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Beyond diffuse correlations: deciphering
random flow in time-of-flight resolved light
dynamics
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1Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, USA
2Department of Ophthalmology and Vision Science, University of California Davis, Davis School of
Medicine, Sacramento, CA 96817, USA
*vjsriniv@ucdavis.edu

Abstract: Diffusing wave spectroscopy (DWS) and diffuse correlation spectroscopy (DCS)
can assess blood flow index (BFI) of biological tissue with multiply scattered light. Though
the main biological function of red blood cells (RBCs) is advection, in DWS/DCS, RBCs are
assumed to undergo Brownian motion. To explain this discrepancy, we critically examine the
cumulant approximation, a major assumption in DWS/DCS. We present a precise criterion for
validity of the cumulant approximation, and in realistic tissue models, identify conditions that
invalidate it. We show that, in physiologically relevant scenarios, the first cumulant term for
random flow and second cumulant term for Brownian motion alone can cancel each other. In such
circumstances, assuming pure Brownian motion of RBCs and the first cumulant approximation, a
routine practice in DWS/DCS of BFI, can yield good agreement with data, but only because errors
due to two incorrect assumptions cancel out. We conclude that correctly assessing random flow
from scattered light dynamics requires going beyond the cumulant approximation and propose a
more accurate model to do so.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Diffusing Wave Spectroscopy (DWS) was formulated in the late 1980s to probe dynamics of
scatterers in soft matter based on intensity fluctuations of multiply scattered light. DWSmodels the
field autocorrelation as an integral over photon paths, assuming uncorrelated motion at different
scattering events [1–3], in the light diffusion approximation. In biological tissues, DWS and its
differential formulation of diffuse correlation spectroscopy (DCS) can measure red blood cell
(RBC) dynamics, which correlate empirically with blood flow [4–6]. The assumptions underlying
DWS theory are powerful and widely used, even in distant fields such as laser speckle flowmetry
[7,8]. However, given recent experimental advances in measuring time-of-flight- (TOF-) resolved
light dynamics [9–11] in detail for the first time, some assumptions in DWS/DCS of blood flow
merit further scrutiny. Here we focus on two important and inter-related assumptions; 1) the
nature of RBC motion, and 2) the first cumulant approximation of the average over dynamic
scattering angles.
Particle motion can be ordered, as in advective, randomly oriented, flow, or disordered, as in

Brownian motion, or a combination of both [7]. DWS/DCS measurements of particle motion in
biological tissues such as the rat brain [12,13], piglet brain [14], human brain [6,15–18], breast
[19,20], head and neck [21], and skeletal muscle [22] have shown that experimental data is best
fitted by ignoring advection of RBCs, and only considering Brownian motion. Thus, the blood
flow index (BFI) in DWS/DCS has units of a Brownian diffusion coefficient.
The starting point of dynamic light scattering theories [23,24] is the normalized field

autocorrelation of mth order paths: 〈exp
[
i
∑m

j=1 qj · ∆rj

]
〉, where 〈 〉 denotes an average over

particle displacement vectors ∆rj and dynamic momentum transfer vectors qj, which are assumed
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to be independent, and i =
√
−1. In the multiple scattering regime, assuming uncorrelated

dynamic scattering events while neglecting both random flow and higher order terms in the
cumulant expansion [23], DWS expresses the normalized TOF-resolved field autocorrelation
function, g1, as:

gDWS
1 (τs, τd) = exp

[
−m(τs)

〈
q2(θ)

〉
θ
DBτd

]
(1)

In Eq. (1), m̄ is the average number of dynamic scattering events at time-of-flight (TOF), τs,
〈q2(θ)〉θ is the angle-averaged momentum transfer for dynamic scattering, DB is the Brownian
diffusion coefficient of dynamic particles, and τd is autocorrelation time lag.

It is notable that most studies of blood flow in biological tissues utilize Eq. (1), although this
expression was first derived for uniform colloidal suspensions, foams, and gels with unordered
(Brownian) motion. A major biological function of RBCs is the transport of gases in the
circulation; thus while hydrodynamic diffusion of RBCs is well-documented [25,26], RBCs
should also possess characteristics of ballistic motion [24]. Therefore, it seems incongruous
that blood flow, in this conventional sense, is typically assumed not be observable through light
scattering techniques.
In this work, we present a plausible explanation to help resolve these discrepancies. We

simulate field autocorrelations with a custom extended Monte Carlo method that explicitly allows
for a mixture of static and dynamic particles with different scattering phase functions. We attempt
to accurately model both the high scattering anisotropy and low volume fraction of RBCs in tissue.
We assess the results to critically examine the first cumulant approximation, or first cumulant
expansion, which is common in DWS. We show that under certain circumstances, errors due to
the cumulant approximation, on one hand, and neglecting random flow, on the other, can cancel,
enabling the conventional theory in Eq. (1) to describe autocorrelations well, even while ignoring
advection. We then propose a more accurate approach that avoids these assumptions and might
enable direct quantification of RBC advection in dynamic light scattering measurements.

2. Field autocorrelation models

In this section, we develop candidate models for TOF-resolved field autocorrelations, highlighting
key assumptions in each.

2.1. Nature of scatterer motion

In DWS/DCS, the mean-squared displacement at time lag τd, 〈∆r2(τd)〉, of RBCs is modeled as
either random flow, given by 〈∆r2(τd)〉 = v2τd

2, where v2 is the second moment of the Gaussian
velocity distribution, or as Brownian motion, given by 〈∆r2(τd)〉 = 6DBτd, where DB is the
Brownian diffusion coefficient. In this work, we allow for RBCs to exhibit a “hybrid” of both
random flow and Brownian motion, given by 〈∆r2(τd)〉 = 6DBτd + v2τd

2, where the two types of
motion are assumed to be independent.

2.2. Adapting Bonner and Nossal’s theory

To assess the validity of the cumulant approximation (or first cumulant expansion), we start
from Bonner and Nossal’s theory [24], which implicitly includes all cumulant terms by directly
integrating over the dynamic scattering phase function. This theory envisions tissue as a mixture
of static (tissue matrix) and dynamic scatterers (i.e. RBCs and other scattering blood components).
We extend this theory as follows: 1) the lower limit of number of dynamic scattering events, m,
is set to zero to include purely static scattering paths, 2) the Henyey-Greenstein (and later, the
more general Gegenbauer kernel) scattering phase function for dynamic scattering is assumed
in deriving the normalized autocorrelation for a single dynamic scattering event (g1

ss), 3) the
average number of dynamic scattering events, m̄(τs), is assumed to be m̄(τs)= pdynµsτsc/n, where
pdyn is the probability of dynamic scattering, µs is the static scattering coefficient, c is speed
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of light in vacuum, and n is the index of refraction of medium, and 4) as described above, we
explicitly allow for RBC Brownian motion, in addition to random flow considered Bonner and
Nossal’s original theory.
It is appropriate to remark on pdyn, the probability that a scattering event is dynamic. Note

