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ABSTRACT OF THE THESIS

Sensitivity Analysis and Uncertainty Quantification in

Reduced-Order Monopropellant Catalyst Bed Model

by

Daniel Hunter Kerr

Master of Science in Aerospace Engineering

University of California, Los Angeles, 2019

Professor Ann R. Karagozian, Chair

The present study replicates a 1D, steady, chemically-reacting, reduced-order model for hy-

drogen peroxide flow through a monopropellant catalyst bed as described in Pasini et al.

[9] with model validation completed by comparison with both model data and experimental

data from Jung et al. [10]. Adaptations were made to improve heat transfer capabilities

within the model and to adapt the model such that a hydroxylammonium nitrate and water

mixture could be used as the propellant. Polynomial chaos expansion was implemented to

decrease sampling time in order to perform non-deterministic analyses including: quantifi-

cation of global sensitivities using Sobol indices, construction of axial property profiles with

uncertainty envelopes for random physical inputs, and construction of posterior probability

distributions with confidence intervals for variation in chemical tuning parameters. Results

from the study show that model behavior is primarily governed by propellant mass fraction

and activation energy of the global reaction. Additionally, posterior distributions indicate

that activation energy and number of active sites per volume are related by a logarithmic

family of solutions as a result of the reaction advancement gradient form in the model.
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CHAPTER 1

Introduction

Recently, efforts have been made to implement “green propellants” for in-space chemical

propulsion in order to reduce the risk associated with handling and preparing toxic mono-

propellants which would consequently lower costs concomitant with the level of precaution

taken in these processes. One propellant of interest is high-concentration hydrogen peroxide

due to its simplicity of use as well as its reduced toxicity when compared to the commonly

used hydrazine. Even with its reduced toxicity, hydrogen peroxide (H2O2) still presents some

risk to those handling it. H2O2 poses a health threat at exposure levels of only 75 ppm [1] and

has a rather high vapor pressure [2]. Other green propellants that are primarily comprised of

ionic liquids are even more promising in terms of safety due to their very low vapor pressures

[3]. In addition to reduced toxicity, ionic liquid propellants, such as the hydroxylammonium

nitrate (HAN) based propellant AF-M315, may yield benefits in terms of increased specific

impulse and increased density to improve storage capabilities on the spacecraft [4].

Modeling flow through monopropellant thrusters, particularly using reduced-order models

for the chemical reaction and transport processes, is critical to the thruster design optimiza-

tion process. The computational efficiency of reduced-order models facilitates conducting

many simulations in a short time frame which is essential for both predicting the performance

of different thruster configurations as well as analyzing performance sensitivities for various

inputs. Despite the value of utilizing a high efficiency model, monopropellant reduced-order

modeling capabilities are not very extensive. This is likely due to the difficulty of accu-

rately approximating the transient, multiphase, chemically reacting flow within the catalyst

bed. Assumptions must be made regarding heat transfer within the bed, dominant reaction

mechanisms, interactions between the phases, as well as flow interaction with the catalytic
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material.

Decomposition of H2O2 was examined in a study by Johnson et al. [5] which attempted

to analyze a transient pressure instability in a pressure-fed H2O2/JP-8 rocket engine. The

catalyst bed domain was split into 2 control volumes, one for the liquid H2O2-H2O mixture

and one for the gaseous mixture of O2 and steam. The control volumes were separated by

a decomposition plane where it was assumed that the entire decomposition and evaporation

of the mixture took place. The decomposition plane’s location was determined as a function

of time dependent on the required liquid residence time within the bed.

On the opposite scale of the study by Johnson et al., a study on modeling H2O2 de-

composition for the purposes of using it as a monopropellant in MEMS thrusters to provide

micro-Newton level thrust was conducted by Zhou and Hitt [6]. In this study, a 1D, steady,

gas-liquid mixture model with five sub-regions was formulated. The five sub-regions dictated

model behavior and were broken into: mixture heating, H2O vaporization, H2O2 heating,

H2O2 vaporization, and gas phase heating. Transition between the sub-regions was depen-

dent on the mixture temperature. Catalytic decomposition of the H2O2 could be modeled

using a constant rate or through temperature-dependent finite rate kinetics via an Arrhe-

nius rate. Parameter sensitivity calculations in this study were limited to determining the

optimal bed length for constant reaction rate versus an Arrhenius rate representation for the

single step reaction kinetics as well as comparing the results from an adiabatic study to that

with conductive heat losses.

Chiappetta et al. [7] developed a model of catalytically decomposing H2O2 through

silver screens using the commercial software FLUENT. Flow through a porous medium

was modeled by applying a body force on the fluid elements using Darcy’s law with terms

calibrated using experimental data. In this study, each chemical species is modeled as a

separate fluid in which density is not pressure-dependent. Similar to previously described

studies, H2O2 decomposition is modeled using a one-step global reaction governed by an

Arrhenius rate. In this case, the preexponential factor varied linearly with the surface-to-

volume ratio of the catalyst bed with a constant activation energy.
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A 1D, steady, adiabatic model focusing on the thermal decomposition of H2O2 through

a catalyst bed is described in Corpening et al. [8]. Once again, decomposition is based on

a single step Arrhenius rate. This model accounts for droplet evaporation and implements

control volume conservation of mass, momentum, and energy. The gas phase mixture evap-

orated from the droplets is assumed to have the same composition of the droplet liquid due

to the small droplet size and rapid evaporation process.

The model of primary interest in this study is that described in Pasini et al. [9]. This

model was replicated for the study at hand and as such the solution methodology is de-

scribed at in great detail later in the text. Pasini et al. developed a 1D, steady, adiabatic,

mixture model with the aim of simulating H2O2 decomposition in a pellet bed reactor, as

well as conducted parameteric studies primarily pertaining to catalyst bed geometry. A

distinction between the concentration of H2O2 in the bulk flow and at the catalytic surface

is made using the mass-momentum Reynolds analogy. A single global reaction is split into

two steps through catalytic adsorption and desorption processes with decomposition gov-

erned by an Arrhenius reaction rate. The model is governed by two quasi-linear ordinary

differential equations (ODEs) that define the gradients in reaction advancement, or H2O2

decomposition, and pressure drop. Several tuning parameters appear in the reaction ad-

vancement gradient equation as a consequence of implementing the Arrhenius reaction rate

and catalytic adsorption. While tuning was performed by Pasini et al. [9], both model data

and experimental data from Jung et al. [10], another study that replicated the Pasini et al.

model and conducted their own catalyst bed testing, were used in the tuning procedure as

the Jung et al. study generated more experimental data for model validation.

While several of the previously mentioned studies conducted studies on parameter sen-

sitivity, they were primarily interested in optimizing thruster performance by altering the

catalyst bed geometry. Output sensitivity to thermochemical data, reaction rate tuning pa-

rameters, and physical input parameters was deemed of sufficient interest to be investigated

in this study. Both sensitivity analyses and uncertainty quantification were conducted for

these inputs to robustly quantify the input parameter impact on relevant outputs of the

3



model. Ultimately, results from the analysis would be used to formulate a generic under-

standing of sensitivities within a monopropellant catalyst bed and to inform the design of ex-

periments for HAN-based monopropellant thruster testing at Edwards AFB (AFRL/RQR).
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CHAPTER 2

Catalyst Bed Models

2.1 Governing Equations and Solution Method

The catalyst bed models presented in this paper are based on the homogeneous two-phase

reacting flow model in Pasini et al. [9]. Flow properties are determined at each node in a 1D

spatial domain with property evolution driven by two first-order ODEs defining the gradients

in pressure and reaction advancement. The domain can be split into 3 relevant regions:

Region I, pure liquid heating region (ε = 0), Region II, liquid-vapor region (0 < ε < 1),

Region III, pure vapor heating region (ε = 1), where ε is the evaporation parameter or the

molar fraction of vapor in the mixture. The governing equations for the hydrogen peroxide

(H2O2) model is as follows.

2.1.1 H2O2 Model

A pure liquid mixture of H2O2 and H2O is assumed to enter the catalyst bed with some

mass flow rate ṁ, initial pressure pi, initial temperature Ti, and mass concentration of H2O2

Y . Upon contact with the catalytic material in the reactor bed, H2O2 begins to decompose

into O2 and H2O as dictated by the following global reaction:

H2O2 → H2O +
1

2
O2 (2.1)

Conservation of mass dictates that:

ṁ = ṅ
(i)
H2O2
MH2O2 + ṅ

(i)
H2OMH2O (2.2)
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Local flow composition can be determined using the molar flow rates of each component in

Equations 2.3 - 2.5 below with reaction advancement parameter λ representing the molar

flow rate of reacted H2O2.

ṅH2O2 = ṅ
(i)
H2O2

− λ =
Y ṁ

MH2O2

− λ (2.3)

ṅH2O = ṅ
(i)
H2O + λ =

(1− Y )ṁ

MH2O

+ λ (2.4)

ṅO2 =
1

2
λ (2.5)

Heat released from the exothermic decomposition of the H2O2 increases the mixture temper-

ature to approach boiling conditions of the mixture. The mixture is considered to be boiling

when the mixture temperature reaches the temperature as computed in the liquid-vapor

region (Region II) with ε ≈ 0. Once the boiling condition has been reached, the mixture

begins to evaporate causing both H2O2 and H2O uniformly transition from the liquid phase

to the vapor phase. Flow properties, apart from phase-specific properties such as densities,

enthalpies, etc., are assumed to be equal in both phases. Dissolution of O2 in the liquid

phase due to the decomposition reaction is assumed to be negligible in both Regions I and

II.

Temperature T and evaporation parameter ε are computed by solving a system of equa-

tions containing an enthalpy balance and summation of partial pressures. The enthalpy

balance can be seen in Equation 2.8.

HH2O2 +HH2O +HO2 = H (2.6)

ṅH2O2

{
ε
[
h◦H2O2,(g)

+ cpH2O2,(g)(T − T ◦)
]

+ (1− ε)
[
h◦H2O2,(l)

+ cpH2O2,(l)(T − T ◦)
]}

+

ṅH2O

{
ε
[
h◦H2O,(g) + cpH2O,(g)(T − T ◦)

]
+ (1− ε)

[
h◦H2O,(l) + cpH2O,(l)(T − T ◦)

]}
+

ṅO2

[
h◦O2

+ cpO2(T − T ◦)
]

= H = Ho −∆Q

(2.7)
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ṅO2

[
h◦O2

+ cpO2(T − T ◦)
]

+

ε
{
ṅH2O2

[
h◦H2O2,(g)

+ cpH2O2,(g)(T − T ◦)
]

+ ṅH2O

[
h◦H2O,(g) + cpH2O,(g)(T − T ◦)

]}
+

(1− ε)
{
ṅH2O2

[
h◦H2O2,(l)

+ cpH2O2,(l)(T − T ◦)
]

+ ṅH2O

[
h◦H2O,(l) + cpH2O,(l)(T − T ◦)

]}
= ṅ

(i)
H2O2

[
h◦H2O2,(l)

+ cpH2O2,(l)(Ti − T ◦)
]

+ ṅ
(i)
H2O

[
h◦H2O,(l) + cpH2O,(l)(Ti − T ◦)

]
−∆Q

(2.8)

Each enthalpy term depends on the species reference enthalpy h◦, specific heat cp, and ref-

erence temperature T ◦ with initial enthalpies additionally depending on initial temperature

Ti. The above enthalpy balance equation uniquely defines the mixture temperature in Re-

gions I and III in which ε = 0 and ε = 1 respectively. Temperature can be solved for

explicitly in these regions for constant specific heats but implicit methods may be required

for temperature-dependent specific heats (specific heat equations found in Appendix A.3).

Energy loss from a fluid element due to heat transfer, ∆Q, will be discussed later in Section

2.1.3.

Region II requires another equation as the evaporation parameter acts as another un-

known under the following constraint: 0 < ε < 1. Temperature and evaporation parameter

can be linked through the summation of partial pressures of each species. Summation of the

partial pressures can be seen in Equation 2.9.

p = pH2O2,(g) + pH2O,(g) + pO2 (2.9)

It is assumed that the partial pressures of H2O2 and H2O can be approximated as the liquid

mole fraction multiplied by the saturation pressure at a given temperature for each respective

species as seen in the following equations.

pH2O2,(g) =
ṅH2O2

ṅH2O2 + ṅH2O

pH2O2,sat(T ) (2.10)

pH2O,(g) =
ṅH2O

ṅH2O2 + ṅH2O

pH2O,sat(T ) (2.11)

The partial pressure for O2 can be obtained from Dalton’s Law below where xO2 is the mole
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fraction of O2 in the gas phase.

pO2 = xO2p (2.12)

pO2 =
ṅO2

ṅO2 + ε(ṅH2O2 + ṅH2O)
p (2.13)

Substituting Equations 2.10, 2.11, and 2.13 into Equation 2.9 and rearranging we arrive at

Equation 2.14 which describes the contributions of H2O2 and H2O to the mixture pressure

and is denoted pv.[
1− ṅO2

ṅO2 + ε(ṅH2O2 + ṅH2O)

]
p =

ṅH2O2pH2O2,sat(T ) + ṅH2OpH2O,sat(T )

ṅH2O2 + ṅH2O

= pv(T, λ) (2.14)

In Pasini et al. [9], arguments for region location are based on the mixture pressure as

compared to pv. The relations for these region definitions are as follows:

pi ≥ pv(Ti, 0)⇒ T ≤ Tb(pi) (2.15)

p ≤ ṅH2O2 + ṅH2O + ṅO2

ṅH2O2 + ṅH2O

pv(T, λ)⇒ T ≥ Tdo(p, λ) (2.16)

In the model presented in this paper, the boiling condition is determined by comparing

temperatures computed through the different equations used in Regions I and II. Before

describing the different equations used in each region, it is important that the solution algo-

rithm be discussed first.

Due to the temperature dependence on the specific heats, a single variable (T ) nonlinear

iterative solver was used in each region. The method implemented was a sequential com-

bination of Newton’s method and the bisector method (the bisector method was only used

if Newton’s method failed to converge to the specified criterion within a chosen number of

iterations). Newton’s method for temperature can be seen in Equation 2.17 in which j is an

arbitrary iteration and F (T ) is some region-dependent equation in T , based on the enthalpy

balance and summation of partial pressures above, equal to 0.

T (j+1) = T (j) + dT (j) where dT (j) = − F (T (j))

dF (T (j))
(2.17)

In the instance the Newton’s method was unable to converge to a satisfactory solution within

100 iterations (the typical evaluation requires approximately 7 iterations due to quadratic
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convergence of Newton’s method), the code switches to utilizing a bisector method. The

bisector method algorithm is as follows (Steps 1 and 2 are only evaluated in the first iteration

of the bisector method):

1. T
(j)
1 = (1− 10−6)T (j) for jbisector = 1

2. T
(j)
2 = (1 + 10−6)T (j) for jbisector = 1

3. T
(j)
3 =

T
(j)
2 +T

(j)
1

2

4. Fi = F (T
(j)
i ) for i = 1, 2, 3

5. if F1F3 < 0 :

T
(j+1)
2 = T

(j)
3 , T

(j+1)
1 = T

(j)
1

else if F2F3 < 0 :

T
(j+1)
1 = T

(j)
3 , T

(j+1)
2 = T

(j)
2

else if F1F2 > 0 :

T
(j+1)
1 = 0.99T

(j)
1 , T

(j+1)
2 = 1.01T

(j)
2

The final “else if ” in Step 5 of the bisector algorithm expands the bounds of the interval of

interest by decreasing the magnitude of the lower bound and increasing that of the upper

bound in the case that both F1 and F2 are of the same sign. Assuming that there can be

only a single solution within the interval [T1, T2], F1 and F2 having the same sign implies

that the solution lies outside the interval [T1, T2].

