. Then the parameters in x(t), p, q, and m
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can be estimated by the nonlinear least squares (NLS) approach as in (6.11). In this work the NLS

approach is used to estimate the model parameters.

min

N∑
i=1

{m[F (ti)− F (ti−1)]− si}2 (6.11)

6.4 Technical Methods

6.4.1 Choice of Decision Variables

To apply the GBM, appropriate decision variables need to be chosen first. As mentioned

in Section 6.1, two explanatory variables have significant influence on PV adoption: installed PV

system costs and government incentives. The installed PV system costs include the PV module

price and non-module costs such as inverters, mounting hardware, labor and permitting fees, and

installer profit. Government incentives include both federal level and state level incentive programs.

They can be in forms of tax credits like the ITC, rebates like the CSI, etc.

Government incentives have different impacts on different groups of commercial cus-

tomers. Based on PV system sizes, the adopters can be divided into 3 groups: 0-10 kW-dc, 10-100

kW-dc, and 100-1000 kW-dc. Figure 6.3 depicts the percentage of commercial customers in each

group who applied and received California solar PV installation incentives on an annual basis. From

2007 to 2014, 88.27% of commercial customers in the 100-1000 kW group received state level in-

centives, whereas 63.22% of customers in the 10-100 kW group received incentives; only 34.20%

of customers in the 0-10 kW group received incentives. Though no information is available on the

application rate of the ITC, it can be inferred that the ITC may also have a higher application rate in

the 100-1000 kW range than the other two ranges. A decision variable should describe a factor that

impacts most of the PV adopters. If there is a large portion of adopters who do not apply for incen-
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tive programs, then the incentive may not be a good decision variable. In this case, the incentive can

be a suitable decision variable for the 100-1000 kW group, probably a suitable decision variable for

the 10-100 kW-dc group, and not a good decision variable for the 0-10 kW-dc group. Therefore,

in the 0-10 kW-dc group, we use only the cost as the decision variable, while in the 10-100 kW-dc

group and the 100-1000 kW-dc group we use both incentives and the cost. We can verify if the

incentive is a suitable decision variable by checking the significance level of parameter estimates.

Figure 6.3: Percentage of commercial PV installations that benefited from the CSI program in 3
size ranges.

One may propose that savings in electricity bills are also important factors. This is true,

because customers with solar PV systems consume less electricity from utility companies. This

factor is also related to government policy. For example, the Net Energy Metering program(NEM)

[131] is supported by the government in California, and the program allows customers with solar

PV to pay their utility bills based on the net energy consumption from the grid. If the solar PV

generates more energy than a customer’s consumption, the energy can be sold to utility companies

at the retail price. However, electricity bill savings are not considered in our model, because savings

are difficult to estimate for a large group of potential commercial customers. The estimation of
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savings is difficult for two reasons. First, the tariff rates of utility companies are hard to forecast.

There are many different types of tariffs for commercial customers, and they change frequently. To

make the issue more complicated, the growth of solar PV adoption can affect the tariff in turn [132].

The second reason is that it is difficult to forecast each customer’s electricity usage pattern in the

long term. The electricity usage patterns of commercial customers depend on a variety of factors

such as their locations, business, and building types.

Overall, in the solar PV adoption model, the installation cost is one general decision

variable for all customer groups, and the incentive is another decision variable for the customer

groups that have high incentive adoption rate.

6.4.2 Commercial Solar PV Adoption Model with Costs and Incentive Rates as De-

cision Variables

In this subsection, we address the question of how to map incentives and costs to x(t) in

the GBM. When the installation cost is the only decision variable, x(t) and X(t) can be defined as

(6.7) and (6.8). When both the incentive and the cost are decision variables, they are mapped to x(t)

in the following way. Government incentive programs have varying rates, which can be transformed

into monetary savings. Then the monetary saving is combined with the solar PV cost. Let Pr(t)

be the solar PV cost at time t, and INC(t) be the money saved from incentive programs at time t.

Both Pr(t) and INC(t) have the unit of $/W-dc. Then we define the net expense E(t) of installing

solar PV as follows:

E(t) = Pr(t)− INC(t) (6.12)
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Similar to (6.7), with the law of diminishing returns, x(t) is derived as follows:

x(t) = 1 + [(dE(t)/dt)/E(t)]β0 (6.13)

where β0 is a weight coefficient expected to be negative. Let Φ0(t) = ln E(t)
E(0) , then

X(t) = t+ β0Φ0(t) (6.14)

From (6.5), the cumulative solar PV adoption function at time t is:

F (t) =
1− e−[t+β0Φ0(t−d)](p+q)

1 + q
pe
−[t+β0Φ0(t−d)](p+q)

(6.15)

In (6.15) a variable d is introduced to represent the effect of time delay. d represents the

time lag between the time when new incentive program or pricing information is made available

and the time when a PV system is installed using the new information. d includes the decision

making time for commercial customers, the time taken to apply for incentive programs and acquire

necessary permits, time for installation, etc. When fitting the GBM, M is known, so c can be

estimated directly. The NLS parameter estimation problem (6.11) can be reformulated as:

min
N∑
i=1

{Mc[F (ti)− F (ti−1)]− si}2 (6.16)

M and si are exogenous variables. p, q, β0, d, and c are model parameters that need to be estimated

by solving NLS problem. For simplicity in estimation, define b = p + q and a = q/p. Then the

parameters to be estimated are c, d, a, b, and β0.

6.5 Case Study

In this section, a case study is conducted to validate the usefulness of the proposed GBM

in modeling the commercial solar PV adoption. The historical PV adoption data, from 2001 to
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2014 in the service territory of Southern California Edison [133], is used in the empirical study. For

California solar PV adopters, the major incentive programs considered include the CSI at the state

level and the ITC at the federal level. The impact of these two incentive programs and the PV cost

is analyzed in this section. The GBM parameter fitting results will be presented and compared with

the BM.

6.5.1 Description of Datasets

The raw datasets include four parts: 1) commercial customers’ aggregated electrical en-

ergy usage; 2) solar PV adopters’ information; 3) historical installed PV cost; and 4) historical

information about incentive program applications. The details of the datasets are as follows:

1) There are about 676000 commercial electric customers in SCE’s service territory.

These commercial customers are divided into various groups based on building/business types de-

rived from the North American Industry Classification system. In each building type, customers

are further divided into several subcategories based on their annual electricity usage. The average

annual usage for customers in each subcategory is recorded.

2) Information on 3000 commercial solar PV adopters was gathered, including their adop-

tion dates, PV system sizes, annual electricity usages, and building types from 2001 to 2014. The

3000 commercial solar PV adoptions include both purchasing/owning the solar PV and deployment

of solar PV system through TPO contracts.

3) The median installed PV cost in California from 1998 to 2013 [113] of three PV size

ranges: 0-10 kW-dc, 10-100 kW-dc, and 100-1000 kW-dc.

4) Commercial solar PV incentive application data includes incentive application dates,

proposed solar PV system sizes, and rebates from the CSI program [134].
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6.5.2 Preprocess of the Datasets

6.5.2.1 Forecast the Commercial Solar PV Size of Potential Adopters

As mentioned in Section 6.4.1, incentive programs have different impacts on different

size groups. Three Generalized Bass Models will be developed for customers with an estimated

PV system size of 0-10 kW-dc, 10-100 kW-dc, and 100-1000 kW-dc respectively. The entire com-

mercial customer population needs to be divided based on their forecasted PV system size, so that

we can obtain M for each size group. We assume that customers of the same building type have

similar preference in choosing the size of a solar PV system. Intuitively, customers who use more

electricity are likely to adopt larger PV systems. However, it is difficult to find a deterministic re-

lationship between the PV size and the annual electricity usage. For example, in Figure 6.4, there

is a large variation in the PV system size for customers who have very similar annual electricity

consumptions.

Figure 6.4: Adoption records of 297 customers in the group “education-primary,” divided into dif-
ferent PV size groups and annual electricity usage groups.

Nevertheless, given a potential customer’s annual electricity usage and building type, we

can still estimate the probability that the customer will install a solar PV system in a certain size
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range. For example, in Figure 6.4, for customers with an annual usage of 105-106 kWh, there

are n1, n2, and n3 adoption records in the three size groups. Then we can estimate that for any

“education-primary” customer with an annual usage of 105-106 kWh, the probabilities to adopt a

solar PV system of size 0-10 kW-dc, 10-100 kW-dc, and 100-1000 kW-dc are n1/(n1 + n2 + n3),

n2/(n1 + n2 + n3), and n3/(n1 + n2 + n3) correspondingly. The procedure to estimate these

probabilities is carried out for each building type, and the detailed process is as follows:

Step 1: Divide the adoption records into four groups by their annual electricity usage:

<104 kWh, 104-105 kWh, 105-106 kWh, and ≥106 kWh. In each electricity usage group, further

divide the records into three groups by the solar PV sizes: 0-10 kW-dc, 10-100 kW-dc, and 100-1000

kW-dc.

Step 2: In each electricity usage group, calculate probabilities that a customer will adopt

a solar PV system in the three size groups.

Step 3: In each size group of each electricity usage group, calculate the average solar PV

size. This is used to forecast the average solar PV size of potential adopters. If a building type has

too few adoption records, we merge it with other similar building types.

In each building type, by multiplying the probability by the customer population in dataset

1 of the same electricity usage range, we can get the number of potential adopters in each size group.

