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Deep Learning-based Approximate Nonlinear Model Predictive Control
with Offset-free Tracking for Embedded Applications

Kimberly J. Chan†, Joel A. Paulson†, and Ali Mesbah

Abstract— The implementation of nonlinear model predictive
control (NMPC) in applications with fast dynamics remains an
open challenge due to the need to solve a potentially non-convex
optimization problem in real-time. The offline approximation
of NMPC laws using deep learning has emerged as a powerful
framework for overcoming these challenges in terms of speed
and resource requirements. Deep neural networks (DNNs) are
particularly attractive for embedded applications due to their
small memory footprint. This work introduces a strategy for
achieving offset-free tracking despite the presence of error
in DNN-based approximate NMPC. The proposed approach
involves a correction factor defined via a small-scale target
tracking optimization problem, which is easier to approximate
than the tracking NMPC law itself. As such, the overall control
strategy is amenable to efficient implementations on low-cost
embedded hardware. The effectiveness of the proposed offset-
free DNN-based NMPC is demonstrated on a benchmark
problem in which the control strategy is deployed onto a field
programmable gate array (FPGA) architecture that is verified
using hardware-in-the-loop simulations.

I. INTRODUCTION

Model predictive control (MPC) is one of the most pop-
ular methods for the control of constrained multivariable
systems [1]. Although MPC has found widespread use in
industrial process systems [2], it has been gaining traction
in various emerging applications due to its versatility and
inherent robustness properties (e.g., autonomous vehicles [3],
biomedical systems [4], and humanoid robots [5]). However,
the transition to such emerging applications, characterized
by their large-scale, highly nonlinear, and/or fast dynamics,
brings about additional computational challenges – due to
the fact that the underlying optimization problem defining
the MPC law must be solvable in real-time. This problem
is further exacerbated when the controller must be deployed
on resource-constrained embedded systems.

Over the past few decades, significant work has been
done in the development of fast MPC methods, which can
be broadly categorized in two paradigms. The first set of
approaches involve the development of fast solvers and
customized implementations, e.g., variations of Nesterov’s
fast gradient method [6]–[8] and the alternating direction
method of multipliers (ADMM) [9], [10]. Some of these
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algorithms have been implemented in software tools that
can automatically generate C-code for direct implementa-
tion on embedded platforms [11], [12]. The second set
of approaches, often referred to as explicit MPC, look to
compute an offline solution to the MPC for all feasible
values of the state [13]–[15]. Explicit MPC leverages the
fact that, for linear time-invariant systems with quadratic
objective functions, the MPC problem can be formulated
as a parametric quadratic program whose solution is a
piecewise affine function defined over polytopic regions [13].
However, not only is explicit MPC restricted in terms of the
possible model, cost, and constraint functions, the number of
polytopes that define the solution grows (in the worst-case)
exponentially with the number of constraints [15]. As such,
explicit MPC is limited to either small systems with relatively
small prediction horizons polynomial approximations of the
explicit MPC law [16], [17].

This work focuses on nonlinear MPC (NMPC). Although
there has been significant progress in optimization algorithms
for NMPC [18]–[20], several additional challenges related to
numerical robustness at low computational accuracy and the
avoidance of infeasibility arise in embedded applications of
NMPC. Moreover, low-code complexity for portability and a
small memory footprint are key aspects needed for efficient
implementations on embedded hardware. Software tools such
as ACADO [21] and GRAMPC [22] attempt to address these
issues by generating highly efficient code, but the need to
store and perform operations based on relatively large-scale
matrices may still be challenging.

