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Abstract—We study the scaling laws for wireless ad hoc
network in which the distribution of nodes in the network is
homogeneous but the traffic is heterogeneous. More specifically,
we consider the case in which a node is the sink tok sources
sending different information, while the rest of the nodes are
part of unicast communications with a uniform assignment of
source-destination pairs. We prove that the capacity of these
heterogeneous networks isΘ( n

Tmax
), where Tmax and n denote

the maximum traffic for a cell and the number of nodes in
the network, respectively. Equivalently, our derivations reveal
that, when n − k 6= constant, the network capacity is equal
to Θ

“
q

n

log n

”

for k = O(
√

n log n) and equal to Θ
`

n

k

´

for k = Ω(
√

n log n). Furthermore, the network capacity is
Θ(1) when n − k = constant. These results demonstrate that
the capacity of a heterogeneous network is dominated by the
maximum congestion in any area of the network.

I. I NTRODUCTION

The scaling laws of wireless ad hoc networks with homo-
geneous traffic and uniform distribution have been extensively
studies in the literature. The seminal paper by Gupta and
Kumar [1] evaluated the capacity of wireless ad hoc network
with uniform traffic and showed that the capacity scales as
Θ( n√

log n
) under the protocol model. The information theoretic

capacity of wireless ad hoc networks with cooperation among
nodes was investigated by Xie and Kumar [2], [3]. Zemlianov
and de Veciana [4] investigated the throughput capacity with
homogeneous traffic when some nodes are connected to the
infrastructure.

Few prior works investigate heterogeneous traffic in the
network. Keshavarz-Haddad et al. [5] introduced the concept
of transmission arena. Based on that definition, they introduced
a method to compute the upper bound of the capacity for
different traffic patterns and different topologies of the net-
work. However, the paper did not introduce any closed-form
scaling laws for the network capacity. Krishnamurthy et al.[6]
discussed different heterogeneous traffic requirements, which
depend on the type of data such as audio and video. Liu et al.
[7] assumed a heterogeneous traffic for low-priority and high-
priority data with different traffic models for them. Rodoplu et
al. [8], [9] consider a network with many sources selecting a
single node as destination. They introduce the concept of ”core
capacity” and derived some analytical results for capacityof
this type of network and compared it with uniform unicast core

capacity. However, their derivations did not lead to a closed
form scaling laws; instead, they showed simulation resultsfor
the case in which there is a limited number of nodes in the
network.

To the best of our knowledge, this is the first paper that
provides the scaling laws of such network with heterogeneous
traffic as a function ofn and other network parameters.
Interestingly, we find out that the capacity is dominated by
the area in which the majority of traffic in the network passes.
This result is intuitive when we assume that all the traffic
requirement for each node should be satisfied. Clearly, the
node with the highest traffic will dominate the capacity.

The paper is organized as follows. Section II presents the
assumptions and definitions needed in our analysis. SectionIII
provides the routing scheme and the lower bound throughput
capacity for our network model. Section IV provides the upper
bound. Some discussions are presented in Section V and the
paper is concluded in Section VI.

II. W IRELESSNETWORK MODEL

We consider a network with nodes uniformly distributed in a
dense network, where the area of the network is a constant unit
square. We assume heterogeneous traffic for the network, such
that a single node (called the access point) is the destination
for k sources in the network. For the rest of then − k nodes
in the network we assume random and uniformly distributed
source-destination pairs. Therefore, the source-destination pair
selection for unicast communications is similar to that used by
Gupta and Kumar [1] for the rest ofn−k nodes in the network.
This network model is shown in Figure 1.

The transmission range is assumed to be the same for all the
nodes and the communication between nodes is point-to-point.
A successful communication between two nodes is modeled
according to the protocol model, which is defined below.

Definition 2.1: Protocol Model:
Assume that there is a single common communication range
r(n) for all nodes. Nodei at locationXi can successfully
transmit to nodei(R) at locationXi(R) if |Xi−Xi(R)| ≤ r(n)
and for every nodek located atXk, k 6= i that transmits at
the same time,|Xk − Xi(R)| ≥ (1 + ∆)r(n). The quantity∆
guarantees a guard zone around the receiver.



Fig. 1. The Network Model

Definition 2.2: Feasible Throughput:
A throughput ofλi(n) bits per second is said to be feasible
for the ith source-destination pair if there is a common trans-
mission ranger(n), and a scheme to schedule transmissions
and there are routes between source and destination, such that
sourcei can transmit to its destination at such rate successfully.
For heterogeneous traffic, the feasible throughput is defined for
each source-destination pair.

