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A B S T R A C T   

Cross-sectional studies have linked differences in white matter tissue properties to reading skills. However, past 
studies have reported a range of, sometimes conflicting, results. Some studies suggest that white matter prop
erties act as individual-level traits predictive of reading skill, whereas others suggest that reading skill and white 
matter develop as a function of an individual’s educational experience. In the present study, we tested two 
hypotheses: a) that diffusion properties of the white matter reflect stable brain characteristics that relate to stable 
individual differences in reading ability or b) that white matter is a dynamic system, linked with learning over 
time. To answer these questions, we examined the relationship between white matter and reading in a five-year 
longitudinal dataset and a series of large-scale, single-observation, cross-sectional datasets (N = 14,249 total 
participants). We find that gains in reading skill correspond to longitudinal changes in the white matter. 
However, in the cross-sectional datasets, we find no evidence for the hypothesis that individual differences in 
white matter predict reading skill. These findings highlight the link between dynamic processes in the white 
matter and learning.   

1. Introduction 

White matter - the tissue that contains the long-range axonal con
nections among different brain regions - was historically viewed as static 
infrastructure critical for healthy cognitive function (Wernicke, 1874; 
Geschwind, 1965). However, the field went through a dramatic shift as it 
became clear that oligodendrocytes, the glial cells responsible for 
myelination in the white matter, actively monitor neural activity (Pea
se-Raissi and Chan, 2021; Fields, 2015). Through signaling mechanisms 
that sense neuronal discharges, oligodendrocytes actively change 
properties of the white matter in response to fluctuations in neural ac
tivity (Ishibashi et al., 2006; Barres and Raff, 1993). Indeed, it is now 
largely appreciated that the white matter not only plays an essential role 
in behavior, but also that plasticity in the white matter is a critical 
component of the learning process (Fields, 2015). 

Given that white matter is sculpted by experience, and that 

properties of the white matter can undergo dramatic changes over 
timescales ranging from hours (Gibson et al., 2014; Sagi et al., 2012), to 
days (Huber et al., 2021), to years (Yeatman et al., 2014; Lebel et al., 
2008), we now must grapple with how to interpret individual differ
ences in white matter structure. It is often assumed that white matter 
differences are static traits that explain differences in behavior and can 
serve as useful biomarkers of, for example, learning disabilities (Gabri
eli, 2009; Langer et al., 2017; Vandermosten et al., 2015; Gabrieli et al., 
2015). This perspective is supported by dozens of studies that have: a) 
observed correlations between white matter diffusion properties and 
behavioral measures of academic skills or b) found group differences in 
white matter diffusion properties between individuals with versus 
without learning disabilities (Ozernov-Palchik and Gaab, 2016; Van
dermosten et al., 2012; Ben-Shachar et al., 2007). 

Reading serves as a paradigmatic example of the relationship be
tween white matter and academic abilities. Seminal research by 
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Klingberg and colleagues (Klingberg et al., 2000) discovered differences 
in white matter diffusion properties between dyslexic and control par
ticipants, inspiring dozens of labs around the world to try to characterize 
the white matter phenotype of dyslexia (and reading abilities more 
broadly) (Ben-Shachar et al., 2007; Beaulieu et al., 2005; Niogi and 
McCandliss, 2006a; Deutsch et al., 2005; Saygin et al., 2013; Boets et al., 
2013). Although much of this work has identified white matter differ
ences between strong and struggling readers, these studies have re
ported a variety of, and sometimes even conflicting, results (see 
Supplemental Table 1 for an overview of past findings). These incon
gruencies also appear in various meta-analyses, with some identifying a 
link between reading ability and the white matter (Vandermosten et al., 
2012) and others finding no brain-behavior relationship in the domain 
of reading (Moreau et al., 2018). Regardless of the direction of these 
effects, many of these studies have interpreted observed group differ
ences in the white matter properties of dyslexic versus control partici
pants as a static brain-behavior relationship that can be used to classify 
an individual based on intrinsic properties of their brain. 

In contrast to studies exploring biomarkers that emphasize static 
brain-behavior relationships, longitudinal studies have highlighted the 
dynamic relationship between white matter plasticity and learning 
(Huber et al., 2021; Wandell and Yeatman, 2013; Yeatman et al., 2012a; 
Wang et al., 2017). These studies offer compelling evidence that rates of 
white matter development differ dramatically among individuals and 
are influenced by an individual’s learning experiences. For example, 
Yeatman and colleagues (2012) showed that over a three year period 
participants with above-average reading skills showed increases in 
fractional anisotropy (FA), a quantity measured with diffusion MRI, in 
specific white matter pathways. Struggling readers, on the other hand, 
showed declines in FA in those same white matter pathways (Yeatman 
et al., 2012a). Similarly, Wang and colleagues (2017) showed divergent 
developmental trajectories for the core reading circuitry at the very 
beginning of reading instruction (Wang et al., 2017). Furthermore, 
intervention studies have identified dramatic changes in the diffusion 
properties following intensive reading interventions (Keller and Just, 
2009; Huber et al., 2018). Even over the course of a couple weeks of 
intensive intervention, white matter tissue properties can change with 
large effect sizes, calling into question the stability of cross-sectional 
group comparisons (Huber et al., 2018). These studies challenge the 
assumption that white matter differences observed in poor readers are 
rooted in static brain traits, and instead suggest that the white matter is a 
dynamic, experience-dependent system that is linked with learning over 
development. 

Until recently, the vast majority of published brain-behavior re
lationships have relied on small (n < 50), relatively homogenous 
participant samples, recruited from the surrounding community of a 
single research institution (Vandermosten et al., 2012). As highlighted 
by recent work (Marek et al., 2022), results from small and homogenous 
samples often do not generalize to a broader population. Furthermore, 
the relationship between white matter properties and reading skill has 
been shown to vary across socioeconomic groups (Gullick et al., 2016; 
Turesky et al., 2022; Ozernov-Palchik et al., 2019). Together, these 
findings not only suggest that demographic factors should be considered 
when exploring brain-behavior relationships but also raise questions as 
to how the link between socioeconomic status, reading, and white 
matter development unfolds at a population level. Resolving these issues 
has only recently become possible as the neuroimaging community has 
come together to produce large, publicly available, multi-site datasets 
that sample a much broader swath of the population than traditional, 
single-laboratory studies (Alexander et al., 2017; Jernigan et al., 2016; 
Casey et al., 2018). 

For example, a recent cross-sectional analysis of the Healthy Brain 
Network (HBN) dataset (Alexander et al., 2017), representing the largest 
study of white matter and reading to date, did not reveal any significant 
differences in FA between struggling and typical readers nor a signifi
cant relationship between FA and reading scores (Meisler and Gabrieli, 

2022). These findings not only raise questions about the observed re
lationships between reading and the white matter in smaller, 
cross-sectional studies, but also about the impact of sample makeup on 
these brain-behavior correlations, as the HBN dataset is a much more 
diverse sample than those found in traditional single-lab studies. 

In the present study, we seek to test two hypotheses surrounding the 
relationship between white matter and academic skills: a) that indi
vidual differences in white matter diffusion properties reflect stable 
brain traits that relate to academic skills or b) that white matter and 
learning are dynamically linked over time and change in response to an 
individual’s educational environment. To do so, we capitalize on a large- 
scale longitudinal dataset to explore the longitudinal relationship be
tween changes in white matter properties and reading development. 
These data do not reveal any cross-sectional relationships between 
reading skill and white matter properties but, rather, show that gains in 
reading skill and changes in the white matter are linked longitudinally. 
This finding supports the hypothesis that white matter and learning are 
part of a dynamic system that changes as a function of educational 
experience. 

We then leverage four additional large-scale public datasets, totaling 
more than 12,000 children and adults, to examine the cross-sectional 
correlations between white matter and reading ability. In this sample, 
which is more than two orders of magnitude larger than most previous 
studies, we find no support for the hypothesis that white matter features 
serve as static traits that predict differences in reading ability. Our 
analysis suggests that previous studies were detecting characteristics of 
small, demographically homogeneous samples. Together these findings 
suggest that a child’s environment exerts a dramatic influence on white 
matter development and reject the notion that reading difficulties are 
explained by a stable white matter phenotype. 