Functions F for determining T , as well as the qualifying conditions for operating within

the region, are described below for each region:

Region I:

Condition: ε = 0 in previous step AND T < Tb

F (T ) = H − ṅO2hO2 − ṅH2O2hH2O2,(l) − ṅH2OhH2O,(l)

where hs = h◦s + cps(T − T ◦) for species s

ε = 0
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Region II:

Condition: (T ≥ Tb OR ε 6= 0 in previous step) AND ε as computed below is < 1

F (T ) =

[
1− ṅO2

ṅO2 + ε(T )(ṅH2O2 + ṅH2O)

]
p− ṅH2O2pH2O2,sat + ṅH2OpH2O,sat

ṅH2O2 + ṅH2O

ε(T ) =
H − ṅO2hO2 − ṅH2O2hH2O2,(l) − ṅH2OhH2O,(l)

ṅH2O2(hH2O2,(g) − hH2O2,(l)) + ṅH2O(hH2O,(g) − hH2O,(l))

Region III:

Condition: ε ≥ 1 in previous step

F (T ) = H − ṅO2hO2 − ṅH2O2hH2O2,(g) − ṅH2OhH2O,(g)

ε = 1

Boiling temperature Tb is calculated using F (T ) in Region II so that the condition T < Tb

in Region I determines when the temperature curves of Regions I and II intersect. Upon

switching from Region I to Region II, ε is no longer constrained to be 0 and is instead

a function of temperature and the molar flow rate of O2 which was previously neglected.

Because of this difference in the formulation of ε, there is a small discontinuity in flow

properties at the transition between the two regions. This is the primary reason for using

evaporation parameter driven region conditions. By determining the boiling and evaporation

conditions using the above method as opposed to pressure-based definitions (boiling occurs

when p = pv), the property discontinuities can be reduced between Regions I and II. Once

fully evaporated, the mixture regains pressure independence as it operates under the perfect

gas assumption.

Using the T and ε as determined above, the liquid and gaseous volumetric flow rates are

calculated using Equations 2.18 and 2.19 respectively.

V̇l = (1− ε)
[
ṅH2O2MH2O2

ρH2O2,(l)

+
ṅH2OMH2O

ρH2O,(l)

]
(2.18)

V̇g = [ṅO2 + ε(ṅH2O2 + ṅH2O)]
RT
p

(2.19)

The volumetric flow rates for each phase can be summed to form the total volumetric flow
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rate as seen below:

V̇ = V̇l + V̇g (2.20)

Using the volumetric flow rates, additional properties of the homogeneous mixture can be

computed. Mixture density and void fraction of the catalyst bed are calculated using Equa-

tions 2.21 and 2.22 respectively.

ρ =
ṅH2O2MH2O2 + ṅH2OMH2O + ṅO2MO2

V̇
=
ṁ

V̇
(2.21)

α =
V̇g

V̇
(2.22)

Using the void fraction, the dynamic and kinematic mixture viscosities can be found.

µ ∼= µl(1− α) + µgα (2.23)

ν =
µ

ρ
(2.24)

Liquid and gas phase dynamic viscosities are computed using the following equations:

µl =

[∑
s

Ysµ
1/3
s

]3

(2.25)

µg =

∑
s xsµsM0.5

s∑
s xsM0.5

s

(2.26)

in which xs and Ys are the species mole fractions and mass fractions respectively defined by

the following relations:

xs =
ṅs∑
s ṅs

(2.27)

Ys =
ṅsMs

ṁ
(2.28)

Concentrations for each species s can be determined using the following equation:

Cs =
ṅs

V̇
(2.29)

While the total mixture concentration is defined as:

C =
∑
s

Cs =
1

V̇

∑
s

ṅs (2.30)
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Additionally, the specific heat of constant pressure can be computed using Equation 2.33.

cpH2O2 = (1− ε)cpH2O2,(l) + εcpH2O2,(g) (2.31)

cpH2O = (1− ε)cpH2O,(l) + εcpH2O,(g) (2.32)

cp =
ṅH2O2cpH2O2 + ṅH2OcpH2O + ṅO2cpO2

ṅH2O2 + ṅH2O + ṅO2

(2.33)

Because evaporation parameter ε and temperature T are functions of the local values of

pressure p and reaction advancement parameter λ, all mixture properties are purely defined

by p and λ as well.

H2O2 decomposition on the catalytic surface S is modeled using fast equilibrium ad-

sorption and first-order finite-rate product desorption and is represented using the chemical

reaction in Equation 2.34.

H2O2 + S
kf1−−⇀↽−−
kb1

S−H2O2(ad)
kf2−−→ H2O +

1

2
O2 (2.34)

Denoting a molar concentration on the catalytic surface as C(s), the forward and backward

reaction rates for the catalytic reaction can be related using reactant adsorption equilibrium

condition in Equation 2.37. In this equation kf1 is the forward adsorption constant, kb1 is the

backward adsorption constant, and K1 is the adsorption equilibrium constant. Additionally

Ns is the number of active adsorption sites per unit volume of the catalyst bed and θ is the

relative occupancy of the sites.

kf1C
(s)
H2O2

Ns(1− θ) = kb1Nsθ (2.35)

K1C
(s)
H2O2

(1− θ) = θ where K1 =
kf1

kb1
(2.36)

θ =
K1C

(s)
H2O2

1 +K1C
(s)
H2O2

(2.37)

The volumetric reaction rate can be obtained from product desorption finite-rate kinetics

in the following equation where kf2 is represented by an Arrhenius rate with Arrhenius

preexponential constant Af2 and activation energy Ef2.

ṙ = kf2Nsθ = Af2e
−Ef2/RTNs

K1C
(s)
H2O2

1 +K1C
(s)
H2O2

(2.38)
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Arrhenius preexponential constant Af2 is assumed to be proportional to the catalyst surface

area per unit volume [7] and is defined as in Equation 2.39 with surface area per unit volume

[10] in Equation 2.40.

Af2 = asAspecific (2.39)

as = (1− ε̃) 6

Dp

(2.40)

H2O2 concentration at the catalytic surface can be approximated by making a similarity

argument between mass and momentum transport with the generalized Reynolds analogy

for a viscous, diffusive boundary layer along a flat plate. This simplifying assumption results

in an expression relating the ratio of the nondimensional diffusion coefficient and the friction

coefficient to the Schmidt number of the flow as shown in Equation 2.41.

Cd
Cf

=
ṁ

(s)
j /ρu(Yj − Y (s)

j )

2τ (s)/ρu2
≈ 1

2
Sc−1/2 ∼=

1

2
⇒ Cf ∼= 2Cd (2.41)

In the above equation, it is assumed that the Schmidt number is equal to 1 which is generally

true for gas mixtures although is less accurate for liquid mixtures [11]. Additionally, the flow

friction coefficient is formulated assuming that the viscous friction along the pellet surface

Sp is the sole source of the pressure losses in the bed as seen below.

dploss

dx
= Cf

1

2
ρu2 1

A

dSp
dx

(2.42)

Assuming tetrahedral packing of spherical pellets (another relation would be need to be

established for alternate pellet shapes or to account for spatially-varying randomness in

pellet packing efficiency):

1

A

dSp
dx

=
π
√

2

Dp

(2.43)

dploss

dx
∼= Cdρu

2π
√

2

Dp

(2.44)

The spatial pressure loss gradient through the catalyst bed takes the following form:

dploss

dx
=

(
c1

[
1− ε̃
Rep

]c2
+ c3

)
1− ε̃
ε̃3

ρu2

Dp

where Rep =
uDp

ν
(2.45)
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in which ε̃ is the bed porosity, Dp is the pellet diameter, and u is the superficial flow velocity

in the x-direction, that is, the hypothetical flow velocity for a pelletless bed. The equation

for u along with its derivation will be shown later. In contrast to Pasini et al., in which

bed porosity ε̃ is treating as a model tuning parameter, the value of ε̃ is determined using

Equation 2.46 from Bey and Eigenberger [12] in which D is the bed diameter. The equation

is limited to predicting bed porosity for spherical pellets.

ε̃ = 0.375 + 0.34
Dp

D
(2.46)

The pressure loss gradient contains three constants c1, c2, and c3 that are defined by the

chosen empirical model. Each model is constrained by its own range of Reynolds number

and bed porosity and may also have restrictions based on pellet geometry. Several potential

models can be seen below in Table 2.1.

Model c1 c2 c3 Re∗ = Re/(1− ε̃) ε̃ Pellet Shape

Ergun 150 1 1.75 0.67 < Re∗ < 2300 0.4 < ε̃ < 0.65 various

Brauer 160 0.1 3.1 2 < Re∗ < 20000 0.331 < ε̃ < 0.681 spheres

Tallmadge 150 0.16 4.2 0.1 < Re∗ < 10000 0.34 < ε̃ < 0.41 spheres

Table 2.1: Pressure Drop through Porous Media Models [13]

In order to replicate the Pasini et al. model, the Ergun model will be used although it

will be shown later that the Ergun model assumptions are violated for the simulated catalyst

bed conditions.

Returning to the formulation of H2O2 concentration at the catalytic surface, it is now

possible to substitute in the equation for the pressure loss gradient.

dploss

dx
=

(
150

1− ε̃
Rep

+ 1.75

)
1− ε̃
ε̃3

ρu2

Dp

∼= Cdρu
2π
√

2

Dp

(2.47)

⇒ Cd ∼=
1

π
√

2

(
150

1− ε̃
Rep

+ 1.75

)
1− ε̃
ε̃3

(2.48)

Using the definition of the diffusion coefficient, it may be rewritten to obtain an equation
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for the mass flux of H2O2 at the catalyst surface ˜̇m
(s)
H2O2

.

Cd = ṁ
(s)
H2O2

/ρu(YH2O2 − Y
(s)

H2O2
) (2.49)

ṁ
(s)
H2O2

= Cdρu(YH2O2 − Y
(s)

H2O2
) (2.50)

⇒ ˜̇m
(s)
H2O2

= Cdρu(YH2O2 − Y
(s)

H2O2
)

1

A

dSp
dx

(2.51)

˜̇m
(s)
H2O2

= Cdρu(YH2O2 − Y
(s)

H2O2
)
π
√

2

Dp

=MH2O2 ṙ (2.52)

By assuming that equimolar counterdiffusion, binary mixture diffusion such that the move-

ment of each molecule of species A is countered by that of species B [14], occurs at the

impermeable catalytic surface and noting that this condition is equivalent to equimass dif-

fusion due to H2O2 having the same molar mass both in the fluid phase and on the catalytic

surface, the mass fraction of H2O2 on the catalytic surface can be written as follows:

Y
(s)

H2O2
=

MH2O2C
(s)
H2O2

MH2O2C
(s)
H2O2

+MP (C − C(s)
H2O2

)
(2.53)

in which MP is the molar mass of the mixture.

Combining expressions for ˜̇m
(s)
H2O2

, Y
(s)

H2O2
, and ṙ results in Equation 2.54 below.

Cdρu

[
YH2O2 −

MH2O2C
(s)
H2O2

MH2O2C
(s)
H2O2

+MP (C − C(s)
H2O2

)

]
π
√

2

Dp

(2.54)

=MH2O2Af2e
−Ef2/RTNs

K1C
(s)
H2O2

1 +K1C
(s)
H2O2

By applying the assumptions consistent with 1D, steady, homogeneous, creeping flow to gov-

erning equations results in several key relations. Applying the assumptions to conservation

of mass results in the following:∮
S

ρu · dS = 0⇒ d(ρu)

dx
= 0⇒ ρu = G ≡ constant⇒ u =

G

ρ
(2.55)

G =
ṁ

A
⇒ u =

ṁ

ρA
=
V̇

A
(2.56)

By conservation of species: ∮
S

Cju · dS =

∫
V

(ν
′′

j − ν
′

j)ṙdV (2.57)

⇒ d(Cju)

dx
= u

dCj
dx

+ Cj
du

dx
∼= u

dCj
dx

= (ν
′′

j − ν
′

j)ṙ (2.58)
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Additionally, by conservation of momentum for a 1D calculation:∮
S

ρuu · dS = −
∮
S

pdS +

∮
S

τ · dS (2.59)

⇒ ρu
du

dx
= −dp

dx
− dploss

dx
∼= 0 (2.60)

⇒ dp

dx
= −dploss

dx
(2.61)

Assuming negligible viscous dissipation, that the stagnation enthalpy of the flow is defined

by the enthalpies of formation and initial flow conditions, and that only losses are due to

radial heat loss, the following can be found by conservation of energy:∮
S

ρhtu · dS = − 1

A

d∆Q

dx
(2.62)

⇒ ρu
dht
dx

=
1

A

dHt

dx
= − 1

A

d∆Q

dx
(2.63)

⇒ dHt

dx
= −d∆Q

dx
(2.64)

In the original formulation of this model by Pasini et al., the flow is entirely adiabatic and

thus the specific stagnation enthalpy ht is constant throughout the domain. Heat transfer in

the model and its impact on the results will be discussed later in the paper. The differential

concentration for a species j can be expressed as shown below.

dCj =
dṅj

V̇
=
ν
′′
j − ν

′
j

V̇
dλ (2.65)

Substituting in the result from the conservation of species in Equation 2.58:

dCj
dx

= (ν
′′

j − ν
′

j)
ṙ

u
=
ν
′′
j − ν

′
j

V̇

dλ

dx
(2.66)

⇒ dλ

dx
=
V̇

u
ṙ (2.67)

From the derivations above, the governing ordinary differential equations (ODEs) of the

model can be fully expanded into the forms seen in Equations 2.68 and 2.69. Boundary

conditions for each of the ODEs can also be prescribed. As was mentioned previously, the

inlet pressure pi is a prescribed user input. Additionally, it will be assumed that no reaction
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takes place prior to the mixture entering the catalyst bed.

dλ

dx
=
V̇

u
Af2e

−Ef2/RTNs

K1C
(s)
H2O2

1 +K1C
(s)
H2O2

, λ(0) = 0 (2.68)

dp

dx
= −

(
150

1− ε̃
Rep

+ 1.75

)
1− ε̃
ε̃3

ρu2

Dp

, p(0) = pi (2.69)

The two ODEs above can be numerically integrated to determine the spatial evolution of all

flow properties as all non-constant flow properties are directly or indirectly functions of p

and λ. A uniform grid Runge-Kutta 4 [15] was chosen as the ODE solver in this model. A

description of how Runge-Kutta 4 is implemented is as follows:

f(p, λ) =


dp
dx

(p, λ)

dλ
dx

(p, λ)

 , y =

pλ
⇒ f(y) =


dp
dx

(y)

dλ
dx

(y)


f 1 = f(y(k))

f 2 = f(y(k) +
1

2
f 1dx)

f 3 = f(y(k) +
1

2
f 2dx)

f 4 = f(y(k) + f 3dx)

y(k+1) = y(k) +
dx

6
(f 1 + 2f 2 + 2f 3 + f 4)

Figure 2.1 contains a block diagram depicting the overall solution methodology of the prob-

lem and illustrates the order in which flow properties are computed.
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Figure 2.1: Model Solution Methodology Block Diagram

Upon termination of the outermost loop, the simulation is complete and has generated

axial profiles for flow properties throughout the catalyst bed. Temperature profile T (x)

and pressure profile p(x) are used in conjunction with experimental data to calibrate the

chemistry coefficients Ns, K1, and Ef2. It is worth noting that it would be equally valid to

hold Ns constant and use Aspecific as a tuning parameter. This is due to the fact that both Ns

and Af2 directly appear only in Equation 2.68 in which they are directly multiplied together

and thus functionally operate as a single tuning parameter.
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2.1.2 HAN-H2O Model

Modifications were made to the H2O2 model described in the previous subsection in order

to model the flow of a HAN-H2O mixture through a catalyst bed. Primarily, modifications

consisted of changing thermophysical and material data to that of the new product and

reactant species as a majority of the computational procedures are identical between the

two models. The HAN-H2O model follows the solution methodology outlines in Figure 2.1

with the only computational differences taking place within some of blocks regarding how

several properties are computed. As in the H2O2 model, the HAN-H2O model is governed

by a two-step global reaction with catalytic interaction involving HAN (H4N2O4):

H4N2O4 + S
kf1−−⇀↽−−
kb1

S−H4N2O4(ad)
kf2−−→ 2 H2O +

2

3
NO2 +

2

3
N2O (2.70)

with the overall global reaction written as:

H4N2O4 → 2H2O +
2

3
NO2 +

2

3
N2O (2.71)

The above global reaction neglects several reaction products of HAN decomposition (NH3,

NO, HNO3, hydroxylamine) and includes the N2O species which, while predicted by theory,

was undetected in the experiments in Chambreau et al. [16]. Despite these approximations,

the global reaction in Equation 2.71 was deemed sufficient for the reduced-order model to

avoid the complexity of including a higher fidelity reaction mechanism.

