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Abstract
This paper demonstrates through Monte Carlo simulations that a practical 
positron emission tomograph with (1) deep scintillators for efficient detection, 
(2) double-ended readout for depth-of-interaction information, (3) fixed-level 
analog triggering, and (4) accurate calibration and timing data corrections can 
achieve a coincidence resolving time (CRT) that is not far above the statistical 
lower bound.

One Monte Carlo algorithm simulates a calibration procedure that uses 
data from a positron point source. Annihilation events with an interaction 
near the entrance surface of one scintillator are selected, and data from the 
two photodetectors on the other scintillator provide depth-dependent timing 
corrections. Another Monte Carlo algorithm simulates normal operation using 
these corrections and determines the CRT. A third Monte Carlo algorithm 
determines the CRT statistical lower bound by generating a series of random 
interaction depths, and for each interaction a set of random photoelectron 
times for each of the two photodetectors. The most likely interaction times 
are determined by shifting the depth-dependent probability density function 
to maximize the joint likelihood for all the photoelectron times in each set.

Example calculations are tabulated for different numbers of photoelectrons 
and photodetector time jitters for three 3  ×  3  ×  30 mm3 scintillators: 
Lu2SiO5:Ce,Ca (LSO), LaBr3:Ce, and a hypothetical ultra-fast scintillator. 
To isolate the factors that depend on the scintillator length and the ability 
to estimate the DOI, CRT values are tabulated for perfect scintillator-
photodetectors. For LSO with 4000 photoelectrons and single photoelectron 
time jitter of the photodetector J  =  0.2 ns (FWHM), the CRT value using the 
statistically weighted average of corrected trigger times is 0.098 ns FWHM 
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and the statistical lower bound is 0.091 ns FWHM. For LaBr3:Ce with 8000 
photoelectrons and J  =  0.2 ns FWHM, the CRT values are 0.070 and 0.063 
ns FWHM, respectively. For the ultra-fast scintillator with 1 ns decay time, 
4000 photoelectrons, and J  =  0.2 ns FWHM, the CRT values are 0.021 and 
0.017 ns FWHM, respectively. The examples also show that calibration and 
correction for depth-dependent variations in pulse height and in annihilation 
and optical photon transit times are necessary to achieve these CRT values.

Keywords: positron emission tomography, calibration, time of flight, 
scintillator, coincidence resolving time, Monte Carlo, statistical lower bound

(Some figures may appear in colour only in the online journal)

1. Introduction

Positron emission tomography (PET) has a unique role in diagnostic medical imaging because 
it can noninvasively image metabolic diseases such as amyloid deposits in the brain and meta-
static tumors anywhere in the body. In conventional PET annihilation events are recorded 
as coincident detections in pairs of scintillators, but only the line between them is used in 
the image reconstruction process. If two detectors can measure the time difference between 
the arrival of the annihilation photons to a coincidence resolving time (CRT) of ∆t FWHM  
(full-width at half-maximum), then the position of the annihilation can be localized along the 
line between them to a spatial accuracy ∆x  =  c∆t/2 (c/2 ≈ 15 cm ns−1). By using this time of 
flight (TOF) information the statistical noise in the reconstructed image will be reduced and 
the effective sensitivity will be increased by an approximate factor of D/∆x, where D is the 
size of the emitting region (Budinger et al 1977, Snyder et al 1981, Vunckx et al 2010). A CRT 
∆t  =  0.08 ns FWHM corresponds to a spatial uncertainty ∆x  =  1.2 cm FWHM. If D  =  24 cm 
the sensitivity will be 20 times that of a non-TOF tomograph. This will allow the detection of 
disease at an earlier stage (by improving image quality) or more frequent assessments of the 
response to therapy (by reducing the radiation dose per image) (Karp et al 2008, El Fakhri 
et al 2011).

In a PET system designed to achieve the best possible TOF resolution, three classes of 
timing error must be considered: (1) the random time distribution of the scintillation photons 
produced at the interaction point and the time jitter between the creation of a photoelectron 
and the resulting amplified output pulse, (2) the random distribution of interaction depths in 
the scintillator that results in variations in pulse height and in the transit times of the annihila-
tion and optical photons, and (3) differences in timing among the individual photodetector and 
trigger circuits. In a previous work (Derenzo et al 2014) Monte Carlo calculations were used 
to characterize the effects of class (1) errors on the timing precision of a scintillation detector 
and to develop a closed-form analytical expression for a range of scintillator rise and decay 
times, optical photon time dispersions, photodetector timing jitters, and photoelectron num-
bers. This paper presents Monte Carlo calculations that simulate class (1) and (2) errors for a 
pair of scintillators and procedures for calibrating each scintillator-photodetector for class (2) 
and (3) errors.

This paper is organized as follows: Background section 2.1 summarizes the use of double-
ended readout to estimate the depth of interaction (DOI). Background section 2.2 summarizes 
the optical photon time dispersion and its dependence on the DOI. Background section 2.3 
summarizes the differences between fixed-fraction and fixed-level triggering. Section  3.1 
describes a Monte Carlo algorithm that simulates all the important factors that contribute to 
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the CRT. Section 3.2 describes a Monte Carlo calibration algorithm that acquires data from 
a positron point source and determines the factors that are shown in section 6 to successfully 
correct timing data taken in normal operation. Section 4 describes a Monte Carlo algorithm 
that determines the CRT statistical lower bound by generating a set of photoelectron times 
for each interaction and then shifting a DOI-dependent probability density function in time 
to maximize the joint likelihood for all the photoelectron times. Section 5 compares a Monte 
Carlo calculation with the best experimental CRT value. Section  6 tabulates values of the 
CRT for LSO, for LaBr3:Ce, for a hypothetical scintillator with 1 ns decay time, and for a 
perfect scintillator-photodetector combination. Section 7 lists the conclusions. Appendix lists 
the variables and abbreviations used.

2. Background

2.1. Use of double-ended readout to estimate the DOI

This section summarizes the use of double-ended readout, which has three significant advan-
tages for PET: (1) it provides DOI information that effectively eliminates parallax error and 
provides good spatial resolution throughout the reconstructed images, (2) the trigger times 
can be corrected for depth-dependent factors so lengthening the scintillator for good detection 
efficiency has little effect on the CRT, and (3) it minimizes optical photon path lengths and 
time dispersion because the photons are absorbed by the photodetectors as soon as they reach 
either end. It can also provide the 3D position and energy deposition of Compton and photo-
electric interactions in a block of long, narrow crystals, but a simulation of this capability is 
beyond the scope of this paper.

Double-ended readout can provide DOI sensitivity if the sides of the crystal absorb some 
of the photons so that the photodetector signal decreases with increasing distance to the inter-
action point. Experimental measurements show that this dependence is nearly linear, that the 
difference of the two photodetector outputs can be used to measure the DOI, and that the sum 
can be used to measure the energy deposited (Yang et al 2006, Ren et al 2014, Kang et al 
2015, Seifert and Schaart 2015).

Under these conditions the average number of photons MA reaching the front (Z  =  0) pho-
todetector A can be expressed as MA  =  Mtot(0.5  −  aZ/Zmax) where Mtot is the total number of 
optical photons, Z is the interaction depth, and a is the fraction absorbed. Similarly, the aver-
age number of photons MB reaching the rear (Z  =  Zmax) photodetector B is MB  =  Mtot(0.5  −   
a(Zmax  −Z)/Zmax). The sum of the photons reaching both photodetectors is 
MA  +  MB  =  Mtot(1  −  a). Thus the average fraction of photons absorbed is equal to a for an 
interaction at any Z. The value a  =  0.3 is used in the example calculations (section 6). Based 
on experimental measurements it is a good compromise between smaller values that result in 
poorer DOI estimates and larger values that reduce the pulse height (Ren et al 2014).

The average numbers of optical photons that produce photoelectrons that contribute to the 
photodetector A and B outputs are given by:

= × −N M aZ ZPDE 0.5A tot max( / ) (1a)

= × − −N M a Z Z ZPDE 0.5B tot max max( ( )/ ) (1b)

where PDE is the photon detection efficiency (the product of the photodetector fill factor, the 
quantum efficiency and the avalanche probability) (Renker 2006, Kolb et al 2010). For SiPMs 
the avalanche probability is a strong function of the applied voltage.

S E Derenzo Phys. Med. Biol. 62 (2017) 3828
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The depth Z can be computed from the contributing photoelectron numbers using the 
equation:

⎡
⎣⎢

⎤
⎦⎥= − − −

+
Z 1Z a

a
N N
N N2

1max A B

A B
( )( )( ) (2)

Equation (2) is used in the Monte Carlo example calculations (section 6). In practice the actual 
dependence between pulse height and contributing photon number would be measured in a DOI 
calibration procedure that captures the effect of photodetector nonlinearity (Yang et al 2009). 
Note that for SiPM photodetectors the pulse height nonlinearity has little effect on the CRT 
values because it arises from late photons that arrive at microcells that have already been trig-
gered by earlier photons. For simplicity this paper treats the PDE as a constant for all photons.

2.2. Optical photon time delay and dispersion as a function of the DOI

Published Monte Carlo calculations of the optical photon time dispersion in long scintillators 
show that the time distribution at the photodetector has a sharp rise (<10 ps) at the time of arrival 
of a direct path (earliest possible) photon followed by an exponential decay for both rough and 
polished surfaces (Yeom et al 2013, Moses et al 2014, Gundacker et al 2014, Vinke et al 2014). 
This is consistent with experimental measurements of LSO crystals (de Haas et al 2014).

For an annihilation photon entering surface A at T  =  0 and interacting at DOI Z in a scintil-
lator with depth Zmax and refractive index n, direct path optical photons will reach photodetec-
tors A and B at the following times.