2. Materials and methods 

To explore questions surrounding the properties of the white matter 
networks underlying reading skill, we leveraged five large-scale, pub
licly available datasets. These datasets included the Pediatric Longitu
dinal Imaging, Neurocognition, and Genetics (PLING (Wierenga et al., 
2018)) dataset, the Child Mind Insitute’s Healthy Brain Network (HBN) 
dataset (Alexander et al., 2017), the University of California San Diego’s 
Pediatric, Imaging, Neurocognition, and Genetics (PING (Jernigan et al., 
2016), and the Human Connectome Project’s (HCP) Young Adult dataset 
(Harms et al., 2018). All five of these datasets provide neuroimaging 
data, demographic information, and a variety of behavioral assessments, 
including raw and age-standardized reading. We attempted to be as 
consistent as possible in our analytic pipelines, but due to differences in 
the available measures across these datasets, this was not always 
possible. An overview of the various demographic and behavioral 
measures included in each dataset are provided in Table 1. 

Furthermore, due to differences in the processed data derivatives 
made available across the various datasets, the diffusion MRI data for 
the HBN, ABCD, and HCP-YA samples were analyzed using pyAFQ 
(Kruper et al., 2021) and the PLING and PING samples were analyzed 
using AtlasTrack (Hagler et al., 2009). Although tractometry was per
formed using different computational pipelines, past studies have shown 
that these analyses are robust to the details of the methodology (Kruper 
et al., 2021). Code to reproduce the results and figures is available at htt 
ps://github.com/earoy/longitudinal_wm. 

2.1. PLING 

The PLING dataset was used to explore the relationship between 
changes in white matter properties and changes in academic skills over 
time. This dataset tracked 176 individuals over the course of 5 years, 
although not all participants completed all 5 time points. After excluding 
participants who did not participate in at least 3 time points and those 
that did not pass quality control, we were left with a sample of 73 
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individuals. At the time of the first observation, participants were be
tween 5 and 10 years old. 

At each time point, participants completed an MRI scanning session 
as well as an assortment of behavioral tasks. dMRI data was collected at 
each time point and diffusion MRI metrics from each timepoint were 
provided based on AtlasTrack. The available AtlasTrack metrics for this 
dataset include mean FA and MD values for 37 major white matter 
tracts. The behavioral measures we used in this analysis included a 
composite reading raw score derived from the Test of Word Reading 
Efficiency (TOWRE) Sight Word Efficiency and Phonetic Decoding Ef
ficiency subtests (Torgesen et al., 2011). We choose raw TOWRE score, 
as using an age-normalized score will potentially obscure 
within-individual growth from year to year. 

Based on past research investigating the link between reading and 
white matter (Wandell and Yeatman, 2013), we centered these analyses 
on the left arcuate fasciculus, inferior longitudinal fasciculus (ILF), su
perior longitudinal fasciculus (SLF), the right homologues of these 
tracts, and the frontal and posterior corpus callosum. However, because 
our initial longitudinal models only revealed a relationship between 
reading and FA in the left arcuate, we limited our subsequent modeling 
approaches to only the left arcuate. 

To explore the longitudinal dynamics between reading skill and 
diffusion properties of the white matter, we constructed a series of 
longitudinal models. Although most participants (81%) participated in 
consecutive timepoints, some skipped an observation and therefore had 
missing data. We used t-tests to compare the reading scores and FA 
values of participants who dropped out of the study and those who did 
not. These tests suggested that missingness in the data was independent 
of both reading and white matter properties (both p > 0.05). Because 
these data were missing at random, we relied on Full Information 
Maximum Likelihood to generate estimations for these missing values 
while fitting the parallel-process latent growth model. For the linear- 
mixed effects and mlVAR models, missing observations were dropped 
from the analysis. 

First, we generated a linear-mixed effects model predicting mean- 
centered TOWRE reading scores from time point, initial age, mean- 
centered FA at each time point, and overall mean FA as fixed effects, 
and participants as a random effect. The use of mean-centered FA 
allowed us to discern year-to-year change in FA from overall FA within 
each participant. To better understand the time series of FA and reading 
score change, we used a multi-level vector autoregression model 
(mlVAR (Epskamp et al., 2018a); Bringmann et al., 2013). This model 
used time series data to test if FA at a given time point predicted reading 
scores at the subsequent time point or vice versa. Finally, we generated a 
parallel-process latent growth curve model to understand the relation
ship between the rate of reading score change and the rate of FA 
development. We constructed this latent growth curve model using the 
lavaan package in R (Rosseel, 2012). 

2.2. HBN 

The HBN dataset consists of diffusion MRI and phenotypic data from 
over 1500 participants ranging from 5 to 21 years of age from the greater 
New York City area. In the HBN sample, neuroimaging data were 
collected at four different scanner sites, however the present analysis 
only included data from the three sites that used 3 T scanners: Rutgers 
University Brain Imaging Center, the CitiGroup Cornell Brain Imaging 
Center, and the CUNY Advanced Science Research Center. The sample 
analyzed in the present study consisted of 777 participants who passed 
quality control and had both neuroimaging data and various phenotypic 
measures, including reading scores and socioeconomic status, as 
indexed by parental income. To assess reading reading skill, we use the 
TOWRE age standardized total score. We also calculated an age stan
dardized composite score based on the word reading and pseudoword 
decoding subsections of the Wechsler Individual Achievement Test 
(WIAT (McCrimmon and Climie, 2011)) as a second measure of reading 
skill. Individuals were labeled as struggling readers if their composite 
score was below 85 (one standard deviation from the mean) on either 
assessment. The use of age standardized scores allowed us to control for 
age-related gains in reading and to generate reading groups that span
ned the age range of the entire sample. 

The raw diffusion MRI data were preprocessed using qsiprep (Cieslak 
et al., 2020) and quality control was performed on the entire dataset 
using a neural network trained on ratings generated by a combination of 
diffusion imaging experts and community scientist on two subsets of the 
HBN dataset (Richie-Halford et al., 2022a). Any participants who did not 
meet quality control standards were excluded from the analysis. Addi
tionally, qsiprep outputs measures of MRI data quality such as 
framewise-displacement and neighborhood voxel correlations. We 
entered these two data quality measures as covariates into our models, 
as individual differences in in-scanner motion, even among individuals 
who pass gross quality control, can have an impact on derived metrics 
such as fractional anisotropy (FA). 

Once the diffusion imaging data were preprocessed, pyAFQ was used 
to calculate tractometry properties (Kruper et al., 2021). Briefly, con
strained spherical deconvolution (Tournier et al., 2007), implemented in 
DIPY (Garyfallidis et al., 2014) was used to estimate fiber orientation 
distributions in every voxel, and probabilistic tractography was used to 
propagate streamlines throughout the white matter. 24 major white 
matter tracts were identified as originally described by Yeatman and 
colleagues (2012) (Yeatman et al., 2012b). Each tract was sampled to 
100 nodes. Fractional anisotropy (FA), mean diffusivity (MD), and mean 
kurtosis (MK) were calculated at each node using the Diffusional Kur
tosis Model (DKI (Jensen et al., 2005; Henriques et al., 2021) and axonal 
water fraction (AWF) was calculated using the White Matter Tract 
Integrity Model (WMTI (Fieremans et al., 2011)). 

To assess the extent to which our computational pipeline impacted 
the results, we also implemented a pipeline that generated the stream
lines using anatomically-constrained tractography (Smith et al., 2012) 
implemented in MRTRIX3 (Tournier et al., 2019). Tract identification 

Table 1 
Overview of the neuroimaging, demographic, and reading measures available in each dataset.  

Dataset Number of Observations per 
Participant 

Tractometry 
Pipeline 

Demographic Measures Reading Measure 

PLING 3-5 AtlasTrack n/a Raw TOWRE 
n = 73 
HBN 1 pyAFQ Parental Income Age-adjusted WIAT, Age-adjusted 

TOWRE n = 777 
PING 1 AtlasTrack Parental Income Age-adjusted NIH Toolbox 
n = 1119 
ABCD 1 pyAFQ Parental Income, Neighborhood Deprivation, School 

Achievement 
Age-adjusted NIH Toolbox 

n =
11,080 

HCP-YA 1 pyAFQ n/a Age-adjusted NIH Toolbox 
n = 1200  
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proceeded as above. We then grouped the data based on the behavioral 
data to make group comparisons across the various tracts. These diffu
sion features were also used as input to machine learning algorithms to 
predict reading scores. The results of both tractography pipelines were 
similar and, ultimately, the DIPY tractography was used. 

