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The recombination landscape of the 
Khoe‑San likely represents the upper limits 
of recombination divergence in humans
Gerald van Eeden1  , Caitlin Uren1,2  , Evlyn Pless3  , Mira Mastoras3  , Gian D. van der Spuy1,2,4  , 
Gerard Tromp1,2,4  , Brenna M. Henn3   and Marlo Möller1,2* 

Background
Recombination enables the evolution of complex traits by shuffling novel genetic vari-
ants, brought about by mutation, into new combinations with existing alleles from vary-
ing genomic origins [1]. Due to the evolutionary significance of recombination, many 
implementations of software packages that infer the recombination rate have been 

Abstract 

Background: Recombination maps are  important resources for epidemiological and 
evolutionary analyses; however, there are currently no recombination maps represent-
ing any African population outside of those with West African ancestry. We infer the 
demographic history for the Nama, an indigenous Khoe-San population of southern 
Africa, and derive a novel, population-specific recombination map from the whole 
genome sequencing of 54 Nama individuals. We hypothesise that there are no publicly 
available recombination maps representative of the Nama, considering the deep popu-
lation divergence and subsequent isolation of the Khoe-San from other African groups.

Results: We show that the recombination landscape of the Nama does not cluster 
with any continental groups with publicly available representative recombination 
maps. Finally, we use selection scans as an example of how fine-scale differences 
between the Nama recombination map and the combined Phase II HapMap recombi-
nation map can impact the outcome of selection scans.

Conclusions: Fine-scale differences in recombination can meaningfully alter the 
results of a selection scan. The recombination map we infer likely represents an upper 
bound on the extent of divergence we expect to see for a recombination map in 
humans and would be of interest to any researcher that wants to test the sensitivity of 
population genetic or GWAS analysis to recombination map input.

Keywords: Recombination rate, Recombination map, Genetic map, Khoe-San, 
Selection scan
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developed. Some of these packages rely on inferring past recombination events by ana-
lysing pedigrees [2], by detecting changes in ancestry [3, 4] or by the boundaries of 
blocks of identity by descent (IBD) [5]. These methods require large sample numbers (> 
2000) to accurately infer the recombination rate at fine-scales. Other packages use link-
age disequilibrium (LD) [6] or derivatives thereof, e.g. summary statistics [7], to infer 
recombination into the very distant past and require fewer individuals to infer recom-
bination at fine-scales. LD-based recombination maps, however, are strongly influenced 
by past demographic events, e.g. population bottlenecks [8]. Recombination inference 
software that is aware of changes in the effective population size (Ne) of a population, 
such as pyrho [9], can be used to mitigate this effect.

The rate of recombination varies between species [10], between populations within 
species [9, 11] and even among individuals [12]. The recombination rate across the 
genome is generally expressed as a ratio of genetic distance and physical distance, known 
as a recombination map. It has been shown that at low resolutions (> 1 Mb), population 
specific recombination maps are fairly similar [13] and at high resolutions they corre-
late according to continental levels of population differentiation [11]. For instance, the 
pedigree-based deCODE [14] map, based on the Icelandic population, correlates bet-
ter at fine scales to the linkage-disequilibrium-based (LD-based) HapMap II [15] map of 
the CEU (Utah residents with Northern and Western European ancestry from the CEPH 
collection) than it does to the HapMap II map of the YRI (Yoruba in Ibadan, Nigeria) [7, 
14]. Many population-specific recombination maps have been inferred to date, but none 
have been inferred for any southern African populations [16] and researchers studying 
these populations have had to use available maps that might not suit their analysis.

In this manuscript, we present a novel recombination map for the Nama—an indig-
enous population of southern Africa [17] that forms part of a larger group of geographi-
cally close and culturally related individuals known collectively as the “Khoe-San”. The 
Khoe-San are reported to have the most divergent lineages of any other living popula-
tion [18–22], and it is believed that they have largely remained isolated until ~2000 years 
ago [17, 18, 23]. Therefore, a recombination map for this population may be very dif-
ferent at fine scales compared to recombination maps that have been inferred for other 
populations. The Khoe-San also contribute a significant ancestral component (15–75%) 
to admixed southern African groups, like the South African Coloured (SAC) population 
and southern Bantu-speaking populations [24, 25], and a recombination map for diverse 
Khoe-San populations could benefit studies involving these groups. The demographic 
history of the Nama is multi-layered, with 5–25% gene flow from Eastern African caprid 
and cattle pastoralists ~2000 years ago [26] and genetic exchange with the Damara—a 
hunter-gatherer population of West-Central African ancestry who became economic cli-
ents of the Nama. These events were finally followed by recent admixture with European 
colonists and to a lesser degree ~250 years ago.

We used whole genome sequencing (WGS) data of 54 unrelated Nama individuals [27] 
to infer a LD-based recombination map that is adjusted according to past changes in 
Ne. Demographic history was inferred using SMC++ [28] for distant changes in Ne and 
AS-IBDNe [29] for recent Ne changes. The Ne size changes were then combined, and the 
demography-aware LD-based method pyrho [9] was used for recombination rate infer-
ence. The resultant population-specific recombination map was then compared to other 
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publicly available recombination maps using the Spearman rank correlation coefficient. 
Finally, we assessed the fine scale differences between the inferred Nama recombination 
map and the combined Phase II HapMap recombination map in a region of chromo-
some 1 and demonstrated how the use of different recombination maps can affect the 
results from a selection scan.

