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Professor Peter Kuhn
Professor Alisa Tazhitdinova

June 2023



The Dissertation of Christopher Malloy is approved.

Professor Peter Kuhn

Professor Alisa Tazhitdinova

Professor Olivier Deschênes, Committee Chair
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Abstract

Essays in Public Economics

by

Christopher Malloy

This dissertation consists of three works which use econometric techniques to estimate

how shifting liability regimes and green energy transitions impact firm behavior, making

contributions to public economics.

In the first chapter, I develop a novel empirical strategy that causally estimates the

relationship between firm precautions and the level of liability each firm faces. Across

all sectors of the U.S. economy, regulators use liability regulations to encourage firms to

take actions that reduce the costs associated with low probability, high severity events

such as powerline-ignited wildfires and production defects. Despite the widespread use

of these regulations, there is limited evidence of their effectiveness across many sectors

of the economy. This study identifies a new channel through which liability regulation

influences firm behavior and provides causal evidence of firm responses to the entire

distribution of potential liability by studying a regulation in California’s electric utility

sector. Using exogenous variation in the replacement cost of structures that lie downwind

of powerlines, I find that firms increase their precaution by 130% in response to a $680

million increase in liability. In the short run, the estimates from this study imply that

the implemented liability regulation had welfare costs between $17 million and $7 billion.

The second chapter, joint with Olivier Deschênes, uses recently developed econometric

techniques to estimate how Renewable Portfolio Standards incentivize investments in

solar and wind generation across the U.S.. Despite a 30-year long history, Renewable

Portfolio Standards (RPS) remain controversial and debates continue to surround their

ix



efficacy in leading the low-carbon transition in the electricity sector. Contributing to the

ongoing debates is the lack of definitive causal evidence on their impact on investments in

renewable capacity and generation. This paper provides the most detailed analysis to date

of the impact of RPSs on renewable electricity capacity investments and on generation.

We use state-level data from 1990-2019 and recent econometric methods designed to

address dynamic and heterogeneous treatment effects in a staggered adoption panel data

design. We find that, on average, RPS policies increase wind generation capacity by

600-700 MW, a 21% increase, but have no significant effect on investments in solar

capacity. Additionally, we demonstrate that RPSs have slow dynamic effects: most of the

capacity additions occur 5 years after RPS implementation. Estimates for wind and solar

electricity generation mimic those for capacity investments. We also find similar results

using a modified empirical model that allows states to meet their RPS requirements with

pre-existing renewable generation and renewable generation from nearby states.

In the third chapter, also joint with Olivier Deschênes, we quantify how investments

in wind generation reshape regional economies across the U.S. and which workers are

impacted the most. Most western countries have made commitments or enacted policies

aiming to transform their economies to become carbon-neutral by 2050. Many of the

leading policies to reduce carbon emissions are also promoted as engines of job creation

and local economic development. While low-carbon transition policies continue to be

debated and proposed, few have been implemented, and none have operated for a long

enough period of time to permit an empirical evaluation of their impact. This paper uses

the natural experiment provided by the rapid deployment of wind electricity projects in

the United States over the period 2000-2019 to shed light on whether the low-carbon

transition can deliver long-lasting and high-quality jobs. We compile detailed data on

the location and operation date of 55,000 wind turbines, combined with county-level data

on employment, earnings, GDP, and per capita income to estimate the impact of wind

x



projects on regional economies. Our research design uses two-way fixed effects regression

and empirical strategies robust to concerns about heterogeneous treatment effects. The

empirical analysis points to a small, but durable positive effect of wind electricity invest-

ments on regional economies. Overall, the results suggest that the projected additional

150 GW of wind electricity production capacity from the Inflation Reduction Act will

create close to 164,000 jobs.

xi



Contents

Curriculum Vitae vii

Abstract ix
0.1 Permissions and Attributions . . . . . . . . . . . . . . . . . . . . . . . . 1

1 The Precautionary Consequences of Wildfire Liability: Evidence from
Power Shutoffs in California 2
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 Conceptual Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.4 How does firms’ precautions change when they face any liability? . . . . 21
1.5 How does the level of liability that a firm faces affect precaution? . . . . 29
1.6 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2 Causal Effects of Renewable Portfolio Standards on Renewable Invest-
ments and Generation: The Role of Heterogeneity and Dynamics 47
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.2 Details on RPS Programs in the United States . . . . . . . . . . . . . . . 53
2.3 Data and Preliminary Analysis . . . . . . . . . . . . . . . . . . . . . . . 56
2.4 Empirical Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
2.5 Results: Impact of RPS Policies . . . . . . . . . . . . . . . . . . . . . . . 65
2.6 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3 Can the Low-Carbon Transition Energize Labor Markets? Evidence
from Wind Electricity Investments in the U.S. 75
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.2 Data and Descriptive Statistics . . . . . . . . . . . . . . . . . . . . . . . 82
3.3 Empirical Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

xii



A Appendix for “The Precautionary Consequences of Wildfire Liability:
Evidence from Power Shutoffs in California” 105
A.1 Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
A.2 Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
A.3 Additional Results and Robustness Checks . . . . . . . . . . . . . . . . . 126
A.4 Heterogeneous Treatment Effects . . . . . . . . . . . . . . . . . . . . . . 130
A.5 Appendix Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
A.6 Appendix Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

B Appendix for “Causal Effects of Renewable Portfolio Standards on Re-
newable Investments and Generation: The Role of Heterogeneity and
Dynamics” 139
B.1 Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
B.2 Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
2.3 Data Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

3 Appendix for “Can the Low-Carbon Transition Energize Labor Mar-
kets? Evidence from Wind Electricity Investments in the U.S.” 155
3.1 Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
3.2 Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

xiii



CONTENTS

0.1 Permissions and Attributions

1. The content of chapter 2 and appendix B is the result of a collaboration with Olivier

Deschênes and Gavin McDonald.

2. The content of chapter 3 and appendix C is the result of a collaboration with Olivier

Deschênes.
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Chapter 1

The Precautionary Consequences of

Wildfire Liability: Evidence from

Power Shutoffs in California

1.1 Introduction

Low probability, high severity events such as oil spills or product defects characterize

many sectors of the U.S. economy. A popular approach to mitigate the frequency of such

events is to make firms liable for potential damages in part to incentivize precaution. To

understand the effectiveness of liability regulation we need to know how firms’ precautions

respond to: (1) the application of liability and (2) changes in the amount of damages

they are liable for.

In settings where a firm faces large potential liabilities from an accident, its liability

cannot exceed its asset value because it may use bankruptcy to avoid further damages.

This discrete drop in firms’ incentives for precautions at their asset value is commonly

termed the judgment-proof problem (Shavell (1986)). One common solution used to
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solve the judgment proof problem is to cap firms’ level of potential liability. However,

determining the liability cap level is a difficult task for a regulator: higher caps induce

firms to undertake greater precautions as they bear a larger share of liability costs,

but setting too high a cap may cause the firm to declare bankruptcy, shifting liability

costs onto the public. This creates ambiguity about a fundamental question in public

economics: What are the efficiency tradeoffs associated with capping liability?

Motivated by this gap in the literature on liability regulation, this paper provides the

first causal evidence of how firms’ precautions responds to the imposition of a negligence

standard in California’s electric utility sector. Between 1999 and 2017, firms faced with

covering liabilities due to power line fires were allowed to recoup these costs through

increases in retail electricity prices. However, since November 2017, utilities have borne

liability costs whenever the regulator found that their imprudence led to an ignition.

Using this setting, I estimate an empirical model that shows how firms’ use of one type

of precaution, called a Public Safety Power Shutoff event (PSPS), changed following the

policy shift. Furthermore, I develop an empirical model which uses daily variation in the

replacement cost of structures that are downwind of power lines to estimate how firms’

use of power shutoffs respond to the entire distribution of potential liability. Since firms

in this setting are responsible for the replacement cost of structures damaged by power

line-ignited fires, variation in downwind regions across days creates exogenous changes

in potential liability.

Firms use Public Safety Power Shutoff events to prevent fire ignitions along their

power lines. During a power shutoff, utilities turn the power off on sections of their

energy infrastructure when forecasted climate conditions suggest an ignition is likely

to occur. Because electricity must be running through a power line for an ignition to

happen, power shutoffs significantly reduce the likelihood of fire and potential liabilities

that a firm faces. In contrast, other types of precaution available to firms such as clearing

3
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vegetation away from power lines do not provide the same assurance because an ignition

could still occur.

This is an important setting to study liability regulation. Climate change is increas-

ing the severity of power line-ignited fires in the western U.S., making it important to

understand how to incentivize firms to prevent ignitions in this setting (Syphard and

Keeley (2015)). Furthermore, power line-ignited fires are more damaging than fires from

other ignition sources because they typically occur during high wind speed events when

the wind carries vegetation into the line. Since fires are also more likely to spread rapidly

and grow out of control during windy conditions, power line-ignited fires tend to cause

more damage than fires from other sources (Keeley et al. (2018)). For example, one

privately owned utility, Pacific Gas and Electric, faced over $30 billion dollars in liability

from several fires ignited in 2017 and 2018.1 Figure A.1 plots total damages in billions

of 2021 dollars by source of fire ignition and shows that, although power line-ignited

fires make up less than one percent of ignitions historically, they account for most of the

damage from fires in California between 2008 and 2019.

My setting also has a key advantage: it allows me to causally estimate the relationship

between the level of liability a firm faces and its precaution using exogenous changes in

the direction that the wind is blowing across days.2 Prior work has typically relied on

regulatory changes that cap the level of liability a firm faces to study this relationship,

but in this setting I am able to measure firms’ responses across the full distribution of

potential liabilities that they face.

Using administrative data on precautionary measures taken by the three largest pri-

vately owned utilities in California, I find three results. First, I show that firms dra-

1Los Angleles Times “Pacific Gas and Electric to file for bankruptcy as wildfire costs hit $30 billion.
Its stock plunges 52%”, January 14, 2019.

2The privately owned utilities in California’s electric utility industry that I study are representative
of most electric utilities in the United States. In fact, in 2017 privately owned utilities supplied 72% of
electricity customers in the United States (EIA Annual Electric Power Industry Report).
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matically increase their use of power shutoffs following the 2017 policy change. Prior to

the reform, power shutoffs occurred on 0.1 percent of days when the ignition risk was

elevated and, on average, created 2 lost customer hours of power. After the reform, power

shutoffs happened on 4 percent of days with heightened ignition risk and the number of

customer hours without power increased by 734 customer hours, on average. Using lower

and upper bounds on consumers’ value of electricity use from the literature, I find that

this increase in power shutoffs translates to between $150 and $51,000 of lost consumer

surplus at the average distribution circuit.3 I also show that although firms increase

shutoffs most in the regions of greatest ex ante ignition risk, these are more likely to

be areas with high shares of customers that rely on electricity for their medical needs,

making the shutoffs particularly costly.4

Second, I show that firms’ precaution is positively related to the level of liability

that they face. Since utilities are liable for the cost of replacing structures damaged by

fires that their power lines ignite, I measure liability using this value. In most settings,

causal estimation of the relationship between the level of liability that firms face and

precaution is difficult because liability is likely to be endogenous. My setting allows me

to remove this endogeneity by using daily variation in the replacement cost of structures

that lie downwind of each firm’s power lines between 2018 and 2020 to generate daily

variation in each utility’s potential liability. I estimate that power shutoffs increase by

130 percent relative to the average likelihood of a shutoff when the total replacement

cost of structures in downwind areas increases by 10 percent ($680 million).

3The lower bound of consumers’ value of electricity is the average retail price of electricity in California
as of August 2022 ($0.22 per kWh) and the upper bound is $76.11, the largest residential value of
electricity use from Collins et al. (2019). The upper bound of consumers’ electricity use may be much
higher however, because the shutoffs left commercial and industrial consumers, who have higher use
values of electricity, without power as well.

4Customers relying on electricity for their medical needs may require reliable energy to power res-
pirators, electric wheelchairs, and other devices. Because these customers have an above average use
value of electricity, this result implies that using an average value of consumers’ value of lost load would
systematically underestimate the welfare consequences of power shutoffs.
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Third, I estimate that the short-run welfare impact of the 2017 liability rule change is

negative and large. Depending on the chosen estimate of consumer’s value of electricity

from the literature, the policy resulted in a welfare loss of between $7 billion ($76.11

per kilowatt hour valuation of electricity use) and $17 million ($0.22 per kilowatt hour).

From the social planner’s perspective, this suggests that utilities have overused shutoffs

as a precautionary measure in the short term. I also develop a conceptual framework

that suggests this increase in shutoffs reduced utilities’ use of other types of precautionary

measures such as vegetation management or infrastructure upgrading.

These results have several policy relevant implications. I provide an empirical frame-

work to estimate how firms’ precautionary behaviors change across the distribution of

potential liabilities, a key parameter for determining the liability cap level. Current and

past policy proposals have included limits on the amount of damages homeowners can re-

cover from electric utilities.5 However, such policy proposals note that it is unclear what

level liability should be limited at and how such limits would distribute costs between

homeowners, electricity consumers, and utility shareholders.

Furthermore, I estimate how economic incentives influence the reliability of electricity

supply using a novel dataset of distribution power lines. This is relevant for regulators

across the U.S. who want to incentivize utilities to make investments that improve the

reliability of electricity supply and upgrade aging infrastructure. Because of the projected

growth of renewable energy generation in the United States, the federal government has

made upgrades of energy infrastructure a cornerstone of its energy platform.6 My work in

this paper underscores that having detailed administrative data on distribution networks

across the U.S. will be important for effectively upgrading energy infrastructure.

This paper makes three contributions to the literature in public economics. First,

5“Allocating Utility Wildfire Costs: Options and Issues for Consideration”, California Legislative
Analysts Office, 2019.

6See here.
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it poses a channel, expected damages, through which liability regulations impact firms’

decisions and quantifies how the burden of precautionary costs is distributed between

firms and electricity consumers. I show that, when firms bear liability costs, they direct

more precautionary effort to areas with high levels of expected liability. Since power

shutoffs are socially costly, utilities’ increased reliance on shutoffs to prevent ignitions

causes electricity consumers to bear a greater share of costs associated with ignition

prevention. This adds to previous work documenting other determinants of firms’ choice

of precaution such as bankruptcy (Shavell (1986)), subjective firm beliefs (Currie and

MacLeod (2013)), risk aversion (Shavell (1982)), and market structure (Chen and Hua

(2017)). Furthermore, this result contributes to a growing literature that examines the

determinants of wildfire suppression (Plantinga, Walsh and Wibbenmeyer (2022), Baylis

and Boomhower (2022)).

Second, I show how precaution varies across the distribution of potential liabilities

that firms face. Previous research has estimated how capping medical liability impacts

doctors’ prescribing behavior (Helland et al. (2021)), medical outcomes (Danzon (1985),

Kessler and McClellan (1996), Currie and MacLeod (2008), Frakes (2013)), and the labor

supply of doctors (Malani and Reif (2015), Kessler, Sage and Becker (2005), Klick and

Stratmann (2007), Matsa (2007)). Another related literature examines how changes in

liability impact toxic waste discharges and abatement technology adoption (Akey and

Appel (2021), Alberini and Austin (2002), Stafford (2002)). Many of these studies es-

timate how precaution responds to the level of liability a firm faces at one point in the

liability distribution because their variation comes from caps on liability at a particular

value. The empirical strategy in this paper allows me to estimate how precaution changes

across the entire distribution of liability that firms face in practice.

Previous work on the judgment-proof problem by Boomhower (2019) shows that

requiring firms to purchase insurance which covers damages beyond their own assets

7



The Precautionary Consequences of Wildfire Liability: Evidence from Power Shutoffs in California
Chapter 1

encouraged greater production by larger firms with better environmental outcomes in

Texas’ oil and gas sector. This paper complements Boomhower (2019) by directly esti-

mating how firms’ precautions change across the distribution of potential liability they

face. Since requirements to cover damages beyond firm assets may not be feasible in

settings with concentrated market power, such as the electric utility sector, the estimates

in this paper provide relevant information that can be used to implement other solutions

to the judgment-proof problem such as capping liability.

This paper also makes important contributions to a recent literature in environmental

economics and engineering. I show that liability considerations drive firms’ decision to

declare power shutoffs. Previous work by Abatzoglou et al. (2020) applied one utility’s

publicly stated climate thresholds for declaring power shutoffs to observed weather data

during 2019, finding that the utility used shutoffs more than would be predicted by its

own decision rules. I provide an economic explanation for this overuse of power shutoffs

by documenting the role of liability in determining firms’ precaution.

I also provide evidence that utilities’ use of power shutoffs are costly. This adds to

a recent literature that estimates the costs and benefits of public safety power shutoffs

in California (Sotolongo, Bolon and Baker (2020), Wong-Parodi (2020), Zanocco et al.

(2021), Mildenberger et al. (2022)). I provide the first causal estimates of power shut-

offs’ impact on customers that rely on electricity for their medical needs, finding results

consistent with the descriptive analysis performed by Sotolongo, Bolon and Baker (2020).

Finally, I provide the first evidence of fire liability’s impact on firms in the electric

utility industry. Yoder (2008) shows that the number of fires escaping from private

landowners’ property during a prescribed burn declines following the implementation

of strict liability regulations. I add to this evidence by causally showing that electric

utilities increase precautionary actions to prevent fire ignitions along their power lines in

response to greater liability for fire damages.

8
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The rest of this paper proceeds as follows: section 2.2 provides background on liabil-

ity regulation for power line-ignited fires in California and utilities’ ignition prevention

decision environment. Section 1.3 presents a simple theoretical model with testable pre-

dictions of liability regulation’s effect on utility’s precautionary effort. In section 1.4, I

develop an empirical framework to study how the application of liability impacts precau-

tion, describe the data used in this analysis, and present results. Section 1.5 develops

an empirical strategy to causally estimate the relationship between liability and shut-

offs, describes the data sources used in this analysis, and presents results. Section 2.6

discusses the results and outlines opportunities for future research.

1.2 Background

1.2.1 Institutional Background

This paper focuses on electricity distribution to residential and commercial consumers,

the final link in the U.S. electricity supply chain which consists of generation, transmis-

sion, and distribution. Electric distribution utilities are generally considered natural

monopolies and most are regulated by Public Utility Commissions (PUCs). The Cal-

ifornia Public Utility Commission (CPUC) mandate states that its goal is to provide

“. . . access to safe, clean, and affordable utility services and infrastructure.”

PUCs’ primary regulatory tool to influence utilities’ actions is called a rate case.

CPUC defines rate cases as quasi-judicial “proceedings used to address the costs of op-

erating and maintaining the utility system and the allocation of those costs among cus-

tomer classes.” At each rate case proceeding, the PUC determines the fixed electricity

price which a utility can charge customers until its next rate case proceeding. The three

largest Investor Owned Utilities (IOUs) in California each have their own separate rate
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cases every three years. In this way, utilities in the U.S. face price cap regulation with

periodic adjustment of the cap. The PUC adjusts the price cap so that each utility earns

a fair rate of return on its capital and recovers its operating expenses. However, the

PUC may disallow a capital investment if it does not meet a standard of being “used

and useful.”

Importantly, in California utilities could request to recover uninsured costs associated

with fires ignited by their distribution infrastructure during rate cases between 1999 and

2017. Thus, while utilities paid for residential damages and suppression costs associated

with fires ignited by their equipment, the expectation was that these costs could be

recovered through an increase in the electricity price cap. After a 2017 ruling in a rate

case proceeding that rejected San Diego Gas and Electric’s application to recover fire-

related costs through electricity rates, utilities faced a greater likelihood that they would

be financially accountable for such costs, increasing their liability. The next section

discusses the history of fire liability for utilities in California.

1.2.2 Liability Regulation in California

Liability regulations impact the incentives for individuals and firms to take risk and

exert precaution. In the case of fire ignited by utility-operated infrastructure, utilities

may adjust their level of precaution according to the proportion of fire-related damages

they would be held accountable for if an ignition occurs. Similarly, individual homeowners

may increase effort to reduce the probability of wildfire-related damage to their property

when a firms’ share of liability from a power line ignited wildfire is low. Regulators

choose the degree of liability that a firm faces by choosing from two types of regulations:

strict liability and a negligence rule. Under strict liability, the firm is fully liable for the

resulting damages of a fire ignited by their equipment. In contrast, the negligence rule
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sets a minimum threshold of precaution that firms must meet in order to avoid financial

responsibility for damages. In the simplest model, the firm will take the highest level of

precaution under strict liability and reduce its level of ignition prevention to just meet

the threshold when subject to the negligence rule (Kaplow and Shavell (1999)).

Since the California Supreme Court held Southern California Edison liable for dam-

ages resulting from a fire ignited by its equipment in the case Barham v. Southern

California Edison Company (1999), IOUs have been held to a strict liability standard for

fire damages. A key factor in the Court’s decision was the fact that, just as a government

can raise revenue through taxes, IOUs can raise revenue through retail electricity rates

in California.7 The Court reasoned that since the state government is strictly liable for

damages it causes under the Takings clause of the California constitution, IOUs could be

held strictly liable for damages related to power line-ignited fires. As a result, IOUs faced

strict liability for fire damages in excess of their insurance coverage, but could recover

these costs through increases in the retail price of electricity. IOUs continued to challenge

the Court’s ruling in Barham as recently as 2012, arguing that they could not have the

same liability status as a government because their ability to raise rates is subject to the

approval of the CPUC.8 The Court continued to maintain, however, that because there

was no evidence CPUC would not allow IOUs to recover costs through electricity rate

increases, strict liability would continue to apply.

Although IOUs faced strict liability, the precedent established by Barham ensured

that their liability net of revenue increases from raised electricity rates would be low.

The precedent that IOUs could recover liability costs through increased electricity rates

was not tested until several damaging fires ignited by power lines operated by San Diego

7The Court’s decision argues that IOUs’ ability to raise electricity rates is akin to a government’s
ability to levy taxes. IOUs are currently challenging this logic in court by pointing out that their ability
to raise electricity rates is subject to approval by the CPUC.

8Pacific Bell Telephone Co. v. Southern California Edison Co., 208 Cal. App. 4th 1400, 1403 (2012).
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Gas and Electric in 2007. The 2007 fires were the first time since the Barham decision

that the liability costs associated with power line-ignited fires exceeded an IOU’s liability

insurance coverage (Hafez (2020)). As a result, San Diego Gas and Electric’s application

to recover uninsured liability costs through electricity rate increases was a novel test of

the strict liability standard. Ultimately, CPUC rejected San Diego Gas and Electric’s

application to recover liability costs through electricity rates in December 2017, citing

San Diego Gas and Electric’s lack of precaution in preventing the 2007 fires as the decid-

ing factor.9 Because IOUs could no longer expect to automatically recover costs through

electricity rate increases following the 2017 CPUC decision, their liability for fire dam-

ages increased dramatically. CPUC’s decision states that “If the preponderance of the

evidence shows that the utility acted prudently, the Commission will allow the utility to

recover costs from the ratepayers.” While CPUC declined to define a precise negligence

threshold in its decision, the decision dramatically increased the share of liability that

each IOU is responsible for.

The “prudent manager” standard remained in effect until SB 901 added section 451.1

to the Public Utilities Commission Code which took effect for all fires ignited after

January 1, 2019. Section 451.1 replaced the “prudent manager” standard with twelve

non-exclusive criteria that CPUC uses to determine whether an IOU can recover costs

associated with fire liabilities through electricity rates. The criteria take into account

the IOU’s design, maintenance, and operation of assets in addition to the severity and

unpredictability of the weather event which caused the ignition. While, section 451.1

clarified the standard used to judge each utility’s negligence it still significantly increased

the share of costs associated with fire damages utilities expected to bear relative to the

pre-2017 regulatory environment. If the reader is interested in learning more about the

9Application of San Diego Gas and Electric Company (U 902 E) for Authorization to Recover Costs
Related to the 2007 Southern California Wildfires Recorded in the wildfire Expense Memorandum Ac-
count, filed Sept. 25, 2015. Decided Dec. 26, 2017.
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history of liability law and IOUs in California, Hafez (2020) provides a complete and suc-

cinct description. The next section describes utilities’ allocation of ignition prevention

effort and demonstrates how increasing the share of damages born by IOUs changes this

allocation.

1.2.3 The ignition prevention decision environment

This section draws largely from Wildfire Mitigation Plans submitted by Southern

California Edison, Pacific Gas and Electric, and San Diego Gas and Electric to CPUC

in 2019, 2020, and 2021. IOUs face a complex decision making environment as they de-

termine how and where to invest in strategies that lower the risk of fire ignited by their

electrical infrastructure. Despite accounting for 1-5% of total fire ignitions in Southern

California, utility-operated equipment accounts for 20-30% of total area burned by wild-

fires (Syphard and Keeley (2015)). Ignitions by power lines typically occur between July

and December and their two leading causes are wind-blown vegetation and equipment

failure. Much of the transmission and distribution infrastructure operated by IOUs in

California is quite old (in 2017 Pacific Gas and Electric estimated that the average age

of its transmission towers was 68 years old). As climate change has increased vegeta-

tive aridity and the severity of weather events in IOU service territories, the risk of fire

ignition has also risen. In determining which areas to prioritize for ignition mitigation ac-

tivities, utilities weigh the benefits of providing electricity to their residential, industrial,

and commercial customers with the cost of each activity and the ignition risk associated

with each section of their distribution and transmission infrastructure.

To determine the ignition risk of a section of power line, utilities consider historical

and forecasted weather conditions, infrastructure age, vegetative growth, presence of

outdated equipment with known ignition risk, and the value of electricity demanded by
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customers on that section. After determining the baseline risk of a power line segment, a

team at each utility then chooses an ignition mitigation activity which reduces the risk at

least cost. Utilities perform a range of ignition prevention activities including vegetation

management, installation of weather stations along power lines, burying power lines

underground, upgrading equipment, inspecting power lines, and turning off the power to

targeted sections of the grid when weather conditions elevate the probability of ignition.

Use of ignition prevention activities differs across utilities and over time as conditions

change and utilities learn more about the effectiveness of each action. For example,

Pacific Gas and Electric primarily deployed shutoff events and infrastructure upgrades in

2019 to reduce the probability of ignition, while Southern California Edison focused on

installing covered conductors that reduce the probability of ignition on high risk assets.

Recently, each IOU has increased efforts to bury sections of high-risk assets underground.

Historically, utilities in California have not relied on power shutoffs to reduce the

likelihood of ignition because they disrupt the service of electricity to customers, proving

costly. The California Public Utilities Commission (CPUC) defines Public Safety Power

Shutoff events as actions taken by utilities to temporarily turn off power to specific areas

in order to reduce the risk of fires caused by electric infrastructure. Of the three largest

IOUs in California, only San Diego Gas and Electric utilized shutoffs to prevent ignitions

prior to 2017.10 Because shutoff events require the utility to interrupt service to customers

it is seen as a measure of last resort to mitigate fire ignitions. As a result, each IOU

has invested in devices which further segment high-risk areas of their transmission and

distribution networks, allowing more targeted blackouts that affect fewer customers.

CPUC approves the use of power shutoff events by IOUs, first granting approval

to San Diego Gas and Electric in 2012, Pacific Gas and Electric in 2018, and Southern

10San Diego Gas and Electric sought and received approval from CPUC to initiate power shutoffs in
its service territory starting in 2013.
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California Edison in 2018. Figure A.2 plots the total number of customer hours impacted

by shutoff events over time separately for each of the 3 largest California IOUs. The

most affected customer hours occurred during 2019 in Pacific Gas and Electric’s service

territory. A similar pattern exists for the number of commercial customer hours and

medically vulnerable customer hours affected by power shutoffs.

IOUs consider climatic conditions, the condition of electrical infrastructure, and the

value of lost electricity load in potentially impacted areas to determine when and where

to declare power shutoffs. Pacific Gas and Electric reports the criteria it uses to declare

shutoff events on page 982 of their 2021 Wildfire Mitigation Plan. The minimum criteria

for deciding a shutoff in a high fire threat area are sustained wind speeds greater than

20 MPH, dead fuel moisture below 9%, relative humidity below 30%, and a fire potential

index (FPI) greater than 0.2.11 Despite these criteria, utilities have discretion in declaring

power shutoffs–Abatzoglou et al. (2020) provide evidence that shutoff events are used

more frequently by Pacific Gas and Electric than would be implied by their minimum

climate criteria.12

According to the standard economic model of liability regulation, the increase in the

share of liability born by IOUs following CPUC’s 2017 decision should increase the level

of ignition prevention effort (Kaplow and Shavell (1999)). Furthermore, increasing the

liability born by IOUs should also increase their use of more costly prevention activities

such as shutoff events. Finally, the increase in IOU liability should cause IOUs to direct

ignition prevention efforts to regions of their service area with a high property values.

Since destroyed property values make up a significant portion of liability damages born

by IOUs when their equipment ignites a fire, IOUs have an incentive to direct ignition

11The FPI measures the likelihood of an ignition causing a catastrophic wildfire using wind speeds,
temperature, humidity, dead and live fuel moisture, and vegetative cover types.

12Abatzoglou et al. (2020) note that this could be due to differences in climate modelling between
their study and Pacific Gas and Electric’s internal methods.
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prevention activities to these regions.

The next section develops a simple model of liability in the context of the electric

utility industry, presents several testable hypotheses, and derives a sufficient condition

for estimating the welfare change from an increase in the share of liability born by firms.

1.3 Conceptual Framework

The conceptual framework demonstrates three points: (1) Decreasing the return on

defensive capital investment increases utilities’ use of shutoffs, leading to less defensive

investment that mitigates ignitions along power lines. (2) Increasing the level of potential

liabilities leads firms to use more power shutoffs. (3) Utilities use more shutoffs when

ignitions are likely.

