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REVIEW ARTICLE

Introduction

The advent of tyrosine kinase inhibitors (TKI) has proved to
be an extraordinarily important advance in the management
of patients with early phase Ph-positive chronic myeloid
leukemia and has also influenced the direction of research
into the underlying biology of leukemia and other tumors.
The identification of the JAK2V617F mutation in polycythemia
vera and other Ph-negative myeloproliferative neoplasms
(MPN) has made an extremely important contribution to our
understanding of the basic biology of these disorders. There
remain, however, many unanswered questions. This paper
has three discrete but related themes. First, it reviews some of
the murine systems that have been developed in recent years
to model the JAK2V617F-positive MPNs and BCR-ABL1-positive
chronic myeloid leukemia (CML) with a view to defining
those questions that might be answerable with appropriate
model systems. Second, it reviews the very recent data rele-

vant to the issue of whether TET2 mutations predispose to
development of an MPN or are ‘merely’ secondary events.
Third, it summarizes briefly some of the recent results of
using new agents to treat the Ph-negative MPN and describes
some molecular pathways that could be exploited for therapy
in the future. 

(a) Transgenic models of JAK2-mutant MPNs
The MPNs and related conditions, many of which are char-

acterized by dysregulated tyrosine kinase (TK) signaling,1 are
good candidates for mouse models. These models are typical-
ly established by expressing the relevant mutant signaling
molecules, e.g. BCR-ABL1 in CML or mutant PTPN11 (in
juvenile myelomonocytic leukemia) in mouse hematopoietic
cells.  There are two common strategies: (1) gene transfer into
hematopoietic cells by retro- or lenti-viruses followed by
transplantation; and (2) expression via a chromosomal trans-
gene (for review see 2). Each method has advantages and dis-
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This review focuses on topical issues in the biology and treat-
ment of the myeloproliferative neoplasms (MPNs). Studies in
transgenic mice suggest that BCR-ABL1 reduces the fraction of
self-renewing 'leukemic' stem cells in the bone marrow but
that some of these cells survive treatment with imatinib. This
also seems to operate in humans. Data from models also
strongly support the notion that JAK2V617F can initiate and sus-
tain MPNs in mice; relevance to disease in humans is less clear.
These data also support the hypothesis that level of JAK2V617F

expression influences the MPN phenotype: higher levels favor
erythrocytosis whereas lower levels favor thrombocytosis.
Although TET2-mutations were thought to precede JAK2V617F

in some persons with MPNs, it now appears that TET2 muta-
tions may occur after JAK2V617F. Further understanding of sig-
nal-transduction pathways activated in chronic myeloid
leukemia suggests various possible targets for new therapies

including the WNT/beta catenin, notch and hedgehog path-
ways. Finally, the clinical role of the new JAK2- and BCR-
ABL1-inhibitors is considered. Much further progress is likely
in several of these areas soon.
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ABSTRACT



advantages for modeling and for pre-clinical evaluation of
molecularly targeted therapies. 

Several previous publications reported data on the retro-
viral strategy for modeling MPNs induced by JAK2V617F,3-6

JAK2 exon-12 mutants7 and MPL W515L/K mutants.8

However, the transgenic mouse field is rapidly catching up.
Three new transgenic models of JAK2V617F-induced MPNs
were presented at the 2009 ASH meeting.9-11 Here, we
compare these new models with previously published
models and consider what they can teach us about the
pathophysiology of seemingly-corresponding MPNs
(Table 1).

One of the major advantages of the transgene approach
is the ability to express the mutant TK at near physiolog-
ical levels. This contrasts with retroviral vector models in
which relevant oncogenes are expressed at relatively high
levels.3 This disparity might be particularly important for
JAK2 as studies in cell lines indicate JAK2V617F must associ-
ate with a type-I cytokine receptor (such as EpoR or MPL)
for signaling activity.17 Consequently, competition
between the retrovirus-encoded mutant JAK2 and
endogenous, wild-type JAK2 may influence disease phe-
notype.18 The first published transgenic model from
Skoda and co-workers12 used a novel conditional inverted
allele of human JAK2V617F under the control of the human
JAK2–promoter. A constitutively expressed Vav-Cre
transgene or the interferon-inducible Mx-Cre transgene
was used to flip the transgene into the correct orientation.
Depending on whether Cre was expressed at high/sus-
tained levels (Vav-Cre) or at lower/transient levels (Mx-
Cre), recombination took place predominantly within or
between tandemly repeated transgenes yielding different
copy numbers and expression of mutant versus wild-type
JAK2 with mRNA ratios of ∼0.6 for Vav-Cre and ∼1.0 for
Mx-Cre. The Vav-Cre;FF (flip-flop) mice had normal
hemoglobin and WBC levels but increased platelets.  In
contrast, the Mx-Cre;FF mice had variable but significant
increases in WBCs and platelets and increased hemoglo-
bin (170-210 g/L) and low plasma Epo levels. Skoda and
co-workers concluded that lower expression of JAK2V617F

favoured an ET-like phenotype whereas higher expres-
sion favored a PV-like phenotype.  Subsequently, reports
of two transgenic JAK2V617F models were published where-
in mouse or human JAK2V617F was expressed from an H-
2Kb or Vav promoter.13;14 Here, there were significant dif-
ferences in the phenotype and penetrance between
founder mice (Table 1). However, in both models mice
developed MPNs with variable degrees of polycythemia
and thrombocytosis, extramedullary hematopoiesis,
splenomegaly and Epo-independent erythroid colony
(EEC) formation. Mice with lower relative levels of
mutant JAK2 expression tended towards an ET-like phe-
notype with predominant thrombocytosis. These data
support a correlation between level of JAK2V617F expression
and MPN phenotype.

