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Abstract: The aim of this study is to investigate the therapeutic potential of higher doses of PU-91,
quercetin, or in combination on transmitochondrial cybrid cell lines with various mtDNA hap-
logroups derived from patients with age-related macular degeneration (AMD), glaucoma (Glc),
keratoconus (KC), and normal (NL) individuals. Cybrids were treated with PU-91 (P) (200 µM)
alone, quercetin (Q) (20 µM) alone, or a combination of PU-91 and quercetin (P+Q) for 48 h. Cellular
metabolism and the intracellular levels of reactive oxygen species (ROS) were measured by MTT and
H2DCFDA assays, respectively. Quantitative real-time PCR was performed to measure the expres-
sion levels of genes associated with mitochondrial biogenesis, antioxidant enzymes, inflammation,
apoptosis, and senescence pathways. PU-91(P) (i) improves cellular metabolism in AMD cybrids,
(ii) decreases ROS production in AMD cybrids, and (iii) downregulates the expression of LMNB1 in
AMD cybrids. Combination treatment of PU-91 plus quercetin (P+Q) (i) improves cellular metabolism
in AMD, (ii) induces higher expression levels of TFAM, SOD2, IL6, and BAX in AMD cybrids, and
(iii) upregulates CDKN1A genes expression in all disease cybrids. Our study demonstrated that the
P+Q combination improves cellular metabolism and mitochondrial biogenesis in AMD cybrids, but
senescence is greatly exacerbated in all cybrids regardless of disease type by the P+Q combined
treatment.

Keywords: AMD cybrids; Glc cybrids; KC cybrids; PU-91; quercetin; combined PU-91 and quercetin

1. Introduction

Mitochondria are organelles responsible for energy metabolism and ATP production
through oxidative phosphorylation [1,2]. It is surrounded by two membranes enclos-
ing a dense matrix of metabolism-related enzymes and a circular genome encompassing
thousands of copies of the mitochondrial DNA (mtDNA) [3]. Pathologic mitochondrial
metabolism could lead to increased production of reactive oxygen species (ROS) and al-
teration of transcription factors activities leading to the proliferation of cancer cells [4].
Furthermore, previous studies have established the critical role of mtDNA mutation in
tumorigenesis and cancer cell adaptation to environmental changes [5].

A growing body of evidence indicates a remarkable link between the aging process
and alterations in mitochondrial function [6]. Lane et al. demonstrated that aging causes
mtDNA damage and deterioration of mitochondrial respiratory capacity, resulting in in-
creased levels of ROS [7]. A significant number of recent studies have demonstrated the
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potential role of mitochondrial changes as an effective factor in a variety of age-related
diseases such as age-related macular degeneration, Parkinson’s, and Alzheimer’s dis-
eases [8–10]. Our lab previously reported that transmitochondrial cybrid cell lines from
patients with wet AMD had significant disruption of mitochondria functions, increased
apoptosis, and cell death along with altered expression levels for complement, inflamma-
tion, and angiogenesis genes [11–13].

Transmitochondrial cybrids are cell lines that have identical nuclei but mitochondria
from different individuals [14]. In another study conducted by Kenney et al., there was a
remarkable level of damaged mitochondria in 34 keratoconus corneas versus 33 normal
corneas. The relationship between increased oxidative stress and compromised mitochon-
drial DNA (mtDNA) integrity may play a significant role in this context [15]. As a result,
alternative methods of mitochondrial protection might have promising implications in the
treatment of some ocular disorders and age-related diseases.

A variety of FDA-approved drugs such as PU-91 are being considered as mitochondria-
stabilizing agents with potential therapeutic roles in AMD and other aging diseases where
mitochondria are damaged [16]. Our lab previously demonstrated that a lower dose of
PU-91 (50µM) had a significant rescuing effect in AMD cybrid cell lines. After 48 and
72 h of PU-91 treatment, PGC-1α (Peroxisome-proliferator-activated receptor Gamma
Coactivator-1 alpha), a fundamental regulator of mitochondrial biogenesis, was signifi-
cantly upregulated [17]. Another study from our lab reported that this low dose of PU-91
increased mitochondrial membrane potential and cellular metabolism while decreasing ox-
idative mitochondrial injury in AMD cybrid cells with different mitochondrial haplogroups
(J, K, and U). As a result, it was concluded that PU-91 could benefit AMD cybrid cell lines
with various different mtDNA haplogroups [18].