A promising approach to overcome these challenges is the
offline approximation of NMPC laws using deep learning.
In particular, recent theoretical results have shown that deep
neural networks (DNNs) – with several hidden layers – can
efficiently represent non-smooth control laws that arise in a
variety of MPC formulations [23]–[28]. However, due to the
error introduced by the DNN-based NMPC approximation,
it cannot be ensured that the closed-loop system converges
to the desired steady-state condition. In [29], an approach
was proposed for modifying DNNs (with rectifier linear unit
activation functions) to guarantee convergence to a particular
equilibrium point for linear systems. To the best of our
knowledge, a similar modification has not yet been developed
for nonlinear systems over a range of target conditions.
Thus, the first contribution of this work is to introduce a
novel correction factor that removes offset whenever the
system converges to an equilibrium. The proposed correction
factor is related to a steady-state target tracking optimization
problem that is of a much smaller scale than that derived



from NMPC.
The second contribution is to show how a separate DNN

can be used to build a high accuracy approximation of the
target tracker, so that the overall strategy remains amenable
to efficient embedded implementations. We also discuss
the key considerations for optimizing performance of the
embedded controller. To demonstrate the feasibility of the
method, we deploy the proposed control strategy onto a
field programmable gate array (FPGA) architecture using a
high level synthesis (HLS) approach. The DNN-based MPC
strategy with and without the correction term is applied to a
benchmark case study. Hardware-in-the-loop simulations are
performed to illustrate feasibility of the approach for embed-
ded applications wherein significantly improved performance
is observed due to the added correction factor.

Notation. The set of real numbers, non-negative inte-
gers, and positive integers are denoted by R, N, and N+,
respectively. Given a, b ∈ N such that a < b, we let
Nba = {a, a+ 1, . . . , b} denote the sequence of integers from
a to b. The ith element of a vector is denoted by [x]i. Given
two column vectors a and b, we let (a, b) = [a>, b>] denote
vector concatenation. The composition of two functions f
and g is denoted by f ◦ g(·) = f(g(·)).

II. PROBLEM STATEMENT

Consider the discrete-time nonlinear system

x+ = f(x, u), (1)
y = h(x),

where x ∈ Rnx is the current state, x+ is the successor state,
u ∈ Rnu is the control input, and y ∈ Rny is the measured
output. The system is constrained at each time k ∈ N by

x(k) ∈ X, u(k) ∈ U, (2)

where x(k) and u(k) are the state of the system and control
input at sampling time k, respectively, and X and U are
compact sets in Rnx and Rnu , respectively. We assume state
feedback. In addition, let φ(j, x,u) denote the solution to
(1) at time j given the initial condition is x and the input
sequence is u = {u(0), u(1), . . .}.

In the case of tracking control problems for constrained
nonlinear systems, if the target operating condition is
changed, the controller may fail to track the new reference.
A widely used approach to NMPC for tracking involves the
addition of the steady state and input as decision variables
[30]. In this approach, the cost function is formulated as

VN (u, xs, us, ys;x, r) =

N−1∑
i=0

`(x(i)− xs, u(i)− us) (3)

+ Vf (x(N)− xs, ys) + VO(r − ys),

where xs, us, and ys denote the steady states, inputs, and
outputs, respectively, which must satisfy xs = f(xs, us)
and ys = h(xs); r is the reference value for the outputs;
` : Rnx × Rnu → R≥0 is the positive definite stage
cost; Vf : Rnx × Rny → R≥0 is the positive definite
terminal cost; and VO : Rny → R≥0 is the positive definite

offset cost. Here, the offset cost is included to penalize the
deviation between the artificial steady-state output ys and
the reference r. For feasible reference values and under
technical conditions discussed in [30], the offset cost ensures
offset-free tracking for asymptotically constant references,
i.e., y(k) → r; otherwise, this term ensures convergence
to a minimally penalized steady-state output. The tracking
NMPC law can then be defined in terms of the solution to
the following optimization problem PN (x, r)

min
u,θ

VN (u, θ;x, r), (4a)

s.t. x(i) = φ(i, x,u), ∀i ∈ NN0 , (4b)