The model in this paper is adapted from Lim and Yurukoglu (2018) who show that a

regulator’s inability to commit to a predictable path of capital returns leads utilities to

systematically underinvest in capital. Here, I consider a simplified version of the model

with no strategic interaction between the regulator and the utility. In this model, the

utility takes the regulator’s choice of capital return as given rather than as an output

from a negotiation process.

For simplicity, I model a single utility’s decision to make defensive capital investments

and supply electricity to one distribution circuit. If the utility supplies electricity, it

receives future net revenue and faces expected liability damages from a potential ignition

along its power lines. However, if the utility declares a power shutoff it receives no revenue

and faces no expected damages. The utility self protects against expected damages by

making defensive capital investments that reduce the probability of ignition.13 In making

its decisions, the firm compares the marginal reduction in damages from self protection

13I define self protection in the same way as Ehrlich and Becker (1972), where defensive investments
reduce the probability of ignition rather than total damages.
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to total expected damages. Whenever expected damages exceed the marginal benefit of

self protection, the firm shuts off the power.

I make several important assumptions in this model. First, because the model only

considers one distribution circuit, the firm will never make additional defensive capital

investments if it shuts off the power. In practice, defensive investments may complement

power shutoffs because utilities could self protect against damages on days when the

ignition risk is low. Second, in a departure from reality, I do not allow for strategic

interaction between the firm and the regulator. The results from Lim and Yurukoglu

(2018) suggest that allowing for such interaction would cause firms to increase shutoff use

more and invest in defensive capital less. Third, I do not model the firm’s non-defensive

capital investment decisions. Finally, the model assumes that consumers value their

homes at the structure replacement cost. This simplifying assumption does not affect

the framework’s predictions, but it would increase the benefit of shutoffs for households

in the welfare effect of the liability regulation.

1.3.1 Firm’s Problem

The regulator sets a per unit output price p that allows the utility to recoup a rea-

sonable return on defensive capital (γk) and per-unit liability costs (ν).

p =
γk + ν

Q
(1.1)

Where k represents the stock of firm defensive investment which it uses to self insure

against damages from a potential fire ignition and ν is the exogenous rate of return on

defensive investment that is set by the regulator. The firm inelastically supplies Q units

of electricity to consumers who purchase a quantity Q of electricity up to a “choke” price

(p̄) above which they are no longer willing to pay.
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D(p) = Qif p ≤ p̄0otherwise (1.2)

The utility earns revenue by supplying electricity to retail consumers and reduces

expected liability costs by renting defensive capital that reduces damages from a potential

ignition from households at the prevailing interest rate (r). The utility can also prevent

ignitions by supplying no electricity to consumers.

max{π1, π0}

Where

π1(k) = max
k′

{−r(k′ − (1− δ)k) + β(ϕpQ)}

π0(k) = max
k′

{−r(k′ − (1− δ)k) + β(pQ− θ(k′)d̄)}

Where the utility earns π1 in profits if it shuts off the power and π0 in profits if it

supplies power, δ is the capital depreciation rate, and d̄ is the dollar amount of expected

liability damages if an ignition occurs. In the empirical analysis later in this paper, d̄ is

the total replacement cost of structures threatened by a power line ignition. The utility

can self protect against liability costs by investing in defensive capital (k′) which reduces

the probability of ignition (θ(k′)). The utility chooses whether to declare a blackout and

investment in capital subject to an uncertain probability of ignition (θ(k′)). When the

utility shuts off the power it recoups a fraction ϕ ∈ (0, 1) of its revenues by exerting market

power in wholesale electricity markets. β is the per-period discount factor. Substituting

the price of electricity from equation 1.1, allows us to rewrite the utility’s profit functions.
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π1 = max
k′

{−r(k′ − (1− δ)k) + ϕβ(γk + ν)}

π0 = max
k′

{−r(k′ − (1− δ)k) + β(γk + ν − θ(k′)d̄)}

Intuitively, when the firm supplies electricity (π0) it pays defensive capital rental costs

today and receives future net revenues (pQ) while facing expected liability costs from a

potential ignition (θ(k′)d̄). When the firm chooses to shutoff the power (π1), it pays

capital rental costs today and receives only a fraction of its revenue in the future, but

since an ignition cannot occur it also faces no expected damages.

Figure A.3 presents a simplified version of the firm’s shutdown decision to demonstrate

its incentive to use a power shutoff. Both graphs show example demand (red) and

supply (blue) curves for electricity when the utility supplies electricity (left) and shuts

off the power (right). For simplicity, I am showing the case where the utility does not

recoup any revenue when it declares a blackout (ϕ = 0). When the utility shuts off

the power, the supply curve shifts all the way to the left, creating lost producer and

consumer surplus. Intuitively, the utility incurs a private cost from shutoffs through lost

producer surplus and benefits from shutoffs because it faces no expected liability cost.

So the utility’s privately optimal choice of shutoffs depends on the relative magnitude of

producer surplus and expected liability costs. Importantly, the utility does not internalize

the loss in consumer surplus when it turns off the power, causing the utility’s privately

optimal choice of shutoffs to exceed the socially optimal level.

Assuming without loss of generality that the utility starts with no defensive capital

(k = 0), solving the firm’s problem when it does not declare a blackout is trivial. When

the firm shuts off the power, its profit is constant regardless of defensive capital investment

made by the firm.
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π∗
1 = βϕν ∀ k

′∗
1

In the state of the world where it does not declare a blackout (π0) the firm invests

in defensive capital such that the marginal benefit of investment (reduction in expected

damages and increased revenue) equals the marginal cost of investment (the rental rate

paid to households).

−βθ′(k′)d̄+ βγ = r (1.3)

Where −βθ′(k′)d̄ is the reduction in expected liability costs from increasing defensive

investment, βγ is the increase in revenue the firm receives by increasing its defensive

capital stock, and r is the rental rate of capital. The utility then chooses whether or

not to declare a shutoff by comparing its optimized profit when it declares a shutoff (π∗
1)

to when it supplies electricity (π∗
0). Figure A.4 presents the utility’s decision rule for

declaring a shutoff. Whenever the firm can earn greater expected profits by supplying

electricity, it does not shut off the power.

This paper empirically studies how two changes impact utilities’ use of power shut-

offs. First, I use a difference in differences research design to study how a policy which

effectively reduced the rate at which utilities pass liability costs on to consumers. In the

model, the policy is akin to reducing the rate of pass through (ν). As a result of the

policy, we expect the firms’ profit function when it supplies electricity (π0) to decrease

by more than its shutoff profit function (π1) decreases. As a result, if the firm supplies

electricity prior to the policy, it is unclear whether it will increase or decrease blackouts
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following the change. I test this ambiguous prediction and show that utilities increase

their use of shutoffs following the policy change.

Second, I use exogenous variation in wind direction and speed across days to estimate

how utilities’ use of shutoffs changes when they face higher total expected liability costs.

In the model, firms face higher liability costs when the total replacement cost of structures

threatened by a potential ignition (d̄) is large. Increasing d̄ in the model shifts π0 down,

but leaves π1 unchanged. Depending on how large the drop in π0 is, the firm may use

more shutoffs or keep supplying electricity. I show that firms increase their use of shutoffs

when areas with higher total structure replacement cost are threatened by a potential

ignition. Finally, utilities should utilize blackouts more when they face high realizations

of the probability of ignition (θ(k′)). As a result, we expect there to be more blackouts

on days when the weather is conducive to fire ignitions along power lines (prediction (3)).

1.4 How does firms’ precautions change when they

face any liability?

1.4.1 Empirical Framework

I estimate the overall effect of the regulatory change on one utility’s power shutoff

use in a two way fixed effects empirical strategy. As explained in section 2.2, a 2017

regulatory change made by the California Public Utility Commission shifted the burden

for liability costs from consumers of electricity to utilities in California. Several factors

make estimation of the causal effect of the regulatory change on utilities’ shutoff use

difficult. First, due to stronger winds and an ever-drier climate over time, the likelihood

of fire ignited by power lines has increased over time. As a result, a pre-post regulatory

change comparison of shutoff use may reflect this increasing trend in ignition probability.
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Second, the regulatory change affected all utilities at the same time, making it difficult

to separate the policy effect from annual changes in firms’ investment behavior.

I overcome these difficulties by using a two way fixed effects research design that

compares the pre/post regulatory change in shutoff use at circuits with high ex ante

ignition risk to their counterparts with low ex ante ignition risk. Low ignition risk

circuits are a valid control group because the regulatory change was unlikely to impact

firms’ behavior in regions with low fire risk. Indeed, in section 1.3 I show that changing

the amount of liability born by the firm does not impact its behavior if there is no chance

of an ignition occurring at a circuit. Importantly, I control for daily weather conditions

at each circuit such as wind speed, humidity, temperature, and relative humidity which

are significant determinants of ignition risk.

Equation 1.4 models shutoff use (yit) at each circuit i on day t as a function of daily

weather conditions, infrastructure age, ex ante ignition risk, and the regulatory change.

yit = β0 + β1Treatedi × Postt + β2Xit + γi + δt + εit (1.4)

Where yit is either equal to one when there is an active shutoff at circuit i on day

t or the total number of customer hours of lost power at circuit i on day t. Treatedi

is one for all circuits with positive ex post ignition risk, and Postt equals one for all

days following the regulatory change in December 2017. I determine ex post ignition

risk at each circuit using San Diego Gas and Electric’s modeled measure of ignition risk

which they included in their 2021 Wildfire Mitigation Plan that was submitted to the

California Public Utility Commission.14 The ignition risk reflects the annual likelihood

and consequence of fire risk at each circuit as of 2021.

The vector Xit contains daily wind speed, temperature, humidity, and precipitation

14See San Diego Gas and Electric’s 2021 Wildfire Mitigation Plan. Modeled ignition risk is included
in the attachment “2021 WMP CalPA-SDGE-DR1 02-11-2021”.
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binned into septiles as well as the average age of infrastructure in circuit i. The circuit

fixed effects account for characteristics of each circuit, such as the slope of the land,

which do not change over time. The calendar day fixed effects control for seasonality in

the ignition threat across all circuits. The coefficient of interest (β1× 100) measures how

the likelihood of a shutoff changes, on average, at high risk circuits relative to low risk

circuits after the policy shift. I cluster standard errors at the high fire threat district by

week level to allow for correlation in shutoff use in areas with similar ignition risk during

a calendar week.15

The two way fixed effects research design relies on a conditional parallel trends as-

sumption which states that, conditional on the covariates, the trend in shutoff use would

have been the same at high and low ignition risk circuits. I provide suggestive evidence

of this assumption by estimating the following event-study model.

yit = α +
2∑

j=−3

νjTreatedi,t−j + ψXit + γi + δt + εit (1.5)

Where the event time end points are binned at t = −3, 2 following Schmidheiny

and Siegloch (2020).16 The variable Treatedi,t again takes a value of one if circuit i

has a non-zero probability of ignition at post regulatory change calendar day t. Just

as in equation 1.4, Xit includes nonlinear controls for daily changes in temperature,

precipitation, humidity, wind speed, and infrastructure age. I cluster standard errors at

the high fire threat district by calendar week level. Figure A.5 shows the event study

results.

Each coefficient represents the cumulative annual effect of the 2017 rule change on

power shutoff declaration in percentage points for years leading up to and following 2017.

15High fire threat districts were determined by the California Public Utility Commission in 2012. They
are designed to show the areas which represent elevated risk for power line-ignited wildfires.

16Using binned end points in this way assumes that the treatment effect is constant more than 3
periods prior to treatment or 2 periods after treatment.
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All coefficients are interpreted as the effect relative to the year prior to the rule change.

For example, shutoff events were used around 0.025 percentage points more one year after

the rule change than they were used one year prior to the rule change. The pre-treatment

coefficients in Figure A.5 demonstrate that there are no anticipatory effects or underlying

time trends in shutoff use that drive the estimated effect in Table A.4. All pre-period

coefficients are statistically indistinguishable from zero and economically insignificant,

providing support for the parallel trends assumption.

1.4.2 Data Used in Extensive Margin Analysis

Power Shutoff Events I obtain the date, duration, location, and number of impacted

customers from power shutoff post-event reports for the period 2013-2020 from the Cali-

fornia Public Utilities Commission.17 Since Pacific Gas and Electric, Southern California

Edison, and San Diego Gas and Electric serve the majority of electricity consumers in

California and account for the largest share of power shutoffs historically, I restrict the

sample to events initiated by one of these utilities. Furthermore, I exclude publicly owned

utilities from this analysis because they have not been granted the authority to conduct

power shutoff events by the regulator. Since San Diego Gas and Electric was the only

utility to receive permission to use power shutoff events prior to 2018, I use exclude

Pacific Gas and Electric and Southern California Edison when estimating how the 2017

liability rule change influenced utilities’ use of shutoffs. The intensive margin analysis

of the relationship between replacement costs and power shutoff use between 2018 and

2020 uses data from all three of California’s largest private utilities.

Energy Infrastructure Information on the geographic location of distribution and

transmission lines operated by Pacific Gas and Electric, Southern California Edison, and

17Utilities are required to submit under Ordering Paragraph 1 of California Public Utilities Commission
(CPUC) Decision (D.) 19-05-042.
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San Diego Gas and Electric is collected from publicly available Geographic Information

System (GIS) files submitted to the California Office of Infrastructure Safety in 2020.

The GIS data shows the location of each transmission and distribution line within a

circuit and exclude critical energy infrastructure. Since the California Public Utility

Commission reports shutoff events at the circuit level, I aggregate the line level data to

the circuit level before string matching events to circuits by circuit name. On average

across the three utilities, I match 97 percent of events to circuits using string matching.18

Climate Data I obtain wind speed and direction at ten minute intervals from the

3,041 weather stations operated by Pacific Gas and Electric, Southern California Edison,

and San Diego Gas and Electric along their energy infrastructure and temperature, rela-

tive humidity, and precipitation from the 892 weather stations operated by the National

Weather Service and Remote Automatic Weather Stations in California.19 For each sta-

tion, I compute daily average and maximum temperature, humidity, precipitation, and

wind speed. Then, for each circuit I compute the inverse distance weighted average for

each climate variable across all stations within 20 kilometers the circuit, generating daily

average and maximum temperature, relative humidity, precipitation, and wind speed

for each distribution circuit operated by Pacific Gas and Electric, Southern California

Edison, and San Diego Gas and Electric in California.

Replacement Cost of Structures Since electric utilities are liable for the cost

of replacing structures damaged by power line-ignited fires, I use parcel-level structure

replacement costs to measure potential damages rather than the market value of each

property. I obtain parcel level replacement costs of each property in California in the

year that it is assessed from the Zillow Transaction and Assessment Database (ZTRAX)

which contains parcel-level assessed values and transaction information for most counties

18For only 2019, events are geocoded at the line level. In the future I will conduct a robustness analysis
that verify the property value results using line level data.

19I accessed the weather station data through the Mesonet API.
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in the U.S. Zillow computes the replacement cost by taking the difference between the

market value of the property and the market value of the land in the year of assessment.

I adjust replacement costs to 2021 dollars using the consumer price index.20

Expected Damages Because the welfare calculation in equation 1.10 requires a

measure of expected damages at each distribution circuit (D(mi, zi)), I obtain parcel level

replacement costs and a measure of the fire risk faced by each structure. To compute the

expected damages at each circuit if an ignition were to occur, I multiply the replacement

cost of each parcel by a measure of fire risk. First, I compute the total replacement cost

of structures within 5 kilometers of a circuit using the ZTRAX data described above.

Second, I use the Risk to Potential Structures (RPS) index created by Scott et al. (2020)

to capture the likelihood that each structure in the ZTRAX database would be damaged

by a fire. The RPS index ranges from 0 (no damage) to 12 (fully destroyed) at the

30 meter pixel level and answers the question: “What would be the relative risk to a

house if one existed here?” Since the RPS uses data from 2014, it reflects the risk to

structures based on 2014 vegetation conditions. I compute expected damages at each

circuit by multiplying the property value at each parcel by the inverse of its RPS index

and summing to the circuit level.

Likelihood of Ignition at Each Circuit Since the welfare calculation in 1.10 re-

quires knowledge of the ignition probability at each circuit (θ), I collect circuit level

wildfire risk scores from publicly available data files submitted by San Diego Gas and

Electric as part of its 2021 Wildfire Mitigation Plan.21 The circuit level ignition prob-

abilities are raw wildfire risk scores from San Diego Gas and Electric’s internal fire risk

model called the Wildfire Next Generation System. Each risk score represents the proba-

bility of ignition adjusted for wind patterns, vegetation, and infrastructure hardening at

20https://fred.stlouisfed.org/series/CPALTT01USA659N.
21See San Diego Gas and Electric’s response to data request CALPA-SDGE-01 questions 4 and 5 here.
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a circuit. Since San Diego Gas and Electric only applied the model to its circuits in areas

with elevated ignition risk, the probability of ignition is assumed to be zero at circuits

that were not modelled.

Energy Usage The final information necessary for the welfare calculation in equation

1.10 is a measure of energy usage at each circuit. For now, I use publicly available energy

usage data reported by San Diego Gas and Electric at the zip code level for each quarter

of the year. For each zip code, I compute the average energy use between 2013 and 2017.

Then, I assign energy use to each circuit in a zip code in proportion to its share of total

circuit miles in that zip code. For example, if there are two circuits in a zip code that

have the same total length of power lines, then I would assign half of the total zip code

energy use to each circuit. In the future, I hope to replace this approximation with the

actual reported circuit level energy use.22

Summary Statistics Table A.1 reports summary characteristics for the daily panel

of distribution circuits operated by San Diego Gas and Electric between 2013 and 2020.

At the daily level shutoff events are rare, occurring on 0.002 percent of circuit-days,

on average.23 The average maximum daily wind speed across all circuits between 2013

and 2020 is 7.4 meters per second, but there is substantial variation with some circuits

experiencing wind speeds as high as 96 meters per second. Across San Diego Gas and

Electric’s service territory, 88 distribution circuits ever experience a shutoff event between

2013 and 2020, reflecting San Diego Gas and Electric’s efforts to target only the highest

risk circuits.

22I have a pending application with San Diego Gas and Electric to access this data.
23However, shutoff events become much more prevalent conditional on high wind speeds. In particular,

conditional on a circuit having wind speeds greater than 9 m/s the average likelihood of a power shutoff
event increases to 0.3 percent.
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1.4.3 Results

Since prior theoretical work shows that applying liability to firms may be ineffective,

I first estimate how San Diego Gas and Electric’s use of power shutoffs changes when

they fully bear liability costs. Table A.4 presents results from the model presented in

equation 1.4. The reported estimates reflect how San Diego Gas and Electric’s use of

shutoffs changes at ex ante high ignition risk circuits relative to low risk circuits following

the 2017 policy change which increased their expected liability. Column 1 displays the

effect of applying liability on the likelihood of a shutoff and column 2 presents the same

effect, but for the number of customer hours without power. Both specifications include

weather controls, circuit fixed effects, and calendar fixed effects.

The estimated effect suggests that the rule change led to a 5.6 percentage point

increase in power shutoffs. Relative to the average probability of a shutoff prior to

the 2017 reform, this amounts to more than an 80-fold increase in shutoff use. The

estimate in column 2 implies that, on average, the number of customer hours impacted

by shutoff events increased by 923 customer hours following the rule change (a 6-fold

increase relative to the pre-treatment mean). Assuming each of the 923 customer hours

of lost power would have had average energy use as reported by the Energy Information

Administration in 2020, this estimate implies that the policy led to between $150 and

$51,000 in lost consumer surplus at the average distribution circuit. Together these results

suggest that the liability regulation effectively encouraged ignition prevention behavior

in this setting.

Although shifting fire liability costs onto electric utilities effectively increased their

precautionary behavior, the greater reliance on shutoffs may have burdened consumers

if they affected individuals with a high value of electricity use. Since consumers whose

medical or life-supporting devices rely on electricity likely have a high value of their
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electricity use, I estimate how San Diego Gas and Electric’s use of shutoffs changes by

the share of total customers that rely on electricity for medical needs. San Diego Gas

and Electric publicly reports the number of customers with medical devices that rely on

electricity by census tract, so I estimate an aggregated version of equation 1.4 on a daily

panel of census tracts in California. The results of this analysis are reported in figure A.8

and figure A.9. These estimates suggest that shutoff use increased the most in census

tracts with the highest share of customers relying on electricity for their medical needs

and for life support. Because these customers have a high value of energy use, San Diego

Gas and Electric’s increased use of shutoffs following the policy change was likely costly

for consumers.

To validate the empirical model above, I estimate the effect of increasing electric

utilities’ share of liability costs by circuit-level ignition risk and daily weather conditions

in Appendix A. The utilities’ stated criteria for power shutoffs suggest wind speed and

humidity are two prominent drivers of ignition risk. As expected, I find that shutoff use

increased almost 200-fold at the circuits with the highest risk of ignition. Furthermore,

I find that wind speed and humidity are also significant predictors of shutoff use. These

results help to provide confidence that the empirical model above is correctly specified

and captures utilities’ ignition prevention behavior.

1.5 How does the level of liability that a firm faces

affect precaution?

1.5.1 Empirical Framework

Precaution and Threatened Property Values

According to the theory developed in section 1.3, utilities’ use of shutoffs should
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respond (either positively or negatively) to the liability cost they bear. One way to test

this hypothesis would be to estimate a linear model that relates the probability of a

shutoff at circuit i on day t (yit) to the total replacement cost of structures near circuit

i (V aluei).

yit = νV aluei + εit (1.6)

Under the conditional independence assumption, ν identifies the effect of liability on

firms’ use of shutoffs. However, the conditional independence assumption is unlikely to

hold in this example because unobserved determinants of shutoffs such as the moisture

content of vegetation, regional weather conditions, and the presence of critical energy

infrastructure are likely correlated with structure replacement costs. To overcome this

challenge and isolate the effect of structure replacement cost on shutoffs, I use daily

changes in wind direction to create exogenous variation in structure replacement costs

that would be threatened by an ignition, if it occurred. Since power line-ignited fires are

more likely to occur during periods of extreme wind speeds (Syphard and Keeley (2015)),

wind direction is likely to be a relevant determinant of whether a region is threatened by

a wildfire on any given day, t. Furthermore, since, on average, daily variation in wind

direction is uncorrelated with both power shutoffs and property values the conditional

independence assumption likely holds.

Following a procedure implemented by Missirian (2020) in a different context, I use

reported wind conditions from stations operated by Pacific Gas and Electric, Southern

California Edison, and San Diego Gas and Electric to determine which zip codes are

downwind of each circuit. Figure A.6 displays this process. I compute the horizontal

(“U-wind”) and vertical (“V-wind”) wind vectors by multiplying the wind speed by the

sine or cosine of the wind direction (in radians). After converting the horizontal and
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vertical wind vectors from meters per second to degrees latitude or longitude per second,

I can compute how far away an object would travel if it could remain airborne for one

second (the end of the blue arrow in Figure A.6). Finally, I scale the horizontal and

vertical wind vectors up by an estimate of how long a lit ember could remain airborne if

picked up by the wind from Albini et al. (2012).24

I use circuit level changes in wind direction across days to assign which zip codes lie

downwind of a utility’s power lines. I choose to use zip codes as the unit of analysis for

several reasons. First, it uses borders which are determined by the California government,

rather than boundaries that I have chosen myself. Second, using zip codes allows me to

control for other characteristics that are important determinants of utilities’ shutoff use

such as population and total energy use which are not available at finer geographic

scales using publicly available data. Finally, the data on structure replacement costs

is available for the universe of parcels in California at the zip code level, but may be

missing at more granular levels of aggregation. In a robustness analysis, I re-estimate

the relationship between structure replacement cost and shutoff use using only variation

in wind direction within twenty kilometers of power lines, finding similar results to the

aggregate zip code analysis.

Figure A.7 shows how I determine downwind structure replacement cost in the em-

pirical analysis using an example of 13 zip codes from San Diego County in California.

The tan zip code in the center of both panels contains three distribution circuits and the

black circles represent the centroid of each circuit. In my empirical framework, I define

each tan zip code in my sample as an “origin” zip code. All of the white and yellow zip

codes lie downwind of the origin zip code at some point during 2018 and 2020. I define

24Albini et al. (2012) estimate that the maximum spotting distance for a wind driven fire is 10 kilome-
ters. Assuming that wind speeds are at the third quartile observed across my sample between 2018 and
2020 (6.7 meters per second), the 10 kilometer estimate implies that an ember could remain airborne
for up to 24 minutes. Estimates are robust to other assumptions of how long a lit ember could remain
airborne (such as 5 minutes).
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these zip codes as “destination” zip codes because they are the set of possible destina-

tions where an ember could land if picked up at a circuit in the origin zip code. Each

black line points in the direction that the wind is blowing, and its end point is how far

away from each circuit a lit ember could travel given observed wind speed and direction.

When the black line intersects with a zip code, I define the zip code as downwind of

the origin zip code. Therefore, in panel (a) the three yellow destination zip codes to the

north of the origin are downwind, while the following day (shown in panel (b)) the three

destination zip codes to the west are downwind. I estimate the relationship between

the total replacement cost in the downwind zip codes and shutoff use at circuits in the

origin zip code. As a result, this strategy uses daily variation in liability that is driven

by exogenous changes in wind speed and direction. Equation 1.7 formally presents this

research design.

Since there may be underlying static characteristics about each zip code, such as

geography, that correlate with shutoff declaration and threatened property values, I con-

struct a paired data set of origin and destination zip codes and control for a pair fixed

effect following Kuhn et al. (2011). For each day t and origin zip code o the data file

contains a set (N(o)) of neighboring destination zip codes indexed by d which are ever

downwind of zip code o between 2018 and 2020. By including pair fixed effects, νod, this

strategy accounts for time invariant characteristics of pairs that may be correlated with

structure replacement cost and power shutoffs, such as vegetation moisture. Further-

more, I include a calendar day fixed effect which accounts for day-specific unobserved

heterogeneity which impacts all zip code pairs, such as seasonality or statewide climatic

factors.
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yjodt = β1V aluejd×DWjodt+β2V alued+β3DWjodt+β3Xjot+β4Xjdt+νod+δt+γjt+εodt

(1.7)

Where yodt is a binary variable indicating whether a shutoff is in effect in zip code o

which is ever upwind of zip code d on day t. V alued is the logged and de-meaned total

(or average) structure replacement cost in zip code d and DWodt is equal to one if zip

code d is downwind of zip code o on day t. The model includes time-varying covariates

(Xot, Xdt) which are specific to zip codes o and d respectively and include average daily

wind speed, temperature, specific humidity, and maximum wind speed. In order to allow

the effect of the climatic controls to non-linearly impact the outcome, I bin each control

variable into septiles. I also control for the 2020 wildfire hazard potential interacted

with the downwind indicator and the share of 2010 zip code population living in the

wildland-urban interface interacted with the downwind indicator to control for day-to-

day variation in characteristics of the downwind landscape such as vegetation and slope.

Finally, I include utility by year fixed effects (γjt) which account for annual changes in

utilities’ plans to prevent ignitions.

Since I de-mean the structure replacement cost in equation 1.7, β3 is the change

in shutoff likelihood when a zip code with average structure replacement cost is down-

wind. The coefficient of interest β1 measures the average percentage point change in

the likelihood of a power shutoff with respect to a one percent increase in downwind

structure replacement cost. Furthermore note that while the coefficient β2 captures the

effect of non-threatened property values, it is not estimated because the replacement

cost is collinear with the pair fixed effects. Under the conditional independence assump-

tion, β1 and β3 identify the causal effect of down wind structure replacement cost on the

probability of a shutoff.
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Causal identification of the relationship between potential liability and power shutoffs

in equation 1.7 relies on exogenous changes in wind speed and direction across days. To

provide suggestive evidence that the daily variation in wind conditions is as good as

randomly assigned, I compare average socioeconomic and demographic characteristics of

destination zip codes by downwind status in Table A.3. The average characteristics for

not-downwind and downwind zip codes are shown in columns 1 and 2 while the difference

in means as a percent of a standard deviation is presented in column 3. While downwind

and not-downwind zip codes are statistically different across nearly all characteristics, all

differences are small, accounting for less than 8% of a standard deviation for all observed

variables. For example, although the median replacement cost of structures in downwind

zip codes is around $1,000 more than in non-downwind zip codes, this is less than 2%

of the average replacement cost. Furthermore, the empirical framework in equation 1.7

includes a pair fixed effect which controls for all time-invariant characteristics about zip

codes.

Model 1.7 estimates how threatened property values impact the probability of shutoff

declaration, but does not explore how this effect is distributed across each zip code’s

socioeconomic status. The next part of the analysis addresses this question by separately

interacting threatened property values with an indicator variable equal to one if a non-

zero share of each zip code o’s (or d’s) 2010 population lives in a census tract designated

as a disadvantaged community by the California government (denoted by DACo and

DACd respectively).
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yodt = γ1DACoV aluedDWodt + γ2DACdV aluedDWodt + γ3V aluedDWodt

+ γ4DACoDWodt + γ5DACdDWodt + γ6DWodt + γ7Xot + γ8Xdt + νod + δt + εodt

(1.8)

The parameters of interest γ1 and γ2 measure the percentage point impact of threat-

ened property values relative to days when they are not threatened and on days when zip

code o is disadvantaged or zip code d is disadvantaged respectively. A positive estimate of

γ1 would suggest that higher threatened property values in non-disadvantaged zip codes

increase the probability of a power shutoff in disadvantaged zip codes. Similarly, a posi-

tive estimate of γ2 would imply that higher threatened property values in disadvantaged

zip codes increase the probability of shutoff declaration in non-disadvantaged zip codes.