that pdyn is given by pdyn =VBµs,blood/µs, where VB is blood volume fraction and µs,blood is
blood scattering coefficient, and does not depend on anisotropy factor. Given µs = 100 cm−1,
at a hematocrit of 33%, µs,blood/µs ≈ 7.8 at 850 nm [27], and pdyn = 10% corresponds to
VB = 1.3%. On the other hand, the DCS probability of dynamic scattering, α [14,17], is given by
α=VBµs’,blood/(VBµs’,blood+µs’)= pdyn (1-gdyn)/ [pdyn(1-gdyn)+(1-gstat)], where gdyn and gstat are
anisotropy factors of dynamic and static scatterers, respectively. If pdyn(1-gdyn) << (1-gstat), α
� pdyn(1-gdyn)/ (1-gstat). For example, α � 2% when pdyn = 10%, gdyn = 0.98 (typical for RBCs
[27]) and gstat= 0.9.

Bonner and Nossal [24] assumed that multiple static scattering in tissue is sufficient to achieve
random illumination of dynamic particles and uncorrelated dynamic scattering events. This
enabled them to construct the field autocorrelation in the multiple dynamic scattering regime
from the single dynamic scattering field autocorrelation, g1

ss. Our extension of their expression
is:

gBN
1 (τs, τd) =

∞∑
m=0

Pm(τs)[gss
1 (τd)]

m. (2)

In Eq. (2), Pm is the probability that a photon will experience m scattering events with dynamic
particles before leaving the medium, g1

ss is the autocorrelation for a single scattering event from
a moving particle with random illumination, as a function of time lag, τd:

gss
1 (τd) =

〈
exp

[
−

q2(θ)
6

〈
4r2(τd)

〉]〉
θ

=

π∫
0

pHG(θ) exp
[
−

q2(θ)
6

〈
4r2(τd)

〉]
sin(θ)dθ

π∫
0

pHG(θ) sin(θ)dθ
.

(3)

In Eq. (3), the angle brackets 〈 〉θ denote an angular weighted average over dynamic scattering
angle θ, and pHG(θ) is the Henyey-Greenstein scattering phase function for dynamic scatterers
with an anisotropy of gdyn [28–31]:

pHG(θ) = (1 − g2dyn)
/
[4π(1 + g2dyn − 2gdyn cos θ)3/2], (4)

and
π∫

0

pHG(θ) sin(θ)dθ = 1/2π (5)

Figure 1(a) compares the Henyey-Greenstein (HG) phase function for gdyn = 0.6 (typical for
Intralipid [32]) to gdyn = 0.98 (typical for RBCs [27]), with polar plots in the inset. Forward
scattering dominates for gdyn = 0.98. Assuming that the number of dynamic scattering events Pm
has a Poisson distribution [24], as detailed in Appendix A, Eq. (2) becomes:

gBN
1 (τs, τd) = exp[m(τs){gss

1 (τd) − 1}]. (6)
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Fig. 1. The cumulant approximation error [Eq. (10)] increases with anisotropy of dynamic
scattering, gdyn. (a) Exemplary Henyey-Greenstein phase functions with normalized polar
plots in inset. (b) Cumulant approximation error (R) versus gdyn, for different m̄ values,
pdyn = 10%, and µs = 100 cm−1.

2.3. Critical examination of the cumulant approximation

The cumulant approximation conveniently brings the angular average of Eq. (3) into the exponent,
providing a very simple and intuitive expression for the autocorrelation function. In this section,
we revisit the cumulant expansion, paying special attention to errors incurred by the high
scattering anisotropy of RBCs. Commonly, in the derivation of DWS [23], the normalized field
autocorrelation is succinctly expressed as:

g1(τs, τd) =
〈
exp

[
(−1/6)q2(θ)

〈
4r2(τd)

〉]〉m(τs)

θ
= [gss

1 (τd)]
m(τs) (7)

In contrast to the Bonner and Nossal summation [Eq. (2)], which posits an integer distribution of
dynamic scattering events, Eq. (7) assumes that the number of dynamic scattering events is equal
to the (possibly non-integral) average value. Note that while both Eqs. (6) and (7) yield the same
first cumulant term, higher order cumulant terms are different. Here, we examine the cumulant
expansion of the extended Bonner and Nossal expression in Eq. (6), which incorporates fewer
assumptions. In this case, Taylor expansion can be applied to the natural logarithm of Eq. (6), as
detailed in Appendix B, to yield the first and second cumulant terms:

gBN
1 (τs, τd) = exp

{
−m(τs)

[
〈q2(θ)〉θ

6
〈
4r2(τd)

〉
− 1

2!
〈q4(θ)〉θ

62
〈
4r2(τd)

〉2
− O

(〈
4r2(τd)

〉3)]}
(8)

Note that third and higher cumulant terms are contained in O(〈∆r2(τd)〉3), and the subscript θ in
angular average has been dropped for readability. We examine the second cumulant to determine
the error in the first cumulant approximation. Then, Eq. (8) can be simplified as:

gBN
1 (τs, τd) = exp

[
− 1

6m(τs)
〈
q2(θ)

〉 〈
4r2(τd)

〉 (
1 − 1

6m(τs)R
〈
q2(θ)

〉 〈
4r2(τd)

〉)]
× exp

[
m(τs) O

(〈
4r2(τd)

〉3)] , (9)
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where R is the magnitude ratio of the second cumulant to first cumulant-squared, given by:

R =
〈
q4(θ)

〉/ [
2m

〈
q2(θ)

〉2] , (10)

where 〈
q2(θ)

〉
=

〈
22k2sin2(θ/2)

〉
= 2k2(1 − gdyn) (11)

and 〈
q4(θ)

〉
=

〈
24k4sin4(θ/2)

〉
. (12)

As shown in Fig. 1(b), R slowly increases with gdyn when gdyn < 0.9, and rapidly increases with
gdyn when gdyn > 0.9. For example, when m̄= 214.3 (τs = 1000 ps and µs = 100 cm−1), R increases
3.2 times from gdyn = 0.6 to gdyn = 0.9 and increases 4.8 times from gdyn = 0.9 to gdyn = 0.98,
or overall 15.4 times from gdyn = 0.6 to gdyn = 0.98. Furthermore, the second cumulant term
vanishes as R approaches zero [Eq. (9)], after many dynamic scattering events. This happens
more rapidly for smaller gdyn (Fig. 1(b)). Thus, the error in the first cumulant approximation
merits particular attention for large gdyn.
Ultimately, the functional form, or “shape” of the autocorrelation decay with respect to time

lag, τd, depends on which polynomial orders of τd contribute in the exponent. With hybrid
motion, different cumulant orders can contribute to the same polynomial order of τd. Thus,
another way to simplify Eq. (8) is to group terms according to the order of τd:

gBN
1 (τs, τd) = exp

[
− 1

6m(τs)
〈
q2(θ)

〉
6DBτd

]
× exp

[
−m(τs)τ

2
d

(
〈q2(θ)〉

6 v2 − 〈q
4(θ)〉
72 (6DB)

2
)
+ O(τ3d )

] (13)

The term O(τd
3) in Eq. (13) includes contributions from higher order τd terms. Although written

in different ways, Eqs. (9) and (13) both represent expressions for the cumulant expansion.
Importantly, Eq. (13) clearly shows that both Brownian motion and random flow contribute to
the τd

2 term, representing the lowest order deviation from the pure exponential decay of DWS.