(x(i), u(i)) ∈ X × U, ∀i ∈ NN−10 , (4c)
xs = gx(θ), us = gu(θ), ys = gy(θ), (4d)
(x(N), θ) ∈ Γ, (4e)

where θ ∈ Rnθ is a parameter that defines the steady-state
triplet (xs, us, ys); gx(θ), gu(θ), and gy(θ) are functions that
relate θ to the steady states, inputs, and outputs, respectively;
and Γ ⊂ Rnx+nθ denotes an augmented terminal constraint
set. This parameter θ = ys is typically taken to be the steady
outputs. Based on the receding-horizon implementation of
NMPC, the control law is given implicitly as

κN (x, r) = u?(0;x, r). (5)

Although we focus on state feedback in this work, more
general output feedback problems can be accommodated by
replacing the state x with a corresponding state estimate
x̂. An output feedback strategy is also able to eliminate
offset due to underlying sources of plant-model mismatch
through proper choice of a disturbance model and estimator
(e.g., [31]). However, for embedded applications, the chosen
state estimator must also be embedded. This could require
additional implementation effort and would take up hardware
resources. Thus, output feedback is not considered here.

In this work, we aim to embed the control law (5) on
resource-limited hardware for systems with fast sampling
times on the order of milliseconds. To avoid the need to
solve a non-convex optimization of the form (4) online,
we look to use deep learning methods to build an efficient
approximation of the NMPC law offline. The deep learning-
based NMPC method is presented in the next section, along
with a novel strategy for asymptotically eliminating offset
due to controller approximation errors.

III. DEEP LEARNING-BASED TRACKING NMPC

A. Approximate NMPC using deep neural networks

This subsection recalls the principles of approximating the
solution to the parametric nonlinear programming problem
PN (x, r) in terms of a cheap-to-evaluate explicit function.
First, one must specify a feasible (or working) region in the
augmented space Z ⊂ Rnx × Rny . The feasible space Z is
then sampled to generate Ns randomly chosen initial states
and references, i.e., {(xi, ri)}Nsi=1. For every sample, problem
PN (xi, ri) is solved to obtain the corresponding optimal
input u?i = κN (xi, ri). Using data D = {(xi, ri, u?i )}

Ns
i=1,



any parametrized function κapprox(x, r;λ), where λ ∈ Rnλ
are unknown parameters, can be trained by minimizing some
loss function such as the mean squared error

λ̂ = arg min
λ

1

Ns

Ns∑
i=1

‖u?i − κapprox(xi, ri;λ)‖2. (6)

Ideally, the data set D should be chosen to be represen-
tative for the intended control application. That is, data D
should cover the span of situations expected to be observed
during online operation. We briefly discuss two of the most
common sampling strategies, which we refer to as open-
loop and closed-loop training. In open-loop training, one
specifies an explicit set such as Z = X × R, where R
represents the set of possible reference values. Although this
is a simple strategy, it can result in large spaces that include
highly unlikely (or maybe even nonphysical) situations. An
alternative is to define the set Z implicitly in terms of a
tube of closed-loop trajectories. In this case, the references
can be treated as additional states via z = (x, r). Given some
autonomous reference system r+ = fr(r), we can arrive at
the closed-loop system

z+ = fz(z) =

[
f(x, κN (x, r))

fr(r)

]
. (7)

The working region of the controller is then defined using
the tube of trajectories generated by this system from some
initial set Z0 ⊂ Rnx+ny and number of time steps T ∈ N+

Z =
⋃T−1
k=0 Z(k), (8)

where Z(k) is the reachable set of states at time k ∈ NT−10 .
The reachable set is defined recursively as follows

Z(k + 1) = {fz(z) : z ∈ Z(k)}, Z(0) = Z0. (9)

Random samples can be generated in the set (8) by per-
forming closed-loop simulations under a randomly drawn
initial condition zi ∈ Z0; notice that the solution to PN (x, r)
obtained at every step of the simulation is added to D.