With neuroimaging data, there are often differences between scan
ners, which can create variation in data quality and the scale of diffusion 
properties. This makes comparing images acquired from different sites 
challenging. To account for between-scanner variation, ComBat 
harmonization was performed on the tractometry data to correct for any 
scanner-related variance from the data (Fortin, 2017, 2018; Johnson 
et al., 2007). We also made sure to “protect” potential effects of age, 
reading skill, and parental income by including these variables as 
covariates in our ComBat model. This ensures that potential biological 
effects due to imbalances in these covariates across the scanner sites are 
not lost during the harmonization process. We employed the neuro
combat_sklearn library in the present analysis to perform ComBat 
harmonization on the data and remove any scanner or site related 
variation from the neuroimaging data. 

2.3. PING 

Data from the Pediatric Imaging, Neurocognition and Genetics 
(PING) Study database (http://ping.chd.ucsd.edu/) was used in the 
preparation of this article. PING was launched in 2009 by the National 
Institute on Drug Abuse (NIDA) and the Eunice Kennedy Shriver Na
tional Institute Of Child Health & Human Development (NICHD) as a 2- 
year project of the American Recovery and Reinvestment Act. The pri
mary goal of PING has been to create a data resource of highly stan
dardized and carefully curated magnetic resonance imaging (MRI) data, 
comprehensive genotyping data, and developmental and neuropsycho
logical assessments for a large cohort of developing children aged 3 to 20 
years. The scientific aim of the project is, by openly sharing these data, 
to amplify the power and productivity of investigations of healthy and 
disordered development in children, and to increase understanding of 
the origins of variation in neurobehavioral phenotypes. For up-to-date 
information, see http://ping.chd.ucsd.edu/. 

The PING dataset consists of neuroimaging and behavioral data from 
1119 participants between 3 and 20 years old. The imaging protocols 
and processing steps are outlined in Jernigan et al (Jernigan et al., 
2016). In the present analysis, we used the diffusion tensor imaging 
(DTI) data provided by the authors of the PING study, which was pro
cessed using AtlasTrack (Hagler et al., 2009). This processed diffusion 
data includes the mean FA and MD values in 37 major white matter 
tracts, as well as the mean FA and MD values for the left hemisphere, 
right hemisphere, and the whole brain. In addition to the neuroimaging 
data, the PING dataset also provides behavioral assessments from the 
NIH Toolbox (Gershon et al., 2013a, 2013b), which includes an Oral 
Reading Recognition Test for ages 3 and above. We looked at age 
standardized scores on this reading assessment and classified individuals 
who scored below one standard deviation from the mean as struggling 
readers. This dataset also includes parental income, which we used as an 
index of socioeconomic status. 

2.4. ABCD 

The ABCD dataset consists of neuroimaging and behavioral data 
from the first observation of a ten-year longitudinal study. This time 
point includes data from 11,080 participants between 8 and 11 years 
old. The imaging protocols and processing steps are outlined in Casey 
et al. (Casey et al., 2018). In the present analysis, we used the minimally 
processed diffusion MR data provided in ABCD annual release 4.0 
(available on the NIMH Data Archive). Like the HBN data, the ABCD 
data were processed using pyAFQ, which resulted in tract profiles for 24 
major white matter pathways. In addition to the neuroimaging data, the 
ABCD dataset also provides the same age adjusted NIH toolbox Oral 

Reading Recognition Test (Gershon et al., 2013a, 2013b) found in the 
PING dataset. We looked at age standardized scores on this reading 
assessment and classified individuals who scored below one standard 
deviation from the mean as struggling readers. The ABCD dataset also 
includes many rich demographic and socioeconomic measures, some of 
which are not found in the other datasets, including parental income, 
neighborhood deprivation scores, and school achievement. 

2.5. HCP-YA 

The HCP-YA dataset (Harms et al., 2018) consists of neuroimaging 
and behavioral data from 1200 healthy young adults between the ages of 
22 and 35. As with the HBN dataset, we used pyAFQ to perform trac
tometry on these data. For this analysis, specified parameters that 
yielded tract profiles for 24 major white matter pathways and four 
diffusion properties, FA, MD, MK (mean kurtosis), and AWF (axonal 
water fraction) for each tract. As a behavioral measure, we used the age 
adjusted NIH Toolbox Oral Reading Recognition Test to explore the 
relationship between the white matter and reading skill in this sample. 

2.6. Quality control of neuroimaging data 

To ensure that we did not include data from participants with low 
quality neuroimaging data, we relied on different quality control pro
cedures depending on the dataset. For the HBN dataset, we made use of 
the quality control scores generated by Richie-Halford et al. (2022) and 
excluded individuals from the analysis who did not receive a sufficiently 
high quality control rating (Richie-Halford et al., 2022b). In the case of 
the PLING, PING and ABCD datasets, the raw and processed data both 
undergo quality control assessment before they are made available. The 
quality control procedures for the PLING, PING and ABCD datasets are 
outlined in Wierenga et al. (2018), Jernigan et al. (2016) and Hagler 
et al. (2019), respectively (Jernigan et al., 2016; Wierenga et al., 2018; 
Hagler et al., 2019). In the case of the HCP-YA data, we relied on the 
extensive QC procedures implemented in HCP (Marcus et al., 2013; 
Hodge et al., 2016). 

2.7. Tract-wise analysis of the relationship between reading and math in 
HBN, PING, and ABCD 

In our initial analyses of the white matter properties in poor and 
skilled readers, we first conducted group-wise comparisons of FA using a 
t-test at each node along the length of the left arcuate, ILF, SLF, and 
frontal and posterior components of the corpus callosum, as these tracts 
have been implicated in reading skill in the past (Wandell and Yeatman, 
2013). To examine the anatomical specificity of these relationships, we 
also conducted the same analyses in the remaining 20 tracts as a control 
measure. After these initial comparisons, we then fit a linear-mixed ef
fects model at each node in these same tracts predicting FA from reading 
skill (skilled or poor), age, measures of MRI data quality, which included 
mean framewise displacement and neighborhood correlation. Group 
differences were assessed by examining the FDR-corrected p-value on 
the beta-coefficient for reading skill. 

We then looked to replicate these analyses using both the ABCD and 
PING datasets. For these replications, we limited our analyses to our 
initial tracts of interest. Because the ABCD data was processed with 
pyAFQ, the analysis of group differences for these data was identical to 
that used with the HBN data. However, because we only had access to 
the AtlasTrack derivatives of the PING sample, we could only conduct 
group comparisons of mean FA across our tracts of interest. 

2.8. High-dimensional modeling of the relationship between reading and 
white matter in HBN, PING, ABCD, and HCP-YA 

To generate reading score predictions from diffusion properties of 
the white matter, we fit a series of gradient-boosted random forest 
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models (XGBoost (Chen and Guestrin, 2016)). For each dataset, we fit 
three XGBoost models using either demographic information, white 
matter properties, or both demographic information and white matter 
properties as predictor variables. For all three datasets, we used age, 
SES, and, if available, geographic location and MRI data quality as 
predictors. The white matter predictors we used depended on the dataset 
and the tractometry software used to calculate diffusion properties. For 
the HBN, ABCD, and HCP-YA datasets, we used FA, MD, AWF, and MK in 
the 24 tracts identified by pyAFQ, while in the PING dataset we used the 
mean FA and MD values in the 37 tracts identified by AtlasTrack. Before 
being entered into the XGBoost models, each predictor variable was 
demeaned and scaled to unit variance. For each model, hyperparameter 
tuning was performed using a Bayesian optimization procedure (Louppe 
and Kumar, 2016) that samples over the hyperparameter space and 
performs 5-fold cross-validation to identify the best model fit. The final 
model fits were assessed using a held out test set that was counter
balanced with the training data to have similar demographic properties. 