Results
Briefly, 84 Nama individuals were sequenced to 4x-8x depth via Illumina short read 
sequencing, variant-called and phased in combination with additional African low 
coverage genomes as well as 1000 Genomes Phase 3 as part of the African Genome 
Resource [30]. Genomes were variant-called with GATK3.4 following best practices and 
phased with SHAPEIT2. Further details regarding the production of this dataset are 
described in Ragsdale et al. [27]. Global ancestry estimates for the Nama, as compared to 
other Africans from the African Genome Resource along with representative Europeans 
(CEU), were inferred using ADMIXTURE. Ancestry estimates indicate that the bulk of 
the Nama’s ancestry is Khoe-San, which is rare elsewhere in the African continent with 
the exception of the southern Bantu-speaking Sotho and Zulu (Fig. S1). There is a sharp 
cline in European ancestry across individuals, ranging from ~0 to 50% as may occur with 
a recent pulse of admixture which has not yet reached equilibrium in a few generations. 
A subset of individuals carry ancestry frequent in Bantu-speaking and eastern African 
populations, likely reflecting recent Damara or Herero marriage as indicated in demo-
graphic interviews with participants. Ancestry proportion among the full set of related 
individuals was similar to the subset of unrelated individuals (Fig. S2).

The inferred demographic history of the Nama

We inferred the Ne for the Nama using SMC++ (Fig. 1 A right) and AS-IBDNe (Fig. 1 
A left). The results from SMC++ represent the Ne change from 50,000 to 260 genera-
tions into the past. The AS-IBDNe results represent the Ne change from 50 to 4 gen-
erations into the past and the Ne was inferred using IBD segments of Khoe-San ancestry 
exclusively. An Ne of ~30,000 approximately 10,000 generations ago with a reduction in 
Ne to ~21,000 approximately 5000 generations ago is consistent with previously pub-
lished inferred Ne for the Nama [31]. Inconsistent with previous results, there is a fur-
ther reduction in Ne to ~10,000 approximately 1000 generations ago. The inferred Ne 
by SMC++ then stops at 260 generations, because SMC++ can infer Ne approximately 
6—120 thousand years ago (kya) with low error [28] and by default SMC++ uses an 
heuristic to calculate these timepoints automatically given the data.

We therefore used AS-IBDNe to estimate population fluctuations over the past thou-
sand years [32]. We deconvoluted 84 Nama genomes (SNP array) into local ancestry 
tracts with three possible ancestry states: Khoe-San ancestry, European ancestry and 
Western-Central African ancestry as represented by Nama, GBR (British in England and 
Scotland) and LWK (Luhya in Webuye, Kenya) population samples. We tested the accu-
racy of RFMix via simulation in the Nama as well as testing both SNP array and low 
coverage genome data in order to determine the best dataset for local ancestry inference. 
We simulated continuous gene flow from 3 ancestral groups: European admixture start-
ing 8 generations ago with 1% contribution per generation, Bantu admixture starting 14 
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generations ago with 2% contribution per generation, and the remaining contribution 
for each generation coming from the Khoe-San. The population randomly mates to cre-
ate each subsequent generation, also taking into account the recombination landscape 
to accurately copy haplotype blocks. Eleven individuals were used for each ancestral 
population: French individuals as the European reference, Bantu-speaking as the West 
African reference and Nama individuals with > 90% Khoe-San ancestry (that were not 
later used in RFmix runs) for the Khoe-San ancestry component. The average global 
LAI accuracy, allowing the reference individuals to themselves be admixed, was ~92% 
on average for the simulated individuals. European ancestry-specific accuracy was 97.6% 
with individuals being 12.8% European on average, Khoe-San ancestry-specific accuracy 
was 92.4% with individuals being 76.8% Khoe-San, and Bantu accuracy was 81.5%, with 
individuals having 10.4% Bantu ancestry overall.

Comparing RFmix runs for the SNP array and genome data to previously obtained 
ADMIXTURE ancestry percentage estimates, we found that the Khoe-San ancestry was 
systematically under-called in the genomes compared to the global ancestry estimates 
from ADMIXTURE, with European and Bantu ancestry consistently higher. This trend is 
however improved when using the SNP-array data for LAI. Therefore in the AS-IBDNe 
analysis, admixture deconvolution was performed on MEGA SNP array [33] data in 
order to facilitate larger numbers of haplotypes in the reference populations.