Quercetin is an antioxidative flavanol derived from the flavonoid group of polyphenols
found in many fruits, vegetables, and grains. Quercetin possesses diverse properties
including anti-inflammatory, anticarcinogenic, and immune-system-boosting effects, as
well as hindering lipid peroxidation and promoting mitochondrial biogenesis [19,20]. The
main antioxidant activity of quercetin is associated with cytosolic glutathione, through
inhibition of the activity and pathways of signal transduction of this enzyme, which leads
to reduced production of ROS [21].

The aim of this study is to investigate the therapeutic potential of higher doses of
PU-91, quercetin, or in combination (P+Q) on transmitochondrial cybrid cell lines with
various mtDNA haplogroups derived from patients with glaucoma (Glc), keratoconus
(KC), and age-related macular degeneration (AMD).

2. Materials and Methods
2.1. Ethics Statement

The present conducted study on human subjects was performed following the stated
principles in the Declaration of Helsinki. Research approval was received from the Institu-
tional Review Board of the University of California (UCI IRB #2003-3131).

2.2. Methods of Cybrids Creation and Culture Condition

The transmitochondrial cybrids were created according to the described process in
our previous studies [12] (Figure 1). Tubes with sodium citrate were used for collecting
25 mL of peripheral blood samples. Using DNA extraction kits (Puregene, Qiagen, Valencia,
CA, USA), the total DNA was isolated from the white blood cells and quantified with
the Nanodrop 1000 (Thermo Scientific, Wilmington, DE, USA). Tris buffer saline (TBS)
was used for the isolation of the platelets. In this study, we used ARPE-19 cell lines
purchased from ATCC (Manassa, VA, USA) because of similar structural and functional
characteristics to in vivo RPE cells [22]. To obtain the ARPE-19 with deficient mtDNA
(Rho0), we exposed the cells to low-dose ethidium bromide (50 ng/mL) and then they
were five-passaged serially [23]. The DMEM-F12 media contained 50 µg/mL gentamycin,
17.5 mM glucose, 100 µg/mL streptomycin, 10% dialyzed fetal bovine serum, 100 unit/mL



Antioxidants 2023, 12, 1326 3 of 17

penicillin, 2.5 µg/mL fungizone, and 50 µg/mL gentamycin and was used for cell culture
media.
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Figure 1. Schematic representation of the preparation of cybrids from the age-related macular
degeneration (AMD), keratoconus (KC), and glaucoma (Glc) patients, and age-matched normal (NL)
individuals.

A total of 13 cybrid cell lines that contained mitochondria from different individuals
with glaucoma (n = 1), keratoconus (n = 3), and AMD (n = 5), along with normal subjects
(n = 4), were investigated (Table 1). The passage-5 cybrid cell lines with the confluent
conditions were used for all of the performed experiments. Cybrids were cultured in stan-
dard culture media alone to select for RPE cells that successfully integrated mitochondria.
The mtDNA incorporation was verified using a combination of polymerase chain reac-
tion (PCR) and restriction enzyme digestion of these PCR products. In addition, mtDNA
inclusion was verified through mtDNA sequencing to identify the mtDNA haplogroup
for each cybrid [24]. In all experiments, cells were treated with PU-91 200 µM (Sigma,
LOT# BCCB4083, St. Louis, MO, USA), quercetin 20 µM (GNC, LOT# 4184IU0927, Irvine,
CA, USA), and in combination PU-91 with quercetin (P+Q). The main vehicle control was
dimethyl sulfoxide (DMSO) (Sigma, St. Louis, MO, USA). In all the experiments, 0.2% of
dimethyl sulfoxide (DMSO, Sigma, St. Louis, MO, USA) was used as vehicle control.
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Table 1. Demographics of the K, U, and J cybrids.