Definition 2.3: Order of Throughput Capacity: The total
throughput capacity is said to be of orderΘ(f(n)) bits per
second if there exist a constantc andc′ such that

limn→∞ Pr(λ(n) =
n
∑

i=1

λi(n) = cf(n) is feasible) = 1; and

lim infn→∞ Pr(λ(n) =

n
∑

i=1

λi(n) = c′f(n) is feasible) < 1.

(1)

III. T HE LOWER BOUND OF THECAPACITY

We need to emphasize that there are two types of traffic
in our model. One traffic is associated to thek sources
transmitting packets to the access node and the other traffic
stems from the rest ofn−k nodes in the network with unicast
communications. Therefore, we need to define the routing
protocol and scheduling under this traffic model.

A. The Routing Scheme and the Scheduling Protocol

The selection of sources for the access nodei is based on
the technique described in [10]. We randomly and uniformly
selectk locations in the network and choose the closest nodes
to thesek locations as sources for the access node. The routing
trajectory is a straight lineLi from access node to these
k locations. Then the packets traverse from each source to
destination in a multi-hop fashion passing through all the cells
that crossLi. For the rest ofj nodes with unicast traffic where
1 ≤ j ≤ n−k, both selections of source-destination pairs and
routing is similar to the above technique.

For the scheduling scheme, we utilize a TDMA scheme
similar to [10] with some modifications to take into account
the heterogeneity of the traffic.

B. The traffic caused by access node

Let us define a traffic from nodei to nodej as commodity
[9]. Clearly, the number of commodities for access node isk

which is also equivalent to the number of lines (paths) passing
through the cell that contains the access node. For simplicity
of the analysis, we assume that the access node is located
at the center of the network. Now we compute the number of
commodities for a cell that has a distance ofx from the access
node. From Fig. 2 and by choosingXiC =

√
2, the area of

triangle is

SXiAB =
√

2

√
2dn

√

(x + dn)2 − d2
n

<
2dn

x
, (2)

dn = C1

√

log n
n

is selected to guarantee the connectivity
between adjacent cells in the network [1] andC1 is a constant
factor.

n
d

i
X

Fig. 2. A geometric description of traffic by the access node in the network

Theorem 3.1:For any cell with a distance ofxj from the
access node, the upper bound for the number of commodities
caused by the traffic from the access node is

Nj < 2
dn

xj

k (3)

whenk = Ω(
√

n
log n

).

Proof: The average number of lines passing through the
cell (E[Nxj

]) whose distance from access nodei is xj is less
than 2 dn

xj
k sincek source nodes are uniformly distributed in

the network. Utlizing the Chernoff bound [11], we have

Pr
(

Nxj
− E[Nxj

] > δ E[Nxj
]
)

< exp
[

−((1 + δ) log(1 + δ) − δ) E(Nxj
)
]

(4)

and

Pr
(

Nxj
− E[Nxj

] < −δ E[Nxj
]
)

< exp

[

−δ2

2
E[Nxj

]

]

(5)



where 0 < δ < 1. Combining the results and considering
E[Nxj

] < 2dn

xj
k, we obtain

Pr
(

|Nxj
− E[Nxj

]| > δ E[Nxj
]
)

<

exp

[

−((1 + δ) log(1 + δ) − δ)
2dn

xj

k

]

+ exp

[

−δ2

2

2dn

xj

k

]

.

(6)

Thus, the probability that the values of the random variables
Nxj

for all j can simultaneously be arbitrarily close toE[Nxj
]

is given by

Pr





⋂

j

|Nxj
− E[Nxj

]| < δ E[Nxj
]





= 1 − Pr





⋃

j

|Nxj
− E[Nxj

]| > δ E[Nxj
]





≥ 1 −
∑

j

Pr
[

|Nxj
− E[Nxj

]| > δ E[Nxj
]
]

> 1 −
∑

j

(

exp

[

−((1 + δ) log(1 + δ) − δ)
2dn

xj

k

]

+ exp

[

−δ2

2

2dn

xj

k

])

. (7)

Denote that ifk = Ω(
√

n
log n

) anddn = Θ(
√

log n
n

), then this

probability tends to 1 whenn → ∞.

C. The traffic caused by unicast communications

In this section, we derive the number of lines passing
through each cell because of unicast traffic in the network.
Since the unicast traffic is distributed uniformly in the network,
this value is the same for all the cells in the network.