3. Results 

3.1. A dynamic relationship between changes in the white matter and 
growth in reading skill 

Past longitudinal and intervention studies have suggested that there 
is not a stable relationship between white matter properties and reading 
skill but, rather, that diffusion measures of the white matter and reading 
ability both change dramatically depending on an individual’s educa
tional environment (Yeatman et al., 2012a; Wang et al., 2017; Huber 
et al., 2018). To test the hypothesis that the white matter is part of a 
dynamic, experience-dependent system that is linked with learning over 
time, we used a large, longitudinal sample to model the relationship 
between changes in white matter diffusion properties and growth in 
reading skills. Here we define reading skills as single word reading and 
rely on different assessments, depending on the dataset, that largely tap 
into the same latent construct. These assessments have been used 
interchangeably across past studies investigating the relationship be
tween white matter and reading skill (Supplemental Table 1). Based on 
past findings, we focused on the left arcuate, left SLF, left ILF, and corpus 
callosum, since these tracts are typically considered to be part of the core 
reading circuitry (Ben-Shachar et al., 2007; Wandell and Yeatman, 
2013). 

3.2. Development of the left arcuate tracks reading development 

We first tested the hypothesis that changes in white matter properties 
in the left arcuate are linked with changes in reading scores using data 
from the Pediatric Longitudinal Imaging, Neurocognition, and Genetics 
study (PLING (Wierenga et al., 2018)). Based on the available diffusion 
MRI derivatives in this dataset, diffusion properties of the white matter 
were calculated using AtlasTrack (Hagler et al., 2009), which provides 
mean FA and MD (mean diffusivity) for 37 white matter tracts. We began 
this analysis by determining whether FA development follows a linear or 
non-linear trajectory in this sample. To do so, we constructed a linear 
mixed-effects model predicting FA using age as a fixed-effect and 
participant as a random effect. We then constructed a non-linear model 
by adding a quadratic term on age to the linear model. Wald tests 
comparing the two models revealed that the non-linear model did not fit 
the data better than the linear model (χ2 (1) = 2.104, p = 0.147). 

To explore the relationship between reading and white matter in the 
PLING sample, we fit a longitudinal linear mixed-effects model to pre
dict mean-centered TOWRE (Test of Reading Word Efficiency) reading 
scores using time point, initial age, and mean-centered FA in the left 
arcuate, and mean FA in the left arcuate as fixed-effects and participant 
as random effects. TOWRE was used as our main reading outcome, as it 
was the only measure of reading available in this dataset. The inclusion 
of both mean-centered FA at each time point and overall mean FA 

allowed us to separate year to year change within an individual from 
mean FA differences between participants. 

This model revealed significant effects of time point (t(244) =
14.141, p < 0.001), and mean-centered FA in the left arcuate (t(244) =
3.440, p = 0.0006). The effect of mean-centered FA suggests that, 
within an individual, changes in the diffusion properties of the left 
arcuate are linked with changes in reading scores across time, even after 
controlling for age-related increases in FA and overall FA level (Fig. 1B). 
Interestingly, we find no stable relationship between reading skill and 
white matter properties when we examine the correlation between 
TOWRE scores and FA in the left arcuate at each time point separately 
(Supplemental Fig. 1). Taken together, these results suggest that within 
individual changes in diffusion properties of the left arcuate fasciculus 
track gains in learning over time and call into question the notion of 
stable individual differences in white matter structure. 

To estimate growth rates for FA, we fit a linear regression model 
within each individual, predicting each participant’s FA value as a 
function of age in years (similar to Yeatman et al (Yeatman et al., 
2012a).). The coefficients of the linear model serve as an estimate of the 
rate of change in FA over time within a given white matter tract. We 
applied a similar approach to generate individual estimates of reading 
score change over time. 

We first examined the correlation between the rate of FA develop
ment in the left arcuate and the rate of raw reading score improvement 
and found a significant relationship between the two (r = 0.27, adjusted 
p = 0.02, Fig. 1B). Thus, children with more rapid growth in reading 
abilities also show more rapid white matter development in the left 
arcuate. We did not observe any relationship between the rate of FA 
development and rate of reading score development in any of the other 
tracts of interest (Fig. 1C). We next used the individual growth rates to 
examine the relationship between the rate of FA development and initial 
age to see if FA growth rates in the left arcuate differed across devel
opmental stages. This correlation was not significant (r = − 0.210, 
p = 0.08), suggesting that the rate of FA change in the left arcuate is not 
significantly different from linear over the age range present in the 
sample. 

3.3. Reading skills predict future FA development in the left arcuate 

Given the relationship between changes in FA in the left arcuate and 
changes in reading skill, we then tested whether changes in one variable 
preceded changes in the other or if these changes occurred in parallel. To 
model the longitudinal interplay between white matter development 
and reading, we constructed a multi-level vector autoregression model 
(mlVAR (Epskamp et al., 2018a); Bringmann et al., 2013). Within this 
model, we used the time series of FA measurements in the left arcuate 
and TOWRE reading scores to assess whether reading scores at a given 
time point are explained by FA at the previous time point or vice versa. 
This analysis revealed that FA in the left arcuate at one time point does 
not predict reading scores at the next time point (t(162) = –0.01, 
p = 0.971), but that reading skill at one time point does, in fact, predict 
FA at the following time point (t(162) = 5.44, p < 0.0001). 

To compare the beta-coefficients of the model path connecting past 
reading scores with future FA against the path linking past FA with 
future reading scores, we conducted a bootstrapped difference test 
(Epskamp et al., 2018b). To do so, we generated a bootstrap distribution 
(n = 2000) of mlVAR coefficients and constructed a 95% confidence 
interval around the difference between the reading to FA coefficient and 
the FA to reading coefficient. The interval of the difference between the 
two coefficients did not include 0 (Bootstrapped 95% CI: [0.728, 0.748]) 
suggesting that the two coefficients are significantly different. Thus, 
growth in reading skills from one year to the next predicts future 
changes in the white matter, whereas developmental changes in the 
white matter do not predict future gains in reading skill. 

The mlVAR model revealed that reading skill at one time point 
predicts FA in the left arcuate at the next, however, this model does not 
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provide insight into the relationship between the rate of reading 
development and the rate of FA development in the left arcuate. To 
better understand this dynamic, we constructed a parallel process latent 
growth curve model of the longitudinal growth of reading skill, FA, and 
the relationship between the two. Because the model did not converge 
properly due to an insufficient number of participants at the fifth time 
point, only observations from the first four time points were included in 
this analysis. Fig. 2 presents a path diagram illustrating the hypothesized 
growth trajectories of reading skill and FA in the left arcuate. 

To assess the impact of change in reading score on change in FA (and 
vice versa), we generated two models incorporating two different 

regressors (in place of covariance structures): one predicting the slope of 
FA from the slope of reading and another predicting the slope of reading 
from the slope of FA. Based on modeling of individual growth rates 
presented above, we defined this latent growth curve using linear 
growth rates for both reading and FA. The overall model fits were 
acceptable (χ2 (Deutsch et al., 2005) = 33.41, p = 0.056, RMSEA 
= 0.085, TLI = 0.973). Additionally, the regression predicting FA slope 
from reading slope was significant (z = 1.956, p = 0.05), whereas the 
regression predicting reading slope from FA slope was not (z = − 1.311, 
p = 0.190). Taken together, the results from these models suggest that, 
while both FA and reading skill develop over time, the rate of individual 

Fig. 1. A: Rendering of the arcuate, inferior longitudinal fasciculus, superior longitudinal fasciculus, and corpus callosum identified with AtlasTrack. Due to con
straints with the PLING dataset, only renderings of the right arcuate, ILF, and SLF are available. B. Upper Panel: Mean-centered FA (Fractional Anisotropy) values at 
each time point for the left arcuate correlate with mean centered reading scores assessed at each time point, illustrating the longitudinal relationship between 
changes in FA and changes in reading skill. Lower Panel: Relationship between individual rates of FA development in the left arcuate and rate of raw TOWRE (Test of 
Reading Word Efficiency) reading score change. C: Relationship between individual rates of FA development in the right Arcuate, left and right ILF, left and right SLF, 
and callosum and rate of raw TOWRE reading score change in the longitudinal PLING dataset. 