Patient # Cybrid Haplogroup Age (y) Sex Ethnicity Diagnosis

1 17.201 H 77 M White NL

2 21.264 H 89 M White NL

3 15.150 K1a1b1a 59 M White NL

4 19.245 A2e 62 F White NL

5 13.128 H7e 86 M White Early dry AMD

6 17.199 H 83 M White dry AMD

7 19.256 H 86 M White dry AMD

8 21.263 H 84 F White dry AMD

9 14.139 H17b 81 F White wet AMD

10 16.188 K2a2a1 90 M White KC

11 18.220 K 78 M White KC

12 19.259 H 73 M White KC

13 18.241 H 80 M White Glc

2.3. Cellular Metabolism Assay (MTT Assay)

In this study, MTT assay was performed for the evaluation of cellular metabolism.
Cells were plated in 96-well plates (104/well) and incubated at 37 ◦C for 24 h. Cells
were exposed to either DMSO, PU-91 (200 µM), quercetin (20 µM), or in combination
(PU-91+quercetin) for an additional 48 h. Each well received 10 µL of MTT assay reagent
(3-(4,5-Dimethyltiazol-2-yl)-2,5-diphenyl tetrazolium bromide; Catalog# 30006, Biotium,
CA, USA) and was incubated for 2 h in 37 ◦C. After adding 100 µL DMSO to each well,
plates were read via Biotek Elx808 Absorbance Reader (Winooski, VT, USA).

2.4. Intracellular Level of Reactive Oxygen Species (ROS Assay)

The cells were seeded in 96-well plates (104/well). After incubating at 37 ◦C for 24 h,
cells were treated for 48 h with PU-91, quercetin, in combination (PU-91+Quercetin), or
DMSO. Then, 100 µL/well H2DCFDA solution (2′, 7′-dichlordihydrofluorescin diacetates;
Catalog# D399, Thermo Fisher Scientific, Waltham, MA, USA) was added and plates were
analyzed. The fluorescent plate reader measures the excitation (492 nm) and emission
(520 nm) wavelengths (SoftMax Pro, version 6.4, Catalog# 94089, Sunnyvale, CA, USA).

2.5. RNA Isolation Process and cDNA Amplification

Six-well plates were used for culturing cybrid cell lines. Following 48 h of treatment
with PU-91, quercetin, (PU-91+quercetin), or DMSO, PureLink RNA Mini Extraction kit
(ThermoFisher, Carlsbad, CA, USA) was used for isolating RNA from the cell lysate. RNA
quantification was performed using the NanoDrop 1000 (Thermo Scientific, Wilmington,
DE, USA). The Superscript IV VILO Master Mix with the Dnase Enzyme (ThermoFisher,
Waltham, MA, USA) was used for the reverse transcription of RNA and the creation of
complementary DNA (cDNA).

2.6. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)

The total RNA of cultured cybrid cells treated with PU-91, quercetin, (PU-91+quercetin),
and DMSO was isolated. The information of all target primers, which are predesigned
via Qiagen QuantiTect Primer Assays or KiCqStart SYBR® Green primers (Sigma–Aldrich,
Burlington, MA, USA), is demonstrated in Supplementary Table S1. The qRT-PCR was
performed to assess the relative expression levels of genes associated with apoptosis (BAX and
CASP3), inflammation (IL6), mitochondrial biogenesis regulators (TFAM, NRF1, and PGC1α),
antioxidant enzyme (SOD2), and senescence (CDKN1A and LMNB1) pathways. HPRT1, a
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recycling enzyme of inosine and guanine in the purine salvage pathway, was selected as the
housekeeping gene. Therefore, as a stable endogenous control gene, the HPRT1 primer was
considered the reference gene for reaching standard expression levels for all primers. For
analyzing the obtained data, the ∆∆Ct method was used, in which ∆Ct = [Ct (threshold value)
of the target gene] − [Ct for HPRT1]; and ∆∆Ct = ∆Ct of the treatment condition − ∆Ct of
the untreated condition. For the comparison between untreated conditions versus treated
conditions, the fold changes were measured as follows: fold change = 2−∆∆Ct. Triplicate
formats of treated cells (PU-91, quercetin, and PU-91+quercetin) compared to vehicle-control
(DMSO) samples were analyzed.

2.7. Statistical Analyses

For statistical analyses, GraphPad Prism (Version 9.1.3, GraphPad Software, Inc., San
Diego, CA, USA) was used. Regarding the evaluation of differences among vehicle-control
(DMSO) and treated (PU-91, quercetin, PU-91+quercetin), the ANOVA–Kruskal–Wallis test
using the two-stage step-up method of Benjamini, Krieger, and Yekutieli by controlling false
discovery rate was performed. * Indicates p≤ 0.033; **≤ 0.002; ***≤ 0.0002; and ****≤ 0.0001
were considered statistically significant.