Lemma 3.2:For any cellS, the maximum number of lines
intersecting this cell caused by unicast traffic is given by

Pr(Maximum number of linesLi passing through

S ≤ C2(n − k)

√

log n

n
) → 1,

whenn − k 6= constant.
Proof: Our proof is similar to that of [10] except that we

account forn−k unicast pairs in the network. The probability
that the destination nodej is x away from the source node is
C3π(x+dn) [10] whereC3 is a constant. Thus, the probability
p that there is a line passing through the cellS which is with
distancex from j is

Pr(Li intersectsS) = p <

∫

√
2

dn

(

2dn

x

∨

1

)

k · C3

× π(x + dn)dx ≤ C4

√

log n

n
(8)

whereC4 is a constant value. Each ofn− k nodes randomly
and uniformly selects any other node in the network as

destination. Define i.i.d. random variableIi as

Ii =

{

1 If Li intersectS

0, Otherwise
(9)

wherei = 1, 2, · · · , n−k. It is clear from Eq. (8) thatPr(Ii =

1) = p < C4

√

log n
n

. DenoteZn =
∑n−k

i=1 Ii as the number
of lines passing through the cellS. Thus for positive values
of a andm and using Chernoff Bound, we have

Pr(Zn > m) ≤ E eaZn

eam
. (10)

Furhter,

E eaZn = (1 + (ea − 1)p)n−k

≤ exp((n − k)(ea − 1)p)

≤ exp(C4(n − k)(ea − 1)

√

log n

n
) (11)

Let’s definem = C2(n − k)
√

log n
n

, then Eq. (11) becomes

Pr(Zn > C2(n − k)

√

log n

n
)

≤ exp((n − k)

√

log n

n
(C4(e

a − 1) − C2a)). (12)

If we selectC2 such thatC2a − C4(e
a − 1) = ǫ > 0, then

Pr(Zn > C2(n − k)

√

log n

n
) ≤ exp(−ǫ(n − k)

√

log n

n
).

(13)
If the area for each cell is defined ass2

n = Θ( log n
n

), then by
utilizing the union bound we arrive at

Pr(Some cells have more than(n − k)

√

log n

n
lines)

≤
∑

all the cells

Pr(Zn > (n − k)

√

log n

n
)

≤ 1

s2
n

exp(−ǫ(n − k)

√

log n

n
)

=
n

2C1 log n
exp(−ǫ(n − k)

√

log n

n
). (14)

This probability goes to zero asn tends to infinity as long as
n − k 6= constant.

D. The Lower Bound of the Capacity

1) Case ofn − k 6= constant: From the previous two
sections, we deduce that the number of lines passing through
a cell with distancex from the access node is upper bounded

as 2dnk
x

+ C2(n− k)
√

log n
n

and for the cell that contains the

access node isk+C2(n−k)
√

log n
n

. In the traditional analysis
of capacity with homogeneous traffic, the inverse of traffic
for a cell using a TDMA scheme provides the throughput
capacity. Given that this value varies for different cells in
heterogeneous traffic, we assign a bandwidth to the cell thatis



proportional to the number of lines passing through a cell. This
assignment is based on the fact that each link in the network
has the same bandwidth (similar to the approach by Gupta
and Kumar) but more allocation of bandwidth is given to a
cell with higher traffic. Clearly, our results demonstrate that
the cell that contains the access node has the highest traffic.
If we divide the network into layers of cells starting from
the access point as shown in Fig. 3, the traffic for cells in
each layer is the same order. Let’s assume the traffic for each
layer is Ti where i = 1, ..., Θ(

√

n
log n

). Then our bandwidth

requirement for each layer is given by

Wo

To

=
W1

T1
= ... =

WΘ(
√

n
log n

)

TΘ(
√

n
log n

)
= c(n). (15)

Note thatWo = Wmax, To = Tmax andc(n) is a pre-determined
function of n. This assumption basically means that more
bandwidth is provided to a cell with higher traffic.

i
X

1l 2l 3l 4l

log

n

n

l

Fig. 3. The layers aroundXi

The average number of nodes in each cell is proportional
to Θ(log n), then the lower bound capacity is

Clower =
1

MWmax







Θ(
√

n
log n

)
∑

l=1

8lWl

Tl

+
W0

T0






· Θ(log n),

=
1

MWmax







Θ(
√

n
log n

)
∑

l=0

8lc(n) + c(n)






· Θ(log n),

=
1

MWmax
· Θ(

n

log n
+

√

n

log n
) · Θ(log n) · c(n),

= Ω(
c(n)n

Wmax
) = Ω(

n

Tmax
), (16)

whereM is the TDMA parameter that is required to separate
cells in order to satisfy the protocol model.

Note that the capacity defined in this paper is the total
capacity since the traffic for each node is different and per
node capacity may not be meaningful.