λ = +Z Z c nZ cA( ) / / (3a)

λ = + −Z Z c n Z Z cB max( ) / ( )/ (3b)

(Derenzo et al 2015) presented Monte Carlo calculations of the optical photon time dispersion 
as a function of Z in a polished 3 mm  ×  3 mm  ×  30 mm LSO crystal with an external Teflon 
reflector. For the photodetectors on the surfaces X  =  A and B, the optical photon intensity 
IX(T ) for T  >  λX(Z ) was described by IX(T )  =  IXλX(Z )exp[−(T  −  λX(Z ))/DX(Z )], and the 
time dispersion parameters DX(Z ) were fitted as functions of Z by

= +D Z n d d ZA 1
2

2
2 2( ) (4a)

= + −D Z n d d Z ZB 1
2

2
2

max
2( ) ( ) (4b)

with the best-fit values d1  =  0.008 73 ns and d2  =  0.0186 ns cm−1.
These relations were used in the Monte Carlo example calculations (section 6). For dif-

ferent scintillator geometries and models of surface reflections a simulation program such 
as Geant4 (Agostinelli et al 2003) can be used to calculate the appropriate D(Z) relation as 
described in Moses et al (2014). For a full tomograph the calibration procedure of section 3.2 
includes the effect of time slewing due to the depth-dependent optical photon time dispersion 
without the need to know it separately.

2.3. Fixed-fraction versus fixed-level triggering

In Derenzo et al (2014) it was shown that fixed-fraction triggering resulted in optimal tim-
ing precision over large variations in pulse height. This is understandable because the timing 
information is greatest where the trigger level is at the point of highest pulse slope, and that 
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point scales with pulse height. However, fixed-fraction triggering is more difficult to imple-
ment than fixed-level triggering because the trigger time depends on the pulse height, and this 
is only known after the pulse has peaked.

In Derenzo et al (2015) fixed-fraction triggering was used for estimating the CRT in PET, 
and a calibration procedure was necessary to correct for time slewing due to depth-dependent 
variations in optical photon dispersion. This paper shows that in PET the variations in pulse 
height over the DOI range are sufficiently small that a similar calibration procedure can also 
correct for fixed-level time slewing, and the resulting CRT values are essentially the same.

3. Monte Carlo algorithms for analog pulse processing

Section 3.1 lists the Monte Carlo algorithm steps that simulate the data generation and cor-
rection processes for two coincident scintillators with double-ended readout. Section  3.2 
describes a Monte Carlo algorithm that simulates a calibration procedure for determining 
depth-dependent corrections and variances.

3.1. Monte Carlo simulation of the detection and timing of annihilation photon pairs

Entrance surfaces A and rear surfaces B of scintillators 1 and 2 are coupled to photodetectors 1A, 
1B, 2A, and 2B (figure 1). For each annihilation photon pair the algorithm (1) selects exponen-
tially distributed random DOIs in the two scintillators, (2) determines the randomized numbers 
of photons produced in the two scintillators, (3) determines the randomized number of photons 
that contribute to the four photodetector outputs, (4) estimates the DOIs in the scintillators from 
the four photodetector outputs, (5) computes four lists of randomized times when the photons 
contribute to the outputs, (6) generates four analog output pulses by convolving the times with the 
single electron response (SER), and (7) uses interpolation to determine the four trigger times for 
a sequence of trigger levels. This simulates the generation of pulse height and trigger timing data 
from the four photodetectors, as would happen for two opposing scintillators in a PET system.

The algorithm then assumes the role of the experimenter and uses the randomized trigger 
times and pulse heights to estimate the times that the annihilation photons entered the scintil-
lators at surfaces 1A and 2A. Specifically it corrects the trigger times for four depth-dependent 
factors: (1) the transit time of the annihilation photon to the point of interaction, (2) the transit 
time of an optical photon along a direct path to the photodetector (i.e. the earliest possible pho-
ton), (3) time dispersion of the optical photons, and (4) variations in pulse height. Factors (1) 
and (2) can be readily calculated and are shown in the caption of figure 1. Factors (3) and (4) 
depend in a complicated way on the shape and surface treatment of the scintillator, and on the 

Figure 1. Annihilation photons enter scintillators 1 and 2 at surfaces 1A and 2A and 
interact at depths Z1 and Z2 at times Z1/c and Z2/c. Direct path optical photons will reach 
photodetectors 1A at time Z1/c  +  nZ1/c and 2A at time Z2/c  +  nZ2/c. Direct path optical 
photons will reach photodetectors 1B at time Z1/c  +  n(Zmax  −  Z1)/c and 2B at time 
Z2/c  +  n(Zmax  −  Z2)/c.

S E Derenzo Phys. Med. Biol. 62 (2017) 3828
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shape of the photodetector output pulse; their combined effect is determined in the calibration 
procedure described in section 3.2.

These steps are shown in a simplified block diagram in figure 2 and are described in detail 
in the following sections. Symbols with an over-caret ( )!Ze.g.  indicate Monte Carlo variables 
that are internal to the calculation and cannot be measured. Symbols without an over-caret 
(e.g. Z ) indicate variables that can be measured or can be estimated using only measurable 
values. Symbols with an over-tilde 

∼
Ee.g.( ) indicate the variance. Upper case symbols indicate 

variables associated with annihilation photons. Lower case symbols indicate variables associ-
ated with the photoelectrons generated by specific annihilation photons. Appendix lists the 
variables used in the calculations and the abbreviations used in the text.

Intel 2.2 GHz Core i7 processors were used for the calculations. Four hours were required for 
a typical case where 4000 photoelectrons were produced by each of 200 000 annihilation pho-
tons. The REALbasic programming language (Xojo, Inc., Austin, TX) was used for the calcul-
ations but any programming language designed for scientific computing would work as well.

 3.1.1.  Tabulate the SER S(t) as a bi-exponential function with rise time Sr and decay time Sd, 
on a fine time grid (0.0001 ns was used in this work).

= − − − − − −S t S t t S t S t S t Sexp exp exp exppeak d r peak d peak r( ) ( ) [ ( / ) ( / )] / [ ( / ) ( / )]
 (5)

Figure 2. Simplified diagram of the Monte Carlo calculation of CRT values. See 
section 3.1 for details.

S E Derenzo Phys. Med. Biol. 62 (2017) 3828
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 where t  =  tpeak at the maximum value where dS/dt  =  0.
   This formulation was used in the Monte Carlo example calculations (section 6). In 

practice the shape of the SER would be included in the depth-dependent trigger delay 
corrections that are measured for each scintillator-photodetector in the calibration pro-
cedure (section 3.2).

 3.1.2. Determine the maximum photodetector output pulse height from the calibration proce-
dure (section 3.2) and tabulate a logarithmically spaced sequence of trigger levels LN in 
multiples of S(tpeak) from 0.001 to the maximum pulse height.

 3.1.3. For each annihilation photon pair K, draw two random numbers !R K2  and ! +R K2 1 from a 
set uniformly distributed between exp(−Zmax/μ) and 1. Compute the interaction depths 

µ= −! !Z RlnK K1, 2( ) and µ= − +! !Z RlnK K2, 2 1( ) in scintillators 1 and 2, where μ is the 
exponential interaction length of the annihilation photons. ! =Z 0 at the entrance surface 
A, and ! =Z Zmax at the rear surface B.

 3.1.4. The average number of optical photons Mtot produced by an annihilation photon inter-
action is listed in table 1 and is the product of the scintillator luminosity and the energy 
(0.511 MeV).

   Compute the randomized numbers of optical photons !MX K,  produced in scintillators 
X  =  1 and 2 by annihilation photon pair K. The Fano factor is a characteristic of the 
scintillator (see table 1).

! = + = = ×M M MGaussian mean 0, variance Fano)X K, tot tot(

3.1.5.  For scintillators X  =  1 and 2 compute the most probable numbers !NXY K,  of optical 
photons from annihilation photon pair K that produce photoelectrons in photodetectors 
Y  =  A and B that contribute to their output. PDE is the photon detection efficiency and 
a is the depth-dependent absorption coefficient. (See section 2.1 for details.)

! "" = × −N M aZ ZPDE 0.5X K X K X KA, , , max( )/ (6a)

Table 1. Parameters used in the Monte Carlo calculations for two known and two 
hypothetical scintillators.

Lu2SiO5:Ce,Ca (LSO) LaBr3:Ce Ultra-fast Perfect

Size (mm) 3  ×  3  ×  30 3  ×  3  ×  30 3  ×  3  ×  30 3  ×  3  ×  30
Interaction length 
µ for 511 keV 
photons (cm)

1.2 2.3 1.2a 1.2a

Refractive index n 1.82 2.1 2a 1.5 and 2.0a

Scintillator Fano 
factor

6.5 1 1a 1a

Photons per 
511 keV Mtot

20 000 38 000 20 000a >10 000a

Rise time τr (ns) 0.021 (Nemallapudi 
et al 2015)

0.2 (Glodo  
et al 2005)

0.0a 0.0a

Decay time τd (ns) 28 (Nemallapudi  
et al 2015)

18 (Glodo  
et al 2005)

1a 0.0a

a Hypothetical values.
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! "" = × − −N M a Z Z ZPDE 0.5X K X K X KB, , max , max( ( )/ ) (6b)

   Note: The average number of photons that contribute to the photodetector outputs is 
the average of ! !+N NX K X KA, B,   =  PDE  ×  Mtot (1  −  a)  =  Nave. In the example tables of 
 section  6, Nave was constrained to different values by setting PDE equal to Nave/
((1  −  a)Mtot).

 3.1.6.  For scintillators X  =  1 and 2 draw !MX K,  random numbers from a set uniformly spaced 
between 0 and !MX K, .

   Find NXA,K as the number of drawn numbers less than !NX KA, . NXA,K is the randomized 
number of photons that produce photoelectrons in photodetector XA that contribute to 
the output.

   Find NXB,K as the number of drawn numbers between !NX KA,  and ! !+N NX K X KA, B, . NXB,K 
is the randomized number of photons that produce photoelectrons in photodetector XB 
that contribute to the output.

   This random process generates the trinomial distribution of the optical photons that 
contribute to the photodetector A and B outputs, and those that do not.

 3.1.7.  Compute the optical photon time dispersion parameters for the photons that reach the 
1A and 2A photodetectors (direct path length !ZX K, ) and those that reach the 1B and 2B 
photodetectors (direct path length Zmax  −  !ZX K, ). See section 2.2 for a discussion of these 
equations and the determination of the parameters d1 and d2.