2.3.1. Special case 1: Brownian motion dominates random flow (A1)

As Brownian motion is unordered on time scales larger than the collision time, the mean squared
displacement increases as τd, whereas for ordered motion, the mean squared displacement
increases as τd

2. When τd << 6DB/v2, Brownian diffusion dominates random flow (A1), i.e.
〈∆r2(τd)〉 ≈ 6DBτd. This approximation is implicit in Eq. (1). Many studies have empirically
found that the Brownian motion model leads to a better fit to experimental data than the random
flow model [12–22], but did not explicitly verify that τd << 6DB/v2. For example, for v= 1.25
mm/s and DB = 6× 10−11 m2.s−1, this condition corresponds to τd << 220 µs. Thus, given A1,
we modify Bonner and Nossal’s theory, which implicitly includes all cumulants [Eq. (6)], to
describe Brownian diffusion.

2.3.2. Special case 2: first cumulant dominates second cumulant (A2)

If the first cumulant term dominates the second cumulant term, Eqs. (9) and (13) reduce to
Eq. (14). This occurs when the mean-squared displacement of the moving particles satisfies
〈∆r2(τd)〉 << 6 / [m̄ R〈q2(θ)〉]. For example, with gdyn = 0.98 (i.e. RBCs), v= 1.25 mm/s and
DB = 6× 10−11 m2.s−1, the condition is satisfied when τd << 141 µs. Thus, given A2, we modify
conventional DWS theory, which neglects higher order cumulants, to describe hybrid motion.

gBN
1 (τs, τd) = exp

[
−
1
6

m(τs)
〈
q2(θ)

〉
(v2τ2d + 6DBτd)

]
(14)

Note that the lag time range for neglecting higher order cumulants (τd << 141 µs) coincides
with the lag time range for neglecting random flow (τd << 220 µs), thus this special case has
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little practical significance, given our assumed parameters. Nevertheless, it is included for
completeness to isolate each individual assumption.

2.3.3. Special case 3: first order τd term dominates (A1&2)

While special case 1 compares magnitudes of ordered and unordered motion, in special case 3,
we examine τd terms which determine the ultimate shape of the autocorrelation. From Eq. (13),
the general condition for the first order τd term to dominate the τd

2 term is given by:

τd<<DB

/ ����v26 − m(τs)R
〈
q2(θ)

〉
D2

B

���� (15)

Note that Eq. (15) can be more or less stringent than the condition in special case 1, depending
on the relative magnitudes of ordered and unordered motion in the denominator. When Eq. (15)
holds, Eq. (13) can be simplified, up to O(τd

3), to

gBN
1 (τs, τd) ≈ exp

[
−m(τs)

〈
q2(θ)

〉
DBτd

]
= gDWS

1 (τs, τd) (16)

Importantly, Eq. (16) is equivalent to conventional DWS [Eq. (1)], which is derived by neglecting
both higher order cumulant terms and random flow (A1&2). Table 1 summarizes all three special
cases.

Table 1. Summary of special cases in the second cumulant approximation

Case number Description Condition Expression

1 Brownian motion
dominates random
flow (A1)

τd � 6DB/v2 gBN
1 (τs,τd) = exp[m(τs){gss

1 (τd) − 1}],

where
gss
1 (τd) =

〈
exp[−DBτd q2(θ)]

〉
θ

2 first cumulant term
dominates second
cumulant term (A2)

〈
4r2(τd)

〉
� 6

m(τs)R〈q2(θ )〉
gBN
1 (τs,τd) = exp


− 1

6m(τs)
〈
q2(θ)

〉
×(v2τ2d + 6DBτd)


3 first order τd term

dominates second
order τd term (A1&2)

τd �
DB��� v2

6 −m(τs)R〈q2(θ )〉D2
B

��� gBN
1 (τs,τd) = exp

[
−m(τs)

〈
q2(θ)

〉
DBτd

]
= gDWS

1 (τs,τd)

2.3.4. First cumulant for random flow cancels second cumulant for Brownian diffusion

From Eq. (13), the coefficient of τd
2 includes contributions from the first cumulant term for

random flow and second cumulant term for Brownian motion. The velocity distribution may be
selected such that these two contributions cancel, minimizing deviations from an exponential
decay at small τd. The distribution standard deviation, v*, is then given by:

v ∗ =DB

√
3
〈
q4(θ)

〉/ 〈
q2(θ)

〉
= DB

√
6m(τs)R

〈
q2(θ)

〉
(17)

Note that this value of v* ensures that Eq. (16) is valid across lags. For an HG phase function
with gdyn= 0.98 and DB = 6× 10−11 m2.s−1 [26,33,34], v* has a value of 1.25 mm/s. This is
a reasonable value of RBC speed [35,36]. Thus, while our velocity distribution is chosen to
eliminate the second cumulant, it remains well within physiological norms.

2.4. Monte Carlo simulations

Because experimental systems with Brownian motion and random flow are challenging to contrive,
in this study, Monte Carlo is taken as the gold standard. A previous Monte Carlo algorithm
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simulating the time resolved reflectance of a semi-infinite medium [37] was modified to calculate
the normalized field autocorrelation. In the modified version, both dynamic scattering (moving
particles, with a customized anisotropy gdyn) and static scattering (background tissue scattering,
with a fixed anisotropy, gstat = 0.9) are explicitly simulated, with a probability of dynamic
scattering pdyn. Only dynamic scattering events contribute to the recorded total accumulated
momentum transfer Ydyn = Σj(1-cosθj) [34,37,38], where θj is the dynamic scattering angle at
dynamic scattering site j (Fig. 2). By explicitly distinguishing dynamic and static scattering
events, this approach obviates assumptions, including the cumulant approximation and similarity
relation that are often invoked in standard Monte Carlo approaches [39]. Even though their
momentum transfer is not stored, static scattering events are important in determining the Ydyn
distribution. Unless otherwise stated, the Henyey-Greenstein phase function [Eq. (4)] is assumed
for dynamic scattering.