Standard errors are again clustered at the calendar week level to allow for correlation in

shutoff use across circuits within a week.

1.5.2 Additional Data Used in Intensive Margin Analysis

Replacement Cost I use the same parcel-level replacement costs from Zillow ZTRAX

to compute the total and median replacement cost in each zip code. Table A.2 reports

that the average total replacement cost across all zip codes in the sample is nearly $7

billion dollars, while the average of the zip code-level median replacement cost is $53,000

dollars.

Vegetative Cover I use the discrete Wildfire Hazard Potential index to capture

underlying vegetative conditions in the areas surrounding distribution circuits in Cali-

fornia.25 Values of the WHP index indicate wildfire risk and range from 1 (very low)

25Dillon, Gregory K; Gilbertson-Day, Julie W. 2020. Wildfire Hazard Potential for the United
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to 5 (very high). The WHP index is intended to guide strategic long-term management

of vegetation and is based on vegetation and fuels data from LANDFIRE 2014. As a

result, the WHP reflect vegetative conditions at the end of 2014. Future work will utilize

vegetation data from more recent products such as LANDFIRE 2018.

Wildland Urban Interface Since utilities’ decision to declare a shutoff event could

be impacted by whether a circuit is located in an area that is high fire risk, I obtain

the boundaries of the Wildland Urban Interface (WUI) from the California Department

of Forestry and Fire Protection’s Fire and Resource Assessment Program. The WUI is

defined as an area with dense housing adjacent to vegetation that can burn in a wildfire.26

Because the property value analysis is estimated at the zip code level, I compute the share

of total 2010 zip code population living within the WUI.

Potential Liabilities In order to identify structures that would be threatened by

a potential ignition, I use daily variation in wind direction at the centroid of the area

where each distribution circuit operated by Pacific Gas and Electric, Southern California

Edison, or San Diego Gas and Electric in California overlaps with a zip code. In the

dataset construction I refer to zip codes with a distribution circuit as “origin” zip codes

and zip codes that lie downwind of the origin zip code on any given day as “destination”

zip codes. Using data on the daily average wind direction and maximum wind speed

described above, I assign destination zip codes to each origin zip code for each day of the

sample. I describe this process in detail below.

As shown in figure A.6, I use two results from trigonometry to calculate the verti-

cal and horizontal wind vectors in degrees of latitude or longitude per second.27 After

converting the vertical and horizontal wind vectors to degrees of longitude per second

States (270-m), version 2020. 3rd Edition. Fort Collins, CO: Forest Service Research Data Archive.
https://doi.org/10.2737/RDS-2015-0047-3

26Specific housing density and vegetation thresholds for WUI classification can be found here.
27The vertical wind vector is given by x sin θ and the horizontal wind vector is given by x cos θ, where

x is the wind speed in meters per second and θ is wind direction measured from the x-axis in radians.
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and latitude per second respectively, I multiply each vector by a measure of how many

seconds a lit ember can stay airborne from Albini et al. (2012).28 I then use the scaled-up

vertical and horizontal wind vectors to compute where an ember would land if it were

picked up by the wind at each distribution circuit. Finally, I connect the start and end

points with a line and assign a zip code as downwind if it intersects with that line. As

shown in table A.2, the daily wind speeds across distribution circuits during the sample

period range between 24 and 88 miles per hour.

Disadvantaged Community Definition I use the California Office of Environmen-

tal Health Hazard Assessment’s definition of a disadvantaged community in the CalEn-

viroscreen 2018 update to assign disadvantaged status to each zip code. This definition

classifies the census tracts with CalEnviroScreen 3.0 scores in the top 25% of all tracts in

California as disadvantaged communities. The CalEnviroScreen score accounts for pollu-

tion exposure, environmental conditions, health factors, and socioeconomic factors which

could magnify the negative effects of pollution exposure. Since disadvantaged status is

assigned at the census tract level, I compute the share of total 2010 population in each

zip code that lives in a disadvantaged tract. For the main analysis I assign disadvantaged

status to any zip code with more than 50 percent of its population living in a census tract

designated as disadvantaged.

Summary Statistics Table A.2 reports the summary statistics for relevant variables

that I use in this analysis. On the most active day of power shutoffs in my sample there

were 80 concurrent power shutoffs. However, shutoff events are very infrequent at the

daily level, occurring on average 0.8% percent of total zip code-days in the sample. The

last row of table A.2 shows that there are 539 zip codes in California that ever experience

28Albini et al. (2012) report a maximum spotting distance of 10 kilometers for wind driven fires. To
convert this estimate to seconds that an ember is airborne, I multiply 10,000 meters by the inverse of
the third quartile of wind speed in the sample yielding an estimate of about 18 minutes. This estimate
means that at it would take a lit ember 18 minutes to travel 10 kilometers at the third quartile of wind
speed in the sample.
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an event between 2018 and 2020. The average replacement cost is substantial at around

$6.8 billion and there is significant variation across zip codes with a standard deviation

of $6.6 billion.

I construct the final sample by dropping all days that do not fall under the minimum

criteria for a shutoff event used by Pacific Gas and Electric in 2021 as shown in figure ??.29

I make this sample restriction based on the reported wind speeds and humidity in origin

zip codes rather than destination zip codes because this reflects climate conditions around

the power lines themselves. I further drop months where no shutoff events occur between

2018 and 2020 since these months do not help identify the coefficient of interest from

model 1.7. The final sample consists of a daily panel of 13,039 unique origin-destination

zip code pairs.

1.5.3 Results

In settings where firms’ assets are significantly less than their liability costs from an

accident, it may be optimal for firms to declare bankruptcy (Shavell (1986)). A common

solution to this problem posed by regulators is to cap firm liability, providing incen-

tives for precaution without leading to bankruptcy. However, because prior estimates of

firms’ precautionary response to liability are from one point in the distribution of po-

tential liabilities, regulators have limited information about which level to place the cap

on damages. The estimates in this section leverage firms’ full distribution of potential

liabilities from power line-ignited fires, allowing me to non-parametrically estimate their

precautionary response to liability.

Table A.5 reports the main results from regression model 1.7. The coefficient of

interest is reported in row 1 and is interpreted as the percentage point change in power

29The minimum criteria are wind speeds greater than 20 mph and relative humidity less than 30%.
Pacific Gas and Electric has many other criteria for declaring a shutoff, but these are the minimum
criteria that I can observe using the publicly available climate data.
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shutoff declaration probability that results from a 1 percent increase in the replacement

cost of downwind structures relative to days when the properties are not downwind. Since

I de-mean the replacement cost of structures, the estimate in row 2 reflects the change

in shutoff likelihood when a zip code with average total (or mean) replacement cost lies

downwind. Columns 1 and 2 report the estimate of firms’ precautionary response to

liability with total and mean zip code replacement cost as the independent variable of

interest. Both specifications include controls for daily maximum wind speed, maximum

temperature, average relative humidity, and cumulative precipitation in the origin and

destination zip codes. In addition, both specifications include origin-destination zip code

pair fixed effects and calendar day fixed effects.

The estimate in column 1 suggests that, on average, utilities’ are 0.02 percentage

points (100%) more likely to use a power shutoff when a region with 10% higher total

zip code replacement cost lies downwind. Assuming that baseline total replacement

cost is at the average level I observe in the sample ($6.8 billion) implies that shutoff

use increases by 100% when potential liabilities increase by $680 million. However, the

positive relationship between total liability and shutoff use could reflect utilities’ increased

willingness to undertake precaution when densely populated regions lie downwind. The

estimate in column 2 shows that firms consider liabilities independently of population,

suggesting that utilities use shutoffs 160% more when the mean downwind zip code

structure replacement cost is about $6,000 higher.30

Although prior work suggests that the relationship between liability and precaution

should be nonlinear, the estimates in table A.5 assume a linear relationship. I relax

this linearity assumption by binning total (or mean) zip code replacement cost by decile

and re-estimating equation 1.7. Figures A.10 and A.11 report the resulting estimates of

30In Appendix A, I estimate robustness specifications that explicitly control for population. While I
find that downwind population is a relevant determinant of shutoff use, it does not alter the estimates
in table A.5.
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downwind total and mean replacement cost on power shutoff use. The estimates in figure

A.10 suggests that shutoff use increases in total structure replacement cost until liability

exceeds $10 billion (the eighth decile of total replacement cost), after which it begins

to decrease. Similarly, the response of shutoffs to average zip code replacement costs in

figure A.11 is increasing until mean liability cost exceeds $85 thousand (the eighth decile

of mean replacement cost). Shavell (1986) posits that as the ratio of liability to assets

increases, the firm will eventually begin to take fewer precautions to prevent an accident.

The estimates I report above are consistent with this prediction. Utilities take greater

precautions until their total liability from a potential ignition exceeds $10 billion and

then begin to take less precautions.

Because utilities direct shutoffs to areas with higher structure replacement costs, there

may be systematically more precaution taken in high socioeconomic status communities

that tend to have greater property values. I explore this possibility in Appendix A

and find that because low socioeconomic status communities tend to live in low ignition

risk areas in this setting, there is not relationship between firms’ response to liability

and socioeconomic status. In other settings where high and low socioeconomic status

communities live in high risk areas at similar rates, there may be systematic distributional

consequences of liability regulation.

1.5.4 Robustness

Factors such as vegetation conditions near power lines, extent of interaction between

housing and wilderness, and energy consumption patterns could drive utilities’ use of

shutoffs. If these factors are also correlated with structure replacement costs, then the

estimated relationship between shutoffs and potential liability could be biased. In table

A.6, I estimate several modifications of regression model 1.7 to test the robustness of the
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main result in table A.5. Column 1 replicates the main estimate from table A.5. Column

2 adds a control for the share of total population in destination zip code d living in

the WUI interacted with the downwind indicator, DWodt. This covariate captures daily

changes in the number of structures near vegetation that is likely to burn in the event of

a fire. In column 2, I also control for the average WHP index in each destination zip code

interacted with the downwind indicator. This covariate measures the conduciveness of

vegetation in the downwind zip code to spreading fire. Column 3 adds separate controls

for monthly electricity usage in zip codes o and d respectively. These additional covariates

capture patterns in electricity usage that are relevant to firms’ shutoff decision.

The empirical model in equation 1.7 uses daily changes in downwind structure costs

to estimate the relationship between shutoffs and liability. However, evidence suggests

that utilities monitor forecasted wind conditions in addition to current conditions. As a

result, utilities may base their shutoff decisions on their expectation of which regions will

be downwind in the upcoming days. To account for this behavior, I define a destination

zip code as downwind if it lies downwind of the origin zip code at any time in the next five

days. For example, the downwind indicator, DWodt, is set equal to one if a destination

zip code is downwind anytime over the next five days (between day t and day t + 5). I

report the results from this specification in column 4 of table A.6. The main estimate of

interest is positive, significant, and of a similar magnitude in all specifications.

Since the empirical framework in equation 1.7 is specified at the zip code level, it

may include properties that are located far away from high-ignition risk circuits. If

utilities only consider structures that are very close to high-risk power lines (and therefore

very likely to be destroyed if an ignition occurs), then the zip code analysis could be

misspecified. In appendix A, I address this by estimating 1.7 at the circuit level. I do

this by using daily variation in the replacement cost of structures that lie downwind of

power lines and are located within 20 kilometers of a circuit. Using this local variation,
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I estimate similar effects to the main result from table A.5.

1.6 Discussion and Conclusion

1.6.1 Short Run Welfare

In this section I derive the short run welfare change resulting from a decrease in the

pass through rate of liability costs. Consumer surplus is the sum of the value of electricity

consumption, total payments to the utility, and rental payments from the utility to the

household.

CS = p̄Q(1− L)− β(γk′ + ν)(1− L) + rk′ (1.9)

Where the first term is the consumer’s dollar valuation of their electricity consump-

tion, term two is the consumer’s payment to the utility, and term three is the utility’s

rental payment to the household. Producer surplus is denoted by the utility’s profit func-

tion. Since total welfare is the sum of consumer and producer surplus, I can write the

change in welfare from a change in the rate of capital return as the sum of the change in

consumer and producer surplus. Since this model has a constant marginal cost, producer

surplus is zero. By including producer surplus in the welfare derivation, I therefore obtain

an upper bound on the short-run welfare change.

WF (ν ′)−WF (ν) =PS(ν ′)− PS(ν) + CS(ν ′)− CS(ν) (1.10)

WF (ν ′)−WF (ν) =β[θ(k′)d̄− (p̄− p)Q][P (L = 1 | ν ′)− P (L = 1 | ν)]+ (1.11)

βd̄[θ(k′(ν ′))− θ(k′(v))](1− P (L = 1 | ν) (1.12)
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Where p̄ is the consumers’ maximum willingness to pay per kilowatt hour and ν ′ < ν

is the capital return after the 2017 CPUC rate case decision. Since this study estimates

the short-run response of firms to the change in the share of liability cost they bear,

I assume that the third term is zero so that the welfare estimates reflect short run

variation. There are three parameters that characterize the short run welfare change

from an increase in the share of liability born by firms in equation 1.10: (1) the change

in probability of shutoff event following an increase in the share of liability born by firms

(P (L = 1 | ν ′) − P (L = 1 | ν)), (2) expected damages (θ(k′)d̄), and (3) consumers’

maximum willingness to pay for electricity (p̄).

There are several important caveats to the welfare change represented in 1.10. In

the model, consumers value their home at its replacement cost and receive a payment

from the utility equal to the home replacement cost if the structure burns down. As a

result, consumers in this model do not care whether their home burns down. In practice,

consumers may have a value of their home which exceeds the replacement cost, causing

consumer surplus to potentially increase when firms use more shutoffs. Thus, the welfare

change in equation 1.10 is likely larger (in absolute terms) than a more detailed model

that incorporates intrinsic home values.

Another caveat to keep in mind is that I am assuming the adjustment of defensive

capital cannot occur in the short term (making term three in equation 1.10 zero. Since

the sample includes three post-policy years and the utilities have extensive networks of

power lines, the extent of defensive capital investment is limited in this setting. However,

future analyses of defensive capital’s impact on the likelihood of ignition would be very

useful.

In order to compute (1), I use the estimates by ignition risk presented in Figure A.1.

This strategy assigns the same probability change to all circuits that are in the same

decile of ignition risk. Then, I use parcel-level assessed values from the Zillow ZTRAX
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dataset and the Risk to Potential Structures index created by Scott et al. (2020) to

compute (2) as described in the data section. To account for the likelihood that an

ignition occurs at each circuit, I obtain modeled ignition probabilities from San Diego

Gas and Electric’s data filing as part of its 2021 Wildfire mitigation plan. Multiplying

damages by the likelihood of ignition yields expected damages (2). In order to compute

(3), I multiply the average historic energy use at each circuit (described in the data

section) by estimates of the value of lost load per kilowatt hour of energy use from a 2019

value of service study conducted by Southern California Edison.

Since the empirical literature on the value of lost load is still young, I first estimate

the per kilowatt hour value of lost load required for there to be a welfare change of zero at

each circuit. Figure A.12 plots the number of circuits by the value of lost load necessary

for welfare to remain the same following the policy. For most circuits in the sample, the

maximum value of lost load required for a non-negative welfare change is less than $3 per

kWh. The average value of lost load necessary for welfare to remain unchanged across

all circuits is $0.3 per kWh and the median is $0.01 per kWh. The smallest estimate

of the value of lost load conducted for Southern California Edison customers is $1.90

for residential customers, implying that the observed change in liability likely leads to a

reduction in welfare.

To calculate a conservative estimate of the short run welfare change at each circuit, I

assume that consumers’ value of electricity is $0.22 per kilowatt hour, the average retail

price of electricity in California. Figure A.13 plots a histogram of the estimated welfare

change at each circuit in millions of dollars. The short run welfare effect is negative at

nearly every circuit in the sample, suggesting that the value of lost electricity use at

each circuit during power shutoffs outweighs the reduction in expected damages. Adding

the welfare effects across circuits implies that the regulatory change reduced welfare

by between $17 million and $7 billion depending on the value of lost load used in the
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calculation. In the next section I provide a short discussion of the results, explore policy

implications, and suggest directions for future research.

1.6.2 Conclusion

In summary, I find that utilities increase their use of shutoff events following an in-

crease in the share of liability for power line-ignited fire damages and that this policy

change reduced welfare in the short term by leading utilities to over-utilize shutoff events.

The theoretical framework outlined in section 1.3 suggests that the observed increase in

blackouts crowds out other types of ignition prevention, such as burying power lines

underground. I further provide evidence that utilities increase shutoff event use at the

circuits with the highest likelihood of fire ignition and on days when threatened down-

wind property values are higher. There are several key implications for policymakers

from this paper: First, these results suggest that policymakers can increase utilities’ ig-

nition prevention effort by increasing the share of liability for fire-related damages that

they bear. Second, the policymaker can influence which ignition prevention efforts the

utility undertakes by clearly defining which strategies will allow the utility to avoid a

negligence ruling. In the California context, the 2017 rule change and subsequent rule

amendments did not clearly specify what utility actions (or lack thereof) would lead

them to be negligible for fire damages. This lack of clarity may have led utilities to use

shutoff events as a signal that they are not acting negligently, leading to an overuse of

blackouts at the expense of longer term mitigation investments. Third, since utilities

appear to direct precautionary effort towards regions with higher threatened property

values, policymakers should be wary of potential distributional consequences of liability

regulations.

There are several areas where future research can extend this analysis to further
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inform our knowledge of liability regulations and how they impact firm precaution in the

power line-ignited fire setting. First, future research should explore whether the circuits

with the highest welfare loss from an increase in liability are located in areas with a

large share of disadvantaged community members. For example, if expected damages

are low and the VOLL is high in disadvantaged communities, then this implies that

increasing the share of liability on firms is regressive in this setting. Second, future studies

should take a longer term view of the impact of liability regulation on utilities’ ignition

prevention behavior. Researchers could do this by collecting data on other measures of

ignition prevention, such as burying power lines, which utilities can take in the long term.

Although liability regulation has a negative welfare impact in the short term, it could

be beneficial in the long term if it encourages precautionary activities that both reduce

the likelihood of ignition and the probability that a power shutoff occurs. Finally, more

work is needed to identify which ignition prevention strategies most effectively reduce the

likelihood of a fire caused by power lines. In particular, cost benefit analyses may need

to be revised to account for the fact that capital investments both reduce the probability

of ignitions and blackouts in the future.
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Chapter 2

Causal Effects of Renewable

Portfolio Standards on Renewable

Investments and Generation: The

Role of Heterogeneity and Dynamics

2.1 Introduction

Most industrialized countries now have commitments, or in a few cases laws, with

targets to reach carbon neutrality status by 2050 or 2060. A central strategy to reach this

target common across countries is the decarbonization of the electricity generation sector

through expanding renewable resources. In the United States, the renewable portfolio

standards (RPS), a state-level policy imposing standards for renewable electricity sales

in a state, is one of the most prominent policies implemented to date with the goal of

incentivizing decarbonization of the electricity sector. Beginning with Iowa in 1991, thirty

states and Washington D.C have now enacted RPSs; these states represent more than 70
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percent of the US population and 64% of total generation capacity in 2019.1 As the U.S.

federal government works toward its stated goal of 100% carbon-free electricity by 2035,

many of the proposed federal policies mimic state-level RPS in how they displace fossil

fuel use in electricity generation, reduce greenhouse gas emissions, and ensure reliable

operation of the electrical grid.2 Given the centrality of RPS to U.S. decarbonization

goals, it is imperative to provide a better understanding how such policies affect the

deployment of renewable electricity generation sources.

While RPSs have been designed and enacted to increase the share of renewable elec-

tricity supplied and sold in states adopting them, there is still limited consistent empirical

evidence about their efficacy and whether RPS cause investments in renewable capacity.

Two key issues complicate the identification of the causal effect of RPS on renewables.

First, RPS policies are not randomly assigned across states, and previous studies suggest

that political ideology, underlying renewable resource potential, labor market conditions,

and interest group pressure are strong predictors of RPS adoption (Lyon (2016)). Sec-

ond, due to significant differences in policy design and renewable resource endowments,

RPS policies are likely to have dynamic and heterogeneous effects across states and have

been adopted in a staggered manner since the mid 1990s (see Figure B.1 below).

Causal identification in this setting is complicated by difficult to quantify state-specific

characteristics such as political ideology and natural resource endowment which may cor-

relate with both RPS implementation and the deployment of renewable energy genera-

tion. Further, national-level policies that are correlated with RPS implementation, such

as the U.S. federal government Production Tax Credit also create challenges for causal

identification. To address these identification concerns, virtually all of the prior empir-

1To date, more than 70 proposals for a national portfolio standard have been introduced but none
has become law (Congressional Research Service, 2020).

2https://www.whitehouse.gov/briefing-room/statements-releases/2021/04/22/fact-sheet-president-
biden-sets-2030-greenhouse-gas-pollution-reduction-target-aimed-at-creating-good-paying-union-jobs-
and-securing-u-s-leadership-on-clean-energy-technologies/
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ical literature on the impact of RPSs uses panel data regressions with state and year

fixed effects, often labelled as two-way fixed effects (TWFE) or sometimes difference-in-

differences (DD) models. Recent econometric research has shown that in settings with

heterogeneous treatment effects (like in the case of the RPS policy adoption), TWFE or

DD estimators identify a weighted average of treatment effect parameters which may not

correspond to the overall average treatment effect on the treated (ATT) (Sun and Abra-

ham (2020), de Chaisemartin and D’Haultfœuille (2020), Borusyak and Jaravel (2017),

Goodman-Bacon (2021)).

We address these challenges by using the most comprehensive data available on RPS

policies and renewable electricity capacity investments and generation in the U.S. and

present new evidence on the causal effect of RPS policies on renewable electricity capacity

investments and generation by renewable resource using state-level data for 1990-2019.

We exploit the long time-series of data, combined with the staggered timing of RPS

adoption across states to derive heterogeneity-robust estimates of the causal effect of

RPS on renewables capacity and generation using the econometric methods recently

developed in Callaway and Sant’Anna (2021). This approach, we believe, provides the

first source-specific panel data evidence on the efficacy of RPS that is robust to treatment

effect heterogeneity, a pervasive feature of such programs.

We find that, on average, RPS policies increase wind generation capacity by 600-700

MW but have no significant effect on investments in solar generation capacity. Relative

to the average installed wind capacity in 2019 among ever-adopting states, the point

estimates imply that wind generation capacity increased by 21% as the result of RPS,

a sizeable increase. After modifying our empirical strategy to allow for treatment effect

dynamics, we find that the impact of RPSs on wind capacity investments ramps up

slowly: most of the capacity additions occur 5 years after RPS implementation. We

also examine the possibility of policy spillover where the introduction of an RPS in one
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state leads to a change in capacity mix in the neighboring states. We find weak and

limited evidence that RPS policies cause the mix of electricity generators to change

in unregulated neighboring states. Overall our findings underscore the importance of

accounting for dynamic responses to RPSs, of allowing for differential effects of RPSs on

wind and solar investments, and of incorporating the most recent data available, since

installed renewable capacity both increased by 40% (wind) and 164% (solar) between

2015 and 2019.3 As we explain below, these important considerations distinguish our

paper from the previous literature.

Due to the now long history of RPS policies, dating back to 1991, and its significance

for the electricity generation sector and for decarbonization goals, a sizable literature ex-

amines the impact of RPSs on renewable generation capacity investments, carbon emis-

sions, and electricity prices. Overall, the evidence from the previous literature on the

impact of RPS policies on the deployment of renewable electricity generation is mixed.

Several studies (e.g., Shrimali et al. (2015) and Yin and Powers (2010)) find a posi-

tive relationship between RPS requirements (or compliance) and renewable electricity

generation using a difference-in-differences type empirical strategy, and highlight the im-

portance of controlling for state-specific features of both determinants and characteristics

of policies across states. At the same time, other studies find little or no evidence of an

effect of RPS policies and deployment of renewable generating capacity (e.g., Greenstone

and Nath (2023), Fullerton and Ta (2022), Feldman and Levinson (2023), and Upton

and Snyder (2017)). Notably most of this previous literature on RPS policies and the

deployment of renewable electricity deployment implicitly relies on a staggered adoption

empirical design with state and year fixed effects in an attempt to derive credible esti-

mates.4 As we argue below, the assumptions necessary to lend a causal interpretation

3Depending on the measure considered, the stringency of RPS requirements increased by 22% and
38% between 2015 and 2019.

4Some exceptions are Upton and Snyder (2017) who use the synthetic control method,
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standard TWFE (DD) estimates from this previous literature are not valid in the setting

RPS policy adoption.

Recent work by Hollingsworth and Rudik (2019) and Feldman and Levinson (2023)

estimate the impact of RPSs on renewables deployment using an empirical framework

that accounts for interstate sales of electricity via wholesale electricity markets. For each

megawatt hour of electricity it generates, a renewable source creates one Renewable En-

ergy Credit (REC). To achieve compliance with RPSs, utilities can purchase electricity

from a renewable source (and its associated RECs) or directly purchase RECs which are

sold separately from underlying electricity (commonly referred to as “unbundled” RECs).

Because of interstate sales of RECs, RPSs may incentivize investments in renewables out-

side of the regulated state. Feldman and Levinson (2023) explicitly account for interstate

trade by using states’ net total in-state and out-of-state demand for RECs following the

implementation of an RPS. Using an instrumental variables framework, Feldman and

Levinson (2023) find that RPSs have an ambiguous impact on renewables investments.5

As we discuss below, since renewables investments take time to occur, it is important

to consider both interstate demand for RECs and dynamic effects when studying the

impact of RPS policies.

Several recent papers also study the effects of RPS policies on electricity prices, emis-

sions, and renewables deployment using analytical general equilibrium models (Bento,

Garg and Kaffine (2018), Fullerton and Ta (2022)). While these papers generally conclude

that more stringent RPS policies unambiguously increase the price of electricity, they

Greenstone and Nath (2023) who use an estimator proposed by Sun and Abraham (2020) as a robustness
check, and Feldman and Levinson (2023) who use an instrumental variables approach.

5Finding an excludable instrument is difficult in this setting because it requires exogenous variation in
the stringency of an RPS that is uncorrelated with state-specific, time-varying unobservables. Feldman
and Levinson (2023) use a number of instruments in their analysis including (among other variables)
out-of-state supply of RECs, sector-specific gross domestic product, and an indicator for which political
party controls the state legislature.
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have ambiguous predictions for the effect of RPSs on renewables deployment.6 Fuller-

ton and Ta (2022) show that the effect on renewable capacity investments depends on

state-specific transmission costs and natural resource endowments. For example, states

with larger intermittent resource endowments (such as high wind class) may actually

reduce renewable generation by increasing RPS stringency because the policy reduces

demand for all electricity through higher retail prices. Thus a detailed empirical analysis

is necessary to resolve the theoretical ambiguity.

We contribute to the empirical literature estimating the impacts RPS policies in four

key ways. First, we bring in recent data on renewable capacity investments up to 2019

while other papers only consider the 2000s and the mid-2010s. The latter 2010s period

(i.e., past 2015) is critical to properly measure the impact of RPS policies on renewables,

since as Figure 1 shows, the net RPS requirement at the average state in the U.S. doubled

between 2015 and 2019, reflecting dramatic increases in each state’s standard. Thus,

the post 2015 period meaningfully affects the impact of RPSs on renewable generation

because it is a period where the intensity of each state’s policy dramatically increases.

Notably, the recent studies by Greenstone and Nath (2023) and Fullerton and Ta (2022)

only consider data up to 2015 and so their estimates are likely biased downwards as a

result.

Second, unlike the recent literature, we analyze the impact of RPS policies on wind

and solar separately. This distinction is important since pooling the analysis across solar

and wind generation essentially confounds the marked differences in declining cost trends

and innovation across solar and wind renewables in the U.S. (Wiser et al 2022; Bolinger,

Seel, Warner, and Robson 2022). Our results clearly shows differential impacts of RPS

6Using a coarsened exact matching algorithm, Wolverton, Shadbegian and Gray (2022) show that
plants in RPS states faced electricity prices that were 2% higher than comparable plants in non-RPS
states.
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policies on wind and solar investments.7 Third, our analysis provides new insights by

documenting the dynamic impacts of RPS policies in the longer-term, up to 11 years

after policy implementation, which is made possible by our newly compiled data sets

and longer time framework. This consideration is particularly important because most

installations of utility-scale solar generating capacity have occurred since 2010 (see Figure

3 below) and most of the previous research has studied the impacts of RPS over the 2000s

and early 2010s periods. Fourth, our paper leverages the new Callaway and Sant’Anna

(2021) estimator that is robust to treatment effect heterogeneity in presence of staggered

treatment adoption. Treatment effect heterogeneity is an innate feature of RPS programs

due to differences in policy design and underlying renewable resource endowments in each

state. An additional consideration that emerges from the recent econometric literature

is that the standard TWFE/DD estimator may provide a biased estimate of the average

treatment effect on the treated in presence of treatment heterogeneity. This is a critical

concern in this setting since virtually all the previous literature uses DD methods, which

calls into question the validity of the resulting empirical evidence.

The rest of this paper is organized as follows. Section 2.2 provides background on

RPS policies and their implementation in the U.S. since 1991. Section 2.3 describes the

data used in our analysis. Section 2.4 presents the empirical strategy and section 2.5

describes our results. Finally, section 2.6 concludes.