Deep neural networks (DNNs) have recently become a
popular choice for the functional form κapprox(z;λ).1 For L
hidden layers and H nodes per layer, a DNN is given by

κapprox(z;λ) = αL+1 ◦ βL ◦ αL ◦ · · · ◦ β1 ◦ α1(z). (10)

The hidden layers are made up of affine transformations of
the output of the previous layer

αl(ξl−1) = Wlξl−1 + bl, (11)

where ξl−1 ∈ RH for l = 2, . . . , L + 1 and ξ0 = z. The
functions βl for l = 1, . . . , L represent nonlinear activation
functions (e.g., rectified linear units (ReLU), sigmoid, hy-
perbolic tangent), which are critical for ensuring (10) is a
universal function approximator [32]. The parameter vector

1With slight abuse of notation, we replace (x, r) with augmented state z
as the input to the control law in some places for simplicity of exposition.

λ = {W1, b1, . . . ,WL+1, bL+1} is composed of all weights
Wl and biases bl in the network, with dimensions

Wl ∈


RH×(nx+ny) if l = 1,

RH×H if l = 2, . . . , L,

Rnu×H if l = L+ 1,

(12)

and

bl ∈

{
RH if l = 1, . . . , L,

Rnu if l = L+ 1.
(13)

Once the network architecture is trained according to (6),
the approximate DNN-based NMPC law κapprox(x, r; λ̂) can
be used online to cheaply evaluate the optimal control input.

B. Hyperparameter selection

In practice, there are several hyperparameters that appear
in training of DNNs, which must be specified before λ̂ can
be computed. Generally speaking, the hyperparameters can
be related to the structure of the network, as well as the
training algorithm itself. The network structure parameters
include the number of nodes H , number of layers L, choice
of activation functions {βl}Ll=1, and the various connections
allowed between the layers. The training-related hyperpa-
rameters depend on the choice of the solver; typically some
variant of stochastic gradient descent (SGD) is utilized that
involves parameters related to the batch size (number of
samples used to approximate the gradient at each iteration)
and learning rate (how quickly the step size decays as number
of iterations increase).

Two of the most common approaches for selecting hyper-
parameters are grid and random search. Grid-based methods
are applicable when only a relatively small and finite number
of hyperparameter combinations are of interest, implying
training (6) can be repeated for all possible combinations.
The main difference between random and grid search is
that, in the former, the samples are randomly generated
from some user-selected distribution. A more sophisticated
alternative is to formulate hyperparameter selection as an
optimization problem that can be directly tackled with
derivative-free optimization methods. Bayesian optimization
[33] is a particularly attractive approach since it can handle
a mixture of continuous and integer variables and noisy
objective evaluations, as well as naturally tradeoff between
exploration of the search space and exploitation of the best
result obtained at the current iteration (see, e.g., [34]).

An important distinction here is that the hyperparameter
optimization problem involves constraints related to resource
limitations of the embedded hardware. Thus, the goal is not
to obtain the most accurate DNN, but to ensure the final
control law satisfies resource utilization and sampling time
constraints. These issues are discussed further in Section IV.

C. Offset elimination using steady-state correction factor

Let κDNN(x, r) = κapprox(x, r; λ̂) denote the trained DNN
control law. Since only a finite amount of data is considered



for training, along with other factors related to local train-
ing and fixed DNN structure, the approximate control law
introduces some level of error

‖κN (x, r)− κDNN(x, r)‖ ≤ εapprox, ∀(x, r) ∈ Z. (14)

Therefore, additional modifications are needed to ensure
convergence to the desired target condition in the face of
this error. This is particularly important for setpoint tracking
problems wherein we expect the system to operate near
steady-state for the majority of time.

The basis for the proposed correction factor is the follow-
ing target tracking optimization problem Ps(r)

min
xs,us,ys

`s(ys, us) + VO(r − ys), (15a)

s.t. xs = f(xs, us), (15b)
ys = h(xs), (15c)
(xs, us) ∈ X × U, (15d)

where `s : Rny ×Rnu → R is the steady-state cost function
that is assumed to guarantee that Ps(r) has a unique solution
for every r ∈ Rny . We let (x?s(r), u

?
s(r), y

?
s (r)) denote the

solution to the tracking optimization (15). The proposed
offset-free DNN-based NMPC law then takes the form