Beginning 50 generations ago, we infer an Ne of 4360 for the Khoe-San component 
(Fig. 1D). The Ne starts to decline 34 generations ago and continues to decline until an Ne 
of 190 inferred 4 generations ago; estimation stops 4 generation ago to avoid coalescent 
events based on genealogical relationships. The rapid population decline substantially 

Fig. 1 A The inferred effective population size history for the Nama plotted on a log10 scale with SMC++ 
results on the right and AS-IBDNe results for the Nama on the left. B–D The AS-IBDNe results for the LWK (B), 
GBR (C) and Nama (D) ancestral components in the Nama
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predates the arrival of European settlers in the Richtersveld in 1760 (or ~7 generations 
ago), an arid region just south of the Orange River [34]. The Ne results inferred for each 
set of ancestry specific IBD segments (Fig.  1B–D) have very narrow 95% confidence 
intervals.

The correlation between the inferred Nama recombination map and other publicly 

available maps

Fine-scale recombination rate differences between pairs of populations are correlated 
according to continental levels of population differentiation [9, 11]. Considering the long 
period that the Nama were isolated and their complex demographic history, we hypoth-
esise that there is no available recombination map that is representative of the Nama. 
Therefore, we compared the inferred recombination map for the Nama with 26 other 
publicly available recombination maps derived from [9] using the Spearman rank corre-
lation at a 2-kilobase resolution (Fig. 2). These maps were inferred for populations from 
the 1000 Genomes [35] dataset, and the populations are classified into various super-
populations representing major ancestry differences. We find that pairwise correlations 
between all 27 maps cluster according to continental levels of population differentiation 

Fig. 2 Heatmap indicating the Spearman rank correlation between the genetic maps of 27 populations, 
including the Nama, at a 2-kilobase resolution. The colour of the population labels represent distinct 
super-population groups, with the Nama highlighted in red. There is clear clustering according to 
super-population groups and the Nama recombination map correlates the best with other African 
populations
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(super-populations). Furthermore, we find that the Nama are more closely related to 
other African populations than to other continental groups (< 0.75); however, the pair-
wise correlations between the Nama and the other African populations are much weaker 
(~0.79) than the pairwise correlations between the African populations (> 0.90). These 
values represent correlations between inferred maps and, therefore, include any noise 
potentially introduced during inference. The true maps are likely to be more similar than 
these values suggest.

The Spearman rank correlation mitigates potential differences in map length that 
would influence the Pearson correlation coefficient. Therefore, we neglect the magnitude 
of the recombination rate in favour of qualitative aspects of the maps. Inspecting the 
qualitative aspects of recombination maps is especially relevant when LD-based recom-
bination maps are compared, since LD-based methods produce population recombina-
tion rates that need to be scaled using Ne and therefore assume an accurate estimate for 
Ne.

Fine‑scale recombination as applied in selection scans

The combined Phase II HapMap recombination map is derived from 270 individuals 
who represent four geographically diverse populations, including the Yoruba from West-
ern Africa. It is sometimes used as a proxy [36] for southern African populations, since 
all other available recombination maps derived from African populations are of western 
African ancestry, a globally diverse map is thought to be the best substitute. Even though 
population-specific recombination maps are similar at low resolutions, certain analy-
ses, such as selection scans, might benefit from a high-resolution population-specific 
recombination map that accurately captures fine-scale differences. Figure  3 illustrates 

Fig. 3 The recombination rate of the combined Phase II HapMap recombination map and the inferred 
recombination map for the Nama plotted over a segment of chromosome 1. There is a high degree of 
overlap between the maps across this region, but there are positions with recombination hotspots indicated 
by the Nama map that are not indicated by the combined Phase II HapMap map, e.g. at 24.2 Mb



Page 7 of 14van Eeden et al. Genome Biology          (2022) 23:172  

the recombination rate (cM/Mb) plotted over part of chromosome 1 for the combined 
Phase II HapMap recombination map (orange) and the inferred recombination map for 
the Nama (blue). The positions of regions of high recombination (hotspots) are largely 
concordant between the two maps and mainly differ in magnitude. However, in the 
region at 24.2 Mb, there are hotspots present in the Nama recombination map that are 
absent from the combined Phase II HapMap recombination map. To further investi-
gate the effects that these differences could have, we performed genome-wide selection 
scans on Nama SNP array data using the combined Phase II HapMap map and the Nama 
map. We focused on the integrated haplotype scores (iHS), a selection statistic which 
detects recent positive selection, by evaluating haplotype homozygosity for the ancestral 
and derived haplotypes extending from a locus of interest [37]. iHS is most effective at 
detecting alleles that have been swept to intermediate frequencies, and it is among the 
most common statistics cited in other comparable selection scans in the Khoe-San.

After taking the absolute value of the integrated Haplotype Scores (iHS) and filtering 
for the highest 1.0% of the scores, we found an overlap of 1504 candidate genes (50%) 
between the two maps. However, the run using the combined Phase II HapMap map 
and the run using the Nama map identified 808 and 713 unique candidate genes respec-
tively (Fig. 4). The difference in the number of top 1.0% of hits is due to the change in the 
relative length of the maps. The Pearson correlation (r) between the iHS scores found 
using the combined Phase II HapMap and Nama maps is 0.93. We compiled a list of 131 
candidate genes [18, 20, 36], previously identified using iHS, that are under selection in 
the Khoe-San and compared this list to our results. We found an overlap of three genes 
(CTNNAL1, ALDH1A2 and SYT14) between the previously identified genes and the run 
using the combined Phase II HapMap map but only an overlap of one gene (TRIM39) 

Fig. 4 Venn diagram of the candidate genes found using the 1.0% highest selection scan results (absolute 
value iHS) for the selection scan using the combined Phase II HapMap map (white) and the selection scan 
using the Nama map (grey)
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between the previously identified genes and the run using the Nama map. TRIM39 
encodes for a ring finger protein associated with diseases including Behcet’s syndrome; it 
regulates p21 and plays an important role in determining cell fate [38]. Previous research 
has demonstrated that selection statistics such as iHS are sensitive to phasing, sample 
size and ascertainment bias [39]. Our results indicate that a population-specific recom-
bination map should also be considered in attempts to fine-map adaptive haplotypes.