2.2 Details on RPS Programs in the United States

RPS requires retail electricity suppliers to provide a minimum percentage or amount of

their retail load using eligible renewable electricity generation sources. Although RPS

7Feldman and Levinson (2023) estimate the effects of RPSs on wind and solar investments separately,
but do not estimate dynamic effects which are important for understanding changes in investment
behavior.
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policies exist in 30 states and the District of Columbia as of 2021, their design differs

significantly across states. Most significantly, minimum percentages or “targets” differ

both in magnitudes and time frames across states. Furthermore, states differ in their

eligibility requirements for existing renewable generation sources, exemptions for publicly

owned utilities, enforcement mechanisms, incentives for specific renewable generation

technologies, and compliance tracking systems. In the U.S., RPS policies apply to 58%

of total retail electricity sales as of 2021 (Barbose (2021)).

Figure B.1 shows the history of RPS adoption over time. While Iowa became the first

state to adopt a mandatory RPS in 1991, most RPS states implemented their programs

between 2000 and 2009. Typically, each state’s annual percentage requirement increases

gradually over time until it reaches its mandated goal. For example, California’s RPS

mandates that 60% of retail electricity sales come from renewable generation sources by

2030 and has interim targets of 44% by 2024 and 52% by 2027 (DSIRE (2021)). These

time-varying targets within adopting states underscore the importance of examining the

dynamic effects of the policy. Figure B.2 plots the mean, 95th percentile, and 5th per-

centile of observed statutory RPS targets across all RPS states in the U.S. between 2000

and 2019. The statutory RPS targets have increased over time as more states adopt RPS

policies and update existing legislation. While the average RPS target in 2000 was near

0 percent, the average statutory RPS target in the U.S. exceeded 20 percent in 2019. Al-

though the RPS percentage requirement for each state may appear stringent, the effective

standard may be much lower because some states allow existing renewable generation to

qualify for compliance. For example, although California’s standard was 20% of total re-

tail electricity sales in 2010, it’s effective standard was approximately 17% of sales after

accounting for eligible existing generation. Such variation in how “constraining” RPS

mandates are may introduce lags between the time a policy is first adopted and the time

detectable impacts on renewable investments incentivized by the policy are made. Con-
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sequently, we focus on estimating the causal effect of implementing any RPS legislation

on renewables deployment using a method that accounts for potential dynamic impacts,

and also consider variation in standard stringency in a robustness analysis.

While all states with RPS policies mandate that a share of retail electricity sales

come from renewable generation sources, they often differ in what sources are considered

renewable. The list of designated technologies always includes wind and solar electricity

generation, but often states differ in their classification of sources such as hydroelectric

and nuclear generation as renewable. Furthermore, some states such as California ex-

empt publicly owned utilities from the RPS standard, while others such as Colorado set

separate, lower standards for publicly owned utilities.

States further differ in how the RPS policy encourages renewable development. Some

states mandate that a certain percentage of the renewable generation used to comply with

the RPS policy come from specific technologies. For example, Delaware’s solar carve-out

currently stipulates that solar generating sources comprise at least 2.25% of renewable

generation used for RPS compliance. Additionally, some states such as Delaware enforce

RPS policies by charging a fee (typically termed an ‘Alternative Compliance Payment’)

for each unit of renewable generation that would be required to bring a utility into

compliance with the standard. Other states such as California allow regulators to levy

financial penalties on non-compliant utilities.

Most states monitor compliance with RPS policies using Renewable Energy Credits

(RECs) which certify that a given unit of electricity qualifies to meet the standard. Typ-

ically, RECs are issued by regional authorities that encompass multiple states and issue a

unique serial number for every megawatt-hour of generation produced by registered com-

pliant generators. While some trading of RECs may occur across regions, most RECs

used for RPS compliance occurs within a region. We exploit this fact to explicitly model

spillovers in wind and solar capacity additions from RPS-adopting states to non-RPS
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states using an approach similar to Hollingsworth and Rudik (2019).

As this brief overview highlights, RPS policies may appear straightforward, but in

practice there is a large degree of heterogeneity across states in how they are implemented.

This complexity requires sophisticated econometric methods in order to identify causal

effects, as we demonstrate below.

2.3 Data and Preliminary Analysis

In order to estimate the impact RPS policies on the deployment of utility-scale re-

newable electricity generation installations, we compile state-level panel data set on the

relevant outcomes, policy variables, and predictors of renewable investments (Table 2.5).

While many of the underlying data are recorded at the sub-state level (e.g., the county

where wind turbines are located), we organize all the data at the state-level given that

RPS policies are implemented by states. This section describes the data sources and

presents summary statistics and preliminary analyses.

Figure B.1 illustrates the timing of RPS policy adoption across states, focusing on

the continental U.S. using data from Barbose (2021). This adoption will constitute the

primary treatment indicator we consider in the empirical analysis. Each box represents

a year, and are marked in gray once a state adopts the policy. For example, Alabama

has yet to adopt an RPS policy, while Arizona enacted it in 2002. By the end of 2019,

27 states had enacted RPS policies, with Iowa being the earliest adopter (1992) and

Vermont being the latest (2015). Since no state has disadopted these policies during our

sample period, there is a large degree of autocorrelation in the ‘treatment status’, which

we address using cluster-robust inference in the empirical analysis.

Data on operating capacity by source is obtained from the Energy Information Ad-

ministration (EIA) Form 860, which contains generator-level information at electric power
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plants with at least 1 MW of combined nameplate capacity. For this study, we use in-

formation on installed capacity in wind and solar, which we complement with the same

information for coal or gas units (all recorded in MW). Importantly, Form 860 includes

information on all operable generators in a given year, as well as the list of retired gen-

erators (along with their year of retirement). For operable and retired generators we

observe the first year of operation, which allows to reconstruct a complete history of the

total cumulative installed capacity (henceforth ‘installed capacity’) over time, by source

(wind, solar, coal, and gas) from 1990-2019.

Figure B.3 reports the national trends in installed utility-scale wind and solar electric-

ity capacity. The deployment of capacity for both renewable resources follows a similar

pattern, with wind installations beginning to emerge in the early 2000s, while utility-scale

solar takes off around 2010. Growth in capacity appears roughly linear, reaching 100,000

MW for wind and 38,000 MW for solar by the end of the sample period in 2019. Many

factors have contributed to the diffusion of these renewable technologies in addition to

RPS policies, including reduction in levelized costs of operation, and federal and state-

level production tax credits and other localized incentives (Hitaj 2013). The econometric

methods detailed below are designed to control for the influence of those other factors.

We also analyze the impact of RPS adoption on actual generation of electricity by

source. Data on generation are obtained from EIA Form 906 which reports annual data

on generation at the power plant level. Other auxiliary data sources are described in the

Data Appendix. Table 3.1 presents summary statistics tabulated for the 29 states that

adopted an RPS policy during the period 1990-2019 and the 11 states that never adopted

RPS. Columns (1) and (2) report sample averages while Column (3) reports the RPS state

minus non-RPS state difference in means, with stars indicating statistical significance

testing the null hypothesis of “no difference” based on an OLS linear regression with

standard errors clustered by state. Panel A shows that on average, RPS states have
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marginally better infrastructure and wind speed endowments, with an additional 0.03

km of transmission per square km of state area, and average wind speed that is 0.3

meter per second higher. Solar irradiance, measured in kWh per square meter per year

is a measure of total energy received from sun and a key determinant of solar electricity

potential. The data in Table 3.1 indicates solar irradiance is weakly smaller in RPS states.

The small magnitude of the differences reported in Panel A and the lack of statistically

significant differences indicate that natural resource endowments do no appear to be a

key driver of RPS policy enactment.

Panel B shows (as expected) that RPS states have higher levels of wind and solar

capacity installed, on average, than non-RPS states, although the difference is only sta-

tistically significant for wind capacity. On average over 1990-2019, total installed wind

capacity is 553 MW in states that ever-adopted an RPS. during that period, compared

to 192 MW for states that never adopted the policy. At the same time, we note that

coal and gas capacity is lower in states that adopt RPS policies. These differences in

capacity by source are mirrored in the average generation by source in Panel C. RPS

states produce more renewable electricity and less fossil-fueled electricity on average over

1990-2019, but none of the differences are statistically significant.

Panel D reports sample averages for various potential predictors of investments in

renewables, including state-level GDP per capita, state-level electricity price and con-

sumption, and League of Conservation Voters (LCV) scores for each state’s senator and

house of representative members.8 This correlational analysis reveals marked differences

between states adopting RPSs and states never adopting them. GDP per capita is no-

tably higher in RPS states. Electricity prices are also higher in RPS states, by $0.03
8We obtain annual LCV scores between 1993 and 2013 for each state from Hollingsworth and Rudik

(2019) and annual scores between 2014 and 2019 directly from the LCV website. The LCV describes its
scoring methodology in the following way: ”Annual scores are based on a scale of 0 to 100 and calculated
by dividing the number of pro-environment votes cast by the total number of votes scored except for
excused absences.”
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per kWh on average, as is total electricity consumption.9. Not surprisingly, RPS are

more likely to be adopted in states that score higher in the LCV score index; the RPS

- non-RPS difference is roughly 30 points and statistically significant. RPS states also

have a higher fraction of counties that are designated ‘Non-Attainment’ for one or more

criteria air pollutant. Finally, RPS compliance is also listed as 94% for RPS states. Since

states that ever adopt RPS legislation differ from those that never adopt on a number of

important observable margins, our preferred estimates will use not-yet-treated states (as

opposed to never treated) as a control group. We test the sensitivity of our estimates to

this choice in the robustness analysis.

2.4 Empirical Approach

2.4.1 Estimating Impact of RPSs with Staggered Adoption and

Treatment Effect Heterogeneity

The primary goal of this paper is to estimate the causal effect of RPS policies on the

deployment of renewable electricity capacity investments and generation using a staggered

adoption research design. In order to estimate the impact of RPS policies on the various

outcomes of interest, the previous literature has typically used a difference-in-differences

design with a two way fixed effects (TWFE) estimator with state and year fixed effects

(Yin and Powers (2010), Shrimali et al. (2015), Hollingsworth and Rudik (2019), and

Greenstone and Nath (2023)). The canonical regression equation for such models is:

yit = βRPSit +X ′
itθ + γi + δt + εit (2.1)

Where in the context our study, yit denotes utility-scale wind or solar electric capacity

9Prices are in adjusted to 2019 dollars and represent the electricity price for all end use sectors
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installed (or generation) in state i at year t, RPSit is a binary variable taking a value

of one for all years following RPS implementation, and Xit is a vector of state-specific

time varying control variables. The state fixed effects (γi) capture time-invariant charac-

teristics of each state, such as underlying wind class, that determine renewable capacity

installations and correlate with the probability that each state implements an RPS pol-

icy. Similarly, the year fixed effects (δt) control for annual shocks that are common to all

states, and may be correlated with both renewable capacity installations and the prob-

ability of implementing an RPS policy. For example, the year fixed effects account for

changes in the federal production tax credit, helping us to isolate the causal impact of

RPS policies alone on the deployment of renewable electricity generation. The coefficient

of interest, β is the average treatment effect on the treated (ATT) of an RPS policy on

the outcomes (utility-scale wind and solar capacity and generation).

OLS estimation of equation (1) is straightforward. However, recent advances in econo-

metric research show that, in the presence of treatment effect heterogeneity (i.e., where β

can vary over time or across cross-sectional units), the standard TWFE estimator iden-

tifies a weighted average of group-time specific treatment effects which may not corre-

spond to the overall ATT (Sun and Abraham (2020), de Chaisemartin and D’Haultfœuille

(2020), Borusyak and Jaravel (2017), Goodman-Bacon (2021)). As explained earlier, due

to important differences in RPS policy design across states and advancement in renew-

able generation technologies over time, it is reasonable to expect sizable treatment effect

heterogeneity in this setting. For example, California’s initial RPS target was 11.85%

for all utilities while Missouri’s was 2% and included a carve out for solar electricity

generation.

In order to address the issues with the TWFE estimator, we use the estimator pro-

posed by Sant’Anna and Zhao (2020) and Callaway and Sant’Anna (2021) to estimate

the impact of RPS policies. While researchers have proposed several different estimators
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which are robust to treatment effect heterogeneity, the Callaway and Sant’Anna (2021)

estimator is well suited to staggered adoption research designs with a binary treatment

indicator as in our setting.10 Furthermore, we employ the estimator proposed by Call-

away and Sant’Anna (2021) because it provides a flexible framework for aggregating

group-time specific treatment effect parameters into dynamic treatment effects.

This estimator requires defining “adoption cohorts” which are groups of units that

become treated at the same time. Due to limited overlap in RPS implementation years

across adopting states (Figure B.1), we define adoption cohorts using 3 year windows, so

that all states implementing RPSs between 1998-2000, 2001-2003, 2004-2006, and 2007-

2009 are assigned to the same cohort. 11 In our setting, the estimator computes the

treatment effect for each RPS adoption cohort by differencing each cohort’s outcomes

in a post implementation year t with its outcome in the year prior to implementation

(akin to the pre/post difference for the treatment group in standard DD estimation), and

then computing the same difference for a control group that is not treated as of year t

(akin to the pre/post difference for the control group in standard DD estimation). For

example, ATTg,t denotes the average treatment effect on the treated for all states that

implemented a RPS policy in year g at post-treatment time t relative to the year before

treatment, g − 1. Adoption cohort-specific control groups are constructed by estimating

a propensity score for each untreated state using baseline covariate values. The set of

possible comparison groups for cohort g could be all of the states that never adopt an

RPS policy during the sample period or the set of states that have not yet adopted a

RPS policy at year g. We choose to use the set of not yet treated states to construct

the control groups in the preferred analysis because (as documented in Table 3.1) ever

10See Sun and Abraham (2020), Goodman-Bacon (2021), de Chaisemartin and D’Haultfœuille (2020),
Strezhnev (2018), Ben-Michael, Feller and Rothstein (2021), Imai, Kim and Wang (2019), Borusyak and
Jaravel (2017) for other proposed estimators.

11Due to our estimation procedure requiring 9 years of pre-RPS adoption observations, we cannot
estimate treatment effects for the state of Vermont, the only state to adopt an RPS in 2010 or after.
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treated and never treated states differ on a number of relevant characteristics. However,

estimates using the never treated comparison group are similar to our main results, as

shown in Table ??.

Estimation of the ATTg,t parameters in our setting relies on four assumptions. First,

the data structure must be a panel or a repeated-cross section of states. Second, condi-

tional common trends holds between the treated and not-yet-treated groups, conditional

on covariates. Third, treatment follows a staggered adoption design (e.g., the treatment

is binary, and never reverts back from “1” to “0”). Fourth, there is some overlap on

baseline covariates between the treatment and control groups. Assumptions 1 and 3 are

trivially satisfied in our setting since our sample consists of a balanced panel of states

from 1990 to 2019 and we treat each RPS policy as irreversible. While assumption 2

is impossible to formally test since it involves unobserved counterfactuals, we provide

evidence that it is plausible by estimating pre-treatment period event study coefficients.

Finally, to address assumption 4, we use the outcome regression estimand proposed by

Callaway and Sant’Anna (2021) because there is limited covariate overlap between RPS

states and their not-yet-treated counterparts, leading to imprecise inference procedures

when using inverse probability weighting and doubly robust estimators (Khan and Tamer

(2010)).

We control for state-level endowment characteristics which previous research has sug-

gested influence renewables deployment such as: wind potential (wind speed), solar ir-

radiance, and total length of electricity transmission lines. Wind potential and solar

irradiance capture a state’s latent potential for renewable electricity generation, while

the length of transmission lines measures potential grid access for renewable generation

sources. Furthermore, we control for a set of time-varying state level socioeconomic

characteristics including gross domestic product (GDP) per capita, House and Senate

League of Conservation Voting (LCV) scores, and electricity price per kilowatt hour of
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electricity in 1990 (the first year in our sample). The House and Senate LCV scores rank

representatives and senators based on their environmental voting record. We use these

variables to capture the underlying degree of pro-environmental attitudes in each state.

To conduct inference and compute standard errors, we use the multiplier bootstrap

procedure described in Callaway and Sant’Anna (2021) which constructs simultaneous

confidence intervals for the ATTg,t parameters. We cluster standard errors at the state

level to allow for correlation in renewable capacity adoption within each state over time.

Since some adoption cohorts are small, we group states that adopt RPS policies into

3-year bins corresponding to years 1998-2000, 2001-2003, 2004-2006, and 2007-2009.

To facilitate the interpretation of our results, we summarize the ATTg,t parameters

in 4 ways using the did R package from Callaway and Sant’Anna (2021). The parameter

‘Overall ATT (cohort)’ correspond to the average effect of RPS policies experienced by

all states that ever implement an RPS.12 Similarly, we report the ‘Overall ATT (year)’

parameter, which corresponds to the average effect of implementing an RPS policy for

states that have implemented an RPS for at least 11 years. This parameter first averages

the heterogeneous effect of RPS policies across adoption-cohort groups within each time

period for those states that we observe at least 11 years of post-implementation data,

before averaging these parameters across time periods.13 The last two average treatment

effect parameters are the same as Overall ATT (year), except that they are computed

separately for post-implementation years 1-5 and 6-11 respectively. This provides a simple

metric to gauge dynamic effects of RPS policies on renewable capacity investments and

12Callaway and Sant’Anna (2021) recommend computing an overall ATT by first averaging the
adoption-cohort, time specific treatment effects βg,t across post-implementation time periods for each
cohort and then averaging the adoption cohort specific treatment effects.

13We chose to balance the panel of states when estimating the dynamic treatment effects because it
prevents the treatment effect from being driven by changes in the composition of the RPS ever-adoption
group over time Callaway and Sant’Anna (2021). This results in Iowa and Vermont (two RPS states)
to drop from the main estimation sample. We evaluate the robustness of the results to this sample
construction choice below.
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generation.

2.4.2 Estimating the Impact of RPS Intensity

Since the binary treatment indicator ignores differences in RPS targets across states,

we construct a continuous measure of treatment intensity measure following Feldman

and Levinson (2023), Greenstone and Nath (2023), and Hollingsworth and Rudik (2019).

Recall that utilities can comply with RPSs by generating renewable electricity themselves

(creating RECs), purchasing renewable electricity (and associated RECs) from suppli-

ers, or purchasing RECs that are unbundled from their underlying renewable electricity.

Feldman and Levinson (2023) measure RPS intensity by calculating the total demand for

RECs in each state. Since utilities can (in many cases) purchase RECs from out-of-state

suppliers, total demand for RECs is composed of in-state and out-of-state demand.

Net in-state demand is the gross statutory RPS requirement less eligible renewable

generation produced in the year before an RPS was passed.

Net-RPSit = max(0, RPSit − EligibleRenewablesi,τ i−1)

where the subscript i denotes a state, t a year, and τi is the year of RPS passage in state

i. Since states cannot demand negative quantities of RECs, we assume that in-state

demand for RECs is zero whenever states’ eligible renewable generation in the year prior

to policy enactment exceeds the RPS requirement.

Net out-of-state demand for RECs is the sum of the RPS goal in the states where

state i can sell RECs to less those states’ contemporaneous renewables generation.

Net-Out-of-State-REC-Demandit =
∑
j∈TPi

max(0, RPSjt −Renewablesjt)
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where TPi is the set of states to which state i is permitted to sell RECs. To identify

TPi for each state we use data on REC trading networks from Hollingsworth and Rudik

(2019).14 To calculate each state’s total net REC demand, we then add its net in-state

demand to its net out-of-state demand for RECs.

Total-Net-REC-Demandit = Net-RPSit + Net-Out-of-State-REC-Demandit

Total-Net-REC-Demandit reflects state i’s demand for RECs net of existing renewable

generation from within its own borders and from states to which it can sell RECs. Since

the estimator proposed by Callaway and Sant’Anna (2021) is specific to staggered adop-

tion settings for a binary treatment, we create a discrete treatment indicator equal to one

in all periods after Total-Net-REC-Demandit exceeds its sample average level. Defining

treatment in this way means that there could be anticipatory treatment effects if renew-

able generation capacity responds to below-average levels of Total-Net-REC-Demandit.

We also consider an alternative treatment definition where we create a discrete treatment

indicator equal to one in all periods after the first time that Total-Net-REC-Demandit is

positive.

2.5 Results: Impact of RPS Policies

2.5.1 Wind Capacity and Generation

The empirical analysis begins by analyzing the impact of RPS implementation on

wind outcomes. Table B.2 reports the results for installed wind capacity (Panel A)

14Since Hollingsworth and Rudik (2019) collect data on REC trading networks between 1993 and 2016,
we assume that these trading networks did not change from 1990 to 1993 and 2017 to 2019.
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and wind generation (Panel B). The estimates in column (1) include no additional con-

trols (besides the adoption cohort and year fixed effects implicitly accounted for by the

Callaway and Sant’Anna (2021) estimator). Column (2) adds the ‘natural endowments’

controls (wind potential, solar irradiance, and total length of transmission lines in the

state, see Table 3.1 for details), and column (3) adds the ‘socioeconomic’ controls (GDP

per capita, House and Senate League of Conservation Voting scores, and the price per

kilowatt hour of electricity in 1990). Standard errors for all estimates are computed using

a multiplier bootstrap method with clustering at the state level (Callaway and Sant’Anna

(2021), Kline and Santos (2012), Belloni et al. (2017), Chernozhukov, Fernández-Val and

Luo (2018)).

The preferred estimates in column (3) indicate that, on average, implementing an

RPS policy increases installed wind capacity by 586 MW on average, across all states

that ever adopted an RPS at any point during our sample period (Overall ATT (cohort)).

This is a large effect, corresponding to 21% of the average installed wind capacity in 2019

among RPS states. Overall, across the estimates in columns (1) to (3), the size effect of

the estimated ATT of RPS policy implementation ranges from 10% to 21%. Converting

our preferred estimates to reflect the average percentage point change in the share of total

capacity or generation attributable to wind resulting from a 1 percentage point increase

in the RPS target implies that the share of capacity increase by 0.33 percentage point.15

The average impact of RPSs for the group of states for which we have at least 11 years of

pre and post-implementation data (Overall ATT (year)) is of similar magnitude, implying

that RPS policies lead to 714 MW in capacity additions. Decomposing the effect by post-

implementation event time suggests that most of the increase in wind capacity investment

occurs 6-11 years after RPS implementation (1,000 MW on average), as opposed to 197

15These results are consistent with estimates from Yin and Powers (2010) and Shrimali et al. (2015)
who find that the share of electricity generated by renewables increases by 0.6 and 0.3 percentage points
respectively.
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MW in years 1-5. While all these estimates are positive, indicating that RPS policies

were important contributor to the development of in-state wind electricity installation,

it should be noted that the statistical significance is sensitive to the chosen specification,

with the column (1) and column (3) estimates being statistically different from 0 at the

5% significance level, while those in column (2) are not.

The results for annual wind generation are shown in Panel B and are generally mirror

those for installed capacity. The Overall ATT (cohort) estimate is column (3) is 3,110

GWh while Overall ATT (year) is 3,710 GWh. The impact again is larger for years

6-11 after RPS implementation (compared to years 1-5), implying that, on average,

RPS states increase annual wind generation by 5,350 GWh relative to their not-yet-

treated counterparts. This effect corresponds to 136% of the mean wind generation

and even 9% of mean coal generation among ever-adopting RPS states in our sample,

again underscoring the importance of RPSs as drivers of renewables deployment. The

statistical significance of the estimates of the impact of RPS policies on wind generation

follows a similar pattern as those for wind capacity. The estimates in column (3), with

the full set of natural endowments and socioeconomic controls are generally statistically

significant the at the 5% level, while the column (2) estimates are qualitatively similar,

but imprecisely estimated.

Figures B.4 and B.5 present the unconditional dynamic treatment effects for wind

capacity investments and generation, respectively. Each point represents an event time-

specific treatment effect which has been computed by averaging the group-time specific

effects across adoption cohort groups, following the approach in Callaway and Sant’Anna

(2021). Again, these are average effects for the subset of states for which we have 11

years of pre- and post-implementation data. We color-code the point estimates to reflect

the pre-RPS adoption period (gray) and post RPS adoption period (orange). The cor-

responding 95% confidence intervals are represented by the length of the tickers. The
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pre-RPS adoption treatment effect estimates to the left of 0 on the horizontal axis are

small and provide supporting evidence for the parallel trends assumption for wind ca-

pacity investments across the treated and not-yet-treated groups. In the case of wind

generation (Figure B.5), the pre-RPS adoption estimates also support the parallel trend

assumption. The combined evidence in Figures B.4 and B.5 indicate that the estimates

of the impact of RPS policies in Table B.2 can be interpreted as credible estimates of the

ATT of the policy.

The post-RPS adoption treatment effect estimates confirm the results in Table B.2:

RPS policies cause wind capacity investments and generation to increase in the post-

policy adoption period.16 All the post-adoption point estimates are statistically sig-

nificant at the conventional level for wind capacity investments, and 8 out of 11 are

for wind electricity generation. In terms of dynamics, the treatment effects appear to

grow roughly linearly with post-adoption time. Importantly, through the 11 years of

post-adoption data we have, the estimated impact of RPS on capacity investments and

generation show no sign of reverting back to a null effect. This indicates that RPS policies

created long-lasting change to the electricity sector of the states adopting them.

2.5.2 Solar Capacity and Generation

Next, we examine how RPS legislation has impacted solar capacity and generation.

Table B.3 is configured as Table B.2 and presents the ATT estimates for solar capacity

and generation in panels A and B respectively. While most of the estimates of the impact

of RPS policies on solar capacity investments and generation are positive (as expected),

they are smaller than their wind counterparts and lack statistical precision. The pre-

ferred estimates in column (3) imply that, on average, implementing an RPS increases

16Note that the Overall ATT (year) estimates in Table B.2 are just a weighted average of the event-time
estimates from Figures B.4 and B.5.
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solar capacity by 28 MW in ever-adopting RPS states. The overall ATT (year) estimate

similarly implies that wind capacity increases by 44 MW following RPS implementa-

tion. While statistically insignificant, the estimated impact of RPS on solar electricity

generation range between 87 and 117 GWh. As is the case with wind energy, much of

the estimated RPS impacts on solar capacity additions and generation occur between 6

and 11 years after RPS implementation. The estimated standard errors for all estimates

in column (3) are large relative to the ATT estimates such that the 95 % confidence

intervals for the RPS impact on solar energy all include zero.

Figures B.6 and B.7 display the estimated dynamic treatment effects for solar capacity

and generation respectively, computed in the same way as its counterpart in Figures B.4

and B.5. The pre-implementation estimates provide suggestive evidence that the parallel

trends assumption holds between treated and not-yet-treated states. Furthermore, the

post-implementation estimates (shown in orange) are small and indistinguishable from

zero, confirming the results in Table B.3.

The estimate for generation in column 3 of Table B.3 implies that solar generation

increased by 18% relative to the mean level of solar generation for ever-adopting states,

although the lack of precision makes this conclusion tenuous. One likely explanation for

the imprecise estimates of the effect on solar capacity and generation is that growth in

solar capacity investment was limited prior to 2010. Figure B.3 shows that while most

of the wind capacity investment in the U.S. has occurred since 2000, similar increases in

solar capacity investment did not meaningfully accumulate until 2010. This is consistent

with evidence from Wiser, Barbose and Holt (2010) who suggest that wind generation

proved more economically attractive and lower risk than solar in many regions of the

U.S., leading to earlier investment in wind. For context, most solar electricity generation

farms had installed capacity of 5 MW or less as of 2019 in the U.S.17

17https://www.eia.gov/todayinenergy/detail.php?id=38272
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2.5.3 Robustness

We check the robustness of our estimates to a number of additional model specifi-

cations in Table ??. The rows alternate between installed capacity (MW) and annual

generation (GWh). All specifications control for both the natural endowment and so-

cioeconomic covariates. Rows 1 and 2 replicate our preferred estimates of ATT (Year)

from Tables 2 and 3, while all other rows depart from the baseline specification in one

of five possible ways: whether the panel of treated states is balanced for 11 pre- and

post-treatment periods, whether the control group is the set of never treated states or

not yet treated group (as in the preferred estimates specification of Tables B.2 and B.3),

and finally modelling the RPS policy as a binary indicator for RPS adoption (legislation)

or as a binary indicator for RPS intensity being above the sample average. Rows 3 and

5 replicate our preferred specification using the control group of states that have never

adopted an RPS policy with installed capacity and generation as outcomes, respectively.

The results for wind using the never-treated group as the control are slightly larger

than our preferred estimates, and remain statistically significant at the 95% confidence

level. For solar energy, the estimates are virtually identical using the never-treated and

not-yet-treated groups as control groups and the results remain statistically insignificant.

Rows 4 and 6 replicate the preferred estimates using an unbalanced panel of treated

states rather than the subset of treated states for whom we observe 11 years of pre- and

post-treatment data. Using an unbalanced panel substantially increases the estimated

treatment effect for both the capacity and generation outcomes. Consistent with the prior

evidence, only the ATT estimates for wind are statistically significant at the 5% level.

Callaway and Sant’Anna (2021) note that the estimates using the unbalanced panel of

treatment units should be interpreted with caution since they may be driven by changes

in the composition of treated units over time. For this reason, we find it reassuring that
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the unbalanced panel results are qualitatively similar to our preferred estimates based

on the balanced panel.

Rows 7 through 10 use the treatment variable defined in section 2.4.2 which accounts

for each state’s net in-state and out-of-state demand for RECs rather than the policy

implementation date. In general these estimates are qualitatively similar to the preferred

estimates in rows 1 and 2. In rows 7 and 8 treatment is a binary indicator equal to

one for all years after a state’s total net REC demand is positive for the first time.