Assuming that customers’ electricity usage increases by 2% annually, we can repeatedly estimate

M each year, and we replace the constant customer population M in (6.16) with M(t). Figure

6.5 shows the estimated total customer population over time for each PV system size range. M(t)

changes slightly over time, since we assume customers’ electricity usage increases gradually on an

annual basis.
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Figure 6.5: M of different size groups.

6.5.2.2 Calculation of Incentive Savings

The incentives received by commercial customers from the CSI program are estimated

by taking the average of each year’s cash rebates of the entire state of California, based on part

4) of the data set. This model is a simplification of the actual CSI incentive program, which has

a 10-tier structure with available incentive funds decreasing over time. The federal level ITC has

been in effect since 2006. According to the latest ITC amendment, the incentive credit for a solar

PV system will be 30% of expenditures till 2019. This incentive credit rate is scheduled to decrease

from 30% in 2019 to 10% in 2022 and beyond [135].

6.5.3 Estimation of Model Parameters and Standard Errors

Model parameter estimation is conducted by using 168 data points of monthly solar PV

system adoption from January 2001 to December 2014. The RMSE of the estimated adoption is cal-

culated for the same time range. The NLS problem is solved by the Nelder-Mead simplex algorithm

[136]. The monthly installed PV system cost and incentive are calculated by linear interpolation,

using the annual installed PV cost and incentives data.
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Before model parameters are estimated, the monthly adoption data series is smoothed us-

ing moving average method with a window of 3, 5, and 7 months. The smoothing process mitigates

the spikes in the historical monthly adoption data. As mentioned in Section 6.4.1, GBM with both

incentives and costs is used for the 10-100 kW-dc and the 100-1000 kW-dc groups, and GBM with

only costs is used for the 0-10 kW-dc group. However, for the size groups 0-10 kW-dc and 10-100

kW-dc, the asymptotic standard errors are larger than the parameter estimates of β0. This means β0

is insignificant in these two cases. Therefore instead of GBM, BM is used in the 0-10 kW-dc group,

and incentives are removed from the GBM for the 10-100 kW-dc group.

To validate the significance of estimated parameters, asymptotic standard errors are cal-

culated as follows [137]. Assume N sample points are used in the estimation. Let θ = [c d a b β0]′

be the vector of parameters. Let K be the degree of θ. Based on (6.16), let h(ti, θ) = Mc[F (ti)−

F (ti−1)]. The variance of disturbance ui is estimated as follows:

σ̂2 =
1

N −K

N∑
i=1

[Si − h(ti, θ̂)] (6.17)

where θ̂ is the estimated parameters. Then

X0′X0 =

N∑
i=1

(
∂h(ti, θ0)

∂θ0
)(
∂h(ti, θ0)

∂θ′0
) (6.18)

The estimated covariance matrix of θ is given by:

Est.Asy.Cov[θ] = σ̂2(X0′X0)−1 (6.19)

The standard errors of p and q, as functions of a and b, can be estimated as follows [138].

Let g(θ) be a function of the parameter vector θ, the standard error of g can be estimated by:

SE(g) = (
∂g(θ̂)

∂θ
)TEst.Asy.Cov[θ](

∂g(θ̂)

∂θ
) (6.20)
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By following the steps above, the estimated parameters and their asymptotic standard

errors are calculated and shown in Tables 6.1, 6.2, and 6.3. The fitted PV adoption curves with a

smoothing window of 3 months are shown in Figures 6.6, 6.7, and 6.8.

Table 6.1: Estimated parameter values and their standard errors (SE), using GBM with the incentives
and cost, 100-1000 kW-dc

window d c a b p q β0 RMSE BM RMSE

3 value 17 6.49E-02 2.10E+02 2.89E-02 1.37E-04 2.88E-02 -1.44E+01 2.52 2.89

SE 5.78E-01 9.25E-03 7.01E+01 2.85E-03 3.38E-05 2.88E-03 3.22E+00 - -

5 value 17 4.97E-02 7.01E+02 3.56E-02 5.07E-05 3.56E-02 -2.37E+01 1.86 2.43

SE 2.85E-01 3.16E-03 2.13E+02 2.00E-03 1.28E-05 2.01E-03 2.86E+00 - -

7 value 17 4.58E-02 1.21E+03 3.96E-02 3.26E-05 3.96E-02 -2.23E+01 1.60 2.16

SE 2.67E-01 2.19E-03 3.42E+02 1.80E-03 7.88E-06 1.81E-03 2.49E+00 - -

Table 6.2: Estimated parameter values and their standard errors (SE), using GBM with cost, 10-100
kW-dc

window d c a b p q β0 RMSE BM RMSE

3 value 9 8.28E-03 1.13E+02 2.45E-02 2.15E-04 2.43E-02 -7.15E+01 3.60 3.81

SE 5.66E-01 5.34E-04 4.32E+01 3.53E-03 5.32E-05 3.57E-03 1.97E+01 - -

5 value 11 7.49E-03 2.56E+02 3.16E-02 1.23E-04 3.15E-02 -5.16E+01 3.09 3.32

SE 5.99E-01 3.50E-04 1.02E+02 3.74E-03 3.49E-05 3.77E-03 1.47E+01 - -

7 value 11 8.26E-03 1.80E+02 3.03E-02 1.64E-04 3.01E-02 -3.82E+01 2.75 2.93

SE 6.54E-01 4.04E-04 5.78E+01 3.02E-03 3.77E-05 3.05E-03 1.06E+01 - -
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Table 6.3: Estimated parameter values and their standard errors (SE), using BM, 0-10 kW-dc

window c a b p q RMSE

3 value 3.28E-03 1.57E+03 5.31E-02 3.37E-05 5.30E-02 3.50

SE 1.67E-04 6.94E+02 3.40E-03 1.27E-05 3.41E-03 -

5 value 3.25E-03 1.67E+03 5.36E-02 3.20E-05 5.36E-02 2.87

SE 1.34E-04 6.08E+02 2.80E-03 9.98E-06 2.81E-03 -

7 value 3.24E-03 1.72E+03 5.39E-02 3.13E-05 5.39E-02 2.42

SE 1.12E-04 5.29E+02 2.37E-03 8.27E-06 2.38E-03 -
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Figure 6.6: Adoption curve fitting of 0-10 kW-dc
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Figure 6.7: Adoption curve fitting of 10-100 kW-dc
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Figure 6.8: Adoption curve fitting of 100-1000 kW-dc
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6.5.4 Interpretations of Model Fitting Results

6.5.4.1 Validity of the Parameter Estimation and RMSE

As shown in Tables 6.1, 6.2, and 6.3, the estimated parameters are stable across different

smoothing windows, i.e., the estimated parameters under different smoothing windows are very

similar. The estimated standard errors are much smaller than the parameter values. The explanatory

variables in all three models are considered to be significant. In the 100-1000 kW-dc and the 10-100

kW-dc groups, the GBM have lower RMSE than the BM.

6.5.4.2 Interpretations of Parameter Estimates and Effective Decision Variables

As discussed in [139], the innovation factor p represents the contribution to the new adop-

tions that do not depend on the number of previous adoptions. These adoptions are due to some

influence outside the social system of the customers, and let’s call it the external influence. On the

other hand, the imitation factor q represents the contribution to the new adoptions that are due to the

prior adoptions. The probability of these adoptions are proportional to the prior market penetration

level. The new adoptions due to q can be interpreted as an effect of word-of-mouth from customers

who are satisfied with the product. In the case of solar PV adoption, the imitation factor q represents

the effect of solar PV information spread by prior adopters. From Tables 6.1, 6.2, and 6.3, we can

observe that the values of p in the 100-1000 kW-dc and the 10-100 kW-dc groups are larger than that

in the 0-10 kW-dc group, while the values of q in the 100-1000 kW-dc and the 10-100 kW-dc groups

are smaller than that in the 0-10 kW-dc group. This shows that larger-sized groups are more likely

to be affected by external influence, compared with smaller-sized groups. The external influence

includes advertisement and direct sales pitch from solar PV developers. This phenomena is called
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the small commercial solar gap [140]. In addition, small commercial solar projects often have vary-

ing contract terms, power purchasers without credit ratings, and site-specific project requirements.

The customer procurement and transaction costs associated with smaller commercial projects are

nearly the same as those for larger deals. These difficulties have often led developers to focus their

attention on larger commercial projects.

As mentioned in Section 6.4.1 and Section 6.5.3, the final effective decision variables

for the three size groups are different. For the 100-1000 kW-dc group, both the incentive and the

cost have strong impacts on the solar PV adoption; for the 10-100 kW-dc group, the impact of the

incentive is much weaker and the incentive is insignificant; for the 0-10 kW-dc group, even the

cost is no longer a significant decision variable. These observations further corroborate the small

commercial solar gap phenomena.

6.5.4.3 Forecasting Eventual Adoption Rate and Delay Effect

Note that the 100-1000 kW-dc group has the largest c and the 0-10 kW-dc group has

the smallest c. This shows that the eventual solar PV system adoption rate is higher for customer

groups that plan to install larger solar PV systems. This observation can be explained intuitively as

follows. With higher electricity costs, larger commercial customers are more motivated to install

the solar PV system if it makes economic sense. In addition, with more building roof space, larger

commercial customers typically have better solar PV mounting conditions than smaller customers.

Finally, larger customers are more likely to be in better financial condition, which provides them

easier access to solar PV system financing options.