Discussion and conclusions
Recombination maps are important resources for epidemiological and evolutionary 
analyses; however, there are currently no recombination maps that represent southern 
African populations [16]. The Nama, a southern African indigenous population, would 
likely produce a distinct recombination landscape from publicly available recombina-
tion maps, because of their complex demographic history. The recent rapid population 
decline (shown in Fig.  1) partially illustrates this complex history. Despite gene flow 
from Eastern African pastoralists ~2000 years ago and recent admixture with Europe-
ans, the Nama do not cluster with any of the continental groups that we have repre-
sentative recombination maps for (Fig. 2). Therefore, their recombination landscape is 
indeed unique and epidemiological studies that involve the Nama or any other related 
populations, like other Khoe-San populations or southern African Bantu-speaking 
groups, would benefit from our inferred map. This recombination map also represents 
a likely upper bound on the extent of divergence we expect to see for a recombination 
map in humans and would be of interest to any researcher that wants to test the sensi-
tivity of population genetic or GWAS analysis to recombination map input. Fine-scale 
differences in recombination can meaningfully alter the results of a selection scan (dem-
onstrated in Figs. 3 and 4). However, it should be noted that recent studies found that 
population-specific recombination maps have little effect on phasing [40], imputation 
[40] and local ancestry inference [41]. Therefore, the combined Phase II HapMap recom-
bination map’s proxy status with regards to the Nama is dependent on the analysis that 
the map is used for.

There are many available techniques [42] to infer the recombination rate and some 
have contrasting limitations which means that not all techniques would allow accurate, 
fine-scale estimates for a given dataset. Assuming limitless resources, we would have 
preferred pedigree-based methods, because these allow sex-specific recombination rate 
inference and rely on inferring individual recombination events between successive gen-
erations based largely on observed meioses. However, pedigree-based methods require 
many thousands of individuals to produce fine-scale maps [2]. Other options are IBD-
based and LAI-based methods, but they too require in the order of a couple thousand 
individuals for fine-scale estimates [5]. Our small sample size (54 unrelated individuals) 
made LD-based methods the obvious choice for fine-scale estimates. However, there are 
many assumptions that accompany LD-based methods that make them less than ideal, 
for instance the assumption of a constant Ne and the potential bias from gene flow when 
inferring recombination in admixed populations [43]. Therefore, the complex demo-
graphic history of the Nama made demography-aware methods, like pyrho, the ideal 
compromise between data availability and accuracy. Even so, the population-specific 
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recombination map presented here is likely an accurate representation of the recombi-
nation landscape of the Nama and future epidemiological and evolutionary research will 
benefit from this resource.

Methods
Inferring demographic history

It has been shown that demographic history, especially recent bottlenecks, can greatly 
impact LD-based recombination inference. We, therefore, inferred the demographic his-
tory of the Nama to improve our recombination rate estimates. Two methods, SMC++ 
(v1.15.2) [28] and IBDNe (v23Apr20) [32], were used and the results combined. See 
Fig. 5 for an overview of the methods.

SMC++ uses LD information to infer demographic histories and can infer divergence 
times between 6 and 120 kya with low error [28]. A whole genome sequencing (WGS) 
dataset (EGAD00001006198) of 84 Nama individuals (54 unrelated) was used. The input 
for SMC++ was created separately for each chromosome, from the unrelated individu-
als in the WGS dataset, by using the vcf2smc program with 10 randomly selected “distin-
guished” (see Terhorst et al. [28] for more information on this) individuals. The result is 
10 separate datasets for each chromosome. This creates a composite likelihood which, 
according to the authors, may lead to improved estimates. A per-generation mutation 
rate of 1.25e−8 was assumed and all of the input files were then included in an estimate 
of the Ne through time using the estimate program. Since SMC++ regards uncalled 

Fig. 5 A brief overview of the methods used in effective population size inference and the subsequent 
recombination rate inference
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regions as long runs of homozygosity, Stephen Schiffels’ mappability mask (created for 
human genome build GRCh37 using SNPable [44]) was used to mask regions of low 
mappability. All other default parameters were used.