! !! = +D Z n d d ZX X K X KA , 1
2

2
2

,
2( ) (7a)

! !! = + −D Z n d d Z ZX X K X KB , 1
2

2
2

max ,
2( ) ( ) (7b)

   These relationships were used in the Monte Carlo example calculations (section 6). In 
practice the actual dependence would be included in the depth-dependent trigger delay 
that is measured for each scintillator in the calibration procedure (section 3.2).

 3.1.8.  Generate the random times when the NXY,K photons from annihilation photon pair K 
start contributing to the photodetector XY  =  1A, 1B, 2A, and 2B outputs. The random 
contributions from the scintillator rise time, the scintillator decay time, and the optical 
photon time dispersion are exponentially distributed. Every occurrence of !R  is a new 
random number drawn from a set uniformly distributed between 0 and 1. The random 
contributions from the photodetector single photoelectron time jitter J are Gaussian 
distributed. The transit times of the annihilation photons and direct path optical photons 
will be included in a subsequent step.

  For m  =  1 to NXA,K compute

^ ( ) ( ) ( ) ( ) ( )τ τ= − − − + = =!! ! !!t R R D Z R Jln ln ln Gaussian mean 0, fwhmX K m X X KA, , r d A ,

  For m  =  1 to NXB,K compute

τ τ= − − − + = =!! ! !!t R R D Z R Jln ln ln Gaussian mean 0, fwhmX K m X X KB, , r d B ,
^ ( ) ( ) ( ) ( ) ( )

 3.1.9.  For each photodetector XY sort the output start times tXY K m, ,
^  of the contributions of the 

NXY,K photons.

S E Derenzo Phys. Med. Biol. 62 (2017) 3828
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 3.1.10.  For scintillators X  =  1 and 2 and at each trigger level LN (tabulated in section 3.1.2), 
use linear interpolation of the SER S(t) (tabulated in section 3.1.1) to find the relative 
trigger times

    !TX K NA, ,  and !TX K NB, ,  when the sum of all earlier SER amplitudes is equal to LN.

! !∑= − <
=

L S T t t TforN
m

N

X K N X m X m X K N
1

A, , A, A, A, ,

X KA,

( ^ ) ^

! !∑= − <
=

L S T t t TforN
m

N

X K N X m X m X K N
1

B, , B, B, B, ,

X KB,

( ^ ) ^

 3.1.11.  For scintillators X  =  1 and 2 and each trigger level LN, compute the observed trigger 
times TXA,K,N, TXB,K,N and their simple average TXS,K,N by adding the annihilation 
photon transit times and the direct path optical photon transit times (equations (3a) 
and (3b)) to the relative trigger times.

! !λ= +T T ZX K N X K N X KA, , A, , A ,( )

( )λ= +! !T T ZX K N X K N X KB, , B, , B ,

= +T T T 2X K N X K N X K NS, , A, , B, ,( )/

 3.1.12. Estimate the DOIs in scintillators X  =  1 and 2 (section 2.1, equation (2))

⎡
⎣⎢

⎤
⎦⎥= − − −

+
Z 1X K

Z a
a

N N

N N, 2
1 X K X K

X K X K

max A, B,

A, B,( )( )( )
    This algorithm was used for the example calculations (section 6). In practice the rela-

tionship between pulse height and number of contributing optical photons would be 
determined in a calibration procedure (Yang et al 2009).

 3.1.13.  For scintillators X  =  1 and 2, and each trigger level LN, correct the observed trigger 
times from photodetectors Y  =  A and B by subtracting the annihilation and optical 
photon delays λ. This is an approximate estimate of the annihilation photon entrance 
times that does not include the depth-dependent trigger delays ∆ and δ.

λ= −C T ZXY K N XY K N Y X K, , , , ,( )

 3.1.14.  For scintillators X  =  1 and 2 compute the simple average of the trigger times that have 
been corrected for the photon delays.

= +C C C 2X K N X K N X K NS, , A, , B, ,( )/

 3.1.15.  For scintillators X  =  1 and 2, photodetectors Y  =  A and B, and each trigger level LN 
estimate the entrance times of the annihilation photons at surfaces 1A and 2A by 
subtracting the photon and trigger delays from the observed photodetector 1A, 2A, 1B 
and 2B trigger times.

S E Derenzo Phys. Med. Biol. 62 (2017) 3828
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λ δ= − −∆ −E T Z ZXY K N XY K N Y X K XY N XY N X K, , , , , , , ,( ) ( )
   The calibration procedure described in section  3.2 computes the relative trigger 

delays in intervals of Z. The center of the Ith interval is ZI  =  IZmax/Imax. The values 
of δ ZXY N, ( ) are determined from a linear interpolation using the values at ZI and ZI+1 
where ZI  <  Z  <  ZI+1. For a full PET system the base trigger delays ∆ can be different 
for different scintillator-photodetector combinations, and these are measured in the 
calibration procedure (section 3.2). For the Monte Carlo example calculations (section 
6) the base trigger delays do not vary from annihilation event to annihilation event and 
do not contribute to the CRT values.

 3.1.16. The corrected trigger times from photodetectors 1A, 2A, 1B and 2B are independent 
estimates of the annihilation photon entrance times at surfaces 1A and 2A. For scintil-
lators X  =  1 and 2 compute the simple averages at each trigger level LN.

= +E E E 2X K N X K N X K NS, , A, , B, ,( )/
 3.1.17. For scintillators X  =  1 and 2 compute the statistically weighted averages at each trigger 

level LN. Since the variances of the corrected trigger times from photodetectors A and 
B are not equal, the average weighted by the inverse of their variances is statistically 
the best way to combine them. The calibration procedure that measures the variances 
is described in section 3.2.

=
+

+

∼ ∼

∼ ∼E
E E Z E E Z

E Z E Z1 1
X K N

X K N X N X K X K N X N X K

X N X K X N X K
W, ,

A, , A, , B, , B, ,

A, , B, ,

/ ( ) / ( )
/ ( ) / ( )

 
∼ ∼
E Z E ZandX N X NA, B,( ) ( ) for scintillators X  =  1 and 2 are determined from a linear 
 interpolation using the values at ZI and ZI+1 where ZI  <  Z  <  ZI+1.

 3.1.18. Repeat sections 3.1.3–3.1.17 for K  =  1 to Kmax annihilation events.
 3.1.19. Use the data from the Kmax annihilation events to compute the rms of the various raw 

and corrected time differences between the two scintillators. Convert these to CRT 
FWHM values and find the optimum trigger levels. In a full tomograph the optimum 
trigger level would be determined in the calibration procedure (section 3.2).

   WTA  =  2.355  ×  (T1A,K,N  −  T2A,K,N)rms at the optimal trigger level.
   WTB  =  2.355  ×  (T1B,K,N  −  T2B,K,N)rms at the optimal trigger level.
   WTS  =  2.355  ×  (T1S,K,N  −  T2S,K,N)rms at the optimal trigger level.
   WCA  =  2.355  ×  (C1A,K,N  −  C2A,K,N)rms at the optimal trigger level.
   WCB  =  2.355  ×  (C1B,K,N  −  C2B,K,N)rms at the optimal trigger level.
   WCS  =  2.355  ×  (C1S,K,N  −  C2S,K,N)rms at the optimal trigger level.
   WEA  =  2.355  ×  (E1A,K,N  −  E2A,K,N)rms at the optimal trigger level.
   WEB  =  2.355  ×  (E1B,K,N  −  E2B,K,N)rms at the optimal trigger level.
   WES  =  2.355  ×  (E1S,K,N  −  E2S,K,N)rms at the optimal trigger level.
   WEW  =  2.355  ×  (E1W,K,N  −  E2W,K,N)rms at the optimal trigger level.

3.2. Monte Carlo simulation of the calibration for measuring timing corrections and variances

This section describes a Monte Carlo algorithm that simulates the acquisition of calibration 
data from a positron point source and determines depth-dependent trigger time correction 
factors and variances (figure 3). Annihilation photons that interact near the entrance surface 

S E Derenzo Phys. Med. Biol. 62 (2017) 3828



3838

of one scintillator are selected, and the relative trigger delays from the photodetectors on 
the other scintillator are calculated and averaged over intervals of depth to provide depth-
dependent trigger-time corrections for section 3.1. This simulates the calibration procedure 
for a full positron tomograph.

For interactions close to the entrance surface in one scintillator the pulse height in pho-
todetector A is maximal and the optical photon time dispersion is minimal. This is used as a 
reference time that allows the relative trigger delays δA,N(Z ) and δB,N(Z ) of photodetectors A 
and B of the other scintillator to be measured as a function of interaction depth Z and trigger 
level LN. The relative trigger delays increase with increasing distance from the interaction 
point to the photodetector, because the pulse height decreases and the optical photon time 
dispersion increases. These relationships are difficult to predict and depend on the surface 
treatment of the scintillator and the photodetector SER. The calibration procedure described 
in this  section is designed to empirically measure the combined effect of these factors without 
the need to know them individually.

 3.2.1.  Place a positron point source between the scintillation detectors being calibrated and 
acquire data on pulse height and trigger times from the four photodetectors 1A, 1B, 
2A, and 2B. The corresponding Monte Carlo calculation is in steps 3.1.1–3.1.11.

 3.2.2.  Perform section 3.1.12 to estimate the depths of interaction Z1,K and Z2,K in scintilla-
tors 1 and 2 for each annihilation photon pair K.

 3.2.3.  For scintillators X  =  1 and 2, and each trigger level LN, correct the observed trigger 
times from photodetectors Y  =  A and B by subtracting the annihilation and optical 
photon delays λ (equations (3a) and (3b)).

Figure 3. Simplified diagram of the Monte Carlo simulation of data acquisition and the 
calculation of trigger corrections and variances. See section 3.2 for details.
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λ= −C T ZXY K N XY K N Y X K, , , , ,( )

 3.2.4.  Select events where the two annihilation photons interact in the two scintillators close 
to photodetectors 1A and 2A. These interactions produce the highest pulse heights, the 
least optical photon dispersion, and the earliest trigger times in those  photodetectors. 
For these interactions both the photon transit times λ1A and λ2A and the relative trigger 
delays δ1A,N and δ2A,N are minimal, and the difference in the trigger times corrected for 
photon delays is equal to the difference in base trigger delays.