Note that the eventual commercial solar PV adoption rate estimated in our model is much

lower than the residential and/or commercial solar PV adoption rate estimated in other literatures
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[141, 142, 143, 144, 122]. In the work of [142] and [122], the eventual adoption rate is simply

assumed to be 30% for residential customers. In the work of [143], instead of eventual adoption

rate, total roof area suitable for solar PV installation is estimated. It is concluded that 60%-65% of

the roof area of commercial and industrial buildings, and 22%-27% of the roof area of residential

buildings are suitable for solar PV installation. In the work of [144], the eventual adoption rate

is estimated to be 51% for residential customers and 52% for commercial customers. The results

of both [143] and [144] are based on analysis of the building roof space data. However, not all

buildings suitable for solar PV installations will eventually adopt solar PV. The aforementioned

references ignored the fact that the commercial customers may not be the owner of the building.

This leads to the incentive splitting problem, where building owners pay for the solar PV system, but

cannot easily recover savings from reduced electricity use that accrue to the tenants. Furthermore,

if commercial building occupants only signed short-term leases, they will not have enough time to

recoup the installation costs of solar PV systems [145].

Another observation from the model fitting result is that the effect of time delay d is

larger in the 100-1000 kW-dc group than the 10-100 kW-dc group. As larger solar PV projects

require substantial capital and may have a significant impact on the distribution network, deciding

to adopt the solar PV system, securing the electrical permit and installing the system all require

longer lead time.
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6.6 Quantitative Evaluation and Forecast of the Impact of Incentives

and Solar PV Costs on the Adoption

The solar PV adoption model is a useful tool for policy evaluations. Once the model pa-

rameters are estimated, the impact of government incentives and declining cost of solar PV systems

on the adoption can be quantified and forecasted. The adoption forecasting model can provide use-

ful feedback to government policy makers in developing future renewable energy policies. In this

section, we first quantify the impact of federal and state solar incentive programs on the adoption.

The assumptions regarding incentive programs and solar PV system costs are as follows. The in-

centive for the CSI has been in effect since 2007, and is assumed to be zero beyond 2015. The ITC

program has been in effect since 2006, and its investment credit rate is assumed to decrease from

30% in 2019 to 10% in 2022 and beyond. It is assumed that in the next five years, the solar PV

system cost will be declining at the same historical rate.

By setting the CSI and/or the ITC to zero, we simulated what would have happened to the

commercial solar PV adoption without the incentive programs. Let’s treat the cumulative solar PV

adoption capacity without both incentive programs as the benchmark. Figure 6.9 shows the percent-

age increase in cumulative PV adoption capacity due to one or both of the incentive programs.

Figure 6.9 demonstrates that in 2008 the provisioning of the CSI program increased the

cumulative solar PV adoption by 14.9% compared to the benchmark case, and the ITC program

increased the cumulative PV adoption by 16.6%. By implementing both incentive programs, the

cumulative solar PV adoption increased by 43.55% compared the benchmark case.

Based on the forecasting results, the ITC program has a greater influence than the CSI

program on the commercial solar PV adoption in California. This is because the ITC provides more
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rebates than the CSI. In 2007, the CSI’s average rebate was about 27.5% of the installation cost, but

the rate kept dropping, and was only 7.5% in 2014; on the other hand, the ITC has kept a tax credit

rate of 30% of the installation cost since 2006.

Similarly, we can also quantify and forecast the impact of solar PV systems’ cost on

adoption. As mentioned in Section 6.1, the federal and state governments have been supporting

research and strengthening solar manufacturing capabilities to drive down the cost. Let’s treat the

cumulative solar PV adoption capacity where the cost of solar PV system always stayed at the

level of year 2001 as the benchmark. Figure 6.10 illustrates the impact of reduction in solar PV

system cost on the cumulative PV system adoption. Figure 6.10 shows that in 2012, when the solar

PV cost declined at the historical rate, the cumulative PV adoption capacity is 25.1% higher than

the benchmark case; and if the cost had declined half as fast as the historical rate, the cumulative

adoption is 9.9% higher than the benchmark case where the cost had stayed at the same level as year

2001.
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Figure 6.9: Percentage increase of cumulative installed solar PV capacity under different incentive
scenarios, 100-1000 kW-dc.

Figure 6.10: Percentage increase of cumulative installed solar PV capacity under different cost
assumptions, 100-1000 kW-dc.
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6.7 Conclusion

In this chapter, a commercial solar PV adoption forecasting model based on the Gener-

alized Bass Model is developed in this chapter. This model not only provides robust parameter

estimates, but also yields lower estimation error than the Bass Model. In addition, the model is

capable of not only forecasting the eventual adoption rate of commercial solar PV systems, but also

estimating the time delay of impacts on adoption. The proposed commercial solar PV adoption

model is a very useful tool to quantify and forecast the impact of government policies and solar PV

system costs on the commercial solar PV adoption. The simulation results show that both direct

government solar incentive programs and declining solar PV system costs had a significant impact

on the adoption of commercial solar PV systems in Southern California. Moreover, we introduced

a method to forecast the size of the solar PV system that a customer is likely to adopt. This forecast

can provide a valuable guidance to the power distribution system planners regarding optimal grid

expansion and upgrade plans.

Based on the historical adoption data, the forecasted eventual adoption rate of commercial

solar PV systems is much lower than that of residential systems. With a higher percentage of leased

buildings in the commercial sector, the incentive splitting problem is more pronounced and has

inhibited widespread adoption of commercial solar PV systems. Therefore, traditional government

solar system incentive programs need to be complemented by policies that directly promote the

adoption of solar PV system for non-owner-occupied commercial buildings. Future work can be

done to explore and evaluate the impact of third-party ownership on the adoption of commercial

solar PV system.
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Chapter 7

Diversity Factor Prediction for

Distribution Feeders

7.1 Introduction

The maximum diversified demand, i.e., the maximum of the sum of demands of a group of

electricity customers over a particular period, is one of the most important factors to consider when

utilities develop plans to build new distribution systems. The maximum diversified demand is very

important to the design of both network topology and the ratings of equipment. Underestimating

the maximum diversified demand will cause reliability and safety issues. If the peak load exceeds

the circuit rating, then equipment such as transformers and cables will be overloaded, which results

in shortened lifespan and premature failure. Overestimating the maximum diversified demand often

leads to installation of oversized distribution system equipment and under-utilization of system

assets.
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The maximum diversified demand is usually estimated by using the maximum noncoin-

cident demand and the diversity factor (DF), which is defined as follows [29]:

Diversity factor =
Maximum noncoincident demand

Maximum diversified demand
. (7.1)

Here, the maximum noncoincident demand is the sum of each individual customer’s maximum

demand. Obviously, DF is greater than or equal to 1. A higher DF means that customers have more

diversified usage patterns and their individual maximum loads have less coincidence in time. In

general, as the number of customers increases, DF first increases and then gradually levels off.

The maximum noncoincident demand is straightforward to estimate because an individual

customer’s maximum demand is the customer’s electric service rating, which can be obtained by

survey. Thus, the key problem is how to estimate DF.

In practice, DF is often estimated based on a simple relationship. Engineers estimate

DF by referring to a DF table, in which the DF value varies with the number of customers. The

DF table is often derived by utilities through load surveys from a few groups of customers in the

distribution system [29]. In the load survey, the maximum demand of each individual customer and

their maximum diversified demand are recorded. However, DF is influenced by many other factors,

such as customer demographics and climate conditions. Thus, DF tables, which ignore these factors,

have limited accuracy. Furthermore, engineers cannot interpret or explain how various factors affect

the DF.

In this chapter, by leveraging supervised machine learning algorithms, we build compre-

hensive DF prediction models that take a variety of factors into account. These models show high

prediction accuracy and interpretabilty when applied to real-world distribution feeders. Using the

interpretation method called SHapley Additive exPlanations, we quantify the importance of differ-
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ent features in determining DFs. Finally, we offer more insights into how various factors affect

DFs.

The rest of the chapter is organized as follows. Section 7.2 reviews the literature and

summarizes our work’s contribution. Section 7.3 explains the machine learning methodologies

used to develop and interpret the DF prediction model. Section 7.4 summarizes the real-world

distribution feeders and influential factors used to construct the dataset for the DF prediction model.

Section 7.5 shows the DF prediction performance and provides interpretation for the model. Section

7.6 states the conclusions.

7.2 Literature Review and Contributions of Our Work

Researchers have studied different aspects of DF and demand diversity. However, very

few research efforts have focused on developing comprehensive and interpretable prediction models

for DF which account for various input features [146]. Early research [147] models DF as a function

of the number of customers. Different DF functions are derived based on time of the year, day of

the week, and whether electric-heating is used. Ref. [148] studies the distribution of DF and shows

that DF follows gamma distributions rather than Gaussian distributions. Ref. [149] studies a metric

called after-diversity maximum demand of n customers (ADMDn), which is closely related to DF

and demand diversity. This work shows that ADMDn is affected by customers’ household occu-

pancy and wealth levels. In [150], a variable truncated R-vine copulas method is used to estimate

the maximum diversified demand of customers of different household occupancy and wealth levels.

In this work, we develop comprehensive models based on supervised machine learning

algorithms to predict the DF of distribution feeders, accounting for a variety of influential factors,
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such as customer type, weather, demographics, and socioeconomic conditions. The machine learn-

ing algorithms not only yield high prediction accuracy on real-world distribution feeders but also

provide useful insights on how input features influence DF. Using the interpretation method called

SHapley Additive exPlanations (SHAP) [37], we identify the key factors that affect the DF.