Founder transgenic mice with constitutive expression
of dysregulated TKs (such as BCR-ABL1 and JAK2V617F)
show marked phenotype variability. This may be related
to different transgene insertion sites and/or to deleterious
effects of transgene expression during embryogenesis,19

the consequence of which is to select for decreased trans-
gene expression in survivors.

To circumvent these problems four recent JAK2V617F

models used “knock-in” approaches whereby the muta-
tion was introduced into the normal JAK2 locus, so that

the mutant JAK2 would be expressed physiologically. In
two models, mutant JAK2 expression was further condi-
tionally activated or regulated by Cre-lox recombination
(Table 1). Mice in all four models developed MPN pheno-
types.  In the model from Golam Mohi and colleagues,9;15

a mouse JAK2V617F allele was expressed after Mx-Cre-
mediated recombination.  Heterozygous and homozy-
gous transgenic mice developed an MPN with poly-
cythemia and thrombocytosis with a more marked phe-
notype in homozygotes.  In the model described by Tony
Green and co-workers,10 mice expressing a conditional
human JAK2V617F allele developed predominantly an ET-
like phenotype with thrombocytosis and moderate poly-
cythemia but not splenomegaly or myelofibrosis. The
model reported by Jean-Luc Villeval and colleagues
expressed a knock-in mouse JAK2V617F allele constitutive-
ly;11 these mice developed a severe MPN phenotype with
polycythemia, thrombocytosis, splenomegaly and
myelofibrosis.  

Most recently, Ebert and colleagues reported the pheno-
type of a similar constitutively expressed murine Jak2V617F

knock-in allele, where mice developed fatal MPN with
polycythemia and splenomegaly but lacking thrombocy-
tosis and myelofibrosis.16 The MPN was transferred to
secondary recipients by transplantation of stem (Lin-

/Sca+/Kit+, LSK) cells, but not by committed progenitors.
What can we learn from these diverse mouse models of

aberrant JAK2-expression?  First, although considerable
data suggest that one or more mutation(s) may antedate
the JAK2V617F mutation in persons with MPNs,20 the high
prevalence of one or more MPN phenotypes in the knock-
in transgenic models coupled with the polyclonal MPN
observed in the retroviral models5 strongly suggests that
JAK2V617F can initiate and sustain MPN in mice. Whether
this conclusion applies to humans is unknown.  

Second, one of the most interesting questions is how
one genetic lesion, JAK2V617F, can cause diverse MPN phe-
notypes. Is dose the answer? For example, in humans
homozygosity for JAK2V617F occurs exclusively in PV, and
not in ET.21 In these models, there is support for the con-
cept that expression of JAK2V617F at levels similar to or
higher than endogenous JAK2 is associated with erythro-
cytosis whereas lower expression levels favor thrombo-
cytosis.  In the most recent and more “physiological”
knock-in models, JAK2V617F expression is at levels equal to
endogenous JAK2.  In the models of Green and Villeval
mice developed polycythemia, albeit to different extents.  

However, the model reported by Mohi does not fit this
paradigm: JAK2V617F expression was (unexpectedly) only
about half that of JAK2 allele yet mice developed poly-
cythemia. Homozygosity increased platelets further
(Table 1).  

There are various possible reasons for these phenotype
differences including divergence between human and
mouse JAK2 and variability in mouse strains (which influ-
ences the MPN phenotype in retroviral models)5. Lastly,
we should recall that these mice differ from humans with
MPNs in that the mice lack a normal population of
hematopoietic stem cells and are wholly dependent on
JAK2V617F–associated hematopoiesis for blood cell produc-
tion.  As always, we can learn much from mouse models
but they rarely replicate precisely the disease in humans.
In fact, the diversity of MPNs in humans with a seeming-
ly canonical JAK2 mutation far exceeds the aforemen-
tioned diversity of mouse models.  It is well known that

Ph-negative and Ph-positive MPNs



familial MPNs with JAK2 mutation have diverse pheno-
types.22 This must mean factors other than JAK2 operate.

(b)  Mouse models of Ph–positive MPNs  
Mouse models of Ph-positive CML are critical for the

understanding of functionally relevant cellular and molec-
ular abnormalities and were developed using three
approaches: (1) xenotransplants; (2) retroviral transplanta-
tion models; and (3) transgenic mice. Although xenotrans-
plants of human CML cells to mice allow us to study and
manipulate human cells in vivo, engraftment of human
cells in NOD/SCID or similar mouse strains is generally
less efficient than transplants using allogeneic or syngeneic
murine cells. Moreover, although transplantation of
human CML acute phase cells causes acute leukemia in
NOD/SCID mice,23 chronic phase (CP) cells do not cause
disease despite obvious engraftment.23;24 In contrast, retro-
viral expression of BCR-ABL1 in hematopoietic stem and
progenitor cells results in versatile mouse models of CML
facilitating functional analysis of BCR-ABL1 mutants,
identification of critical target genes and cooperating
oncogenes and assessment of new therapies.25-28 This topic
was reviewed by van Etten.29 In addition, transgenic
mouse models were generated that express BCR-ABL1
under the control of different promoters and enhancers.
These models shed light on the nature of the CML-initiat-
ing cell and CML stem cell biology. Here we update only
the transgenic mouse models (P210 BCR-ABL1).

Honda and co-workers crossed Tec promoter-driven
BCR-ABL1 transgenic mice with BXH2 mice in a screen
for common integration sites and identified a novel coop-
erating gene, Zfp423.  