κOF(x, r) = κDNN(x, r) + (u?s(r)− κDNN(x?s(r), r)), (16)

whose properties are summarized next.
Theorem 1: Assume X ×U contains at least one feasible

steady state and the offset cost VO(ε) satisfies the properties
of an exact penalty function [35] for (15), wherein VO(ε)
contains some penalty weight ρ that is greater than the dual
norm of the optimal Lagrange multiplier vector correspond-
ing to the optimal solution to (15) without softened constraint
(15c). Then, the offset-free DNN-based NMPC law (16)
exists for any r ∈ Rny and guarantees that a closed-loop
equilibrium point (x∞, u∞) exists such that r = h(x∞) for
any feasible setpoint r.

Proof: First, Ps(r) is feasible for all r ∈ Rny when
(xs, us) ∈ X×U for at least one point xs = f(xs, us). This
is due to the fact that we have softened constraint r = h(xs)
through the inclusion of ys, i.e., r = h(xs) + ε for any
ε = r − ys ∈ R. This verifies the first claim. When VO
is an exact penalty function for this constraint, a feasible r
implies x?s(r) = f(x?s(r), u

?
s(r)) and r = h(x?s(r)). We can

now show that the closed-loop system x+ = f(x, κOF(x, r))
preserves this equilibrium point since κOF(x?s(r), r) =
κDNN(x?s(r), r) + (u?s(r)− κDNN(x?s(r), r)) = u?s(r). �

Theorem 1 shows that an offset-free equilibrium point
exists for the proposed control law (16); however, it does not
prove that the controller makes the system converge to this
equilibrium. In fact, it is quite likely that a poorly trained
DNN may lead to closed-loop instability. Therefore, it is
still necessary to perform some level of stability analysis
and/or performance validation before deploying the DNN-
based NMPC in practice. For example, see [36], [37] and the
references therein for scenario-based methods for performing
this type of validation.
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Fig. 1: Design workflow for FPGA Implementation: (a)
global overview, (b) HDL Coder

TM
workflow.

It is interesting to note that, whenever the approximation
error εapprox = 0, (16) reduces to κOF(x, r) = κDNN(x, r) =
κN (x, r) since the DNN matches the steady-state condition
imposed in (4) and the proposed correction term goes to
zero. This provides insight into the correction term that
effectively corrects for bias around the equilibrium condition.
That is, the closer the DNN approximates the NMPC law, the
more likely the closed-loop system to be attracted near the
equilibrium manifold; and these (fairly small) errors can be
overcome as no other equilibrium with the same steady-state
input exists. A more formal characterization of the properties
that ensure convergence will be the focus of future work.

IV. EMBEDDED FPGA IMPLEMENTATION

In this section, we describe embedded implementation of
the offset-free DNN-based NMPC using an FPGA architec-
ture. To this end, we use the HLS design workflow (Fig.
1a), which is a two-step approach that offers an optimized
but simple design method for controller deployment on the
FPGA. The first step involves creating a suitable high-level
description (e.g., C/C++, MATLAB m-files) of the control
problem that can be used in a second step by the HLS tool.
The output of the HLS tool should be synthesizable hardware
description language (HDL) code, which can be used to
program the device. There are several HLS tools (Xilinx
Vivado HLS, MATLAB HDL Coder

TM
) that can convert a

high-level description of an algorithm to a low-level HDL.
Recent works have shown the viablility of such tools in
simplifying the design process [38].

Despite the simplification in design workflow, several
considerations must be made throughout the design process
to successfully implement the control scheme. Given a
particular target device, there are constraints on the available
resources, such as memory, look-up tables (LUTs), flip flops
(FFs), or DSP slices. In addition, given the measurement
sampling time, there is a constraint on the maximum allow-
able runtime of the implemented algorithm. Based on these
limits, Fig. 2 summarizes the various considerations during
each step of the HLS workflow. Because of the limitations
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design workflow.

and the black-box nature of automatic code generation,
systematic optimization of these parameters is nontrivial and,
consequently, the overall design workflow is an iterative
process.