In modeling the decomposition of H2O2, one set of chemistry coefficients was prescribed

to fully define an overall volumetric decomposition reaction (Af2, Ef2, Ns, K1). In the HAN

model, decomposition has been separated into thermal and catalytic decomposition defined

by coefficient sets [Af2,th, Ef2,th] and [Af2,c, Ef2,c, Ns, K1] respectively. In this case, the

advancement parameter gradient becomes:

dλ

dx
=
V̇

u
(ṙc + ṙth) (2.72)

ṙc = Af2,ce
−Ef2,c/RTNs

K1C
(s)
H4N2O4

1 +K1C
(s)
H4N2O4

(2.73)

ṙth = Af2,the
−Ef2,th/RTCH4N2O4 (2.74)
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It is stated in Koopmans et al. [17] that the solid-liquid catalyst interaction surface area

per unit volume Asl must be multiplied with the preexponential factor in Equation 2.73 to

convert from a surface reaction rate to a volumetric reaction rate. In the case that using such

a factor in this model is necessary (when the units of Ao = Af2Ns are m/s), the solid-fluid

interfacial surface area per unit volume between the catalytic surface and the fluid phases

Asf will be used in place of Asl. The equation for Asf is derived from the summation of the

solid-liquid interfacial area and solid-gas interfacial area equations shown in Koopmans et

al. [17] and can be found below in Equation 2.75.

Asf = 4ε̃
π(D/2)2L

Dp

= ε̃
πD2L

Dp

(2.75)

For the purposes of this model, a surface reaction rate to volumetric reaction rate conversion

parameter is not necessary as the units of the preexponential factor found in literature

already result in a volumetric reaction rate. Tuning parameter values used will be shown

in a later section. Similar to the H2O2 model, the Ns and Af2,c are a coupled set of tuning

parameters and thus functionally act as one.

Further deviation from the H2O2 model occurs in the pressure gradient in Equation 2.69.

The pressure model implemented in the referenced equation is the Ergun model which is

not suitable for use with the low bed-to-pellet diameter ratio geometry found in both the

Pasini et al. [9] and Jung et al. [10] catalyst beds. For D/Dp < 40, wall effects become

a non-negligble source of drag on the flow in the bed [12]. For this reason, in addition to

predicted violation of the Reynolds number constraints, the Ergun model was replaced with

that presented in Cheng [18] which is designed to more accurately predict pressure drops

through packed beds with low bed-to-pellet diameter ratios. Pressure drop across the bed
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takes the same form but with empirically-based geometry-dependent coefficients:

dploss

dx
=

(
c1

[
1− ε̃
Rep

]c2
+ c3

)
1− ε̃
ε̃3

ρu2

Dp

(2.76)

c1 =

[
185 + 17

ε̃

1− ε̃

(
D

D −Dp

)2
]

1

M2
(2.77)

c2 = 1 (2.78)

c3 =

[
1.3

(
1− ε̃
ε̃

)1/3

+ 0.03

(
D

D −Dp

)2
]

1

M
(2.79)

where M = 1 +
2

3

(
1

1− ε̃

)
Dp

D
(2.80)

2.1.3 Heat Transfer Model

An effort was made to expand upon the heat transfer capabilities of the catalyst bed model

as the model described in Pasini et al. [9] is entirely adiabatic. The model at hand has the

capability of including 1D radial heat transfer and may be applied to both the H2O2 and

HAN-H2O models. The domain can be split into cells centered on each node (with half-sized

cells on the initial and terminal nodes) as shown in Figure 2.2.

Figure 2.2: Domain Diagram with Energy Balance of Cell k
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The temperature at an arbitrary node k is defined by the enthalpy of the fluid element

within the cell k as seen in Equation 2.81.

T (k) = T (k)(H(k)) (2.81)

The differential heat lost or gained by cell k is dependent on the heat rate as a function of

temperature as well as the fluid residence time within the cell as in Equations 2.82 and 2.83.

Enthalpy of cell k+1 is then computed using conservation of energy within cell k to account

for energy lost or gained through radial heat transfer as shown in Figure 2.2 and Equation

2.84.

q(k) = q(k)(T (k)) (2.82)

dQ(k) = q(k)dt(k) where dt(k) = L
(k)
cell/u

(k) (2.83)

H(k+1) = H(k) − dQ(k) (2.84)

Heat transfer is modeled as conduction through a 2-layer wall with radiation and natural

convection taking place at the external surface as can be seen in Figure 2.3 with the corre-

sponding thermal circuit seen in Figure 2.4. Finding an appropriate convection correlation

proved quite difficult so the Nusselt number correlation for free convection over a long, hor-

izontal cylinder from Incropera et al. [19] was used despite violating the assumption of the

cylinder being long. Properties of air are taken at the film temperature at each x-location.

Contact resistance between the different material layers 1 and 2 in the wall is neglected.

Additionally, it is assumed that there is perfect convection at the internal surface of catalyst

bed and that the temperature at the wall is equal to that calculated for the fluid at each

node.
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Figure 2.3: Radial Heat Transfer Physical

Diagram

Figure 2.4: Radial Heat Transfer

Thermal Circuit

Heat transfer in the axial direction, which would likely have the greatest impact on energy

of the system, is incapable of being computed due to the sequential determination of fluid

properties along the x-direction. In other words, the temperatures at each node are not

solved simultaneously and thus each T (k) is solved in sequential order starting with T (0) at

x = 0. Similarly, all other fluid properties are solved in the same manner. Therefore, T (k+1)

is always unknown when solving for T (k) and the heat transfer between cells k and k + 1

cannot be calculated. A diagram showing qualitative heat transfer in the catalyst bed can be

seen in Figure 2.5 with red arrows showing the direction of heat flux. The diagram assumes

that T∞ < Ti < Tf which is a reasonable assumption for a majority of operational cases.
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Figure 2.5: Qualitative Heat Transfer Pathway in Catalyst Bed

Due to the application of monopropellant thrusters in space propulsion, experiments

may be run with an insulated thruster to prevent convection from taking place on the

external surface and thus better replicate the in-space environment. In this case, the thermal

circuit should be modified to have an insulated condition in place of natural convection and

radiation.

2.2 Benchmarks for Validation

2.2.1 H2O2 Model Validation

Original validation of the model by Pasini et al. was performed by comparing the model

predicted pressure and temperature at the exit of the catalyst bed to experimental data which

yielded good agreement. Tuning parameters ε̃ and Ef2 yielded physically realistic values as

well, further supporting the validity of the model. Yet more validation for the model was

attained through comparison of predicted temperature and pressure to experimental data

at several locations along the length of the catalyst bed for various test cases by Jung et

al. [10]. For each test condition, the pressure and temperature data at each x-location is
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the average of multiple tests at that condition. Each test case shows good agreement in

temperature with more significant deviations in pressure. Because of the variation in both

location of data acquisition and catalyst bed test condition, the Jung et al. cases were chosen

to validate the code for the model described above.

Geometric inputs taken from Jung et al. can be found in Table 2.2.

D (cm) L (cm) Dp (cm) ε̃

2.9 2.94 0.159 0.394

Table 2.2: Catalyst Bed Geometry

The value for Dp was determined by taking the average pellet diameter for 10-16 mesh

(pellet diameters ranging from 0.118 - 0.2 cm) [10]. Porosity ε̃ is computed using Equation

2.46. If one refers to Table 2.1, it can be seen that this value of porosity violates the

assumptions for using the Ergun model. Test cases are defined by the values of the input

conditions for the experiment with the exception of the Large Bed case which implemented a

different catalyst bed geometry. Conditions for each test case are shown in Table 2.3. Each

test case analyzed in this study uses the same mesh size and initial temperature Ti of 300

K. Initial pressure pi was not explicitly stated in Jung et al. but was taken from the plots

provided.

Test Case ṁ (kg/s) Y pi (bar) L (cm) D (cm)

(1) Standard 0.067 0.9 25.3 2.94 2.9

(2) Large Bed 0.067 0.9 12.7 3.3 4.58

(3) Low Concentration 0.067 0.8 19.9 2.94 2.9

(4) High Concentration 0.067 0.95 28.0 2.94 2.9

(5) Low Mass Flow Rate 0.0335 0.9 14.0 2.94 2.9

(6) High Mass Flow Rate 0.0938 0.9 31.8 2.94 2.9

Table 2.3: Selection of Experimental Conditions from Jung et al. [10]
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The following series of figures shows the temperature and pressure profiles generated by

the code written for this study compared to the model and experimental data generated

by Jung et al. for the first 5 test cases. The blue and red dotted vertical lines demarcate

the transitions from Region I to II and Region II to III respectively. Figures 2.6 and 2.7

show the standard test case axial temperature profile with labeled regions and axial pressure

profile respectively. Region I is characterized by rapid temperature increase to the boiling

condition followed by quasi-isothermal vaporization in Region II. Finally, the gas mixture

exhibits asymptotic temperature increase to the complete decomposition temperature in

Region III.

Figure 2.6: Standard Test Case Temperature

Profile

Figure 2.7: Standard Test Case Pressure

Profile
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Figure 2.8: Large Bed Test Case

Temperature Profile

Figure 2.9: Large Bed Test Case Pressure

Profile

Figure 2.10: Low Concentration Test Case

Temperature Profile

Figure 2.11: Low Concentration Test Case

Pressure Profile
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Figure 2.12: High Concentration Test Case

Temperature Profile

Figure 2.13: High Concentration Test Case

Pressure Profile

Figure 2.14: Low Mass Flow Rate Test Case

Temperature Profile

Figure 2.15: Low Mass Flow Rate Test Case

Pressure Profile

It can be seen in the figures above that the model created for this study agrees reasonably

well with that shown in Jung et al. although each test case exhibits minor deviations,

particularly in the temperature value at the end of the catalyst bed. This phenomenon

persists even if the heat transfer model is removed to restore a fully adiabatic model. Final
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temperature for the Jung et al. model was stated to be 1020 K for the standard case, equal

to the adiabatic decomposition temperature for the 90% H2O2 mixture. For the standard

case, this study’s model yielded a temperature of 977 K for both the final temperature and

the direct computation of the adiabatic decomposition temperature as shown in Equation

2.88. Due to the temperature dependence of cp,s, a nonlinear solver is still required to obtain

the adiabatic decomposition temperature Tad.

ṅH2O2hH2O2 + ṅH2OhH2O + ṅO2hO2 = Ho −∆Q (2.85)

where ṅH2O2 = 0, ṅH2O = ṅ
(i)
H2O2

, ṅO2 =
1

2
ṅ

(i)
H2O2

, ∆Q = 0, ε = 1 (2.86)

ṅ
(i)
H2O2

[
hH2O +

1

2
hO2

]
=

ṅ
(i)
H2O2

[
h◦H2O2,(l)

+ cpH2O2,(l)(Ti − T ◦)
]

+ ṅ
(i)
H2O

[
h◦H2O,(l) + cpH2O,(l)(Ti − T ◦)

] (2.87)

ṅ
(i)
H2O2

[
h◦H2O,(g) + cpH2O,(g)(Tad − T ◦) +

1

2
h◦O2

+
1

2
cpO2(Tad − T ◦)

]
=ṅ

(i)
H2O2

[
h◦H2O2,(l)

+ cpH2O2,(l)(Ti − T ◦)
]

+ ṅ
(i)
H2O

[
h◦H2O,(l) + cpH2O,(l)(Ti − T ◦)

] (2.88)

Due to the consistent offset in the temperatures, this is believed to be due to a difference

in the values of the reference enthalpies between this study and Jung et al. Additionally,

the temperature discrepancy is small in magnitude for the low concentration test case. This

is to be expected as lowering the concentration of H2O2 is essentially reduces the energy

concentration of the flow thereby reducing the decomposition temperature, reaction rate,

and percentage final reaction advancement. By making minor modifications (/ 3%) to the

reference enthalpies, the model in this study is capable of matching that of Jung et al. nearly

exactly. Despite the better matching capabilities, the modified reference enthalpies will not

be implemented in this study and the difference between the models will be attributed to

variations in thermochemical data.

It should be noted that in the high mass flow rate test case the model at hand exhibits

poor agreement regardless of the enthalpies used while Jung et al. agrees well with the

experimental data. This can be seen in Figures 2.16 and 2.17.
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Figure 2.16: High Mass Flow Rate Test Case

Temperature Profile

Figure 2.17: High Mass Flow Rate Test Case

Pressure Profile

The origin of the deviation between the results of the two models for the high mass

flow rate case is unknown. The model used in this study exhibits a significantly greater

reaction rate than the Jung et al. model as indicated by the more rapid increase in the axial

temperature profile in Regions I and III as well as a shorter Region II. It was discovered

by trial-and-error that good agreement in both the axial temperature and pressure profiles

between the two models could be achieved by decreasing the reaction rate through a 33%

reduction to the advancement parameter gradient for the model at hand. Due to the good

agreement with the other 5 test cases, the model in this study has been deemed sufficiently

validated.

Initial determination of the tuning parameters was performed by minimizing the nondi-

mensional error between the temperature and pressure profiles generated by the model and

Jung et al. for a 3D parameter sweep in Ns, K1, and Ef2. This was done by finding each x-

location closest to that of the points taken from the Jung et al. model data and determining

the error as follows:

error =
‖xexpected − xpredicted‖

‖xexpected‖
(2.89)
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where the quantity x is either T or p. The Jung et al. values are treated as expected values

and the predicted values are generated by the model at hand. The final error values for a

set of input parameters was determined by using trapezoidal integration on the calculated

relative errors. Error surfaces in T and p with each surface representing a different activation

energy value can be seen in Figures 2.18 and 2.19.

Figure 2.18: Integrated Relative Error in T

for Standard Case

Figure 2.19: Integrated Relative Error in p

for Standard Case

A comparison between the values used in Jung et al. and this study can be seen in Table

2.4.

Parameter Jung et al. [10] Model

Aspecific 21.9934 21.9934

Ef2 (J/mol) 15000 14900

Ns (m-3) 1000* 780

K1 (m3/mol) 0.001* 0.00104

Table 2.4: Comparison of Tuning Parameters from Jung et al. [10] for H2O2 Model

Values marked with an “*” indicate that a scaling based on a unit transformation was

31



performed. The units of Ns and K1 were not explicitly stated in Jung et al. but it is assumed

that they were L-1 and L/mol respectively. Another potential source of the unit discrepancy

could be that Ns is in fact measured in m-3 but the advancement parameter gradient in Jung

et al. is measured in mol/s·mm as opposed to mol/s·m. The greatest deviation occurs in Ns

which is likely due to the error minimization favoring a solution with a faster reaction rate

in order to compensate for the lower reference enthalpy values used.