Coordinate overexpression of BCR-ABL1 and Zpf423
induced acute myeloid and lymphoid (B and T cell)
leukemias in mice reminiscent of acute phase.30 These
investigators reported a similar outcome by crossing Tec-
BCR-ABL1 transgenic mice with Bcl11+/- or H2AX+/- mice.31

Sánchez-García and co-workers generated transgenic
mice expressing BCR-ABL1 under the control of a Sca-1
promoter32 to recapitulate CML as a stem cell disease in
mice. Interestingly, embryonic lethality, commonly
described previously in BCR-ABL1 transgenic mice,19 was
not reported.32 Within 6-18 months, the transgenic mice
developed a CML-like disease characterized by mildly
increased WBC, increased neutrophils, splenomegaly and
hepatomegaly and ultimately acute leukemia resembling
the acute phase of CML in humans. The authors reported
that cross-breeding of two founder lines shortened devel-
opment of this phenotype to 1-2 months. BCR-ABL1
expression was confined to the Sca-1+ cell population
including hematopoietic stem cells (HSCs). However, the
fact that a significant proportion of mice developed solid
cancers (10% lung adenocarcinoma, 3% liver cancer, 2%
gastrointestinal stromal cancers and others) shows that Sca-
1 driven oncogene expression in non-hematopoietic cells
may hamper some aspects of transgenic mouse modeling. 

Koschmieder and co-workers generated BCR-ABL1
expressing mouse strains using the murine stem cell
leukemia gene (SCL) 3’ enhancer.33 After inter-crossing
SCLtTA and TRE-BCR-ABL1 mice to generate double-
transgenic SCLtTA/BCR-ABL1 mice, BCR-ABL1 expres-
sion was induced by tetracycline withdrawal. These mice
developed a CML-like disease within 30 to 120 days
(increased WBC and neutrophils, splenomegaly and gran-
ulocyte infiltration of the liver, gut and lung); these fea-

tures were reversible and re-inducible. These data suggest
that developing a CML phenotype requires sustained
BCR-ABL1 expression. Furthermore, Schemionek and co-
workers from the same group showed that this CP-CML
is transplantable into congenic mice.34 The LSK popula-
tion, but not the Lin-/Sca1-/Kit+ progenitor or the granulo-
cyte compartments, contains the CML-initiating cell.
BCR-ABL1 reduces long-term repopulating (LT-) HSC
numbers in the bone marrow and induces their differenti-
ation. Spleen LT-HSC numbers are not reduced. Further
experiments showed that the leukemia-inducing potential
of BCR-ABL1 positive bone marrow is compromised by
serial transplantation. These data suggest that BCR-ABL1
decreases the fraction of self-renewing stem cells in the
bone marrow. Interestingly, this is very similar to a recent-
ly developed knock-in mouse model for JAK2V617F which
showed reduced leukemia stem cell (LSK cell) numbers
and impaired repopulation potential in the JAK2V617F-posi-
tive mice.35 This parallel reinforces important similarities
of the JAK2V617F and BCR-ABL1 oncogenes in vivo. The
CML-like disease in transplant recipients is reversible by
stopping BCR-ABL1-expression and by giving imatinib. 

However, CML-initiating cells survive independently of
BCR-ABL1 expression and give rise to recurrent CML
when the BCR-ABL1 is re-expressed or imatinib is discon-
tinued.

Zhang and colleagues36 were able to confirm these
results. Using quantitative competitive repopulation
assays they showed that the frequency of functional HSCs
was reduced substantially in BCR-ABL1-positive mice
compared to controls. Moreover, although one in 6 Flt3-

CD150+CD48- LSK cells possessed repopulating activity,
only one in 80 cells caused leukemia in transplanted mice.
This may reflect the presence of BCR-ABL1-negative stem
cells and thus allows the study of BCR-ABL1- positive-
and –negative hematopoiesis in the same mouse. 

This group provided evidence for significant in vivo
activity of the combination of imatinib and the nuclear
histone deacetylase (HDAC) inhibitors LAQ824 or
LBH589.37 BCR-ABL1-transgenic mice treated with ima-
tinib and LBH589 had prolonged leukemia-free survival
after discontinuing treatment compared with mice treated
with either drug alone. Expression of one of the putative
targets, MCL-1, was strongly inhibited by combination
therapy, suggesting a role for MCL-1-inhibition in control-
ling or killing CML stem cells.

Transgenic mice may be valuable to identify molecular
target that may prove clinically useful. For example,
Perrotti and co-workers showed that RNA binding pro-
teins hnRNA-A1, -K, and –E2 are increased in BCR-ABL1
positive transgenic mice and that this results in SET acti-
vation and suppression of protein phosphatase 2A
(PP2A).38;39 These authors reported that the PP2A activator,
FTY-720, induces apoptosis of BCR-ABL1 positive LSK
cells in SCLtTA/BCR-ABL1 mice.39 This work is described
in greater detail later in this paper.

Finally, Sengupta and co-workers showed that BCR-
ABL1-positive spleen cells can transplant CML-like dis-
ease.  These cells have decreased adhesion and increased
migration compared to BCR-ABL1 negative cells.40 By
crossing BCR-ABL1 transgenic mice with Rac2-/- mice
these investigators showed that Rac2 is critical for BCR-
ABL1-induced disease and for the proliferation and sur-
vival of leukemia stem cells (LSC).40

Together with retroviral transplantation and as xeno-
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Table 1.  Comparison of transgenic JAK2V617F mouse models of MPN.
Lab         JAK2 source/    Strategy                                                          Phenotype and Comments Ref.
                 Expression       