∆ −∆ = −C CN N K N K N1A, 2A, 1A, , 2A, ,

 3.2.5.  Similarly, select events where the two annihilation photons interact in the two scintil-
lators close to photodetectors 1B and 2B.

∆ −∆ = −C CN N K N K N1B, 2B, 1B, , 2B, ,

   For simplicity in the sections below and in the section 6 example calculations the base 
trigger delays are set to zero since they do not change from interaction to interaction 
and do not contribute to the CRT. In practice the base trigger delay for each photode-
tector circuit in a PET system would be estimated using calibration data (Werner and 
Karp 2013).

 3.2.6.  Select events close to surface A in scintillator 1 (i.e. Z1 is between 0 and cutoff Zcut) 
and distributed in depth in scintillator 2. Tabulate the relative trigger delays δ2A,K,N and 
δ2B,K,N as the difference between the 2A and 2B trigger times and the 1A reference 
trigger times that have been corrected for photon delays.

δ = −C CK N K N K N2A, , 2A, , 1A, ,

δ = −C CK N K N K N2B, , 2B, , 1A, ,

 3.2.7.  For photodetectors Y  =  A and B compute the relative trigger delays and variances 
averaged over the interactions in each depth interval centered at depth ZI in scintillator 
2. The average trigger delays include (1) time slewing due to variations in pulse height 
with depth and (2) time slewing due to variations in optical photon time dispersion 
with depth. For the examples in section 6, the calculations used Imax  =  10. The vari-
ances are the weighting factors for the statistically weighted average of the corrected 
trigger times that are used in section 3.1.16.

= +I Z I Zinteger part of 0.5K2, max max( / )

δ δ=Z AverageY N I Y K N2 , 2 , ,( ) [ ]

λ δ= − −∼
E Z T Z ZVarianceY N I Y K N Y K Y N K2 , 2 , , 2, 2 , 2,( ) [ ( ) ( )]

 3.2.8.  Select events close to surface A in scintillator 2 (i.e. Z2 is between 0 and cutoff Zcut) 
and tabulate the trigger delays δ1A,K,N and δ1B,K,N as the difference between the 1A  
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and 1B trigger times and the 2A reference trigger times that have been corrected for 
photon delays.

δ = −C CK N K N K N1A, , 1A, , 2A, ,

δ = −C CK N K N K N1B, , 1B, , 2A, ,

 3.2.9.  For photodetectors Y  =  A and B compute the relative trigger delays and variances aver-
aged over the interactions in each depth interval centered at depth ZI in  scintillator 1.

= +I Z I Zinteger part of 0.5K1, max max( / )

δ δ=Z AverageY N I Y K N1 , 1 , ,( ) [ ]

λ δ= − −∼
E Z T Z ZVarianceY N I Y K N Y K Y N K1 , 1 , , 1, 1 , 1,( ) [ ( ) ( )]

   In practice calibration data would be collected for different trigger levels, and sections 3.1.17 
and 3.1.19 would be used to find the trigger level that minimized the CRT WEW.

4. Computation of the statistical lower bound

In this section we present a realistic Monte Carlo simulation where the DOIs are exponen-
tially distributed throughout the length of the scintillator and the scintillation photons are 
shared between the two photodetectors according to depth (equations (1a) and (1b)). For 
each interaction a set of photoelectron times is generated for the A and B photodetectors 
and a DOI-dependent probability density function (PDF) is shifted in time to maximize the 
joint likelihood. Since the variances of the best-fit A and B times are not equal a statistically 
weighted average is used to combine them. The lower bound CRT values are the same as 
in previous calculations where all interactions were placed at the center of the scintillator 
(Derenzo et al 2015). This shows that the CRT lower bound is determined by the scintillator 
and photodetector properties and the total number of photoelectrons, not by how the photo-
electrons are distributed between the two photodetectors.

Section 4.1 describes the computation of lookup tables of the natural logarithm of the PDF 
as a function of time and DOI. Section 4.2 describes the Monte Carlo algorithm that computes 
the CRT statistical lower bound for the example calculations (section 6). Section 4.3 describes 
the calculation of the variances needed for the statistically weighted average.

4.1. Analytical computation of the probability density function (PDF) versus DOI

The PDF depends on the scintillator rise and decay times (τr and τd), the optical photon time 
dispersion parameter (d), and the FWHM timing jitter of the photodetector (J ). J  =  2.355σ. 
The analytical formula for the PDF was taken from Derenzo et al (2014) with modifications 
for the special cases where the photodetector timing jitter J or the scintillator rise time τr was 
zero. Erfc is the complementary error function.
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For the particular values of τr, τd, and J in each run, the natural logarithm of the PDFX,I(t) was 
tabulated for t  =  −100 ns to  +1900 ns on a 0.001 ns grid, for photodetectors X  =  A and B, 
and for ZI  =  IZmax/10, I  =  0–10. Equations (4a) and (4b) were used to relate the optical pho-
ton dispersion coefficient DX,I to the depth ZI.

4.2. Monte Carlo computation of the CRT statistical lower bound

This section describes a Monte Carlo algorithm that computes the statistical lower bound of 
the CRT for particular values of the scintillator length Zmax, refractive index n, rise time τr, 
decay time τd, photodetector FWHM timing jitter J, and average number of photoelectrons 
Nave. For each annihilation photon the algorithm (1) generates a random DOI, (2) generates 
a set of random times for the photoelectrons produced in the A and B photodetectors, and 
(3) shifts PDFA,I(t) and PDFB,I(t) in time to maximize the joint likelihood for all the photoelec-
tron times in the A and B sets, respectively. For each photoelectron ln(PDFX,I(t)) is determined 
by quadratic interpolation in t of the tables generated in section 4.1.The best fit times for the 
A and B photodetectors are combined using their statistically weighted averages, where the 
weights are the inverse of the variances. The CRT lower bound is calculated as 2  times 
the FWHM of the distribution of the statistically weighted averages for the single scintillator.

4.2.1. For photodetectors X  =  A and B tabulate the natural logarithm of PDFX,I(t) as described 
in section 4.1.

4.2.2. As in section 3.1.3, for each interacting annihilation photon K select a random number 
!RK from a set uniformly distributed between exp(−Zmax/µ) and 1. Compute the interac-
tion depth ! !µ= −Z RlnK K( ) and determine the index I for the ZI interval that contains it.

4.2.3. As in sections 3.1.4–3.1.6, compute the randomized number of photons N KA,  and N KB,  
that produce photoelectrons in photodetectors A and B.

4.2.4. As in section  3.1.7, compute the optical photon time dispersion parameters for the 
photons that reach detectors A and B.

! !! = +D Z n d d ZK KA 1
2

2
2 2( )

! !! = + −D Z n d d Z ZK KB 1
2

2
2

max
2( ) ( )

 4.2.5. As in section 3.1.8, generate random photoelectron pulse times in the photodetectors 
Y  =  A and B for annihilation photon K.

^ ( ) ( ) ( ) ( ) ( )τ τ= − − − + = =!! ! !!t R R D Z R Jln ln ln Gaussian mean 0, fwhmY K m Y K, , r d

S E Derenzo Phys. Med. Biol. 62 (2017) 3828



3842

  For the statistical lower bound it is assumed that the DOI is known perfectly  
(i.e.  sections 3.1.11 and 3.1.13 cancel), so time zero is the time that the annihilation 
photon entered the front surface A.

 4.2.6. Perform a maximum likelihood fit of PDFX,I(t) to the photoelectron times tY K m, ,
^  gener-

ated in section 4.2.5 to determine the most likely entrance time ΨY,K. Specifically, for 
photodetectors Y  =  A and B find the time shift ΨY,K that maximizes the joint likelihood. 
This uses the time information from all the photoelectrons.

  Vary ΨY K,  to maximize ∑ −Ψ= tln PDFm
N

Y I Y K m Y K1 , , , ,
Y K, [ (^ )] where !ZK is in the Ith depth 

interval.
  Quadratic interpolation on the 0.001 ns time grid (section 4.2.1) was necessary for the 

joint likelihood to be smooth at the maximum value.

 4.2.7. Photodetectors A and B receive different numbers of photons (depending on depth 
!ZK), and the variances of the best fit entrance times will not be equal. The best way to 
combine them statically is with the inverse variance weighted average.

!Ψ =
Ψ Ψ + Ψ Ψ

Ψ + Ψ

∼ ∼

∼ ∼
Z Z

Z Z
Z Z

1 1
for in depth intervalK

K I K I

I I
K IWAB,

A, A B, B

A B

/ ( ) / ( )
/ ( ) / ( )

 4.2.8. Repeat sections 4.2.2–4.2.7 for K  =  1 to Kmax annihilation photons.
 4.2.9. Compute the CRT statistical lower bound WWLB as 2  times the FWHM of the distribu-

tion over K of the statistically weighted average ΨWAB,K.

4.3. Monte Carlo calculation of the variances of the maximum likelihood fits

This section computes the variances of the entrance times of photodetectors A and B as a 
 function of the depth (Z ) used in section 4.2.7.

 4.3.1. Perform sections 4.2.2–4.2.7 to find the randomized photoelectron numbers N KA,  and 
N KB, , and the best fit maximum likelihood times ΨA,K and ΨB,K for annihilation photon 
K detected in photodetectors A and B.