3. Results
3.1. Effect of PU-91 (P), Quercetin (Q), or in Combination on Cellular Metabolism and
Mitochondrial Biogenesis in Cybrids Derived from Patients with Age Macular Degeneration
(AMD), Keratoconus (KC), and Glaucoma (Glc)

Our previous published studies showed that treatment with 50 µM concentration of
PU-91 improves cellular metabolism oxidative stress and mitochondrial health in AMD
cybrids regardless of mtDNA haplogroup (H, U, J, and K) variations [17,18]. These findings
prompted us to investigate whether a higher dose (200 µM) of PU-91 would produce the
same or better response than the lower dose of PU-91 in cells with mitochondrial dysfunc-
tion, such as found in individuals with AMD, keratoconus (KC), and glaucoma (Glc). Our
results in Figure 2a show that treatment with PU-91 200 µM increased cellular metabolism
by 54% in AMD cybrid (p-value = 0.002). The Glc and KC cybrids showed a nonsignificant
trend of increased cell metabolism. Previously, we showed that when an esterase inhibitor
(EI-12) was combined with PU-91, the positive benefits of PU-91 were maintained by in-
creased cellular metabolism, higher levels of PGC-1α, and reduced apoptosis genes [24]. In
the present study, we wanted to determine whether PU-91 combined with another esterase
inhibitor, quercetin, had any effect on the cellular metabolism and mitochondrial biogen-
esis of cybrids derived from subjects with different eye diseases. Interestingly, quercetin
alone (p-value = 0.02) and in combination (P+Q) treatment (p-value = 0.001) increased
cellular metabolism in AMD cybrids but not in KC, Glc, or Nl cybrids. Figure 2b shows
the heatmap representation for the responses of the individual cybrids within each group
(NL, AMD, KC, and Glc). There was great variability in differential cellular metabolism
response toward the PU-91, quercetin alone, or in combination (P+Q) within each disease
group, representing the personalized responses due to each individual’s mitochondria
influence. In the heatmap (Figure 2b), a percentage exceeding 100 indicates cells that are
highly metabolically active, which represent higher viability.

Next, we determined whether PU-91, quercetin alone, or a combination (P+Q) increased
the expression of genes that regulate mitochondrial biogenesis, such as PGC-1α and TFAM.
Our findings show that PGC-1α expression levels had a trend to increase in response to
PU-91 treatment in all cybrid groups but achieved statistical significance only in AMD (5.4-
fold, ±1.51, p-value = 0.015) and Glc cybrids (8-fold, ±0.56, p-value = 0.0014) (Figure 3a).
Surprisingly, in combination (P+Q) treatment significantly increases PGC-1α expression levels
in the Glc cybrids (4.85-fold, ±0.75, p-value = 0.032), while it increases expression levels in
AMD cybrids but did not reach a statistically significant level (Figure 3a).
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Figure 2. (a) Effect of PU-91, quercetin, and in combination on cellular metabolism of normal
(NL), age-related macular degeneration (AMD), keratoconus (KC), and glaucoma (Glc) cybrids via
MTT assay. MTT assay is used to measure cellular metabolism and cell viability. (b) Heatmap
representation of the impact of PU-91, quercetin, and in combination on cellular metabolism in
patients of normal (NL), age-related macular degeneration (AMD), keratoconus (KC), and glaucoma
(Glc) cybrids. * Indicates p ≤ 0.033; ** ≤ 0.002, and ns means nonsignificant. In the heatmap
representation, a percentage of more than 100% represents higher metabolic activity, indicating higher
cell viability.

The heatmap representation (Figure 3b), demonstrated that the PGC-1α expression
levels varied from 2.4-fold to 11.2-fold upregulation in the AMD cybrids, indicating that the
responses to PU-91 are influenced by the mitochondrial status since each cybrid represents
personalized mitochondria from different individuals while the nuclear genome of the
cybrids is identical. The KC cybrids showed widely disparate responses to PU-91 with
patient #10 showing a 14.4-fold increase in PGC-1α expression, while the other two KC
cybrids (patient #11 and patient #12) had a threefold expression increase. While there was
a slight increase in the expression levels of PGC-1α in response to quercetin treatment, it is
not statistically significant in NL, AMD, KC, and Glc cybrids.