First, a suitable high-level description of the DNN-based
NMPC law must be created. Ensuring the satisfaction of re-
source utilization constraint depends on the size of the DNN-
based control law in terms of storage amount and number
of operations performed (e.g., additions, multiplications) and
the complexity of evaluating the control law (i.e., higher
complexity tends towards higher resource utilization).

Considerations of hardware design within the automatic
code generation step mainly include conversion to fixed-point
numerics [9] and hardware resource optimization [38]:

1) Fixed-point numerics in hardware design is beneficial
for both the speed and resource considerations at the cost
of accuracy. Floating-point arithmetic takes advantage of a
dynamic representation of values, allowing a wide range of
numeric representation. However, floating-point arithmetic
incurs high resource utilization and computational delays.
Fixed-point arithmetic mitigates this issue at the cost of
incurring quantization, overflow, and arithmetic errors [9],
which must be considered and optimized accordingly. Within
the HLS design workflow, the HLS tool may perform the
conversion automatically, allowing the user to tune the con-
version by specifying integer and fraction lengths for the
fixed-point numbers. Alternatively, it may be necessary for
the user to perform the conversion before inputting into
the HLS tool. Optimally choosing fixed-point conversion
involves balancing the error induced by lower bit repre-
sentation and preprogrammed hardware specifications (e.g.,
certain LUTs may optimally perform calculations using 18-
bit numerical representations).

2) Hardware resource optimization explores methods to
optimize the physical execution of the control law for hard-
ware design. With FPGA devices, the configurability of the
logic blocks allows for parallelization techniques such as
loop unrolling, pipelining, and inlining, which can provide
a more efficient or faster implementation of the control
law at the expense of high resource utilization [38]. The
challenge, however, is to find the proper combination of these
techniques to satisfy both resource utilization and sampling
time constraints subject to the designed controller. Within the
HLS design workflow, these optimizations are often included
as options for the user in the HLS tool, but the level of

specificity varies on the HLS tool used. Whether or not such
options in the code generation can ultimately be placed on
the device-of-choice depends on the designed controller.

Note that we mainly focus on modifying the hyperpa-
rameters of the proposed control law κOF(x, r), rather than
exploring manually selected variations in code generation
that could be explored in future works. In particular, in this
work we selected the combination of nodes and hidden layers
that minimize the approximation error subject to the resource
limitations of the hardware.

V. CASE STUDY

The performance of the offset-free DNN-based NMPC is
demonstrated on a benchmark problem using hardware-in-
the-loop simulations. We use the benchmark problem in [39],
which considers plant-model mismatch. The nonlinear plant
model used in the simulations is described by

[x]+1 = 0.95[x]1 − 0.25[x]1[x]2 + [x]2 (17)

[x]+2 = 0.7[x]2 + u,

which is a single-input single-output (SISO) bilinear system.
The control goal is to track multiple possible reference values
for the first state [x]1 over time. The embedded device is a
programmable logic (PL) side (or FPGA side) of a ZYBO
Z7 development board by Digilent. Specifications of this
hardware are summarized in Table I. This is a low-memory
device, suggesting that embedding a nonlinear programming
algorithm that solves (4) using an iterative approach would be
difficult, especially for relatively large prediction horizons.

To embed the proposed control law (16), we must deal
with two elements: the target tracker Ps(r) and κDNN(x, r).
Since Ps(r) is inherently a small-scale optimization, it can
be embedded directly on the available hardware; however,
this requires a specialized (non-trivial) workflow. To greatly
simplify this procedure, we note that a second DNN can
be trained to approximate Ps(r). Specifically, the correction
term in (16) requires x?s(r) and u?s(r) to be computed from
the target tracker at every sampling time. Thus, using the
same approach outlined in Section III-A, a DNN can be
trained that maps the “input” reference r to the “output”
(x?s(r), u

?
s(r)). Since we are interested in achieving negli-

gible offset, we intentionally train the target tracker DNN
to have < 10−4 mean squared error; this was consistently
achievable with networks having only 2 nodes and 4 layers
using only 200 random reference samples {ri ∈ [−1, 1]}200i=1.