Skoda            Human/           Human JAK2 BAC Tg containing 5’ promoter     By QRT-PCR using species-specific primers, Tg: endogenous JAK2 (12)
                  Conditional Tg     and exons 1-12, with JAK2V617F mutation               was ∼0.6 (Vav-Cre) and �1.0 (Mx-Cre). At 20 wks, Vav-Cre;FF (flip-flop) 
                                                  in an inverted cDNA (exons 13-25) flanked        mice had normal Hgb and leukocytes but predominant thrombocytosis
                                                  by loxP sites. Recombination by Vav-Cre            (plts 2000-4000 x 109/�L), while at 20 wks post-pIpC, Mx-Cre;FF mice
                                                  (sustained/high level Cre) or Mx-Cre +             had variable but significant increases in WBC and plts, accompanied 
                                                  pIpC (transient/moderate Cre). Vav-Cre            by an increased Hgb (17-21 g/dL) and suppressed Epo levels. Both
                                                  flipped ∼80% of cDNAs into sense orientation strains developed EMH, splenomegaly, and MF, but neither had EEC.
                                                  with Tg copy # of ∼2.0, while Mx-Cre flipped     Conclusion: lower expression of JAK2V617F favors an ET-like phenotype,
                                                  �∼70% with ∼5.7 Tg copies.                                     while higher levels favors a PV-like phenotype with expansion of erythroid 
                                                                                                                                         cell mass. MPN phenotype from Mx-Cre/FF transferred by BMT. (Two 
                                                                                                                                         founders with a non-floxed BAC Tg died before breeding, while a second
                                                                                                                                         conditional FF Tg founder had no phenotype upon Mx-Cre induction.) 

Shimoda        Mouse/           Mouse Jak2V617F cDNA Tg driven by the                  By QRT-PCR, line 1 expressed �0.45x as much mutant Jak2 as (13)
                 Constitutive Tg    H-2Kb promoter.  Two founders (lines 1            endogenous  (diploid) wt Jak2, and line 2 expressed �∼1.35x as much as 
                                                  and 2), both born at expected Mendelian          endogenous. Line 1 (incomplete penetrance):  19% had modest polycythemia
                                                  ratio. Background: mixed B6;DBA→B6.              (Hgb 18-20g/dL), 35% had thrombocytosis (1400-3000 x 109/�L), and a 
                                                                                                                                         correlation between higher Tg expression and PV-like phenotype. Line 2:
                                                                                                                                         uniform and extreme neutrophilia (WBC 100-400 x 109/�L) and 
                                                                                                                                         thrombocytosis (2000-5000 x 109/�L) from one month, with anemia 
                                                                                                                                         (Hgb 9-10 g/dL) unaccompanied by MF. Leukocytosis and thrombocytosis
                                                                                                                                         declined w/time while anemia persisted, coincident w/increased MF. Both 
                                                                                                                                         lines had EMH, splenomegaly, and EEC.

Zhao              Human/           Human JAK2V617F cDNA Tg driven by the                By QRT-PCR with species-specific primers, mutant JAK2 transcript level (14)
                 Constitutive Tg    Vav promoter.  Three founders generated,        was ≤ 1/16th that of endogenous/wt murine Jak2, even for line A. Line A 
                                                  two Tg lines maintained (A and B).                      developed prominent thrombocytosis (plts 1200-5000 x 109/�L) and modest
                                                  Background: mixed B6;DBA→B6, F0-F6. Tg       leukocytosis and erythrocytosis (mean Hgb 18.1), with EMH,
                                                  copy number ∼13 for A and ∼2 for B, single      splenomegaly, EEC, and moderate MF. Line B had a much milder
                                                  chromosome integration site for each.              phenotype, with modest thrombocytosis (mean 1300 x 109/�L) and 
                                                                                                                                         splenomegaly and no EEC or MF.

Mohi              Mouse/           Targeting vector with a loxP-flanked                    Hetero- or homozygous Mx-Cre;KI mice were induced w/pIpC. By direct (15)
                  Conditional KI     cassette  containing mouse Jak2 cDNA               sequencing of QRT-PCR products (T:G ratio), mutant allele expressed
                                                  (exons 13-24)-polyA-transcription stop,             at �∼0.53x the level of wt Jak2. Phenotype at 12 wks post-pIpC was 100%
                                                  followed by genomic Jak2 exons 15-17                penetrant; both heterozygous and homozygous Mx-Cre;Jak2V617F mice
                                                  (with V617F mutation in e15), was                        had polycythemia (mean Hgb ∼22 and ∼18 g/dL, respectively), but 
                                                  knocked into the Jak2 locus between                  leukocytosis (mean ∼28 and ∼57 x 109/�L) and thrombocytosis (mean
                                                  exons 12 and 17. Background:                                1700 and �3500 x 109/�L) were more marked in homozygotes, as was
                                                  mixed B6;129Sv.                                                          splenomegaly, EEC frequency, and degree of MF. Polycythemia phenotype
                                                                                                                                         was transplantable by BMT. 

Green            Human/           Knocked in a human JAK2V617F cDNA Tg,               6 week-old Mx-Cre;JAK2 V617F /+ mice were induced with pIpC. (10,35)
                  Conditional KI     preceded by a floxed pGK neo pA cassette,      Species-specific QRT-PCR for human and mouse Jak2 found equivalent
                                                  into the murine Jak2 exon 2 (containing AUG) expression. pIpC-treated mice developed a chronic MPN characterized
                                                  locus. Background: mixed B6;129S7/SvEvBrd.    by moderately increased hematocrit (∼18 g/dL vs. 16 control) and platelet 
                                                                                                                                         counts (�1700 x 109/�L  vs. 1300 control), and EECs, but no splenomegaly or MF. 
                                                                                                                                         Plasma Epo levels normal. MPN phenotype transferred by BMT.