 4.3.2. Repeat for K  =  1 to Kmax annihilation events.
 4.3.3. Loop over K and compute the variances of the maximum likelihood fits:

!Ψ = Ψ∼
Z Z Zvariance for in depth interval I K K IA A,( ) ( )

!Ψ = Ψ∼
Z Z Zvariance for  in depth interval I K K IB B,( ) ( )

5. Comparison with an experimental value of CRT for LSO

An excellent CRT value of 0.085  ±  0.004 ns FWHM was reported for 2 mm  ×  2 mm  ×  3 mm 
deep LSO crystals codoped with Ca and read out by single SiPM photodetectors (Nemallapudi 
et al 2015). The scintillation properties were described as follows: rise time 0.021  ±  0.020 ns, 
decay times 8 ns (6%) and 33 ns (94%), and light output 26 200 photons MeV−1. The photo-
detectors used had single photoelectron timing jitters J  =  0.177 ns FWHM and photon detec-
tion efficiencies of 35.6  ±  2.5%. Using these figures, the number of photoelectrons can be 
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estimated as (26 200 photons MeV−1)  ×  (0.511 MeV)  ×  (35.6%)  =  4766. This is close to the 
value of 4700 photoelectrons reported in Seifert et al (2012). The sum of the initial intensities 
of the two components is 6%/8 ns (0.8% ns−1) plus 94%/33 ns (2.8% ns−1) for a total of 3.6% 
ns−1. The same initial intensity is produced by a single component with a decay time of 28 ns 
(3.6% ns−1).

The Monte Carlo algorithm (section 3.1) was validated against the experimental value of 
the CRT. The calculation used τr  =  0.021 ns, τd  =  28 ns, J  =  0.177 ns FWHM, Zmax  =  0.3 cm, 
Nave  =  9532 and fmax  =  0.5. As in the experiment, an average of 4766 photoelectrons is pro-
duced in each of two separate photodetectors. The calculated CRT value between the two 
photodetectors is 0.085 ns FWHM, in excellent agreement with the measured value of 0.085 
ns FWHM. Because the scintillator is short, these CRT values are dominated by statistical 
fluctuations in the scintillation and photodetection processes rather than by the variations in 
the DOI. Using the methods of section 4, the statistical CRT lower bound for the 0.3 cm deep 
LSO crystal is 0.078 ps FWHM, only 9% lower than both the measured value and the Monte 
Carlo calculation.

6. Example calculations of CRT values for two known and two hypothetical 
scintillators

6.1. Scintillator and photodetector parameters used in the calculations

Table 1 lists the properties of the four scintillators used in the example calculations. The first 
two are in common use. The third is a hypothetical ultra-fast scintillator that could be based 
on allowed donor-acceptor radiative transitions in a heavy-atom semiconductor (Lehmann 
1966, Bourret-Courchesne et  al 2009, Derenzo et  al 2013, 2016). The fourth is a perfect 

Figure 4. CRT curves for LSO with J  =  0.2 ns FWHM and Nave  =  4000 plotted as a 
function of trigger level. The average pulse heights from photodetectors A and B are 
178 and 132 times the peak SER amplitude, respectively. See table 1 for scintillator 
properties and appendix for variable definitions.
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Table 2. CRT values for Lu2SiO5:Ce,Ca. See table 1 for scintillator properties and appendix for variable definitions. Columns 3–12 are CRT values 
in ns FWHM for optimal trigger levels.

Nave

J (ns 
FWHM) WTA WTB WTS WCA WCB WCS WEA WEB WES WEW WLB

1000 0.0 0.383 0.342 0.193 0.225 0.312 0.178 0.206 0.290 0.177 0.149 0.141
2000 0.0 0.321 0.224 0.131 0.138 0.189 0.105 0.122 0.172 0.105 0.088 0.079
4000 0.0 0.290 0.164 0.104 0.090 0.123 0.067 0.077 0.109 0.066 0.055 0.048
8000 0.0 0.272 0.130 0.092 0.063 0.084 0.044 0.051 0.073 0.044 0.037 0.030
16 000 0.0 0.260 0.109 0.086 0.044 0.059 0.030 0.035 0.049 0.030 0.025 0.020
1000 0.1 0.408 0.364 0.206 0.254 0.333 0.193 0.231 0.309 0.192 0.170 0.162
2000 0.1 0.347 0.255 0.145 0.172 0.219 0.124 0.150 0.196 0.123 0.111 0.103
4000 0.1 0.318 0.199 0.114 0.127 0.156 0.084 0.102 0.133 0.083 0.075 0.069
8000 0.1 0.302 0.165 0.097 0.099 0.118 0.058 0.071 0.091 0.057 0.052 0.048
16 000 0.1 0.291 0.145 0.087 0.080 0.093 0.041 0.050 0.064 0.040 0.037 0.033
1000 0.2 0.454 0.414 0.234 0.305 0.383 0.224 0.277 0.352 0.223 0.206 0.196
2000 0.2 0.392 0.307 0.169 0.222 0.270 0.153 0.188 0.239 0.151 0.140 0.131
4000 0.2 0.358 0.246 0.129 0.170 0.203 0.106 0.131 0.163 0.105 0.098 0.091
8000 0.2 0.337 0.207 0.105 0.137 0.158 0.074 0.091 0.113 0.073 0.068 0.063
16 000 0.2 0.322 0.182 0.091 0.114 0.129 0.053 0.064 0.080 0.051 0.048 0.045
1000 0.3 0.502 0.470 0.269 0.359 0.439 0.261 0.328 0.401 0.259 0.244 0.230
2000 0.3 0.435 0.357 0.192 0.268 0.321 0.180 0.224 0.276 0.178 0.167 0.156
4000 0.3 0.394 0.288 0.143 0.209 0.244 0.125 0.156 0.191 0.123 0.116 0.109
8000 0.3 0.368 0.244 0.114 0.170 0.195 0.090 0.109 0.134 0.087 0.082 0.076
16 000 0.3 0.348 0.214 0.095 0.142 0.161 0.064 0.077 0.094 0.061 0.058 0.053
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scintillator-photodetector combination used to isolate the factors that depend on the scintilla-
tor length and the ability to estimate the DOI using double-ended readout.

The Fano factor for LaBr3:Ce was taken to be 1 because of its known proportionality and 
excellent energy resolution. The energy resolution of LSO is much poorer and its Fano factor 
is significantly larger, with published values of 6.5 (Lecomte et al 1998) and 4.2 (Lecomte 
et al 1999). The example calculations of section 6.2 use a Fano factor of 5 as an approximate 
average of the two values.

The optical photon time dispersion parameters were calculated from equations(4a) and 
(4b) using d1  =  0.008 73 ns and d2  =  0.0186 ns cm−1. The photoelectrons were distributed 

Table 3. CRT values for Lu2SiO5:Ce,Ca four values of Zmax, with Nave  =  4000, 
τr  =  0.021 ns, τd  =  28 ns, and J  =  0.177 ns FWHM. See appendix for parameter 
definitions. Columns 2–11 are CRT values in ns FWHM for optimal trigger levels. The 
CRT lower bound is 0.091 ns FWHM.

Zmax 
(cm) WTA WTB WTS WCA WCB WCS WEA WEB WES WEW

0.3 0.165 0.158 0.097 0.152 0.155 0.097 0.134 0.137 0.096 0.093
1.0 0.213 0.180 0.102 0.157 0.166 0.098 0.133 0.141 0.097 0.094
2.0 0.290 0.213 0.114 0.164 0.183 0.101 0.132 0.150 0.100 0.095
3.0 0.355 0.240 0.128 0.168 0.197 0.105 0.131 0.161 0.104 0.097

Table 4. CRT values for Lu2SiO5:Ce,Ca with Fano factors of 1 and 5. See appendix for 
parameter definitions. Columns 4–8 are CRT values in ns FWHM for optimal trigger 
levels.

Fano Nave J WTS WEA WEB WES WEW

1 1000 0.0 0.193 0.206 0.290 0.177 0.149
5 1000 0.0 0.193 0.205 0.291 0.177 0.149
1 16 000 0.0 0.086 0.035 0.049 0.030 0.025
5 16 000 0.0 0.086 0.035 0.050 0.030 0.025
1 1000 0.3 0.269 0.328 0.401 0.259 0.244
5 1000 0.3 0.269 0.329 0.401 0.259 0.244
1 16 000 0.3 0.095 0.077 0.093 0.061 0.057
5 16 000 0.3 0.095 0.077 0.094 0.061 0.058

Table 5. Average number of contributing photons and observed trigger times as a 
function of DOI for 3  ×  3  ×  30 mm LSO scintillator detectors. See text for interpretation.

Z (cm) !NA !NB TA(Z ) TB(Z ) TS(Z )

0.15 2720 1280 0.134 0.437 0.286
0.45 2560 1440 0.172 0.407 0.289
0.75 2400 1600 0.212 0.380 0.296
1.05 2240 1760 0.253 0.355 0.304
1.35 2080 1920 0.296 0.331 0.313
1.65 1920 2080 0.339 0.308 0.323
1.95 1760 2240 0.383 0.285 0.334
2.25 1600 2400 0.428 0.264 0.346
2.55 1440 2560 0.475 0.243 0.359
2.85 1280 2720 0.525 0.225 0.375
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between the two photodetectors according to equations (1a) and (1b) with a  =  0.3 and the 
resulting DOI uncertainty was 8.2 (Nave)−1/2 cm FWHM. The photodetector SER was a bi-
exponential with a 0.2 ns rise time and a 2 ns decay time. As shown in Derenzo et al (2015) the 
CRT at the optimum trigger level does not depend strongly on the shape of the photodetector 
SER.

6.2. Example calculations: LSO

Table 2 lists the calculated CRT values for LSO. For the typical values Nave  =  4000 and 
J  =  0.2 ns FWHM the CRT using the statistically weighted average of the fully corrected trig-
ger times (WEW) is 0.098 ns FWHM, 24% lower than the simple average of the trigger times 
and 8% higher than the statistical lower bound. A total of 100 000 annihilation photon pairs 
were used in each case and the rms uncertainties are 0.22% of the CRT values.

Figure 4 shows four CRT curves for LSO plotted as a function of trigger level in units of the 
peak SER. WTS is the CRT using the simple average of the uncorrected A and B trigger times. 
WCS is the CRT using the simple average of the A and B trigger times that have been corrected 
only for photon delays. WEW is the CRT using the statistically weighted average of the A and 
B trigger times that have been corrected for depth-dependent variations in the annihilation and 

Table 6. Trigger times corrected only for photon delays.