7.3 Machine Learning Methodologies for DF Prediction Models

We adopt supervised machine learning algorithms to build the DF prediction model,

which maps the input features to the output (i.e., DF of a feeder). In supervised machine learn-

ing, a model learns its mapping from a training dataset, which are samples of correct input-output

pairs. Mean square error (MSE) is used to measure the model prediction performance. The details of

DF prediction model development are provided in Section 7.3.1. To interpret the prediction model,

we use a method called SHAP [37] to identify the most important input features that influence the

DF prediction. The details of SHAP are explained in Section 7.3.2

7.3.1 Supervised Machine Learning Algorithms

To estimate DF of distribution feeders, we adopt 3 types of supervised machine learn-

ing algorithms: feed forward neural network (FNN), gradient boosted trees (GBT), and random

forest. We choose these 3 algorithms, because they are widely used in the machine learning field

and achieve great results in various problems. We further improve FNN by adding dropout layer(s)

and introducing network pruning. Thus, in total, we deploy 6 algorithms: FNN, FNN+dropout,

FNN+pruning, FNN+dropout+pruning, GBT, and random forest. The overall framework for build-

ing and evaluating DF prediction models consists of 3 steps. First, we preprocess the dataset and
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split it into training, validation, and test datasets. Second, for each of the 6 models, we train the

model and tune the model’s hyperparameters. Third, we evaluate the performance of the 6 pre-

diction models using the test dataset. Due to the underlying randomness in the training and model

initialization processes, we train each model 10 times and report the average model prediction errors.

The technical details related to the supervised machine learning algorithms are presented below.

7.3.1.1 FNN

Our base FNN consists of three components: an input layer of 45 nodes, three hidden

layers of 200 nodes, and an output layer of 1 node. Each node has directed connections to the

nodes of the subsequent layer and each connection has a corresponding weight. In the input layer,

each node corresponds to an input variable. In the hidden layer, each node takes in the weighted

sum of nodes from the previous layer (plus a bias term) and produces an output value by the ReLU

activation function. The output layer is a linear function of the nodes in the last hidden layer. When

training FNN and its variants, we use early stopping with patience=200 epochs.

7.3.1.2 Network Pruning

Pruning removes unnecessary branches to improve the performance of FNN. We adopt

an innovative pruning method called lottery ticket [151, 152]. This pruning method comprises

the following steps: a) randomly initialize a neural network with weights wi; b) train the neural

network, reaching the trained weights wf ; c) prune p% of the weights that have the smallest wf

in magnitude, i.e., set the pruned weights to 0; d) reset the unpruned weights in wf to their initial

values in wi (i.e., winning tickets) and retrain the network while keeping the pruned weights to 0. It

is believed that pruning produces a sparse neural network with less connections, which can reduce
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overfitting. In addition, the winning tickets may discover a good initialization point that already lies

in the randomly initialized network.

7.3.1.3 GBT

GBT is an ensemble learning method, which consists of a series of decision trees. The

summed/aggregated prediction of the decision trees are used as the output. The GBT is trained by

adding one tree a time while keeping the existing trees unchanged. Each new tree is trained using a

gradient descent procedure so that the loss of the ensemble model is reduced. To avoid overfitting

in the training process, we use early stopping technique with patience=200 to decide when to stop

adding trees.

7.3.1.4 Random Forest

Random forest is another widely used ensemble learning method. It outputs the average

prediction of multiple decision trees, which are fitted to various subsets of the dataset. Different

from GBT, which trains a new tree based on the existing ones, random forest trains trees that are

almost independent.

7.3.1.5 Data Preprocessing and Split

Every numerical input feature is standarized, i.e., centered and normalized by its stan-

dard deviation. This standarization shifts and rescales feature variables to similar ranges and thus

improves convergence in the training process. Every categorical feature variable is represented by

one-hot encoding. In our problem, only the climate zone featue is a categorical variable. For input

features that are linearly dependent, we remove one of them. For example, the ratios of population
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in different age ranges sum up to 1. Thus, we remove one of the ratios. Such features, called redun-

dant features, are highly correlated with other features, so they do not provide relevant information.

It is a common practice to remove them in machine learning.

64% of the samples in the dataset are used to train the prediction models. 16% of the sam-

ples are used as the validation dataset for hyperparameter tuning and early stopping. The remaining

20% of the samples are used as the test set to evaluate the models’ prediction performance.

7.3.1.6 Hyperparameter Tuning

Hyperparameters are the settings and parameters that control the configuration and influ-

ence the performance of machine learning algorithms. Following the common pratice, we use the

validation dataset to tune the hyperparameters. Under different hyperparameter settings, each model

is trained 10 times using the training dataset and then evaluated on the validation set. For each of the

6 prediction models, the hyperparameter setting with the lowest average validation MSE is selected.

The possible hyperparameter settings for all 6 models are listed in Table 7.1. Every com-

bination of the hyperparameter settings is examined when tuning the hyperparameters. For the

model FNN+Dropout, all setting combinations between FNN and dropout are examined. For the

FNN+Pruning model and FNN+Dropout+Pruning, we fix the hyperparameter settings already tuned

for FNN and FNN+Dropout, and only tune the network pruning rate p%.

7.3.2 The SHAP Method for Model Interpretation

It is important to understand how DF of a distribution feeder is influenced by different

features. In this work, we use the SHAP [37] framework to interpret the DF prediction models. The
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Table 7.1: Summary of Hyperparameters and Their Settings

Model Hyperparameters and Their Possible Configurations

FNN
Batch size = [5,10,50,100]; optimizer = [Stochastic Gra-
dient Descent, RMSprop, Adagrad, Adadelta, Adam,
Adamax, Nadam].

Dropout
Input layer dropout ratio = [0.05, 0.1, 0.15, 0.2, 0.3]; hid-
den layer dropout ratio = [0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5].

Pruning
Pruning rate p% = [25%, 50%, 75%, 85%, 95%, 98%,
99%].

GBT

Max. tree depth= [2,4,6,8]; learning rate = [0.01, 0.02,
0.05, 0.1]; subsample ratio of training instances = [0.3, 0.4,
..., 0.8]; subsample ratio of features for each split = [0.1,
0.2, ..., 1].

Random
Forest

Number of trees=[5,10,50,100,500,1000,5000,10000,100000];
max. number of features to consider for the best split = [m,
log2 (m),

√
m, m/3] (m: the total number of features).

SHAP framework has a solid theoretical foundation in cooperative game theory. It calculates each

input feature’s contribution to the model’s output so that the influence on the output can be fairly

distributed to the input features. The SHAP framework is model-agnostic, meaning that it does not

require the knowledge of the model structure. Thus, SHAP works well with all types of prediction

models.

The inner workings of SHAP can be explained as follows. Suppose we have a prediction

model y = f(x), where x= [x1, ..., xm] is the input feature vector and y is the model output. All

the samples of x form a set X . For any sample x(i) = [x
(i)
1 , ..., x

(i)
m ] ∈ X , SHAP calculates a

vector φ(i) = [φ
(i)
1 , ..., φ

(i)
m ] representing the contribution of each input feature in x(i), such that∑m

j=1 φ
(i)
j = f(x(i))−Ex∈X(f(x)). Here, Ex∈X(f(x)) is the expectation of f(x). We call φ(i)

j

the SHAP value of input feature j for sample i. For more details of SHAP, please refer to [37].

Note that SHAP is a local method, which explains a model prediction based on each

individual sample input. Thus, in this study, the same input feature has different SHAP values for
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different distribution feeders. By examining these SHAP values, we can discover which features

have a significant contribution to the prediction output and how a input feature’ contribution varies

among different feeders.

In this work, to interpret a prediction model, we calculate the SHAP value of all input

features for every feeder in the dataset. Since each model is trained 10 times, the average SHAP

value is reported as the final result.

7.4 Descriptions of Real-World Distribution Feeders and Input Fea-

tures for DF Prediction

In this section, we first describe the distribution feeders used in the case study and sum-

marize the statistics for their DFs. Then, we describe the input features used to predict DFs.

The case study covers 3,952 distribution feeders managed by Southern California Edison.

In total, these feeders serve over 4,000,000 customers. The histogram of number of customers for

the feeders is shown in Fig. 7.4. Using one year of hourly kWh readings of customers in 2015, we

calculate the DFs of all distribution feeders according to equation (7.1). The histogram of DF is

shown in Fig. 7.4.

We collect various types of input features to predict DFs of distribution feeders. The

input features can be categorized into three classes: feeder characteristics, customer demographic

and socioeconomic conditions, and environmental factors. The input features are summarized in

Table 7.2. The sources of these input features are provided below.
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(a) Histogram of # of customers. (b) Histogram of DF.

Figure 7.1: Overview of feeders and DFs in the dataset.

7.4.1 Feeder Characteristics

Input features in this class represent the properties of the distribution feeder, which include

number of customers, customer type, and the size and penetration rate of solar PV systems. These

information is provided by Southern California Edison.

7.4.2 Demographic and Socioeconomic Conditions

Input features in this category are collected from the National Historical Geographic Infor-

mation System (NHGIS) [153]. NHGIS organizes customers’ data by census block groups (CBGs)

instead of feeders. Thus, we derive the input feature values of each distribution feeder by matching

the feeder’s service area to the geographic locations of CBGs.

7.4.3 Environmental Factors

The California Energy Commission provides the climate zone information for each zip

code [154]. By mapping the distribution feeders’ locations to zip codes, we can obtain the climate

zone information of each feeder. The weather data is collected from the National Centers for En-
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vironmental Information [155], which organizes weather data by weather stations. By mapping the

feeder locations to weather stations, we can obtain the weather data for each feeder. The elevation

of distribution feeders are collected from U.S. Geological Survey by queries using feeder locations.