Villeval           Mouse/           Knocked in a mouse Jak2 exon13 containing     Mice developed MPN at 5 months of age, characterized by marked (11)
                  Constitutive KI    the V617F mutation into the Jak2 locus,             polycythemia (Hct 71%±3.6%), leukocytosis (WBC 79±11 x 109/�L) and
                                                  removed the FRT-flanked neo cassette              thrombocytosis (4400±700 x 109/�L). By allele-specific QRT-PCR, there
                                                  by crossing to FLP transgenic mice.                    were equal amounts of wild-type and mutant Jak2 mRNA expressed.  Mice
                                                  Background: mixed B6;129Sv.                                 also exhibited splenomegaly, EMH, EECs, and age-related MF.  MPN 
                                                                                                                                         phenotype was transferred to recipients by BMT.

Ebert             Mouse/           Knocked in an inverted mouse Jak2 exon 13      Mice developed fatal MPN by 8 weeks of age that was 100% penetrant and (16)
                  Conditional KI     containing the V617F mutation  into the             fatal with median survival of 146 days, characterized by polycythemia and
                                                  Jak2 locus and recombined and inverted           splenomegaly but without thrombocytosis or EEC. Level of expression of
                                                  the exon in the germline. The parental              mutant Jak2 allele not determined. MPN phenotype transferred by
                                                  allele was null and could not be                           transplantation of stem (LSK) cells.
                                                  homozygosed. Background: B6 backcrossed.

BAC, bacterial artificial chromosome; BMT, bone marrow transplantation; EEC, endogenous (Epo-independent) erythroid colonies; EMH, extramedullary hematopoiesis; KI, knock-in;
MF, myelofibrosis; QRT-PCR, quantitative real-time polymerase chain reaction; Tg, transgene 



transplant models, transgenic mouse models can be
exploited in studies of the CML phenotype, of CML stem
cell biology, and of new therapeutic strategies. 

(c) Role of TET2 in the Ph-negative MPNs
Why is it difficult to identify pre-JAK2V617F events in MPN?

It is quite likely that even if these events are important they
have subtle or no clinical consequence by themselves.
Shortly after the JAK2V617F mutation was described studies of
clonality of hematopoietic cells suggested the existence of
pre-JAK2V617F mutations, at least in some people.41-43

The first pre-JAK2V617F event described was deletion of
the long arm of chromosome 20 (del[20q]). In some
patients with MPNs del(20q) seemed to precede the
JAK2V617F mutation. In others this sequence was
reversed.20;44 Thus del(20q) appeared independent and was
unlikely to predispose to JAK2V617Fmutation. Other data
from persons with MPNs and JAK2V617F mutation whose
disease transformed to blastic phase (BP) gave an intrigu-
ing picture: leukemia cells from one-half of the cases were
JAK2V617F-negative.4;43;45 These data argue for the existence
of molecular lesions that might predispose to JAK2V617F

mutations in MPN and/or to other JAK2V617F independent
acute myeloid leukemias. 

In 2009, mutations in TET2 and ASXL1 were identified
in various myeloid neoplasms, including in around 10% of
patients with MPNs.46-49 TET2, like other members of the
TET family enzymes, presumably has an important func-
tion in DNA demethylation. It has recently been shown
that the murine Tet proteins catalyze the conversion of 5
methylcytosine to 5 hydroxymethylcytosine on DNA.50

Thus TET2 mutations are thought to alter hematopoietic
stem cell (HSC) functions and myeloid development via
epigenetic modifications.  These mutations were ideal pre-
JAK2V617F candidate events. Indeed, studies of clonality in

appropriate patients with typical MPNs showed that most
cells had both mutations but that some cells had a TET2
mutation without a JAK2 mutation44;47 suggesting that the
TET2 mutation was antecedent. In one case, the TET2
mutant clone acquired JAK2 and MPL mutations in dis-
tinct sub-clones.51 Is this the whole story? Unfortunately,
no. Data from other patients with MPNs show a JAK2
mutation preceding the TET2 mutation.44;52;53 Other
patients with MPNs had clones with either a JAK2 or
TET2 mutation but not both.44 Similar studies of ASXL1
mutations have not been published but the same complex-
ity is expected. What if people with these mutations
develop transformation to blastic phase? In some
instances, blast phase cells with TET2 defects had no
TET2 mutation detected before transformation.51;54

In contrast, in 2 of 3 cases of MPN with ASXL1 muta-
tions after transformation the mutation was also detected
before transformation.51;54 This seeming discordance with
TET2 should be tempered as TET2 mutations were detect-
ed in 10-20% of de novo cases of acute myelogenous
leukemia (AML) and MPNs undergoing transformation to
blastic phase.55

It is, therefore, possible that TET2 mutations, but also
ASXL1 and del(20q), have different roles in initiating
MPNs and causing AML alone or are associated with other
molecular abnormalities.51;54

What of familial MPNs? The first studies of TET2 muta-
tions in familial cases reported no inherited mutations.52

However, a recent report described sisters with a germline
mutation of TET2.44 One presented with a JAK2V617F-posi-
tive PV; the second was normal. This is the first evidence
that TET2 mutations can be present in hematopoietic cells
with no clinical consequence for decades. These data sug-
gest no or only a very subtle effect on hematopoiesis of
TET2 mutations. It could give a slight proliferative advan-
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Table 2.  Current trials of targeted therapies for Ph-negative MPNs.
Drug Target Phase Disease Efficacy Toxicity Ref

JAK2 Inhibitors
INCB18424 JAK2 III MF Splenomegaly Anemia (114;115)

JAK1 PV/ET Symptoms Thrombocytopenia
TG101348 JAK2 II MF Splenomegaly Anemia (116)

FLT3 Symptoms Thrombocytopenia
Gastrointestinal

SB1518 JAK2 II MF Splenomegaly Gastrointestinal (117)
FLT3 Symptoms

CEP701 JAK2 II MF Splenomegaly Gastrointestinal (118;119) 
FLT3 PV/ET Symptoms Anemia

Thrombocytopenia

Other Targets

LBH-589 HDAC II MF Splenomegaly Anemia (120)
Anemia Thrombocytopenia

Gastrointestinal
RAD-001 mTOR II MF Splenomegaly Minimal (121)

Symptoms
Pomalidomide IMID III MF Anemia Minimal (122)

Pegylated Biological III PV/ET Erythrocytosis Myelosuppression (123;124)
Interferon Thrombocytosis Depression
Alpha-2a Symptoms



tage to HSCs by causing a few “extra” mitoses, which
could prepare the way for subsequent oncogenic muta-
tions. This is reminiscent of the “fertile ground” hypothe-
sis proposed for the JAK2 46/1 haplotype to explain the
predisposition to acquire a JAK2V617F MPN.56-60 Intriguingly,
this haplotype is the only marker that we can reasonably
call a “pre-JAK2V617F condition” to date, although most indi-
viduals who carry it will never develop any JAK2V617F MPN.