Z (cm) λA(Z ) λB(Z ) λS(Z ) CA(Z ) CB(Z ) CS(Z )

0.15 0.014 0.178 0.096 0.120 0.259 0.189
0.45 0.042 0.170 0.106 0.129 0.237 0.183
0.75 0.071 0.162 0.116 0.141 0.218 0.180
1.05 0.099 0.153 0.126 0.155 0.201 0.178
1.35 0.127 0.145 0.136 0.169 0.185 0.177
1.65 0.155 0.137 0.146 0.183 0.171 0.177
1.95 0.183 0.129 0.156 0.199 0.156 0.178
2.25 0.212 0.121 0.166 0.217 0.143 0.180
2.55 0.240 0.112 0.176 0.235 0.131 0.183
2.85 0.268 0.104 0.186 0.257 0.121 0.189

Table 7. Annihilation photon entrance times estimated by fully correcting the observed 
trigger times for the photon delays and the trigger delays computed from the calibration 
data. ∆A  =  ∆B  =  0.121 ns.

Z (cm) δA δB δS EA(Z ) EB(Z ) ES(Z )

0.15 0.000 0.138 0.069 −0.001 0.000 0.000
0.45 0.009 0.116 0.062 −0.001 0.000 0.000
0.75 0.021 0.098 0.059 −0.001 0.000 0.000
1.05 0.034 0.080 0.057 0.000 0.000 0.000
1.35 0.048 0.064 0.056 −0.001 0.001 0.000
1.65 0.063 0.049 0.056 −0.001 0.000 0.000
1.95 0.079 0.035 0.057 0.000 0.000 0.000
2.25 0.096 0.022 0.059 0.000 0.000 0.000
2.55 0.115 0.010 0.062 0.000 0.000 0.000
2.85 0.137 −0.001 0.068 −0.001 0.001 0.000
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Table 8. CRT values for LaBr3:Ce. See table 1 for scintillator properties and appendix for variable definitions. Columns 3–12 are CRT values in 
ns FWHM for optimal trigger levels.

Nave

J (ns 
FWHM) WTA WTB WTS WCA WCB WCS WEA WEB WES WEW WLB

2000 0.0 0.411 0.278 0.154 0.192 0.216 0.125 0.167 0.189 0.125 0.116 0.101
4000 0.0 0.374 0.224 0.125 0.139 0.157 0.087 0.116 0.132 0.087 0.080 0.067
8000 0.0 0.350 0.189 0.108 0.104 0.117 0.061 0.081 0.092 0.061 0.056 0.045
16 000 0.0 0.334 0.165 0.099 0.079 0.088 0.043 0.057 0.064 0.043 0.039 0.031
32 000 0.0 0.322 0.148 0.094 0.060 0.067 0.031 0.040 0.046 0.030 0.028 0.021
2000 0.1 0.429 0.298 0.161 0.213 0.236 0.136 0.181 0.202 0.135 0.127 0.112
4000 0.1 0.394 0.247 0.129 0.162 0.178 0.094 0.126 0.142 0.094 0.088 0.078
8000 0.1 0.373 0.214 0.110 0.129 0.139 0.067 0.088 0.098 0.066 0.062 0.053
16 000 0.1 0.358 0.192 0.100 0.104 0.112 0.047 0.062 0.069 0.046 0.044 0.038
32 000 0.1 0.350 0.178 0.095 0.087 0.093 0.034 0.044 0.049 0.033 0.031 0.026
2000 0.2 0.465 0.335 0.173 0.249 0.272 0.151 0.201 0.224 0.150 0.142 0.129
4000 0.2 0.430 0.284 0.137 0.196 0.212 0.107 0.141 0.157 0.105 0.100 0.090
8000 0.2 0.405 0.248 0.115 0.160 0.171 0.075 0.099 0.110 0.074 0.070 0.063
16 000 0.2 0.391 0.225 0.103 0.135 0.142 0.054 0.070 0.077 0.052 0.049 0.045
32 000 0.2 0.378 0.208 0.095 0.116 0.122 0.039 0.049 0.055 0.037 0.035 0.032
2000 0.3 0.500 0.373 0.187 0.286 0.309 0.168 0.224 0.247 0.166 0.159 0.144
4000 0.3 0.461 0.317 0.146 0.227 0.244 0.119 0.156 0.173 0.116 0.111 0.101
8000 0.3 0.434 0.280 0.120 0.188 0.200 0.085 0.110 0.121 0.082 0.078 0.071
16 000 0.3 0.415 0.253 0.105 0.161 0.170 0.062 0.078 0.086 0.058 0.056 0.050
32 000 0.3 0.403 0.236 0.097 0.141 0.148 0.045 0.055 0.061 0.041 0.039 0.035
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optical photon transit times, and time slewing due to depth-dependent variations in optical 
photon time dispersion and pulse height. WLB is the statistical lower bound. The WCS and WEW 
curves are considerably lower than the WTS curve and much closer to WLB.

Table 3 lists the calculated CRT values as a function of the scintillator length Zmax. Both 
WTS and WCS increase with Zmax. WEW increases very slowly with Zmax, showing that the cali-
bration and correction procedures presented in this paper allow the use of deep scintillators 
with very little degradation in the CRT.

Table 4 lists the calculated CRT values for LSO with two assumed Fano factors (section 
3.1.4). A Fano factor  >1 increases the variation in the number of photons but has only a small 
effect on the CRT values. This is understandable because it does not affect the average number 
or time distribution of the photoelectrons.

Table 5 lists the average number of photons (!MA and !MB) and trigger times (TA and TB) for 
photodetectors A and B, respectively, as a function of the DOI for LSO using the parameters 
listed in table 1. The trigger time TA increases with Z because the annihilation and optical pho-
ton transit times increase and the pulse height decreases. The trigger time TB decreases with Z 
for the same reasons. The simple average of the trigger times TS has a reduced dependence on 
Z due to the partial cancellation of these factors.

Table 6 lists the average photon delays λA, λB, and their simple average λS; and the trigger 
times CA, CB corrected for photon delays, and their simple average CS as a function of the DOI 
for LSO with the parameters listed in table 1. The variation of CA and CB with Z is less than 
that of TA and TB but has not been eliminated due to the remaining dependence on the relative 
trigger delay. These errors partly cancel in the simple average CS, which has a significantly 
reduced dependence on Z.

Table 7 lists the average relative trigger delays δA, δB, and their simple average δS; and 
the fully corrected trigger times EA, and EB and their average ES as a function of the DOI for 
LSO with the parameters listed in table 1. The relative trigger delay δA in the photodetector A 

Figure 5. CRT curves for LaBr3:Ce with J  =  0.2 ns FWHM and Nave  =  8000 plotted as 
a function of trigger level. The average pulse heights from photodetectors A and B are 
477 and 402 times the peak SER amplitude, respectively. See table 1 for scintillator and 
photodetector parameters and appendix for variable definitions.
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Table 9. CRT values for a hypothetical ultra-fast scintillator. See table 1 for scintillator properties and appendix for variable definitions. Columns 
3–12 are CRT values in ns FWHM for optimal trigger levels.

Nave

J (ns 
FWHM) WTA WTB WTS WCA WCB WCS WEA WEB WES WEW WLB

1000 0.0 0.264 0.105 0.082 0.045 0.040 0.023 0.044 0.036 0.023 0.021 0.0105
2000 0.0 0.260 0.097 0.078 0.032 0.027 0.016 0.031 0.024 0.016 0.015 0.0068
4000 0.0 0.258 0.093 0.075 0.023 0.019 0.011 0.022 0.017 0.011 0.010 0.0045
8000 0.0 0.255 0.090 0.073 0.016 0.013 0.008 0.015 0.011 0.008 0.007 0.0030
16 000 0.0 0.252 0.087 0.071 0.011 0.009 0.005 0.011 0.008 0.005 0.005 0.0022
1000 0.1 0.300 0.146 0.084 0.078 0.079 0.034 0.057 0.052 0.033 0.032 0.0246
2000 0.1 0.293 0.136 0.078 0.064 0.065 0.025 0.040 0.037 0.024 0.023 0.0173
4000 0.1 0.289 0.130 0.075 0.055 0.056 0.018 0.029 0.026 0.017 0.016 0.0122
8000 0.1 0.286 0.124 0.073 0.048 0.049 0.013 0.020 0.018 0.012 0.011 0.0086
16 000 0.1 0.282 0.120 0.071 0.043 0.043 0.010 0.014 0.013 0.008 0.008 0.0061
1000 0.2 0.329 0.181 0.086 0.107 0.114 0.045 0.067 0.066 0.042 0.041 0.0339
2000 0.2 0.320 0.168 0.079 0.092 0.097 0.033 0.047 0.046 0.030 0.029 0.0238
4000 0.2 0.314 0.158 0.075 0.081 0.085 0.024 0.034 0.033 0.021 0.021 0.0169
8000 0.2 0.310 0.152 0.073 0.073 0.076 0.018 0.024 0.023 0.015 0.015 0.0120
16 000 0.2 0.304 0.145 0.072 0.066 0.069 0.014 0.017 0.016 0.011 0.011 0.0085
1000 0.3 0.355 0.212 0.089 0.134 0.144 0.055 0.076 0.078 0.051 0.050 0.0413
2000 0.3 0.342 0.195 0.081 0.116 0.124 0.040 0.054 0.055 0.036 0.035 0.0292
4000 0.3 0.336 0.184 0.076 0.103 0.110 0.030 0.038 0.039 0.025 0.025 0.0207
8000 0.3 0.330 0.175 0.074 0.094 0.099 0.023 0.027 0.027 0.018 0.018 0.0145
16 000 0.3 0.324 0.167 0.072 0.086 0.091 0.018 0.019 0.019 0.013 0.013 0.0103
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circuit increases with Z for two reasons: (1) the pulse height decreases and (2) the increase in 
the optical photon time dispersion decreases the rate of rise of the output pulse. Both of these 
delay the time to reach a fixed-level trigger. The trigger time δB in the photodetector B circuit 
decreases with Z for the same reasons.