Table 7.2: Summary of Input Features

Class Feature Type Feature Description

Fe
ed

er
C

ha
ra

ct
er

is
tic

s

No. of Customers Number of customers in each feeder.

Customer Type
Ratio of residential customers, ratio of commercial
customers.

Solar PV
Ratio of customers with solar PV and average solar
PV size of commercial and residential customers, re-
spectively.

D
em

og
ra

ph
ic

an
d

So
ci

oe
co

no
m

ic
C

on
di

tio
ns

Age
Average age, ratio of population in 4 groups: child
age (≤5 years), school age (6∼17 years), work age
(18∼61 years), retired age (≥ 62 years).

Education
Ratio of population in 4 educational levels: lower
than college, less than 4 years’ college, bachelor’s
degree, higher than bachelor’s degree.

Average Room No. Average No. of rooms of a housing unit.

Annual Income
Average household income, ratio of population in
3 income levels: ≤$34,999, $35,000∼$149,999,
≥$150,000.

Population Population of each feeder’s CBG.
Occupancy Ratio Occupancy ratio of housing units.

Child Family Ratio Ratio of families with children.

Employment
Ratio of population in 4 conditions: employed, un-
employed, army, not in labor.

E
nv

ir
on

m
en

ta
l

Fa
ct

or
s

Climate Zone Building climate zone of California.

Weather

Annual avg. of daily max. and min. temperature;
annual highest, lowest, and avg. temperature; No.
of days with max. temperature≥90, ≥70, and ≤32;
No. of days with min. temperature≤32 and ≤0;
heating degree days; cooling degree days.

Elevation Elevation of feeders’ service area.
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7.5 DF Prediction Performance and Interpretation of the Machine

Learning Model

In this section, we first present the DF prediction performance of different machine learn-

ing models. Then, we quantify the features’ importance in determining feeder DF. Lastly, we an-

alyze how different features affect the DF prediction and provide more insights into how DF is

determined. The case study is conducted in Python on an Oracle-Sun workstation with 2.3 GHz

Intel Xeon CPUs and 128 GB of RAM.

7.5.1 Prediction Performance of Machine Learning Models

The MSEs of 6 machine learning models on the test dataset are shown in Fig. 7.2. Each

model is trained 10 times with the tuned hyperparameter setting and the MSEs are represented by

the box plot. The red bar represents the median value, and the green diamond marker represents

the mean value. The variance of DF in the test dataset is 0.22811. The MSE of the benchmark

linear regression model is 0.13445. As shown in the figure, all 6 supervised machine learning

models yield more accurate DF prediction results than the linear regression model. Among all tested

models, random forest has the lowest average MSE. The figure also shows that pruning improves

the accuracy of FNN and FNN+dropout models. FNN+dropout+pruning and GBT have a similar

level of performance. All 6 machine learning models take less than 1 second to predict the DFs of

the 3,952 feeders. Since DF prediction is often conducted as part of the distribution system planing

process, the model training can be done off-line.
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Figure 7.2: Box plot of the DF prediction MSEs of 6 models.

7.5.2 Importance of Different Feature Types

We calculate the SHAP values of all input features and samples for the random forest

model, which yields the best prediction results. We then derive the feature type importance as

follows. First, for each feeder, we sum up the SHAP values of input features by feature type.

Then, for each feature type, we calculate the average absolute value of the SHAP values over all

feeders, which quantifies the importance of each feature type in determining DFs. Fig. 7.3 shows

the importance of all feature types, ranked from the highest to the lowest. The most influential

feature types are customer type, weather, solar PV, climate zone, and number of customers.

7.5.3 Impacts of Input Features on DF Prediction

For the random forest model, we select a few features with high importance and analyze

their effects on DF prediction. To do so, we plot the SHAP values of a feature vs. the values of the

feature for all distribution feeders in Fig 7.4. In the subfigures, each circle represents a feeder, and

we can see how a feature’s contribution to DF (i.e., the SHAP value) changes when the feature’s

value changes. To demonstrate the interactions between features, we color the circles by the ratio
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Figure 7.3: Feature importance of the random forest model

of residential customers in some subfigures.

7.5.3.1 The Impacts of Customer Type

In the testing feeders, all customers are either residential or commercial. As shown in Fig.

7.5.3, feeders with higher ratio of residential customers tend to have higher DFs. This phenomena

can be explained as follows. The electricity usage patterns of commercial buildings are less diver-

sified because their demands usually follow normal business schedules. For example, restaurants,

department stores, and cinemas often have similar operation hours. In comparison, residential cus-

tomers often have drastically different electricity usage patterns due to the randomness of residents’

activities. Therefore, a typical feeder’s DF increases as the ratio of residential customers increases.
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Figure 7.4: Features’ contribution to the DF prediction of the random forest model.
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7.5.3.2 The Impacts of Annual Average Temperature

In Fig. 7.5.3, as the annual average temperature increases, the feeder DF decreases, which

can be explained as follows. Southern California Edison is a summer peaking utility. The air-

conditioning load is a significant component of the peak demand on very hot summer afternoons. In

the service area with higher annual average temperature, the individual customer’s annual maximum

demand is more likely to occur during the same time periods, i.e., hot summer afternoon hours.

Thus, the distribution circuits with higher annual average temperature tend to have lower DFs. An

interesting observation is that the SHAP values significantly decrease when the annual average

temperature exceeds 66 . This observation is consistent with the building standards and convention

in the United States, which state that a building needs to be cooled when the daily average ambient

temperature is above 65 . We can also see that feeders with lower residential customer ratios are

less sensitive to the change of annual average temperature.

7.5.3.3 The Impacts of Climate Zone

There are 9 climate zones in the study area. The small figure inside Fig. 7.5.3 shows the

areas covered by different climate zones. Fig. 7.5.3 shows the SHAP values of different climate

zones for all the feeders. All other things being equal, zone 6 tends to have higher DFs. This

is because, compared to other climate zones, zone 6 is a coastal region with a mild climate, lower

summer temperature, and lower air-conditioning load during summer months. Thus, feeders located

in zone 6 should have higher DFs based on the arguments stated in Section 7.5.3.2. It can also been

seen from Fig. 7.5.3 that the DFs for feeders with lower residential customer ratios are less sensitive

to the change in climate zone.
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7.5.3.4 The Impacts of Number of Customers

Fig. 7.5.3 shows the impacts of number of customers on DFs. As shown in the figure, dis-

tribution feeders with a higher number of customers tend to have higher DFs. The saturation effect

kicks in when the number of customers reaches a certain level. These observations are consistent

with the relationship between number of customers and DFs in a typical DF table. Finally, it can

also be seen from Fig. 7.5.3 that the DFs of feeders with lower residential customer ratios are more

sensitive to the change in the number of customers.

7.6 Conclusion

In this chapter, we build a suite of DF prediction models based on supervised machine

learning techniques, which take a comprehensive list of input features into consideration. When ap-

plied to real-world distribution feeders, these models produce highly accurate DF prediction results.

Using SHAP, a unified framework for interpreting machine learning models, we discover that the

most influential input features in determining DFs are customer type, weather, solar PV penetration

rate and size, climate zone, and number of customers. The SHAP values of different input features

also offer useful insights into how different input features affect the prediction of DFs. In practice,

the proposed DF prediction models are useful tools for designing the distribution system and sizing

distribution system equipment. The future work can be done to to evaluate the impact of electricity

rate design (e.g., time-of-use rate) on DFs.

177



Chapter 8

Conclusions

In this dissertation, I investigate the four problems critical to the adoption of DERs: phase

identification, network parameter estimation, DER adoption prediction, and long-term load fore-

casting in the distribution system. For phase identification, two unsupervised learning algorithms

and a maximum marginal likelihood estimation method based on a physics-informed model are

developed. For network parameter estimation, a maximum likelihood estimation method based on

a physics-informed model and a method based on graphical learning model are developed. For

DER adoption prediction, I present a generalized Bass model to forecast the adoption of distributed

commercial solar PV systems. For long-term load forecasting, comprehensive supervised learning

models are designed to forecast the diversity factor of distribution feeders.

In Chapter 2, we develop two algorithms of phase identification by unsupervised learn-

ing of the smart meter voltage time series data. Case study in real distribution feeders show that

both algorithms are computationally efficient and highly accurate. The first algorithm uses linear

dimension reduction and constrained k-means clustering of smart meter data. Network connectivity
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information is adopted to avoid mislabeling of customers on the same secondary feeder. Adding

connectivity information as constraints effectively improves the accuracy. The second algorithm

uses nonlinear dimension reduction and density-based clustering. Compared to the existing solu-

tions, the second algorithm has three main advantages. First, it does not require prior knowledge

about the number of phase connections in the distribution system. Second, it works well with distri-

bution feeders that have both phase-to-neutral and phase-to-phase connections. Third, its accuracy

is not very sensitive to the level of unbalance in a distribution feeder.

In Chapter 3, a physics-informed data-driven algorithm is developed to identify phase

connections in the power distribution system. An MLE and an MMLE problem are formulated based

on the three-phase power flow manifold. It is proved that the correct phase connection is a global

optimum for both the MLE and the MMLE problems. A computationally efficient algorithm is

then designed to solve the MMLE problem, which involves synthesizing the solutions from the sub-

problems via the voting and the target-only approaches. The sub-problems are further transformed

into an equivalent binary least square form and solved efficiently by relaxing the binary constraints.

The proposed phase identification algorithm yields high accuracy and outperforms existing methods

in comprehensive simulations with real-world smart meter data and IEEE distribution test circuits.

Simulations also show the proposed algorithm is fairly robust with respect to inaccurate feeder

models, incomplete measurements, and bad measurements.