Increased TFAM expression levels were statistically significant in AMD cybrids (1.86-
fold, ±0.14, p-value = 0.001) in response to the combination treatment (P+Q) (Figure 3a).
There was no significant change in TFAM expression levels in either of the cybrids in
response to PU-91 or quercetin treatment. Similar to the variation of PGC-1α expression



Antioxidants 2023, 12, 1326 7 of 17

within each group’s individual cybrids in response to treatment with PU-91, the heatmap
showed that TFAM expression levels varied to a lesser degree in response to all treatments
(Figure 3b).
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Figure 3. (a) Effect of PU-91, quercetin, and in combination on the mRNA expression of PGC-1α
and TFAM genes in normal (NL), age-related macular degeneration (AMD), keratoconus (KC), and
glaucoma (Glc) cybrids via qPCR. (b) Heatmap representation of the impact of PU-91, quercetin, and
in combination on the mRNA expression of PGC-1α and TFAM genes in patients of normal (NL),
age-related macular degeneration (AMD), keratoconus (KC), and glaucoma (Glc) cybrids. * Indicates
p ≤ 0.033; ** ≤ 0.002, and ns means nonsignificant.

3.2. Effect of PU-91 (P), Quercetin (Q), or in Combination on Reactive Oxygen Species (ROS) and
Redox-Sensitive Transcription Factor (NRF1, SOD2) Expression in Cybrids Derived from Patients
with AMD, KC, and Glc

Mitochondria are a major source of cellular ROS production [25]. We determined whether
PU-91 (P), quercetin (Q) alone, or their combination (P+Q) reduced ROS levels in the NL,
AMD, KC, and Glc cybrids. Our results showed that treatment with PU-91 (P), quercetin
(Q), and in combination (P+Q) significantly decreased the levels of ROS in AMD cybrid:
82% ± 3.25 (p-value = 0.002), 90% ± 3.21 (p-value = 0.014), and 72% ± 3.29 (p-value = 0.0002),
respectively (Figure 4a). The NL cybrids also showed reduced ROS levels after treatment with
PU-91 (78.5%± 6.24, p-value = 0.0016) and P+Q treatment (71.2%± 7.14, p-value = 0.0002) but
no changes were seen in the KC or Glc cybrids. The heatmap showed individual variability in
decreased ROS levels within the AMD and KC disease groups in response to PU-91 (P) or in
combination (P+Q) treatments (Figure 4b).
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Figure 4. (a) Effect of PU-91, quercetin, and in combination on reactive oxygen species (ROS) of
normal (NL), age-related macular degeneration (AMD), keratoconus (KC), and glaucoma (Glc) cybrids
via ROS assay. (b) Heatmap representation of the impact of PU-91, quercetin, and in combination on
cellular viability in patients of normal (NL), age-related macular degeneration (AMD), keratoconus
(KC), and glaucoma (Glc) cybrids. * Indicates p ≤ 0.033; ** ≤ 0.002; *** ≤ 0.0002, and ns means
nonsignificant.

One important gene that is activated in response to oxidative stress is known as
a redox-sensitive transcription factor (NRF1), which orchestrates a defense mechanism
against ROS-induced cytotoxicity by inducing cytoprotective molecules [26]. As a result,
we examined if the reductions in ROS levels in AMD and normal cybrids were related
to NRF1 expression in response to PU-91 (P), quercetin (Q), or both (P+Q). Surprisingly,
treatment with PU-91 (P) or quercetin (Q) showed a nonsignificant trend of decreased NRF1
expression levels in AMD and Glc cybrids (Figure 5a). The combination treatment (P+Q)
did not significantly alter NRF1 expression levels in any disease group. Furthermore, the
heatmap showed limited variation in NRF1 expression levels in response to any treatment,
with a range from a high value of 2.2 in response to Q treatment (KC patient #11) to a low
value of 0.5 (KC patient#10) in response to PU-91 treatment (Figure 5b).

