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Pivots Versus Signals in Elections

Adam Meirowitz and Kenneth W. Shotts�

April 2007

Abstract

In models of voting, both decision theoretic and game theoretic, incentives tend to hinge on the event

that a voter is pivotal. In this paper we consider a model in which voters have private information about

their preferences over policy and an election is held in each of two periods. In this setting a vote in

the �rst period can have two potential consequences; it can be pivotal in deciding who wins the �rst

period election and it can inform the beliefs that candidates running in the second period use to select

equilibrium platforms and policies. We investigate whether the former, pivot, e¤ect or latter, signalling,

e¤ect dominates in large electorates.

�We thank participants of the Hoover seminar series at Stanford University and participants at the 2006 annual MPSA

meetings. We thank Marc Meredith for excellent research assistance on some numerical simulations early in the project. We

are indebted to Keith Krehbiel and Nolan McCarty for profound comments on how this work �ts into the larger literature in

political science.



1 Introduction

In nearly all formal models of voting the payo¤ to voting hinges exclusively on pivot events, in which the

election is tied and a single vote can determine the outcome. In decision-theoretic models, a voter decides

whether and how to vote, based on exogenously set probabilities of ties between candidates. (Downs

1957, Tullock 1967, Riker and Ordeshook 1968, Myerson and Weber 1993). Game theoretic models

endogenize the equilibrium probability that a vote is pivotal (Palfrey and Rosenthal 1983; Myerson 1998,

2000; Campbell 1999; Borgers 2004). Other recent research focuses on information that a voter can infer

from the fact that he is pivotal, and analyzes electoral equilibria when voters condition on being pivotal

(Feddersen and Pesendorfer 1996, 1999; Austen-Smith and Banks 1996).

All of these pivot-based models of elections have two features in common: (i) when a voter is pivotal

the action she takes has a large impact on her payo¤, but (ii) pivot events are very unlikely. The large

impact is due to the fact that in a pivot event, a single vote can determine the outcome of the election.

The low probability arises from the fact that in a large election, the odds of two candidates receiving the

same number of votes, or di¤ering by exactly one vote, are miniscule.

Although pivot based models dominate the game-theoretic literature on elections, the infrequency of

pivot events in all but the smallest elections raises a natural question: is electoral behavior driven by

more than just concerns about being pivotal? For example, in the buildup to the 2006 midterm election

in the U.S., pundits speculated that growing dissatisfaction with President Bush�s handing of the war in

Iraq would cost the Republican party its majority in the legislature. While the loss of Senate and House

seats may in fact have been the result of a desire simply to change the composition of the legislature,

another explanation is that voters cast ballots for Democrats in order to send Bush a message, and

encourage him to change policy. For example, CommonDreams.org, a webpage that presents �breaking

news and views for the progressive community� posted the following advice for Democrats on January

25, 2006,

I have three pieces of advice for them. The �rst is to nationalize this election. Republicans

are obscenely vulnerable at the national level, and the faces of Bush, Cheney, DeLay, Abramo¤

and the rest, along with their incredibly unpopular policies, should be morphed into those

of every Republican candidate for representative, senator, governor and dog catcher, from
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Bangor to Burbank and back again. Democrats need to chain the Bush manacle around the

ankles of every last one of them, then throw them into Lake Campaign. This election has

every possibility of being 1994 in reverse, if Democrats are smart enough (oh god, please don�t

get me started on that) to do what Republicans did then: forget local issues and run against

a severely unpopular national party.

An emerging literature, based on the intuition that voter totals may matter in elections that don�t end

in a tie, o¤ers an alternative perspective to the dominant pivot-based theories of elections. Both Shotts

(2006) and Meirowitz and Tucker (2006) analyze models in which vote totals a¤ect future candidates�

beliefs about the distribution of voters. Razin (2003) analyzes a common values model in which vote

totals convey information to the winner of an election, and thus a¤ect the policies he enacts. Razin

investigates the limiting behavior as the electorate gets large and �nds that in the limit voters care

about both victory margins and the identity of the winning candidate. Razin characterizes two types of

equilibria. In one type of equilibrium, voters�behavior is �conventional�in the sense that a voter whose

private signal indicates that candidate L is more likely to be good than candidate R will tend to vote

for candidate L: In any limit of these conventional equilibria, the behavior of voters converges to coin

�ipping.1 The other equilibria are �unconventional�in the sense that a voter whose private information

indicates that L is the better candidate is more likely to vote for candidate R than a voter whose private

information indicates that R is the better candidate.

In Razin�s model, the structure of the signalling motivation is a primitive of the game and not the

result of equilibrium behavior in a subsequent competitive setting. Razin�s �ndings are, thus, suggestive

that a desire to in�uence decisiveness of victory, and not just the identity of the winner, can remain in

large elections. But Razin�s model is one of mandates, not repeated elections. As such, the question

about whether the signal or pivot motivation dominates in repeated large elections remains unanswered.

Based on this second type of reasoning, we analyze a model of elections with both signaling and pivot

motivations. Our analysis addresses the question of which e¤ect is dominant in equilibria to games with

repeated elections and a large electorate. In our model, each voter has private information about his own

policy preferences, and casts a ballot for one of two available alternatives. Following this �rst election,

two candidates compete for a second o¢ ce, by staking policy positions, and a second election is held. In

1This result is Proposition 4, part (i) of Razin.
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equilibrium candidates in the second period base their policy positions on beliefs about the distribution

of preferences in the electorate. These beliefs are informed by the vote totals in the �rst election.

1.1 The Model

Consider an electorate with an odd number of voters n � 3: It will be convenient to use the fact that

n = 2m + 1 for some integer m: Let the set of voters be N , and let each voter i 2 N have an ideal

point, vi 2 [0; 1]: We assume that the ideal points are iid draws from a strictly increasing, continuously

di¤erentiable cumulative distribution function F (�) with continuous density f(�): Each voter�s utility over

policy, x; in a given period is ui(x) = � jx� vij ; and the voter�s total utility is simply the sum of his

policy utility in the two periods.

In the �rst period election, two �xed alternatives are available. We denote the locations of the

alternatives by L;R 2 [0; 1]: If voters care only about the �rst period, or are myopic, elimination of

weakly dominated strategies yields a unique equilibrium, in which all voters to the left of xp = L+R
2

vote

L and all voters to the right of xp vote R:We call this the pivot cutpoint. We, however, are interested in

the dependencies across elections, and thus consider a model with 2 periods, building on Shotts (2006).

In the second period, two o¢ ce motivated candidates select policy platforms and then the electorate

votes. The candidates are assumed to know only the distribution F (�) from which the n ideal points are

drawn, the size of the electorate, n, and the voters��rst period actions. From Calvert (1985), we know

that if Fmedian (�) is the distribution of the median voter�s ideal point then in the second period subgame

in which candidates choose policy platforms and then voters vote, in any Nash equilibrium with weakly

undominated voting, the candidates will both locate at F�1median(
1
2
):2

In the two-period signalling game that we study, in any Perfect Bayesian equilibrium, the distribution

of the median depends on the �rst-period votes via Bayes�rule (following a pro�le of votes that occur

with positive probability in equilibrium). Given that Fmedian(�) is the distribution given by Bayes�s rule

following the observed �rst period voting, in the second period the candidates both locate at the point

F�1median(
1
2
): While Shotts (2006) focuses on equilibria with abstention in the �rst period, we restrict the

set of actions available to voters so that they must vote either L or R; this enables us to focus on a

2One such equiulibrium has each voter �ipping a fair coin when indi¤erent. Given strategies for the �rst period, the second

period behavior is standard, and well understood (Calvert 1985, Shotts 2006).
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particularly simple class of equilibria, involving only a single cutpoint. In particular, we de�ne a class of

equilibria in which all voters use the same type speci�c voting strategy and this strategy is monotone.