2.2.2 HAN-H2O Model Validation

Similar data for validation of the HAN-H2O model was not available and thus proper valida-

tion of the model and tuning of the chemistry parameters was not possible. As a consequence,

available chemistry parameters values were taken from literature and the remaining param-

eters were adjusted to generate a physically reasonable temperature profile. Values were

taken from a study conducted by Esparza et al. [20] in which thermogravimetric analysis

(TGA) and differential scanning calorimetry (DSC) were used to determine the catalytic and

thermal decomposition preexponential factors and activation energies for an aqueous HAN

solution. Values implemented in the model and as reported in Esparza et al. are shown

in Table 2.5. Thermal decomposition parameters used were determined by DSC while the

catalytic parameters were determined using TGA. Parameters with “**” are not taken from

literature but tuned “by eye”. Not all requisite thermophysical data, such as viscosity and

reference enthalpy in the gas phase, was available for HAN. Additionally, as an ionic liquid,

the vapor pressure of HAN is very low [3]. Therefore, the model used in this study may

not be sufficient in modeling the decomposition of HAN in the catalyst due to the strong

dependence on species vapor pressures when assessing the flow’s operational region. This is

especially true considering that specific reaction mechanisms and mixture behaviors may be

unaccounted for. Esparza et al. [20] notes that for low heating rates, H2O in the mixture

was vaporized prior to the onset of decomposition which indicates that the mixture model

may not be a sufficient representation of this system.
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Parameter Esparza et al. [20] Model

Af2,th (1/s) 3.55 · 103 3.55 · 103

Ef2,th (kJ/mol) 57.5± 3.5 54.0

Af2,c (1/s) 3.31 · 105 3.31 · 105

Ef2,c (kJ/mol) 63.9± 2.5 61.4

K1** (m3/mol) – 0.0104

Ns** (m-3) – 85

Table 2.5: Tuning Parameters for HAN-H2O Model

In the current version of the HAN-H2O model, the total pressure p is computed as follows:

p = pH2O,(g) + pN2O + pNO2 (2.90)

It should be noted that there is no term for HAN as it is assumed that psat,HAN ≈ 0 due

to its low vapor pressure although this neglects the gas phase contribution of HAN as well.

Previous studies have indicated that HAN-H2O mixture propellants require catalyst bed

preheating temperatures ranging from 300◦ to 400◦ Celsius [21]. Catalyst bed preheating in

the model at hand is emulated using the initial mixture temperature. An initial temperature

of Ti = 673 K was used to generate the plot see in Figure 2.20.
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Figure 2.20: Y = 80% HAN-H2O Mixture Temperature Profile with Magnification on

Discontinuity

As one can see in Figure 2.20, Regions I and II collapse into the first few spatial nodes.

This is because the initial temperature is significantly higher than the boiling temperature

for the mixture at the initial conditions. This causes the model to jump from Region I to

Region II in the first node. Then immediately following this step, the evaporation parameter

ε jumps to 1 thereby initiating Region III in which the flow remains until the terminal node.

Without an alternate set of equations for determining the evaporation parameter and mixture

temperature, there is no apparent way to resolve the large discontinuity at the beginning of

the simulation with the given material properties.
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2.3 Additional Model Results

Several additional model outputs from the standard test case will be shown in this section.

Figure 2.21 contains a plot of the axial profile of the reaction advancement parameter λ or

the molar flow rate of H2O2 consumed. The parameter is normalized to the initial molar

flow rate of H2O2 to show the percentage of reaction completion.

Figure 2.21: Axial Profile of Reaction Advancement Parameter for Standard Case

As a fluid element traverses the catalyst bed, the reaction advancement parameter asymp-

totically approaches 100%, as marked by the black dotted line.

It is also possible to observe the species and mixture concentrations as functions of axial

distance from the catalyst bed inlet. Concentration profiles can be seen in Figure 2.22 with
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a magnified view of the concentrations at the transition between Regions I and II in Figure

2.23.

Figure 2.22: Axial Profile for Species and Mixture Concentrations

It can be seen in Figure 2.22 that the concentrations of H2O2 in the bulk mixture flow

and at the catalytic surface are nearly identical and follow the same evolutionary trends.

Almost immediately after the transition to Region III (demarcated by the red, dotted line),

the concentrations of H2O and O2 become roughly constant while the concentration of H2O2

exhibits a logarithmic decrease. This is due to the stabilization of the volumetric flow rate

and logarithmic decrease of the H2O2 concentration at the catalytic surface. Assuming a

constant T and u, that the bulk flow and catalytic surface concentrations of H2O2 are equal,
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and noting that:

K1C
(s)
H2O2

1 +K1C
(s)
H2O2

≈ K1C
(s)
H2O2

for K1C
(s)
H2O2

� 1

the following proportionality can be found by substituting λ = −ṅH2O2 :

dCH2O2

dx
∝ −CH2O2 (2.91)

The above proportionality is approximately true for a majority of Region III for the standard

case.

Figure 2.23: Axial Profile for Species and Mixture Concentrations with Magnification at

Region Transition

Figure 2.23 shows the transition between Regions I and II and the resulting discontinuity

in species concentrations. This is due to the sudden increase in the evaporation parameter
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which directly results in an increase in the volumetric flow rate which appears in the denom-

inator of the concentration equation.

While it has already been shown that the simulation violates the assumptions of the Ergun

model on the basis of porosity, it can also be seen that the Reynolds number limit of 2300

is exceeded by nearly an order of magnitude.

Figure 2.24: Axial Profile of Re∗ for Standard Case

By observing the relevant heat transfer quantities, the effects of the current heat transfer

model can be assessed and the importance of including the model can be evaluated. A plot

containing the axial profiles of enthalpy loss rate, differential time (or residence time of a

fluid element within a cell), and the different enthalpy lost from each cell can be seen below.
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Figure 2.25: Axial Profiles of Heat Transfer Quantities

The total enthalpy loss from the system is ∆H = 3.64 mJ and the total residence time

of a fluid element within the catalyst bed is 16.7 ms. With the current configuration of

the heat transfer model, the enthalpy loss of the system is negligible and it would suffice

to assume that the catalyst bed is adiabatic. One reason for the negligible enthalpy loss

from the system is that residence time within a cell decreases with x while the enthalpy loss

rate increases. The majority of the residence time within the catalyst bed occurs when heat

transfer rates are very small. Because of the insignificance of the enthalpy loss, the heat

transfer model is not used for a majority of the non-deterministic analyses performed on the

overall model.

Once again, radial heat transfer is not expected to be the most influential form of heat
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transfer in the system but axial heat transfer was not capable with the solution methodology

at hand. An attempt was made to approximate steady axial heat transfer by solving for the

axial temperature profile and then computing the uniform outer surface temperature Ts that

would satisfy conservation of energy of the system i.e. Hin = Hout + ∆Q. In doing so,

the expected heat transfer phenomena were observed. Enthalpy was entering the fluid from

the walls near the inlet where fluid temperatures were low and exiting from the fluid to

the walls near the outlet where temperatures were high. Additionally, heat transfer to the

environment occurred for the entire length of the catalyst bed. While this heat transfer

model approximated the expected phenomena, the effects on the flow properties were still

negligible and successive iterations of the simulation were required making the process more

computationally expensive.
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CHAPTER 3

Non-Deterministic Analysis

3.1 Justification for Various Approaches

Due the complex nature of the monopropellant catalyst bed system, the outputs of interest

exhibit nonlinear relationships with the controllable inputs, even when analyzed with a

reduced-order model. Additionally, due to the variability in material property data, it is

critical to understand the model’s sensitivity to thermophysical and thermochemical inputs

as well as the impact that uncertainty in these properties has on the quantities of interest

(QOI). Attempting to quantify the system behavior using a safety factor-based analysis may

result in the establishment of erroneous bounds on the QOIs. Imposing deterministic input

boundaries without investigating the intermediate domain also prohibits understanding any,

potentially counter-intuitive, intermediate behavior of the system and its outputs. For this

reason, it is essential to implement some form of non-deterministic analysis. It should be

noted that in this context a non-deterministic analysis does not imply that the model being

studied is not defined by a deterministic algorithm, instead it implies that uncertainty in

model inputs can be emulated by randomly sampling values from a defined distribution.

Uncertainty quantification (UQ) techniques were used in this study to gain a better

understanding of system behavior through the spread and skew in QOI distributions for un-

certain inputs. Having a deeper understanding of system sensitivity to the inputs facilitates

the design of higher-fidelity models and better performing thrusters while analyzing the QOI

distributions allows for better quantification of thruster performance by providing thrust and

specific impulse envelopes. Additionally, this study implements polynomial chaos expansion

(PCE) as a method for generating a sufficiently accurate and efficient surrogate model in
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order to reduce computational time associated with all forms of non-deterministic analyses

performed. Sensitivity analysis was performed on a global scale using variance-based de-

composition allowing for the procedural quantification of sensitivities that were previously

only quantitatively observed. Bayesian inference was used to generate confidence intervals

for tuning parameters and QOI based on available experimental data and fabricated mock

data.

3.2 Uncertainty Quantification Theory

Uncertainty quantification in this study was conducted primarily through observing QOI

distributions in histograms or by demarcating some percentage of samples away from the

median in axial property profiles. This was done for various sets of input variables such

as physical inputs that may be varied in experiment or thermochemical data in the model.

There is no explicit underlying theory for the QOI distributions generated in this study.

Input variables were assigned uncertain distributions and QOI distributions were a result of

sampling the model or a surrogate model. Sampling techniques used will be discussed later

in the thesis.

PCE is a type of stochastic expansion that utilizes multivariate orthogonal polynomial

bases to form a surrogate model. This method creates a functional relationship between

system response functions and a set of random input variables. The form of the polynomial

relationship is dependent on the input distributions with linkages between the two based on

the Askey scheme [22].

The generalized form of PCE begins with the chaos expansion of the response function R as

follows:

R = a0B0 +
∞∑
i1=1

ai1B1(ξi1) +
∞∑
i1=1

i1∑
i2=1

ai1i2B2(ξi1 , ξi2) +
∞∑
i1=1

i1∑
i2=1

i2∑
i3=1

ai1i2i3B3(ξi1 , ξi2 , ξi3) + ...

(3.1)

Each nested summation term above represents the term in the polynomial of order equal to

the multiplicity of the nesting. The above chaos expansion can be simplified by converting
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from order-based indexing to term-based indexing as seen below:

R =
∞∑
j=0

αjΨj(ξ) (3.2)

where summation over ai1i2...in corresponds to αj and summation over Bn(ξi1 , ξi2 , ..., ξin)

corresponds to Ψj(ξ). Ψj(ξ) is a multivariate polynomial that contains products of the 1D

orthogonal polynomial base terms and ξ is the random variable vector. Lastly, as one would

expect when dealing with finite calculations, the expansion is truncated to order P as shown

below:

R ∼=
P∑
j=0

αjΨj(ξ) (3.3)

In effect, this generates a multivariate polynomial approximation of the response function

to random input variables.

3.3 Sensitivity Analysis Theory

Sensitivity analysis on the model was primarily performed through variance-based decompo-

sition, otherwise known as Sobol inidices. Sobol indices compute the variance in a response

function R for a given variable or combination of variables allowing for both direct effects and

nonlinear combination effects to be observed. Sobol indices may be computed as main-effect

indices or total-effect indices. The former is a measure of an input variable xi’s direct effect

on the uncertainty in the response function whereas the latter is a measure of the variable’s

total effect on the response function uncertainty as it is a summation of the variable’s direct

effect and its nonlinear combination effect contributions. Both indices provide a quantitative

measure of global sensitivity over the domain on interest. Equations 3.4 and 3.5 respectively

contain the equations for the main-effect index Si and total-effect index Ti as seen in the

DAKOTA Theory Manual [22]. The derivations of these equations will not be shown in this
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text but may be found in Tang et al. [23].

Si =
Varxi [E(R|xi)]

Var(R)
(3.4)

Ti =
E(Var(R|x∼i))

Var(R)
=

Var(R)− Var(E[R|x∼i])
Var(R)

(3.5)

In the above equations, response function R is a function of m-dimensional input vector

x = [x1, ..., xm] and x∼i = (x1, ..., xi−1, xi+1, ..., xm) or all x except for xi. It should also be

noted that by definition
∑

i=1 Si = 1 while
∑

i=1 Ti ≥ 1. Methods for computing higher-

order interaction indices are more involved and thus will not be shown in this text but may

be found in Sobol [24].

3.4 Bayesian Inference Theory

Bayesian inference is a method for updating the probability of a hypothesis given the avail-

ability of new data. The cornerstone and namesake of Bayesian inference is Bayes’ theorem,

seen in Equation 3.6, which relates a new probability of interest to known probabilities.

prob(X|Y, I) =
prob(Y |X, I) · prob(X|I)

prob(Y |I)
(3.6)

For the context of the discussion regarding Bayesian inference, X is a hypothesis in the form

of a set of input variables, Y is evidence or experimental data, and I represents additional

conditions implicit within the model. The meaning of each term in Bayes’ theorem is sum-

marized in Table 3.1 [25]. Each term represents the probability of some argument given that

another argument or set of arguments is true. For example, prob(A|B,C) is the probability

of argument A given that both arguments B and C are true.
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Term Nomenclature Definition

prob(X|Y, I) posterior probability What is known given the data

prob(X|I) prior probability What is known without the data

prob(Y |X, I) likelihood function How well data matches hypothesis

prob(Y |I) marginal likelihood Probability of data after marginalizing parameters

Table 3.1: Summary of Terms in Bayes’ Theorem

In this study, Bayesian inference is used for the purposes of parameter estimation in which

only the relative magnitudes of the posterior probabilities for each hypothesis are relevant.

It can be seen in Equation 3.4 that marginal likelihood is independent of the hypothesis X

and thus is constant for all values of X. Therefore, for the purposes of parameter estimation,

the marginal likelihood can be neglected resulting in the following:

prob(X|Y, I) ∝ prob(Y |X, I) · prob(X|I) (3.7)

Note that while the marginal likelihood can be neglected in the study at hand, the term is

non-negligible when performing model comparison through Bayesian inference as the implicit

conditions I will change between models.

The goal of this Bayesian analysis is to generate a distribution of posterior probabilities

for a series of hypotheses. This is referred to as the posterior distribution. Additionally,

there is an assumed distribution of prior probabilities or prior distribution. This can be

based on previous knowledge or information regarding the system (e.g. having measured the

weight of an object in a previous study, one may assume some Gaussian distribution based

on the measurement and precision of the scale). Lastly, there is the likelihood function which

is also evaluated for each hypothesis. Formulation of the likelihood function is determined

by the user and may take many different forms, admittedly lending itself to some degree of

subjectivity. Discussion of this subjectivity will take place later in the text.