Fig. 2. Tissue model and Monte Carlo simulation: (a) Scattering from the static tissue
matrix (blue) changes light paths without imparting dynamic phase shifts, while scattering
from dynamic particles, such as RBCs (red), causes dynamic phase shifts. (b) Our Monte
Carlo records accumulated momentum transfer, just from dynamic scattering events, versus
TOF. A weight histogram with pdyn = 10% and gdyn = 0.98 is shown.

Monte Carlo simulations stochastically estimate the probability density P(Ydyn,τs). When a
photon reaches the detector, Ydyn associated with that photon is scored in a P(Ydyn,τs) histogram.
Then, the overall normalized field correlation is determined as the weighted average of field
correlations across all dimensionless momentum transfers experienced by detected photon paths
[3,37,40]:

gMC
1 (τs, τd) =

∞∫
0

P(Ydyn,τs) exp
(
− 1

3Ydyn(τs)k2
〈
4r2(τd)

〉)
dYdyn

∞∫
0

P(Ydyn,τs)dYdyn

(18)

Equation (18) assumes uncorrelated motion at different scattering events, as the dynamic
momentum transfer is summed in the exponent, which is equivalent tomultiplying autocorrelations
for individual dynamic scattering events. Note that the displacements at all scattering events are
assumed to be Gaussian, independent, and identically distributed with variance 〈∆r2(τd)〉. Table
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2 summarizes the simulation parameters, selected from previous studies of human brain [41–44]
at a wavelength of 850 nm. To study the dependency of DWS/DCS validity on anisotropy of
dynamic scatterers (gdyn), a range of gdyn values (between 0.6 and 0.98) and corresponding speeds
(v*), selected to eliminate the τd

2 term in Eq. (17), were simulated. The range of values for
gdyn encompasses particles of interest such as Intralipid (gdyn ≈ 0.6) [32,45,46], 1 µm diameter
polystyrene microspheres (gdyn ≈ 0.9) [47–51], and red blood cells (gdyn ≈ 0.98) [27,52,53].
Unless mentioned, other parameters are kept constant as shown in Table 2.

Table 2. Monte Carlo simulation parameters

Constants Description Value

DB (m2.s−1) Brownian diffusion coefficient 6× 10−11

pdyn probability of dynamic scattering 10%

λ (nm) wavelength in vacuum 850

n refractive index of medium 1.4

k (m−1) wave number in medium 1.035× 107

v* (mm.s−1) selected root-mean-squared speed 1.47 1.36 1.30 1.28 1.25

gdyn anisotropy factor of dynamic scatterers 0.60 0.80 0.90 0.94 0.98

µs (cm−1) scattering coefficient of medium 100

µa (cm−1) absorption coefficient of medium 0.01

gstat anisotropy factor of static medium 0.9

2δτs (ps) time-of-flight (TOF) bin width 5

Ydyn bin total dimensionless momentum transfer bin 0.01

N number of photons launched 300,000,000

The propagation of a photon in the medium continues until the photon escapes from the
medium, or until TOF exceeds a pre-defined 1 ns threshold. Photons that escape the medium
within 5 cm from the source are collected. Absorption in the medium is included by multiplying
the photon weight by the albedo at every scattering event [37,54]. The TOF bin width for the
simulation is 5 ps, and the autocorrelation is assigned to the center point of each time bin. The
normalized TOF-resolved field autocorrelation should not depend on absorption for our narrow
TOF bins. Each simulation launched 300 million photons and took an average of 35 hours to run
on an Intel i9 Model 9900K 3.6-GHz processor.

3. Results

3.1. First cumulant approximation (A2)

First the consequence of ignoring higher order cumulants on the field autocorrelation is examined
by comparing g1 derived from Monte Carlo simulations (MC hybrid) to those derived from
the first cumulant approximation (A2) [Eq. (14)], with hybrid motion, at two different TOF
values, τs = 47.5 ps (Fig. 3(a)) and 197.5 ps (Fig. 3(b)), and various gdyn values. These TOF
values correspond to photon path lengths of 1.01 cm and 4.23 cm in the medium, respectively.
In general, both methods agree well at small τd whereas the long time lag tail of A2 is lower
than that of MC hybrid, with more disagreement at early TOF (Fig. 3(a)) and higher gdyn (Fig.
3(b)-(c)). While inaccuracy of the cumulant approximation at early TOF (few dynamic scattering
events) is well-known [23], its dependency on anisotropy of dynamic scatterers has not been
rigorously investigated. Surprisingly, discrepancies in the tails of the autocorrelation extend
beyond τs ∼ 500 ps for gdyn = 0.98 (Fig. 3(c)). A zoomed-in linear scale of Fig. 3(c) shows that,
for high gdyn, neglecting higher order cumulants significantly underestimates the tails even at
large TOFs (Fig. 3(d)).
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Fig. 3. The cumulant approximation (A2) attenuates long autocorrelation tails. The
normalized field autocorrelation function, g1, using the first cumulant approximation for
hybrid motion (A2) and Monte Carlo with hybrid motion (MC hybrid) for five gdyn values
at τs= 47.5 ps (a) and τs = 197.5 ps (b), and for gdyn = 0.98 at τs= 497.5 ps (c-d). A linear
time lag scale is shown in (d) with an equivalent dashed box in (c).

The role of gdyn in lowest order error term in the cumulant approximation is described by R,
the ratio of the second cumulant term to the square of the first cumulant term [Eq. (10) and Fig.
1(b)]. Larger R values at early TOF and larger gdyn (Fig. 1(b)) predict larger errors in the first
cumulant approximation.

3.2. Neglecting random flow (A1)

Next the consequence of ignoring random flow on the field autocorrelation is examined by
comparing Bonner and Nossal’s theory for Brownian motion alone (A1) to MC hybrid (Fig. 4).
As described earlier, A1 accounts for all cumulant terms, but ignores random flow. A1 agrees well
with MC hybrid at small τd, but decorrelates slower than MC hybrid at large τd. In other words,
ignoring random flow increases the autocorrelation tails. This phenomenon is more obvious at
shorter τs (Fig. 4(a)) and at higher gdyn (Fig. 4(b)-(d)) because for fixed particle dynamics, the
autocorrelation decays slower for high gdyn (e.g. gdyn = 0.98) than for low gdyn (e.g. gdyn = 0.6).

3.3. Conventional DWS (A1&2)

As mentioned earlier, conventional DWS ignores both random flow and higher cumulant terms
(A1&2). Even though A1 and A2 are individually incorrect, Eq. (16) is still approximately
satisfied as the velocity distribution width was chosen [Eq. (17)] so that it is valid up to O(τd

3).
Thus A1&2 surprisingly agrees well with the gold standard MC hybrid, especially when gdyn <
0.8 (Fig. 5(a)), or when gdyn = 0.98 and τs > 200 ps (Fig. 5(c)-(d)). The fact that A1&2 performs
better than A1 and A2 is surprising because A1 and A2 include only one incorrect assumption
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Fig. 4. Random flow attenuates long autocorrelation tails: g1 using Bonner and Nossal’s
theory for Brownian diffusion (A1), and Monte Carlo with hybrid motion (MC hybrid) for
five selected gdyn values (a-b) at τs= 47.5 ps (a) and τs = 197.5 ps (b), and for gdyn = 0.98 at
τs= 497.5 ps and 997.5 ps (c-d). A linear time lag scale is shown in (d) with an equivalent
dashed box in (c).