In such an equilibrium �rst-period voting strategies are characterized by a cutpoint xc with voters to

the left ( vi < xc) voting L and voters to the right (vi > xc) voting R. If voting satis�es this cutpoint,

i.e. it is monotone, then the number of votes for R, denoted #R; captures all of the publicly available

information about voter ideal points, and is a su¢ cient statistic for the second-period candidates�problem

of inferring the distribution of the median voter�s ideal point from �rst-period behavior. We denote such

a posterior distribution as Fmedian(� j #R;xc):

Before proceeding we provide a few comments about this function. Given that #R of n voters have

ideal points to the right of (greater than) xc the median is less than xc if and only if #R � m = n�1
2
.

Similarly the median is greater than xc if and only if #R � m + 1. In the former case, the median is

the m+1 th lowest ideal point of the n�#R voters with ideal points less than xc, i.e., the median ideal

point is the m + 1 th order statistic from n �#R draws from the distribution H�(x;xc) =
F (x)
F (xc)

with

support [0; xc]. Similarly in the latter case, the median is the (m+1� (n�#R))�th order statistic from

#R draws from the distribution H+(x;xc) =
F (x)�F (xc)
1�F (xc) with support [xc; 1]:

As mentioned, Calvert�s result shows that given xc, #R and a mapping Fmedian(� j #R;xc) sequential

rationality of the candidates and weakly undominated voting of the voters implies that second period

policy is F�1median(
1
2
j #R;xc): Accordingly, in characterizing a cutpoint perfect Bayesian equilibrium

with weakly undominated second period voting strategies it is su¢ cient to characterize a �rst period

cutpoint xc 2 [0; 1] such that if every voter other than i is using the strategy with cutpoint xc it is

optimal for voter i to do so as well. Checking this condition hinges on the fact that in an equilibrium

of this form second period candidates both locate at the point F�1median(
1
2
j #R;xc):

The equilibrium cutpoint balances two e¤ects that in�uence �rst period voting. The pivot e¤ect

captures the incentive to vote for L if jL� vij < jR� vij and R if the opposite is true. The signalling

motivation captures the incentive to vote for L if given i�s expectations about the actions of the other

voters, increasing #R is likely to move the second period policy F�1median(
1
2
j #R;xc) away from vi, and

to vote for R if increasing #R is likely to move the second period policy closer to vi. The pivot e¤ect

is the product of the probability that i is pivotal and the payo¤ di¤erence between the policy L and R:

In contrast to the pivot e¤ect, which captures a low probability event with a non trivial payo¤ in that
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event, the signalling motivation takes into account the fact that i�s vote will always have an e¤ect on the

second period policy. However, the signalling e¤ect is small in each of the possible realizations of the

votes cast by Nnfig. For some realizations of the votes by Nnfig increasing #R will be attractive to i,

while for other realizations of the these votes increasing #R will be unattractive to i.

The goal of our paper is to compare high impact, low probability pivot events versus low impact,

high probability signaling e¤ects and determine which type of e¤ect dominates in large elections. In

particular we investigate the limiting behavior of the cutpoint xc as n tends to in�nity. We �nd that the

limiting cutpoint corresponds to the equilibrium cutpoint in a di¤erent game in which the �rst period

is irrelevant, (or, equivalently, L = R) so that, in the limit, the cutpoint for voter behavior is identical

to what it would be if they were motivated purely by signalling concerns. Thus, we �nd that while

equilibrium voting involves a balancing of these two motivations, in a very strong sense, equilibrium

voting in large elections is driven by voters�desire to in�uence the inferences of observers and not by

their desire to in�uence the election at hand.

This result has potentially important implications for pivot-based models of elections, since most of

the interesting equilibria in such models rely heavily on the fact that a voter only cares about events in

which his vote is pivotal. In our model, in contrast, the e¤ect of such pivot events on equilibrium voter

behavior is relatively unimportant compared to the e¤ect of signaling concerns. At the very least, future

research needs to take seriously the possibility that pivot events are not the only thing that matter, and

that rational voters take into account future e¤ects that their votes will have, even when an election is

not exactly tied.

The paper proceeds as follows. In section 2 we present two concrete examples of how signaling

and pivot e¤ects work in our model. Section 3 proves equilibrium existence. Section 4 describes the

intuition behind our main result, which is proved in Section 5. Section 6 discusses related literature and

implications of our result.

2 Two Examples

We start with a decision-theoretic version of the model, in which there is just one voter with utility

function � jx� vij where x is the policy and vi is her ideal point. Suppose the exogenously-�xed �rst
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period locations are L = 0 and R = 1=2: The second period candidates believe that the single voter�s

ideal point is drawn from a uniform distribution on [0; 1]. In this case, if the voter�s strategy is monotone

with cutpoint xc then the second period policy will be if xc
2
if i votes for L and 1+xc

2
if i votes for R.

In order for i to be indi¤erent between voting L and R when her ideal point is vi = xc, the following

equality must hold

� jxc � 0j �
���xc � xc

2

��� = � j:5� xcj � ����xc � 1 + xc
2

���� :
This equality is solved at xc = 1

3
:

To illustrate how pivot and signaling e¤ects work in the model, we now consider the simplest model

where a vote has a probabilistic e¤ect on both �rst and second period outcomes. While this example

cannot resolve the horse race between the signalling and pivot e¤ects as the number of voters gets large,

all of the relevant incentives and quantities of interest are present. Consider n = 3 voters, i 2 f1; 2; 3g ;

with policy ideal points that are i:i:d: draws from a uniform distribution on [0; 1]. Each voter�s utility in

a given period is � jx� vij where x is policy and vi is his ideal point. The �rst-period election is between

two candidates, with exogenously-�xed policy positions L = 0 and R = 0:5:

We �rst consider two benchmark cases: a pure pivot model and a pure signaling model. In a pure

pivot model there is a unique voting equilibrium in weakly undominated strategies: a voter votes for the

closer candidate, i.e., she votes for L if her ideal point is to the left of L+R
2

= 0:25 and votes R if her

ideal point is to the right of 0:25: So xp = 0:25 is the pivot cutpoint.

For a pure signaling model, all that matters is how a vote a¤ects F�1median(
1
2
j #R;xc) through #R: If

voters only care about the outcome of the second period election then in the three voter example there

is a unique equilibrium, speci�ed by the signaling cutpoint, xs = 1=2:

To check that this cutpoint is an equilibrium in the game in which only the second period outcome

a¤ects voter payo¤s we con�rm that a voter with vi = 1=2 is indi¤erent between voting L and R; given

the other actors�strategies: Focusing on voter i = 1; assume that the other voters are using this cutpoint

strategy. The signaling e¤ect of i0s �rst-period vote thus depends on the other voters� �rst-period

actions:

� With probability F (xs) �F (xs) = 1
2
� 1
2
= 0:25 the other two voters vote L. In this case the second-
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period policy outcome will be 0:25, if i votes L. This is true because the second-period candidates

posterior belief given #R = 0 and xs = 1=2 is that all three voters ideal points are uniform draws

from [0; 0:5]: If i votes R the second-period policy outcome will be F�1median

�
1
2
j1; 1=2

�
= 0:35, since

there is a 50% chance that both of the L voters, and hence the median, will be to the left of 0:35:

Thus, the signaling e¤ect of voting R if both other voters vote L is to move the second-period policy

outcome from 0:25 to 0:35:

� With probability F (xs) � (1� F (xs)) + (1 � F (xs)) � F (xs) = 2 � 12 �
1
2
= 0:5 the other two voters

split their votes. In this case if i votes L the second-period policy outcome will be 0:35 and if she

votes R the policy outcome will be 0:65:

� With probability (1�F (xs)) � (1�F (xs)) = 1
2
� 1
2
= 0:25 the other two voters vote R. In this case

if i votes L the second-period policy outcome will be 0:65 and if i votes R the policy outcome will

be 0:75:

Thus if a voter with ideal point vi votes L her expected second-period utility is �0:25�jvi � 0:25j�0:5�

jvi � 0:35j�0:25�jvi � 0:65j : If she votes R her expected utility is �0:25�jvi � 0:35j�0:5�jvi � 0:65j�0:25�

jvi � 0:75j : A voter at vi = xs = 1=2 is indi¤erent between voting L and voting R: It is straightforward

to con�rm that any voter left of 1=2 strictly prefers to vote L and a voter to the right prefers to vote R:

Three features of the signalling e¤ects are worth noting, since they will show up in our later analysis

of large elections. First, which action, L or R; better promotes the voter�s policy interests in the second

period depends on the other voters�actions as well as the cutpoint xs: For a voter with vi = 1=2; if the

other two voters vote L then voting R is optimal, whereas if the others vote R then voting L is optimal,

and if the others split their votes then the voter is indi¤erent. Second, the di¤erent signalling e¤ects are

not equally likely to occur, but rather occur with di¤erent probabilities. Third, since the other voters�

actions are simply draws from a binomial, in a large election, the most likely realized vote totals will be

those where L receives a share close to F (xs) of the votes and R receives a share close to 1� F (xs) of

the votes. All three of these properties of signalling e¤ects hold regardless of the cutpoint xs; and they

also hold for signalling e¤ects given a combined cutpoint xc:

In a model with both pivot and signaling e¤ects, we solve for the combined cutpoint xc: As shown

in Figure 1, in the three-voter example, xc � 0:35:3 For this xc the pivot probability is 2 � 0:35 � (1 �
3 It is just coincidence that this value for xc is the same (to two decimal places) as the second period policy outcome under
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0:35) = 0:455: For a voter with vi = xc the utility di¤erence between the two possible �rst-period policy

outcomes, L and R; is jvi � Lj � jvi �Rj = j0:35� 0j � j0:35� 1=2j = 0:2: So i receives, in expectation,

0:2 � 0:455 = 0:091 more �rst-period utility by voting R than by voting L:

The second-period signaling e¤ect is a bit more complicated to compute:

� With probability F (xc) � F (xc) = 0:35 � 0:35 = 0:1225 the other two voters vote L. In this case

the second-period policy outcome will be 0:175 if i votes L: If i votes R the second-period policy

outcome will be 0:244.

� With probability F (xc) � (1� F (xc)) + (1� F (xc)) � F (xc) = 2 � 0:35 � (1� 0:35) = 0:455 the other

two voters split their votes. In this case if i votes L the second-period policy outcome will be 0:244

and if i votes R the policy outcome will be 0:537:

� With probability (1� F (xc)) � (1� F (xc)) = (1� 0:35) � (1� 0:35) = 0:4225 the other two voters

vote R. In this case if i votes L the second-period policy outcome will be 0:537 and if i votes R the

policy outcome will be 0:675:

Thus if a voter with ideal point vi votes L his expected second-period utility is �0:1225 � jvi � 0:175j�

0:455 � jvi � 0:244j�0:4225 � jvi � 0:537j ; which equals �0:1486 for vi = 0:35: And if i votes R his expected

utility is �0:1225�jvi � 0:244j�0:455�jvi � 0:537j�0:4225�jvi � 0:675j ; which equals �0:2354 for vi = 0:35:

The di¤erence is equal to 0:091; so it exactly counteracts the �rst-period utility gain that the voter at

xc = 0:35 receives by voting R rather than L: Thus at xc the pivot and signaling e¤ects cancel each other

out and the voter is indi¤erent.

This example illustrates the basic tension between pivot and signaling e¤ects in our model. In this

three voter example, the equilibrium cutpoint is xc = 0:35; which lies between the pivot cutpoint,

xp = 0:25; and the signaling cutpoint, xs = 0:5: The question is how a sequence of cutpoints fxmg will

behave in the limit as the population size n = 2m+ 1 gets large.

The di¢ culty in answering these questions is that in large elections both the pivot e¤ect and the

signaling e¤ect become small; the probability of a pivot event goes to zero and the distance that second-

period candidates move in response to a single vote also goes to zero. The question is which converges

faster.

one of the action pro�les in the pure signalling model. For the general model, they need not be the same.
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3 Preliminary Results

In this section we establish two lemmas that are useful in establishing existence of a particular type

of equilibria for any n as well as proving the main result about the limiting behavior of this type of

equilibrium. We then present the existence result. Our analysis focuses on a particular class of

equilibria.

De�nition 1 (Symmetric Cutpoint Strategy) Voters use a symmetric cutpoint strategy if there ex-

ists a point xc 2 [0; 1] such that for all i 2 N

(1) if xc = 0 then vote L if vi = 0; and R otherwise

(2) if xc 2 (0; 1]; then vote L if vi < xC ; and R if vi � xc:

Given that all other voters use a symmetric cutpoint strategy with cutpoint xc; optimal behavior for

a voter with ideal point vi depends on the di¤erence in her expected utility between voting R and voting

L in the �rst period. Using a1i 2 fL;Rg to denote voter i0s �rst period action, we can express this

di¤erence as

udif (vi) � u(a1i = Rjvi)� u(a1i = Ljvi) = udif1 (vi) + udif2 (vi) (1)

where

udif1 (vi) �
 
2m

m

!
F (xc)

m (1� F (xc))m (jL� vij � jR� vij) (2)

and

udif2 (vi) �
2mX
k=0

 
2m

k

!
(F (xc))

2m�k (1� F (xc))k

0BB@
��F�1median(

1
2
jk; xc)� vi

��
�
��F�1median(

1
2
jk + 1; xc)� vi

��
1CCA : (3)

Thus udif1 (vi) captures the �rst period e¤ect of voting: the pivot probability is
�
2m
m

�
(F (xc))

m (1� F (xc))m

and the utility di¤erence between the two candidates is jL� vij � jR� vij for a voter with ideal point

vi. Likewise, udif2 (vi) captures the second period e¤ect: the probability that k other voters vote R

is
�
2m
k

�
(F (xc))

2m�k (1� F (xc))k and the utility di¤erence between voting R versus L in this event is��F�1median(
1
2
j k;xc)� vi

��� ��F�1median(
1
2
j k + 1;xc)� vi

�� :
Remark 1: Deriving Fmedian(yj#R;xc) for xc 2 (0; 1)

To understand udif2 (vi) it is important to see how Fmedian(yj#R;xc) depends on #R and xc. This

function is easy to characterize in terms of order statistics. We note that for �xed xc 2 (0; 1); the

distribution of the median is constructed as follows. Given that there are n � #R draws with values

9



strictly less than xc and #R draws with values greater than or equal to xc we know that the median is less

than xc if #R is strictly less than m+ 1 and it is greater than xc otherwise. If #R < m+ 1; the median

is the m+1 largest of n�#R draws from the distribution F (� j f< xcg) which we denote as H�(y;xc) =

maxf0;minf1; F (y)
F (xc)

gg: Accordingly if #R < m + 1; Fmedian(yj#R;xc) = H�
m+1;n�#R (y;xc), which is

the distribution of them+1 th order statistic from n�#R draws from the distribution function H�(�;xc):

Similarly if #R � m+ 1, the median is the (m+ 1� (n�#R))�th order statistic from #R draws from

the distribution F (� j f> xcg): This distribution is denoted as H+(y;xc) = maxf0;minf1; F (y)�F (xc)1�F (xc) gg.