(d) What molecular changes in the CML stem cells are
critical for leukemia initiation or progression?  

First and second generation TKI given to chronic phase
(CP) CML patients substantially reduce the number of
leukemia cells in the blood and bone marrow with
improved survival. However, the story of the rationally-
designed TKIs (imatinib, nilotinib, dasatinib and bosu-
tinib) seems to have reached an ‘impasse’.61 For example,
TKI-based therapies are largely ineffective in blast phase
(BP) CML.  More importantly, they are apparently unable
to eradicate CML leukemia stem cells (LSCs). This raises
several important questions; (1) Is BCR-ABL1 expression
and/or activity essential to maintain the LSC reservoir in
CP and BP? (2) Does BP result from genetic or epigenetic
events that occur in LSCs or in more committed cells like
granulocyte-macrophage progenitor (GMP) cells; and (3)
what role, if any, does BCR-ABL1 play in blastic transfor-
mation?

Molecular events critical for the CML LSC
Considerable data indicate that TKI do not kill quiescent

Ph-positive LSCs (defined as lineage-negative
CD34+/CD38-/CD90+ cells capable of self-renewal and of
inducing transplantable leukemia in mice). Consequently,
there is agreement that BCR-ABL1 expression and/or
activity is not essential for self-renewal and survival of the
CML LSC.62

Several observations in this context are of interest: (1)
increased genomic instability correlating with levels of
reactive oxygen species (ROS) in quiescent and proliferat-
ing CML LSCs and progenitors is associated with BCR-
ABL1 expression;63 (2) enhanced activation of the b-
catenin and hedgehog pathways64;65 is important for CML
LSC survival and self-renewal;66-70 (3) treatment with the
PP2A activator FTY720 decreases the number of Ph-posi-
tive but not of normal quiescent HSCs;39;65 (4) activity of
FoxO transcription factors also appears important for
maintaining CML LSC quiescence;71 (5) ALOX5-regulated
MSR1 gene might be critical for maintaining CML LSCs;
(6) BMI-1 expression decreases bone marrow homing and
increases proliferation and maturation of leukemia Lin-

/Sca+/Kit+ HSCs;72 (7) deficient RAC2 expression decreases
survival of CML LSCs;73 (8) loss of BCL6 expression results
in decreased self-renewal of BCR-ABL1-transduced bone
marrow cells;74 and (9) oxygen levels in the bone marrow
microenvironment may also be responsible for the quies-
cence and TKI-resistance of CML LSCs.75;76 These diverse
data suggest that CML LSC behavior is controlled by dif-
ferent factors.  The various pieces of this puzzle need to be
molecularly and functionally inter-connected and could
then form the basis for new therapeutic interventions.

Molecular events critical for the CML blastic phase
granulocyte/macrophage progenitor

Lymphoblastic transformation may be characterized by
non-random genetic aberrations (involving CDKN2A/B

and IKZF1) and by expression of the activation induced
deaminase (AID) mutator enzyme.77-79 In contrast, myeloid
blastic transformation seems correlated with increased
BCR-ABL1 expression and kinase activity in CD34+ BP
progenitors.61 BCR-ABL1 dose and kinase-dependent loss
of PP2A activity and ROS induced genomic instability
appear critical for the epigenetic and genetic heterogeneity
characteristic of myeloid transformation.63;80 Increased
BCR-ABL1 activity also appears essential for the differen-
tiation-arrested phenotype of granulocyte/macrophage
progenitors (GMP) in BP through alteration of the hnRNP-
E2-CEBPα-miR-328 network.81 There is a concomitant
decrease in PTEN that is BCR-ABL1-dependent which
accelerates development of a BP phenotype in mice.82

Interestingly, it seems that higher levels of BCR-ABL1 are
necessary for the non-hypoxic induction of the hypoxia-
inducible factor-1α (HIF-1α) that, in turn, seems to be
required by BP progenitors to tolerate enhanced BCR-
ABL1 signaling and to exhibit TKI-resistance in vivo.83

The real role of BCR-ABL1 is controversial both in the
regulation of survival and in the acquisition of a stem cell
phenotype (e.g. self-renewal) by the GMPs.  It has been
reported that BP GMPs act as LSCs and that acquisition of
self-renewal is dependent, at least in part, on BCR-ABL1-
dependent induction of b-catenin expression/activity.84;85

However, some recent data suggest that BCR-ABL1 activ-
ity is actually dispensable for the b-catenin-dependent
self-renewal of BP GMPs39;68;80;86 and that aberrant modula-
tion of other pathways (e.g. sonic hedgehog, HES1) may
also contribute but do not, per se, confer “stemness” to
BCR-ABL1-positive GMPs.67;87 Likewise, recent reports
indicate that survival of BP progenitors might occur in a
BCR-ABL1-independent manner and involve aberrant
expression of pro-survival factors (e.g. BCL2, BCL-XL,
MCL1),88-91 despite the fact that a plethora of evidence
accumulated during the past two decades showed a strict
dependence between BCR-ABL1 activity and prolifera-
tion/survival signals in CD34+ BP progenitors.61 It was
recently reported that targeting BCR-ABL1 expression in
the lineage-negative Sca+ cell compartment induces a
CML-like MPD that in 70% of mice progresses to BP-like
disease with lymphoid or myeloid features.32