IBDNe can infer the Ne size 4-50 generations into the past by using identity by descent 
(IBD) information. By separating IBD segments by ancestry before inferring the Ne, 
one can obtain an estimate of Ne localised to each population ancestry. We developed a 
Snakemake pipeline (Fig. 6), called AS-IBDNe (https:// github. com/ hennl ab/ AS- IBDNe), 
to estimate ancestry specific Ne from a given SNP array dataset. The pipeline was adapted 
from the procedure used in Browning et al. [29]. We ran it on 84 Nama individuals geno-
typed on the Multi-Ethnic Global Array (MEGA) [33]. The pipeline takes in SNP-array 
data in plink binary file format, uses plink v1.9 [45] to break the data by chromosome, 
and shapeIT v2 [46] to phase the chromosomes. The dataset is then converted to VCF 
format using SHAPEIT2 and split into one file containing the reference individuals and 
one file containing the admixed individuals using BCFtools [47]. Next, RFMix v2.0 [48] 
is run on these two vcf files to estimate the ancestry of arbitrarily sized segments across 
the genome. Simultaneously, RefinedIBD and merge-ibd-segments.17Jan20.102.jar [49] 

Fig. 6 An overview of the AS-IBDNe pipeline. Input SNP array data in plink binary format is split by 
chromosomes using plink v1.9. Each chromosome is then phased and converted to vcf format by SHAPEIT2. 
IBD segments are next inferred using RefinedIBD, and merge-ibd-segments is used to remove gaps between 
them. Meanwhile, RFMix2.0 is run to estimate the ancestry of differently sized genomic segments. Finally, 
RFMix-produced ancestries are assigned to each IBD segment, and IBDNe is run to produce ancestry-specific 
effective population size estimates

https://github.com/hennlab/AS-IBDNe
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is run on the phased data to infer ibd segments and remove any gaps between them. The 
ancestries produced from RFMix v2.0 are then assigned to each IBD segment using a 
custom python script. This information is provided to the program IBDNe [32], which 
produces estimates of historical population size for each ancestry. The RFMix results 
were also used to create the ternary diagrams in Fig. S2 using the ggtern package in R. 
All the default parameters of RFMix, RefinedIBD and IBDNe were used except RFMix, 
which was run with 3 expectation maximisation iterations and the reanalyse-reference 
flag, and IBDNe, which was run with the mincM flag set to 3. The combined Phase II 
HapMap recombination map was used whenever a recombination map was required 
during the inference. The output of SMC++ can be converted to a csv where the time-
scale and the Ne estimates are linear. The output from AS-IBDNe can then be added to 
the linear output from SMC++, and this file can then be used during recombination 
rate inference in pyrho [9].

Recombination rate inference

Previous published guidelines [42] aided the choice of recombination rate inference 
method and pyrho, a demography-aware LD-based method, was selected. We assumed 
the same per-generation mutation rate of 1.25e−8 for all the inference steps. The 
most computationally laborious task when using pyrho is the generation of a lookup 
table which enables subsequent processes to be computationally faster. The combined 
SMC++/AS-IBDNe demographic history was used to generate a lookup table for the 
unrelated subset of 54 Nama WGS individuals using pyrho make_table. A convenient 
feature of this lookup table is that it is compatible with other recombination rate infer-
ence software, e.g LDhat [6], which make use of exact two-locus sampling probabilities 
with the added benefit of already taking the specified demographic history into account. 
This lookup table and the combined demographic history were employed to find optimal 
hyperparameters to be used for recombination rate inference with pyrho hyperparam. 
The parameters that yielded the highest overall accuracy were a smoothness penalty of 
15 and a window size of 30. These parameters and the lookup table were then used to 
infer the recombination rate with pyrho optimise. The output provides the per base pair 
per generation recombination rate for a given interval.

Selection scans

For the selection scans, we used data from 104 Nama individuals who were genotyped 
on the Illumina Omni2.5 array as part of the African Genome Diversity Project. Close 
relatives were identified from demographic interviews and verified via allele-based kin-
ship coefficients in plink. Individuals with more than 50% European, and Damara or 
Herero admixture were excluded. Ancestry estimates were obtained using ADMIX-
TURE with k = 6 possible ancestral clusters: Nama, Northern San, Near Eastern, East 
African Nilotic, West African, and European (see also Fig. S1) [50]. After QC, kinship 
and ancestry exclusions, we analysed n = 55 individuals. We calculated iHS using selscan 
1.3.0 [51] and default parameters. For the --map flag, we used recombination rates from 
the custom Nama map in one run and from the combined Phase II HapMap in a second 
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run. We filtered for the most extreme iHS scores (absolute value) by taking the highest 
1.0% of the scores.

We annotated these positions using the gene range list provided by Plink (https:// 
www. cog- genom ics. org/ plink/1. 9/ resou rces). We compared the candidate genes found 
in each run of selscan to create a Venn Diagram. We also calculated the Pearson correla-
tion between iHS scores for each SNP as calculated by each run of selscan.

Supplementary Information
The online version contains supplementary material available at https:// doi. org/ 10. 1186/ s13059- 022- 02744-5.

Additional file 1: Figure S1. Ancestry estimates for the Nama obtained using ADMIXTURE with k=4 to k=7 possible 
ancestral clusters. Figure S2. (A) Ternary diagram showing the African, European and Khoe-San ancestry contribu-
tions, as represented by the LWK, GBR and Nama respectively, for the whole WGS dataset of 84 individuals. (B) Ternary 
diagram showing the African, European and Khoe-San ancestry contributions, as represented by the LWK, GBR and 
Nama respectively, for the unrelated subset of the WGS dataset.