The estimates imply that, on average, solar capacity increases by 114 MW and wind

capacity by 671 MW after states face positive net REC demand. For generation, the

results suggest once total net REC demand is positive, solar generation increases by 369

GWh and increases wind generation by 3,480 GWh. Rows 9 and 10 define treatment

using a binary indicator equal to one for all years after a state’s total net REC demand

exceeds its sample average. Consistent with the dynamic effects shown in figure B.4, we

find effects that are larger in magnitude than those from our preferred specification. We

find that after total net REC demand exceeds its average, wind capacity and generation

increase by 1,120 MW and 5,620 GWh respectively. Similar to the results in Tables B.2

and B.3, the estimates for wind capacity and generation are more precise than those for

solar capacity and generation.

In summary, our results suggest that, on average, RPSs have played an important role

in spurring wind energy investments (and generation) across the United States. The evi-

dence for a causal effect on solar sources is weaker and generally statistically insignificant.

It takes time for RPSs to impact installed wind capacity, with most additions occurring

five or more years after policy implementation. As pointed out by Hollingsworth and

Rudik (2019) and Feldman and Levinson (2023), RPSs can influence renewables invest-

ments in states that can sell RECs to RPS states.

71



Causal Effects of Renewable Portfolio Standards on Renewable Investments and Generation: The
Role of Heterogeneity and Dynamics Chapter 2

2.6 Discussion and Conclusion

Renewable portfolio standards are the most prominent policy lever to stimulate in-

vestments in renewable electricity in the United States. Despite their more than 30-year

long history, RPSs remain controversial and debates continue to surround their efficacy in

leading the low-carbon transition in the electricity sector. This paper provides a careful

evaluation of the impact of RPSs on renewable electricity capacity investments and gener-

ation, using modern panel data econometric methods suited for the analysis of staggered

policy adoption with heterogeneous effects and the most up-to-date data available. These

considerations are critical as they overturn results from the recent literature evaluating

the impacts of RPS programs.

The results of this study point to 3 ways by which RPS legislation have changed

the composition of electricity generation in the U.S. First, RPS legislation dramatically

increased wind capacity investments and generation and this increase persists up to eleven

years after policy implementation. Second, dynamic responses to the policy, which had

not been considered in the previous literature are important: RPS policies take time

to affect renewable capacity installations and generation, with much of our estimated

effect occurring 6-11 years after the policy’s initial implementation. Third, we find no

evidence that RPS legislation had any effect on solar capacity investment or generation.

One caveat on this last finding is that due to the timing of utility-scale solar deployment

in the U.S., our sample of data is not as well-suited to test the effect of RPSs on solar

investments.

We can use our estimates to infer the contribution of RPS policies on total wind

capacity installed (we ignore solar due to the small ATT estimates and the lack of statis-

tically significant evidence). The estimated ATT of RPS on capacity 11 years post RPS

implementation (relative to the year prior to implementation) is an increase of approxi-
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mately 1000 MW (Table 2). Applying this estimate to the 29 states with RPS legislation

as of 2019 implies that 29 GW, almost 30% of the current aggregate wind capacity is a

result of RPS policies. While this is admittedly a simple and crude calculation, it nev-

ertheless highlights the key role RPS played in developing the wind sector in the United

States.

The empirical analysis also highlights the importance of explicitly accounting for

the considerable heterogeneity in RPS legislation across states in empirical analyses.

Amongst papers in the previous literature, our findings most closely resemble the results

from Yin and Powers (2010) and Shrimali et al. (2015), both of which only find a positive

effect on renewable generation after controlling for aspects that differ across states’ RPS

policies. This is a reassuring result that helps to reconcile the wide variety of prior

estimates of RPS policies’ impact on renewable generation. Our estimates also build

on the prior literature by separately identifying RPS policies’ effect on wind and solar

generation. Despite evidence from Wiser, Barbose and Holt (2010) that wind generation

was more economically feasible than solar in most regions of the U.S. prior to 2010, most

prior research has grouped wind and solar generation together as an outcome.18

The U.S. and many other advanced economies are at a turning point where detailed

and aggressive decarbonization plans are established. The Clean Energy Standard pro-

posed by President Biden in 2021 shares many features with RPSs as they have been

implemented by U.S. states since 1991. Taken together, the evidence presented in this

paper indicates that a national Clean Energy Standard may promote investments in wind

and solar production capacity and actual generation of renewable electricity. An impor-

tant topic for future research is whether these investments will be sufficient for the energy

18Another working paper by Fullerton and Ta (2022), find no effect of RPS policies on generation
from wind and solar power using the same estimator from Callaway and Sant’Anna (2021). One pos-
sible explanation for the discrepancy between our estimates and theirs is that they are not separately
estimating the effect on wind and solar power.
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sector to reach targets of zero emissions by 2035.
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Chapter 3

Can the Low-Carbon Transition

Energize Labor Markets? Evidence

from Wind Electricity Investments

in the U.S.

3.1 Introduction

Over the last decade, the prospects for ‘green jobs’ and ‘green new deals’ have be-

come central to climate change and economic development policy debates worldwide,

holding the joint promise of economic progress and environmental preservation. Most

of these proposed policies are green energy transition policies that set targets for the

decarbonization of the energy sector, particularly the electricity sector. For example, the

Green New Deal resolution (H.Res.109) of 2019 calls for the production of “100 percent

of the country’s electricity from renewable and zero-emissions” sources through a “fair

and just transition for all workers and communities.”
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Beyond policy debates in Washington D.C, the creation of a low-carbon energy sec-

tor alongside a suite of new green jobs has become a central objective of development

strategies set forth by international agencies (OECD, World Bank, UNEP, Asian Devel-

opment Bank), many countries, and even states and provinces (e.g., California’s Senate

Bill 100 mandates that renewable energy and zero-carbon resources supply 100% of elec-

tric retail sales to end-use customers by 2045). In practice, many proposed low-carbon

energy policies are embedded in government programs that mandate and/or subsidize

the development of biofuels, the weatherization of homes, and job training programs for

workers to learn green job skills. The remarkable deployment of renewable electricity

capital, including utility-scale and residential-scale wind and solar projects, is the most

prominent example of such policy to date, having led to significant increases in renewable

electricity generation capacity in China, Germany, and many other countries.

In the United States, a low-carbon energy transition is already underway. Deploy-

ment of wind turbines began significantly in the 1990s and now amounts to more than

55,000 turbines, located in more than 500 counties, for close to 100GW of total capacity.

Likewise, utility-scale solar plants have grown rapidly in recent years, totaling more than

1,000 plants (including own-generation on industrial and commercial sites) and 32GW of

capacity. The growth of this renewable generation capacity reflects a myriad of factors,

including decreasing levelized costs, federal and state-level tax credit policies, renewable

portfolio standards, and climatic drivers such as wind speeds and annual sunshine hours.

As Figure 3.1 shows, the location of renewable capacity has been concentrated in specific

regions of the United States, in particular, the Southeastern region has seen almost no

investments in wind capacity.

An important motivation underlying low-carbon energy transition policies is the ex-

pectation that they will create a significant number of new, high-quality jobs in environ-

mental industries: from solar and wind turbine installation and maintenance, to energy
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retrofitting, to pollution-control technicians, to environmental engineers. Notably, such

jobs are typically held by medium to high-skill workers. At the same time, the expansion

in the green job sectors comes at the cost of job displacement in the fossil-fuel extraction

and production sectors. Such displacements may contribute to furthering economic in-

equality between higher-skill workers and lower-skill workers, which has increased rapidly

in recent decades. Understanding the implications of renewable energy transition policies

for labor market outcomes such as wages, job creation and destruction, and long-term

employment, is of fundamental importance to inform the design optimal green energy

transition policies.

In particular, this paper addresses two key related questions: (1) Can such policies

create new and long-lasting labor market opportunities, and (2) What types of workers

and industries will benefit from these policies? These questions are especially important

given that green energy transition policies are typically justified on the basis of jointly

reducing emissions in the energy supply sector while at the same time creating sustained

employment opportunities.

To answer these questions, we estimate a Two Way Fixed Effects (TWFE) model

that relates cumulative wind capacity to regional economic outcomes (including employ-

ment, monthly earnings, GDP, and per capita income) using an annual panel of counties

observed between 2000-2019. To address concerns that the TWFE estimator may be bi-

ased in contexts with treatment effect heterogeneity (Goodman-Bacon (2021), de Chaise-

martin and D’Haultfœuille (2020), Borusyak, Jaravel and Spiess (2021), Callaway and

Sant’Anna (2021), Sun and Abraham (2020)), we also estimate the relationship between

regional economic conditions and wind generation investments using a matching estima-

tor proposed by Callaway and Sant’Anna (2021) and a stacked difference-in-differences

estimation strategy used by Deshpande and Li (2019), Cengiz et al. (2019), and Flynn

and Smith (2022).
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Our TWFE model estimates the relationship between employment and wind energy

investments using detailed information from administrative datasets compiled by the

U.S. Census Bureau and the Energy Information Administration (EIA). The Census’

Quarterly Workforce Indicators (QWI) provide information on employment and average

monthly compensation at the county-by-quarter of year level. Employment and compen-

sation information are collected by states through administrative records sources such as

social security and federal tax data, and shared with the federal government. The QWI

also report employment and compensation by worker sex, age, educational attainment,

race, and ethnicity at the county level, allowing us to examine which workers are most

impacted by wind investments. Finally, the QWI reports labor market information by

two digit NAICS industry, which we use to study which sectors of the economy are im-

pacted by wind investments. The EIA reports data on every planned and operational

electricity generation source in the U.S. that has nameplate capacity greater than 1 MW

through its Form 860 database. For this project, we collected the location, year of initial

operation, and nameplate capacity for all utility-scale wind generators.

The results of our study suggest that increasing county-level wind capacity by 1 GW

positively impacts regional economic conditions, raising overall employment by 4.6%,

average monthly earnings by 5.8%, GDP by 13%, and per capita income by 5.3%. While

these effects seem quite large, a typical annual wind capacity addition is 0.1 GW, implying

that the regional economic effects of a single wind installation are modest. In fact, the

estimated elasticities of employment, earnings, GDP, and per capita income are 0.004,

0.005, 0.013, and 0.005 respectively for an average county with any wind investments

during our sample period. While the regional economic effects are modest for an average

county in our sample, we show that wind projects benefit regional economic conditions

once counties have accumulated more than 0.2 GW of wind generation capacity and

more than 10 years after a county’s first wind installation. Taken together, these results
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suggest that wind investments modestly impact regional economies and such impacts

take time to accumulate.

We also estimate how workers from different demographic categories are affected by

wind projects through employment opportunities and income. Our estimates suggest

that the labor market benefits of wind energy investments are borne by workers who

identify as Male and either African American or White. We find the largest employment

effect for African American workers (an increase of 18% resulting from a 1 GW change

in wind capacity), although this estimate is imprecisely measured due to the relatively

small number of individuals identifying with this racial category in counties with wind

projects.

Finally, we show that much of the observed increase in employment and monthly

earnings is concentrated in the construction and utilities sectors, suggesting that much

of the overall labor market benefits are directly related to wind turbine construction

and maintenance. This finding supports the BLS’ occupational labor market projections

which suggest that the “Wind Turbine Technicians” occupation will experience a 44%

increase in employment between 2021 and 2031.1

Our research contributes to long-standing literature in environmental economics on

the connection between energy markets (or regulations in energy markets) and labor

markets. This literature is motivated in part by informing policymakers about the impact

of regulations on labor markets outcomes, mostly on jobs or unemployment rates (e.g.

Linn (2010), Martin et al. (2014), Yamazaki (2017), Yip (2018), Curtis (2018), Hafstead

and Williams (2020)). Debates surrounding climate policy and carbon pricing have also

prompted new research on the impact of changes in energy prices (in particular electricity

prices) on employment and earnings (e.g. Deschenes (2011), Kahn and Mansur (2013),

1See here for more information. The BLS reports that there are 11,100 “Wind Turbine Technicians”
in the U.S. as of 2021 and their employment is projected to increase by 4,900 workers by 2031.
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Cox et al. (2014)). The literature on the relationship of green energy and labor markets

is not as well developed.

Green energy transition policies involve projected changes in electricity generation

mix that can achieve a given carbon target by a future date. As such, there is no con-

current data that can be examined to assess their impacts on labor markets. Instead,

the literature concerned with employment effects of green electricity transitions in the in

energy modelling research community has mostly relied on projections from project-level

case studies of wind or solar plants or on input-output model estimates and extrapola-

tions.

Aldieri et al. (2020) provides a recent review of the literature on the job effects of

wind energy projects based on input-output and/or modelling tools. The authors observe

a wide range of job effects, from 0.5 to 15 jobs created per MW installed, but overall

conclude that “job creation (associated with wind projects) seems to be limited”. A

key advantage of the input-output method is that it can be readily implemented, with

relatively small data requirements, to answer a host of important questions. At the same

time, it is important to note the inherent limitations of input-output type modelling:

Most prominently, input-output models rely on assumptions of constant return to scale

and ignore the possibility of factor substitution and relative price adjustment.

While there is relatively large ‘modelling’ literature related to the questions of renew-

ables and employment (Aldieri et al. (2020) reviews 20 published papers), the empirical

counterpart literature is limited. To the best of our knowledge, only 2 published empir-

ical studies (Brown et al. (2012) and Gilbert, Gagarin and Hoen (2023)) examine the

employment effects of renewable project investments.

Brown et al. (2012) uses data on the placement of wind turbines from the National

Renewable Energy Laboratory and county-level employment and per capita income from

the Bureau of Economic Analysis. Using various cross-sectional regression methods, the
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authors find that increases in wind capacity lead to increases in both per capita income

and employment. While it provides an important first step in empirically analyzing

the connection between renewables and employment, there are several limitations to the

study. First, it is now dated, with a sample period ending in 2008 and thus lacking

more than a decade of growth in the wind electricity sector. Further, it only considers

two labor market outcomes (employment and per capita income), so impacts at the

worker characteristics and industry levels are not provided. Another limitation is that the

analysis only considers the Great Plains region, which is not necessarily representative of

labor markets in other areas of the US. Finally, the empirical methodology is not robust

to the presence of unobserved local labor market shocks that are concurrent with the

turbine installation projects.

Our analysis is closely related to recent work by Gilbert, Gagarin and Hoen (2023),

who examine the relationship between wind capacity investments and labor market out-

comes at the establishment and worker levels between 2000 and 2015. While Gilbert,

Gagarin and Hoen (2023) focuses on the overall local labor market impacts of wind in-

stallations, this paper examines how wind projects change broader regional economies

by estimating effects on county-level GDP and per capita income in addition to labor

market outcomes. Furthermore, Figure 3.2 shows that roughly one-third of all wind ca-

pacity investments in the U.S. from 2000-2019 have occurred after 2015, suggesting that

analyses excluding this period may exclude a meaningful period in renewable energy de-

velopment in the U.S.. Finally, our analysis is the first to examine which workers are

affected the most by wind capacity installations in the U.S., identifying the distributional

consequences of wind installations.

This paper advances the existing literature in three ways. First, our analysis examines

the impact of wind energy installations on employment over a longer time period than

prior work, including the years 2015-2020 which accounts for 30% of the increase in wind
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generation capacity across the U.S. since 2000. The longer panel of data allows us to

estimate long run effects of wind installations on county-level employment, supplementing

prior work which focuses on shorter-term impacts of renewable energy investments on

local economies.

Second, this analysis is the first to quantify the aggregate regional economic impact

of wind energy projects by showing sizeable increases in GDP and per capita income

following wind capacity additions. While prior work has used input-output modelling to

quantify the impact of renewables investments on regional economic activity, this is the

first study that does not rely on common assumptions of those models.

Finally, this paper provides evidence of the distributional and occupational impacts

of wind energy investments in local economies, informing current policies to decarbonize

the U.S. electrical grid. Although previous work has examined the overall labor mar-

ket implications of wind energy development, none has studied how such development

impacts the composition of local labor markets.

3.2 Data and Descriptive Statistics

The key variables analyzed in the paper are county-level employment rates and av-

erage monthly earnings combined with county-level installed wind electricity generation

capacity over the period 2000-2019.

Employment and earnings data. We compile annual county-level data on employment

and average monthly earnings from the Quarterly Workforce Indicators (QWI). The QWI

is a job-level data set linking workers to their employers and derived from the Longitudi-

nal Employer-Household Dynamics (LEHD) linked employer-employee microdata. The

sample frame covers about 95% of U.S. private sector jobs, and excludes self-employed

workers. The tabular data provides county-level employment counts for various demo-
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graphic groups (by gender, age, and education levels), as well as by industry up to the

4-digit level. Due to severe data disclosure limitations, we use 2-digit industry classifi-

cations in the analysis below. We also use monthly average earnings at the county level.

In order to define an annual, county-level employment rate (employment over popula-

tion ratio), we draw on the National Cancer Institute SEER database to obtain annual

county-level population counts.

Since fourteen states opt out of reporting labor market data to the Census Bureau

through its LEHD microdata at some point during our sample period, we have employ-

ment and earnings information by county, sector, and worker demographic characteristic

for 38 states.2 We assess whether this data restriction impacts our baseline results by

collecting employment and earnings data at the county-year level from the Bureau of

Labor Statistic’s Quarterly Census of Employment and Wages (QCEW). Although the

QCEW does not report labor market outcomes by worker demographic characteristics,

it includes information from all 50 U.S. states during our sample period. We show that

our estimates are the same whether we use the QWI or QCEW data source, suggesting

that the data restrictions in the QWI do not meaningfully impact our estimates.

GDP and income per capita. To comprehensively measure the impact of wind gen-

eration investments on local economic conditions, we collect annual county-level GDP

and income per capita from the Bureau of Economic Analysis (BEA). The BEA uses

an income approach to compute county-level GDP by adding employee compensation,

net taxes on production and imports (taxes less subsidies), and gross operating surplus.

GDP is calculated with data from a number of public and private sources including the

EIA, BLS, and other sources.3 Per-capita income is largely based on administrative

records from various governmental programs (for example, unemployment insurance and

2The 14 states are Alabama, Arkansas, Arizona, Kentucky, Massachussetts, Mississippi, New Hamp-
shire, Wyoming, Ohio, Michigan, New York, Oklahoma, Vermont, and Wyoming.

3See the BEA’s GDP methodology for more information.
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Medicaid) and mid-year population counts from the Census Bureau.

Installed wind capacity. Data on installed operating wind electricity capacity are

taken from the Energy Information Administration (EIA) Form 860, which contains

generator-level information at electric power plants with at least 1 MW of combined

nameplate capacity. The structure of the Form 860 database includes information on all

operable generators in a given year, as well as the list of retired generators (along with

their year of retirement). This information allows us to reconstruct the complete history

of the total cumulative installed wind capacity over time. Since the EIA reports the date

at which a specific wind turbine begins to generate electricity that is distributed on the

grid (date of commercial operation) of wind, we adjust the date of operation by minus

2 years to include construction phase of wind turbine installations. Overall there are

55,000 wind turbines that operated between 2000 and 2019, part of 1,110 installations

(‘wind farms’), located in 421 counties.

Additional control variables. Since counties with wind electricity investments may

meaningfully differ from counties that never receive wind investments, we control for

annual trends in cumulative solar generation capacity, working-age population, non-

attainment status under the Clean Air Act Amendments (CAAA), and scores measuring

“pro-environmental” voting behavior by Congresspersons in each state. We collect an-

nual trends in cumulative solar generation capacity from the same EIA form 860 database

that we use to track wind generation capacity investments. As with wind generation, the

Form 860 data report the date a utility-scale solar generator becomes operational.

Since the descriptive statistics reported in Table 3.1 suggest that wind generation

investments are more likely to be made in more rural, less dense regions of the U.S., we

also control for working age population at the county-level. Furthermore, controlling for

county-level population also accounts for net migration in each county, which is likely

correlated with variation in employment. We obtain population counts of all individuals
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between ages 20 and 69 for each county and year of 2000-2019 from the National Cancer

Institute’s Surveillance, Epidemiology, and End Results Program.

A long literature documents the negative relationship between environmental regu-

lation and employment at regulated facilities (Greenstone (2002),Walker (2013),Curtis

(2018),Yamazaki (2017),Yip (2018)). Since a county’s regulatory status may be corre-

lated with investments in wind generation, we collect data on counties’ regulatory status

under the Clean Air Act Amendments from the EPA’s Green Book database.

Finally, we collect data measuring each state Congressperson’s voting behavior on

environmental issues between 2000 and 2019 from the League of Conservation Voters

(LCV). The LCV scores every Congressperson on a scale of 1 to 100 (100=most pro-

environment) based on their voting behavior on high-profile environmental legislation.4

Sample restrictions. Using the QWI database, we can construct a balanced panel

of 2,701 counties for which we have valid employment data over 2000-2019. We also

defined a “preferred sample” by excluding counties with population density above 1000

persons per square kilometer, and excluding counties with average wind speed below 5.4

meters per second and normalized length of transmission lines below the 10th percentile

of the distribution. The preferred sample of 2,334 counties is designed to avoid using

counties that are highly urbanized or have too weak potential for wind generation as

controls for the treated counties. In a robustness analysis we show that making this

sample restriction has little impact on our estimates of the relationship between wind

generation investments and local economic outcomes.

Descriptive Statistics. Figure 3.2 shows the trends in total installed wind capacity

over time in the continental U.S., as well as annual additions to capacity. The steady

deployment of wind electricity capacity is evident over the last 2 decades, with total wind

capacity growing from 2 to 102 gigawatt (GW) between 2000 and 2019. This growth

4More information on the methodology used to compute LCV scorecards can be found at their website.
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represents an average annual growth rate of 25% and reflects average annual additions of

5.3 GW, ranging from a low of 0.4 in 2004 and a high of 12.8 in 2012. As of 2019, 15%

of the continental U.S. population resided in county with at least one wind installation.

Figure 3.1 displays the geographical distribution of wind farms in the U.S. as of

2019. Specifically, we show the installed capacity by county in 2019 across 6 levels: no

installations (gray), and increasing shades of blue, where darker blue indicates larger

capacity. The highest category, > 1000 MW, is among others observed in Kern county,

CA, Gillian county, OR, Carson, Kenedy, Nolan, Scurry, and Taylor counties, TX, and

Klickitat county, WA. Two other notable patterns are revealed in this map: the near

absence of wind installation in the East South Central and Southern Atlantic regions

(essentially all states south and eastern of Missouri), and the importance of wind instal-

lations in the Great Plains region (with the addition of counties in California, Iowa, and

Illinois).

Employment in industries related to wind energy investments has increased over time,

facilitating the dramatic increase in wind capacity across the U.S. between 2000 and

2019. Figure 3.3 plots national employment as reported in the BLS QCEW between

2001 and 2019 for 6 digit NAICS codes related to the manufacturing, construction, and

operation of wind electricity generation facilities.5 Figure 3.4 displays the average annual

compensation per worker in 2019 dollars for industries related to wind energy generation.

Employees engaged in the operation of wind energy installations earn around $108,000

per year, which is more than their counterparts engaged in manufacturing ($92,000) and
5Unfortunately, employment directly related to the manufacturing and construction of wind facili-

ties was reported together with other types of employment for every sector except for “Wind Power
Generation”. Prior to 2011, the BLS reported wind power generation employment together with em-
ployment in the solar and tidal electricity generation industries under “Other Power Generation.” The
sector “Power System, Renewables Construction” includes workers involved in the construction of wind
projects as well as workers involved in stringing power lines, building solar generation structures, con-
structing power plants, and other energy-related construction. “Turbine Manufacturing” includes wind,
steam, hydraulic, and gas turbine manufacturing employment.
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construction ($70,000). However, in real terms the gap between compensation in wind

power construction, turbine manufacturing, and wind power generation has shrunk over

time.

Figures 3.3 and 3.4 highlight an important limitation of this study. The analysis in

this paper estimates the impact of wind energy investments in the surrounding local econ-

omy where the wind turbines are located. As a result, our estimates capture construction

and operation employment associated with wind energy investments, but not the work-

ers engaged in the manufacture of parts for wind turbines. Since this manufacturing

employment occurs outside of the local economy where a wind turbine is located, we

are unable to quantify how demand for wind turbine parts has reshaped local economies

surrounding wind generation-associated manufacturing plants.

Table 3.1 presents some summary statistics, comparing counties that at any point

between 2000 and 2019 had an operating wind installation (“ever-wind counties”, in

column 3) against counties that never had operating capacity (“never-wind counties”,

in column 4). For completeness we also report unconditional summary statistics for

the full sample (column 1), and the preferred sample (column 2). The top panel of

Table 3.1 shows the sample mean of various attributes of the renewable sector (installed

capacity and its determinants), while the lower panel reports average socio-economic

characteristics measured in 2000, at the onset of the deployment of wind electricity in

the U.S.

Average wind capacity is 93 MW in the ever-wind counties, which reflects in part

higher average wind speeds, compared to never-wind counties. Ever-wind counties also

have more installed solar capacity than never-wind counties even if solar irradiance (a key

predictor of solar electricity potential) is on average virtually the same in both groups.

The differences between counties with wind installations and those without are more

pronounced when examining baseline characteristics in 2000. Ever-wind counties have
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notably lower population and are less densely populated, by a factor of 2 to 3. Per-capita

income are similar, but wind projects are more likely to be developed in counties with

lower median housing values, used here as a proxy for land values. Electricity prices

in 2000 (measured at the state-level) are uncorrelated with wind investments, while

counties scoring higher on the 2000 League of Conservation Voters (LCV) scores for

House representatives are more likely to have wind installations. Counties with any wind

investments have 40% lower average GDP than their never-wind counterparts, suggesting

a negative correlation between wind investments and productivity. Finally, the 1995-

1999 change in county-level unemployment rate is similar across ever-wind and never-

wind counties, suggesting that employment trended similarly in both groups prior to our

sample period.

3.3 Empirical Methodology

This paper estimates the causal effect of wind electricity investments on labor market

outcomes. Given the staggered nature of these investments, we begin the analysis with

a simple a TWFE regression, as shown in equation 3.1:

Yit = α + βWCAPit + ψXit + µi + δs(i)t + εit (3.1)

Where Yit denotes the average log employment (or log earnings) and WCAPit is the

two-year lead of operating wind capacity in county i during year t (scaled in GW). We use

the two-year lead of wind capacity as treatment because the EIA data on wind capacity

report the date that a wind installation starts generating electricity (“operating date”).

Leading the operating date by two years enables us to capture the construction phase

associated with wind projects. Analysis of industry reports suggested a high degree
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of uncertainty in the time from wind turbine construction to operation, with estimates

ranging between 6 months and 2 years depending on resource allocation to construction.

We chose 2 years as this timeframe likely captures the construction phase for most wind

energy projects in our sample. The coefficient of interest is β, which measures the percent

change in the outcomes following a 1 GW increase in wind generation capacity.

Because wind capacity investments may be correlated with other determinants of local

labor market conditions such as population, we include state-by-year fixed effects, county

fixed effects, and a vector of controls (Xit) to the empirical model. The state-by-year

effects control for annual shocks to local economic conditions such as changes in state-level

fiscal policy while the county effects capture underlying time-invariant characteristics of

the county, including potential for wind development and location.6 In addition, we also

control for changes in counties’ regulatory status under the Clean Air Act Amendments

over time and the log population between ages 20 and 69. Since labor market conditions

tend to be correlated within each county over time, we conduct inference using standard

errors clustered by county and year (Cameron, Gelbach and Miller (2011)).

Naturally, we present several estimates of β below, for various specifications of the

controls and fixed effects. Further, we make use of the information contained in QWI and

estimate models that allow for a potentially different effect of wind electricity investments

on labor market outcomes across gender, age, and education groups. We also estimate

separate models for log employment rates and average earnings by industry category.

The identifying assumption in this “staggered adoption” research design is that the

average labor market outcomes of counties that received and did not receive wind farms

would trend similarly in the absence of the investment. Below, we estimate the dynamic

effect of wind capacity installation on employment and earnings using a distributed lag

6The state-by-year effects also account for federal and state-level changes in incentives for wind
generation development during our sample period, which have been shown to be an important driver of
renewable energy installations by Hitaj (2013) and Yin and Powers (2010).
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model and provide evidence supporting this assumption. Another challenge to identifi-

cation in this setting are general equilibrium spillover effects of wind investments to the

labor markets in neighboring counties that do not receive investments. We address this

concern by re-estimating our main specification at the commuting zone level instead of

the county level. Since commuting zones are aggregated versions of counties created to

approximate the local economy where people live and work, this analysis should capture

to a first order spillover effects to non-treated counties.

3.3.1 Dynamic Effects of Wind Capacity Investments

Our two way fixed effects research design relies on the assumption that the average

labor market outcomes of counties that received and did not receive wind farms would

trend similarly in the absence of treatment. While we cannot directly test this assump-

tion, we estimate the following distributed lag model specification to provide suggestive

evidence that it is plausible. One challenge in estimating the distributed lag model is that

we know the date a wind installation starts generating power, but we do not know when

construction started. Since increased employment associated with wind turbine construc-

tion would occur before power is generated, specifying the year before the installation

starts producing power as the reference year would violate our identifying assumption.