Fig. 2. A. Path diagram illustrating the mlVAR model capturing the temporal dynamics between the development of reading and FA in the left arcuate over time. The 
values represent the beta-weights associated with each path within the model. B. Path diagram outlining the parallel process latent growth curve model capturing the 
interplay between longitudinal growth in reading and FA development in the left arcuate. Rectangles represent observed reading or FA values at a given time point 
and ovals represent latent slope and intercept variables. Unidirectional arrows represent regressions within the model and the adjacent numbers signify the associated 
beta-coefficients. Bidirectional arrows represent covariance structures and the adjacent numbers signify the covariance values. 
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reading gains predicts the rate of future FA development, while the rate 
of FA development does not predict the rate of reading gains. 

3.4. Rate of FA development in the right arcuate and left ILF are not 
related to changes in reading 

To test whether the same longitudinal relationships existed between 
reading and additional white matter tracts, we first constructed the same 
longitudinal mixed-effects model in the right arcuate, a tract that has not 
been implicated in the literature as a core component of the reading 
circuitry (Ben-Shachar et al., 2007; Wandell and Yeatman, 2013). This 
model revealed a significant main effect of time point (t(244) = 10.811, 
p < 0.00001) but no effect of FA in the right arcuate (t(244) = 1.325, 
p = 0.186) nor initial age (t(244) = 0.530, p = 0.597). We also con
ducted the same longitudinal mixed-effect analysis using FA in the left 
ILF since past findings have also identified this tract as part of the 
reading circuitry. Again this model revealed a significant main effect of 
time point (t(244) = 13.998, p < 0.00001). However, we did not 
observe significant main effects for FA in the left ILF (t(244) = 1.526, 
p = 0.128) nor initial age (t(244) = − 0.884, p = 0.377). These main 
effects suggest that neither FA in the right arcuate nor the left ILF 
significantly relate to changes in reading skills over time. There was also 
no significant relationship between FA in right arcuate or ILF and 
reading scores when the time points were examined separately. 

3.5. No static relationships between white matter properties and reading 
ability 

After establishing the dynamic, longitudinal relationship between 
white matter development and reading development, we then attempted 
to replicate past findings from the literature which have suggested that 
static differences in the white matter explain individual differences in 
reading skill. Using the HBN dataset (Alexander et al., 2017), one of the 

most diverse large-scale pediatric samples to date, we compared the 
white matter diffusion properties of struggling readers (again using a 
typical cutoff for dyslexia) and a control group to test the hypothesis that 
stable individual differences in white matter properties relate to reading 
skill, as measured by age-standardize TOWRE composite scores. 

The HBN data was processed with QSIPrep (Cieslak et al., 2020), 
rigorous quality control was applied to each participant’s data 
(Richie-Halford et al., 2022a), and tractometry was performed with 
pyAFQ (Kruper et al., 2021). After identifying 24 major white matter 
tracts, pyAFQ samples each tract to 100 nodes and provides various 
diffusion metrics for each node (see Methods for overview). The 
following node-wise group comparisons focused on the left arcuate, left 
ILF, left SLF, and corpus callosum, which have been most consistently 
implicated in past studies examining the relationship between the white 
matter and reading skill (Ben-Shachar et al., 2007; Wandell and Yeat
man, 2013). Based on past cross-sectional findings, the expectation is 
that children with low reading scores will show reduced FA values in the 
left arcuate, left ILF and left SLF compared to the control group and 
increased FA in the posterior callosum. Additionally, we analyzed 20 
control tracts to examine anatomical specificity of reading effects in the 
large and diverse HBN sample (Supplemental Fig. 2). 

An initial group comparison using minimal quality control and not 
controlling for age or SES revealed reduced FA in areas of the right SLF 
and the callosal motor fibers in struggling readers (corrected p < 0.05, 
Supplemental Fig. 3), but not in left arcuate, left ILF, or left SLF (all 
corrected p > 0.05). After filtering for quality control (See Methods), 
performing ComBat harmonization on the tract profile data to remove 
the effects of the scan site, and controlling for various confounds, a 
group comparison at each node failed to reveal any significant differ
ences in FA (Fig. 3, all adjusted p > 0.05). Fig. 3 shows the differences in 
FA between the two reading groups at each node after controlling for 
age, SES, MRI data quality, and geographic location. There were no 
nodes with significant group differences. Since the HBN data contains a 

Fig. 3. A: Rendering of the eight tracts of interest identified with pyAFQ overlaid on the T1-weighted image of the corresponding hemisphere. Note: the posterior and 
anterior callosum are included as separate tracts though both are part of the corpus callosum. B: FA (Fractional Anisotropy) profiles for the core reading circuitry in 
the HBN data derived by the default pyAFQ pipeline for reading groups after controlling for age and harmonizing on scanner site. The shaded area around each line 
represents one standard error. C: FA profiles for the core reading circuitry in the ABCD. D: Rain cloud plots showing the distributions of mean FA values for the core 
reading circuitry by reading group in the PING data set. There are no significant differences in the diffusion properties between reading score groups across the two 
datasets. There is a negligible effect of reading group on FA values across all seven tracts. 
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broad distribution of ages, we repeated this group comparison sepa
rately for three age bins as roughly found in the literature: 5–9 years old 
(Yeatman et al., 2012a; Wang et al., 2017; Huber et al., 2018; Niogi and 
McCandliss, 2006b), 10–15 years old (Keller and Just, 2009; Hasan 
et al., 2012; Yeatman et al., 2011), 14–21 years old (Steinbrink et al., 
2008). As with the full sample, we found no group differences across any 
of the age ranges (Supplemental Figure 7). 

To validate the surprising lack of group differences observed in the 
HBN dataset, we also explored the relationship between white matter 
and reading in the PING dataset (Alexander et al., 2017; Jernigan et al., 
2016; Casey et al., 2018). In the PING dataset, the NIH Toolbox Oral 
Reading Recognition Test is the only available measure of reading skill. 
As with the PLING data, diffusion metrics for PING data are provided 
based on AtlasTrack (as opposed to pyAFQ; see Methods for overview). 
Therefore, we could only examine mean FA and MD for 37 white matter 
tracts in this analysis. In these data, we looked to see if we could detect 
differences in the mean FA across the tracts that comprise the core 
reading circuitry. After controlling for age and parental income, we 
again did not find any significant differences in mean FA between the 
struggling readers and control groups (Fig. 3, all p > 0.05). 

After observing no group differences in the HBN and PING datasets, 
we turned to the ABCD dataset (Alexander et al., 2017; Jernigan et al., 
2016; Casey et al., 2018), the largest ongoing developmental neuro
imaging study. Similar to the HBN dataset, tractometry was performed 
using pyAFQ. We constructed a series of regression models to explore the 
extent to which reading skills, as measured by the NIH toolbox Oral 
Reading Recognition Test, predict FA in the core reading circuitry. In 
these models, we leveraged the rich demographic data only present in 
the ABCD dataset, including parental income, neighborhood depriva
tion, and school achievement to create a fuller representation of socio
economic status. After controlling for these demographic factors, the 
addition of reading group to the model had a negligible effect on the 
amount of variance explained between the two models (all ΔR2 < 0.003, 
all all Cohen’s f2 < 0.003, Fig. 3). 

3.6. Diffusion properties fail to predict reading scores above demographics 
in three large-scale datasets 

After failing to observe any significant differences between in
dividuals with low and high reading scores, we explored the idea that 
static white matter differences related to reading skill are not localized 
to a single tract but, rather, form a distributed network that might have a 
nonlinear relationship to reading ability. To test this hypothesis, we fit a 
series of gradient-boosted random forest models (XGBoost (Chen and 
Guestrin, 2016)) to determine how well diffusion properties from the 
entire white matter, not just the reading circuitry, serve to predict 
reading scores. For this particular analysis, we prioritized predictive 
accuracy (as opposed to interpretability) (Shmueli, 2010). We chose the 
XGBoost algorithm because of its exceptional performance across a wide 
range of machine learning applications (Parsa et al., 2020; Ogunleye and 
Wang, 2020; Gumus and Kiran, 2017) and its ability to capture complex, 
non-linear relationships that would be missed by a linear regression 
model. 