Additional file 2. 

Acknowledgements
The authors would like to thank Prof. Carina Schlebusch and Dr. Torsten Günther for providing previously published 
data on the demographic history of the Nama. We thank Aaron Ragsdale, Jeffrey Spence and one anonymous reviewer 
for their thoughtful comments and careful examination of the manuscript. We thank Elizabeth Atkinson for compara-
tive ancestry analysis. We express our gratitude to the Nama community for their generous contribution of DNA, family 
interviews and ethics consultation without which this research would not be possible.

Review history
The review history is available as Additional file 2.

Peer review information
Tim Sands was the primary editor of this article and managed its editorial process and peer review in collaboration with 
the rest of the editorial team.

Authors’ contributions
GvE performed effective population size inference, created recombination maps, compared recombination maps and 
wrote the main body of the article. EP calculated and filtered integrated haplotype scores and wrote the sections relating 
to selection scans. M Mastoras formalised the AS-IBDNe pipeline and provided a figure and description for the pipeline. 
CU, GvdS, GCT, BMH and M Möller conceptualised and reviewed. All authors read and approved the final manuscript.

Funding
This research was funded (partially or fully) by the South African government through the South African Medical 
Research Council and the National Research Foundation. GvE was supported by the DSI-NRF Innovation Doctoral Schol-
arship. This research was supported by NIH grant R35GM133531 (to BMH). The content is solely the responsibility of the 
authors and does not necessarily represent the official views of the National Institutes of Health.

Availability of data and materials
Sequence data has been deposited at the ega (EGA), which is hosted by the EBI and the CRG, under accession number 
EGAD00001006198 [52]. These data are described more fully in Ragsdale et al. [27]. The recombination map inferred for 
the Nama can be found at https:// github. com/ TBHos tGen/ nama- recom binat ion- map [53]. Our pipeline for inferring AS-
IBDNe is available at https:// github. com/ hennl ab/ AS- IBDNe.

Declarations

Ethics approval and consent to participate
Approved by the Health Research Ethics Committee 2 of Stellenbosch University under ethics reference number 
S20/02/034. The Health Research Ethics Committee (HREC) complies with the SA National Health Act No. 61 of 2003 as it 
pertains to health research. The HREC abides by the ethical norms and principles for research, established by the World 
Medical Association (2013). Declaration of Helsinki: Ethical Principles for Medical Research Involving Human Subjects; the 
South African Department of Health (2006). Guidelines for Good Practice in the Conduct of Clinical Trials with Human 
Participants in South Africa (2nd edition), as well as the Department of Health (2015). Ethics in Health Research: Princi-
ples, Processes and Structures (2nd edition). The Health Research Ethics Committee reviews research involving human 
subjects conducted or supported by the Department of Health and Human Services, or other federal departments or 
agencies that apply the Federal Policy for the Protection of Human Subjects to such research (United States Code of 
Federal Regulations Title 45 Part 46), and/or clinical investigations regulated by the Food and Drug Administration (FDA) 
of the Department of Health and Human Services.

Consent for publication
Not applicable.

https://www.cog-genomics.org/plink/1.9/resources
https://www.cog-genomics.org/plink/1.9/resources
https://doi.org/10.1186/s13059-022-02744-5
https://sciwheel.com/work/citation?ids=13298170&pre=&suf=&sa=1
https://github.com/TBHostGen/nama-recombination-map
https://github.com/hennlab/AS-IBDNe


Page 13 of 14van Eeden et al. Genome Biology          (2022) 23:172  

Competing interests
The authors declare no competing interests.

Received: 19 December 2021   Accepted: 1 August 2022

References
 1. Peñalba JV, Wolf JBW. From molecules to populations: appreciating and estimating recombination rate variation. 

Nat Rev Genet. 2020;21:476–92.
 2. Halldorsson BV, Palsson G, Stefansson OA, Jonsson H, Hardarson MT, Eggertsson HP, et al. Characterizing mutagenic 

effects of recombination through a sequence-level genetic map. Science. 2019;363.
 3. Wegmann D, Kessner DE, Veeramah KR, Mathias RA, Nicolae DL, Yanek LR, et al. Recombination rates in admixed 

individuals identified by ancestry-based inference. Nat Genet. 2011;43:847–53.
 4. Hinch AG, Tandon A, Patterson N, Song Y, Rohland N, Palmer CD, et al. The landscape of recombination in African 

Americans. Nature. 2011;476:170–5.
 5. Zhou Y, Browning BL, Browning SR. Population-specific recombination maps from segments of identity by descent. 