Following industry reports, we choose a reference year 2 years before a wind investment

starts producing electricity. Our preferred specification models the logged outcomes as a

function of 5 leads and lags of wind capacity as shown in equation 3.2

Yit =
5∑

j=−5

γjWCAPi,t−j + ψXit + µi + δs(i)t ++εit (3.2)

Where the parameter of interest, γj, measures the contemporaneous effect of wind

capacity investments on outcomes in county i at j years following (or prior to) a ca-
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pacity addition. Following Schmidheiny and Siegloch (2020), we cumulatively sum the

distributed lag coefficients of interest according to equation 3.3 to obtain the standard

event study estimates, which are reported in Figure 3.5.

βz = −
−1∑

k=z+1

γkif j ≤ −20if j = −1
z∑

k=0

γkif j ≥ 0 (3.3)

Note that moving from the distributed lag model to the event study coefficients

requires a normalization on the coefficient corresponding to the period 2 years before

treatment adoption (β−2) to be zero. Because we allow for 2 years of anticipation effects

to capture changes in construction sector employment prior to wind capacity deployment,

event study coefficient β−1 represents the cumulative change in capacity starting one

period prior to a capacity addition. As demonstrated by Schmidheiny and Siegloch

(2020), this dynamic model is equivalent to an event study with end points binned at 5

periods before and after treatment. By binning event time in this way, we are assuming

that the effect of wind capacity installations is constant more than five periods after (or

before) treatment occurs.

Figure 3.5 reports the event study coefficients and their associated 95% confidence

intervals associated with equation 3.3. As described above, we normalize the event-time

coefficients to 2 years before a wind installation begins operation to account for construc-

tion employment. Each coefficient represents the cumulative effect of a wind capacity

installation on overall county-level employment at each event time period. None of the

pre-wind installation coefficients are statistically distinguishable from zero individually

or when pooled together (the p-value of a joint test of significance of the pre-period co-

efficients is 0.6), supporting the identifying assumption of our baseline TWFE research

design: that employment in counties with and without wind installations would trend

similarly in the absence of treatment. Figure 3.5 also suggests that wind capacity in-
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vestments have an immediate, positive effect on employment that persists up to 5 years

after the investment occurs. The persistence of the effect in local economies likely reflects

continued construction of additional wind turbines and employment associated with the

ongoing operation and maintenance of wind projects.

3.3.2 Heterogeneous Treatment Effects

Recent research has shown that the TWFE estimator may be biased for the aver-

age treatment effect on the treatment in the staggered adoption setting in the presence

of treatment effect heterogeneity. (Borusyak, Jaravel and Spiess (2021), Callaway and

Sant’Anna (2021), de Chaisemartin and D’Haultfœuille (2020), Goodman-Bacon (2021),

Sun and Abraham (2020)). In order to investigate whether this issue is impacting our

central estimates, we re-estimate our main specification using two methods that explicitly

account for treatment effect heterogeneity. First, we estimate the effect of wind energy

investments on employment using the matching estimator proposed by Callaway and

Sant’Anna (2021).

This estimator requires defining “adoption cohorts” which are groups of units that be-

come treated at the same time. Since the estimator proposed by Callaway and Sant’Anna

(2021) is specific to contexts with a binary treatment, we define treatment as an absorb-

ing state which “turns on” 2 years prior to a county’s first wind capacity addition. The

estimator computes the treatment effect for each wind capacity adoption cohort by dif-

ferencing each cohort’s outcomes in a post- year t with its outcome 2 years prior to

treatment (akin to the pre/post difference for the treatment group in standard DD esti-

mation), and then computing the same difference for a control group that is not treated

as of year t − 2 (akin to the pre/post difference for the control group in standard DD

estimation). For example, ATTg,t denotes the average treatment effect on the treated for
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all states that implemented a RPS policy in year g at post-treatment time t relative to 2

years before treatment, g−2. Adoption cohort-specific control groups are constructed by

estimating a propensity score for each untreated county using baseline covariate values.

The set of possible comparison groups for cohort g is of the counties that never add wind

capacity during the sample period.

Estimation of the ATTg,t parameters in our setting relies on four assumptions. First,

the data structure must be a panel or a repeated-cross section of counties. Second,

conditional common trends holds between the treated and not-yet-treated groups, con-

ditional on covariates. Third, treatment follows a staggered adoption design (e.g., the

treatment is binary, and never reverts back from “1” to “0”). Fourth, there is some

overlap on baseline covariates between the treatment and control groups. Assumptions

1 and 3 are trivially satisfied in our setting since our sample consists of a balanced panel

of counties from 2000 to 2019 and we treat each county’s first capacity addition as an

irreversible treatment. While assumption 2 is impossible to formally test since it involves

unobserved counterfactuals, we provide evidence that it is plausible by estimating pre-

treatment period event study coefficients. Finally, to address assumption 4, we use the

outcome regression estimand proposed by Callaway and Sant’Anna (2021) because there

is limited covariate overlap between counties with wind generation capacity and their

never-treated counterparts, leading to imprecise inference procedures when using inverse

probability weighting and doubly robust estimators (Khan and Tamer (2010)).

As in our baseline TWFE specification, we control for dynamic county-level character-

istics such as: solar electricity generation capacity, the log of the working age population,

and nonattainment status. To conduct inference and compute standard errors, we use

the multiplier bootstrap procedure described in Callaway and Sant’Anna (2021) which

constructs simultaneous confidence intervals for the ATTg,t parameters. We cluster stan-

dard errors at the county level to allow for correlation in wind capacity adoption within
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each county over time. To facilitate the interpretation of our results, we summarize the

ATTg,t parameters using the did R package from Callaway and Sant’Anna (2021). The

parameter in column 2 of Table 3.7 corresponds to the average effect of wind capacity

additions averaged across all adoption cohorts and time periods.

Since the treatment in our baseline specification is cumulative wind capacity, we also

employ a “stacked difference in differences” (SDID) estimating equation following Cengiz

et al. (2019), Deshpande and Li (2019), Fadlon and Nielsen (2021), and Flynn and Smith

(2022) which allows for a continuous treatment. Overall, we find estimates from the basic

TWFE and the SDID to be very similar, alleviating concerns that the TWFE is biased

in our setting. The similarity between our TWFE estimates and SDID estimates is likely

due to the large number of never-treated units in our sample. One source of bias is that

the TWFE estimator includes “bad” comparisons between treated and already-treated

units. Goodman-Bacon (2021) shows that when there are many never-treated units in

the sample, the TWFE estimator places more weight on “good” and less weight on “bad”

comparisons.

To proceed with the SDID method, we first match each of the 393 counties across the

U.S. that ever receive a wind capacity investment to never-treated counties within the

same state. This results in a yearly panel of 393 stacks, each consisting of one treated

county and many never-treated control counties. We then estimate the two-way fixed

effects regression as in equation 3.4.

Yijt = α + βWCAPijt + ψXijt + δist + µj + εijt (3.4)

Where Yijt is the log employment (or earnings) in county i during year t that is part

of stack j. The inclusion of stack and stack-state-year fixed effects ensures identification

is driven by variation in wind capacity investments within each stack over time. In this
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setting, identification of the causal effect of wind installations on the outcomes requires

the parallel trends assumption holds on average across all stacks. We include the same

controls as in equation 3.1 and report robust standard errors clustered by county and

year.

3.4 Results

3.4.1 Total employment and average earnings

Tables 3.2 and 3.3 report the estimates of the impact of wind capacity investments on

the log total employment (employment for all demographic groups and industries) and

log average monthly earnings. The estimates in column (1) include county and year fixed

effects and column (2) adds a control for log population aged 20-69. Column (3) replaces

the year fixed effects with state-year effects. In column (4), our preferred specification,

we add an indicator for non-attainment status and county-level cumulative utility-scale

solar generation capacity. Finally, in column (5) we control for community zone by year

fixed effects instead of state-by-year. This permits the inclusion of controls that vary at

the state-year level: the League of Conservation Voters (LCV) scores (scaled from 0 to

1).

The preferred estimates in column (4) indicate that a one GW wind capacity in-

vestment increases log employment by 0.046 log points, with a standard error of 0.014.

This roughly corresponds to a 4.6% increase in total employment in response to a GW

increase in installed wind capacity. Across all specifications considered in Table 3.2, the

point estimates range from 3.5 to 5.3%, and all would be judged statistically significant

at the 5% level. Notably, the employment impact of wind investments which accounts

for time-varying confounding variables specific to each commuting zone is similar (and
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within one standard error) of the estimate in column (4).

Table 3.3 continues the analysis for log average monthly earnings and is designed

exactly as Table 3.2. The evidence in Table 3.3 points to a positive impact of wind

electricity investments on earnings as well. The point estimates range from 0.035 to

0.097 in log earnings points and all have confidence intervals that exclude a null effect.

The preferred estimates in column (4) imply that each GW increase in capacity increase

average monthly earnings by approximately 5.7%.

So far we have estimated wind investments’ impact on local labor markets, but such

investments could also affect the overall productivity of a regional economy. We examine

this impact in Tables 3.4 and 3.5 which extend the employment and earnings analysis

to log GDP and log income per capita respectively. The estimates in Table 3.4 suggest

a positive effect of wind investments on local economic productivity, although the point

estimate decreases significantly in magnitude and is statistically indistinguishable from

zero at the 95% confidence level. Point estimates range from 4.4% to 16.6%, and all

are statistically significant a the 5% level, except the point estimate in column (5).

The preferred estimate in column (4) suggests that, on average, a GW increase in wind

capacity increases county-level GDP by 13.1%.

While GDP captures the affect of wind capacity additions on local economic produc-

tivity, it may be possible that the increase in GDP we estimate in Table 3.4 is entirely

driven by increasing incomes. We explore this possibility in Table 3.5 which replicates

the GDP analysis with county-level logged income per capita as the outcome. If the

estimated change in income per capita is of a similar magnitude of the change in GDP,

then our results suggest that wind investments largely impact regional productivity by

increasing incomes. The estimates in Table 3.5 suggest that wind capacity additions in-

crease per capita income, and suggest that wind investments impact GDP partly through

income and partly through direct productivity channels. Estimates range between 1.4%
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and 9.2% and all are significant at the 5% confidence level, except for the specification

with commuting zone by year effects. Our preferred estimate in column (4) suggests that

a 1 GW increase in wind capacity is associated with a 5.3% increase in per capita income.

Notably, the impact on per capita income is generally more than 1 standard deviation

smaller than the impact on GDP (although most 95% confidence intervals overlap), sug-

gesting that wind investments impact productivity directly and through income channels

(although ultimately more evidence is needed to show this result conclusively).

Our analysis suggests that a 1 GW increase in wind capacity improves local economic

conditions by raising employment, monthly earnings, GDP, and per capita income. How-

ever, 1 GW (1,000 MW) is a sizeable increase in wind capacity that greatly exceeds the

size of any individual wind project or the typical average annual wind capacity addition

for any county in our sample. Since the median annual capacity addition for any county

in our sample is 100 MW, we rescale our results to provide estimates with a clearer in-

terpretation. Our preferred estimates from column (4) of Tables 3.2, 3.3, 3.4, and 3.5

suggest that increasing wind capacity by 100 MW raises employment by 0.5%, earnings

by 0.6%, GDP by 1.3%, and per capita income by 0.5%. These results point to a modest

effect of wind capacity investments on overall local economic conditions. Applying the

estimates for a 100 MW increase in wind capacity to the average county in our sample,

we find increases of 178 workers, $19 in average monthly earnings, $45 million in GDP,

and average annual income per capita by $151. The estimated employment return to

wind generation investments in this paper is about four times larger than that found

in prior work by Brown et al. (2012) who estimates a OLS regression model with state

fixed effects. However, relative to recent work by Gilbert, Gagarin and Hoen (2023)

suggests that our estimates could provide a lower bound for the impact of wind capacity

investments on employment at the local level.

The elasticities of employment, earnings, GDP, and per capita income with respect
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to wind capacity investments points to a small, but robust positive relationship. Our

estimates imply that increasing wind capacity by 1% would increase employment in an

average county with any wind investments during our sample period by 0.004%. The

corresponding elasticities for average monthly earnings, GDP, and per capita income are

0.005%, 0.013%, and 0.005% respectively. Although the average effect of wind capacity

investments is small, the effect is largely driven by counties with greater than the fourth

quartile of cumulative wind generation capacity (248 MW). Table 3.9 decomposes our

baseline result by quartile of wind capacity investment. Each coefficient reports the effect

of having cumulative capacity in a given quartile on employment relative to county-years

with no capacity investments. The preferred specification in Column (4) suggests that

employment increases by 2.2% when cumulative capacity exceeds 248 MW, relative to

county-years with no wind capacity.

Lastly, we explore how the employment effect we estimate changes over time for male

and female workers in Table 3.10. Each row in Table 3.10 presents estimates for a specified

time span of years following a county’s first wind installation. Both columns replicate

our preferred specification in Column (4) of Table 3.2 for the sample of male and female

workers. Our estimates suggest that the employment gains from wind investments largely

accrue to male workers and increase over time, with a 3.1% increase in employment more

than 10 years after a county’s first wind installation. Taken together, the results in

Tables 3.9 and 3.10 suggest that the regional economic benefits of wind installations

scale positively with installation size and may not accumulate in the short run.

We test the robustness of our baseline results using a variety of different specifications

and estimands to estimate the relationship between wind capacity and regional economic

activity. Our baseline specification relies on the assumption (commonly referred to as the

Stable Unit Treatment Value Assumption or SUTVA) that wind investments in treated

counties do not affect counties without wind installations. Since local economies may
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encompass several counties, the SUTVA may be violated in our context. To provide

suggestive evidence of the validity of SUTVA in this context, we re-estimate our base-

line preferred specification on a panel of commuting zones observed between 2000 and

2019. Since commuting zones are constructed by the Census Bureau to measure clusters

of counties with strong commuting ties, these units are a better representation of local

labor markets than county borders. Table 3.6 reports the estimates from the commuting

zone-level analysis. All specifications include county and state-by-year effects, log popu-

lation between ages 20 and 69, solar capacity, and a binary indicator of non-attainment

status. Columns (1) through (4) present the estimated relationship between wind ca-

pacity and log employment, log monthly earnings, log GDP, and log per capita income,

respectively. The estimated effect of a 1 GW increase in wind capacity is slightly larger

for employment (9%) and earnings (10%) relative to the county-level specifications and

both are marginally insignificant at the 5% confidence level. The estimates for GDP and

income per capita are significant at the 5% confidence level, with similar sign and nearly

double the magnitude of the estimates from the county-level regressions. Taken together,

estimates from Table 3.6 support the validity of the SUTVA in this context.

As described in section 3.3.2, a recent literature in applied econometrics has doc-

umented that TWFE estimator is biased in the presence of heterogeneous treatment

effects. Although work by Goodman-Bacon (2021) suggests that concerns regarding the

bias of the TWFE estimator are more limited in settings with many never treated units,

we use the estimator developed by Callaway and Sant’Anna (2021) to assess whether such

bias is a concern in our setting. Column (1) of Table 3.7 reports the estimates from our

preferred baseline specification in column (4) of Table 3.2, using a binary indicator for

whether a county has any non-negative amount of wind capacity as treatment. Column

(2) presents the estimated effect of having any wind capacity on log employment using

the estimator proposed by Callaway and Sant’Anna (2021). While there are several ways
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to aggregate the Callaway and Sant’Anna (2021), estimator across capacity installation

cohorts and event time periods, we choose to take the simple average of the cohort-time

treatment effect estimates. The TWFE (column (1)) and heterogeneity robust (column

(2)) estimates of wind capacity’s effect on employment are 2.3% and 1.3% respectively

and both estimates are significant at the 5% confidence level.

Since the data on labor market outcomes from the Census QWI excludes 14 states,

in Table 3.8 we test the robustness of our baseline employment results using data from

the BLS QCEW program which includes all U.S. states. All specifications replicate

our preferred specification with county and state-by-year effects, log population aged

20-69, solar capacity, and an indicator for non-attainment status. Columns (1) and (2)

present estimates of wind capacity’s impact on employment using the QWI data with our

preferred sample and the full sample of U.S. counties, while columns (3) and (4) display

the same effects using the QCEW. Regardless of sample restriction or data source, all

estimates are very similar (about 4.6%) and significant at the 5% confidence level.

3.4.2 Employment and average earnings by demographic group

Given the significance of wind generation in future plans to decarbonize the U.S.

electrical grid, it is important to understand which workers benefit from investments

in wind installations. We use the data on worker demographic characteristics from the

Census QWI data set to estimate our preferred specification relating wind capacity to

employment and earnings by worker sex, educational attainment, race and ethnicity,

and two digit NAICS sector. All specifications replicate our preferred specification from

Column (4) of Table 3.2 with county and state-by-year effects, logged population between

ages 20 and 69, and a binary indicator for whether a county is in non-attainment under

the U.S. Clean Air Act. Overall, our estimates suggest that wind capacity investments’
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impact on employment is most pronounced for male and black workers in the construction

and utility sectors.

We start by estimating the effect of wind installations on employment by worker sex

and age in Figure 3.6. The employment effect is larger for males overall than females and

implies that employment increases by 7% in response to a 1 GW wind change in wind

capacity. While it appears that younger workers receive the largest employment benefits

of wind installations, all estimates are statistically indistinguishable from each other.

Figure 3.7 reports estimates of wind investments’ employment impact by worker sex and

education. Once again, the estimates suggest that the employment effect is largest for

male workers, implying that male employment increases by 7% in response to a 1 GW

change in wind capacity.

Estimates by worker race and ethnicity are presented in Figure 3.8. The QWI reports

6 different categories of worker race (White, Black or African American, Asian, Native

American or Alaskan Native, Native Hawaiian or other Pacific Islander, and two or more

races) and 2 categories of ethnicity (Latino and not Latino). For conciseness, we report

the estimates for workers identifying as African American and White by ethnicity in

Figure 3.8. We estimate that individuals who identify as Black, non-Hispanic experience

an 18% increase in employment following a 1 GW increase in wind capacity, an effect

about 4 times larger than our baseline results in Table 3.2 which is statistically different

from 0 at the 5% confidence level. However, we note that the point estimate for workers

who identify as Black, non-Hispanic is imprecisely estimated, reflecting the relatively

small number of individuals identifying as Black working in counties with any wind

installations in our sample.7 The estimate for individuals who identify as white implies

a 4% increase in employment resulting from a 1 GW increase in wind capacity, which

7Our sample indicates that on average, 1,578 workers identify as Black in counties with any wind
installations while 21,128 identify as white.
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closely mirrors our baseline result in Table 3.2. Finally, the employment effect is similar

for workers identifying as White, non-Latino and individuals identifying as White, Latino.

Lastly, Figure 3.9 reports the estimated employment effect of wind installation by

2 digit NAICS industry code.8 Each coefficient is separately estimated by industry.

Only the estimated employment effect for the construction sector is significant at the 5%

confidence level, implying that a 1 GW change in wind capacity increases construction

employment by 20%. We also find suggestive evidence of an increase in utility sector

employment, although the estimate is imprecisely estimated, reflecting the variety of

electricity generation sources contained in this sector (e.g. coal, natural gas, solar, wind,

etc.). The industry-level results highlight that much of the overall employment effect we

estimate is directly related to construction and maintenance activities from building and

operating wind installations.

3.5 Conclusion

Using administrative data on labor markets and operational electricity generators

across the U.S., this paper estimates the relationship between wind energy investments

and regional economic conditions. The results suggest that wind installations have a mod-

est, but persistent effect on regional economic conditions, with small, positive elasticities

of employment, average monthly earnings, GDP, and per capita income that are two

times larger than previous estimates from Brown et al. (2012) and significantly smaller

than recent work by Gilbert, Gagarin and Hoen (2023). We find meaningful differences

in which worker receive the estimated regional economic benefits from increases in wind

capacity, with the largest estimated employment and earnings changes for male workers

who identify as White, Black, and Latino. Construction, maintenance, and operation of

8While the QWI reports employment by detailed 4 digit NAICS code, we choose to use the more
aggregated 2 digit sector codes due to significant data suppression in the more detailed industry data.
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wind generation facilities appears to drive much of the earnings and employment effect

we estimate, with the largest impact for the construction and electric utilities sectors.

This paper also demonstrates that the regional economic benefits accumulate within

a year of a wind generator becoming operational and remain constant up to five years

after installation. Although we find that the regional economic benefits accrue in the

short run, the results are driven by the set of counties in the top quartile of cumulative

wind capacity investments as of 2019 and more than 10 years after a county’s first wind

installation. Taken together, these results suggest that wind investments will have the

largest immediate impact on regional economic conditions in counties which already have

a significant amount of wind generation.

The estimates from this paper indicate that policies such as the U.S. Inflation Re-

duction Act (IRA), which incentive the development of wind energy projects will have

a moderate positive impact on regional economies. One initial technical report by re-

searchers at the Princeton ZERO Lab suggests that the IRA will increase total on-shore

wind generation capacity in the U.S. by up to 150 GW more than in the policy’s absence

by 2035 (Jenkins et al. (2022)). Naively applying our estimate to this prediction to the

average county with any wind investments in our sample implies that the IRA will in-

crease employment by 164,000 and GDP by $44 billion between 2022 and 2035 through

incentives for onshore wind generation.

Several areas of research would build on this study to provide a complete analysis of

the local economic impact of decarbonization policies. Our analysis does not quantify

the economic impact of manufacturing activity or electrical infrastructure development

related to on-shore wind investments. Furthermore, this paper considers one part of the

suite of policies countries have considered to achieve decarbonization of their economies.

Our analysis suggests that input-output models may incorrectly measure the true direct

impacts of decarbonization policies, underscoring the need for further empirical study of

103



Can the Low-Carbon Transition Energize Labor Markets? Evidence from Wind Electricity
Investments in the U.S. Chapter 3

how such policies impact local economies.
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Figure A.1: Share of Wildfire Ignitions (1910-2016) and Damages (2008-2019) by Source

Notes: Share of total wildfire ignitions in California by cause of ignition between 1910
and 2016 are shown in yellow. The “Other” category includes fires caused by arson,
debris, smoking, camping, playing with fire, railroads, lumber, equipment, and vehicles.
Data are from Keeley et al. (2018). Share of total wildfire damages by ignition cause
between 2008 and 2019 in California are shown in blue. Damages are defined as the
replacement cost of homes destroyed by wildfire. The “Other” category includes fires
caused by arson, debris, smoking, camping, playing with fire, railroads, lumber, equip-
ment, and undefined cause. Data were collected by the author from CalFire historical
wildfire activity data, also referred to as “redbooks.”
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Figure A.2: Total Customer Hours Impacted by Shutoff Events

Notes: Total customer hours computed by the author from public safety power shutoff
post event reports. Customer hours include commercial and residential customers served
by California’s three largest privately-owned utilities, Pacific Gas and Electric, Southern
California Edison, and San Diego Gas and Electric. Reports are available from the
California Public Utility Commission.
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Figure A.3: Demand, Supply, and the Shutoff Decision for an Example Firm
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Notes: Supply and demand curve for an example firm when the firm provides electricity
(left) and uses a power shutoff (right). Consumers’ maximum willingness to pay for
electricity is p̄ and the firm’s shutdown price is ps.
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Figure A.4: Firms supply electricity when π0 > π1
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Notes: Solution to the firm’s problem. Defensive capital investment is on the x-axis
and dollars of profit is on the y-axis. The firm does not use a shutoff whenever its earns
higher expected from supplying electricity (π0) than from using a shutoff (π1).
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Figure A.5: Effect of 2017 Rule Change on Power Shutoff Use

Notes: Estimated effect on shutoff use (in percentage points) of shifting liability for
power line-ignited fire damages from electricity consumers to utilities. The x-axis plots
event time in years relative to the 2017 liability rule change. The coefficient for period
“-1” is excluded in this figure because it is zero by construction. Coefficient estimates are
plotted with their 95% confidence intervals. The figure is created by estimating an event
study version of regression model 1.7 on a daily panel of distribution circuits operated
by San Diego Gas and Electric between 2013 and 2020. Standard errors are clustered at
the high fire threat district by calendar week level to allow for correlation in Shutoff use
across circuits with similar ignition risk during the same week.
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Figure A.6: Description of Downwind Assignment
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Notes: Figure shows how to compute U and V wind vectors from station-level wind
speed (x) in meters per second and direction (θ) in radians. U and V wind vectors are
scaled up by 18 minutes, the amount of time it takes for a lit ember to travel 10 km at
wind speeds of 9.5 meters per second, and converted to degrees latitude and longitude to
compute where a lit ember would land if picked up by the wind at the circuit centroid.
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Figure A.7: Example of Regions that are Downwind of Power Lines Across Days

(a) Oct. 10, 2019 (b) Oct. 11, 2019

Notes: Daily variation in which zip codes are downwind of zip code 95917 (shown in
tan) on October 10 and 11, 2019. The yellow and white shaded zip codes are the set of
zip codes that are downwind of 95917 on any day between 2018 and 2020. The yellow zip
codes are downwind of 95917 on a given day and the white zip codes are not downwind
on the day shown. The black dot is the centroid of an electrical distribution circuit in
zip code 95917 and the black line indicates the maximum daily wind direction and speed
at the circuit on the day shown. The black line is using maximum daily wind speed and
direction, an estimate of how far the wind can carry a lit ember from Albini et al. (2012),
and several trigonometric identities. I calculate the total structure replacement cost for
the yellow and white zip codes and changes in liability are generated by variation in wind
direction and speed across days.
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Figure A.8: Effect of 2017 Rule Change on Shutoff Declaration by Share of Medical
Baseline Customers

Notes: Estimated effect on shutoff use (in percentage points) of shifting liability for
power line-ignited fire damages from electricity consumers to utilities by quintile of med-
ical baseline customer share. A customer self selects into medical baseline status by
notifying San Diego Gas and Electric of a qualifying medical condition or device. The
share is calculated as the Coefficient estimates are plotted with their 95% confidence
intervals. Each coefficient is interpreted relative to the estimated effect on days in the
lowest septile of each climate condition. The figure is created by estimating a version of
regression model 1.7 where treatment is interacted with binned climate conditions on a
daily panel of on a daily panel of census tracts containing distribution circuits operated
by San Diego Gas and Electric between 2013 and 2020. Daily climate conditions are
from weather stations operated by San Diego Gas and Electric along their power lines.
Standard errors are clustered at the high fire threat district by calendar week level to
allow for correlation in shutoff use across circuits with similar ignition risk during the
same week.