SOD2, another important antioxidant gene, is required for the proper functioning of the reti-
nal pigment epithelium (RPE). SOD2 deficiency causes extensive oxidative damage in the RPE
and has been linked to AMD pathogenesis [27]. Our results show that while SOD2 expression de-
creases with PU-91 (P) treatment in Glc cybrids (0.63-fold± 0.06, p-value = 0.02), it increases with
the combination (P+Q) treatment in AMD cybrids (2.58-fold± 0.45, p-value = 0.031) (Figure 5a).
We found the greatest variation in SOD2 expression levels in the KC group’s different individual
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cybrids in response to combination (P+Q) treatments (Patient #12, high-value range 11.3; and
Patient #10, low of 1.2) but not with PU-91 (P) or quercetin (Q) (Figure 5b).
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Figure 5. (a) Effect of PU-91, quercetin, and in combination on the mRNA expression of antioxidant
genes such as NRF1 and SOD2 in normal (NL), age-related macular degeneration (AMD), keratoconus
(KC), and glaucoma (Glc) cybrids via qPCR. (b) Heatmap representation of the impact of PU-91,
quercetin, and in combination on the mRNA expression of NRF1 and SOD2 genes in patients of
normal (NL), age-related macular degeneration (AMD), keratoconus (KC), and glaucoma (Glc)
cybrids. * Indicates p ≤ 0.033, and ns means nonsignificant.

These results suggest that the reduction in ROS levels caused by PU-91 (P) treatment
in the AMD cybrid might be unrelated to NRF1 or SOD2 expression. In addition, the
reduction in ROS levels in response to in combination (P+Q) treatment might be dependent
on SOD2 overexpression but not NRF1 expression in AMD cybrids. Moreover, the increase
in ROS production in the Glc cybrid with PU-91 (P) might be related to SOD2 lower
expression levels.

3.3. Effect of PU-91 (P), QUERCETIN (Q), or in Combination on the Expression of Apoptotic
Genes in the Cybrids Derived from Patients with AMD, KC, and Glc

We previously demonstrated that dysfunctional mitochondria in AMD cybrids con-
tribute to increased expression of CASP3 and BAX, both of which are markers of cell
apoptosis, but 50 µM PU-91 reversed this upregulation [28]. In this study, we want to
determine whether the higher dose of 200 µM PU-91 (P), quercetin (Q), or in combination
(P+Q) affects the expression of these apoptotic genes in NL, AMD, KC, and Glc cybrids.
Surprisingly, there was a significant increase in the expression of the BAX gene in the
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(P+Q)-treated AMD cybrids and no significant changes in expression levels of BAX or
CASP3 after treatment with 200 µM PU-91 or Q alone (Figure 6a). In response to PU-91, the
heatmap demonstrated variability in the expression of BAX (e.g., AMD Patient #5, 1.6-fold
increase and Patient #7, 0.7-fold decrease) and CASP3 (Patient #11, 1.6-fold increase and
Patient #10, 0.7-fold decrease) (Figure 6b).
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age-related macular degeneration (AMD), keratoconus (KC), and glaucoma (Glc) cybrids. * Indicates
p ≤ 0.033, and ns means nonsignificant.

These findings suggest that neither 200 µM PU-91 nor quercetin was effective in
reducing apoptotic gene expression levels. Moreover, the combination (P+Q) treatment
promotes apoptosis in AMD cybrids.

3.4. Effect of PU-91 (P), Quercetin (Q), or in Combination on the Expression of the Inflammatory
Gene in the Cybrid Derived from Patients with AMD, KC, and Glc

Our previous studies have shown that 50 µM PU-91 reduced inflammation markers in
haplogroup H AMD cybrids [17]. This prompted us to investigate whether 200 µM PU-91
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(P), quercetin (Q), or a combination of the two (P+Q) would affect the expression of IL6, a
marker of inflammation, in the cybrid groups. The in combination (P+Q) treatment resulted
in significantly increased expression of the IL6 gene only in AMD cybrids (p-value = 0.018)
(Figure 7a). Furthermore, we observed more pronounced differences in IL6 expression
when the individual cybrids were treated with P+Q combination compared to PU-91 alone
or quercetin alone (Figure 7b).
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Figure 7. (a) Effect of PU-91, quercetin, and in combination on the mRNA expression of IL6 gene
in normal (NL), age-related macular degeneration (AMD), keratoconus (KC), and glaucoma (Glc)
cybrids via qPCR. (b) Heatmap representation of the impact of PU-91, quercetin, and in combination
on the mRNA expression of IL6 gene in the patients of normal (NL), age-related macular degener-
ation (AMD), keratoconus (KC), and glaucoma (Glc) cybrids. * Indicates p ≤ 0.033, and ns means
nonsignificant.