So if #R � m + 1 then Fmedian(yj#R;xc) = H+
m�(n�#R);#R (y;xc), which is the distribution of the

(m+ 1� (n�#R))�th order statistic from #R draws from the distribution function H+(�;xc).�

Remark 2: Deriving Fmedian(yj#R;xc) for xc 2 f0; 1g

Now consider extremal cutpoints, xc 2 f0; 1g: If xc = 0 then according to de�nition 1, all voters

with ideal points in (0; 1] vote R and voters with ideal point vi = 0 vote L: Accordingly, if #R < m+ 1

then the median voter�s ideal point is 0 with probability 1 and Fmedian(yj#R; 0) is constant at 1 for all

y 2 [0; 1]: In this case, we de�ne F�1median(
1
2
j #R; 0) = 0 and it is clear that equilibrium second period

candidate locations are at 0. If #R � m+1 then the median is the (m+1� (n�#R))�th order statistic

from #R draws from F (�). This distribution corresponds to H+(y;xc) =
F (y)�F (0)
1�F (0) with support [0; 1]:

If xc = 1 then according to de�nition 1, all voters with ideal point 1 vote R and all voters with ideal

points vi 2 [0; 1) vote L: Accordingly, if #R � m + 1 then the median voter�s ideal point is at 1 with

probability 1 and Fmedian(yj#R; 1) is constant at 0 for all y 2 [0; 1) and equal to 1 at y = 1: In this

case we de�ne F�1median(
1
2
j #R; 1) = 1. If #R < m + 1 then the median is the m + 1th order statistic

from n�#R draws from F (�): This distribution corresponds to H�(y;xc) =
F (y)
F (1)

on [0; xc]:�

One way to see how the distribution function Fmedian(�j�; �) behaves as the arguments #R and xc

change is to consider the case of the uniform, F (y) = y on [0; 1]: Figure 1 plots the function H+(y;xc)

for two distinct values x0c < x
00
c and �gure 2 plots the function H

�(y;xc) for two distinct values x0c < x
00
c :

[Figures 1 and 2 about here �Figure 2 is yet to be made]

Combining remarks 1 and 2 allows us to express the second period policy location as a function of xc

and #R in a symmetric cutpoint equilibrium
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�(xc;#R) =

8>>>>>>>>>><>>>>>>>>>>:

0 if xc = 0 and #R < m+ 1

1 if xc = 1 and #R � m+ 1

fx : H�
m+1;n�#R (x;xc) =

1
2
g if xc 2 (0; 1] and #R < m+ 1

fx : H+
m+1�(n�#R);#R (x;xc) =

1
2
g if xc 2 [0; 1) and #R � m+ 1

The �rst lemma builds on this derivation to establish properties of the distribution of the median and

the above mapping when voters use a symmetric cutpoint strategy.

Lemma 1 (Properties of Second Period Policy Outcomes) If voters use a symmetric cutpoint

strategy with cutpoint xc then

(1) For each #R < m+ 1 and y 2 [0; 1]; Fmedian(yj#R;xc) is weakly decreasing in xc for xc 2 [0; y)

and strictly decreasing for xc 2 [y; 1] and for each #R � m + 1 and y 2 (0; 1); Fmedian(yj#R;xc) is

weakly decreasing in xc for for xc 2 (y; 1] and strictly decreasing in xc 2 [0; y] :

(2) If #R1 < #R2 (both in 0; 1; 2; :::; n) then for each xc 2 (0; 1), for some set Axc � [0; 1] with

positive lebesgue measure Fmedian(yj#R1;xc) > Fmedian(yj#R2;xc) if y 2 Axc and Fmedian(yj#R1;xc)

� Fmedian(yj#R2;xc) for all y 2 [0; 1]: For xc 2 f0; 1g ; Fmedian(yj#R1;xc) � Fmedian(yj#R2;xc) for

all y 2 [0; 1]:

(3) For any #R 2 f0; 1; 2; :::; n� 1g and xc 2 [0; 1]; F�1median(
1
2
j #R;xc) � F�1median(

1
2
j #R+ 1;xc):

(4) Fmedian(yj#R;xc) is continuous in xc on (0; 1) for each #R 2 f0; :::; ng and y 2 [0; 1] as well as

continuous in y on [0; 1] for each #R 2 f0; :::; ng and xc 2 (0; 1):

(5) The mapping �(xc;#R) is a function from [0; 1] � f1; 2::::; ng into [0; 1] and it is continuous in

xc.

Proof:

(1) Assume #R < m + 1: From our derivation of Fmedian(yj#R;xc) in remark 1 this distribution

takes on the value 1 if y � xc and H�
m+1;n�#R (x;xc) otherwise. Thus the conclusion that it is weakly

decreasing for xc 2 [y; 1] is immediate. Consider xc < x0c: Since

F (y)

F (x0c)
<
F (y)

F (xc)

H�(y;x0c) < H
�(y;xc) for all x < xc and thus the former �rst order stochastically dominates the latter

on [0; xc]. This ordering of H�(y;x0c) and H
�(y;xc) implies that the distributions of order statistics,

11



H�
m+1;n�#R (y;x

0
c) and H

�
m+1;n�#R (y;xc) are also ordered by �rst order stochastic dominance (see for

example Theorem 4.4.1 of David and Nagaraja p. 75). An analogous argument holds in the case of #R �

m + 1: For y < xc the distribution takes on the value 1 and the conclusion that it is weakly decreasing

for xc 2 [0; y) is immediate. If y � xc then Fmedian(yj#R;xc) = H+
m+1�(n�#R);#R (y;xc) which is the

distribution of an order statistic from F (y)�F (xc)
1�F (xc) . Since xc < x0c the fact that F (xc) < F (x

0
c) < 1 implies

that

F (y)� F (x0c)
1� F (x0c)

<
F (y)� F (xc)
1� F (xc)

and thus H+
m+1�(n�#R);#R (y;x

0
c) and H

+
m+1�(n�#R);#R (y;xc) are ordered by �rst order dominance.

(2) To establish strict monotonicity in #R: Consider two integers, #R1 and #R2, with 0 � #R1 <

#R2 � n. If #R1 < m + 1 � #R2 then the support of Fmedian(�j#R1;xc) is [0; xc] and the

support of Fmedian(�j#R2;xc) is [xc; 1]: Since the distribution F (�) is strictly increasing on [0; 1];

Fmedian(yj#R1;xc) > 0 for all y 2 (0; xc) while Fmedian(yj#R1;xc) = 1 for all y � xc. Simi-

larly, Fmedian(yj#R2;xc) = 0 for all y � xc and Fmedian(yj#R2;xc) < 1 for y 2 (xc; 1) : Thus,

Fmedian(yj#R2;xc) � Fmedian(yj#R1;xc); with a strict inequality for any y =2 f0; 1g :

Suppose instead that#R1 < #R2 < m+1: The relevant comparison is now betweenHm+1;n�#R1 (y;xc)

and Hm+1;n�#R2 (y;xc): To see that these two distributions are ordered by �rst order stochastic domi-

nance, we can partition n�#R1 draws from F (�) into two sets: �rst n�#R2 draws are taken and then

another #R2�#R1 are taken. Because F (�) is strictly increasing on [0; 1]; the probability that one of the

#R2�#R1 draws is less than the m+1 highest draw of the �rst #R2�#R1 draws is strictly positive, and

thus Hm+1;n�#R2 (y;xc) < Hm+1;n�#R1 (y;xc) for y on [0; xc]. This implies that Fmedian(yj#R2;xc)

� Fmedian(yj#R1;xc) with a strict inequality if y 2 Axc = [0; xc) if #R1 < #R2 < m + 1: A similar

argument holds for Axc = (xc; 1] if m+ 1 � #R1 < #R2:

The result for xc 2 f0; 1g follows from Remark 2.

(3) Follows immediately from (2).

(4) Continuity of Fmedian(yj#R;xc) in xc on (0; 1) for each #R 2 f0; :::; ng and y 2 [0; 1] as well as

continuity in y on [0; 1] for each #R 2 f0; :::; ng and xc 2 (0; 1) follows from the assumption that F (�)

is strictly increasing and continuously di¤erentiable and the well known fact the distribution of an order

statistic from a di¤erentiable distribution function has a density. In particular for #R < m+1 the distri-
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bution Fmedian(yj#R;xc) has a density h�m+1;n�#R (y;xc) = k
h
@
@y

�
F (y)
F (xc)

�i
F (y)
F (xc)

a
(1� F (y)

F (xc)
)b for inte-

gers k; a; b: For #R < m+1; the distribution Fmedian(yj#R;xc) has a density h+m+1�(n�#R);#R (y;xc) =

k0
h
@
@y

�
F (y)�F (xc)
1�F (xc)

�i�
F (y)�F (xc)
1�F (xc)

�a0
(1�

�
F (y)�F (xc)
1�F (xc)

�
)b
0
for some k0; a0; b0: Since we have assumed that

F (�) has a continuous density, for �xed #R; as long as xc 2 (0; 1) the above densities are well de�ned

and thus the distribution functions are continuous.