113



Appendix for “The Precautionary Consequences of Wildfire Liability: Evidence from Power
Shutoffs in California” Chapter A

Figure A.9: Effect of 2017 Rule Change on Shutoff Declaration by Share of Life Support
Customers

Notes: Estimated effect on shutoff use (in percentage points) of shifting liability for
power line-ignited fire damages from electricity consumers to utilities by quintile of life
support customer share. A customer self selects into medical baseline status by notifying
San Diego Gas and Electric of a qualifying medical condition or device. The share is
calculated as the Coefficient estimates are plotted with their 95% confidence intervals.
Each coefficient is interpreted relative to the estimated effect on days in the lowest septile
of each climate condition. The figure is created by estimating a version of regression
model 1.7 where treatment is interacted with binned climate conditions on a daily panel
of census tracts containing distribution circuits operated by San Diego Gas and Electric
between 2013 and 2020. Daily climate conditions are from weather stations operated by
San Diego Gas and Electric along their power lines. Standard errors are clustered at
the high fire threat district by calendar week level to allow for correlation in shutoff use
across circuits with similar ignition risk during the same week.
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Figure A.10: Results by Decile of Total Zip Code Replacement Cost
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Notes: Wind and climate data is taken from weather stations operated by utilities
in California and interpolated to each distribution circuit centroid using inverse distance
weighting. Replacement costs are taken from the Zillow ZTRAX dataset. The underlying
data consists of pairs of upwind, ever-downwind zip codes for selected days during January
and April-December 2018-2020. Only days with wind speeds greater than 20 mph and
relative humidity less than 30% are included in the sample. The outcome is a binary
variable equal to 1 if there is an active shutoff in origin zip code o. The variables of
interest are indicator variables for whether the total replacement cost in each destination
zip code d is in one of ten bins on days when it lies downwind of zip code o. The excluded
category is decile one, so all estimates represent the impact of threatened property values
in each decile relative to the first decile. Controls include daily average temperature, wind
speed, humidity, and maximum wind speed binned by septiles for each origin zip code o
and destination zip code d. Standard errors are clustered at the high fire threat district
by calendar week level.
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Figure A.11: Results by Decile of Mean Zip Code Replacement Cost
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Notes: Wind and weather data is taken from weather stations operated by utilities in
California and interpolated to each distribution circuit centroid using inverse distance
weighting. Mean replacement costs are computed from the Zillow ZTRAX dataset for
each zip code. The underlying data consists of pairs of upwind, ever-downwind zip
codes for selected days during January and April-December 2018-2020. Only days with
wind speeds greater than 20 mph and relative humidity less than 30% are included in
the sample. The outcome is a binary variable equal to 1 if there is an active shutoff
in origin zip code o. The variables of interest are indicator variables for whether the
median replacement cost in each destination zip code d is in one of ten bins on days
when it lies downwind of zip code o. The excluded category is decile one, so all estimates
represent the impact of threatened property values in each decile relative to the first
decile. Controls include daily average temperature, wind speed, humidity, and maximum
wind speed binned by septiles for each origin zip code o and destination zip code d.
Standard errors are clustered at the high fire threat district by calendar week level
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Figure A.12: Value of Lost Load Needed for a Welfare Change of 0 at Each Circuit

Notes: This figure plots the value of lost load, or consumer’s maximum willingness to
pay for electricity, required for the observed shift of liability onto utilities to be welfare
neutral. Values are computed by computing equation 1.10 for each circuit operated by
San Diego Gas and Electric between 2013 and 2020. The change in the likelihood of
shutoff use at each circuit is taken from the estimated coefficients in figure A.1. Ignition
probabilities at each circuit are from San Diego Gas and Electric’s internal model of
circuit-level ignition risk. Energy usage at each circuit is computed from zip code level
energy usage statistics reported by San Diego Gas and Electric. The author assigns
energy usage to each circuit based on its share of total power line length in a given zip
code. Future versions of this paper will use restricted access circuit-level energy use data.
Damages are computed as the total commercial and residential property value within 20
kilometers of a circuit.
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Figure A.13: Short Run Welfare Change at Each Circuit with a Low Value of Lost Load

Notes: This figure plots the short run welfare change for San Diego Gas and Electric
customers following a 2017 policy change which increased utilities’ share of liability costs
from power line-ignited fires. Values are computed by computing equation 1.10 for each
circuit operated by San Diego Gas and Electric between 2013 and 2020. The change in
the likelihood of shutoff use at each circuit is taken from the estimated coefficients in
figure A.1. Ignition probabilities at each circuit are from San Diego Gas and Electric’s
internal model of circuit-level ignition risk. Energy usage at each circuit is computed
from zip code level energy usage statistics reported by San Diego Gas and Electric. The
author assigns energy usage to each circuit based on its share of total power line length
in a given zip code. Future versions of this paper will use restricted access circuit-level
energy use data. Damages are computed as the total commercial and residential property
value within 20 kilometers of a circuit.
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A.2 Tables

119



Appendix for “The Precautionary Consequences of Wildfire Liability: Evidence from Power
Shutoffs in California” Chapter A

Table A.1: Circuit by Day Panel Summary Statistics

Mean (SD) Min Max N
PSPS Likelihood (%) 0.02 0 100 2,960,650

(1.43)
Temperature (C) 23.74 0 46 2,960,650

(5.11)
Precipitation (mm) 0.71 0 165 2,960,650

(3.56)
Humidity (%) 64.74 3 100 2,960,650

(16.44)
Max Wind Speed (m/s) 7.43 0 96 2,960,650

(1.86)
Energy Usage (Millions kWh) 1.04 0 6 2,960,650

(0.90)
Property Value (Billions of $) 5.03 0 52 2,960,650

(2.99)
Expected Damages (Millions of $) 2.02 0 20 2,960,650

(3.30)
Probability of Ignition (%) 0.01 0 2 2,960,650

(0.09)
Installation Year 1969.24 1928 2019 2,815,192

(20.15)
N Circuits 88.00

Notes: Statistics are computed for a daily panel of distribution circuits operated by San
Diego Gas and Electric between 2013 and 2020. Shutoff event use data was collected from
post-event reports submitted to the California Public Utility Commission. Daily tem-
perature, humidity, and maximum wind speed are collected at 10 minute intervals from
weather stations operated by San Diego Gas and Electric along their power lines. Energy
usage data was collected from zip code level reports published on the San Diego Gas and
Electric website. Property values were collected from the Zillow ZTRAX database. The
probability of ignition was collected from a public data submission by San Diego Gas
and Electric to the California Public Utility Commission in their wildfire management
plan. Expected damages is the product of circuit-level ignition probabilities and property
values at each circuit. “N Circuits” refers to the number of circuits that ever experience
a shutoff event between 2013 and 2020.
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Table A.2: Zip Code Panel Summary Statistics

Mean (SD) Min Max N
N PSPS 0.167 0 44 325,211

(1.16)
PSPS(0/1) 0.046 0 1 325,211

(0.21)
Replacement Cost (Billions) 6.799 0 37 325,211

(6.64)
Median Replace Cost (Thousands) 53.384 0 223 325,211

(27.73)
DAC Status 0.158 0 1 325,211

(0.36)
DW DAC Status 0.166 0 1 325,211

(0.37)
Temperature(F) 41.458 31 109 325,211

(12.95)
Humidity(%) 10.651 0 30 325,211

(8.02)
Wind Speed (mph) 24.496 20 88 325,211

(4.52)
Downwind Temp. (F) 45.030 30 113 324,965

(14.48)
Downwind Humid. (%) 14.517 0 100 324,965

(12.49)
Downwind Wind Speed (mph) 21.210 0 56 177,615

(6.67)
Downwind WHP Share 3.054 0 5 325,211

(0.99)
Downwind WUI Pop Share 0.006 0 1 325,211

(0.04)
Energy Use (GWh) 6.644 0 833 318,485

(30.39)
Downwind Energy Use (GWh) 6.880 0 833 320,130

(31.81)
N Zip Codes 562.000

Notes: Wind and weather data is taken from weather stations operated by utilities in
California and interpolated to each distribution circuit centroid using inverse distance
weighting. Total replacement costs are taken from the Zillow ZTRAX dataset and con-
verted to 2021 dollars. Median replacement costs are computed for each zip code from
the parcel-level Zillow data.
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Table A.3: Zip Code Characteristics by Downwind Status

Mean (Not Downwind) Mean (Downwind) Difference (% of SD)

Replacement Cost (Billions) 5.4 5.6 -2.8∗∗∗

Median Replace Cost (Thousands) 47.3 48.4 -4.1∗∗∗

Share Disadvantaged 0.5 0.4 7.7∗∗∗

Wildfire Hazard Potential 3.1 3.1 -0.9

Pop. Living in WUI (% of Total) 0.6 0.4 5.9∗∗∗

Avgerage kWh Consumed 4,182.6 3,889.9 1.4∗∗∗

N Houses 7,345.2 7,305.8 0.5

Total Population 20,039.4 19,705.6 1.6∗∗∗

% White 58.8 60.2 -5.9∗∗∗

% Black 3.2 3.1 1.0∗

% Asian 6.1 5.6 4.9∗∗∗

% Other Race 4.2 4.4 -4.8∗∗∗

% Hispanic 27.7 26.7 5.0∗∗∗

Employment 5,715.0 5,376.3 3.9∗∗∗

Annual Payroll (Thousands) 264,031.3 253,718.2 1.7∗∗∗

N Establishments 432.4 416.3 3.1∗∗∗

N Medicare Beneficiaries 2,992.5 2,967.2 0.9∗

N Medical Devices 111.1 113.4 -1.9∗∗∗

Temperature(F) 38.1 38.4 -6.1∗∗∗

Relative Humidity (%) 12.8 13.1 -3.2∗∗∗

Notes: Wind and weather data is taken from weather stations operated by utilities in
California and interpolated to each distribution circuit centroid using inverse distance
weighting. Total replacement costs are taken from the Zillow ZTRAX dataset and con-
verted to 2021 dollars. Median replacement costs are computed for each zip code from
the parcel-level Zillow data. Disadvantaged community (DAC) status comes from the
CalEnviroScreen 3.0 update and is computed as the share of total 2010 zip code pop-
ulation living in a census tract categorized as a DAC. Wildfire hazard potential is an
index varying from 1 (low) to 5 (very high) which quantifies the relative potential for
wildfire that may be difficult to control (Dillon and Gilbertson-Day (2020)). The share
of 2010 population living within the wildland urban interface is computed using data
from Radelof et al. (2017). All population data is from the California Department of
Finance. Employment, payroll, and the number of establishments are collected from the
2013 Census zip code business patterns database. Medicare beneficiaries and the num-
ber of medical devices that rely on electricity are collected from the U.S. Department of
Health and Human Services emPOWER Map 3.0.
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Table A.4: Effect of Liability Regulation on Shutoff Probability and Customer Hours
without Power

Shutoff Indicator Customer Hours
(1) (2)

Treated x Post 2017 5.64∗∗∗ 923.47∗∗∗

(1.56) (245.21)

Controls x x
Circuit FE x x
Month FE x x
Mean of Dep. Var 0.07 1.33
Bootstrap 95% CI [1.9,9.4] [376.3,1,506.5]
Observations 50,809 50,809

Notes: All columns estimate the change in shutoff use following a reform that increased
the share of liability born by firms. The outcome is a binary variable equal to 1 when
there is an active shutoff event at circuit i on day t. Column 1 reports the estimate
from a regression with no controls. Column 2 adds nonlinear controls for daily climate
conditions at circuit i. Column 3 adds circuit fixed effects and column 4 adds month
fixed effects. Post 2017 is a binary variable that takes a value of 1 for all days following
November 30, 2017. Standard errors are clustered at the calendar week level to allow
correlation in shutoff declaration across circuits within a week. The average value of
the outcome conditional on wind speeds being in the highest septile observed during the
sample period is also reported.
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Table A.5: Effect of Total Zip Code Replacement Cost on the Probability of a Shutoff

Total Value Mean Value
(1) (2)

Value x DW 0.02∗∗∗ 0.04∗∗

(0.01) (0.02)

DW 0.04∗∗ 0.04∗∗

(0.02) (0.02)

Controls x x
Pair FE x x
Day FE x x
Mean of Dep. Var 0.025 0.025
1 SD Effect 0.286 0.224
Bootstrap 95% CI [0.005,0.038] [0.004,0.078]
Observations 505,656 505,656

Notes: Wind and weather data is taken from weather stations operated by utilities in
California and interpolated to each distribution circuit centroid using inverse distance
weighting. Total replacement costs are taken from the Zillow ZTRAX dataset and con-
verted to 2021 dollars. The underlying data consists of pairs of upwind, ever-downwind
zip codes for every day during January and April-December 2018-2020. The outcome is a
binary variable equal to 1 if a shutoff event is active in origin zip code o. Value measures
the total cost of replacing structures in each destination zip code d and DW is a binary
variable equal to 1 when zip code d is downwind of zip code o on day t. Controls include
daily average temperature, relative humidity, precipitation, and maximum wind speed
binned by septiles for each origin zip code o and destination zip code d. Standard errors
are clustered at the high fire threat district by calendar week level.
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Table A.6: Robustness Analysis Estimates

Main Model WUI Controls Usage Controls 5 Day Treatment
(1) (2) (3) (4)

Value x DW 0.02∗∗∗ 0.02∗∗ 0.02∗∗ 0.02∗∗

(0.01) (0.01) (0.01) (0.01)

DW 0.04∗∗ 0.09∗∗ 0.10∗∗ 0.02
(0.02) (0.04) (0.05) (0.01)

Controls x x x x
Pair FE x x x x
Day FE x x x x
Mean of Dep. Var 0.025 0.025 0.025 0.025
1 SD Effect 0.286 0.224 0.264 0.198
Observations 505,656 505,656 498,324 505,563

Notes: Column 1 replicates the main estimate from column 4 of table A.5. Column 2
adds controls for the share of total population in zip code d living in the Wildland Urban
Interface. Column 3 adds controls for monthly zip code electricity usage in zip codes o and
d separately. Column 4 assigns a destination zip code (d) as downwind if it is downwind
anytime in the next 5 days (from t to t + 5). Wind and weather data is taken from
weather stations operated by utilities in California and interpolated to each distribution
circuit centroid using inverse distance weighting. Total replacement costs are taken from
the Zillow ZTRAX dataset and converted to 2021 dollars. The underlying data consists
of pairs of upwind, ever-downwind zip codes for every day during September-December
2019-2020. The outcome is a binary variable equal to 1 if a shutoff is active in origin zip
code o. Value measures the total structure replacement cost in each destination zip code
d and DW is a binary variable equal to 1 when zip code d is downwind of zip code o
on day t. Standard errors are clustered at the high fire threat district by calendar week
level.
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A.3 Additional Results and Robustness Checks

A.3.1 Extensive Margin

Estimates by Ignition Risk

For this analysis, I measure ignition risk using San Diego Gas and Electric’s modelled

probability of ignition at each circuit as reported in its 2020 Wilfire Mitigation Plan. This

measure captures the likelihood of ignition at each circuit operated by San Diego Gas

and Electric as of 2020. Unlike the measure of ignition risk used in the main analysis, the

modelled probabilities are ex-post because they reflect conditions after the 2017 policy

change.

I bin the circuits by ignition probability into 11 categories: one category for circuits

with an ignition probability of 0 and one category for each decile of the ignition probability

conditional on it being positive. Figure A.1 plots the coefficients from a modified version

of equation 1.4 where treatment is interacted with the 11 mutually exclusive indicator

variables representing different risk percentiles. Since the 0 ignition probability category

is excluded, each coefficient reflects the treatment effect at a specified decile of ignition

risk relative to the treatment effect at circuits with no ignition risk. The coefficients

in figure A.1 increase with wildfire risk, suggesting that San Diego Gas and Electric’s

increase in precaution following the policy was largely concentrated at circuits with high

ignition risk. At the highest risk circuits, power shutoffs increased (on average) by around

12 percentage points, a more than 170-fold increase relative to the pre-period mean.

Precaution and Climatic Conditions

In order to test how changes in daily climate conditions influence precautionary activ-

ity, I use the daily panel of distribution circuits operated by San Diego Gas and Electric

between 2013 and 2020. I examine how the change in shutoff use following the 2017 rule

change differs by daily maximum wind speed, relative humidity, temperature, and cu-
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mulative precipitation. Based on the IOUs’ explanation of ignition risk in their Wildfire

Mitigation Plans, maximum wind speed and humidity should be particularly important

predictors of power shutoff use because fire risk is elevated during periods of high wind

speed and low humidity. Equation A.1 presents how I model the relationship between

shutoff declaration (yimt) and climate characteristics using a fixed effects framework with

climate variables binned into septiles.

yimt = β0 +
7∑

k=1

β2kXkimt +
7∑

k=1

β3kXkimtPostmt + γi + δm + νt + εimt (A.1)

Where Xkimt is a vector of climate variables including maximum daily wind speed,

daily average relative humidity, cumulative precipitation, and temperature each binned

into septiles. The model conditions on fixed effects for each circuit (γi), month (δm), and

calendar day (νt). Finally, the coefficients of interest, β3k, capture how the percentage

point change in power shutoff declaration following the 2017 rule change varies by daily

climate conditions. Standard errors are clustered at the week by high fire threat district

zone level to allow for correlation in utility decision making across all circuits with similar

ignition risk during the same week.

Estimates by Daily Weather Conditions

Figure A.2 plots the estimates from Equation A.1 by septile for each of the four daily

climate variables (maximum wind speed, relative humidity, temperature, and cumulative

precipitation). In Panel (a) the coefficients imply that the increase in shutoff declaration

following the 2017 rule change is increasing in maximum daily wind speed, with power

shutoffs increasing by approximately 0.6 percentage points on days with wind speeds in

the top septile. Panel (b) shows that San Diego Gas and Electric’s increase in shutoff

event use following the 2017 rule change was also decreasing in relative humidity. These
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results are reassuring, since utilities present wind speed and humidity as two primary

drivers of ignition risk in documents submitted to the regulator. Panel (c) provides

evidence that San Diego Gas and Electric’s power shutoff event use increased more on

cooler days following the 2017 rule change. Finally, Panel (d) shows that there is no clear

relationship between daily cumulative precipitation and shutoffs.

A.3.2 Intensive Margin

Analysis Using Local Variation in Replacement Cost

To alleviate the concern that the estimates of potential liability’s effect on shutoff

use may be spuriously driven by the replacement cost of structures that are not close

to a distribution circuit, I estimate a modified version of equation 1.7 which uses local

variation in wind direction around each circuit. Figure A.4 provides an example of the

methodology for this circuit-level analysis. As shown in figure, A.4, I create 10 and 20

kilometer buffers around each circuit, and divide each buffer into quarters to create 8

potentially downwind regions around each circuit. I then compute the total and median

structure replacement cost in each region and use daily variation in wind direction and

speed to generate changes in potential liabilities across days just as in the zip code

analysis. Finally, I estimate a modified version of 1.7 at the circuit level that controls

for daily weather conditions at each circuit, circuit-region fixed effects, utility-year fixed

effects, and calendar day fixed effects.

Table A.1 reports the results of this analysis. The coefficient in column 2 implies

that the likelihood of a shutoff increases by 0.05 pp (208% relative to the mean) when

the median downwind structure replacement cost increases by 10%. Reassuringly, this

effect is very similar to the effect of potential liability on precaution from the zip code

analysis.1

1The effect in column 1 is no longer significant, but this is unsurprising because I had to drop all
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Estimates by Zip Code Socioeconomic Status

Since I find that utilities use shutoffs more in regions with higher structure replace-

ment cost, which is positively correlated with socioeconomic status, there could be dis-

tributional consequences associated with liability regulation. For example, utilities may

be more likely to use a shutoff in a low socioeconomic status community in response

to higher potential liability in a downwind high socioeconomic status community. To

test for distributional impacts, I re-estimate equation 1.7 and decompose the effect by

whether the origin or destination zip code has an above-average share of its 2010 popu-

lation living in a census tract defined as a disadvantaged community by the California

state government.

Table A.2 reports the estimated relationship between potential liability and shutoff

use by socioeconomic status. Row 1 reports the effect when a high socioeconomic status

community lies downwind of a low socioeconomic status community, while row 2 reports

how shutoffs respond to potential liability when a low socioeconomic status community

lies downwind of a high socioeconomic status community. The estimates in rows 3 and 4

reflect the relationship between shutoffs and liability when both the upwind or downwind

zip codes are high socioeconomic status. The results suggest that the relationship between

potential liability and shutoff use is driven by zip codes of high socioeconomic status,

providing no evidence of distributional consequences in this setting.

of the parcels in the ZTRAX data that did not have geocoordinates or that were geocoded to zip code
centroids. As a result, the total replacement cost is no longer accurate. I am in the process of manually
geocoding these parcels.

129



Appendix for “The Precautionary Consequences of Wildfire Liability: Evidence from Power
Shutoffs in California” Chapter A

A.4 Heterogeneous Treatment Effects

I use observed data on power shutoff use from three large investor owned utilities in

California called Pacific Gas and Electric, Southern California Edison, and San Diego

Gas and Electric to estimate the relationship between potential liability and precaution.

Because each utility has different exposure to ignition risk in its service territory and

varying experience with ignition prevention historically, there are likely heterogeneous

treatment effects across firms in the sample. For example, over half of Pacific Gas and

Electric’s service territory lies within regions of heightened ignition risk while 35% of San

Diego Gas and Electric’s service territory is in high risk areas.2

Recent econometric research has shown that in settings with heterogeneous treatment

effects (like in the case of the California’s electric utility industry), two-way fixed effects

or difference in differences estimators identify a weighted average of treatment effect

parameters which may not correspond to the overall average treatment effect on the

treated (Sun and Abraham (2020), de Chaisemartin and D’Haultfœuille (2020), Borusyak

and Jaravel (2017), Goodman-Bacon (2021)). Furthermore, recent work has pointed

out that many environmental policies have different effects across units and over time

(Steigerwald, Vazquez-Bare and Maier (2021)).

Since heterogeneity across firms is the primary source of treatment effect heterogeneity

in this setting, I re-estimate equation 1.7 by firm. As a result, the regression model

identifies three parameters of interest: the response of shutoffs to liability for Pacific Gas

and Electric, San Diego Gas and Electric, and Southern California Edison. Following

Steigerwald, Vazquez-Bare and Maier (2021), the overall effect of liability on shutoff use

can be estimated by taking a weighted average of the three coefficients of interest, where

each weight is the group’s proportion of the sample.

2See Pacific Gas and Electric and San Diego Gas and Electric’s 2020 wildfire mitigation plans for a
detailed breakdown of their service territories by ignition risk.
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β̂λ =
∑
g

λg ˆβg
FE

Where λg is the fraction of observations in the sample that are part of group g.3 Since

the cluster-robust variance estimator is sensitive to heterogeneity in between-cluster vari-

ation (Carter, Schnepel and Steigerwald (2017)), I compute the effective number of clus-

ters using the summclust Stata command. There are 20 effective clusters in this setting,

suggesting that using the wild cluster bootstrap procedure recommended by Cameron,

Gelbach and Miller (2008) is warranted. I report the bootstrapped 95% confidence in-

terval for the overall effect of potential liability on shutoff use in table A.3.

The results of the heterogeneity analysis are presented in table A.3. Columns 1 and

2 report estimates for the effect of total and average structure replacement costs on the

likelihood of a power shutoff. The coefficients of interest in columns 1 through 3 suggest

that most of the relationship between potential liability and shutoff use is driven by San

Diego Gas and Electric and (to a lesser extent) Pacific Gas and Electric. The overall

effect of structure replacement cost on shutoffs is reported as the “Pooled Estimate”.

Reassuringly, the pooled estimates are of a similar magnitude as the main estimates in

table A.5 and both are statistically different from zero at the 95 percent confidence level.

3In this setting the weights are 0.39 (Pacific Gas and Electric), 0.39 (San Diego Gas and Electric),
and 0.22 (Southern California Edison).
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A.5 Appendix Figures

Figure A.1: Effect of 2017 Rule Change on Shutoffs by Circuit Ignition Risk

Notes: Estimated effect on shutoff use (in percentage points) of shifting liability for
power line-ignited fire damages from electricity consumers to utilities by decile of circuit
ignition risk. Coefficient estimates are plotted with their 95% confidence intervals. Each
coefficient is interpreted relative to the estimated effect at circuits with no ignition risk.
The figure is created by estimating a version of regression model 1.7 where treatment
is interacted with binned circuit ignition risk on a daily panel of distribution circuits
operated by San Diego Gas and Electric between 2013 and 2020. Ignition risk is from an
internal model created by San Diego Gas and Electric. Standard errors are clustered at
the high fire threat district by calendar week level to allow for correlation in shutoff use
across circuits with similar ignition risk during the same week.
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Figure A.2: Effect of 2017 Rule Change on Shutoff Declaration by Daily Weather Con-
ditions

(a) Maximum Wind Speed (b) Relative Humidity

(c) Temperature (d) Cumulative Precipitation

Notes: Estimated effect on shutoff use (in percentage points) of shifting liability for
power line-ignited fire damages from electricity consumers to utilities by septile of daily
climate conditions. Coefficient estimates are plotted with their 95% confidence intervals.
Each coefficient is interpreted relative to the estimated effect on days in the lowest sep-
tile of each climate condition. The figure is created by estimating a version of regression
model 1.7 where treatment is interacted with binned climate conditions on a daily panel
of distribution circuits operated by San Diego Gas and Electric between 2013 and 2020.
Daily climate conditions are from weather stations operated by San Diego Gas and Elec-
tric along their power lines. Standard errors are clustered at the high fire threat district
by calendar week level to allow for correlation in shutoff use across circuits with similar
ignition risk during the same week.
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Figure A.3: Effect of 2017 Rule Change on Shutoff Declaration by Socioeconomic Status

Notes: Estimated effect on shutoff use (in percentage points) of shifting liability for
power line-ignited fire damages from electricity consumers to utilities by quintile CalEn-
viroscreen (CES) 3.0 score. The CES score is a composite index used by the California
state government to rank census tracts by pollution exposure, demographic characteris-
tics, and socioeconomic characteristics. The top 25% of census tracts based on the CES
3.0 score are defined as disadvantaged. Coefficient estimates are plotted with their 95%
confidence intervals. Each coefficient is interpreted relative to the estimated effect at
circuits in census tracts that are the least disadvantaged (lowest CES score). The figure
is created by estimating a version of regression model 1.7 where treatment is interacted
with binned CES scores on a daily panel of census tracts containing distribution circuits
operated by San Diego Gas and Electric between 2013 and 2020. Daily climate condi-
tions are from weather stations operated by San Diego Gas and Electric along their power
lines. Standard errors are clustered at the high fire threat district by calendar week level
to allow for correlation in shutoff use across circuits with similar ignition risk during the
same week.
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Figure A.4: Example of Daily Variation in Replacement Cost at the Circuit Level

(a) Sep. 23, 2019 (b) Sep. 24, 2019

Notes: Daily variation in which regions are downwind of a circuit operated by Pacific
Gas and Electric on September 23 and 24, 2019. The centroid of the circuit is the center
of the circle, and it is encircled by 10 and 20 kilometer buffers. Each buffer is divided into
4 regions, creating 8 possible downwind regions for each day between 2018-2020. Yellow
shaded regions are downwind of the circuit on each day, while the tan regions are not
downwind. The black line indicates which direction the wind is blowing and its length
indicates how strongly the wind is blowing. The black line is created using maximum
daily wind speed and direction, an estimate of how far the wind can carry a lit ember
from Albini et al. (2012), and several trigonometric identities.
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Appendix for “The Precautionary Consequences of Wildfire Liability: Evidence from Power
Shutoffs in California” Chapter A

A.6 Appendix Tables

Table A.1: Effect of Replacement Costs on Shutoff Probability at the Circuit Level

Shutoff Indicator Customer Hours
(1) (2)

Value x DW 0.05∗∗ 269.25∗

(0.02) (142.88)

Controls x x
Pair FE x x
Day FE x x
Mean of Dep. Var 0.024 450.459
1 SD Effect 1.788 9,646.735
Observations 105,273 105,273

Notes: Estimates are from a regression of a binary variable equal to one if there is an
active shutoff event at circuit i on day t on the total (column 1) or median (column 2)
replacement cost in regions that are downwind of circuit i on day t. Both regressions
control for septiles of maximum wind speed, maximum temperature, average relative hu-
midity, and cumulative precipitation at circuit i on day t. Furthermore, both regressions
include calendar day and circuit-downwind region pair fixed effects. Each circuit has 8
potentially downwind regions as shown in figure A.4. Standard errors are clustered at
the high fire threat district by calendar week level.
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Appendix for “The Precautionary Consequences of Wildfire Liability: Evidence from Power
Shutoffs in California” Chapter A

Table A.2: Effect of Total Replacement Cost on the Probability of a Shutoff by Socioe-
conomic Status

Total Value
(1)

DACo x Value x DW -0.015
(0.015)

DACd x Value x DW -0.004
(0.019)

DW 0.041∗∗

(0.018)

Value x DW 0.024∗∗∗

(0.009)

Controls x
Pair FE x
Day FE x
Mean of Dep. Var 0.025
1 SD Effect -0.191
Observations 505,656

Notes: Wind and weather data is taken from weather stations operated by utilities in
California and interpolated to each distribution circuit centroid using inverse distance
weighting. Total replacement costs are taken from the Zillow ZTRAX dataset and con-
verted to 2021 dollars. Disadvantaged community status is taken from the CalEnviro-
Screen 2018 data release. The underlying data consists of pairs of upwind, ever-downwind
zip codes for every day during January and April-December 2018-2020. The outcome is a
binary variable equal to 1 if a shutoff event is active in origin zip code o. Value measures
the total cost of replacing structures in each destination zip code d and DW is a binary
variable equal to 1 when zip code d is downwind of zip code o on day t. I code an origin
zip code as a disadvantaged community if more than 50% of its population lives in a
census tract designated as a DAC by the California government. Controls include daily
average temperature, relative humidity, precipitation, and maximum wind speed binned
by septiles for each origin zip code o and destination zip code d. Standard errors are
clustered at the high fire threat district by calendar week level.
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Table A.3: Effect of Structure Replacement Cost on Shutoffs by Firm

Total Value Mean Value
(1) (2)

Value x DW x PGE 0.01 0.01
(0.01) (0.02)

Value x DW x SDGE 0.04∗∗∗ 0.15∗∗∗

(0.01) (0.04)

Value x DW x SCE -0.01 -0.06
(0.02) (0.04)

DW x PGE -0.01 -0.01
(0.02) (0.02)

DW x SDGE 0.07∗∗ 0.09∗∗

(0.03) (0.03)

DW x SCE 0.04 0.03
(0.03) (0.03)

Controls x x
Pair FE x x
Day FE x x
Mean of Dep. Var 0.025 0.025
Pooled Estimate r(estimate) r(estimate)
Bootstrap 95% CI of Pooled Estimate [00,0.029] [00,0.090]
Observations 505,656 505,656

Notes: Wind and weather data is taken from weather stations operated by utilities in
California and interpolated to each distribution circuit centroid using inverse distance
weighting. Total replacement costs are taken from the Zillow ZTRAX dataset and con-
verted to 2021 dollars. The underlying data consists of pairs of upwind, ever-downwind
zip codes for every day during January and April-December 2018-2020. The outcome
is a binary variable equal to 1 if a shutoff event is active in origin zip code o. Value
measures the total cost of replacing structures in each destination zip code d and DW is
a binary variable equal to 1 when zip code d is downwind of zip code o on day t. The
variables PGE, SDGE, and Southern California Edison equal one for observations from
Pacific Gas and Electric, San Diego Gas and Electric, and Southern California Edison.
Controls include daily average temperature, relative humidity, precipitation, and maxi-
mum wind speed binned by septiles for each origin zip code o and destination zip code
d. Standard errors are clustered at the high fire threat district by calendar week level.
The “Pooled Estimate” is a weighted average of the estimates in rows 1, 2, and 3 where
the weights are the utility’s proportion of observations in the sample. Since there are 20
effective clusters in this analysis, I construct a bootstrapped 95% confidence interval for
the pooled estimate following Cameron, Gelbach and Miller (2008).