In Chapter 4, a data-driven parameter estimation algorithm for three-phase power distri-

bution networks is developed. In the algorithm, only the readily available smart meter data are used

to estimate the three-phase serial conductance and susceptance of the primary line segments. I first

formulate the network parameter estimation problem as an MLE problem based on the linearized
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three-phase power flow. The correct network parameters can be proved to yield the highest likeli-

hood value. An SGD-based algorithm with early stopping is designed to solve the MLE problem.

In the comprehensive numerical study, proposed algorithm is shown to improve the accuracy of the

parameter estimates.

In Chapter 5, a physics-informed graphical learning algorithm is developed to estimate

three-phase series resistance and reactance of the primary distribution line segments. The proposed

algorithm is broadly applicable because it uses only readily available smart meter data. I leverage

the domain knowledge of power distribution systems by replacing the deep neural network-based

transition functions in the graph neural network with three-phase power flow-based physical transi-

tion functions. The gradient of the loss function for first difference voltage time series with respect

to line parameters is rigorously derived. Stochastic gradient descent algorithm is used to estimate

the network parameters. The prior distribution of the line parameters is also considered to further

improve the accuracy of the proposed parameter estimation algorithm. By comprehensive numerical

study on IEEE test feeders, the proposed algorithm is shown to significantly outperform the state-

of-the-art algorithm. The relative advantage of the proposed algorithm becomes more pronounced

when smart meter measurement noise level is higher.

In Chapter 6, I develop a forecasting model for commercial solar PV adoption based on

the generalized Bass model. This model not only provides robust parameter estimates, but also

yields lower estimation error than the Bass model. In addition, the model can forecast the eventual

adoption rate of commercial solar PV systems and estimate the time delay of impacts on adoption

as well. The proposed model is a very useful tool to quantify and forecast the impact of government

policies and solar PV system costs on the commercial solar PV adoption. In the simulation, it is
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shown that both direct government solar incentive programs and declining solar PV system costs

had a significant impact on the adoption of commercial solar PV systems in Southern California.

Moreover, a method is introduced to forecast the size of the solar PV system that a customer is likely

to adopt, which provides a valuable guidance to the power distribution system planners regarding

optimal grid expansion and upgrade plans.

In Chapter 7, a suite of DF prediction models are built based on supervised machine

learning techniques, which take into account a comprehensive list of input features. These mod-

els produce highly accurate DF prediction results when applied to real-world distribution feeders.

SHAP, a unified framework for interpreting machine learning models, is used to analyze the influ-

ence of input features. It is discovered that the most influential input features in determining DFs are

customer type, weather, solar PV penetration rate and size, climate zone, and number of customers.

The SHAP values also offer useful insights into how different input features affect the prediction of

DFs. In practice, the proposed DF prediction models are useful tools for designing the distribution

system and sizing distribution system equipment.
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Appendix A

Appendix for Chapter 3

A.1 Simplification of Single-Phase and Two-Phase Branches

In this section, we explain how to convert loaded single-phase and two-phase branches

into an equivalent load directly connected to the primary feeder. To do so, we need to estimate

each branch’s equivalent power injection and voltage magnitude. In other words, given the line

impedances of single-phase and two-phase branches, the voltage magnitudes and power injections

of the loads, we need to calculate the equivalent power injection and voltage magnitude on the

primary feeder. The conversion of single-phase and two-phase branches is carried out separately

below.

A.1.1 Simplification of a Single-Phase Line

Suppose there is a single-phase line with impedance z serving a load with power injection

S and voltage magnitude |V |. It is assumed that the power injection S and the voltage magnitude

|V | are given. Thus, the current injection magnitude |I| and power factor angle φ can be calcu-
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lated. Then, at the upstream port of the primary feeder, the single-phase line’s equivalent voltage

magnitude is ||V | − z|I|∠−φ| and the equivalent power injection is S − z|I|2.

A.1.2 Simplification of a Two-Phase Line

For a two-phase line serving a load, the voltage drop along the line section can be de-

scribed by V 1
n

V 2
n

 =

z11 z12

z21 z22


−I
I

+

V 1
m

V 2
m

 (A.1)

where z11, z12, z21, and z22 form the line impedance matrix, which is assumed to be known. V 1
n ,

V 2
n , V 1

m, and V 2
m are the nodal voltage phasors of the upstream port and the load, which are assumed

to be unknown. I is the current injection phasor of the load. Subtracting row 2 from row 1 in (A.1),

we have

V 12
n = (z12 + z21 − z11 − z22)I + V 12

m = zsumI + V 12
m (A.2)

where V 12
n = V 1

n − V 2
n and V 12

m = V 1
m − V 2

m. For load m, using the measured voltage magnitude

|V 12
m | and power injection Sm, we calculate the current injection magnitude |I| and the power factor

angle φ. Then, at the upstream port of the primary feeder, the two-phase line’s equivalent voltage

magnitude is ||V 12
m |+ zsum|I|∠−φ| and the equivalent power injection is Sm + zsum|I|2.

A.2 Derivation of the Transformed Linearized Three-phase Power Flow

Model

LetAijmn be the (N+1)×(N+1) block in matrixAmn corresponding to phase ij. Suppose

the first row and column of Amn correspond to the substation node, then Aijmn can be divided into 4
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blocks as (A.3), where Ǎijmn is a nonsingular N ×N matrix. Define Ǎmn as the collection of Ǎijmn

over all i and j, Bmn as the collection of bijmn over all i and j, Cmn as the collection of (bijmn)T

over all i and j, and Dmn as the collection of dijmn over all i and j. By permuting the variables and

corresponding matrix rows and columns, (3.1) can be transformed into (A.4), where (·)−0 denotes

a vector excluding the substation node, and (·)0 denotes a vector of the substation node.

Aijmn =

d
ij
mn (bijmn)T

bijmn Ǎijmn

 (A.3)



Ǎ11 Ǎ12 B11 B12

Ǎ21 Ǎ22 B21 B22

C11 C12 D11 D12

C21 C22 D21 D22





v−0 − v−0

θ−0 − θ−0

v0 − v0

θ0 − θ0


=



p−0

q−0

p0

q0


(A.4)

Define Matrix D as follows:

D = diag(1N ,1N ,1N ,1N ,1N ,1N ) (A.5)

From the property of admittance matrix Y ij , we haveAijmn1N+1 = 0(N+1)×1 and [Ǎijmn, b
ij
mn]1N+1 =

0N×1.

Thus, we have the following equality relationship:Ǎ11 Ǎ12 B11 B12

Ǎ21 Ǎ22 B21 B22


 D
I6×6

 = 06N×6 (A.6)

Now, it can be easily shown thatB11 B12

B21 B22

 = −

Ǎ11 Ǎ12

Ǎ21 Ǎ22

D (A.7)
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Plugging equation (A.7) into equation (A.4), we have

Ǎ11 Ǎ12

Ǎ21 Ǎ22





va−0 − 1Nv
a
0

vb−0 − 1Nv
b
0

vc−0 − 1Nv
c
0

θa−0 − 1Nθ
a
0

θb−0 − 1Nθ
b
0

θc−0 − 1Nθ
c
0



=

p−0

q−0

 (A.8)

where vi−0 and θi−0 denote the phase i variables in v−0 and θ−0. vi0 and θi0 denote the substation’s

voltage magnitude and angle of phase i. (A.8) is exactly the same as (3.3).

A.3 Estimation of Nodal Power Injection of a Two-phase Load

Define Iab as the current phasor flowing out of the load’s phase A port and into the load’s

phase B port. Let Ia be the injected current phasor from phase A port, and let Ib be the injected

current phasor from phase B port. By definition, we know that Ia = −Ib = Iab. Let the angle of

Vab be the reference angle, i.e., Vab = |Vab|∠0◦, then

Sab = Pab + jQab

= VabI
∗
ab

= |Vab|[Re(Iab)− jIm(Iab)]

(A.9)

Thus,

Re(Iab) =
Pab
|Vab|

Im(Iab) = − Qab
|Vab|

(A.10)
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When the three-phase voltages are close to balance, the nodal phase-to-neutral power injection can

be estimated by the two-phase power injection as follows:

Sa = VaI
∗
a

≈
√

3

3
|Vab|∠− 30◦ · I∗ab

=

√
3

3
|Vab|∠− 30◦

(
Pab
|Vab|

+ j
Qab
|Vab|

)
=

√
3

3
[cos(−30◦) + j sin(−30◦)](Pab + jQab)

=

(
1

2
Pab +

√
3

6
Qab

)
+ j

(
1

2
Qab −

√
3

6
Pab

)
(A.11)

This is exactly the same as (3.8). Equation (3.9) can be derived in a similar way.

A.4 Link the Voltage Magnitude Measurements of Two-Phase Loads

to Nodal Values in the Power Flow Model

In the following derivations, the voltages are in per unit and angles are in radian. For a

two-phase load m across phase ij (ij ∈ {ab, bc, ca}) at node n, we have

v̂m = vijn =

√
(vin)2 + (vjn)2 − 2vinv

j
n cos θijn (A.12)

where v̂m is load m’s magnitude measurement, vijn is the voltage magnitude between phase ij at

node n, vin is the voltage of phase i at node n, and θijn is the voltage phase angle between phase ij

at node n.