Am J Hum Genet. 2020;107:137–48.
 6. Auton A, McVean G. Recombination rate estimation in the presence of hotspots. Genome Res. 2007;17:1219–27.
 7. Gao F, Ming C, Hu W, Li H. New software for the fast estimation of population recombination rates (fasteprr) in the 

genomic era. G3 (Bethesda). 2016;6:1563–71.
 8. Dapper AL, Payseur BA. Effects of demographic history on the detection of recombination hotspots from linkage 

disequilibrium. Mol Biol Evol. 2018;35:335–53.
 9. Spence JP, Song YS. Inference and analysis of population-specific fine-scale recombination maps across 26 diverse 

human populations. Sci Adv. 2019;5:eaaw9206.
 10. Auton A, Fledel-Alon A, Pfeifer S, Venn O, Ségurel L, Street T, et al. A fine-scale chimpanzee genetic map from popu-

lation sequencing. Science. 2012;336:193–8.
 11. Graffelman J, Balding DJ, Gonzalez-Neira A, Bertranpetit J. Variation in estimated recombination rates across human 

populations. Hum Genet. 2007;122:301–10.
 12. Pratto F, Brick K, Khil P, Smagulova F, Petukhova GV, Camerini-Otero RD. DNA recombination. Recombination initia-

tion maps of individual human genomes. Science. 2014;346:1256442.
 13. Serre D, Nadon R, Hudson TJ. Large-scale recombination rate patterns are conserved among human populations. 

Genome Res. 2005;15:1547–52.
 14. Kong A, Thorleifsson G, Gudbjartsson DF, Masson G, Sigurdsson A, Jonasdottir A, et al. Fine-scale recombination rate 

differences between sexes, populations and individuals. Nature. 2010;467:1099–103.
 15. International HapMap Consortium, Frazer KA, Ballinger DG, Cox DR, Hinds DA, Stuve LL, et al. A second generation 

human haplotype map of over 3.1 million SNPs. Nature. 2007;449:851–61.
 16. Swart Y, van Eeden G, Sparks A, Uren C, Möller M. Prospective avenues for human population genomics and disease 

mapping in southern Africa. Mol Genet Genom. 2020;295:1079–89.
 17. Uren C, Kim M, Martin AR, Bobo D, Gignoux CR, van Helden PD, et al. Fine-Scale human population structure in 

southern Africa reflects ecogeographic boundaries. Genetics. 2016;204:303–14.
 18. Henn BM, Gignoux CR, Jobin M, Granka JM, Macpherson JM, Kidd JM, et al. Hunter-gatherer genomic diversity sug-

gests a southern African origin for modern humans. Proc Natl Acad Sci USA. 2011;108:5154–62.
 19. Gronau I, Hubisz MJ, Gulko B, Danko CG, Siepel A. Bayesian inference of ancient human demography from individual 

genome sequences. Nat Genet. 2011;43:1031–4.
 20. Schlebusch CM, Skoglund P, Sjödin P, Gattepaille LM, Hernandez D, Jay F, et al. Genomic variation in seven Khoe-San 

groups reveals adaptation and complex African history. Science. 2012;338:374–9.
 21. Pickrell JK, Patterson N, Barbieri C, Berthold F, Gerlach L, Güldemann T, et al. The genetic prehistory of southern 

Africa. Nat Commun. 2012;3:1143.
 22. Barbieri C, Hübner A, Macholdt E, Ni S, Lippold S, Schröder R, et al. Refining the Y chromosome phylogeny with 

southern African sequences. Hum Genet. 2016;135:541–53.
 23. Barbieri C, Vicente M, Rocha J, Mpoloka SW, Stoneking M, Pakendorf B. Ancient substructure in early mtDNA line-

ages of southern Africa. Am J Hum Genet. 2013;92:285–92.
 24. Uren C, Möller M, van Helden PD, Henn BM, Hoal EG. Population structure and infectious disease risk in southern 

Africa. Mol Genet Genomics. 2017;292:499–509.
 25. Sengupta D, Choudhury A, Fortes-Lima C, Aron S, Whitelaw G, Bostoen K, et al. Genetic substructure and complex 

demographic history of South African Bantu speakers. Nat Commun. 2021;12:2080.
 26. Henn BM, Gignoux C, Lin AA, Oefner PJ, Shen P, Scozzari R, et al. Y-chromosomal evidence of a pastoralist migration 

through Tanzania to southern Africa. Proc Natl Acad Sci USA. 2008;105:10693–8.
 27. Ragsdale AP, Weaver TD, Atkinson EG, Hoal E, Möller M, Henn BM, et al. A weakly structured stem for human origins 

in Africa. BioRxiv. 2022.
 28. Terhorst J, Kamm JA, Song YS. Robust and scalable inference of population history from hundreds of unphased 

whole genomes. Nat Genet. 2017;49:303–9.
 29. Browning SR, Browning BL, Daviglus ML, Durazo-Arvizu RA, Schneiderman N, Kaplan RC, et al. Ancestry-specific 

recent effective population size in the Americas. PLoS Genet. 2018;14:e1007385.
 30. Gurdasani D, Carstensen T, Tekola-Ayele F, Pagani L, Tachmazidou I, Hatzikotoulas K, et al. The African Genome Varia-

tion Project shapes medical genetics in Africa. Nature. 2015;517:327–32.
 31. Schlebusch CM, Sjödin P, Breton G, Günther T, Naidoo T, Hollfelder N, et al. Khoe-San genomes reveal unique varia-

tion and confirm the deepest population divergence in Homo sapiens. Mol Biol Evol. 2020;37:2944–54.