Fig. 5. Errors due to two incorrect assumptions can cancel: g1 using DWS theory with the
first cumulant approximation for Brownian diffusion (A1&2), and Monte Carlo with hybrid
motion (MC hybrid) for five selected gdyn values (a-b) at τs= 47.5 ps (a) and τs = 197.5 ps
(b), and for gdyn= 0.98 at τs= 497.5 ps and 997.5 ps (c-d). A linear time lag scale is shown
in (d) with an equivalent dashed box in (c).
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each, whereas A1&2 includes two incorrect assumptions. This result can be explained by the fact
that the autocorrelation tails can be reduced either by neglecting higher order cumulant terms
(observed in A2 in Fig. 3) or by including random flow (suggested in A1 in Fig. 4). Thus, for
A1&2, ignoring flow increases the tail whereas ignoring higher order cumulants reduces the tail.
Therefore, in this case, two incorrect assumptions (Fig. 5) provide better predictions than just
one (Fig. 3 and Fig. 4). Residual minor errors in Fig. 5 are due to O(τd

3) terms in Eq. (13).
To illustrate the role of the first cumulant approximation in DWS theory for pure Brownian

motion or diffusion, in Fig. 6, Bonner and Nossal’s theory (A1) and Monte Carlo simulations
(MC diff.) are compared to DWS theory (A1&2) In this case, all cumulant terms are accounted
for in MC diff. and A1, while only the first order cumulant term is accounted for in A1&2. As
expected, A1 and MC diff. agree well while the tail of A1&2 is much lower, even at τs = 997.5
ps (Fig. 6(c)-(d)). This further confirms that neglecting higher order cumulants reduces the
autocorrelation tails.

Fig. 6. For pure Brownian motion, the cumulant approximation attenuates long autocorrela-
tion tails: g1 using DWS theory with first cumulant approximation for Brownian diffusion
(A1&2), Bonner and Nossal’s theory for Brownian diffusion (A1), and Monte Carlo for
Brownian diffusion (MC diff.) for five selected gdyn values (a-b) at τs= 47.5 ps (a) and
τs = 197.5 ps (b), and for gdyn= 0.98 at τs= 497.5 ps and 997.5 ps (c). A linear time lag
scale is used in (d) with an equivalent dashed box in (c).

3.4. Full cumulant expansion (Bonner and Nossal) with hybrid motion

To avoid assumptions in DWS/DCS theory, Bonner and Nossal’s approach of directly integrating
over the scattering phase function can be used. Thus, a B&N hybrid model accounts for all
cumulant terms, and for both Brownian diffusion and random flow of dynamic scatterers. As
shown in Fig. 7, B&N hybrid is an improvement over A1&2, agreeing well with MC hybrid
regardless of anisotropy of dynamic scatterers (Fig. 7(a)-b), and the agreement is observed at
short (Fig. 7(a)) and long τs (Fig. 7(c)-(d)). Thus, eliminating incorrect assumptions altogether
achieves excellent agreement with the gold standard.
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Fig. 7. Elimination of assumptions yields excellent agreement with MC: g1 using DWS
theory with first cumulant approximation for Brownian diffusion (A1&2), as well as Bonner
and Nossal’s theory and Monte Carlo for hybrid motion (B&N hybrid and MC hybrid) for
five selected gdyn values (a-b) at τs = 47.5 ps (a) and τs = 197.5 ps (b), and for gdyn= 0.98 at
τs= 497.5 ps and 997.5 ps (c-d). A linear time lag scale is used in (d) with an equivalent
dashed box in (c).

4. Discussion

Using a customized Monte Carlo of light scattering in realistic tissue models as a gold standard,
we highlight that errors due to two common, incorrect assumptions, one regarding the nature of
RBC motion and the other regarding the form of the field autocorrelation, can cancel, yielding
much better predictions of TOF-resolved field autocorrelations than just one incorrect assumption.
This suggest that goodness-of-fit alone is a flawed measure by which to assess assumptions
underlying a theory. By carefully examining each assumption, we arrive at a more accurate
approach to assess random flow and further improve goodness-of-fit.

4.1. Accuracy of the cumulant approximation

The cumulant approximation, or first cumulant expansion, is widely used in light scattering
theory, because it yields simple analytic expressions [1,7,8,23,55]. Here we argue that errors in
the cumulant approximation require special attention, particularly at late time lags for highly
anisotropic dynamic particles such as RBCs and, as discussed further below, in tissues with
low probabilities of dynamic scattering. As such, we encourage the view that the cumulant
approximation, which is central in the diffusion approximation for correlation transport, be
viewed and evaluated essentially independently of the diffusion approximation for radiative
transport. While the cumulant approximation can be improved by restricting fitting to early time
lags (τd), our results show significant disagreements at late time lags when τs ≈ 200 ps (Fig.
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3(b) and Fig. 6(b)). Importantly, as described in the next section, assessing RBC random flow
requires analyzing longer time lags where the accuracy of the cumulant approximation becomes
questionable.

4.2. Revealing random flow

The appropriate description of RBC motion (ordered vs. unordered) has been the topic of
continued debate in the field of laser speckle [8,55]. Certainly, as discussed in Section 2.3.1,
at sufficiently short time lags (i.e. τd << 220 µs), Brownian motion dominates random flow.
Meanwhile, random flow just impacts the tails of TOF-resolved field autocorrelations (for instance,
where A1 is higher than MC hybrid in Fig. 4). Therefore, assessing random flow is thus only
feasible at later time lags.

As discussed in Section 2.3.2, the cumulant approximation is invalid if τd ≈ 141 µs or larger,
precisely the lag time range needed to assess random flow. This revelation adds a new wrinkle to
the debate on the nature of RBC dynamics, as the cumulant approximation is assumed in standard
models for ordered and unordered flow in the literature [7]. Given our assumptions (gdyn= 0.98,
v= 1.25 mm/s and DB = 6× 10−11 m2.s−1) we hypothesize that the first cumulant approximation
cannot accurately assess random flow.