We began this analysis by fitting a series of models to predict TOWRE 
scores from a range of factors in the HBN dataset. Our first model con
tained only age, SES, and geographic location as predictor variables; the 
second model contained demographic variables and measures of MRI 
data quality; the third model contained diffusion properties (FA, MD, 
AWF, MK) from all 24 tracts delineated in the dataset and measures of 
MRI data quality; the fourth model contained white matter properties 
and measures of MRI data quality; the full model contained de
mographic variables, white matter properties and measures of MRI data 
quality as predictors. Each predictor was first demeaned and then scaled 
to unit variance before being entered into the XGBoost models. The 
performance of these five models is presented in Supplemental Figure 9. 

Cross-validated model R2 showed that the demographics-only and 

white-matter-only models explain roughly the same amount of variance 
in reading scores in the HBN data (Fig. 4). The combination of white 
matter features and demographic information as predictors did not 
improve model fit above the models with only demographic information 
or only white matter features. Thus, as expected, differences in de
mographics (e.g., SES) did explain some variance in reading scores 
(Jensen et al., 2005; Henriques et al., 2021; Fieremans et al., 2011). The 
model with only diffusion properties did predict roughly 3.5% of the 
variance in reading scores (Table 2). However, white matter properties 
did not explain additional variance in reading ability above and beyond 
demographics, indicating that there was not a specific relationship be
tween reading skill and the white matter, beyond what is predicted by 
sociodemographic factors (Table 2). Furthermore, when we divided the 
HBN sample into low, medium, and high SES bins and applied the same 
modeling pipeline, neither demographic features nor white matter 
properties explained any variance in reading skill (Table 2). We then 
turned to a different measure of reading ability, the Wechsler Individual 
Achievement Test (WIAT), to see if white matter properties could predict 
a different measure of reading other than TOWRE. Similar to our first set 
of models, diffusion properties of the white matter did not explain 
additional variance in reading skill above and beyond demographic 
factors (Supplemental Fig. 4). 

To further examine the surprising finding that individual differences 
in the white matter do not, in fact, predict reading abilities (above and 
beyond demographic factors), we reprocessed the data from scratch 
using a different approach to tractography. Specifically, we re- 
calculated tractometry properties using tractography data generated 
by QSIPrep (Cieslak et al., 2021) using anatomically constrained trac
tography (Smith et al., 2012) (ACT; see Methods) to see if the lack of 
reading ability prediction stemmed from our choice of tractography 
parameters during the initial processing pipeline. These new trac
tometry properties again revealed group differences in the tract profiles 
before quality control, but these differences disappeared when we 
applied more rigorous quality control and harmonized the data across 
scanner sites (Supplemental Figure 5). We then conducted the same 
XGBoost modeling approach with these data and again found that white 
matter properties did not predict reading scores above and beyond de
mographic information (Supplemental Figure 6). 

Finally, we used the AtlasTrack derivatives present in the PING 
dataset and the pyAFQ outputs generated from the ABCD dataset to train 
a series of XGBoost models to predict reading scores from either de
mographic factors, diffusion properties of the white matter, or both 
demographic factors and white matter in these independent datasets. 
The models trained on the PING data showed that demographic features, 
namely socioeconomic status, predicted reading scores (cross-validated 
R2 = 0.040) and that the addition white matter features to the model did 
not increase predictive power (cross-validated R2 =0.045, t (Huber 
et al., 2021)= 0.383, p = 0.36, Fig. 4C). The models trained on the 
ABCD data also revealed that demographic features explained roughly 
10% of the variance in reading scores (cross-validated R2 = 0.101), and 
white matter features did not improve predictive power of the model 
(cross-validated R2 =0.078). 

3.7. Maturational differences in white matter properties predict age 

To ensure that the lack of cross-sectional effects did not reflect poor 
data quality or modeling errors, we sought to benchmark our models 
against a finding with a well-established effect size. The largest and most 
consistent effect in the diffusion MRI literature is that FA increases and 
MD decreases with age (Yeatman et al., 2014; Lebel et al., 2008; Elu
vathingal et al., 2007; Lebel et al., 2019). Based on this, we would expect 
to be able to explain a significant portion of the variance in age in the 
present sample using diffusion data. To evaluate the signal quality of the 
diffusion data, we fit models to predict each participant’s age using the 
same XGBoost models. As expected, the demographics-only model failed 
to predict age above chance confirming that there was not a sampling 
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bias. The white matter model, on the other hand, predicted 64% of the 
variance in age in the HBN dataset and 70% of the variance in age in the 
PING dataset (Fig. 4C). These predictions are consistent with the 
state-of-the-art in “brain age” calculations (Brown et al., 2012) con
firming, first, that the diffusion MRI data was sufficiently high quality to 
accurately index white matter maturation and, second, that our 
modeling approach was able to accurately capture these effects. 

In contrast to the HBN and PING datasets, white matter properties 
only predicted about 7% of the variance in age in the ABCD dataset. 
However, all the participants in the ABCD sample are within two years of 
age of each other and, therefore, there is not much maturational varia
tion in the white matter properties for the model to learn. 

3.8. Reading score - white matter relationships are sample-dependent 

The present analysis leveraged the largest diffusion MRI sample to 
date to explore the relationship between white matter and reading 
abilities. Contrary to the compendium of small, single-observation 
studies, this large sample did not reveal any stable predictors of 
reading ability in the white matter. One potential explanation for this 
discrepancy is that previous studies were picking up on real effects that 
reflected specific characteristics of the small, homogenous samples that 
do not generalize to the population at large. The HBN dataset is an 
extremely neurodiverse sample of children from a variety of de
mographic backgrounds, with 87% of participants having at least one 
diagnosis and 53% of participants having more than one diagnosis. 

To test the hypothesis that seemingly conflicting results across past 
studies stem from specific features of the participant recruitment stra
tegies, we tested whether we could predict reading scores using a small, 
homogeneous sub-sample of the entire HBN dataset that excluded 

participants based on strict quality control measures and co-occurring 
diagnoses. We began by selecting all the participants between the ages 
of 8 and 12 years old from one site (CBIC) and excluding any participants 
diagnosed with autism, anxiety, or ADHD, as these diagnoses have been 
shown to correlate with reading skills in different ways (Ostrolenk et al., 
2017; Germanò et al., 2010; Grills-Taquechel et al., 2012). Within this 
limited sub-sample, we then identified the 40 top and bottom readers 
based on their TOWRE scores to create groups that differed dramatically 
in terms of reading ability. The resulting, single-site sample was skewed 
towards high SES participants, as is the case with many single-laboratory 
studies. We split this sub-sample into a training set of 60 participants and 
a test set of 20 participants. We then trained an XGBoost classifier on the 
train set using 5-fold cross-validation before predicting reading level 
(high or low) in the test set. The classifier trained on white matter 
properties had a classification accuracy of 0.714 in the held-out test 
sample. In addition to this classification model, we trained an XGBoost 
model to predict reading scores in this same sub-sample, to facilitate 
comparison across our other modeling pipelines. The model trained on 
white matter data to predict reading scores in this sub-sample predicts 
roughly 11% of the variance in reading scores in the test set (Table 2). 
However, when we thresholded the reading score predictions made by 
our regression model using the maximum score for the low reading 
group as a cutoff, we found that the model had a classification accuracy 
of 0.52 in the test sample, just slightly above chance performance. 