138



Appendix B

Appendix for “Causal Effects of

Renewable Portfolio Standards on

Renewable Investments and

Generation: The Role of

139



Appendix for “Causal Effects of Renewable Portfolio Standards on Renewable Investments and
Generation: The Role of Heterogeneity and Dynamics” Chapter B

Heterogeneity and Dynamics”

B.1 Figures

Figure B.1: Year of RPS Adoption by State

Notes: Each box is shaded gray starting in the first year that a state adopts any RPS policy.
Information on RPS adoption date was taken from Greenstone and Nath (2020).
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Generation: The Role of Heterogeneity and Dynamics” Chapter B

Figure B.2: Nominal RPS Percentage Targets Over Time

Notes: This figure shows the nominal RPS percentage targets over time based on data reported
in Barbose (2021). Nominal RPS percentage targets measure the percent of applicable retail
electricity sales required to be generated by renewable sources. Since the definition of a renew-
able resource, type of regulated entity (e.g. public vs. privately owned utilities), and incentives
for certain types of renewable generation differ considerably across states, comparison of targets
across states is inadvisable. This figure shows that targets have increased in stringency over
time and vary widely across states.
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Generation: The Role of Heterogeneity and Dynamics” Chapter B

Figure B.3: Annual Renewable Electricity Generation Capacity (MW)

Notes: The blue (red with ’+’s) lines plot the level of installed wind (solar) generation capacity
in the continental U.S. annually between 1990 and 2019. Information on capacity installations
by generation source was taken from the EIA Form 860 database.
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Appendix for “Causal Effects of Renewable Portfolio Standards on Renewable Investments and
Generation: The Role of Heterogeneity and Dynamics” Chapter B

Figure B.4: Estimated Dynamic Treatment Effects of RPSs on Installed Wind Capacity

(MW)

Notes: Each circle shows the estimated ATT averaged across treatment adoption cohorts and
for each event-time period (t). The vertical bars represent the 95% confidence intervals for each
point estimate. Standard errors are computed using a multiplier bootstrap and clustered at
the state level. We include time invariant controls for wind potential, solar irradiance, length
of transmission lines per square kilometer of state area, 1990 per capita GDP, 1990 House and
Senate League of Conservation Voting scores, and the retail price per kilowatt hour of electricity
in 1990 at the state level. Pre-policy adoption estimates that are statistically indistinguishable
from zero are shown in gray.
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Generation: The Role of Heterogeneity and Dynamics” Chapter B

Figure B.5: Estimated Dynamic Treatment Effects of RPSs on Wind Electricity Gener-

ation (GWh)

Notes: Each circle shows the estimated ATT averaged across treatment adoption cohorts and
for each event-time period (t). The vertical bars represent the 95% confidence intervals for each
point estimate. Standard errors are computed using a multiplier bootstrap and clustered at
the state level. We include time invariant controls for wind potential, solar irradiance, length
of transmission lines per square kilometer of state area, 1990 per capita GDP, 1990 House and
Senate League of Conservation Voting scores, and the retail price per kilowatt hour of electricity
in 1990 at the state level. Pre-policy adoption estimates that are statistically indistinguishable
from zero are shown in gray.
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Figure B.6: Estimated Dynamic Treatment Effects of RPSs on Installed Solar Capacity

(MW)

Notes: Each circle shows the estimated ATT averaged across treatment adoption cohorts and
for each event-time period (t). The vertical bars represent the 95% confidence intervals for each
point estimate. Standard errors are computed using a multiplier bootstrap and clustered at
the state level. We include time invariant controls for wind potential, solar irradiance, length
of transmission lines per square kilometer of state area, 1990 per capita GDP, 1990 House and
Senate League of Conservation Voting scores, and the retail price per kilowatt hour of electricity
in 1990 at the state level. Pre-policy adoption estimates that are statistically indistinguishable
from zero are shown in gray.
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Figure B.7: Estimated Dynamic Treatment Effects of RPSs on Solar Electricity Genera-

tion (GWh)

Notes: Each circle shows the estimated ATT averaged across treatment adoption cohorts and
for each event-time period (t). The vertical bars represent the 95% confidence intervals for each
point estimate. Standard errors are computed using a multiplier bootstrap and clustered at
the state level. We include time invariant controls for wind potential, solar irradiance, length
of transmission lines per square kilometer of state area, 1990 per capita GDP, 1990 House and
Senate League of Conservation Voting scores, and the retail price per kilowatt hour of electricity
in 1990 at the state level. Pre-policy adoption estimates that are statistically indistinguishable
from zero are shown in gray.
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B.2 Tables
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Table B.1: Summary Statistics

(1) (2) (3)
RPS states Non RPS

states
Difference

Number of states 30 19 11

A. Infrastructure & Endowments
Transmission lines (km per kmˆ2) 0.16 0.14 0.02
Wind speed (meter per second) 6.3 6.1 0.2
Solar irradiance (kWh / mˆ2 /year) 4.3 4.6 -0.2

B. Installed Capacity (MW)
Wind 785.0 518.8 266.6
Solar 166.5 40.9 125.56
Coal 6,415.4 7,291.0 -875.7
Gas 8,480.1 6,953.7 1,526.3
Total 20,795 19,192 1,603.1

C. Generation (GWh)
Wind 4,095 2,971 1,124
Solar 599 131 467
Coal 71,857 80,294 -8,436
Gas 37,512 28,911 8,601
Total 78,747 74,377 4,369

D. Other Predictors
GDP per capita 57,143 47,787 -11,356**
Electricity price (all end-use, $ / kWh) 0.12 0.09 0.03***
Electricity consumption (Bil. kWh) 72.9 62.4 10.5
House LCV score 56.4 27.4 29.0***
Senate LCV score 61.7 27.9 33.8***
Fraction counties non-attainment 0.53 0.17 0.36***

Notes: RPS states adopted any type of RPS legislation between 1990 and 2019 while Non-RPS
states have never adopted any type of RPS legislation. Only states in the continental U.S. are
included in the sample. All dollar dominated variables are in 2019 constant dollars. Column 3
reports the mean difference between RPS and non-RPS states for each variable and the stars
indicate a significant difference across groups at the 0.05, 0.01, and 0.001 significance levels
(*** p<0.001, ** p<0.01, * p<0.05).
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Table B.2: Estimated ATT of RPSs Impact on Installed Wind Capacity and Generation

(1) (2) (3)

Panel A: Capacity (MW)

2* Overall ATT (cohort) 380* 264 586**

(158) (155) (218)

Overall ATT (year) 394* 307 710*

(198) (218) (282)

1-5 years post 195* 129 197*

(77) (79) (98)

6-11 years post 596* 417 1000**

(262) (275) (353)

Panel B: Generation (GWh)

Overall ATT (cohort) 1790* 1160 3110**

(910) (797) (1220)

Overall ATT (year) 1740 1340 3700*

(1050) (1090) (1550)

1-5 years post 838* 521 980*
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(361) (376) (443)

6-11 years post 2870* 1880 5350**

(1470) (1490) (2040)

Controls

Endowments Yes Yes

Sociopolitical Yes

Observations 810 810 780

Table B.2: Notes: Overall ATT (cohort) corresponds to the average effect of RPS policies
experienced by all states that ever implement an RPS. Overall ATT (year), corresponds to
the average effect of implementing an RPS policy for states that have implemented an RPS
for at least 11 years. “1-5 years post” and “6-11 years post” are equivalent to Overall ATT
(year), except that they are computed separately for post-implementation years 1-5 and 6-
11 respectively. Standard errors are computed using a multiplier bootstrap procedure and
clustered at the state level following Callaway and Sant’Anna (2021) (*** p<0.001, ** p<0.01,
* p<0.05). Column 1 reports the unconditional estimates. Column 2 adds natural endowment
controls for wind potential, solar irradiance, and length of transmission lines. Column 3 further
introduces sociopolitical controls including 1990 per capita GDP, 1990 House and Senate League
of Conservation Voting scores, and the retail price of electricity in 1990. Panel A reports
estimates for megawatts of installed wind capacity as the outcome and panel B reports estimates
for gigawatt-hours of wind electricity generation as the outcome.
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Table B.3: Estimated ATT of RPSs Impact on Installed Solar Capacity and Generation

(1) (2) (3)

Panel A: Capacity (MW)

2* Overall ATT (cohort) 16.3 48.3 29.7

(34.2) (36.2) (38)

Overall ATT (year) 50.1 71 43

(51.3) (49.4) (54.4)

1-5 years post -1.84 4.7 2.64

(3.73) (3.62) (4.56)

6-11 years post 34.1 92.7 57.3

(70.3) (70.5) (76.9)

Panel B: Generation (GWh)

Overall ATT (cohort) 28.7 142 92

(84.1) (94.7) (108)

Overall ATT (year) 119 195 114

(138) (129) (149)

1-5 years post -2.89 14.5 10.4
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(9.92) (10.7) (13.9)

6-11 years post 59.8 272 175

(174) (183) (226)

Controls

Endowments Yes Yes

Sociopolitical Yes

Observations 810 810 780

Table B.3: Notes: Overall ATT (cohort) corresponds to the average effect of RPS policies
experienced by all states that ever implement an RPS. Overall ATT (year), corresponds to
the average effect of implementing an RPS policy for states that have implemented an RPS
for at least 11 years. “1-5 years post” and “6-11 years post” are equivalent to Overall ATT
(year), except that they are computed separately for post-implementation years 1-5 and 6-
11 respectively. Standard errors are computed using a multiplier bootstrap procedure and
clustered at the state level following Callaway and Sant’Anna (2021) (*** p<0.001, ** p<0.01,
* p<0.05). Column 1 reports the unconditional estimates. Column 2 adds natural endowment
controls for wind potential, solar irradiance, and length of transmission lines. Column 3 further
introduces sociopolitical controls including 1990 per capita GDP, 1990 House and Senate League
of Conservation Voting scores, and the retail price of electricity in 1990. Panel A reports
estimates for megawatts of installed solar capacity as the outcome and panel B reports estimates
for gigawatt-hours of solar electricity generation as the outcome.
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2.3 Data Appendix

Table 2.5: Variable metadata

Variable Units Source

Transmission lines km per kmˆ2 Homeland Infrastructure Foundation-Level
Data (HIFLD)

Wind speed meters per second NREL Wind Integration National Dataset
(WIND)

Solar irradiance kWh / mˆ2 /year NREL Physical Solar Model version 3 Global
Horizontal Irradiance Multi-year Annual
Average

Installed capacity MW EIA Form EIA-860

Generation GWh EIA Form EIA-906

GDP per capita $ per person Bureau of Economic Analysis (BEA) dataset
SAGDP2N

Electricity price all end-use, $ / kWh EIA State Energy Data System (SEDS)

Electricity
consumption

Bil. kWh EIA State Energy Data System (SEDS)

House LCV score Scale [0, 100] League of Conservation Voters (LCV)
Scorecard

Senate LCV score Scale [0, 100] League of Conservation Voters (LCV)
Scorecard

Fraction counties
non-attainment

Share [0, 1] Environmental Protection Agency (EPA)
Greenbook
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3.1 Figures

Figure 3.1: Active Wind Generation Capacity by County in 2019

Notes: Data are from the EIA 860 database.
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Figure 3.2: Annual Trend in Wind Electricity Generation

Notes: Data on wind capacity is reported in the Energy Information Administration
form 860 database. The 860 data include wind generators with nameplate capacity
exceeding 1 MW across the United States. Each capacity addition date refers to the
date that a wind generator began operating. Our sample includes counties from 40 U.S.
states: We exclude Alaska and Hawaii from our final sample because their energy sectors
are meaningfully different to the rest of the U.S.. The 8 other excluded states (AL, AR,
AZ, KY, MA, MS, NH, WY, OH, MI, NY, OK, VT, and WY) do not share labor market
data with the Census Bureau for at least 1 year during our sample and are thus excluded.
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Figure 3.3: Annual Employment in Industries Closely Related to Wind Investments

Notes: Data are from the Bureau of Labor Statistics QCEW database. Each data point
represents the total employment in each industry across all 50 U.S. states. Prior to 2011,
the BLS reported wind power generation employment together with employment in the
solar and tidal electricity generation industries under “Other Power Generation.” The
sector “Power System, Renewables Construction” includes workers involved in the con-
struction of wind projects as well as workers involved in stringing power lines, building
solar generation structures, constructing power plants, and other energy-related con-
struction. “Turbine Manufacturing” includes wind, steam, hydraulic, and gas turbine
manufacturing employment.
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Figure 3.4: Average Annual Compensation in Industries Closely Related to Wind Invest-
ments

Notes: Data are from the Bureau of Labor Statistics QCEW database. Each data point
represents the average annual compensation in 2019 dollars in each industry across all 50
U.S. states. According to the BLS, “Under most state laws or regulations, wages include
bonuses, stock options, severance pay, the cash value of meals and lodging, tips and
other gratuities. In some states, wages also include employer contributions to certain de-
ferred compensation plans, such as 401(k) plans.” Prior to 2011, the BLS reported wind
power generation employment together with employment in the solar and tidal electric-
ity generation industries under “Other Power Generation.” The sector “Power System,
Renewables Construction” includes workers involved in the construction of wind projects
as well as workers involved in stringing power lines, building solar generation structures,
constructing power plants, and other energy-related construction. “Turbine Manufactur-
ing” includes wind, steam, hydraulic, and gas turbine manufacturing employment.
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Figure 3.5: Cumulative Effect of Wind Capacity Investments on Log Employment

Notes: Estimates and their associated 95% confidence intervals are plotted against
event time. Each estimate is computed by cumulatively summing coefficients from a
distributed lag model (DL) according to Schmidheiny and Siegloch (2020). For example,
the coefficient at t=4 is computed by adding the DL coefficients from t=0 to t=4. Thus,
each estimate represents the total effect of a wind capacity investment on employment
at event time t. Since t=0 is the date a wind investment begins generating power,
we normalize event time coefficients relative to t=-2 to allow for construction-related
changes in labor market conditions. The p-value from a joint test of significance of the
pre-period coefficients (t=-6 to t=-3) is 0.6 and the estimate of wind investments’ effects
on employment from the baseline TWFE specification is 0.05.
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Figure 3.6: Effect of Wind Capacity Investments on Log Employment By Sex and Age

Notes: Each point estimate and associated 95% confidence interval is separately esti-
mated with a two-way fixed effects regression model on an annual panel of counties in
our preferred sample. Each regression model controls for county and state-by-year fixed
effects, a binary indicator for whether a county is in non-attainment under the U.S. Clean
Air Act Amendments, and the logged county-level population between ages 20 and 69.
Standard errors are two-way clustered by county and year (Cameron, Gelbach and Miller
(2011)). The estimates reflect the percent change in county-level employment that is
associated with a 1 GW increase in wind generation capacity. Labor market outcomes
by county and worker demographic characteristics come from the U.S. Census Bureau’s
Quarterly Workforce Indicators database. Information on wind electricity generation in-
vestments across the U.S. comes from the U.S. Energy Information Administration Form
860 database.
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Figure 3.7: Effect of Wind Capacity Investments on Log Employment By Sex and Edu-
cation

Notes: Each point estimate and associated 95% confidence interval is separately esti-
mated with a two-way fixed effects regression model on an annual panel of counties in
our preferred sample. Each regression model controls for county and state-by-year fixed
effects, a binary indicator for whether a county is in non-attainment under the U.S. Clean
Air Act Amendments, and the logged county-level population between ages 20 and 69.
Standard errors are two-way clustered by county and year (Cameron, Gelbach and Miller
(2011)). The estimates reflect the percent change in county-level employment that is
associated with a 1 GW increase in wind generation capacity. Labor market outcomes
by county and worker demographic characteristics come from the U.S. Census Bureau’s
Quarterly Workforce Indicators database. Information on wind electricity generation in-
vestments across the U.S. comes from the U.S. Energy Information Administration Form
860 database.
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Figure 3.8: Effect of Wind Capacity Investments on Log Employment By Race

Notes: Each point estimate and associated 95% confidence interval is separately esti-
mated with a two-way fixed effects regression model on an annual panel of counties in
our preferred sample. Each regression model controls for county and state-by-year fixed
effects, a binary indicator for whether a county is in non-attainment under the U.S. Clean
Air Act Amendments, and the logged county-level population between ages 20 and 69.
Standard errors are two-way clustered by county and year (Cameron, Gelbach and Miller
(2011)). The estimates reflect the percent change in county-level employment that is
associated with a 1 GW increase in wind generation capacity. Labor market outcomes
by county and worker demographic characteristics come from the U.S. Census Bureau’s
Quarterly Workforce Indicators database. Information on wind electricity generation in-
vestments across the U.S. comes from the U.S. Energy Information Administration Form
860 database.
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Figure 3.9: Effect of Wind Capacity Investments on Log Employment By Industry

Notes: Each point estimate and associated 95% confidence interval is separately esti-
mated with a two-way fixed effects regression model on an annual panel of counties in
our preferred sample. Each regression model controls for county and state-by-year fixed
effects, a binary indicator for whether a county is in non-attainment under the U.S. Clean
Air Act Amendments, and the logged county-level population between ages 20 and 69.
Standard errors are two-way clustered by county and year (Cameron, Gelbach and Miller
(2011)). The estimates reflect the percent change in county-level employment that is
associated with a 1 GW increase in wind generation capacity. Labor market outcomes
by county and worker demographic characteristics come from the U.S. Census Bureau’s
Quarterly Workforce Indicators database. Information on wind electricity generation in-
vestments across the U.S. comes from the U.S. Energy Information Administration Form
860 database.
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Table 3.1: Summary Statistics

Full Sample Preferred Sample

All Ever-Wind Never-Wind

Renewable Potential Characteristics
Capacity Wind (MW) 14.9 15.7 93.0 0.0

(90.89) (85.25) (189.69) (1.05)

Capacity Solar (MW) 2.6 1.9 4.4 1.4
(42.61) (31.75) (61.70) (20.98)

Wind Speed (m/s) 6.4 6.5 7.0 6.4
(0.77) (0.65) (0.50) (0.63)

Solar Irradiance (kWh/m2) 4.5 4.4 4.5 4.4
(0.48) (0.47) (0.59) (0.44)

Transmission Lines (km/km2) 0.4 0.4 0.3 0.4
(0.37) (0.35) (0.20) (0.37)

Baseline Characteristics (2000)

Population 94,469.5 77,468.4 56,987.9 81,615.2

Population Density 101.4 60.6 27.7 67.2

Employment 42,030.8 34,331.7 23,314.7 36,562.4

Median House Value ($ 2019) 122,810.1 117,585.0 100,383.6 121,067.8

Senate LCV Score 42.7 42.3 40.9 42.6

House LCV Score 37.7 37.8 41.8 37.0

Electricity Price ($ 2019/kWh) 0.09 0.09 0.10 0.09

County GDP ($ 2019 Millions) 2,508.4 1,933.8 1,249.8 2,074.8

Per Capita Income ($ 2019) 18,058.4 18,042.3 18,025.2 18,045.8

Unemployment Rate (1995-99) 5.3 5.2 4.8 5.3

N Counties 2,699 2,334 393 1,941
Observations 53,980 46,680 7,860 38,820

Notes: The preferred sample includes all counties where the population in 2000 normalized
by county area is less than 1,000, wind speed is greater than 5.36 meters per second, and the
length of transmission lines normalized by county area exceeds 0.04. Wind and solar capacity
are reported in the EIA Form 860 database. County-level wind speed is reported by NREL
in the Western Wind Dataset and county-level solar irradiance is reported by NREL in its
National Solar Radiation Database. Data on transmission lines is reported by the Department
of Homeland Security in its Homeland Infrastructure Foundation-Level dataset. County-level
population is reported by the National Cancer Institute Surveilance, Epidemiology, and End
Results (SEER) program. Employment is reported by the Census Bureau in its QWI database.
Per capita income and median housing values for each county are collected by the IPUMS
NHGIS program. Senate and House League of Conservation scores were collected from the
LCV’s website. Electricity prices are taken from the EIA’s SEDS database. County-level GDP
and income per capita are from the BEA. All dollar values are converted to 2019 dollars using
the BEA’s implicit price deflator. 166



Table 3.2: Impact of Wind Capacity Investments on Log Employment

(1) (2) (3) (4) (5)

Wind Capacity (GW) 0.053∗∗ 0.080∗∗ 0.045∗∗ 0.046∗∗ 0.035∗

(0.017) (0.022) (0.014) (0.014) (0.016)

Log Population (20-69) 0.877∗∗∗ 0.890∗∗∗ 0.891∗∗∗ 0.789∗∗∗

(0.037) (0.034) (0.034) (0.037)

Solar Capacity (GW) -0.043 -0.180
(0.034) (0.095)

Non-attainment indicator 0.004 0.006
(0.005) (0.006)

Senate LCV Score -0.000
(0.000)

House LCV Score -0.000
(0.000)

County FE x x x x x
Year FE x x
State x Year FE x x
CZ x Year FE x
Mean Employment 35,499 35,499 35,499 35,499 35,499
Observations 46,680 46,680 46,680 46,680 45,440

Notes: *** p<0.001, ** p<0.01, * p<0.05. Standard errors are two-way clustered by
county and year (Cameron, Gelbach and Miller (2011)).
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Table 3.3: Impact of Wind Capacity Investments on Log Monthly Earnings

(1) (2) (3) (4) (5)

Wind Capacity (GW) 0.097∗ 0.096∗ 0.057∗ 0.058∗ 0.035∗

(0.034) (0.034) (0.022) (0.022) (0.015)

Log Population (20-69) -0.004 -0.009 -0.008 -0.051∗

(0.028) (0.023) (0.023) (0.019)

Solar Capacity (GW) -0.016 -0.028
(0.014) (0.036)

Non-attainment indicator 0.000 0.000
(0.002) (0.003)

Senate LCV Score -0.000∗

(0.000)

House LCV Score -0.000
(0.000)

County FE x x x x x
Year FE x x
State x Year FE x x
CZ x Year FE x
Mean Monthly Earnings 3,154 3,154 3,154 3,154 3,154
Observations 46,680 46,680 46,680 46,680 45,440

Notes: *** p<0.001, ** p<0.01, * p<0.05. Standard errors are two-way clustered by
county and year (Cameron, Gelbach and Miller (2011)).
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Table 3.4: Impact of Wind Capacity Investments on Log County GDP

(1) (2) (3) (4) (5)

Wind Capacity (GW) 0.166∗ 0.185∗∗ 0.130∗ 0.131∗ 0.044
(0.060) (0.064) (0.053) (0.053) (0.040)

Log Population (20-69) 0.790∗∗∗ 0.872∗∗∗ 0.873∗∗∗ 0.714∗∗∗

(0.095) (0.089) (0.088) (0.085)

Solar Capacity (GW) -0.123 -0.205
(0.064) (0.099)

Non-attainment indicator -0.008 -0.006
(0.008) (0.009)

Senate LCV Score -0.000
(0.000)

House LCV Score -0.001
(0.001)

County FE x x x x x
Year FE x x
State x Year FE x x
CZ x Year FE x
Mean County GDP 3,482,187 3,482,187 3,482,187 3,482,187 3,482,187
Observations 43,681 43,681 43,681 43,681 42,484

Notes: *** p<0.001, ** p<0.01, * p<0.05. Standard errors are two-way clustered by
county and year (Cameron, Gelbach and Miller (2011)). The mean county-level GDP is
reported in thousands of 2019 dollars.
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Table 3.5: Impact of Wind Capacity Investments on Log Income per Capita ($2019)

(1) (2) (3) (4) (5)

Wind Capacity (GW) 0.092∗∗ 0.088∗∗ 0.053∗ 0.053∗ 0.014
(0.031) (0.029) (0.022) (0.022) (0.015)

Log Population (20-69) -0.163∗∗ -0.134∗∗ -0.133∗∗ -0.158∗∗∗

(0.044) (0.035) (0.035) (0.033)

Solar Capacity (GW) -0.034 -0.111∗∗∗

(0.017) (0.020)

Non-attainment indicator -0.003 -0.001
(0.003) (0.003)

Senate LCV Score -0.000
(0.000)

House LCV Score 0.000
(0.000)

County FE x x x x x
Year FE x x
State x Year FE x x
CZ x Year FE x
Mean County Income per Capita 30,185 30,185 30,185 30,185 30,185
Observations 45,980 45,980 45,980 45,980 44,720

Notes: *** p<0.001, ** p<0.01, * p<0.05. Standard errors are two-way clustered by
county and year (Cameron, Gelbach and Miller (2011)).
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Table 3.6: Impact of Wind Capacity Investments on Log Employment at the Commuting
Zone Level

Employment Earnings GDP Income per Capita
(1) (2) (3) (4)

Wind Capacity (GW) 0.086 0.102 0.361∗∗ 0.128∗

(0.045) (0.051) (0.098) (0.047)

Log Population (20-69) 1.197∗∗∗ 0.114∗∗∗ 1.120∗∗∗ 0.067∗∗∗

(0.041) (0.020) (0.061) (0.013)

Solar Capacity (GW) -0.043 -0.034 -0.257 -0.020
(0.024) (0.032) (0.173) (0.020)

Non-attainment indicator -0.018 0.018 0.025 0.038∗

(0.035) (0.017) (0.048) (0.014)

CZ FE x x x x
MSA x Year FE x x x x
Mean Employment 38,828 3,151 3,670,552 29,973
Observations 11,120 11,120 10,564 11,120

Notes: *** p<0.001, ** p<0.01, * p<0.05. Standard errors are two-way clustered by
county and year (Cameron, Gelbach and Miller (2011)).
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Table 3.7: Impact of Any Wind Investment on Log Employment, Accounting for Hetero-
geneous Treatment Effects

TWFE C&S SDID
(1) (2) (3)

Wind Capacity > 0 0.023∗ 0.315∗∗∗

(0.008) (0.078)

Log Population (20-69) 0.879∗∗∗ 1.049∗∗∗

(0.036) (0.012)

Solar Capacity (GW) -0.063∗ -0.006
(0.025) (0.179)

Non-attainment indicator 0.005 -0.039
(0.005) (0.052)

Wind Capacity > 0 0.013∗

(0.006)

County FE x
Stack FE x
State x Year FE x x
Mean Employment 35,499 35,499 33,374
Observations 46,680 45,720 17147026

Notes: *** p<0.001, ** p<0.01, * p<0.05. Standard errors are two-way clustered by
county and year (Cameron, Gelbach and Miller (2011)).
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Table 3.8: Impact of Wind Capacity Investments on Log Employment by Sample

QWI,Preferred QWI, Full Sample QCEW, Preferred QCEW, Full Sample
(1) (2) (3) (4)

Wind Capacity (GW) 0.046∗∗ 0.041∗∗ 0.047∗ 0.043∗∗

(0.014) (0.012) (0.017) (0.015)

Log Population (20-69) 0.891∗∗∗ 0.878∗∗∗ 0.921∗∗∗ 0.897∗∗∗

(0.034) (0.034) (0.032) (0.031)

Solar Capacity (GW) -0.043 -0.029 -0.026 -0.025
(0.034) (0.016) (0.038) (0.015)

Non-attainment indicator 0.004 0.004 0.005 0.001
(0.005) (0.004) (0.005) (0.004)

County FE x x x x
State x Year FE x x x x
Mean Employment 35,499 43,464 34,352 42,133
Observations 46,680 53,970 53,399 62,070

Notes: *** p<0.001, ** p<0.01, * p<0.05. Standard errors are two-way clustered by
county and year (Cameron, Gelbach and Miller (2011)).
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Table 3.9: Impact of Wind Capacity Investments on Log Employment by Quartile of
Wind Capacity

(1) (2) (3) (4) (5)

Q1 Wind Capacity (<35 MW) 0.007 0.015 0.009 0.010 0.009
(0.008) (0.009) (0.008) (0.008) (0.007)

Q2 Wind Capacity (<122 MW) 0.006 0.018 0.007 0.007 0.016
(0.007) (0.010) (0.008) (0.008) (0.009)

Q3 Wind Capacity (<248 MW) 0.003 0.015 -0.006 -0.006 -0.003
(0.009) (0.009) (0.007) (0.007) (0.007)

Q4 Wind Capacity (>248 MW) 0.027∗ 0.042∗∗ 0.021∗ 0.022∗ 0.016
(0.011) (0.013) (0.009) (0.009) (0.008)

County FE x x x x x
Year FE x x
State x Year FE x x
CZ x Year FE x
Mean Employment 35,499 35,499 35,499 35,499 35,499
Observations 46,680 46,680 46,680 46,680 45,440

Notes: *** p<0.001, ** p<0.01, * p<0.05. Each quartile is defined as the quartile of
wind capacity in counties with positive wind capacity. The reference category includes
counties during years where they have zero wind capacity. Column (1) only includes
county and year effects. Column (2) controls for log population between ages 20 and
69. Column (3) replicates Column (2) with state-by-year effects rather than year effects.
Column (4) adds controls for solar capacity and county-level nonattainment status under
the Clean Air Act. Column (5) replicates column (4) with commuting zone-by-year effects
and state and house LCV scores. Standard errors are two-way clustered by county and
year (Cameron, Gelbach and Miller (2011)).
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Table 3.10: Impact of Wind Capacity Investments on Log Employment by Sex and
Treatment Duration

Males Females
(1) (2)

1 Year 0.007 0.002
(0.007) (0.004)

2 Years 0.013 0.005
(0.007) (0.004)

2-5 Years 0.011 0.003
(0.008) (0.004)

5-10 Years 0.017 0.005
(0.011) (0.005)

10+ Years 0.031∗ 0.007
(0.013) (0.006)

County FE x x
State x Year FE x x
Mean Employment 17,848 17,652
Observations 46,680 46,680

Notes: *** p<0.001, ** p<0.01, * p<0.05. Each quartile is defined as the quartile of
wind capacity in counties with positive wind capacity. The reference category includes
counties during years where they have zero wind capacity. Column (1) only includes
county and year effects. Column (2) controls for log population between ages 20 and
69. Column (3) replicates Column (2) with state-by-year effects rather than year effects.
Column (4) adds controls for solar capacity and county-level nonattainment status under
the Clean Air Act. Column (5) replicates column (4) with commuting zone-by-year effects
and state and house LCV scores. Standard errors are two-way clustered by county and
year (Cameron, Gelbach and Miller (2011)).
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