These findings show that the combination of P+Q induces significant upregulation of
IL6, a proinflammatory in NL, AMD, KC, and Glc cybrids, making this combination likely
harmful to the cell health. However, when the 200 µM PU-91 alone was administered,
then the results showed no significant increase in IL6 expression (Figure 7a), but when
viewed individually (heatmap) (Figure 7b), there was variability in the responses (patient
#13, 0.5-fold decline, while patient #2 showed 2.6-fold increase). This type of variability
of responses is consistent with our previous studies of AMD cybrids that had different
mtDNA haplogroups [18,24].
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3.5. Effect of PU-91 (P), Quercetin (Q), or in Combination on the Expression of Genes Associated
with Senescence in the Cybrids Derived from Patients with AMD, KC, and Glc

The upregulation of CDKN1A and downregulation of LMNB1 are senescence genes linked
to aging [29]. We investigated whether treatment with PU-91 (P), quercetin (Q), or in combination
(P+Q) would increase/decrease the expression of CDKN1A and LMNB1 in NL, AMD, KC, and
Glc cybrids. The CDKN1A levels were not changed in response to PU-91 or Quercetin (Figure 8a).
Surprisingly, in combination (P+Q) treatment significantly increases CDKN1A expression in
AMD (4.09-fold ± 0.69, p-value = 0.001), Glc cybrids (5.05-fold ± 0.20, p-value = 0.014), and KC
cybrids (4.41-fold± 2.71, p-value = 0.027) (Figure 8a). LMNB1 expression was downregulated
in AMD cybrids with PU-91 (P) (0.44-fold ± 0.06, p-value = 0.001), quercetin (Q) (0.57-fold
±0.14, p-value = 0.021), and in combination (P+Q) (0.37-fold ± 0.39, p-value = 0.002) treatment
(Figure 8a). Furthermore, the heatmap showed that the expression levels of CDKN1A and
LMNB1 were variable in the normal, AMD, and KC cybrids in response to in combination (P+Q)
compared to PU-91 (P) alone or quercetin (Q) alone treatments (Figure 8b). These findings
suggest that in combination (P+Q) treatment activates the genes related to the senescence
pathway more than PU-91 (P) or quercetin (Q) treatment alone.
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Figure 8. (a) Effect of PU-91, quercetin, and in combination on the mRNA expression of CDKN1A
and LMNB1 genes in normal (NL), age-related macular degeneration (AMD), keratoconus (KC), and
glaucoma (Glc) cybrids via qPCR. (b) Heatmap representation of the impact of PU-91, quercetin, and
in combination on the mRNA expression of CDKN1A and LMNB1 genes in the patients of normal
(NL), age-related macular degeneration (AMD), keratoconus (KC), and glaucoma (Glc) cybrids.
* Indicates p ≤ 0.033; ** ≤ 0.002, and ns means nonsignificant.
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4. Discussion

In this study, we showed that 200 µM PU-91 (P), quercetin (Q) alone, or in combination
(P+Q) had different effects on cellular metabolism, ROS, and genes related to apoptosis,
antioxidation, inflammation, and senescence in cybrids generated from patients with
different eye diseases (Figure 9). Most importantly, there was considerable interindividual
variability in cybrids even within the cybrids of the same disease type. In addition, we
found that in combination (P+Q) treatment has no significant beneficial effects in any
cybrids, regardless of disease type. Although it increased cellular metabolism and decreased
ROS levels in AMD cybrids, this treatment increased levels of IL6 and CASP3 in AMD
cybrids and modulated senescence-related genes (CDKN1A and LMNB1) in AMD, KC, and
GLc cybrids.
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Figure 9. Schematic representation of the effect of PU-91 (P), quercetin (Q), and in combination
(P+Q) on the age-related macular degeneration (AMD), keratoconus (KC), and glaucoma (Glc) on the
cellular metabolism, ROS levels, expression of genes related to mitochondrial biogenesis, antioxidant
genes, apoptotic genes, inflammatory gene, and senescence genes.

Our findings showed that the 200 µM dose of PU-91 (P) had beneficial effects on
the AMD and glaucoma cybrids. Nashine et al. [17] previously demonstrated that 50 µM
PU-91(P) regulates the mitochondrial biogenesis pathway, improves cellular metabolism,
and prevents apoptotic cell death, ROS production, and inflammation. While 200 µM PU-91
(P) increased cellular metabolism and upregulation of PGC1α along with decreased ROS
production in AMD cybrids, it also did not have a significant effect on apoptotic cell death
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or inflammation genes. This demonstrates that treatment with 50 µM PU-91 was more
beneficial than treatment with 200 µM PU-91 in the cybrid model.