(5) To show that �(xc;#R) is de�ned on its domain we must show that fx : H�
m+1;n�#R (x;xc) =

1
2
g

is non-empty if xc 2 (0; 1] and #R < m+ 1 and that fx : H+
m+1�(n�#R);#R (x;xc) =

1
2
g is non-empty if

xc 2 [0; 1) and #R � m+1: In the �rst case, consider xc 2 (0; 1] and #R < m+1: From the proof of part

4 of this lemma we see that H�
m+1;n�#R (x;xc) has a continuous density function that is strictly positive

as long as y < xc: So the function H�
m+1;n�#R (y;xc) is continuous and strictly increasing in y on [0; xc]

with 0 = H�
m+1;n�#R (0;xc) <

1
2
< H�

m+1;n�#R (xc;xc) = 1: This means that the set S�(xc;#R) =

fy 2 [0; 1] : H�
m+1;n�#R (y;xc) 2 (0; 1)g is non-empty for xc 2 (0; 1] and #R < m + 1: Moreover, by

the intermediate value theorem this means that the set fx : H�
m+1;n�#R (x;xc) =

1
2
g is non-empty if

xc 2 (0; 1] and #R < m+1: An analogous argument establishes that fx : H+
m+1�(n�#R);#R (x;xc) =

1
2
g

is non-empty if xc 2 [0; 1) and #R � m+ 1:

To establish continuity we consider two cases. First assume that #R < m + 1: By part 4 of this

lemma, for a �xed y, H�
m+1;n�#R (y;xc) is continuous in xc on (0; 1) and thus this and the fact that it

is strictly increasing (and has a density) in y on a neighborhood of the point fx : H�
m+1;n�#R (x;xc) =

1
2
g implies by way of the implicit function theorem that the solution �(xc;#R) is continuous in xc if

xc 2 (0; 1) and #R < m+ 1: Continuity at xc = 0 follows from the fact �(xc;#R) � xc if #R < m+ 1

and thus limxc!0 �(xc;#R) = 0 and �(0;#R) = 0. Continuity at xc = 1 follows from the fact that

H�
m+1;n�#R (y; 1) is de�ned and for each y; H

�
m+1;n�#R (y;xc) is continuous in xc at 1: An analogous

argument about H+
m+1�(n�#R);#R (x;xc) establishes continuity in the case of #R � m+ 1:�

The next result establishes some properties of the utility di¤erence function in equation 1. Since this

result simply uses conclusions from lemma 1 in standard ways the proof is in the appendix.

Lemma 2 (Properties of Utility Di¤erence Function) If voters use a symmetric cutpoint strategy

with cutpoint xc then

(1) udif (vi) is continuous and weakly increasing in vi:
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(2) (Lpschitz property) 8~vi; v̂i 2 [0; 1], judif (~vi)� udif (v̂i)j � 3 � j~vi � v̂ij :

(3) udif (0) � 0 and udif (1) � 0:

We can now state our �rst main result. The proof, which applies a standard �xed point argument

to the function udif (�), is in the appendix.

Proposition 1 There exists an equilibrium in which voters use a symmetric cutpoint strategy in the �rst

period.

4 Intuition for main result

Having established existence, we now turn to the question of equilibrium behavior in large electorates,

i.e., as m ! 1. We suppress the c subscript and let xm denote the cutpoint in a symmetric cutpoint

strategy equilibrium with n = 2m + 1 voters. Our interest is then in limm!1 xm (if it exists). We

show that this limit is equal to the point F�1( 1
2
): Since this limit does not depend on the �rst period

candidate locations L and R, it is also the limit of cutpoints for equilibria in the pure signalling game. The

proof proceeds by contradiction; we show that if a sequence of cutpoints does not converge to F�1(1=2)

then these cutpoints cannot be equilibrium cutpoints because voters at the cutpoint xm; who must be

indi¤erent in equilibrium, will strictly prefer to vote for one candidate over the other. To be more precise,

we show that if any subsequence of equilibrium cutpoints converges to a point other than F�1( 1
2
) then

for m su¢ ciently large a voter with ideal point xm will strictly prefer to vote for one candidate over

the other. This brief section serves as a roadmap for the proof, presenting an informal version of the

argument. The next section contains a proof of the main result.

Suppose that in a large electorate voters behave according to a cutpoint xm > F�1(1=2): We show

that a voter at xm will strictly prefer to vote R. There are three types of e¤ects that the voter must

consider:

The �rst consideration is a pivot e¤ect, which we label PV: Since the election is not expected to

be a tie, i.e., xm 6= F�1(1=2), and the population size is large, the probability of this pivot event is

exceedingly small in a large electorate.

The second consideration involves bad signalling e¤ects from voting R; whenever more than half of

the other voters vote R, the second period policy will be to the right of xm, so if a voter with vi = xc

14



votes R this will move second period policy to the right, i.e., away from his ideal point, as established

in part (3) of Lemma 1. However, because xm > F�1(1=2); more than half of the votes are expected to

go to L; and thus in a large electorate bad signalling e¤ects are extremely unlikely to occur. We �nd an

upper bound on the probability-weighted sum of these bad signalling e¤ects, and label it UBBS (upper

bound for bad signalling).

The third consideration involves good signalling e¤ects from voting L; whenever more than half of

the other voters vote L, the second period policy will be to the left of xc, so if a voter with vi = xm votes

R this will move second period policy to the right, i.e., towards his ideal point. Since xm > F�1(1=2);

more than half of the votes are expected to go to L; and thus in a large electorate it is extremely likely

that the signalling e¤ect of voting R will be good. We �nd a lower bound on the probability-weighted

sum of these good signalling e¤ects, and label it LBGS (lower bound for good signalling).

We consider the ratio of bad signalling plus pivot e¤ects to good signalling e¤ects, and show that this

ratio

PV + UBBS

LBGS

can be expressed as a limit of the form

Ptie + (m+ 1)Ptie
cP

! 0: (4)

In this expression, Ptie =
�
2m
m

�
F (xm)

m (1� F (xm))m is the probability of an exact tie among the other

2m voters given the cutpoint xm. In the denominator, P is the probability of a certain type of good

signalling e¤ect, and P goes to zero much more slowly than Ptie: The c in the denominator is a constant

that does not depend on m. At the end of the proof we show that the left hand side of Equation 4

reduces to an expression of the form (m+ 2) q(
1
2
�c1)m with constants q 2 (0; 1), and c1 2 (0; 1=2) : Thus

the limit is 0, which means that for the voter at xm it will be optimal to deviate and vote R:

5 The convergence result

Our main result is

Proposition 2 limm!1 xm = F�1(1=2):
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Proof: Assume by way of a contradiction that the cutpoints do not converge to the point M �

F�1(1=2): Since xm 2 [0; 1], 8m; the Bolzano-Weierstrass Theorem implies that there exists some

number Z 2 [0; 1] with Z 6= M such that a subsequence fxm0g ! Z: We focus on such a subsequence,

ignoring the residual portion of the original sequence, thus the assumption that Proposition 2 is false

equates to the claim that fxmg ! Z. Either Z < M or Z > M: In the remainder of the proof we focus

on the latter case; the argument for the former case is virtually identical and is thus omitted. Thus, our

goal is to show that there exists a �m such that if m > �m then a voter with ideal point xm has a strict

preference to vote for R: Once this claim is established the continuity of the utility functions established

in Lemma 2 implies that there exists a � > 0 such that if vi 2 (xm� �; xm+ �) a voter with ideal point vi

prefers to vote for R: Thus for some voters to the left of xm voting L is not a best response, contradicting

the hypothesis that xm is an equilibrium cutpoint when the population size is 2m+1: This contradiction

means that we cannot have a subsequence of cutpoints converging to Z 6= M and thus the sequence of

cutpoints converges to M:

For each m, consider a voter, i, with ideal point xm. Given that voters to the left of xm vote L and

voters to the right of xm vote R, the probability of any individual voting R is

pm � 1� F (xm):

Since xm > F�1(1=2) we know that pm < 1
2
:

We start by analyzing the utility function of a voter with ideal point xm: If exactly m voters other

than i vote R then the election is tied, and i�s vote is pivotal in determining the �rst period policy.