These apparent incongruities might depend on the exis-
tence in BP of BCR-ABL1-positive progenitors which are
capable of originating or maintaining a BP phenotype and
that, for still unknown reasons, are not “oncogene addict-
ed” and, therefore, intrinsically resistant both in vitro and in
vivo to TKI treatment. Other data support this hypothesis
and perhaps explain the paradoxical short- but not long-
term BCR-ABL1-dependence of BP CD34+ progenitors in
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Table 3.  Potential strategies to target CML LSC.
LSC apoptosis Microenvironment/self-renewal/ Immune therapy

quiescence/differentiation

BMS-214662125;126 CXCR4 inhibitors RISCT (127;128)
HDAC Hedgehog pathway inhibitors66;67 Vaccines129-132

inhibitors37

Proteasome WNT pathway inhibition
inhibitors133-135

Autophagy Cytokines e.g. G-CSF137-139

inhibitors136



TKI-treated BP patients. For example, in vitro clonogenic or
survival assays performed with CD34+ BP progenitors
exposed to different TKIs never show complete inhibition
of leukemic cell growth/survival, and other oncogenic
tyrosine kinases (e.g. JAK2, LYN) may regulate and/or
overcome BCR-ABL1 expression or activity.91;92

Interestingly, inhibition of the activity of the tumor sup-
pressor PP2A plays a pivotal role in controlling BCR-ABL1-
positive stem and progenitor cell survival because it
impairs not only BCR-ABL1 but also JAK2, LYN and b-
catenin activities when pharmacologically or molecularly
reactivated.93

(f) What is the role of the second generation TKI in
front-line management of patients with CML in first
chronic phase? 

For patients with CML in CP the introduction of ima-
tinib mesylate in 1998 was an important therapeutic mile-
stone. About 65% of patients treated with imatinib
achieve and maintain for seven or more years a complete
cytogenetic response (CCyR) and their survival is substan-
tially longer than that achievable with any previous thera-
pies. The adverse events attributable to imatinib are rela-
tively mild and usually manageable.94-96

Conversely this means that one-third of CP patients can-
not tolerate imatinib or have a leukemia that proves to be
resistant to the drug.96 The best characterized mechanism
of resistance is the acquisition of mutations in the BCR-
ABL1 kinase domain (KD), of which the T315I mutation is
the leading example,97 although the majority of CP patients
resistant to imatinib have no identifiable KD mutation. 

Efforts have, therefore, been made to improve the results
achieved with the original TKI. Dasatinb and nilotinib may
now replace imatinib as first-line therapy on the basis of
their efficacy in patients with CML in CP who had failed
imatinib. The third new TKI, bosutinib, is not yet licensed
but is now in a phase III clinical trial, initial results of which
will be reported shortly. In the short term, all three drugs
seem valuable for patients who have failed imatinib; about
40-50% of these patients achieve a CCyR.98;99

The initial results of the ENESTnd trial in which nilotinib
was compared prospectively with standard dose imatinib,
and of the DASISION study comparing dasatinib with
imatinib, were reported recently.100;101 Both studies were
designed for patients with previously untreated CML in
CP. Dasatinib and nilotinib both proved better than ima-
tinib. The principal efficacy observations were a higher
rate of incidence of CCyR at 12 months, which was
achieved at a faster rate, and a reduced rate of progression
to advanced phase following 18 months of follow up for
the nilotinib study and 12 months for the dasatinib study. 

All three drugs of the newer TKI have specific side
effects. Thus dasatinib has been associated with pleural
effusions, nilotinib with biochemical changes in liver func-
tion and bosutinib with gastrointestinal effects, particularly
diarrhea. None of these drugs is active for patients in
whom the Ph-positive clone consists predominantly of
cells with a T315I mutation. Preliminary data suggest that
a new multi-kinase inhibitor, ponatinib (previously
AP24534), may be able to overcome resistance attributable
to the T315I.102;103

There are still a number of unresolved issues in the man-
agement of CML in CP. For example, (a) it is not yet clear
whether the clinician should leave treatment unchanged in
a patient who achieves a complete cytogenetic response

but no major molecular response; (b) it is not yet clear
whether the second generation TKIs should be used for all
newly diagnosed patients or whether it would be expedi-
ent to retain imatinib as initial therapy in some cases; (c) it
would be very valuable if one could reliably predict
responses in individual patients and design appropriate
therapy for those who develop resistance to existing TKIs;
and most importantly, (d) we need a therapeutic strategy
(other than allogeneic stem cell transplantation) designed
to ‘cure’ CML (see below).

(f)  How can we target CML stem cells in responders to
TKIs?  