Following the generation of the posterior, confidence intervals for both inputs and outputs

can be determined. A confidence interval in the study at hand is defined as the set of
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highest probability samples containing some fraction β of the integrated area of the posterior

probability density function. Mathematically, this is written as:∫
C

prob(x)dx = β

∫ b

a

prob(x)dx (3.8)

where C is the potentially discontinuous confidence interval. Limits a and b are the lower

and upper bounds of the domain. For finite computations, the relation is as follows:

∑
C

prob(xj)∆xj = β

n∑
i=1

prob(xi)∆xi (3.9)

If using random sampling, it may be further assumed that all ∆xi are approximately equal

for all samples and thus:

∑
C

prob(xj) = β
n∑
i=1

prob(xi) (3.10)

An example of the 50% confidence interval (β = 0.5) for a bimodal distribution can be

seen in Figure 3.1. The blue shaded region is within the confidence interval while the

bold dotted line indicates the maximum probability hypothesis, also know as the maximum

likelihood estimate. It can be seen in Figure 3.1 that the confidence interval is capable of

being discontinuous. While the example shown is for a one-dimensional input vector, the

definition of confidence interval is equivalent for n-dimensional input vectors.
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Figure 3.1: Example of 50% Confidence Interval for Bimodal Distribution

Confidence intervals for multidimensional posterior distributions computed through var-

ious means will be shown later in the text. While one can quantitatively observe the

differences between these posterior distributions and their confidence intervals, it is de-

sirable to have a quantitative measure of the difference. The quantitative difference be-

tween the distributions will be determined using the first Wasserstein metric, otherwise

known as the Earth Mover’s Distance (EMD). The EMD is a representation of the minimum

cost of transforming a source distribution into a target distribution based on the distances

between the distribution elements and their respective weights [26]. Define distributions

P = {(p1, wp1), ..., (pm, wpm)}) with m elements and Q = {(q1, wq1), ..., (qn, wqn)}) with n

elements where pi and qj are the respective cluster representatives and wpi and wqj are the

cluster weights. Ground distance dij is the distance between between clusters pi and qj.

Optimal transport is achieved by determining the flow fij between clusters pi and qj by
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minimizing the following quantity subject to several constraints:

m∑
i=1

n∑
j=1

fijdij (3.11)

The EMD is then determined by normalizing the same quantity by the total flow:

EMD(P,Q) =

∑m
i=1

∑n
j=1 fijdij∑m

i=1

∑n
j=1 fij

(3.12)

EMD calculations in this study were conducted using the Python Optimal Transport library

by Flamary and Courty [27].

3.5 Galaxy and DAKOTA Features

The bulk of the uncertainty quantification and sensitivity analysis performed in this study

was done so using Galaxy Simulation Builder (GSB), a software that acts as a job coordi-

nator and graphical user interface for DAKOTA (Design Analysis Kit for Optimization and

Terascale Applications). Many of the implemented techniques are built-in to the program

which greatly simplified execution of the analysis. Descriptions of some critical features

within the program are given below.

GSB is capable of a wide variety of UQ techniques including generating response func-

tion PCEs. In preparing for analysis using PCE, several key parameters must be specified,

namely the method of coefficient estimation and emulator samples. The method of coef-

ficient estimation is dependent on the type of grid used to sample the high fidelity model

and includes options such as tensor-product quadrature or Smolyak sparse grids [28]. Ad-

ditionally, one must specify the order of estimation. In general, more sampling points are

required for high order estimations. The emulator samples is the number of random input

sets delivered to the PCE that has been trained on the high fidelity samples. Sample inputs

used in the PCE are randomly sampled from the specified input distribution and each input

variable may belong to a different type of distribution. The resulting evaluations are used

for computing the Sobol indices if indicated to do so and can be output to a text file by GSB.

Histograms can be generated simply by specifying bin bounds, referred to as response levels,
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prior to executing the simulation. Upon completion, GSB produces a text file containing the

probability density for each bin. It is also possible to have GSB generate a text file contain-

ing the PCE coefficients themselves with the functional form depending on the chosen input

distributions. This can be used to recover the polynomial approximation. Main-effect and

total-effect Sobol indices can also be printed to a text file by GSB but the number of higher

order nonlinear combination effects calculated depends on the grid type used.

While GSB does possess its own Bayesian inference algorithms, for the purposes of this

study, Bayesian inference was performed outside GSB. Regardless, some GSB-generated data

was used for generating tuning parameter posterior distributions and confidence intervals in

the property profiles. Because PCEs are a computationally inexpensive method of generating

output data for a large number of random input samples, it was an advantageous method

for constructing appropriately dense distributions for confidence intervals.

Uncertainty quantification and sensitivity analysis were the driving reasons for using

GSB but the optimization methods also presented some utility for the study at hand. Both

local and global optimization algorithms are available. The first implementation of the

optimization functionality in the study at hand was to further refine the tuning parameter

values using local optimization. Details of the optimization can be found in the following

section.
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CHAPTER 4

Results from Non-Deterministic Analysis

4.1 Optimization Results

Using the CONMIN conjugate gradient descent local optimization method in GSB, the model

tuning parameters were further refined from the values determined by the aforementioned

parameter sweep. Optimization algorithms require the establishment of a figure of merit

(FOM) to be minimized in the optimization process. The FOM for the purposes of this

optimization was a weighted average of the trapezoidal integration of the relative error, as

described in Section 2.2.1, in pressure and temperature data between this paper’s model and

the Jung et al. model. The mathematical description of the FOM can be seen below with

the integrated relative error shown as E∗.

FOM = ωTE
∗
T + ωpE

∗
p (4.1)

where ωT and ωp are the weights for temperature and pressure with the values of 90% and 10%

respectively. Temperature was given a greater weight because the Jung et al. model exhibited

much better agreement with experimental temperature data than with experimental pressure

data. The results of the optimization can be found in Table 4.1.

FOM Ef2 (J/mol) K1 (m3/mol) Ns (m-3)

Pre-Optimization 2.77% 14900 0.00104 780

Post-Optimization 2.58% 15061 0.001079 794.6

Table 4.1: Pre-Optimization and Post-Optimization Tuning Parameter Values

In addition to refining the tuning parameters, optimization techniques were implemented
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to determine the reference enthalpy values that replicated the Jung et al. model results

the best as well as the pressure model coefficients that best predict the experimental pres-

sure data for the standard case. For the enthalpy value optimization, a four-dimensional

optimization (h◦H2O2,(l)
, h◦H2O2,(g)

, h◦H2O,(l), h
◦
H2O,(g)) was conducted using the same FOM as de-

scribed before. As a homogeneous diatomic molecule, the O2 reference enthalpy was not used

as variable input but fixed at the conventional value of 0. A two-stage global-to-local opti-

mization was used to robustly explore the input domain while achieving a sufficient level of

refinement. Global optimization was conducted using the COLINY DIRECT algorithm with

the optimum input set being seeded as the initial point for the local optimization CONMIN

algorithm. Results of the optimization can be found in Table 4.2 with reference enthalpies,

or heats of formation, in units of J/mol. Standard case temperature and pressure profiles

with the optimized reference enthalpies can be found in Figures 4.1 and 4.2.

FOM h◦H2O2,(l)
h◦H2O2,(g)

h◦H2O,(l) h◦H2O,(g)

Pre-Optimization 2.58% -187341 -135453 -285825 -241831

Percent Change -84.5% +2.7% -3.6% +0.004% +2.8%

Post-Optimization 0.399% -192362 -130610 -285837 -248622

Table 4.2: Pre-Optimization and Post-Optimization Reference Enthalpy Values in J/mol
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Figure 4.1: Standard Test Case

Temperature Profile with Optimized

Reference Enthalpies

Figure 4.2: Standard Test Case Pressure

Profile with Optimized Reference

Enthalpies

The figure of merit is significantly reduced by making small adjustments to the reference

enthalpy values used in the model. While temperature and pressure profiles with the optimal

enthalpy set are shown only for the standard case, as similar improvement occurs in the

remaining test cases aside from the high mass flow rate case. The largest deviation occurs

in the reference enthalpy of gaseous H2O2 which, as we will see in Section 4.3, has an

insignificant impact on the adiabatic decomposition temperature of the mixture. Because

2/3 experimental data points for temperature, the dominant quantity in determining the

FOM, are nearly equal to the adiabatic decomposition temperature, one would expect that

h◦H2O2,(g)
would consequently have an insignificant impact on the FOM. Therefore, it is posited

that h◦H2O2,(g)
could be fixed at the original value and a similar FOM would be attained. Even

with an identical reference enthalpy set, variations in the model resulting in a nonzero FOM

would be expected due to discrepancies in other thermochemical and thermophysical data

used in the models. Investigation into the optimum enthalpy set was conducted primarily to

substantiate the argument that the difference in temperature predictions between the models

was primarily due to the reference enthalpy set which, given the results shown above, appears

to be the case. The post-optimization enthalpy values will not be used any further in this

study.
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Similar to the enthalpy optimization, an investigation of the optimum set of pressure

model coefficients was investigated using a two-stage global-to-local optimization. Starting

from the Ergun model coefficients [13], a global optimization was conducted using the NCSU

DIRECT algorithm with the FOM being the integrated relative error between the model

predicted pressure and a curve fit through experimental pressure data from the Jung et al.

[10] standard case. Again, results from the global optimization were seeded in the local

CONMIN optimization. Results of the optimization can be found in Table 4.3 with the

pressure profiles compared in Figure 4.3.

FOM c1 c2 c3

Ergun 8.38% 150 1 1.75

Post-Optimization 1.40% 299 0.0414 3.355

Table 4.3: Ergun Model and Post-Optimization Pressure Model Coefficients

Figure 4.3 shows that the optimized pressure drop model results in the pressure curve

passing through the experimental data point closest to the outlet. While this is an improve-

ment in the prediction of the overall pressure drop through the bed, the pressure prediction

for the central data point deviated further than that of the Ergun model [13]. From this is

can be deduced that the given method of computing the pressure gradient is insufficient for

predicting the pressure drop through the catalyst bed. The pressure gradient equation is

incapable of generating a pressure curve that could reasonably approximate the experimental

pressure data. Several features of the pressure gradient and its derivation may contribute to

this predictive deficiency. First and foremost, the model at hand is a mixture model meaning

that the gas and liquid phase properties are either assumed to be equal, such as temperature

and pressure, or are lumped through a weighted average based on the evaporation parameter

or void fraction. This neglects interfacial friction between the two phases and local effects

caused by property variations such as differences in catalyst interactions between the phases.

As was mentioned previously, Zoltani [13] states that wall effects in a packed bed become

non-negligible for bed-to-pellet diameter ratios less than 40. Additionally, the Ergun packed
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Figure 4.3: Standard Case Pressure Profiles for Ergun Model and Optimized Model

bed pressure drop model was developed for steady gas flow with constant axial velocity [13]

while the catalyst bed model is two-phase flow with a continually varying axial velocity.

4.2 Uncertainty Quantification Results

Uncertainty quantification on the system was initially conducted by generating histograms

for outputs of interest for different physical input distributions. To replicate experimental

uncertainty, each of the physical inputs (Ti, pi, ṁ, and Y ) was assigned a Gaussian dis-

tribution with the mean located at the test case value. It should also be noted that for a

syringe-based fluid injection system, there will be a coupling between the mass flow rate of

propellant and the inlet pressure. Primary QOI for these studies are the ending temperature

and pressure drop through the bed as these quantities define the chamber properties and
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thus are paramount for predicting thruster performance. Having not been provided any data

regarding the precision of the instruments used to conduct the thruster tests in Jung et al.,

the uncertainties in the input quantities will be assigned as standard deviations σ based on

percentages of the mean value µ. Several histograms for a standard deviation of 1% of the

mean using values from the standard case can be seen below. The scaled probability density

value on the ordinate axis is the probability density value normalized as if the width of each

bin was unity.

Figure 4.4: Distribution of Tend for σ = 0.01µ in Ti, pi, ṁ, and Y
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Figure 4.5: Distribution of ploss for σ = 0.01µ in Ti, pi, ṁ, and Y

It can be seen that the distributions of Tend and ploss for the given set of inputs are

Gaussian with very little skew. Standard deviations in Tend and ploss are 19 K and 0.133

bar respectively. With a 1% standard deviation in the inputs, any nonlinear behavior in the

two outputs above has yet to make itself apparent. This may be because the magnitude of

the uncertainty is too small for the input distributions to undergo any significant nonlinear

transformations within the system and thus only a linear scaling is observed. Figures 4.6

and 4.7 below contain histograms of the pressure loss through the bed for different input

distributions as described in their respective captions.
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Figure 4.6: Distribution of ploss for σ = 0.01µ in Ti, Y, ṁ, and σ = 0.10µ in pi
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Figure 4.7: Distribution of ploss for σ = 0.01µ in Ti, Y, pi, and σ = 0.10µ in ṁ

Unlike the uniform standard deviation case, both figures above show skew in the dis-

tributions caused by the increased uncertainty magnitude. Skew in the distribution is an

artifact of the nonlinear scaling of the pressure drop with inlet pressure and mass flow rate in

the catalyst bed. Incremental increases in the aforementioned inputs result in progressively

greater pressure drops seen by the distribution tail extending in the direction of increasing

pressure loss. Both standard deviation and skew of the pressure loss increase to a greater

degree when the uncertainty is greater for the mass flow rate than for the inlet pressure.

From a qualitative perspective, this indicates that the pressure drop through the bed has

a higher sensitivity to perturbations in mass flow rate than for those in the inlet pressure.

Quantitative confirmation of the statement will be shown in Section 4.3. A more direct

comparison of the pressure loss histograms described above can be seen in Figure 4.8.
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Figure 4.8: ploss Distributions for Various Input Distributions

Again, increased sensitivity to the mass flow rate can be observed. A large uncertainty

in mass flow rate results in a much greater uncertainty in the pressure drop as compared to

the two other distributions.

While the ending temperature and pressure drop are key parameters for determining

overall thruster performance, it is also important to characterize behavior of the catalyst bed

by assessing the locations for region transitions. Region transition analysis was performed

using uniform uncertainties in the four physical inputs mentioned before, each with large

domains. Boiling location, the transition between Regions I and II, follows the distribution

seen in Figure 4.9.
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Figure 4.9: Distribution of Boiling Location for Uniform Uncertainties in Ti, Y, pi, and ṁ

Figure 4.9 shows a highly skewed distribution with the maximum probability around 0.3

mm and a long tail in the positive x-direction. Even for a large variation in the inputs,

there is a high likelihood of the boiling transition occurring within the first millimeter of

the catalyst bed. The same plot could not be generated for the transition location between

Region II and III for the same input distributions due to the fact that complete evaporation of

the mixture was not guaranteed. A dummy value for the location was substituted to signify

that the mixture had not fully evaporated which resulted in an inaccurate formulation of the

PCE.

Another method of uncertainty quantification applied to the model in this study is to

generate an expected value bounded by an envelope for the axial profiles for the fluid proper-

ties. This is done by generating the distributions for a property or properties at each node in

the domain and then defining some metric by which an envelope can be constructed. Three
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potential options were evaluated for their effectiveness in representing the expected uncer-

tainty in the property profiles. The three options are: mean with standard deviation, median

with sample distance, and maximum probability value (MPV) and confidence interval. The

mean and standard deviation are self-explanatory in that the expected value is the mean

and the envelope is defined by a standard deviation away from the mean. For the median

method, the expected value is the median and the envelope is defined by a user-specified

number of samples away from the median. This method yields two critical advantages over

the mean with standard deviation method in that the median with sample distance rejects

values incapable of being generated by the model and can also represent skew in the distri-

bution through an asymmetric envelope. Even more refined than both previously described

methods is the MPV with confidence interval method. Confidence intervals, as described in

Section 3.4, account for probability of the values and represents the highest probability set

of values thus creating the best representation of potential output values. Additionally, it

is possible to generate discontinuous confidence intervals as one may expect for multimodal

distributions which is not possible using the mean and median methods. Similar to the user-

specified number of samples for the median method, the confidence interval method requires

that the user specify the size of the confidence interval. A comparison of the three methods

being implemented on a lognormal distribution can be seen in Figure 4.10.