However, in terms of �rst period motivations, which depend on the candidate locations L and R; it is

not clear whether i prefers to vote L or vote R in the event that he is pivotal. In terms of second period

motivations, which depend on candidate locations given #R; it is also unclear whether i prefers to vote

L or vote R in the event that he is pivotal.

In contrast, the voter�s preferences are clear for events in which he is not pivotal. If m� 1 or fewer

of the other voters vote for R the second policy will be to the left of xm regardless of i�s vote and if at

least m+ 1 of the other voters vote for R then the second policy will be to the right of xm regardless of

i�s vote (as established in Remark 1). These facts and the monotonicity of the second period policy in

#R (part 3 of Lemma 1) imply that if m � 1 or fewer of the other voters vote for R then a vote for R
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moves the second period policy closer to i�s ideal point. In contrast, if at least m+1 of the other voters

vote for R; then a vote for R moves the second period away from i�s ideal point. Note that in either of

these cases; i�s vote cannot move policy far enough to leapfrog her ideal point, xm (see Remark 1).

Following equations 1, 2, and 3, given the conjectured equilibrium for population size n = 2m + 1;

the utility di¤erence between voting R versus voting L for a voter with ideal point vi in the equilibrium

with population size 2m+ 1 is

umdif (vi) � umdif1 (vi) + umdif2 (vi) :

In particular we are interested in the utility di¤erence for a voter with ideal point xm; i.e.,

umdif (xm) � umdif1 (xm) + umdif2 (xm)

which we re-write as

umdif (xm) =

 
2m

m

!
(1� pm)m pmm (jL� xmj � jR� xmj) (5)

+

m�1X
k=0

 
2m

k

!
(1� pm)2m�k pmk

�����F�1median

�
1

2
jk;xm

�
� xm

����� ����F�1median

�
1

2
jk + 1;xm

�
� xm

�����

+

 
2m

m

!
(1� pm)m pmm

�����F�1median

�
1

2
jm;xm

�
� xm

����� ����F�1median

�
1

2
jm+ 1;xm

�
� xm

�����

+

2mX
k=m+1

 
2m

k

!
(1� pm)2m�k pmk

�����F�1median

�
1

2
jk;xm

�
� xm

����� ����F�1median

�
1

2
jk + 1;xm

�
� xm

����� :
The �rst line of Equation 5 is the pivot e¤ect. The second line represents good signalling e¤ects of

voting R, when m�1 or fewer other voters vote R. The third line represents the indeterminate signalling

e¤ect when the 2m other voters split their votes equally between L and R. The fourth line represents

bad signalling e¤ects, when m+ 1 or more other voters vote R:

Our ultimate goal is to show that there exists an �m such that for m > �m; umdif (xm) > 0: To simplify

the expression in Equation 5, we �rst simplify each component of the utility function, by �nding upper

bounds on bad e¤ects, and a lower bound on good e¤ects, of voting R:

Pivot e¤ect. The pivot e¤ect can be either positive or negative, depending on the positions of the two

�rst-period candidates. An upper bound, based on the fact that L; R, and xm are all in the interval

[0; 1]; will be su¢ cient: 
2m

m

!
(1� pm)m pmm (jL� xmj � jR� xmj) > �

 
2m

m

!
(1� pm)m pmm: (6)
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Bad and indeterminate signalling e¤ects. For any k 2 f1; ::; n� 1g, F�1median

�
1
2
jk;xm

�
2 (0; 1) and

F�1median

�
1
2
jk + 1;xm

�
2 (0; 1), so

2mX
k=m+1

 
2m

k

!
(1� pm)2m�k pmk

�����F�1median

�
1

2
jk;xm

�
� xm

����� ����F�1median

�
1

2
jk + 1;xm

�
� xm

�����

+

 
2m

m

!
(1� pm)m pmm

�����F�1median

�
1

2
jm;xm

�
� xm

����� ����F�1median

�
1

2
jm+ 1;xm

�
� xm

�����

> �
2mX
k=m

 
2m

k

!
(1� pm)2m�k pmk

The binomial expansion is monotonic, i.e., since pm < 1=2; for any k 2 fm+ 1; :::; 2mg ;
�
2m
k

�
(1� pm)2m�k pmk <�

2m
m

�
(1� pm)m pmm so the total of the bad and indeterminate signalling e¤ects must be strictly greater

than

� (m+ 1)

 
2m

m

!
(1� pm)m pmm: (7)

Good signalling e¤ects. We now develop a lower bound on good signalling e¤ects. Fix any points A

and B in the unit interval such that M < A < B < Z: For any m; let Am 2 [M;A] represent the largest

number less than A such that for some integer am < 2m+1 it is the case that Am = F�1median

�
1
2
jam;xm

�
:

Likewise, let Bm 2 [B;Z] represent the largest number less than B such that for some integer bm < 2m+1

it is the case that Bm = F�1median

�
1
2
jbm;xm

�
: For the bm identi�ed in the de�nition of Bm let Cm =

F�1median

�
1
2
jbm + 1;xm

�
: By construction, Am < A < Bm < B < Cm

For �xed m the set of pro�les for other voters that, given i0s vote, can result in a policy be-

tween Am and Cm consists of pro�les for which the number of other voters that vote R is in the set

fam; am + 1; ::::; bm � 1; bmg: Although we cannot analytically solve for the policy distance between

F�1median

�
1
2
jk;xm

�
and F�1median

�
1
2
jk + 1;xm

�
for particular values of k; we do know that

bmX
k=am

�
F�1median

�
1

2
jk + 1;xm

�
� F�1median

�
1

2
jk;xm

��
= Cm �Am > B �A

Moreover, form large enough,M < Am. SinceM < Am < Cm and pm < 1=2 we know from monotonicity

of the binomial expansion that the event in which bm others vote for R is the least likely of the set of

pro�les of the 2m other voters in which i�s vote can result in a policy in the interval [Am; Cm]. We thus

can re-write the good signalling e¤ects term from Equation 5 as

m�1X
k=0

 
2m

k

!
(1� pm)2m�k pmk

�����F�1median

�
1

2
jk;xm

�
� xm

����� F�1median

�
1

2
jk + 1;xm

��
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=

am�1X
k=0

 
2m

k

!
(1� pm)2m�k pmk

�����F�1median

�
1

2
jk;xm

�
� xm

����� ����F�1median

�
1

2
jk + 1;xm

�
� xm

�����

+

bmX
k=am

 
2m

k

!
(1� pm)2m�k pmk

�����F�1median

�
1

2
jk;xm

�
� xm

����� ����F�1median

�
1

2
jk + 1;xm

�
� xm

�����

+

m�1X
k=bm+1

 
2m

k

!
(1� pm)2m�k pmk

�����F�1median

�
1

2
jk;xm

�
� xm

����� ����F�1median

�
1

2
jk + 1;xm

�
� xm

�����

>

bmX
k=am

 
2m

k

!
(1� pm)2m�k pmk

�����F�1median

�
1

2
jk;xm

�
� xm

����� ����F�1median

�
1

2
jk + 1;xm

�
� xm

�����

>

 
2m

bm

!
(1� pm)2m�bm pbmm

bm�1X
k=am

�����F�1median

�
1

2
jk;xm

�
� xm

����� ����F�1median

�
1

2
jk + 1;xm

�
� xm

����� (8)
Note that, since 8k 2 fam; am + 1; :::; bmg ; F�1median

�
1
2
jk;xm

�
< F�1median

�
1
2
jk + 1;xm

�
< xm;

bmX
k=am

�����F�1median

�
1

2
jk;xm

�
� xm

����� ����F�1median

�
1

2
jk + 1;xm

�
� xm

�����

= F�1median

�
1

2
jbm + 1;xm

�
� F�1median

�
1

2
jam;xm

�
= Cm �Am

> B �A

Thus, we can rewrite Equation 8 to get the following lower bound for good signalling e¤ects:

(B �A)
 
2m

bm

!
(1� pm)2m�bm pbmm : (9)

Having derived bounds on pivot e¤ects, bad signalling e¤ects, and good signalling e¤ects (Equations

6, 7, and 9, respectively) we now substitute these bounds into the utility di¤erence expression in Equation

5 to get

umdif (xm) > �
 
2m

m

!
(1� pm)m pmm�(m+ 1)

 
2m

m

!
(1� pm)m pmm+(B �A)

 
2m

bm

!
(1� pm)2m�bm pbmm :

To show that there exists an �m, such that for m > �m; umdif (xm) > 0, it is su¢ cient to show that

lim
m!1

�
2m
m

�
(1� pm)m pmm + (m+ 1)

�
2m
m

�
(1� pm)m pmm

(B �A)
�
2m
bm

�
(1� pm)2m�bm pbmm

= 0:

Combining terms in the numerator, and noting that B � A is strictly greater than zero and una¤ected

by m; it is su¢ cient to show that limm!1 (m+ 2)
(2mm )(1�pm)mpm

m

(2mbm)(1�pm)2m�bmp
bm
m

= 0: For convenience, de�ne
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	m = (m+ 2)
(2mm )(1�pm)mpm

m

(2mbm)(1�pm)2m�bmp
bm
m
: Rearranging yields

	m = (m+ 2)

�
pm

1� pm

�m�bm �2m
m

��
2m
bm

�
= (m+ 2)

�
pm

1� pm

�m�bm 2m!
m!m!
2m!

bm!(2m�bm)!