Mitochondrial DNA (mtDNA) plays a role in mitochondrial function, and changes
in mtDNA content, integrity, and transcript level may influence the generation of ROS
and play a role in the pathogenesis of AMD, Glc, and KC [15,30–36]. Our previous studies
demonstrated that 50 µM PU-91 preserved the function and integrity of AMD mitochon-
dria and protected against cell death caused by oxidative stress and mtDNA [17]. The
antioxidant, anti-inflammatory, and other activities of quercetin may have an impact on
treatments for many ophthalmological diseases [37,38].

Our previous studies showed that co-administering PU-91 (P) with esterase inhibitors
(EI-12 or EI-78) did not alter or diminish the positive effects of 50 µM PU-91 on cellular
metabolism, mitochondrial biogenesis, apoptosis, or inflammation [17]. One of the novel
findings in this study was that 200 µM PU-91 alone promotes cellular metabolism in the
AMD cybrids in a manner distinct from quercetin alone or in combination. Furthermore, in
AMD and GLc cybrids, PU-91 significantly increases PGC-1α levels, which will improve
mitochondrial health. The combination (P+Q) treatment significantly reduced ROS pro-
duction in AMD cybrids but not in KC and Glc cybrids, which could be explained by the
upregulation of antioxidant genes such as SOD2 in the AMD cybrids. In contrast, the KC
cybrids showed variable responses to the P+Q combination, with patient #12 showing an
11.3-fold increase of SOD2, while the other KC cybrids showed only modest elevations.

One of the intriguing findings in this study was that in AMD cybrids, the in combina-
tion (P+Q) treatment increased the expression of apoptotic (BAX) and inflammatory (IL6)
genes, which can negatively affect cellular homeostasis. In contrast, Donaldson et al. (2019)
hypothesized that quercetin and fenofibrate are synergistic in lowering cholesterol content
in an in vivo study and thereby would have beneficial effects [39]. Our findings suggest
that the combination (P+Q) treatment may not be the best option for ocular disorders
associated with mitochondrial dysfunction, such as AMD, Glc, and KC.

One of the most important properties of quercetin is that it protects against oxidative
stress, aging, inflammation, and mitochondrial damage [38]. In senescence, there is an
upregulation of CDKN1A and a parallel downregulation of LMNB1. In our study, quercetin
induced a decrease in the expression of genes associated with senescence (LMNB1) in
NL and AMD cybrids, while it did not change the levels in KC and Glc cybrids. Zoico
et al. (2021) demonstrated that treating senescent adipocytes with quercetin reduces
senescence [40]. One of the most intriguing findings in our study was that the combination
(P+Q) treatment activated the senescence pathway in AMD, KC, and Glc cybrids. Our
findings differ from another study, which observed that when quercetin is combined with
fenofibrate, it reduces senescence in osteoarthritis patients [39]. Recalde et al.’s study [41]
used 10 and 50 µM fenofibrate concentrations to prevent cartilage degradation and to
positively modulate key molecular mechanisms such as senescence. This confirms that a
200 µM dose of PU-91 could be the cause of increased expression of genes involved in the
senescence pathway. Moreover, in accordance with our current findings, we hold the belief
that the contrasting response to treatments between aged cybrids (AMD) and younger ones
(KC) can be attributed to systemic age-related changes.

5. Conclusions

In conclusion, a 200 µM dose of PU-91 promotes cellular metabolism by upregulating
mitochondrial biogenesis in AMD cybrids in contrast to KC cybrids (Figure 9). When com-
pared to the 50 µM PU-91 used previously [23], the 200 µM had less beneficial effects on the
AMD cybrids. In AMD patient-derived cybrids, the combination (P+Q) treatment promotes
cellular metabolism and reduces ROS production by promoting mitochondrial biogenesis
and increasing the expression of the SOD2 enzyme gene. However, the P+Q treatment also
increases the expression of inflammation (IL6) in AMD cybrids, and senescence (CDKN1A)
genes in all patient-derived cybrids, regardless of their disease type.
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