To test this hypothesis, we treated the MC hybrid model as experimental data and fit either the
A2 or B&N hybrid model to this data, with DB and v as free parameters. Figure 8 compares the
fitted DB and v values to the expected (actual) values. Two different fitting ranges of the MC field
autocorrelation are examined: g1

MC > 0.01 (Fig. 8(a)-(c)), and g1
MC > 0.5 (Fig. 8(d)-(f)). B&N

hybrid accurately recovers DB and v while A2 underestimates DB and v. As A2 ignores higher
order cumulants, the fitting procedure reduces DB to approximate the long time lag tail in g1

MC.
With a restricted fitting range (to exclude the tail of g1

MC), A2 more accurately estimates DB
(Fig. 8(d)). However, notably, A2 always yields v∼0 mm/s, suggesting that A2 is a poor model
for quantifying random flow.
Thus, particular caution is warranted in applying the first cumulant approximation for small

numbers of dynamic scattering events. Thus, for laser speckle flowmetry in parenchymal regions
with sparse blood vessels, the range of autocorrelation lags (or the range of exposure times) must
be chosen judiciously to avoid model errors.

4.3. Dynamic scattering probability dependence

In the above sections, we show that one confound in applying DWS/DCS theory to tissue
measurements is the exceptionally high gdyn of RBCs. Here, we highlight another important
confound; the low dynamic scattering probability (pdyn) of tissues. As mentioned in Section
2.4, a smaller VB implies a smaller pdyn. To illustrate the effect of pdyn on DWS/DCS accuracy,
pdyn = 30% (VB = 3.9%, Fig. 9(b)) was compared to pdyn = 10% (VB = 1.3%, Fig. 9(a)), used
heretofore in this work. Obviously, smaller pdyn values result in a slower autocorrelation decay
due to the smaller number of dynamic scattering events. For both pdyn, A1&2, representing
conventional DWS/DCS, underestimates the autocorrelation tails of MC hybrid, which are
well-represented by B&N hybrid. Importantly, disagreement between A1&2 and MC hybrid
persists to later TOFs for smaller pdyn, due to the smaller number of dynamic scattering events.
For example, A1&2 agrees well with MC hybrid when pdyn = 30% at 497.5 ps (Fig. 9(b)), but
still decays faster when pdyn = 10% (Fig. 9(a)).

To quantify agreement between various models as pdyn changes, the coefficient of determination
(r-squared) versus τs is shown (Fig. 10). The MC hybrid model is taken as the gold standard,
and hence has an r-squared of unity. Different ranges of the field autocorrelation function are
examined, corresponding to g1

MC > 0.01, 0.2, and 0.5. As expected, B&N hybrid agrees best,
with an r-squared approaching unity in all cases, while A1&2 (conventional DWS/DCS) is the
second best, followed by A1 (B&N diffusion). Limiting the fitting range greatly improves the
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Fig. 8. The commonly-used cumulant approximation (A2) cannot accurately recover
dynamics from Monte Carlo simulations (Section 2.4) with random flow and diffusion (MC
hybrid). FittedDB (a, d). and v (b, e) values are underestimated byA2 (blue line). Eliminating
the cumulant approximation with a B&N hybrid model enables accurate estimates (black
line), in agreement with expected values used in the simulations (red line).

Fig. 9. Accuracy of DWS/DCS assumptions depend on the probability of dynamic scattering,
pdyn: g1 from less accurate models (the first cumulant approximation for Brownian motion
(A1&2) and B&N diffusion (A1)), disagrees with more accurate models (B&N hybrid and
MC hybrid, the gold standard) up to longer τs for pdyn = 10% (a) than for pdyn = 30% (b)
when gdyn = 0.98.
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r-squared for A1, especially at early TOF. For example, the lowest r-squared value for A1 is well
below 0.4 (0.9) if the tail of autocorrelation function is included (Fig. 10(a),(d)), and above 0.4
(0.9) if the tail is excluded (Fig. 10(c),(f)) when pdyn = 10% (30%). These results are expected
since the first cumulant term for Brownian motion dominates early time lags.

Fig. 10. Quantification of results in Fig. 9. Coefficient of determination (r-squared) based
on comparing the gold standard MC hybrid model to different models: A1, B&N hybrid,
and A1&2 when pdyn = 10% (a-c), and pdyn = 30% (d-f). Note that by definition, the MC
hybrid model has an r-squared of unity across TOFs.

Increasing pdyn (the number of dynamic scattering events) improves the r-squared for A1 and
A1&2. For instance, A1 yields r-squared below 0.6 at early TOFs when pdyn = 10% (Fig. 10(a)),
and well above 0.6 at early TOFs when pdyn = 30% (Fig. 10(d)). The improvement in A1 is
expected since with more dynamic scattering events, the first cumulant term for Brownian motion
dominates more of the autocorrelation decay. The improvement in A1&2 is also expected since
higher order cumulants are less important with more dynamic scattering events.

4.4. Proposed improved expression

A common approach (COM) to determine field autocorrelations is a weighted average over total
dimensionless momentum transfer Ytot [4,40,56]:

gCOM1 (τs, τd) =

∞∫
0

P(Ytot,τs) exp
(
− 1

3αYtot(τs)k2
〈
4r2(τd)

〉)
dYtot

∞∫
0

P(Ytot,τs)dYtot

(19)



Research Article Vol. 28, No. 8 / 13 April 2020 / Optics Express 11206

In homogenous media, note that this approach is equivalent to DWS, if Ytot = µs(1-gstat)s, where
s=τsc/n is the photon path length in the medium. In Eq. (19), Ytot is the total dimensionless
momentum accumulated from all scattering events and can be obtained from a standard Monte
Carlo method that does not explicitly simulate dynamic scattering [38]. To account for dynamic
scattering events, the momentum from simulations is multiplied by α (note that α ≈ 0.2pdyn when
gdyn = 0.98 and gstat= 0.9). This approach implicitly assumes the cumulant approximation and a
simple similarity relationship between dynamic and total momentum transfer: Ydyn =αY tot.

Here, we argue that the most accurate approach is to use a Monte Carlo simulation that includes
both static and dynamic scattering events (Section 2.4), as this approach correctly performs
angular averaging over the scattering phase function, implicitly including all cumulant orders.
To achieve accurate results with a standard Monte Carlo code that does not explicitly include
separate dynamic and static scattering events, we propose an improved expression (IMP):

gIMP
1 (τs, τd) =

∞∫
0

P(Ytot,τs)[gss
1 (τd)]

m(Ytot)dYtot

∞∫
0

P(Ytot,τs)dYtot

(20)

Rewriting Eqs. (19) and (20), respectively, to take a weighted average of field autocorrelations
over all detected photon paths, each with weight wi [37,57], we arrive at

gCOM1 (τs, τd) =

∑
−δτs≤τsi−τs<δτs

wi exp
(
− 1

3k2
〈
4r2(τd)

〉
αYtot,i

)
∑

−δτs≤τsi−τs<δτs

wi
(21)

and

gIMP
1 (τs, τd) =

∑
−δτs≤τsi−τs<δτs

wi(τs)[gss
1 (τd)]

mi∑
−δτs≤τsi−τs<δτs

wi
. (22)