By running validation tests, we observed that the DNN
approximation error of Ps(r) was negligible for the range
of steady-state values of interest. This DNN is assumed
fixed and will take up some limited portion of the available
resources of the FPGA device. We then use the remaining
resources to train κDNN(x, r) with the smallest possible error.
A total of Ns = 200 samples were computed by solving (4)
in MATLAB using the CasADi toolbox [40]. The training
process was performed for a range of hyperparameter values,
i.e., (H,L) ∈ {4, 5, 6, 7} × {2, 3, 4}. For each hyperpa-
rameter, the local optimization (6) was repeated 10 times
to mitigate the effects of stochasticity during training. The



TABLE I: Specifications of the FPGA device.

Specification Value
Device Name Z-7020
Part Number XC7Z020
Logic Cells 85K
Total Block RAM 4.9Mb
(# of 36Kb Blocks) (140)
DSP Slices 220
Look-up Tables (LUTs) 53,200
Flip Flops (FF) 106,400
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Fig. 3: Heatmap of the MSE of κDNN for varying number of
layers and nodes. The combinations of hyperparameters that
could not be placed on the FPGA (infeasible on FPGA) are
indicated.

DNN with the lowest validation mean square error (MSE) is
reported in Fig. 3. The trend observed in Fig. 3 demonstrates
the limitation of the hardware resources available on the
FPGA device. Larger DNNs introduce a greater number of
physical resource utilization, and, in this case, the number
of DSP slices on the FPGA device limited the feasiblity of
placing the devised control strategy.

To identify which of these DNN architectures can be fea-
sibly implemented on the FPGA, we attempted to embed the
control law κOF(x, r) onto the device following the procedure
in Section IV. In particular, we use the HDL Coder toolbox
from Mathworks, which provides an automatic conversion to
fixed point and HDL code generation and verification (see
Fig. 1b for the HDL Coder-specific workflow). An HDL
Coder-friendly m-code evaluation of the complete control
scheme is created based on the trained DNNs and used
as input to the HDL Coder Workflow Advisor. A fixed-
point version of the evaluation was generated using 24-
bit word length, with deviations from the floating point
representation on the order of 10−6. HDL code in VHDL was
then automatically generated and verified within the HDL
Coder Workflow Advisor. The MATLAB System object

TM

generated during FPGA-in-the-loop verification was then
used to perform closed loop simulations.

The resulting FPGA-in-the-loop simulations for two step
changes in the desired reference signal are shown in Fig.

Fig. 4: Closed-loop reference tracking simulations: proposed
control law κOF on CPU (solid blue); κDNN without correc-
tion on CPU (dashed red); exact NMPC on CPU κN (solid
green); and κOF on FPGA (dotted magenta).

4. For comparison purposes, we also show results for the
NMPC law κN , κDNN without the offset correction, and κOF
with an exact correction term (i.e., Ps(r) solved online), all
of which are run directly in MATLAB using the laptop CPU.
We find that the reference tracking of the approximation
κOF (both on the CPU and FPGA) very closely matches the
results of the exact NMPC, which indicates that the tracker
and NMPC approximation errors are small enough to achieve
good performance in practice. Additionally, we observe that,
by removing the correction term in κDNN, a noticeable offset
occurs for both reference values, even though the transient
response is quite similar. This highlights the importance
of the proposed correction term, especially for applications
wherein the system is expected to spend the majority of its
time near a constant reference signal.

VI. CONCLUSIONS AND FUTURE WORK

This paper proposed a novel correction factor to en-
sure the elimination of offset in DNN-based approximate
NMPC laws. We demonstrated the embedding of the DNN-
based tracking NMPC controller on a FPGA device us-
ing hardware-in-the-loop simulations. Future work will in-
volve creating a systematic framework for embedding deep
learning-based NMPC algorithms on resource-limited de-
vices and exploring emerging system-on-chip architectures.
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