Figure 4.10: Comparison of Uncertainty Envelope Generating Methods (left-to-right: Mean

with Standard Deviation, Median with Sample Distance, Maximum Probability Value with

Confidence Interval)
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Observing the figure, each envelope definition can be summarized as follows: the standard

deviation is a fixed distance away from the mean, the sampling distance is a fixed area away

from the median, and the confidence interval is the area composed of the highest probability

samples, thus interval boundaries all have the same probability density. For symmetric

distributions, the three methods yield similar results. All three methods for the plots above

were calibrated such that each method bounded the same interval for a particular Gaussian

distribution. The consequence of implementing the confidence interval method for the axial

property profiles is the high computational cost due the requirement of binning the property

values at each node to create a probability density function. For this reason, the required

sampling density for this method is much greater than for the other two methods. Some

difficulty was experienced in producing the requisite number of samples using GSB given

the size of the data files and available computing capabilities. Due to these restrictions, the

median with sample distance, denoted δ, was chosen as it requires minimal computational

rigor, is capable of capturing skew in the output distributions, and multimodal distributions

were neither expected nor found in creating histograms.

Axial uncertainty profiles in this study were generated using the results from a PCE for

the QOI at each node. One important note is that the PCE is not an emulator trained to

reconstruct the profile in x but instead is a polynomial approximation of the QOI at each

separate node as a function of the random inputs. Therefore, the values at neighboring nodes

are defined by distinct polynomials (although neighboring polynomial forms and coefficients

should be similar in regions of continuous slope and value). Sample distances of 20% and

40% of the total number of samples are shown in each of the uncertainty profile plots. First,

the uncertainty profiles for Gaussian-distributed physical inputs with standard deviation

equal to 1% of the mean will be shown. The PCE was trained using 238 model simulations

located on a third-order sparse grid with Sobol variance-based adaptation to refine the grid in

dimensions with high variation and coarsen the grid in dimensions with low variation. Once

the PCE had been trained, 5000 emulator samples were generated to produce the following

plots.
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Figure 4.11: Axial Temperature Profile with Uncertainty for σ = 0.01µ in Ti, pi, ṁ, and Y

From the figure above, it can be seen that 80% of the samples fall within approximately

950-1000 K for the ending temperature and the median ending temperature is 977 K, ap-

proximately equal to the deterministic solution for the standard case. This is consistent with

the data presented in Figure 4.4. Even small variations in the physical inputs can result in

significant variation in the decomposition temperature of the mixture and for that reason, it

is critical to have adequate estimates of experimental uncertainties for each property. As was

mentioned earlier in the text, QOI distributions are necessary for constructing distributions

for relevant thruster quantities, such as thrust, thus it is important that one has accurate

values for the form and characteristics of the input distributions. Figures 4.12 and 4.13 show

profiles for pressure and the evaporation parameter respectively.
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Figure 4.12: Axial Pressure Profile with Uncertainty for σ = 0.01µ in Ti, pi, ṁ, and Y

As pressure drops through the bed, the uncertainty in the pressure remains approximately

constant with only a small increase near the bed outlet. In this case, uncertainty in the

mixture pressure appears to be dominated by the initial uncertainty in the inlet pressure.
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Figure 4.13: Axial Evaporation Parameter Profile with Uncertainty for σ = 0.01µ in

Ti, pi, ṁ, and Y

In the vicinity of x = 0.002 m, there is considerable noise in the evaporation parameter

value and the bounds formed by the sample distances. Noise at this location is a consequence

of the transition from Region I to II as there is a discontinuity in both the mixture tem-

perature and evaporation parameter. It is important to note that this is not a polynomial

oscillation that would arise as a consequence of mapping a polynomial to the evaporation

parameter as a function of axial distance x. Instead, the noise is due to the shifting location

of the boiling location xb. Each node at which xb is located for some subset of high fidelity

samples has a discontinuous set of evaporation parameter values being mapped to a poly-

nomial in the random input variables. This results in noisy predictions of the evaporation

parameter when creating the emulator samples with the PCE. A similar effect can be seen
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at x ≈ 0.006 m where the transition between Regions II and III occur, albeit to a much

lesser extent. Emulator noise as a result of transition discontinuities will be seen in many of

the PCE generated plots to follow, in particular the axial temperature profiles. This noise

can result in the uncertainty envelopes, or even the median values, containing nonphysical

values that cannot be predicted by the model such as evaporation parameters less than 0 or

greater than 1.

Similar plots were generated with fixed physical inputs and Gaussian distributed reference

enthalpies. Once again, h◦O2
is held constant while the four remaining reference enthalpies

are allowed to be varied. Following the format of the previous analysis, the variable reference

enthalpies were assumed to have Gaussian distributions with the mean equal to the stan-

dard values and a standard deviation of 1% of the mean values. Effects of permutations in

the reference enthalpies in mixture properties propagate from the enthalpy balance equation

and thus are only directly seen by mixture temperature and evaporation parameter. Conse-

quently, it was deemed only necessary to use a second-order sparse grid with 87 high fidelity

simulations. Plots of mixture temperature and pressure can be seen in Figures 4.14 and 4.15

respectively.
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Figure 4.14: Axial Temperature Profile with Uncertainty for σ = 0.01µ in H2O2 and H2O

Reference Enthalpies

Mixture temperature in Region III has a strong dependence on the reference enthalpy set

while there is minimal dependence in Regions I and II. Variation in temperature in Region I

is small due to partial cancellation of the liquid reference enthalpies due the terms occurring

on both sides of the enthalpy balance equation. While the same partial cancellation occurs

in Region II to a lesser extent due to the presence of the gas phase, mixture temperature

is further stabilized by the constraint of satisfying the summation of partial pressures with

temperature-dependent saturation pressures. In Region III, the entire mixture is in the gas

phase and enthalpy variations result in significant variation in temperature as the previously

mentioned stabilizing effects are no longer present. For the ending temperature, 80% of the

samples fall within approximately 60 K of the deterministic standard case value of 977 K.
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This is once again consistent with the corresponding histogram which can be found in Figure

B.1 in Appendix B.

Figure 4.15: Axial Pressure Profile with Uncertainty for σ = 0.01µ in H2O2 and H2O

Reference Enthalpies

In contrast with the uncertainty profile for random physical inputs, there is no uncer-

tainty in the inlet pressure in this case. Instead, the uncertainty envelope grows from zero

uncertainty as x increases. The variation in the pressure is due to the direct effects of the

enthalpies on the temperature and evaporation parameter as this impacts the pressure gra-

dient equation through viscosity, density, and the void fraction. The 80% envelope for the

ending pressure spans approximately 0.6 bar.

To further investigate the effects of uncertainty in thermophysical data on the model,
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uncertainty profiles were created with the dynamic viscosities for each species as the random

variables. Each viscosity was directly multiplied by a scaling factor to change the value.

In other words, the viscosity profiles were only stretched and compressed; there was no

modification of the relative scales of the polynomial coefficients that would further alter

the temperature-dependent profile. Because the viscosities vary as the mixture progresses

through the bed, the scaling factors that are multiplied with each viscosity act as the random

input variables. The mean is the unchanged case, a scaling factor of 1, and the standard

deviation is 0.1. A majority of the property profiles display no discernible uncertainty with

the exception of the Reynolds number. As one would expect by the definition of the Reynolds

number, the uncertainty results in a direct scaling of the Reynolds number. This can be seen

below in Figure 4.16.

Figure 4.16: Axial Reynolds Number Profile with Uncertainty of σ = 0.1 in Species

Dynamic Viscosity Scaling Factors
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4.3 Sensitivity Analysis Results

Sobol indices [22] were generated to provide quantitative measures of how sensitive response

functions are to multiple sets of random input variables. Visualizing the Sobol indices for

each of the random variables and their nonlinear combination effects proved to be challenging

due to the high dimensionality of the problem. Ultimately it was decided that the Sobol

indices would be plotted on a heat map with each row corresponding to the order of effect,

i.e. the first row contains first-order effects, the second row contains second-order effects,

etc. Colors of the heat map scale with the base 10 logarithm of the corresponding Sobol

index with lighter colors corresponding to higher sensitivities and vice-versa. The number

under each set of variables, is the Sobol index corresponding to that variable subset. It

is important to consider that the sensitivities shown above are only valid on the domain

analyzed and while the Sobol indices represent global sensitivities within the system, there

may be additional behaviors that alter the Sobol indices outside the current domain. Sobol

indices for the ending temperature and pressure loss for physical inputs can be found in

Figures 4.17 and 4.18.

Figure 4.17: Sobol Index Grid for Tend for σ = 0.01µ in Ti, pi, ṁ, and Y
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Figure 4.18: Sobol Index Grid for ploss for σ = 0.01µ in Ti, pi, ṁ, and Y

The first row contains the total-effect indices that sum the main-effect indices with all

nonlinear combination indices to which the variable contributes. Figure 4.17 shows that the

ending temperature is strongly dependent on the propellant concentration Y and weakly

dependent on the input temperature Ti while exhibiting negligible dependence on both the

input pressure and mass flow rate. It should be noted that these sensitivities are calculated

for the domain of the specific input distributions and is not representative for sensitivities

across all operating regimes. For example, it is possible to increase mass flow rate such that

the final reaction advancement is significantly reduced thereby increasing the dependence of

the end temperature of the mass flow rate of the mixture.

Based on the results shown in Figure 4.8, the claim was made that the pressure drop

through the system has a greater sensitivity to mass flow rate than to the input pressure

of the system. This claim is corroborated by the Sobol indices for pressure drop shown in

Figure 4.18 as the total-effect index for mass flow rate is 0.33 whereas the index for inlet

pressure is 0.088. As is true for the ending temperature, the highest sensitivity is to the

propellant concentration. This is due to the strong influence that the concentration has on
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temperature evolution throughout the catalyst bed acting in conjunction with the strong

temperature-dependence of several terms within the pressure gradient equation.

Similar sensitivity analysis was performed for the reference enthalpy values used in the

model. Sobol indices for ending temperature and pressure loss with reference enthalpy values

as input variables can be seen in Figures 4.19 and 4.20 respectively.

Figure 4.19: Sobol Index Grid for Tend for σ = 0.01µ in Reference Enthalpies

As can be seen above, the ending temperature is most sensitive to the reference enthalpies

for gaseous H2O and liquid H2O2. Simultaneously, the final temperature is negligibly de-

pendent on the reference enthalpy for gaseous H2O2. These sensitivity values agree with

qualitative expectations stemming from the decomposition temperature in Equation 2.88.

In this equation, h◦H2O2,(g)
does not make an appearance while gaseous H2O and liquid H2O2

are the major contributing species to the final and initial enthalpies respectively. Ending

temperature is at all sensitive to the reference enthalpy of gaseous H2O2 only due to its im-

pact on the intermediate temperature calculations and thus the rate of reaction throughout

the bed.
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Figure 4.20: Sobol Index Grid for ploss for σ = 0.01µ in Reference Enthalpies

Pressure loss exhibits nearly the same dependencies as the ending temperature with

higher sensitivity to the reference enthalpy of gaseous H2O2. This is likely due to the pressure

drop being the sum total of compounding pressure loss through each node. As was the case

with the pressure drop sensitivity to the mixture concentration, there is no direct impact

of the reference enthalpies on the pressure gradient equation. The influence is through

the impact on temperature and how that effects the temperature-dependent thermophysical

properties that arise in the pressure gradient equation.

Understanding which inputs are the primary drivers for region transitions and the overall

shape of the temperature curve may also prove useful. As was the case before with the

histograms, results from the sensitivity analysis were only generated for the boiling location

and not the evaporation location due to non-evaporating input sets causing the formulation

of an erroneous PCE. Sobol indices for the boiling location can be seen in Figure 4.21.
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Figure 4.21: Sobol Index Grid for xb for σ = 0.01µ in Ti, pi, ṁ, and Y

The dominant variable affecting the location of transition from Region I to II is the inlet

temperature with significant contributions from mass flow rate and the combination effect

of the two. In a similar effort, a metric to describe the shape of the temperature curve was

created. The aspect ratio AR is defined as follows:

AR =
1

w1w2

xev − xb
L

(4.2)

where w1 and w2 are coefficients in the following equation derived from a curve fit for the

temperature curve in Region III.

T (x) = w1

[
1− e−w2∆x∗

]
where ∆x∗ =

x− xev
L

(4.3)

Data for this analysis was generated using stochastic collocation, a stochastic expansion

technique quite similar to PCE. More information on this technique can be found in the

DAKOTA Theory Manual [22]. Sobol indices for the aspect ratio of the curve under uncer-

tainty in the physical inputs can be seen in Figure 4.22.
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Figure 4.22: Sobol Index Grid for Aspect Ratio for σ = 0.01µ in Ti, pi, ṁ, and Y

Once again, the dominating input for the response function is the concentration. Aspect

ratio is closely linked to the concentration due to its strong impact on temperature and the

resulting reaction advancement speed. Attempts were made to analyze the aspect ratio on a

larger domain to obtain a more global set of sensitivities but as it depends on the evaporation

parameter, determining the aspect ratio value for non-evaporating cases proved problematic.

To further evaluate aspect ratio sensitivities, an analysis was conducted while perturbing

the tuning parameters in the model. The resultant sensitivities can be seen in Figure 4.23.

The structure of the Sobol index grid is different from previous iterations as there were only

3 random inputs in the study. Aspect ratio of the temperature curve is primarily dictated by

the activation energy Ef2 with no significant nonlinear effects. It is also interesting to note

that the adsorption equilibrium constant K1 has the least effect which will be corroborated

by the posterior distribution results in Section 4.4.
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Figure 4.23: Sobol Index Grid for Aspect Ratio for σ = 0.01µ in Ef2, Ns, and K1

4.4 Bayesian Inference Results

Bayesian inference was applied to the model in this study to establish confidence intervals in

both the tuning parameters as well as the relevant output profiles for different experimental

data sets. Data sets are composed of temperature data and pressure data at locations xT and

xp respectively. Hypotheses for the Bayesian inference were randomly sampled sets of tuning

parameters within a specified domain, equivalent to using uniform prior distributions. As

was mentioned before, there is an element of subjectivity that arises due to the user defining

the likelihood function. For the purposes of this inference, the likelihood function is the

probability of the data at experimental temperature and pressure measurement locations

xT and xp for Gaussian distributions defined by mean µ and standard deviation σ based

on model predicted response function values. Mathematical representation of the likelihood
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function, in which N represents the number of data points at a given location and NT and

Np represent the number of temperature and pressure data points respectively, can be found

along with a graphical representation below:

prob(Y |X, I) = 0.9

NT∏
i

prob(YT,i|X, I) + 0.1

Np∏
i

prob(Yp,i|X, I)

with µ = T (xT ), p(xp), σ =

√√√√ 1

N − 1

N∑
k=1

(Yk − µ)2

Figure 4.24: Example Model Temperature-Based Gaussian Distributions for Determining

Likelihood Function

As was done when computing the error between the model at hand and that from Jung et

al. [10], 90% weight was assigned to the temperature-based metric due its better predictive

capabilities. Weights on the two likelihood functions were altered to see how this would
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affect the resultant posterior distribution but a difference was negligible even for a pressure

likelihood function weight of 99.99%. At each experimental data location, the mean of the

Gaussian is the model-predicted value at that point and the standard deviation is based

on each of the N experimental data points at that location. In the instance that there is

only one data point at a given location, the mean is then treated as a data point to avoid

a division-by-zero error. The standard deviation for the N = 1 case then becomes the

following:

σ =

√
1

2− 1
[(Y1 − µ)2 + (µ− µ)2] =

√
(Y1 − µ)2

Due to the sparsity of data at each location for a given test condition, additional mock data

was created to provide better conditions for the formulation of the standard deviation at each

experimental location as well as simply provide more input to the likelihood functions. Mock

data sets included the experimental data for the standard case from Jung et al. and were

designed not to glean exact numerical information but to have a representation of potential

trends based on the form of the data.