Page 14 of 14van Eeden et al. Genome Biology          (2022) 23:172 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

 32. Browning SR, Browning BL. Accurate non-parametric estimation of recent effective population size from segments 
of identity by descent. Am J Hum Genet. 2015;97:404–18.

 33. Martin AR, Lin M, Granka JM, Myrick JW, Liu X, Sockell A, et al. An unexpectedly complex architecture for skin pig-
mentation in Africans. Cell. 2017;171:1340–1353.e14.

 34. Smith AB. Einiqualand: studies of the Orange river Frontier. Rondebosch: Uct Press; 1995.
 35. 1000 Genomes Project Consortium, Abecasis GR, Altshuler D, Auton A, Brooks LD, Durbin RM, et al. A map of human 

genome variation from population-scale sequencing. Nature. 2010;467:1061–73.
 36. Vicente M, Jakobsson M, Ebbesen P, Schlebusch CM. Genetic affinities among southern Africa hunter-gatherers and 

the impact of admixing farmer and herder populations. Mol Biol Evol. 2019;36:1849–61.
 37. Voight BF, Kudaravalli S, Wen X, Pritchard JK. A map of recent positive selection in the human genome. PLoS Biol. 

2006;4:e72.
 38. Zhang L, Mei Y, Fu N, Guan L, Xie W, Liu H, et al. TRIM39 regulates cell cycle progression and DNA damage responses 

via stabilizing p21. Proc Natl Acad Sci USA. 2012;109:20937–42.
 39. Granka JM, Henn BM, Gignoux CR, Kidd JM, Bustamante CD, Feldman MW. Limited evidence for classic selective 

sweeps in African populations. Genetics. 2012;192:1049–64.
 40. Hassan S, Surakka I, Taskinen M-R, Salomaa V, Palotie A, Wessman M, et al. High-resolution population-specific 

recombination rates and their effect on phasing and genotype imputation. Eur J Hum Genet. 2020.
 41. van Eeden G, Uren C, van der Spuy G, Tromp G, Möller M. Local ancestry inference in heterogeneous populations-

are recent recombination events more relevant? Brief. Bioinformatics. 2021.
 42. van Eeden G, Uren C, Möller M, Henn BM. Inferring recombination patterns in African populations. Hum Mol Genet. 

2021;30:R11–6.
 43. Samuk K, Noor MAF. Gene flow biases population genetic inference of recombination rate. BioRxiv. 2021.
 44. Li H. SNPable. 2009. http:// lh3lh3. users. sourc eforge. net/ snpab le. shtml. Accessed 1 May 2021.
 45. Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-generation PLINK: rising to the challenge of 

larger and richer datasets. Gigascience. 2015;4:7.
 46. O’Connell J, Gurdasani D, Delaneau O, Pirastu N, Ulivi S, Cocca M, et al. A general approach for haplotype phasing 

across the full spectrum of relatedness. PLoS Genet. 2014;10:e1004234.
 47. Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, et al. Twelve years of SAMtools and BCFtools. Gigas-

cience. 2021;10.
 48. Maples BK, Gravel S, Kenny EE, Bustamante CD. RFMix: a discriminative modeling approach for rapid and robust 

local-ancestry inference. Am J Hum Genet. 2013;93:278–88.
 49. Browning BL, Browning SR. Improving the accuracy and efficiency of identity-by-descent detection in population 

data. Genetics. 2013;194:459–71.
 50. Lin M, Siford RL, Martin AR, Nakagome S, Möller M, Hoal EG, et al. Rapid evolution of a skin-lightening allele in south-

ern African Khoe-San. Proc Natl Acad Sci USA. 2018;115:13324–9.
 51. Szpiech ZA, Hernandez RD. selscan: an efficient multithreaded program to perform EHH-based scans for positive 

selection. Mol Biol Evol. 2014;31:2824–7.
 52. Collection of Genotypic and Ethnographic Information from Individuals of South African Ethnic Groups. European 

Genome-Phenome Archive. EGAD00001006198. https:// ega- archi ve. org/ datas ets/ EGAD0 00010 06198
 53. van Eeden G, Uren C, Pless E, Mastoras M, van der Spuy G, Tromp G, et al. Nama recombination map. 2021. https:// 

github. com/ TBHos tGen/ nama- recom binat ion- map. Accessed 26 Jun 2022.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

http://lh3lh3.users.sourceforge.net/snpable.shtml
https://ega-archive.org/datasets/EGAD00001006198
https://github.com/TBHostGen/nama-recombination-map
https://github.com/TBHostGen/nama-recombination-map

	The recombination landscape of the Khoe-San likely represents the upper limits of recombination divergence in humans
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Results
	The inferred demographic history of the Nama
	The correlation between the inferred Nama recombination map and other publicly available maps
	Fine-scale recombination as applied in selection scans

	Discussion and conclusions
	Methods
	Inferring demographic history
	Recombination rate inference
	Selection scans

	Acknowledgements
	References