CML is recognized as a paradigm for cancer stem cells.
Although TKIs have dramatically altered the history of
chronic phase CML these drugs are expensive and unavail-
able to most people with CML who live outside North
America or Western Europe. Side effects are substantial and
drug-adherence studies suggest overall compliance levels of
about 70 percent at two years, with levels of compliance
strongly correlated to disease response.104;105

CML cells that originate from a CML stem cell follow a
near normal differentiation hierarchy despite the fact that
they originate from a leukemia stem cell (LSC). Therapy
with TKIs targets the more mature BCR-ABL1+ and results
in and causes a rapid decline in the numbers of leukemia
cells in the blood and bone marrow.106;107 This is followed by
a much slower reduction in CML progenitor cell numbers
over several years. Thereafter, it is unclear whether the
slope continues very slowly downwards with cure predict-
ed by 17-20 years107 or whether disease levels reach a
plateau, presumably because at least some CML LSCs are
resistant to killing by TKIs. Experimental evidence shows
that CML LSCs survive despite continued exposure to TKIs
was shown in vitro108-110 and in vivo.111

Major efforts are underway to apply systems biology
approaches to compare normal HSC with CML LSC with
the goal of finding novel targets that will allow selective
eradication of LSCs without harming normal HSCs.112;113

Many investigators have already begun pre-clinical work to
target LSCs (Table 2). These approaches can be broadly cat-
egorized in 3 ways (Table 3): (1) drugs/strategies that induce
apoptosis of quiescent LSCs in a selective or non-selective
manner; (2) drugs/strategies that address micro-environ-
mental LSC interactions and affect quiescence, self-renewal
and/or differentiation; and (3) drugs/strategies focused on
immune therapy.

In this rapidly developing field it is difficult to see where
the most important advances will occur. Whilst others are
focusing on optimizing vaccinations designed to eliminate
LSC, the groups of Tessa Holyoake and Ravi Bhatia have
studied approaches that target quiescent LSCs directly or
aim to drive LSCs into cell-cycle to sensitize them to TKIs.
Some of these approaches have been or will be in clinical
trials.67;137;138

Autophagy is a cellular lysosomal degradation pathway
essential for the regulation of cell survival and death. One of
the key regulators of autophagy is mTOR. In normal HSCs,
nutrients and growth factors signal via PI3K/AKT/mTOR
and keep autophagy suppressed. This pathway is mimicked
by BCR-ABL1 signaling in CML LSCs.  In normal HSCs,
growth factor deprivation results in inhibition of mTOR
and induces autophagy. Similarly, when CML LSCs are
exposed to TKIs there is potent inhibition of BCR-ABL1 sig-
naling, which induces autophagy. We recently reported that
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in CML LSCs this induced autophagy provides a survival
mechanism that, at least in part, explains resistance to
TKIs.137 Autophagy inhibitors are being developed but none
is currently available for clinical trials. Chloroquine is a
potent inhibitor of autophagy. We hypothesized that com-
bining a TKI with chloroquine would shift the balance
between apoptosis and induced autophagy in favor of
enhanced apoptosis of CML LSCs. This was shown in vitro
and in animal models and is the basis of a randomized clin-
ical trial comparing imatinib with or without hydroxy-
chloroquine in chronic phase CML patients achieving a
major cytogenetic response.

(e) New therapies for Ph-negative MPNs?
The evolving understanding of the molecular pathogene-

sis of Ph-negative MPNs has led to an unprecedented vari-
ety of different therapies. JAK2-inhibitor testing began test-
ing in 2007.  These trials focused on persons with MPN-
associated myelofibrosis (post-PV MF, post-ET MF and
fibrotic PMF).  These drugs are now being studied with per-
sons with PV and ET unresponsive to other therapies.
Alternative therapeutic strategies against different targets
are also being developed. 

MPN-associated myelofibrosis 
There is no FDA-approved therapy for MPN-associated

myelofibrosis.  Current therapies are off-label indications
palliative for anemia and/or reduction in splenomegaly.140

Allotransplants cure some persons with MPN-associated
myelofibrosis but are used in fewer than 5% of affected
persons.141

JAK2 Inhibitors
Patterns of efficacy and toxicity of JAK2-inhibitors are

increasingly overlapping. Drugs in the most advanced phas-
es of testing include INCB18424,114 TG101348,116 SB1518117

and CEP-701118 (Table 2). All rapidly reduce splenomegaly
and improve myelofibrosis-associated constitutional symp-
toms, without significantly changing molecular or histolog-
ical features of the disease. 

Toxicities include anemia and thrombocytopenia.
Gastrointestinal toxicity is common amongst drugs inhibit-
ing FLT3.

Alternative targets
The immune-modulatory drug pomalidomide produces

durable anemia responses without bone marrow suppres-
sion or neuropathy.122 The nuclear histone deacetylase
inhibitor LBH589 (Novartis) has promising activity in
myelofibrosis with responses in splenomegaly and ane-
mia.120 A phase II study is ongoing in the USA.  The mTOR
(mammalian target of rapamycin)-inhibitor RAD001 has
activity similar to JAK2-inhibitors (decreased splenomegaly
and improved constitutional symptoms).121

Polycythemia vera and essential thrombocythemia 
Therapy of PV and ET relies on short-term anti-platelet

drugs142 and selected cytoreduction for persons at high risk

of vascular events (hydroxycarbamide, anagrelide and alky-
lating agents).143 In PV/ET we still need new drugs (1) for
persons resistant or intolerant of current drugs to prevent
vascular events; and (2) to delay progression to myelofibro-
sis and blastic transformation.

JAK-inhibitors
Data on therapy with INCB18424 were reported in 73

PV/ET patients failing hydroxycarbamide.115 There was a
complete response in 94% of patients with PV and 61% of
patients with ET. No patients had a vascular event on-study.  

Splenomegaly and constitutional symptoms improved
similar to data in MPN-associated myelofibrosis.  Results
from a phase II trial with CEP701 in 39 subjects were less
impressive with several on-study vascular events and sub-
stantial gastrointestinal toxicity.119

Pegylated interferon alpha-2a
Conventional interferon alpha has been used in persons

with ET and PV but it is not well-tolerated.  Two recent tri-
als show better tolerance, efficacy in preventing vascular
events and the potential to produce molecular and histolog-
ical responses in persons with high-risk ET and PV.123;124 This
might decrease the likelihood of progression to myelofibro-
sis and blastic transformation. An international phase III
trial comparing hydroxyurea and pegylated interferon
alpha-2a is planned.
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