Posterior probability distributions were generated using both data from direct simulation

as well as surrogate data for various types of PCEs. Sampling details for each study can be

seen in Table 4.4.

Samples 15000

Ef2 [12500, 17500]

Ns [794, 1200]

K1 [0.0008, 0.0012]

Table 4.4: Details of Monopropellant Model Bayesian Inference

Results from the Bayesian inference performed on the direct simulations can be seen in

Figures 4.25 - 4.27. Each plot shows the 3D confidence interval distribution for a different

set of orthogonal axes.
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Figure 4.25: Posterior Probability Distribution for Direct Simulations in Ef2 vs. Ns
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Figure 4.26: Posterior Probability Distribution for Direct Simulations in Ef2 vs. K1

Figure 4.27: Posterior Probability Distribution for Direct Simulations in Ns vs. K1
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The posterior distributions above illuminate two key behaviors of the model. First, by

observing Figure 4.25, it would appear that the optimal values of Ef2 and Ns belong to a

family of solutions based on the fact that none of the confidence intervals of the posterior

distribution form closed shapes within the domain. This suggests that any combination of

Ef2 and Ns along a curve of the solution family will produce a sufficient solution. Referring to

the reaction advancement gradient equation below, it can be seen that the tuning parameters

Ef2 and Ns can compensate for one another in achieving the optimal reaction rate.

dλ

dx
=
V̇

u
Af2e

−Ef2/RTNs

K1C
(s)
H2O2

1 +K1C
(s)
H2O2

It will be shown more clearly in Figure 4.31 that the relationship between the two tuning

parameters is logarithmic which is to be expected based on the form of the reaction ad-

vancement equation. As Ns increases linearly, Ef2 increases in a logarithmic trend to offset

the increased reaction speed within a given confidence interval. While the exponential term

does contain the spatially-varying temperature term, it appears that this has little effect on

separating the logarithmic relation between Ef2 and Ns. In order to achieve a set of optimal

values not belonging to a family of solutions, an additional equation is required to decouple

the two tuning parameters.

From the other two figures, it can be seen that the confidence intervals are not well

defined and exhibit a great deal of overlap, even appearing totally random as in Figure 4.27.

Based on this result, it is apparent that K1 has very little impact on the results of the model.

This is to be expected based on the form in which K1 appears in the reaction advancement

gradient. In effect, it could be removed from the tuning parameter optimization process to

reduce the dimensionality of the problem with very little influence on the result.

As was mentioned previously, there were attempts to recreate these posterior distributions

using PCE on several different grid types. The objective of this portion of the study was to

determine how accurately each method could recreate the posterior distribution and in what

fraction of the time. Table 4.5 contains completion times for each of the simulation methods

with 15000 samples.
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Simulation Method Time (hours:minutes)

Direct Simulation 24:00

2nd Order Sparse Grid 00:04

5th Order Sparse Grid 01:22

Orthogonal Least Interpolation on Adaptively Sampled Grid 03:46

Table 4.5: Details of Monopropellant Model Bayesian Inference

Given the weak dependence on K1, posterior distributions for the three surrogate models

will only be shown for Ef2 and Ns and can be seen in the figures below.

Figure 4.28: Posterior Probability Distribution for 2nd Order Sparse Grid in Ef2 vs. Ns
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Figure 4.29: Posterior Probability Distribution for 5th Order Sparse Grid in Ef2 vs. Ns

Figure 4.30: Posterior Probability Distribution for Orthogonal Least Interpolation on

Adaptively Sample Grid in Ef2 vs. Ns
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Observing the figures above, using higher-order PCEs presents itself as an adequate

method for rapidly generating posterior probability distributions. Quantitative compari-

son of PCE performance can be made by computing the Earth Mover’s Distances (EMDs)

between the directly simulated posterior distribution and the PCE generated posterior distri-

butions. EMDs are computed comparing the 99.99% confidence intervals of the distributions

with cluster representatives equal to the sample coordinates on the (Ns, Ef2) domain. Two

EMDs were computed for each PCE, one in which each cluster was assigned an equal weight

and one in which each cluster was weighted using the normalized posterior probability. The

weighted EMD greatly increases the cost of moving high probability clusters while reducing

the cost of moving low probability clusters. Table 4.6 contains the both EMD values for

each PCE posterior.

Simulation Method Uniform EMD (10−3) Weighted EMD (10−3)

2nd Order Sparse Grid 2.53 1.34

5th Order Sparse Grid 0.169 0.486

Adaptively Sampled Grid 0.728 0.186

Table 4.6: PCE Generated Posterior Distribution to Direct Simulation Posterior

Distribution EMDs

From the values presented in the table above, it can be seen that the 2nd order sparse

grid PCE results in EMDs approximately an order of magnitude larger than that of the

other two methods and thus is the worst approximation of the directly sampled posterior.

It is interesting to note that the 5th order sparse grid has a lower uniform EMD than the

adaptively sampled grid while the converse is true for the weighted EMD. This indicates that

the posterior generated using the 5th order sparse grid better represents the shape of the

99.99% confidence interval. This is to be expected due to the branching to solutions outside

the expected family in the adaptively sampled case. On the other hand, the adaptively

sampled case better reproduces the probability distribution of the directly sampled posterior

distribution as it has a lower weighted EMD. While the solution branching near the domain
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boundaries result in large ground distances for branches far from the directly simulated

posterior, the weights of the distant clusters are orders of magnitude lower than those for

the smaller confidence intervals.

A yet more accurate replication could likely be generated using a higher-order sparse grid

or adaptively sampled grid although this inherently lends itself to longer computational times.

For the 5th order sparse grid, a reasonably accurate approximation of the confidence interval

boundaries was generated in only 1/20th of the computational time. Despite the potential

benefits of applying PCE to Bayesian inference, its important to also consider the limitations

of this technique. For all three PCE grid types, it appears that there is some degree of

spread in the posterior near the domain bounds. This, in conjunction with the difficulty of

formulating a polynomial approximation near a discontinuity in model behavior, means that

PCE should only be applied to generate posterior distributions where the behavior of the

model is stable and well-characterized and higher trust may want to be placed in an interior

region of the PCE domain.

In order to further explore the behavior of the model, domain bounds were expanded

roughly to the operating boundaries of the model for the activation energy Ef2 and number

of active sites Ns. Due to the simulations taking place close to the stability boundaries,

it was deemed insufficient to use PCE to approximate the model results and thus it was

necessary to use direct simulations. Details of the Bayesian inference can be found in Table

4.7.

Samples 20000

Ef2 [5000, 35000]

Ns [250, 4500]

K1 [0.0004, 0.0054]

Table 4.7: Details of Large Domain Direct Simulation Bayesian Inference

The posterior distribution resulting from the direct simulations described above can be

seen below in Figure 4.31. The figure clearly shows the confidence intervals following a
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logarithmic curve as was described earlier. One can also see that there is a series of points

in the 99.99% confidence interval with lower activation energies that are separated from the

main grouping of points. This offshoot occurs as the “probability benefit” of having even

a marginally higher temperature for the last two data locations, by increasing the reaction

rate, outweighs the cost of overshooting the data at the first location.

Figure 4.31: Posterior Probability Distribution for Large Domain Direct Simulations in Ef2

vs. Ns

It is important to recall that each of the posterior distributions above were created using

a representative mock data set. For the large domain direct simulations, the same Bayesian

inference techniques were applied using the original standard case data set from Jung et al.

[10] which can be seen in Figure 4.32.

86



Figure 4.32: Posterior Probability Distribution for Large Domain Direct Simulations in Ef2

vs. Ns for Standard Case Data Set [10]

Immediately it can be seen that the confidence intervals are much larger as compared

to the posterior distribution for the mock data set. Because of the reduced number of data

points, the probability penalty for unlikely hypotheses is much less significant. Despite

this confidence interval broadening, the same general trends can be seen in both posterior

distributions in that there is an apparent logarithmic trend. Using the 50% confidence

interval, it is possible to construct a logarithmic curve of best fit to determine the relation

between Ef2 and Ns. The logarithmic curve is governed by the following equation:

Ef2 = ψ1 log(Ns) + ψ2

Curve fits for both the mock data set and the standard case data set can be seen in Figures
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4.33 and 4.34 respectively. Values for the coefficients ψ1 and ψ2 for each curve fit can be

found in Table 4.8.

Figure 4.33: 50% Confidence Interval Curve Fit for Mock Data

While the best curve fit is based solely on the 50% confidence interval, simulations from

the 90% and 99% confidence intervals are shown to further elucidate the logarithmic trend.
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Figure 4.34: 50% Confidence Interval Curve Fit for Standard Case Data

Data Set ψ1 ψ2

Mock Data 2778.3 -4755.1

Standard Case 2802.7 -4973.2

Table 4.8: 50% Confidence Interval Logarithmic Curve Fit Coefficients

Coefficients for the standard case were used to determine the activation energy values

corresponding to Ns = 500 and Ns = 3000. These tuning parameter sets were then used to

generate the respective temperature profiles which are compared on the same axes in Figure

4.35. In both simulations, K1 was held at the nominal value of 0.001079.
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Figure 4.35: Comparison of Temperature Profiles for Ns = 500 and Ns = 3000 with Curve

Fit Ef2 (Jung Standard Case Model Data Shown for Reference)

Both profiles achieve temperatures approximately equal to that of the first experimental

data point while the Jung et al. profile does not. This is likely due to the fact that the

Jung et al. tuning parameters were calibrated across multiple test cases as opposed to solely

the standard case as is being done in the study at hand. Further discussion of utilizing

additional test cases can be found in Section 5. There is an extremely large variation in the

potential temperature profiles that would constitute a high confidence result. At x ≈ 0.005

m, there is a nearly 400 K difference between the two profiles. This is primarily due to the

small temperature variation between the last two experimental data points. Because little

changes between the second and third data point, there is no significant information gained

from including the final point. However, if the second data point had a lower temperature

and fell on the highly varied portion of the temperature curve in Region III (for example
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T = 700 K), then variation between results for a confidence interval would be greatly reduced.

While the figure shown above only demonstrates a comparison between two arbitrary curves

based on the logarithmic fit, it is possible to show the same confidence intervals from the

posterior distribution on the axial property profiles. This is done by taking the highest and

lowest property values at each node corresponding to a set of tuning parameters within a

given confidence interval. Confidence intervals are demarcated by gray dotted lines with

gray infill and confidence intervals expand outward in the same fashion as for the posterior

distributions i.e. 50%, 90%, etc. Once again, mock data sets were used in order to be able

to customize the data spread and location and evaluate the corresponding effects on the

confidence intervals. The axial temperature profile with confidence intervals generated with

the original mock data can be seen in Figure 4.36. It is worth noting that the optimum

profile is the temperature profile predicted by the maximum probability hypothesis and that

each confidence interval may contain a percentage of samples different from the respective

confidence interval’s percentage. This is due to the confidence interval boundaries stemming

from the tuning parameters as opposed to the property distribution at each node.
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Figure 4.36: Axial Temperature Profile with Confidence Intervals for Mock Data

Noise in the temperature value around the Region I to Region II transition is due to the

variation of values permitted by the discontinuity for a range of tuning parameter sets. It can

be seen, similar to Figure 4.35, that there is high temperature variance around x = 0.005 m.

By including additional experimental data in approximate accordance with the maximum

probability profile to a region of low confidence, one would expect the confidence interval

bounds to shrink. This phenomenon can be observed in Figure 4.37 in which an additional

4 synthetic data points were added for both temperature and pressure at x = 0.006 m.
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Figure 4.37: Axial Temperature Profile with Confidence Intervals for Mock Data with

Optimal Low Confidence Data

In contrast to Figure 4.37, the confidence interval bounds expand in this instance that the

additional data is outside the expected confidence intervals or the predictive capabilities of

the model. If instead of adding data points close to the optimal profile, data points closer to

the complete decomposition temperature are added, the variance in the confidence interval

data bounds increases. This can be seen in Figure 4.38.
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Figure 4.38: Axial Temperature Profile with Confidence Intervals for Mock Data with

Non-Optimal Low Confidence Data

It can be seen in the figure above that the upper bounds for each of the confidence

intervals seem to collapse into a single value indicated by a single dotted line. This occurs

because each of the confidence intervals extends to the boundary of the study domain. In

other words, the 50% confidence interval contains the domain boundaries leading to the

fastest possible reaction rates in the domain.

While the addition of experimental data to a region of low confidence, or high response

function variation, can significantly alter response function boundaries prescribed by the

confidence intervals, it is worth examining the effects of adding data in a region of high

confidence. As the fluid approaches the catalyst bed outlet, the temperature asymptotically

94



approaches the complete decomposition temperature of the mixture, a quantity independent

of the tuning parameters, and the confidence intervals shrink. Figure 4.39 contains the axial

temperature profile with confidence intervals for the mock data set with additional data at

x = 0.022 m.

Figure 4.39: Axial Temperature Profile with Confidence Intervals for Mock Data with High

Confidence Data

From the figure above, it can be seen that the addition of high confidence data has

negligible impact on the confidence intervals as compared to those in Figure 4.36. Acquisition

of data in locations of the low confidence is critical for refining confidence intervals and

increasing the confidence in model predicted values. While moving pressure transducers and

thermocouples may prove laborious and impractical, it is entirely feasible to shift the region
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of uncertainty by altering the input conditions. Model predictions and experimental data

from Jung et al. [10] in Section 2.2.1 show that the rapid temperature increase in Region III

can be delayed by reducing the concentration of H2O2 or increasing the mixture mass flow

rate. For this reason, calibration on these cases may prove more fruitful in terms of refining

the confidence intervals for single case calibration.
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CHAPTER 5

Conclusions and Future Directions

Work presented in the study at hand explored parameter sensitivity and uncertainty prop-

agation through the monopropellant catalyst bed model proposed in Pasini et al. [9]. The

model is capable of predicting temperature within the catalyst bed with reasonable accuracy

but is a poor predictor of pressure. Good agreement was shown between the model and

experimental data in 5/6 test cases with reasons for the deviation in the final case remaining

unknown. An attempt to modify the model in order to predict mixture properties for a

HAN-H2O mixture was made but due to significantly different behavior than H2O2 and a

lack of validation data, the resulting model will require further attention to attain sufficient

predictive capabilities. Results have shown that model behavior exhibits a strong depen-

dence on the reference enthalpies of liquid H2O2 and H2O in both phases. Model behavior

is also highly sensitive to the activation energy and number of active sites per unit volume.

Sensitivity analysis of the model also indicates that outlet temperature and pressure loss

through the catalyst bed are predominately determined by the initial propellant mass frac-

tion. Propellant mass fraction is also the most sensitive of the physical inputs in determining

the aspect ratio of the temperature profile while the primary tuning parameter in affecting

the aspect ratio is the activation energy.

Bayesian inference on the model revealed the coupled nature of the tuning parameters Ef2

and Ns and the weak-dependence on K1. It was found that confidence intervals established

on the 3D probability distribution formed surfaces that followed logarithmic curves in Ef2

and Ns with little variation in the K1 direction. This is not a reflection of real world behavior

but instead implies that the model at hand requires another equation to decouple Ef2 and

Ns. Logarithmic curve fits were established for both mock experimental data and for the
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standard case experimental data to evaluate the relation between Ef2 and Ns. By plotting

multiple temperature profiles for different values of the two tuning parameters based on the

standard case curve fit, it was seen that the profiles were highly varied in Region II and early

Region III but had similar probabilities due to passing through the first experimental data

point.