= (m+ 2)

�
pm

1� pm

�m�bm bm!(2m� bm)!
m!m!

= (m+ 2)

�
pm

1� pm

�m�bm Qm�bm
j=1 (2m� bm � j + 1)Qm�bm

j=1 (m� j + 1)
:

Taking the largest of the m� bm� 1 terms on the top of the product and the smallest of the m� bm� 1

terms on the bottom we see that

	m < (m+ 2)

�
pm

1� pm

�m�bm Qm�bm
j=1 (2m� bm)Qm�bm
j=1 (bm + 1)

= (m+ 2)

��
pm

1� pm

��
2m� bm
bm + 1

��m�bm
: (10)

To �nd limm!1	mwe �rst simplify the exponent.

Recall that Bm 2 [B;Z] is de�ned as the largest number less than B such that for some integer

bm < 2m+1 it is the case that Bm = F�1median

�
1
2
jbm;xm

�
: Since Bm is thus converging to B from below,

F�1median

�
1
2
jbm;xm

�
is converging to B 2 (M;Z): Suppose that bm

2m
converges to a number greater than

1
2
. By Remark 1, bm > m + 1 implies that F�1median

�
1
2
jbm;xm

�
> xm and since we have assumed that

xm ! Z, and we have F�1median

�
1
2
jbm;xm

�
! B we must have B > Z contradicting the de�nition of B

(that B < Z). Also it is clear that bm ! 0 is not possible since B > 0 and Bm ! B: Thus we have

shown that limm!1
bm
2m

= c1 for some c1 2
�
0; 1

2

�
:

Thus limm!1
m�bm
2m

= 1
2
� c1, and if we �x a � =

1
2
�c1
2

there exists a m1 such that for all m > m1;

m�bm
2m

> 1
2
� c1 � �; i.e.; m� bm >

�
1
2
� c1

�
m: We substitute in for the exponent in equation 10 to get:

	m < (m+ 2)

��
pm

1� pm

��
2m� bm
bm + 1

��( 12�c1)m

= (m+ 2)

"�
pm

1� pm

� 
1� bm

2m
bm+1
2m

!#( 12�c1)m
: (11)

Expanding out the terms in brackets, limm!1 pm = 1� F (Z) and limm!1
bm
2m

= c1, so

lim
m!1

�
pm

1� pm

��
2m� bm
bm + 1

�
= lim

m!1

�
pm

1� pm

� 
1� bm

2m
bm+1
2m

!

=
1� F (Z)
F (Z)

� 1� c1
c1

:
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Since maxf1 � F (z) ; c1g < 1
2
, we know that 1�F (Z)

F (Z)
� 1�c1

c1
2 (0; 1) and thus substituting back in to

Equation 11 and taking limits

lim
m!1

	m � lim
m!1

(m+ 1)

��
pm

1� pm

��
2m� bm
bm + 1

��( 12�c1)m
= lim

m!1
(m+ 1)

�
1� F (Z)
F (Z)

� 1� c1
c1

�( 12�c1)m
= 0:

�

6 Discussion and Related Literature

A few previous papers have examined signaling motivations in elections. Piketty (2000) develops a two

period model in which voters with common values communicate policy information to each other as they

vote on two referenda. In his model, three exogenously �xed policy alternatives are pitted against each

other according to a set agenda: A vs. C in the �rst referendum and the winner against B in the second.

In our model, in contrast, second-period electoral competition is between candidates who can choose any

position in the left-right policy spectrum. This di¤erence in the setup of the models has a substantial

e¤ect on the role of signaling. In the Piketty model, a voter�s action only a¤ects future election outcomes

in the event that she is informationally pivotal between alternatives in the second referendum, i.e., the

key tradeo¤ in the Piketty model is between two pivot e¤ects. In our model in contrast, regardless of

what the other voters do, a voter�s action has some signaling e¤ect on future candidate positions.

Razin (2003) analyzes a model of pivot versus signaling e¤ects in elections with pure common values

and incomplete information about a common shock. This contrasts with our private values model, in

which candidates have incomplete information about individual voters�preferences. In Razin�s model,

vote totals a¤ect policies enacted by winning candidates, but the mechanism by which this occurs is

di¤erent�votes convey to the election winner information about state of the world, whereas in our model

votes convey to future candidates information about the distribution of voters. Also, the types of equilib-

ria that arise in the two models are quite di¤erent. For example, in Razin�s model there is an equilibrium

in which signaling e¤ects dominate pivot e¤ects. However, this equilibrium is �unconventional,�(Razin�s

term) in the sense that a vote for a liberal candidate signals that the voter�s private information indicates
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that conservative policies are desirable.

In a few other recently-developed models, voters use votes to signal their preferences, and thus a¤ect

policy outcomes. Meirowitz and Tucker (2005) study voting in a parliamentary election and a subsequent

presidential election. Voters in the parliamentary election can use their votes to signal dissatisfaction

with a presidential candidate, thereby inducing him to expend costly e¤ort to increase his valence. There

are a variety of di¤erences between that model and the one we develop here. Most important, our model

is fundamentally policy-based rather than valence-based and we are primarily interested in limit results

for large electorates whereas Meirowitz and Tucker only analyze a 3-voter case of their model.

In terms of substantive objectives, the most similar research is by Fowler and Smirnov (2007), who

analyze a decision theoretic model of voting in situations where vote totals are assumed to a¤ect future

policies via an exogenously set reaction function. However, Fowler and Smirnov hard wire the pivot

probability at zero so their model cannot be used to analyze the relative importance of pivot and signaling

e¤ects.

In terms of technical setup, our model is most similar to Meirowitz (2005), which provides a general

analysis of pure signaling motivations in polls, and Shotts (2006), which analyzes abstention in elections

with both signaling and pivot motivations in a model with a �xed population size. However, neither of

these papers address our the central question: do pivot e¤ects or signaling e¤ects dominate drive the

behavior of voters in a large electorate?

One can imagine other signaling motivations in elections. In fact Razin (2003) discusses a model in

which the signalling motivation is exogenous or reduced form. The goal of our paper, in contrast, is

to consider a game where the signaling motivation was endogenous and see which e¤ect dominates. A

natural extension would be to think of settings in which the second period candidates did not converge

in equilibrium, e.g., because they face uncertainty about voter preferences and have policy motivations.

We conjecture that the proof technique employed in establishing proposition 2 could be extended to

address this case, but such an analysis is beyond the scope of this paper.

At a broader level, our result has important implications for theories of elections. Put bluntly, it

may be the case that existing electoral models are focusing on the wrong thing. While one-shot pivot-

based models have moved beyond simple two candidate competition with uncertainty only about voter

preferences to incorporate questions about turnout, exogenous and endogenous valence, three or more
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candidates and correlated private information on the part of voters, our main result suggests that it

might be fruitful to rethink some of these extensions when there is a large electorate and a signalling

motivation is present.
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7 Appendix

The following Lemma is used in the proof of Proposition 1.