In Eqs. (21) and (22), wi is the weight and τsi is the TOF for the detected photon i, g1
ss is

the normalized single scattering autocorrelation function [Eq. (2)], m̄i =αYtot ,i / (1-gdyn) is the
average number of dynamic scattering events (Alternatively, similar results are obtained with
m̄i = pdynµssi). To compare the common method [Eq. (21)] to our more accurate customized
Monte Carlo method (MC hybrid), and to validate the proposed improvement [Eq. (22)], we
record Ytot using the GPU-based code Monte Carlo eXtreme (MCX) developed by Fang et al. [38].
The MCX simulation, which accumulates Ytot from all scattering events [39], is used to determine
the field autocorrelation for both the common approach [Eq. (21)] and the improved approach [Eq.
(22)]. The simulation launches 108 photons at the source, which took approximately 5 minutes on
an NVIDIA Dual GeForce RTX2080 GPU. The simulation returns a list of all detected photons
and their individual momentum transfers and partial paths. Absorption is included by applying
the Beer-Lambert law to determine the photon weight, wi. To approximate the 5 cm detection
radius in the gold standard MC simulations (Section 2.4), in the MCX simulations, 11 detectors
with radii of 0.5 mm were evenly spaced from 0 to 5 cm from the source. All detected photons
were included when applying in Eqs. (21) and (22).

As shown in Fig. 11, the proposed method (IMP), with a more accurate autocorrelation
(adapted from Bonner and Nossal), closely approximates our customized Monte Carlo method
(MC hybrid) which explicitly simulates dynamic and static scattering, resulting in the best
agreement with near unity r-squared both when pdyn = 10% (α= 2%) [Fig. 11(e)-(f)], and when
pdyn = 30% (α= 6%) [Fig. 11(g)-(h)]. On the other hand, the common approach (COM hybrid),
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which assumes the cumulant approximation, underestimates the autocorrelation tails when τs is
less than 300 ps. While agreement improves for τs > 300 ps, these discrepancies are significant
because the cumulant approximation is widely assumed to be valid in DCS/DWS across a range
of source-detector separations.

Fig. 11. Performance of proposed method to eliminate DWS/DCS assumptions and improve
accuracy. (a-d) g1 for hybrid motion with our gold-standard Monte Carlo simulations (MC
hybrid), the common Monte Carlo method (COM hybrid), and our proposed method (IMP
hybrid) for gdyn = 0.98 when (a,b) pdyn = 10% (α= 2%) and (c,d) pdyn = 30% (α= 6%). (e-h)
Corresponding r-squared values, determined by comparing COM hybrid and IMP hybrid to
MC hybrid, for two autocorrelation ranges when pdyn = 10% (e,f) and pdyn = 30% (g,h). A
linear time lag scale is used in (b,d) with equivalent dashed boxes in (a,c).

In summary, our proposed method [Eq. (22)]: 1) improves the underestimation of autocor-
relation tails observed in the common method (and DWS/DCS theory), and 2) enables the use



Research Article Vol. 28, No. 8 / 13 April 2020 / Optics Express 11208

of highly optimized existing Monte Carlo tools. Another potential advantage of the proposed
method is that it can be extended to multi-layered tissues, by tracking momentum transfer or
partial path length in each tissue type, as is possible in MCX.

4.5. Gegenbauer phase function

Bonner and Nossal’s theory and the MC method incorporate all cumulants and depend on the
entire scattering phase function, unlike DWS theory (A1&2), which just depends on 〈cosθ〉.
In this section, we examine the effect of phase function choice on the autocorrelation. Early
goniophotometric measurement of RBC suspensions showed that light scattering by RBCs is
well-described by a Gegenbauer (GE) phase function [58–61]. The GE phase function which is
given by:

pGE(θ) =
agGE
π

(1 − g2GE)
2a

[(1 + gGE)
2a − (1 − gGE)

2a][1 + g2GE − 2gGE cos θ]1+a (23)

Equation (23) requires |gGE | ≤ 1 and a >- 0.5. Note that gGE , 〈cosθ〉 in Eq. (23), and that only
if a= 0.5, Eq. (23) reduces to Eq. (4), with gGE = gdyn = 〈cosθ〉. Thus, the GE phase function
is a generalization of the HG phase function. If 〈cosθ〉 = 0.98 and a= 1.2 [58], we obtain that
gGE = 0.893. As shown in Fig. 12(a), HG and GE phase functions are approximately the same
when 〈cosθ〉 = 0.6 but are significantly different when 〈cosθ 〉 = 0.98, especially at large scattering
angles. The cumulant approximation error, R, is 2.35 times lower at 〈cosθ 〉 = 0.98 for GE (Fig.
12(b)).

Fig. 12. Cumulant approximation error decreases when the Gegenbauer phase function (GE,
a= 1.2) is used. (a) Henyey-Greenstein (HG) and Gegenbauer phase functions for 〈cosθ
〉 = 0.6 and 0.98, (b) R versus 〈cosθ 〉 for different m̄ values, pdyn = 10%, and µs = 100 cm−1.
The inset in (b) shows the cumulant approximation error ratio between HG and GE, which is
independent of m̄. The upper x-axis in (b) shows the gGE value corresponding to 〈cosθ 〉 on
the lower x-axis.

As above, the velocity distribution v* is selected so that the first cumulant term for random
flow cancels second cumulant term for Brownian diffusion. Like R, v* depends on phase function
[Eq. (17)], and v*= 0.817 mm/s when a= 1.2, gGE = 0.893 and DB = 6× 10−11 m2.s−1 [26,33,34].
Figure 13 shows that while the autocorrelation tails are greater for the HG phase function (B&N
hybrid, HG) than the GE phase function (MC hybrid, GE and B&N hybrid, GE), all have longer
tails than DWS (A2), which ignores higher order cumulants. The smaller cumulant approximation
error for the GE phase function is explained by smaller R values in Fig. 12(b).
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Fig. 13. Gegenbauer (GE) phase function (a= 1.2, gGE = 0.893) reduces autocorrelation
tails compared to the Henyey-Greenstein (HG) phase function even though 〈cosθ 〉 = 0.98
for both: g1 from DWS theory with first cumulant approximation for hybrid motion (A2)
decays faster than accurate models (B&N hybrid and MC hybrid), but disagrees less with
GE autocorrelations, as expected based on Fig. 12.

Figure 14 also confirms that ignoring random flow (A1, GE) increases the autocorrelation tail.
Thus assuming a GE rather than HG phase function does not change the essential conclusions
regarding autocorrelation tail; namely, that neglecting higher order cumulants reduces the tail,
neglecting random flow increases the tails, and that both assumptions in tandem lead to better
agreement with the gold standard MC simulation. Moreover, Fig. 14 shows that conventional
DWS/DCS (A1&2) with two incorrect assumptions agrees well with the more accurate models
that use the GE phase function for both pdyn = 10% and pdyn = 30%.