When one calibration data set is used to determine the depth-dependent trigger delays, 
and the trigger times from a separate data set are corrected for both photon and trigger delays 
the results (EA, EB, ES) are close to zero for all DOIs. This shows that the depth-dependent 
corrections measured in a separate calibration procedure are able to fully compensate for 
depth-dependent timing variations. The 0.121 ns base trigger delays ∆A and ∆B depend on 
the shape of the photodetector output pulse and were determined in the calibration procedure 
(section 3.2).

6.3. Example calculations: LaBr3:Ce

Table 8 lists the calculated CRT values for LaBr3:Ce. For the typical values Nave  =  8000 and 
J  =  0.2 ns FWHM the CRT using the statistically weighted average of the fully corrected trig-
ger times WEW is 0.070 ns FWHM, 39% lower than the simple average of the trigger times 
and 11% higher than the statistical lower bound. LaBr3:Ce has about twice the luminosity and 
2/3 the decay time of LSO, but its longer rise time significantly reduces its CRT advantage.

Figure 5 shows four CRT curves for LaBr3:Ce plotted as a function of trigger level in units 
of the peak SER. As for LSO, the WCS and WEW curves are considerably lower than the WTS 
curve and only slightly higher than WLB.

Figure 6. CRT curves for a hypothetical scintillator with 1 ns decay time, J  =  0.2 ns 
FWHM and Nave  =  4000 as a function of trigger level. The average pulse heights from 
photodetectors A and B are 1457 and 1074 times the peak SER amplitude, respectively. 
See table  1 for scintillator and photodetector parameters and appendix for variable 
definitions.
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Table 10. CRT values for an instantaneous scintillation pulse (i.e. τd  =  τr  =  0) and photodetectors with zero time jitter (i.e. J  =  0). The interaction 
points are exponentially distributed in a scintillator of thickness Zmax, interaction length 1.2 cm, and refractive index n. See table 1 for scintillator 
properties and appendix for variable definitions. Columns 4–13 are CRT values in ns FWHM for optimal trigger levels.

Nave n Zmax WTA WTB WTS WCA WCB WCS WEA WEB WES WEW WLB

1000 1.5 0.3 0.0240 0.0048 0.0096 0.0032 0.0006 0.0013 0.0031 0.0006 0.0013 0.0005 0.0002
4000 1.5 0.3 0.0238 0.0048 0.0095 0.0016 0.0003 0.0006 0.0016 0.0003 0.0006 0.0002 0.0001
10 000 1.5 0.3 0.0241 0.0048 0.0096 0.0010 0.0002 0.0004 0.0010 0.0002 0.0004 0.0002 0.0001
1000 2.0 0.3 0.0288 0.0096 0.0096 0.0038 0.0013 0.0013 0.0037 0.0013 0.0012 0.0008 0.0002
4000 2.0 0.3 0.0288 0.0096 0.0096 0.0019 0.0006 0.0006 0.0019 0.0006 0.0006 0.0004 0.0001
10 000 2.0 0.3 0.0290 0.0097 0.0096 0.0012 0.0004 0.0004 0.0012 0.0004 0.0004 0.0002 0.0001
1000 1.5 3 0.2084 0.0419 0.0733 0.0312 0.0063 0.0125 0.0307 0.0062 0.0123 0.0048 0.0004
4000 1.5 3 0.2086 0.0418 0.0713 0.0157 0.0031 0.0063 0.0157 0.0031 0.0063 0.0024 0.0002
10 000 1.5 3 0.2069 0.0414 0.0706 0.0100 0.0020 0.0040 0.0100 0.0020 0.0040 0.0015 0.0001
1000 2.0 3 0.2502 0.0837 0.0733 0.0373 0.0124 0.0124 0.0367 0.0123 0.0122 0.0074 0.0004
4000 2.0 3 0.2506 0.0834 0.0717 0.0190 0.0063 0.0063 0.0189 0.0063 0.0063 0.0038 0.0002
10 000 2.0 3 0.2495 0.0832 0.0706 0.0120 0.0040 0.0040 0.0120 0.0040 0.0040 0.0022 0.0001
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Table A1. Glossary of variables used in the calculations. All times in ns. All distances 
in cm.

a Fraction of optical photons absorbed (section 2.2).
c Speed of light in a vacuum (29.979 cm ns−1).
CXY,K,N Trigger time of photodetector XY  =  1A, 1B, 2A or 2B at trigger level LN corrected for 

photon delays (λ) but not the relative trigger delay (δ) (section 3.1.13). This calculation 
does not require the calibration procedure of section 4.

CXS,K,N Simple average of CXA,K,N and CXB,K,N from scintillator X  =  1 or 2, annihilation photon pair 
K and trigger level LN (section 3.1.14).

!D ZXY( ) Optical photon time dispersion parameter for photons emitted from an interaction at 
depth Z that reach front surface XY  =  1A or 2A, or reach rear surface XY  =  1B or 2B 
(section 3.1.7). Equations (4a), (4b), (7a) and (7b) are used in the example Monte Carlo 
calculations. In practice the actual dependence would be included in the trigger delay that is 
measured for each scintillator in the calibration procedure.

d1 Constant coefficient for the optical photon time dispersion (equations (4a) and (4b)) whose 
probability density function occurs after the arrival of a direct path optical photon at the 
photodetector.

d2 Quadratic coefficient for the optical photon time dispersion (equations (4a) and (4b)).
EXY,K,N Trigger time of photodetector XY  =  1A, 1B, 2A or 2B corrected for photon delays λ and 

trigger delays δ (determined in the section 3.2 calibration procedure). This is also the 
estimated time of arrival of the annihilation photon at surface 1A or 2A (section 3.1.15).

EXS,K,N Simple average of EXA,K,N and EXB,K,N from scintillator X  =  1 or 2, annihilation photon pair 
K and trigger level LN (section 3.1.16).

EXW,K,N Statistically weighted average of EXA,K,N and EXB,K,N from scintillator X, annihilation photon 
pair K and trigger level LN. The weighting factors are the inverses of their variances (section 
3.1.17).

∼
E ZXY N, ( ) Variance of the corrected trigger times EX,K,N as a function of depth Z and trigger level LN 

for photodetectors XY  =  1A, 1B, 2A, or 2B (sections 3.2.7 and 3.2.9).
Kmax Number of annihilation photon pairs used in the Monte Carlo calculation.
LN Trigger level (in units of the SER peak amplitude, sections 3.1.1 and 3.1.10).
J Single photoelectron time jitter of the photodetector (Gaussian FWHM).
n Refractive index of the scintillator at the wavelength of the scintillation light.
Mtot Average number of optical photons produced by an annihilation photon interaction.
!MX K, Randomized numbers of optical photons produced in scintillators X  =  1 and 2 by 

annihilation photon pair K (section 3.1.4).
Nave Average number of photons that contribute to the combined A and B photodetector outputs. 

In the example tables of section 6, Nave is constrained by setting PDE equal to  
Nave/((1  −  a)Mtot).

!NXY K,
Most probable number of optical photons produced by annihilation photon pair K that 
produce photoelectrons in photodetectors XY  =  1A, 1B, 2A and 2B that contribute to their 
output (sections 2.1 and 3.1.5, equations (6a) and (6b)).

NXY K, Randomized number of optical photons produced by annihilation photon pair K that 
produce photoelectrons in photodetectors XY  =  1A, 1B, 2A and 2B that contribute to their 
output (section 3.1.6).

PDE Photon detection efficiency (for SiPMs the product of photodetector quantum efficiency, fill 
factor, and avalanche probability).

PDFY,I(t) Probability density function for interactions at depth ZI for photodetector Y  =  A or B. 
Depends on the scintillator rise and fall times, the photodetector timing jitter, and the depth-
dependent optical photon time dispersion (section 4.1).

!R Each occurrence is a new random number drawn from a set uniformly distributed between 0 
and 1 (sections 3.1.8 and 4.2.5).

S(t) Photodetector SER (equation (5)). S(tpeak) is the peak amplitude.

(Continued )
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Sr Rise time of SER bi-exponential (equation (5)).
Sd Decay time of SER bi-exponential (equation (5)).
τd Decay time of the scintillator (ns).
τr Rise time of the scintillator (ns).
TXY,K,N Observed trigger times: time from the arrival of an annihilation photon K at entrance 

surface 1A or 2A to the time when the output pulse reaches trigger level LN in photodetector 
XY  =  1A, 1B, 2A, or 2B (section 3.1.11).

TXS,K,N Simple average of the observed trigger times TXA,K,N and TXB,K,N for scintillators X  =  1 and 
2 at trigger level LN.

!TXY K N, ,
Relative trigger times: time from the arrival of a direct path (first possible) optical photon at 
photodetector XY  =  1A, 1B, 2A, or 2B to the time when the output pulse from annihilation 
photon K reaches trigger level LN (section 3.1.9).

tXY K m, ,
^ The randomized time when photon m from annihilation photon pair K starts contributing to 

the output of photodetector XY  =  1A, 1B, 2A, and 2B (section 3.1.8).
WTA CRT (ns FWHM)  =  2.355  ×  (T1A,K,N  −  T2A,K,N)rms at the optimal trigger level LN.
WTB CRT (ns FWHM)  =  2.355  ×  (T1B,K,N  −  T2B,K,N)rms at the optimal trigger level LN.
WTS CRT (ns FWHM)  =  2.355  ×  (T1S,K,N  −  T2S,K,N)rms at the optimal trigger level LN. This is the 

CRT value using only the simple average of the trigger times
WCA CRT (ns FWHM)  =  2.355  ×  (C1A,K,N  −  C2A,K,N)rms at the optimal trigger level LN.
WCB CRT (ns FWHM)  =  2.355  ×  (C1B,K,N  −  C2B,K,N)rms at the optimal trigger level LN.
WCS CRT (ns FWHM)  =  2.355  ×  (C1S,K,N  −  C2S,K,N)rms at the optimal trigger level LN. This 

is the CRT value using trigger times that have been corrected for annihilation and optical 
photon transit times but not for depth-dependent optical photon time dispersion or pulse 
height.