Similarly, at the substation, we also have

vij0 =

√
(vi0)2 + (vj0)2 − 2vi0v

j
0 cos θij0 (A.13)
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where vij0 , vi, and θij0 are the corresponding nodal values at the substation. Under normal operating

conditions, vin ≈ v
j
n ≈ 1, θijn ≈ 2π

3 . From (A.12) we have

∂vijn
∂vin

≈
√

3

2
,

∂vijn

∂vjn
≈
√

3

2
,

∂vijn

∂θijn
=

∂vijn

∂(θin − θ
j
n)
≈ 1

2
(A.14)

Under normal operating conditions, voltage and angle differences between non-substation nodes

and the substation node is very small. Thus, we can easily derive (3.10) from (A.14) to approximate

v̂m − vij0 .

A.5 Proof of Lemma 1

Proof. By definition, ṽ(t) = ṽ(t,x∗) + n(t). Plugging it into equation (3.19), we have

lim
T→∞

f(x)

= lim
T→∞

1

T

T∑
t=1

[ṽ(t,x∗)− ṽ(t,x) + n(t)]TΣ−1
n

[ṽ(t,x∗)− ṽ(t,x) + n(t)]

= lim
T→∞

1

T

T∑
t=1

[ṽ(t,x∗)− ṽ(t,x)]TΣ−1
n [ṽ(t,x∗)− ṽ(t,x)]

+ lim
T→∞

2

T

T∑
t=1

[ṽ(t,x∗)− ṽ(t,x)]TΣ−1
n n(t)

+ lim
T→∞

1

T

T∑
t=1

n(t)TΣ−1
n n(t)

≥ lim
T→∞

1

T

T∑
t=1

n(t)TΣ−1
n n(t)

(A.15)

It should be noted that limT→∞
1
T

∑T
t=1[ṽ(t,x∗)− ṽ(t,x)]TΣ−1

n [ṽ(t,x∗)− ṽ(t,x)] ≥ 0 because

Σ−1
n � 0. As stated in condition 1 of Lemma 1, n(t) is independent of ṽ(t,x) and ṽ(t,x∗),

so we have E([ṽ(t,x∗) − ṽ(t,x)]TΣ−1
n n(t)) = 0. Condition 1 and 2 of Lemma 1 also make
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[ṽ(t,x∗)− ṽ(t,x)]TΣ−1
n n(t) a sequence of independent variables. Under normal system operating

conditions, [ṽ(t,x∗) − ṽ(t,x)]TΣ−1
n n(t) has limited variance. By Kolmogorov’s Strong Law of

Large Numbers [137], limT→∞
2
T

∑T
t=1[ṽ(t,x∗)− ṽ(t,x)]TΣ−1

n n(t) → 0. Therefore, inequality

(A.15) holds. In addition, the minimum of limT→∞ f(x) is achieved when x = x∗.

A.6 Proof of Lemma 2

Proof. Following a procedure similar to Appendix A.5, we can prove that limT→∞ fm(x) ≥

limT→∞
1
T

∑T
t=1 nm(t)2, and the minimum of limT→∞ fm(x) is achieved when x = x∗. Condi-

tion 1) and 2) in Lemma 2 simply mean that we can assign any three-phase loads except load m

to any phase and get the same optimum value. This is true, because changing three-phase loads’

decision variables does not change the power injections in the system. As long as condition 1) and

2) of Lemma 2 hold, ṽm(t,x) = ṽm(t,x∗). This can also be verified by the structure of Û1 and Û2

for three-phase loads.
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Appendix B

Appendix for Chapter 5

B.1 Derivation of Â(t)

The 12N×12N matrix Â(t) is defined as

Â(t) ,
∂F̂w([x̂(t)], [̂l(t)])

∂[x̂(t)]

=


∂Fw([x(t−1)],[l(t−1)])

∂[x(t−1)] 06N×6N

06N×6N
∂Fw([x(t)],[l(t)])

∂[x(t)]


(B.1)

∂Fw([x(t)],[l(t)])
∂[x(t)] is derived by calculating each 6×6 local Jacobian matrix defined as

∂fw,n(t)

∂xk(t)
,
∂fw,n(xn(t), ln(t),xne(n)(t))

∂xk(t)
, 1≤n, k≤N (B.2)

The calculation of (B.2) depends on n and k. If k /∈ne(n) and k 6=n, then

∂fw,n(t)

∂xk(t)
= 06×6 (B.3)

If k ∈ ne(n), then we have (B.4), which is a function of line impedance parameters.

∂fw,n(t)

∂xk(t)
= 〈Znn〉 · 〈Ynk〉 (B.4)
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If k = n, then

∂fw,n(t)

∂xk(t)
= 〈Znn〉 ·

∂

Re(s∗n(t)� u∗n(t))

Im(s∗n(t)� u∗n(t))



∂

Re(un(t))

Im(un(t))


(B.5)

To calculate (B.5), we simplify the notations and define

Iin(t) ,
pin(t)− jqin(t)

αin(t)− jβin(t)
, i = a, b, c. (B.6)

By rules of the function derivative, each element in the second term of the RHS of (B.5) can be

calculated as in (B.7) and (B.8):

∂Re(Iin(t))

∂αin(t)
=
pin(t)[(βin(t))2−(αin(t))2]−2qin(t)αin(t)βin(t)

[(αin(t))2 + (βin(t))2]2

∂Re(Iin(t))

∂βin(t)
=
qin(t)[(αin(t))2−(βin(t))2]−2pin(t)αin(t)βin(t)

[(αin(t))2 + (βin(t))2]2

∂Im(Iin(t))

∂αin(t)
=
∂Re(Iin(t))

∂βin(t)

∂Im(Iin(t))

∂βin(t)
= −∂Re(I

i
n(t))

∂αin(t)

(B.7)

For i 6= j, we have:

∂Re(Iin(t))

∂αjn(t)
=
∂Re(Iin(t))

∂βjn(t)
=
∂Im(Iin(t))

∂αjn(t)
=
∂Im(Iin(t))

∂βjn(t)
=0 (B.8)

Thus, given the features [̂l(t−1)] and [̂l(t)], the line parameterw, and the theoretical states

[x̂(t−1)] and [x̂(t)] on current w estimation, we can calculate Â(t) following (B.1)-(B.8).

B.2 Derivation of b̂(t)

The 1×12N vector b̂(t) is defined by

b̂(t) ,
∂ew(t)

∂[õ(t)]
· ∂Ĝ([x̂(t)])

∂[x̂(t)]
(B.9)
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In (B.9), calculating ∂ew(t)
∂[õ(t)] is equivalent to calculating ∂ew(t)

∂õm(t) , m=1, ...,M . From (5.15), we have:

∂ew(t)

∂õm(t)
=

2

M

(
õm(t)− ṽm(t)

)
, m=1, ...,M (B.10)

By the definition of (5.22), the second term of RHS of (B.9) can be calculated as anM×12N matrix:

∂Ĝ([x̂(t)])

∂[x̂(t)]
=

[
−∂G([x(t−1)])

∂[x(t−1)]
∂G([x(t)])
∂[x(t)]

]
(B.11)

∂G([x(t)])
∂[x(t)] is derived by calculating each 1×6 vector

(∂gm(xno(m)(t))

∂xn(t)

)T , m= 1, ...,M , n= 1, ..., N .

Depending on m and n,
∂gm(xno(m)(t))

∂xn(t) is calculated in three cases.

1) Case 1: If n 6=no(m), then:

∂gm(xno(m)(t))

∂xn(t)
= 06×1 (B.12)

2) Case 2: If n = no(m) and meter m measures voltage magnitude of phase i (i.e., meter m is

a single-phase meter on phase i or a three-phase meter measuring phase i’s voltage), then each

element of
∂gm(xno(m)(t))

∂xn(t) can be calculated as follows:

∂gm(xno(m)(t))

∂αin(t)
=

αin(t)√
(αin(t))2 + (βin(t))2

∂gm(xno(m)(t))

∂βin(t)
=

βin(t)√
(αin(t))2 + (βin(t))2

∂gm(xno(m)(t))

∂αjn(t)
=
∂gm(xno(m)(t))

∂βjn(t)
= 0 (j 6= i)

(B.13)

3) Case 3: If n = no(m) and meterm is a two-phase meter measuring phase ij’s voltage magnitude,
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then each element of
∂gm(xno(m)(t))

∂xn(t) can be calculated as follows:

∂gm(xno(m)(t))

∂αin(t)
=

αin(t)− αjn(t)√
(αin(t)− αjn(t))2 + (βin(t)− βjn(t))2

∂gm(xno(m)(t))

∂βin(t)
=

βin(t)− βjn(t)√
(αin(t)− αjn(t))2 + (βin(t)− βjn(t))2

∂gm(xno(m)(t))

∂αjn(t)
= −

∂gm(xno(m)(t))

∂αin(t)

∂gm(xno(m)(t))

∂βjn(t)
= −

∂gm(xno(m)(t))

∂βin(t)

∂gm(xno(m)(t))

∂αkn(t)
=
∂gm(xno(m)(t))

∂βkn(t)
= 0, (k 6= i, j)

(B.14)

Thus, given the theoretical output time difference õm(t), the measured output time difference ṽm(t),

and the theoretical states [x̂(t − 1)] and [x̂(t)] on current w estimation, we can calculate b̂(t)

following (B.9)-(B.14).