Lemma 2: (1) udif (vi) is continuous and weakly increasing in vi: (2) [Lipschitz property] 8~vi; v̂i 2

[0; 1], judif (~vi)� udif (v̂i)j � 3 � j~vi � v̂ij. (3) udif (0) � 0 and udif (1) � 0.

Proof: We �rst prove separately versions of this result for udif1 (vi) and udif2 (vi), then combine

them to get the desired result for udif (vi) = udif1 (vi) + udif2 (vi) :

For udif1 (vi) ; note that jL� vij� jR� vij is continuous and weakly increasing in vi since R > L and�
2m
m

�
(F (xc))

m (1� F (xc))m 2 [0; 1] : Thus udif1 (vi) is continuous and weakly increasing in vi: Also,

since the slope of jL� vij�jR� vij is either one (for vi 2 (L;R)) or zero (for vi 2 (0; L)[(R; 1)), udif1 (vi)

satis�es the Lipschitz property with a Lipschitz constant of 1: Finally, since L < R, udif1 (0) � 0 and

udif1 (1) � 0.

For udif2 (vi) ; note that by part 3 of Lemma 1, 8k 2 f1; :::; 2mg ; F�1median

�
1
2
jk;xc

�
� F�1median

�
1
2
jk + 1;xc

�
;

so
��F�1median

�
1
2
jk;xc

�
� vi

��� ��F�1median

�
1
2
jk + 1;xc

�
� vi

�� is continuous and weakly increasing in vi. Thus
the probability-weighted sum,

2mX
k=0

 
2m

k

!
(F (xc))

2m�k (1� F (xc))k
�����F�1median

�
1

2
jk;xc

�
� vi

����� ����F�1median

�
1

2
jk + 1;xc

�
� vi

�����
is continuous and weakly increasing in vi: For the Lipschitz property, note that judif2 (~vi)� udif2 (v̂i)j

equals��������
P2m

k=0

�
2m
k

�
(F (xc))

2m�k (1� F (xc))k
���F�1median

�
1
2
jk;xc

�
� ~vi

��� ��F�1median

�
1
2
jk + 1;xc

�
� ~vi

����P2m
k=0

�
2m
k

�
(F (xc))

2m�k (1� F (xc))k
���F�1median

�
1
2
jk;xc

�
� v̂i

��� ��F�1median

�
1
2
jk + 1;xc

�
� v̂i

���
��������

=

������������
2mX
k=0

 
2m

k

!
(F (xc))

2m�k (1� F (xc))k

26666664
��F�1median

�
1
2
jk;xc

�
� ~vi

�����F�1median

�
1
2
jk;xc

�
� v̂i

��� ��F�1median

�
1
2
jk + 1;xc

�
� ~vi

��+��F�1median

�
1
2
jk + 1;xc

�
� v̂i

��

37777775

������������
�

2mX
k=0

 
2m

k

!
(F (xc))

2m�k (1� F (xc))k � 2 j~vi � v̂ij

� 2 � j~vi � v̂ij

which simpli�es to��������
2mX
k=0

 
2m

k

!
(F (xc))

2m�k (1� F (xc))k

0BB@
��F�1median

�
1
2
jk;xc

�
� ~vi

��� ��F�1median

�
1
2
jk;xc

�
� v̂i

��
�
��F�1median

�
1
2
jk + 1;xc

�
� ~vi

��+ ��F�1median

�
1
2
jk + 1;xc

�
� v̂i

��
1CCA
��������
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which is less than or equal to

2mX
k=0

 
2m

k

!
(F (xc))

2m�k (1� F (xc))k � 2 j~vi � v̂ij

� 2 � j~vi � v̂ij

For udif2 (0) � 0; recall that from part 3 of Lemma 1 that 8k; F�1median

�
1
2
jk;xc

�
� F�1median

�
1
2
jk + 1;xc

�
so

udif2 (0) =

2mX
k=0

 
2m

k

!
(F (xc))

2m�k (1� F (xc))k
�
F�1median

�
1

2
jk;xc

�
� F�1median

�
1

2
jk + 1;xc

��
� 0

By a similar argument udif2 (1) � 0:

Since udif1 (vi) and udif2 (vi) are continuous and weakly increasing in vi; so is udif (vi) = udif1 (vi)+

udif2 (vi) : Since judif1 (~vi)� udif1 (v̂i)j � j~vi � v̂ijand judif2 (~vi)� udif2 (v̂i)j � 2 j~vi � v̂ij ; judif (~vi)� udif (v̂i)j �

3 � j~vi � v̂ij : Finally, since udif1 (0) � 0 and udif2 (0) � 0; udif (0) � 0; and likewise udif1 (1) � 0 and

udif2 (1) � 0 imply udif (1) � 0:�

Proposition 1: There exists an equilibrium in which voters use symmetric cutpoint strategies in

the �rst period.

Proof: Consider the correspondence

�(xc) = fvi 2 [0; 1] : udif (vi) = 0 when Nni use the symmetric cutpoint strategy speci�ed by xcg

Note that �(xc) : [0; 1] ! [0; 1] is nonempty for all xc 2 [0; 1]; by parts 1 and 3 of Lemma 2 and the

Intermediate Value Theorem. Also, since udif (x) is continuous and weakly increasing, �(xc) is convex-

valued. So, to apply Kakutani�s �xed point theorem, and conclude that there exists an equilibrium, i.e.,

an x�c 2 � (x�c) all we need to do is to establish that �(xc) is upper hemi-continuous.

Consider a sequence of points
�
xtc
	
! ~xc and a sequence

�
yt
	
! ~y where yt 2 �(xtc);8t: We need

to show that ~y 2 �(~xc):

For each t following the de�nition of udif (vi) in Equation 1, let utdif (vi) be the utility di¤erence

function given cutpoint xtc and let ~udif (vi) be the utility di¤erence function given cutpoint ~xc:

We �rst note that
�
utdif (vi)

	
converges pointwise to ~udif (vi) : The �rst part of the utility di¤erence
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function is

utdif1 (vi) =

 
2m

m

!�
F (xtc)

�m �
1� F (xtc)

�m
(jL� vij � jR� vij)

which converges pointwise to

~udif1 (vi) =

 
2m

m

!
(F (~xc))

m (1� F (~xc))m (jL� vij � jR� vij)

since
�
xtc
	
! ~xc: The second part is

utdif2 (vi) �
2mX
k=0

 
2m

k

!�
F (xtc)

�2m�k �
1� F (xtc)

�k
�
�����F�1median

�
1

2
jk;xtc

�
� vi

����� ����F�1median

�
1

2
jk + 1;xtc

�
� vi

�����

which by part 5 of Lemma 1 and the fact that
�
xtc
	
! ~xc converges pointwise to

~udif2 (vi) �
2mX
k=0

 
2m

k

!
(F (~xc))

2m�k (1� F (~xc))k

�
�����F�1median

�
1

2
jk; ~xc

�
� vi

����� ����F�1median

�
1

2
jk + 1; ~xc

�
� vi

����� :
Now we suppose that ~y =2 �(~xc); and derive a contradiction. If ~y =2 �(~xc) then either ~udif (~y) > 0 or

~udif (~y) < 0: Without loss of generality suppose the former. Then since utdif (vi) converges pointwise to

~udif (vi) there exists T such that for all t > T; utdif (~y) >
~udif (~y)

2
: By the Lipschitz property in part 2 of

Lemma 2, for all t > T; utdif (~y)� utdif (~y � �) � 3 � � for any � > 0: Setting � =
~udif (~y)

6
we have that for

t > T; utdif (~y)� utdif (~y � �) <
~udif (~y)

2
, so utdif (~y � �) > utdif (~y)�

~udif (~y)

2
> 0: Thus, since yt 2 �(xtc);

or, equivalently utdif
�
yt
�
= 0; and utdif (vi) is weakly increasing in vi, we conclude that y

t < ~y� � for all

t > T; which means that
�
yt
	
cannot converge to ~y; a contradiction.�
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Figure 1

Examples of H-(x;xc)
when #R<m+1 for values 

of xc in {0,a,b,1}
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