Next, we examined the relationship between white matter and 
reading ability in a large-scale, dataset consisting of healthy, college- 
aged young adults (HCP). The original HCP recruitment screened for 
many different developmental, neurological and psychiatric disorders 
and reflects a more homogenous sample than, for example, the HBN data 
(Van Essen et al., 2012; Chin Fatt et al., 2021) and is substantially less 

Fig. 4. A. Predicted vs observed reading scores of the test data generated by the XGBoost model trained on white matter features from the HBN data (R2 =0.059). B. 
Predicted vs. observed age from XGBoost model trained on white matter features from HBN data (R2 =0.64). C. Train and test R2 scores for XGBoost models 
predicting reading (red) and age (green) in the HBN (left panel) and PING (center panel) and ABCD (right panel) datasets. 
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diverse than the US population. Using an XGBoost model, we found that 
diffusion properties of the white matter calculated by pyAFQ were able 
to predict 7.9% of the variance in reading scores, as measured by the 
NIH Toolbox, in the top and bottom 100 readers, in line with other 
predictions of cognitive ability made using the HCP dataset (Rasero 
et al., 2021). Thus, in these two cases representing samples that were a) 
more demographically homogeneous, b) differed substantially in terms 
of reading ability and, arguably c) are more similar to a typical sample 
collected by a single university research group, white matter properties 
did predict individual differences in reading ability. 

However, using the same approach in the PING dataset, we were 
unable to predict reading scores from diffusion properties. Similar to the 
HBN data, we generated this subsample by taking the 40 highest vs 
lowest scoring readers between the ages of 8 and 12 years old. We again 
trained XGBoost models on the data from this subset and were unable to 
predict reading scores from the average diffusion properties of the white 
matter (Table 2). The lack of prediction in the PING subset suggests that 
mean diffusion properties may not be suitable for generating cross- 
sectional behavioral predictions, even in homogenous samples. 

4. Discussion and conclusions 

We explored two hypotheses surrounding the relationship between 
white matter and reading skills: a) that white matter and reading skill 
are dynamically linked over time and change with factors such as an 
individual’s educational environment and b) that white matter proper
ties act as static biomarkers that predict differences in reading abilities. 
To test the first hypothesis, we examined a five-year longitudinal data
set, which revealed that individual growth rates in the left arcuate are 
linked with growth in reading scores over time. Further modeling 
revealed that gains in reading predict future changes in FA in the left 
arcuate fasciculus. These models suggest that individual differences in 

learning are related to white matter development rather than white 
matter differences serving as constraints on the learning process. 

To explore the second hypothesis, we analyzed three large-scale 
cross-sectional datasets (HBN: n = 777, ages: 5–21; PING: n = 1119, 
ages: 3–20; ABCD: n = 11,080, ages: 8–11) and found no stable rela
tionship between white matter diffusion properties and reading scores. 
To capitalize on the strengths of both explanatory and predictive 
modeling (Shmueli, 2010), we conducted group comparisons to explore 
the specific white matter properties underlying differences in reading 
skill and also leveraged high-dimensional models to predict reading 
scores from white matter properties. Across all three of these datasets, 
univariate group comparisons revealed no differences between poor and 
skilled readers and XGBoost models were unable to predict reading 
scores from diffusion features (after controlling for SES). However, 
analysis of a large-scale adult dataset (HCP-YA: n = 1200) and a subset 
of the HBN data revealed that diffusion properties of the white matter 
serve to predict reading scores in more homogenous samples, suggesting 
that group differences in the white matter between typical and strug
gling readers may depend on the makeup of the sample. All together, 
these results suggest that properties of the white matter may not 
necessarily serve as static traits that differentiate individuals but, rather, 
that white matter and reading skill may be part of a dynamically linked 
system that changes over time. 

The longitudinal dynamics between reading skill and white matter 
properties observed in the PLING dataset serve to highlight the role that 
an individual’s environment may play in driving the development of 
brain-behavior relationships. In these data, not only did changes in 
reading skill track changes in FA in the left arcuate, the rate of individual 
reading gains predicted increases in FA in the left arcuate, suggesting 
gains in reading precede, and potentially influence, changes in the white 
matter. Other longitudinal studies have shown that skilled readers 
demonstrate positive rates of FA development in the left arcuate and ILF, 
whereas poor readers demonstrate shallower developmental slopes in 
the same tracts (Yeatman et al., 2012a; Wang et al., 2017), but the 
present study is the first to examine temporal precedence of longitudinal 
relationships in the reading circuitry. Future work should expand these 
analyses to additional white matter tracts to better understand the 
longitudinal relationship between white matter and learning throughout 
the entire brain, not just within the reading circuitry. 

Nevertheless, questions remain as to how growth opportunities 
within an individual’s learning environment relate to changes in both 
academic skills and brain properties. In the PLING dataset, only three 
participants had an initial standardized TOWRE composite score below 
85 making it impossible to study the differences in growth trajectories 
between struggling and typical readers. Additionally, the present sample 
includes a broad range of ages and we therefore cannot assess how these 
longitudinal dynamics change across different stages of development. It 
also bears mentioning that the demographic makeup of the PLING 
sample largely resembles that of the homogeneous HBN sub-sample and 
that these longitudinal findings may not necessarily generalize to a more 
demographically and socioeconomically diverse population. Future 
longitudinal and intervention studies will be critical for understanding 
these developmental dynamics and determining the relationships be
tween demographic and environmental factors, learning, and white 
matter plasticity. 

The longitudinal interplay between white matter growth and reading 
gains raises questions about previous reports of a static link between 
white matter structure and reading skills. Many studies have found 
differences in the white matter properties of dyslexic versus typical 
readers based on cross-sectional observations of small samples (Van
dermosten et al., 2012; Saygin et al., 2013). However, the present 
analysis of the HBN, PING, and ABCD datasets (totaling nearly 13,000 
participants) failed to reveal any meaningful group differences in the 
white matter properties of struggling and typical readers. Furthermore, 
state-of-the art machine learning models were unable to predict reading 
scores from white matter properties above and beyond demographic 

Table 2 
Cross-validated R2 test scores for TOWRE reading score predictions made from 
XGBoost models trained on white matter properties. The diffusion properties 
used to train the models vary due to differences in the tractography software 
used on the various data sets.  

Dataset Diffusion 
Predictors 

Number of 
Prediction 
Features 

Cross-validated R2 

Score (Test Set) 

HBN - Full Sample FA, MD, MK, 
AWF 

9600 0.033 

HBN - Full Sample FA 2400 < 0.001 
HBN - Full Sample MD 2400 -0.032 
HBN - Full Sample MK 2400 -0.019 
HBN - Full Sample AWF 2400 0.010 
HBN - Full Sample Mean FA 24 0.014 
HBN - Full Sample Mean MD 24 -0.021 
HBN - Full Sample Mean MK 24 -0.001 
HBN - Full Sample Mean AWF 24 0.015 
HBN - Low SES FA, MD, MK, 

AWF 
9600 -0.001 

HBN - Medium SES FA, MD, MK, 
AWF 

9600 -0.035 

HBN - High SES FA, MD, MK, 
AWF 

9600 -0.126 

HBN - Site CBIC FA, MD, MK, 
AWF 

9600 -0.076 

HBN - Site CUNY FA, MD, MK, 
AWF 

9600 -0.844 

HBN - Site RU FA, MD, MK, 
AWF 

9600 -0.016 

HBN - Homogenous 
subset 

FA, MD, MK, 
AWF 

9600 0.114 

HCP-YA - Top/ 
Bottom 100 
Readers 

FA, MD, MK, 
AWF 

9600 0.079 

PING - Homogenous 
subset 

Mean FA, 
Mean MD 

37 -0.044  
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factors. This observation is in line with recent work showing that the 
effect sizes of many brain-behavior relationships are much smaller (or 
non-existent) than estimates from small samples (Marek et al., 2022). 

These results are also generally in line with those reported by Meisler 
and Gabrieli (Meisler and Gabrieli, 2022) which did not find any sig
nificant relationship between FA and reading skills in a subset of the 
HBN dataset. Though the authors observed a relationship between FA 
and phonemic decoding in the right SLF and the left ICP in participants 
above age 9, their analysis relied on a different analytic pipeline 
(TractSeg (Wasserthal et al., 2018)), which may explain the subtle dif
ferences between their findings and the present results. Regardless of the 
differences between these independent analyses of the HBN dataset, 
both sets of results suggest that the relationship between the white 
matter and reading skill may not necessarily be reducible to static, in
dividual differences in the diffusion properties of the white matter. 
White matter properties are highly plastic and changes in the diffusion 
signal have been detected on the timescale of hours (Sagi et al., 2012) 
and months (Keller and Just, 2009; Mackey et al., 2012) after a learning 
experience. Therefore, it is possible that these datasets serve as a snap
shot of a dynamic, experience-dependent system in flux and do not 
capture the longitudinal relationships between brain, behavior, and 
environment. 