B.3 Derivation of ∂F̂w([x̂(t)],[̂l(t)])
∂w

From (5.19), we have the 12N×12L matrix

∂F̂w([x̂(t)], [̂l(t)])

∂w
=


∂Fw([x(t−1)],[l(t−1)])

∂w

∂Fw([x(t)],[l(t)])
∂w

 (B.15)

∂Fw([x(t)],[l(t)])
∂w is derived by calculating ∂fw,n(t)

∂wm
for each n=1, ..., N and m=1, ....|w|, in which

fw,n(t) , fw,n(xn(t), ln(t),xne(n)(t)) (B.16)

For easier derivation, here we introduce a new set of parameters ξ of size 12L, which is the set of

w’s corresponding line conductance and susceptance. Then ∂fw,n(t)
∂wm

is derived by

∂fw,n(t)

∂wm
=
∂fw,n(t)

∂ξ
· ∂ξ

∂wm
(B.17)
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∂fw,n(t)
∂ξ is calculated by calculating each ∂fw,n(t)

∂ξm
, m=1, ..., |ξ|. From (5.9), we have

∂fw,n(t)

∂ξm
=
∂〈Znn〉
∂ξm

(Re(s∗n(t)� u∗n(t))

Im(s∗n(t)� u∗n(t))

+
∑

k∈ne(n)

〈Ynk〉

Re(uk(t))
Im(uk(t))

)

+ 〈Znn〉
∑

k∈ne(n)

∂〈Ynk〉
∂ξm

Re(uk(t))
Im(uk(t))


(B.18)

(B.17) and (B.18) can be calculated given current parameter estimate w, corresponding ξ, and the

theoretical state [x̂(t)] on current w estimation. The derivation of ∂〈Znn〉
∂ξm

and ∂〈Ynk〉
∂ξm

in (B.18)

will be explained in Appendix section B.3.1. The derivation of ∂ξ
∂wm

in (B.17) will be explained in

Appendix section B.3.2.

B.3.1 Derivation of ∂〈Znn〉
∂ξm

and ∂〈Ynk〉
∂ξm

From (5.8), we have

∂〈Znn〉
∂ξm

=


∂Re(Znn)
∂ξm

−∂Im(Znn)
∂ξm

∂Im(Znn)
∂ξm

∂Re(Znn)
∂ξm

 (B.19)

By the definition in (5.6) and (5.9), we have

Znn = Y −1
nn = (Gnn + jBnn)−1 (B.20)

Here, Gnn=
∑

k∈ne(n)Gnk and Bnn=
∑

k∈ne(n)Bnk. Gnk and Bnk are the real and imaginary part

of Ynk. For a complex square matrix (A + jB), if A and (A + BA−1B) are nonsingular, then by

the Woodbury matrix identity, we can prove the following:

(A+jB)−1 =(A+BA−1B)−1−j(A+BA−1B)−1BA−1 (B.21)
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Under normal conditions, the Gnn and Bnn satisfy the condition for (B.21), which is also verified

by numerical tests. Thus, we have

∂Re(Znn)

∂ξm
=
∂(Gnn +BnnG

−1
nnBnn)−1

∂ξm

∂Im(Znn)

∂ξm
= −∂(Gnn +BnnG

−1
nnBnn)−1BnnG

−1
nn

∂ξm

(B.22)

The 3×3 matrix ∂Re(Znn)
∂ξm

is derived by calculating ∂Re(Znn(i,j))
∂ξm

for each i, j, in which Znn(i, j) is

the ij-th element of Znn. By the chain rule, we have

∂Re(Znn(i, j))

∂ξm
=Tr

([
∂Re(Znn(i, j))

∂(Re(Znn))−1

]T
× ∂(Re(Znn))−1

∂ξm

)
(B.23)

We define E(i,j)
m×n as an m×n matrix, in which the ij-th element is 1 and the rest of elements are all

0. Using the rules of matrix derivatives [87], we have

∂Re(Znn(i, j))

∂(Re(Znn))−1
= −Re(Znn)TE

(i,j)
3×3Re(Znn)T (B.24)

The second term of RHS of (B.23) is calculated following (B.22):

∂(Re(Znn))−1

∂ξm
=
∂(Gnn +BnnG

−1
nnBnn)

∂ξm

=
∂Gnn
∂ξm

+
∂Bnn
∂ξm

G−1
nnBnn+Bnn

∂G−1
nn

∂ξm
Bnn +BnnG

−1
nn

∂Bnn
∂ξm

(B.25)

Here ∂Gnn
∂ξm

=
∑

k∈ne(n)
∂Gnk
∂ξm

and ∂Bnn
∂ξm

=
∑

k∈ne(n)
∂Bnk
∂ξm

. Calculating ∂Gnk
∂ξm

and ∂Bnk
∂ξm

is straight

forward as in (B.26) and (B.27).

∂Gnk
∂ξm

=



03×3 if ξm is not line nk’s conductance parameter

E
(i,i)
3×3 if ξm is the ii-th diagonal element in Gnk

E
(i,j)
3×3 +E

(j,i)
3×3 if ξm is the ij-th and ji-th off-diagonal elements in Gnk

(B.26)
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∂Bnk
∂ξm

=



03×3 if ξm is not line nk’s susceptance parameter

E
(i,i)
3×3 if ξm is the ii-th diagonal element in Bnk

E
(i,j)
3×3 +E

(j,i)
3×3 if ξm is the ij-th and ji-th off-diagonal elements in Bnk

(B.27)

The 3 × 3 matrix ∂G−1
nn

∂ξm
is derived by calculating ∂G−1

nn(i,j)
∂ξm

for each i, j, in which G−1
nn(i, j) is the

ij-th element of G−1
nn . By the chain rule, we have

∂G−1
nn(i, j)

∂ξm
= Tr

([
∂G−1

nn(i, j)

∂Gnn

]T
× ∂Gnn

∂ξm

)
(B.28)

We have shown how to calculate ∂Gnn
∂ξm

. And similar to (B.24), we have

∂G−1
nn(i, j)

∂Gnn
= −G−Tnn E

(i,j)
3×3G

−T
nn

(B.29)

From (B.22), we have

∂Im(Znn)

∂ξm
= −∂Re(Znn)

∂ξm
BnnG

−1
nn −Re(Znn)

∂Bnn
∂ξm

G−1
nn −Re(Znn)Bnn

∂G−1
nn

∂ξm
(B.30)

Every term in (B.30) has been solved by (B.23)-(B.29).

The ∂〈Ynk〉
∂ξm

in (B.18) can be calculated as

∂〈Ynk〉
∂ξm

=


∂Re(Ynk)
∂ξm

−∂Im(Ynk)
∂ξm

∂Im(Ynk)
∂ξm

∂Re(Ynk)
∂ξm

=

∂Gnk∂ξm
−∂Bnk

∂ξm

∂Bnk
∂ξm

∂Gnk
∂ξm

 (B.31)

Here, every element in (B.31) can be calculated by (B.26) and (B.27).

B.3.2 Derivation of ∂ξ
∂wm

Since ξ is the set of 12L lines’ conductance and susceptance, we have ξ= {gijl , b
ij
l | l=

1, ..., 12L, ij=aa, ab, ac, bb, bc, cc}, in which gijl and bijl are line l’s conductance and susceptance
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in phase ij. Thus, we need to calculate ∂gijl
∂wm

and ∂bijl
∂wm

. Let Gl and Bl be the 3×3 conductance and

susceptance matrix of line l. From (B.21), we know

Gl = (Rl +XlR
−1
l Xl)

−1

Bl = −GlXlR
−1
l

(B.32)

By the chain rule, we have

∂gijl
∂wm

= Tr

([
∂gijl
∂G−1

l

]T
×
∂G−1

l

∂wm

)
∂bijl
∂wm

= Tr

([
∂bijl
∂B−1

l

]T
×
∂B−1

l

∂wm

) (B.33)

Suppose gijl and bijl are the hk-th element of Gl and Bl, (h ≤ k). Similar to (B.24), we have

∂gijl
∂G−1

l

= −GTl E
(h,k)
3×3 G

T
l

∂bijl
∂B−1

l

= −BT
l E

(h,k)
3×3 B

T
l

(B.34)

From (B.32), we have:

∂G−1
l

∂wm
=

∂Rl
∂wm

+
∂Xl

∂wm
R−1
l Xl +Xl

∂R−1
l

∂wm
Xl +XlR

−1
l

∂Xl

∂wm

∂B−1
l

∂wm
= − ∂Gl

∂wm
XlR

−1
l −Gl

∂Xl

∂wm
R−1
l −GlXl

∂R−1
l

∂wm

(B.35)

Here,

∂Rl
∂wm

=



03×3 if wm is not line l’s resistance parameter

E
(d,d)
3×3 if wm is the dd-th diagonal element in Rl

E
(d,e)
3×3 +E

(e,d)
3×3 if wm is the de-th and ed-th off-diagonal elements in Rl

(B.36)

∂Xl

∂wm
=



03×3 if wm is not line l’s reactance parameter

E
(d,d)
3×3 if wm is the dd-th diagonal element in Xl

E
(d,e)
3×3 +E

(e,d)
3×3 if wm is the de-th and ed-th off-diagonal elements in Xl

(B.37)
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∂R−1
l

∂wm
is derived by calculating ∂R−1

l (d,e)

∂wm
for each d and e, where R−1

l (d, e) is the de-th element of

R−1
l .

∂R−1
l (d, e)

∂wm
= Tr

([
∂R−1

l (d, e)

∂Rl

]T
× ∂Rl
∂wm

)
(B.38)

And similar to (B.24), we have

∂R−1
l (d, e)

∂Rl
= −R−Tl E

(d,e)
3×3 R

−T
l

(B.39)

Thus, following (B.32)-(B.39), we derive ∂ξ
∂wm

. Plugging it into (B.17), we calculate ∂fw,n(t)
∂wm

and

thus obtain ∂F̂w([x̂(t)],[̂l(t)])
∂w .
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