Fig. 14. A replicate of Fig. 9 with the GE phase function (a= 1.2, gGE = 0.893): once
again g1 from less accurate models (A1&2 and A1), disagrees with more accurate models
(B&N hybrid and MC hybrid, the gold standard) up to longer τs for pdyn = 10% (a) than for
pdyn = 30% (b) when 〈cosθ 〉 = 0.98

Figure 15 shows r-squared versus τs for different ranges of the field autocorrelation. As before,
the MC model is taken as the gold standard. Like Fig. 10, Fig. 15 shows that MC hybrid, GE
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agrees well with A1&2 (two incorrect assumptions) at all TOFs but disagrees with A1, GE (one
incorrect assumption) at earlier TOFs, and that r-squared for A1, GE improves in tissues with
higher pdyn, and when the range is limited to early time lags.

Fig. 15. Quantification of results of Fig. 14. Coefficient of determination (r-squared) based
on comparing the gold standard MC hybrid, GE model to different models: A1, GE; B&N
hybrid, GE; and A1&2 when pdyn = 10% (a-c), and pdyn = 30% (d-f). Note that by definition,
the MC hybrid, GE model has an r-squared of unity across TOFs. As in Fig. 10, A1&2 (2
errors) agrees better with the gold standard at both pdyn values than A1, GE (1 error), and
here, notably, overlaps with B&N hybrid, GE.

4.6. Simplifying assumptions

To arrive at our proposed improved expression for field autocorrelations in biological tissue
[Eq. (22)], several assumptions were adapted from the original Bonner and Nossal theory [24].
Specifically, it was assumed that RBCs move independently, that averaging over photon paths
and scattering events is equivalent to ensemble averaging, that the distances between static tissue
source points and moving cells is large compared to displacements for decorrelation, and that
static scattering randomizes the direction of incident light between dynamic scattering events. In
incorporating a hybrid model of RBC motion, we have also assumed that advective and Brownian
components of the motion are independent.
Importantly, vascular geometry was not explicitly simulated in the current study. RBCs

were assumed to be uniformly distributed throughout the tissue volume, parameterized by the
probability of dynamic scattering (pdyn). In a previous study with a proscribed parallel vessel
geometry, pdyn was empirically found to be proportional to vessel radius-squared and inversely
proportional to vessel spacing-squared [34]. While our simplified tissue model enabled us to
investigate the cumulant approximation without assuming a specific geometry, future studies
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should investigate realistic vascular geometries, accounting for the issues highlighted in the
present work.

5. Conclusion

We have shown that field autocorrelations in realistic biological tissue models with hybrid motion
are accurately predicted by our adaptation of Bonner and Nossal’s original theory for RBC
scattering. Importantly, neglecting higher order cumulants reduces the field autocorrelation
tails whereas neglecting random flow increases them. Thus, for particular choices of random
flow distribution and Brownian diffusion coefficient, DWS theory with pure Brownian motion
might agree with experimental data, leading to the incorrect conclusion that random flow is
absent. Furthermore, if experimental data are fit using the DWS cumulant approximation,
allowing for hybrid motion, dynamics are underestimated. Here, we argue that dynamics can be
accurately assessed by analyzing field autocorrelations with a model that includes higher order
cumulants. Altogether, this work supports that random flow may be assessable in TOF-resolved
field autocorrelations, but higher order cumulants should be incorporated into models to ensure
its accurate assessment.

Appendix A

Here, we derive Eq. (6). In Bonner and Nossal’s original theory [24], the normalized field
autocorrelation function can be expressed as

gBN,orig
1 (τs, τd) =

∞∑
m=1

Pm(τs)Im(τd)/ (1 − P0), (A.1)

where Im is the autocorrelation function for a path, and Pm is the probability of such a path.
When the lower limit in the summation is set to zero to include purely static scattering paths, we
re-write Eq.(A.1):

gBN
1 (τs, τd) =

∞∑
m=0

Pm(τs)Im(τd). (A.2)

If we incorporate our symbol for the autocorrelation for a single dynamic scattering event, g1
ss,

then
Im(τd) = [gss

1 (τd)]
m. (A.3)

We then rewrite Eq. (A.2) as:

gBN
1 (τs, τd) =

∞∑
m=0

Pm(τs)[gss
1 (τd)]

m. (A.4)

Assuming that Pm follows a Poisson distribution, we rewrite Eq. (A.4):

gBN
1 (τs, τd) =

∞∑
m=0

e−
_m(τs)

[ _m(τs)gss
1 (τd)

]
m!

m

. (A.5)

Finally, applying a Taylor series, Eq. (A.5) simplifies to Eq. (6).
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Appendix B

Here, we show how Eqs. (1) and (9) are derived by applying cumulant expansion to Bonner and
Nossal’s theory [Eq.(6)]. First, we take logarithm both sides of Eq.(6):

ln(gBN
1 (τs, τd)) = [m(τs){gss

1 (τd) − 1}] =
[
m(τs)

{〈
exp

[
−

q2(θ)
6

〈
4r2(τd)

〉]〉
θ

− 1
}]

(B.1)

Next, Taylor series expansion is applied to Eq. (B.1) up to second order to give:

ln(gBN
1 (τs, τd)) = m(τs)

[〈
1 − q2(θ)

6
〈
4r2(τd)

〉
+ 1

2
q4(θ)
62

〈
4r2(τd)

〉2
+ O

(〈
4r2(τd)

〉3)〉
θ
− 1

]
,

= −m(τs)
〈q2(θ)〉θ

6
〈
4r2(τd)

〉 [
1 − 1

6
〈q4(θ)〉θ
2〈q2(θ)〉θ

〈
4r2(τd)

〉]
+ m(τs)O

(〈
4r2(τd)

〉3) ,

(B.2)
or

ln(gBN
1 (τs, τd)) = −m(τs)

〈
q2(θ)

〉
θ

6
〈
4r2(τd)

〉 [
1 −

1
6

m(τs)R
〈
q2(θ)

〉
θ

〈
4r2(τd)

〉]
+m(τs)O

(〈
4r2(τd)

〉3) ,
(B.3)

whereR =
〈
q4(θ)

〉
θ

/ [
2m(τs)

〈
q2(θ)

〉
θ

2
]
. Note that third and higher cumulant terms are contained

in O(〈∆r2(τd)〉3). Taking the exponential of both sides of Eq. (B.3), and retaining only the first
order cumulant term yields:

gBN
1 (τs, τd) ≈ exp

[
−m(τs)

〈
q2(θ)

〉
θ

6
〈
4r2(τd)

〉]
(B.4)

Equation (B.4) is equivalent to Eq. (1) in the case of Brownian motion. Meanwhile, if both first
and second cumulants are retained, the exponential of Eq. (B.3), after dropping θ subscripts,
yields Eq. (9).
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