WEA CRT (ns FWHM)  =  2.355  ×  (E1A,K,N  −  E2A,K,N)rms at the optimal trigger level LN.
WEB CRT (ns FWHM)  =  2.355  ×  (E1B,K,N  −  E2B,K,N)rms at the optimal trigger level LN.
WES CRT (ns FWHM)  =  2.355  ×  (E1S,K,N  −  E2S,K,N)rms at the optimal trigger level LN. This is the 

CRT value using trigger times that have been corrected for annihilation and optical photon 
transit times, and depth-dependent optical photon time dispersion and pulse height.

WEW CRT (ns FWHM)  =  2.355  ×  (E1W,K,N  −  E2W,K,N)rms at the optimal trigger level LN. This is 
the CRT value similar to WES but uses the inverse variance weighted average.

WLB CRT (ns FWHM) statistical lower bound (section 4).
XY Designates photodetector Y  =  A or B on scintillator X  =  1 or 2.
!ZX K, Randomized DOIs for annihilation photon pair K in scintillators X  =  1 and 2 (section 

3.1.3).
ZX K, Estimated DOIs for annihilation photon pair K in scintillators X  =  1 and 2 using the 

contributing photon numbers measured by photodetectors A and B (equation (2) and 
section 3.1.12).

ZI Center value of interaction depth interval I (ZI  =  IZmax/Imax).
Zcut The upper DOI limit for selecting interactions for use in calibration (sections 3.2.6 and 

3.2.8).
Zmax Length of scintillator (distance between surfaces A and B).
∆A,N Base trigger delay: time difference between an interaction at surface A (Z  =  0) and the time 

that the photodetector A output pulse reaches trigger level LN.
∆B,N Base trigger delay: time difference between an interaction at surface B (Z  =  Zmax) and the 

time that the photodetector B output pulse reaches trigger level LN.
∆x Annihilation point uncertainty along the line between the coincident detectors (cm). 

∆x  =  c∆t/2.

Table A1. (Continued )

(Continued )

S E Derenzo Phys. Med. Biol. 62 (2017) 3828



3854

6.4. Example calculations: hypothetical ultra-fast scintillator

Table 9 lists the calculated CRT values for a hypothetical ultra-fast scintillator (table 1). For 
the values Nave  =  4000 and J  =  0.2 ns FWHM the CRT using the statistically weighted aver-
age of the fully corrected trigger times WEW is 0.021 ns FWHM, 3.6 times lower than the 
simple average of the trigger times and 24% higher than the statistical lower bound.

Figure 6 shows four CRT curves for the ultra-fast scintillator plotted as a function of trig-
ger level in units of the peak SER. As will be explained in the next section the simple sum 

∆t Time of flight uncertainty, computed as the CRT between the coincident detectors  
(ns FWHM).

δXA,N(Z ) Relative trigger delay: difference in the trigger times of photodetector A between an 
interaction at Z  =  0 and an interaction at Z  >  0 at trigger level LN. This corrects for the 
time slewing due to depth-dependent variations in pulse height and optical photon time 
dispersion (sections 3.2.9).

δXB,N(Z ) Relative trigger delay: difference in the trigger times of photodetector B between an 
interaction at Z  =  Zmax and an interaction at Z  <  Zmax at trigger level LN. This corrects for 
the time slewing due to depth-dependent variations in pulse height and optical photon time 
dispersion (sections 3.2.7).

λA(Z ) Photon delays: transit time of an annihilation photon from entrance surface A to the 
interaction point at depth Z plus the transit time of a direct path (first possible) optical 
photon to the photodetector at surface A. (λA(Z )  =  Z/c  +  nZ/c).

λB(Z ) Photon delays: transit time of an annihilation photon from entrance surface A to the 
interaction point at depth Z plus the transit time of a direct path (first possible) optical 
photon to the photodetector at surface B. (λB(Z )  =  Z/c  +  n(Zmax  −  Z)/c).

µ Interaction length for 0.511 MeV annihilation photons in the scintillator (including both 
Compton and photoelectric interactions).

ΨX,K Time shift of the PDF that maximizes the joint likelihood of the photoelectron times from 
interaction K in photodetector X  =  A or B (section 4.2.7).

ΨWAB,K Statistically weighted average of the maximum likelihood time shifts that maximize the 
joint likelihood for the photoelectron times from interaction K in photodetectors A and B 
(section 4.2.8).

Ψ∼ ZX I( ) Variance of the maximum likelihood time shifts ΨX,K in photodetectors X  =  A or B for !ZK in 
the ZI interval (section 4.3.3).

Table A1. (Continued )

Table A2. Glossary of abbreviations used.

CRT Coincidence resolving time (FWHM ns)
DOI Depth of interaction (cm)
FWHMa Full-width at half-maximum
LSO Lu2SiO5:Ce,Ca scintillator
PDF Probability density function
PET Positron emission tomography
Rms Standard deviation from the mean (root mean 

square)
SER Single electron time response of the photodetector
SiPM Silicon photomultiplier
TOF Time of flight difference between two annihilation 

photons

a Gaussian distribution has FWHM  =  ( )8 ln 2  rms  =  2.355 rms.
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of the two trigger times does not compensate for the variations in annihilation photon transit 
time and this limits the optimal value of WTS. For the ultra-fast scintillator in this example the 
contributions from the random production of scintillation photons and the SER time jitter are 
relatively small and as a result WTS does not depend strongly on the trigger level. WCS is based 
on trigger times that have been corrected for photon delays and is much lower. WEW is based 
on fully corrected trigger times and is not far above the statistical lower limit WLB.

6.5. Example calculations: perfect scintillator and photodetector

In this section we explore the CRT for perfect scintillators and photodetectors, where all the 
optical photons are produced in an instantaneous burst, and the photodetector has no timing 
jitter (i.e. τd  =  τr  =  J  =  0). This isolates the factors that depend on the scintillator length and 
the ability to estimate the DOI, and excludes the random factors associated with optical photon 
production and detection. Specifically, the CRT value is due to the random depth-dependent 
variations in (1) the annihilation photon transit times, (2) the time distribution of the optical 
photons at the photodetector, and (3) the pulse heights. Table 10 lists the CRT values for scin-
tillator depths Zmax  =  0.3 and 3 cm, for Nave  =  1000, 4000, and 10 000 photoelectrons, and for 
refractive indexes n  =  1.5 and 2.0.

For both scintillator thicknesses (Zmax  =  0.3 and 3 cm) WTA changes very little with the 
number of photoelectrons Nave, because it is dominated by the variations in the annihilation 
and direct path optical photon transit times that range from 0 to (1  +  n)Zmax/c. For n  =  2 and 
Zmax  =  3 cm this time range is 0–0.3 ns.

Similar reasoning applies to WTB, which is dominated by the variations in the annihilation 
and direct path optical photon transit times that range from Zmax/c to nZmax/c. For n  =  2 and 
Zmax  =  3 cm this time range is 0.1–0.2 ns.

WTS is based on the average of the annihilation and direct path optical photon transit 
times from an interaction at depth Z to photodetector A (Z/c  +  nZ/c) and to photodetector 
B (Z/c  +  n(Zmax  −  Z)/c). Since this average is Z/c  +  nZmax/2c, the direct path optical photon 
transit times cancel and WTS is dominated by the annihilation transit time Z/c. For the 0.3 and 
3 cm deep scintillators Z/c varies from 0 to 0.01 and 0 to 0.10 ns, respectively, and is not a 
function of n. An important consequence is that for 3 cm deep scintillators with double-ended 
readout, the simple average of the two trigger times can never produce CRT values below 0.07 
ns FWHM, even with perfect scintillators and photodetectors (i.e. τd  =  τr  =  J  =  0, any n) and 
with an infinite number of photoelectrons.

These limits are reduced for WCA, WCB, and WCS, which are based on trigger times that 
have been corrected for annihilation and optical photon transit times. These CRT values are 
dominated by time slewing due to the depth-dependent variations in optical photon dispersion 
and pulse height, and decrease as the inverse square root of Nave.

The lowest CRT values WEA, WEB, WES, and WEW are realized when the calibration proce-
dure is performed to measure and correct for the depth-dependent variations in annihilation 
and optical photon transit times, and for time slewing due to depth-dependent variations in 
optical photon dispersion and pulse height. The CRT values result from the statistical uncer-
tainty in estimating the DOI and decrease with the inverse square root of Nave.

The statistical lower bound CRT (WLB) is computed by fitting the depth-dependent PDF 
to the creation times of all the photoelectrons produced in each interaction (section 4). In this 
case WLB is solely due to the time dispersion of the optical photons. The CRT values are well 
below 1 ps FWHM and decrease with increasing Nave.
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7. Conclusions

 • For double-ended readout the simple average of the two photodetector trigger times (CRT 
WTS) does not correct for depth-dependent variations in the annihilation photon transit 
time or time slewing due to depth-dependent variations in optical photon time dispersion 
or pulse height.

 • For 3 cm deep scintillators with double-ended readout, the simple average of the two 
trigger times can never produce CRT values below 0.07 ns FWHM, even with perfect 
scintillators and photodetectors (i.e. τd  =  τr  =  J  =  0, any n) and with an infinite number 
of photoelectrons (Column WTS in tables 9 and 10).

 • Analysis of data from a positron point source can determine all the important depth-
dependent correction factors, even for thick scintillators. With these corrections simple 
fixed-level triggering performs as well as fixed-fraction triggering and results in CRT 
values not far from the statistical lower bound.

 • A CRT value ∆t  =  0.02 ns FWHM (∆x  =  0.3 cm FWHM) will provide an 80-fold 
sensitivity advantage over non-TOF PET and eliminate the need for tomographic 
image reconstructions. This will require a scintillator with a much higher number of 
photons per ns than LSO and a careful calibration to correct for the depth-dependent 
factors.

 • The CRT statistical lower bound is the same whether the DOIs are randomly distributed 
or placed at the center of the scintillator. It is determined by the scintillator and photode-
tector properties and the total number of photoelectrons, not by how the photoelectrons 
are distributed between the two photodetectors.

 • Since the trigger times occur early in the photodetector output pulse, saturation effects 
should have little effect on the CRT values.

 • The large Fano factor of LSO has a negligible effect on the CRT values.
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Appendix. Variables and abbreviations

Table A1 lists the variables used in the calculations, and table A2 lists the abbreviations used 
in the text.
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