Generation of posterior distributions was also performed using PCEs for different grid

types which was deemed a viable method for well-behaved and well-characterized domains

but not for expansion into unknown model territory. Using the same inference techniques,

confidence intervals were used to create boundaries on the axial temperature profile. Ax-

ial profile confidence intervals responded as expected to several mock data sets; confidence

increases and boundaries tightened with the addition of data within existing intervals in ar-

eas of high uncertainty. Conversely, boundaries expanded with the addition of data outside

the intervals in the same area and were negligibly affected with data addition in regions of

low certainty. Future catalyst bed experiments should have a temperature probe placed in

the predicted area of rapid temperature increase in Region III for the nominal test condi-

tions. Mass flow rate and propellant concentration can be tuned such that some temperature

indicative of partial decomposition can be measured at that location thereby establishing

experimental data in a region of low confidence.

Both predictive deficiencies in the reduced-order model and the extensiveness of the UQ

field present ample opportunity for further developments on the model and its analysis. To

enhance the robustness of the model’s property profile prediction with uncertainty envelopes

for uncertainty in the physical system inputs (Ti, pi, ṁ, and Y ), the median with sampling

distance method should be replaced with the maximum likelihood estimate and confidence

interval method. While it would be unexpected to have bimodal or otherwise obscure prop-

erty distributions in which using the median with sampling distance would be insufficient,

having the capability to accurately represent those distributions, as well as having the max-

imum likelihood estimate represented, is an optimal configuration. An attempt was made

to generate the axial uncertainty profiles using confidence intervals but was met with little
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success. This was primarily due to sampling density being too low to generate well-formed

property distributions at each node. Unlike the mean and median, to achieve the highest

probability result each sample needs to be binned in order to have a representation of the

probability density function of the distribution. In order to have a sufficient number of

properly filled bins, a large number of samples is required which the author had difficulty

generating using GSB. The best attempt generated a coarse approximation of the distri-

bution with few bins that resulted in grainy confidence intervals and maximum likelihood

estimate profiles as the aforementioned values would shift discontinuously from node to node.

It may be possible to generate confidence intervals and the maximum likelihood estimate

from distribution statistics approximated using the same number of samples and bins. This

would then allow for the optimal property profile and uncertainty bounds to be smoothly

generated with the caveat that additional uncertainty is introduced by approximating the

property distribution.

Property profiles with confidence intervals and the corresponding posterior distributions

based on the 3 tuning parameters were generated using mock data and experimental data

for the Jung et al. standard case. A more rigorous analysis using the Jung et al. experi-

mental data for the 5 successfully validated test cases could be conducted to provide a more

substantial base of experimental data for the property profiles and posterior distributions.

Likelihood functions would be computed for each test case in the manner described for the

standard case earlier in the text and their multiplicative sum would be the posterior probabil-

ity. Because each test case has different physical inputs, this method would require running

the code 5 separate times for each hypothesis and for this reason, the computational time

required to conduct the analysis through direct simulation rendered the study intractable

given the author’s time constraints. It may be possible to approximate the results using

PCE but, as was mentioned earlier in Section 5, the author experienced some difficulty in

obtaining large amounts of data using GSB. While using a each test case would allow one

to obtain a more accurate posterior distribution, it would likely result in a similarly shaped

distribution as for the single case distribution because the governing equations, and therefore
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underlying behavior, is independent of the test case. Using additional test cases is essentially

the same as adding more data points to one case but yields the advantage of more robustly

defining the confidence intervals as to be sensitive to variation in the physical inputs.

To improve the predictive capabilities of the H2O2 model, it seems necessary to implement

a higher fidelity reaction mechanism. Currently, the model makes use of a single global

reaction with no account for local sub-reactions. Increasing the number of chemical reactions

and product species would be a simple way to more accurately represent the reaction taking

place far from the outlet and provide a better estimate regarding intermediate property

evolution. Using the same reaction advancement parameter architecture implemented in

the model at hand, increasing the number of governing ODEs should pose little difficulty.

Including additional reactions, while increasing model fidelity, increases the number of system

tuning parameters and assuming the reactions are driven by Arrhenius rates, they may

exhibit the same coupling behavior shown in the current study. Regardless of the reaction

fidelity, decoupling Ef2 and Ns would be advisable as it would allow for the establishment

of closed posterior probability distributions for the tuning parameters and thus formulation

of more well-defined confidence intervals. Further research must be conducted to determine

an appropriate constraint to decouple the two parameters.

In addition to supplementing the model’s reaction mechanism, improvements should also

be made to the pressure prediction capabilities of the model. One possible way to do so

would be to convert the model from a mixture model to a multifluid model that separately

treats the properties in the liquid and gas phases such as in Koopmans et al. [17]. Currently

it is assumed that the temperature, pressure, and species concentrations are uniform for

both phases, ignoring any variation and interaction between the two phases. Accounting

for interfacial friction between the phases and temperature variation, which would allow for

higher-fidelity calculation of the fluid properties, could yield significant benefits in terms of

improving model pressure prediction.

It would also be prudent to develop alternate region transition conditions as to avoid

the discontinuity between Regions I and II. By switching to a multifluid model, using the
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pressure-based definition of boiling may result in a less severe discontinuity at the transition

location. Other methods of reducing the severity of the discontinuity would be to implement

an adaptive ODE solver that could increase the grid resolution near region transitions. This

would also yield the benefit of reducing the fidelity in region of low variation like near the

catalyst bed outlet. Another method, which could also work in conjunction with an adaptive

method, would be to use a coarse step size and upon reaching region transition, restart to

slightly before the transition with a finer step size. This process could be repeated until

a desired grid resolution is reached and returning the step size to the original resolution

for the remainder of the simulation. While the aforementioned methods may ameliorate the

discontinuity in some faculty, some degree of discontinuity is inherent in the model structure.

Because the growing concentration of O2 is ignored in Region I and accounted for in Region

II, some property discontinuity will be present regardless of spatial resolution implemented

in the ODE solver.

Significant effort is required to improve the HAN-H2O model as it currently exhibits de-

ficiencies in predicting both spatial temperature evolution and mixture behavior. Currently,

temperature evolution through the bed is highly dependent on the initial mixture temper-

ature and tuning parameters for the model have yet to be calibrated using experimental

data. Conditions required for transitioning to Regions II and III are ill-suited for two main

reasons: the initial temperature is greater than the boiling temperature of H2O and the

three region mixture model may be unsuitable for HAN-H2O on the whole. The first point

is the primary cause for the model skipping Regions I and II in the first few nodes in the

domain. Secondly, using a three region mixture model may be inappropriate because, as

was mentioned earlier in Section 2.2.2, the actual evaporation and reaction mechanisms of

the mixture deviate from the mixture-based behavior. In the liquid phase, H2O begins to

vaporize prior to HAN [20] yet evaporation of individual species is neglected in the present

model. While it is possible that the three-region simplification is sufficient for the purposes

of reduced-order modeling, experimental data is required to ascertain the validity of such a

claim.
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Uncertain variables in this study were provided no rigorous classification into the two

primary types of uncertainty: aleatory and epistemic. Aleatory uncertainties are classified

as the irreducible uncertainties that are inherent in nature while epistemic uncertainties stem

from a lack of information and thus can be further reduced [28]. Classifying the uncertain

variables facilitates the usage of a hybrid methods that approach the implementation of

aleatory and epistemic variables separately. Such hybrid methods could prove more useful if

using the model at hand as a predictive tool as it would allow for quantification of confidence

intervals not only for variation in tuning parameters but also for variation in the physical

inputs and other model parameters. The Bayesian calibration performed in this study can be

considered a purely epistemic form of UQ whereas the variation in the physical inputs would

represent aleatory uncertainties. They too could be included in the Bayesian calibration but

would likely have minimal impact on the form of the results (logarithmic relation between

Ef2 and Ns) due to the persistent form of the model governing equations. Additionally, to

include the aleatory uncertainties would greatly increase the computational rigor required to

generate the confidence intervals and, if using GSB, may introduce the errors characteristic

of large data files as experienced by the author. For this reason, a hybrid method should be

restricted to conducting predictive studies ideally with few response functions.

To further refine the uncertainty quantification studies performed on the model, it is

important to not only classify the existing uncertainties but to seek values for untreated

uncertainties. The study at hand made no consideration of model uncertainty nor surrogate

error. Uncertainty from discretizing the domain can be assumed to be negligible as it was

verified that the model results were grid independent with the given step size. Some idea

of surrogate error can be gathered by comparing surrogate evaluations to high fidelity data

that the surrogate model was not trained on but primary interest should be devoted to

quantifying model error. Considering that the model at hand is a reduced-order model, it is

no surprise that the pressure predictions differed significantly from the experimental data.

For this reason, application of a model discrepancy function could greatly assist in pressure

predictions. The model discrepancy function compensates for insufficient model accuracy
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and acts to emulate behavior seen in experimental data [29]. It is possible to generate the

model discrepancy function as a Gaussian process emulator using GSB which would improve

the predictive capabilities of the model significantly.
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APPENDIX A

Fluid Properties

A.1 Molar Masses

H2O2 H2O O2

M (g/mol) 34.0147 18.0153 31.9988

Table A.1: Species Molar Masses [30]

A.2 Reference Enthalpies

H2O2, (l) H2O2, (g) H2O, (l) H2O, (g) O2

h◦ (J/mol) -187341.0 -135453.0 -285825.0 -241831.0 0.0

Table A.2: Species Reference Enthalpies [30]

The above values correspond to a reference temperature of T ◦ = 298.15 K.

A.3 Specific Heats

Specific heats for species in units of J/mol·K in the H2O2 model are computed using the

following temperature-dependent polynomial with coefficients found in Table A.3:

cp = A+Bt+ Ct2 +Dt3 + Et−2 where t = T/1000
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Coefficient H2O2, (g) H2O, (l) H2O, (g) O2 (T ≤ 700 K) O2 (T > 700 K)

A 34.25667 -203.606 30.09200 31.32234 30.03235

B 55.18445 1523.29 6.832514 -20.23531 8.772972

C -35.15443 -3196.413 6.7934535 57.86644 -3.988133

D 9.087440 2474.455 -2.534480 -36.50624 0.788313

E -0.422157 3.855326 0.082139 -0.007374 -0.741599

Table A.3: Coefficients for Specific Heat Polynomials [17]

The specific heat for H2O2, (l) is a constant 89.377 J/mol·K.

A.4 Saturation Pressures

Saturation pressures in units of mmHg are computed using the following temperature-

dependent relation with coefficients found in Table A.4:

log10psat = A+
B

T
+ Clog10T +DT + ET 2 + FT 3 +GT 4

Coefficient H2O2 (T < 363.15 K) H2O2 (T ≥ 363.15 K) H2O

A 24.8436 38.8572 19.389127

B -3511.54 -3627.72 -2861.9133

C -4.61453 -11.2133 -3.2418662

D -3.60245E-3 4.74132E-3 -1.0799994E-4

E -7.73423E-6 0 -7.9189289E-6

F 1.78355E-8 0 1.5411774E-8

G -2.27008E-13 0 -8.1926991E-12

Table A.4: Coefficients for Saturation Pressure Relation [31]
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A.5 Species Densities

Density for liquid H2O2 in kg/m3 can be calculated using the following equation [32]:

ρH2O2,(l) = 1597 + 0.0784− 0.00197T 2

The above equation is valid for 273 < T < 425 K but will be assumed to hold outside this

range.

Density for liquid H2O in kg/m3 can be calculated using the following equations [17]:

ρH2O,(l) =
1000

1 + 18.159725 · 10−3 · TC
(
0.9998396 + 18.224944 · 10−3 · TC − 7.92221 · 10−6 · T 2

C

−55.44846 · 10−9 · T 3
C + 149.7562 · 10−12 · T 4

C − 393.2952 · 10−15 · T 5
C

)
where TC is the temeperature in degrees Celsius.

A.6 Dynamic Viscosities

Dynamic viscosity in Pa·s for liquid and low-temperature gaseous H2O is determined using

the following equation:

µ = A+BT + CT 2 +DT 3 + ET 4 + FT 5

where the coefficients are determined by using a polynomial fit to data from NIST [33]. The

coefficients can be found in Table A.5.

Coefficient H2O, (g) (T < 373.2 K) H2O, (l)

A -4.16400E-4 8.75554E-2

B 5.17967E-6 -9.02487E-4

C -2.50157E-8 3.71610E-6

D 5.97869E-11 -7.60852E-9

E -7.03094E-14 7.73276E-12

F 3.25843E-17 -3.11856E-15

Table A.5: Coefficients for Dynamic Viscosities of Liquid and T < 373.2 K Gaseous H2O

106



Dynamic viscosity in Pa·s for high-temperature gaseous H2O and O2 is determined using

the following equation with coefficients shown in Tables A.6 and A.7 respectively [34]:

µ = 107exp

(
AlnT +

B

T
+
C

T 2
+D

)

Coefficient H2O, (g) (373.2 ≤ T ≤ 1073.2 K) H2O, (g)(T > 1073.2 K)

A 5.0019557E-1 5.8988538E-1

B -6.9712796E2 -5.3769814E2

C 8.8163892E4 5.4263513E4

D 3.0836508E0 2.3386375E0

Table A.6: Coefficients for Dynamic Viscosities of T ≥ 373.2 K Gaseous H2O

Coefficient O2, (g)(T < 1000 K) O2, (g)(T ≥ 1000 K)

A 6.0916180E-1 7.2216486E-1

B -5.2244847E1 1.7550839E2

C -5.9974009E2 -5.7974816E4

D 2.0410801E0 1.0901044E0

Table A.7: Coefficients for Dynamic Viscosities of O2

For both phases of H2O2, it was assumed that the viscosity was equal to 0.975 of that

corresponding to the same phase in H2O. This is based on a comparison of viscosity values for

H2O, (g) and H2O2, (g) for 373 < T < 573 K based on data from NIST [33] and Satterfield

et al. [35] respectively. In this temperature range, the viscosity of gaseous H2O2 was on

average 0.975 that of gaseous H2O. This trend was then assumed to be sufficient outside the

temperature range and for liquid H2O2.
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APPENDIX B

Additional Figures

B.1 Histograms

Figure B.1: Distribution of Tend for σ = 0.01µ in H2O2 and H2O Reference Enthalpies
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B.2 Property Profiles

Figure B.2: Axial Temperature Profile with Confidence Intervals for Mock Data using 5th

Order Sparse Grid PCE with 8315 Samples
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B.3 Miscellaneous

Figure B.3: Percent Error in Temperature and Pressure Profiles versus Grid Resolution

Several low fidelity grids were used to generate PCEs in Tend with inputs ṁ and Y . The

results were compared to those from a high fidelity PCE to evaluate how each method

performed. The high fidelity PCE was generated using a 6th order sparse grid trained using

257 direct simulations. High fidelity data in the following plots is shown by the contours with

low fidelity direct simulation locations shown by the black points. Error for each method is

computed using the L1 relative error between the high fidelity and low fidelity PCE results.

Each low fidelity PCE is generated using 100 direct simulations.
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Figure B.4: 10th Order Quadrature Grid Direct Samples on High Fidelity Tend PCE

Contours (Error = 14.0%)

Figure B.5: Randomly Sampled Grid Direct Samples on High Fidelity Tend PCE Contours

(Error = 69.6%)
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Figure B.6: Gradient-based Adaptive Grid Direct Samples on High Fidelity Tend PCE

Contours (Error = 3E9%)

Figure B.7: Variance-based Adaptive Grid Direct Samples on High Fidelity Tend PCE

Contours (Error = 1.26%)
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