Based on this interpretation, however, one might expect to observe a 
more stable relationship between reading and white matter properties in 
adults. Although, when we divide the HBN sample into distinct age bins, 
we are unable to observe a relationship between reading skill and white 
matter properties, even in the oldest age range (Supplemental Figures 7 
and 8), in the HCP-YA adult sample, we do observe a link between white 
matter properties and reading skill. Together, these results suggest that 
environmental and/or developmental factors may dynamically influ
ence the relationship between reading and white matter over the course 
of development and lead to detectable group differences in adulthood. 
However, it could also be the case that there exist dynamic traits 
moderating the relationship between white matter and literacy that 
obscure group differences over the course of development but lead to 
detectable differences in adulthood. Future longitudinal studies will be 
necessary to better understand the dynamics between white matter 
plasticity and literacy, especially considering that white matter path
ways continue to develop throughout childhood and into adulthood 
(Lebel et al., 2019). 

The lack of meaningful group differences in the HBN, PING, and 
ABCD samples do not necessarily serve to dismiss past findings linking 
properties of the white matter to reading skill but, rather, present new 
challenges for the field consider in order to reconcile the seemingly 
conflicting findings from large-scale data sets, small single-lab studies, 
and meta-analyses. First, in the present analyses, we rely on traditional 
diffusion MRI measurements, namely FA. It could be the case that novel 
diffusion measurements might serve to capture static relationships be
tween the white matter and literacy. Second, as highlighted in recent 
work using large-scale fMRI datasets, the effect size of various brain- 
behavior relationships decreases as a function of sample size and 
makeup (Marek et al., 2022). Moreover, models that are trained on a 
biased demographic group often do not generalize to more diverse 
samples (Li et al., 2022). It is possible that sampling procedures impact 
the relationship between diffusion properties of the white matter and 
academic skills and may explain the seemingly contradictory results 
between the present study and past findings. 

One of the strengths of these large scale datasets, especially the HBN 
sample, is that they include participants from a wide range of geographic 
and demographic backgrounds, representing diversity that is rarely 
present in the samples collected by a single lab. Thus, these large-scale 
datasets provide a new opportunity to explore brain-behavior relation
ships while controlling for the robust relationship between clinical and 
socioeconomic factors and academic outcomes. For example, the HBN 
sample is also extremely neurodiverse: nearly all the individuals in the 
dataset have some sort of clinical diagnosis. In the final sample used in 

our analysis, only 35 of 777 participants (4.5%) had no diagnosis 
whatsoever. Some of these co-occurring diagnoses can impact reading 
scores and white matter properties and it could be the case that these 
multiple, overlapping clinical diagnoses may obscure potential brain- 
behavior relationships. For instance, many individuals diagnosed with 
autism have been shown to have hyperlexia (Ostrolenk et al., 2017), 
whereas ADHD or anxiety diagnoses have been linked to lower reading 
scores (Germanò et al., 2010; Grills-Taquechel et al., 2012). On the other 
hand, past findings from single laboratories that demonstrate a rela
tionship between white matter properties and reading skill are typically 
based on a single observation of smaller, demographically homogeneous 
samples, usually recruited from the community surrounding a univer
sity. Additionally, these samples often exclude individuals with certain 
diagnoses. Inconsistent sampling procedures may explain why some 
studies report increased FA in struggling readers (Hasan et al., 2012; 
Yeatman et al., 2011) and others report reduced FA in struggling readers 
(Wang et al., 2017; Keller and Just, 2009; Niogi and McCandliss, 2006b). 

Interestingly, when we generate a small (n = 80) homogenous sub
sample of the HBN data, excluding participants with autism, ADHD, or 
anxiety diagnoses, we find that high-dimensional models trained on 
diffusion properties of the white matter do predict some variance in 
reading scores. However, it should also be noted that this subset of the 
data is highly skewed in terms of socioeconomic status, with most of the 
participants coming from upper SES households. This finding parallels 
the results observed in the HCP-YA data, which also revealed that 
properties of the white matter served to predict reading scores in a large, 
relatively homogenous sample of adults. The recruitment procedures in 
many single-lab studies may lead to more discernible relationships be
tween individual differences in white matter properties and reading skill 
but these results might not generalize beyond the sample. In fact, for 
individuals with high SES backgrounds, genetic factors have been shown 
to exert more of an influence on FA than those from lower SES back
grounds (Chiang et al., 2011), suggesting that in homogenous, high SES 
samples, genetic factors may influence the relationship between white 
matter and reading skill in a manner that may not replicate in more 
diverse study populations. 

These findings also raise questions surrounding the relationship be
tween SES (and other environmental factors more broadly), literacy, and 
white matter development. In the present analysis, the models trained 
exclusively on white matter features did predict some variance in 
reading skills. However, this variance largely overlapped with the 
variance explained by demographic factors, given that the models 
trained on both white matter and SES did not serve to explain additional 
variance in reading abilities and white matter did not predict reading 
skill whatsoever in models trained on data from distinct SES bins. Pre
vious studies relying on smaller, more homogenous participant pop
ulations might have been picking up on this indirect relationship. 
Untangling the complex relationships between environmental factors 
such as SES, brain development, and academic achievement is a complex 
issue (Li et al., 2022) and researchers leveraging large-scale, single-
observation datasets need to carefully consider how to incorporate 
covariates, such as clinical diagnoses and SES, into their analyses. 

It also bears mention that these large-scale datasets generally consist 
of data collected using multiple scanners, often made by different 
manufacturers. Subtle differences across scanners may introduce an 
additional source of variability to the data despite efforts to harmonize 
scan sequences across sites (Alexander et al., 2017; Jernigan et al., 2016; 
Casey et al., 2018). We employed state-of-the-art approaches to 
harmonize the neuroimaging data across scanner sites (Fortin, 2017, 
2018; Johnson et al., 2007) and reduce the impact of scanner site on the 
variability of the diffusion measures. However, when we generated 
predictive models from each scan site separately, only data from one site 
predicted any variance in reading scores. Thus it is possible that dif
ferences in scanners and pulse sequences may obscure subtle differences 
in the white matter that do relate to reading skill. 

As the field of developmental cognitive neuroscience moves into the 
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era of Big Data with diverse groups of participants, longitudinal mea
surements will be of particular importance to answer questions sur
rounding the relationship between the brain, academic environment, 
and learning. Past meta-analyses have failed to identify reliable neuro
logical profiles for individuals labeled as “learning disabled” (Moreau 
et al., 2018; Peters et al., 2018), suggesting that a more individualized 
approach to studying learning may be important, and densely sampled 
functional neuroimaging studies have found that an individual’s 
neurobiology is often distinct from group-level patterns (Yip and 
Konova, 2021). A single snapshot of a dynamic system can be misleading 
and longitudinal studies are critical for capturing the within-individual 
interplay between environmental factors, brain development and 
learning. 

Historically, the field of developmental cognitive neuroscience has 
relied on cross-sectional samples based on a single observation of each 
participant to draw connections between brain properties and cognitive 
skills such as reading. A brief review of the literature reveals that there 
are at least 27 studies on the neuroanatomical underpinnings of reading 
skill and of these, only 3 studies consist of more than 2 observations per 
participant. Furthermore, of the five large-scale, publicly-funded, 
developmental datasets that we are aware of, only 1 includes observa
tions at at least four different time points. Unfortunately, a dynamic 
system cannot be studied with cross-sectional data - at least four time 
points are necessary to resolve the dynamic interactions that we 
discovered in the current work. The present findings provide strong 
evidence for the dynamic nature of brain-behavior associations and 
suggest that differences in white matter properties based on a single 
observation do not necessarily relate to stable behavioral differences. 
Developmental cognitive neuroscience should prioritize longitudinal, 
within-subjects designs that investigate brain-behavior relationships 
coupled with information about an individual’s educational environ
ment. This will lead to a better understanding of how different learning 
opportunities influence brain development and open the door for 
refined, developmentally appropriate learning interventions and peda
gogical strategies. 
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