2) Case ofn− k = constant:Under this condition, clearly
all the traffic is contributed by the access node and since
each source is sending different packet to the access node,
the achivable capacity isΩ(1) by allowing one source at the
time to transmit its packet to the access node.

Combining the above results, we state the following theorem
for the achivable lower bound.

Theorem 3.3:The achievable lower bound for a heteroge-
neous traffic with maximum number of traffic ofTmax for a
cell can be given as follows.

Clower =







Ω(
n

Tmax
) whenn − k 6= C5

Ω(1) whenn − k = C5

(17)

Note that Theorem 3.1 is proved only fork = Ω(
√

n
log n

).

However whenk = O(
√

n
log n

), we can still take advantage

of the upper bound forTmax because there is less traffic under
this condition and the upper bound holds.

IV. T HE UPPERBOUND OF THECAPACITY

We first compute the capacity for the case whenn − k 6=
constant. The capacity can be defined as

Cupper =
the sum of capacity for all cells

the average number of hops for source-destination pairs

× 1

maximum bandwidth expansion× TDMA parameter
.

First, we consider the case whenk = Ω
(
√

n
log n

)

. It is easy

to show thatx ≥ (2l−1)
√

2dn

2 wherel varies from a constant

value up toΘ(
√

n
log n

) depending on the location of cell from

the access node. From this lower bound forx, we can derive
the upper bound forTl.

Tl <



















2dnk

(2l − 1)
√

2dn

2

+ C2(n − k)

√

log n

n
l 6= 0

k + C2(n − k)

√

log n

n
l = 0

(18)



Then the capacity can be derived as

Cupper =
1

MWmax
·







Θ(
√

n
log n

)
∑

l=1

8lWl

L−o(1)
r(n)

+
W0

L−o(1)
r(n)







a

≤ 1

WmaxM(L − o(1))
r(n)c(n)×







Θ(
√

n
log n

)
∑

l=1

8l

(

2dnk

(2l − 1)
√

2dn

2

+ C2(n − k)

√

log n

n

)

+

(

k + C2(n − k)

√

log n

n

))

=
1

WmaxM(L − o(1))
r(n)c(n)






2
√

2k

Θ(
√

n
log n

)
∑

l=1

8l

2l − 1

+ k + C2(n − k)

√

log n

n

Θ(
√

n
log n

)
∑

l=1

(8l + 1)







=
1

WmaxM(L − o(1))
r(n)c(n)






2
√

2k

Θ(
√

n
log n

)
∑

l=1

(4

+
4

2l − 1

)

+ k+

C2(n − k)

√

log n

n

Θ(
√

n
log n

)
∑

l=1

(8l + 1)







=
1

WmaxM(L − o(1))
r(n)c(n)

(

2
√

2kΘ

(√

n

log n

+ log

(√

n

log n

))

+ k

+ C2(n − k)

√

log n

n
Θ

(

n

log n

)

)

=
1

WmaxM(L − o(1))
r(n)c(n)

(

2
√

2kΘ

(√

n

log n

)

+ C2(n − k)Θ

(√

n

log n

))

b
=

1

WmaxM(L − o(1))
c(n)Θ(

√

log n

n
)

(

2
√

2kΘ

(√

n

log n

)

+ C2(n − k)Θ

(√

n

log n

))

=
1

WmaxM(L − o(1))
c(n)

(

2
√

2k + C2(n − k)
)

=O(
c(n)n

Wmax
) = O(

n

Tmax
) (19)

(a) is derived by replacingWl = Tlc(n) and (b) is derived

by replacingr(n) with Θ(
√

log n
n

). L in this derivation is the
average length of each unicast or the average length over all

distances betweenk sources and the access node.
Second, we consider the case whenk = O

(
√

n
log n

)

. From

(18), we can see that the maximum traffic in the network still
satisfies this condition. Thus, we can derive the same resultas
(19).

The case ofn − k =constant is straightforward since we
can at most have one data sent to the access node when all
the communications involve the access node.

Finally, from the analysis above, we derive a tight bound
for the capacity.

Theorem 4.1:In a random ad hoc network, under the het-
erogeneous traffic pattern with one node performing as the
destination fork source nodes and other nodes have unicast
communications, the overall capacity is

C =























Θ

(√

n

log n

)

, n − k 6= C5, k = O(
√

n log n)

Θ
(n

k

)

, n − k 6= C5, k = Ω(
√

n log n)

Θ(1). whenn − k = C5

,

(20)
Proof: We know that the capacity of this network is

Θ( n
Tmax

), where Tmax = k + C2(n − k)
√

log n
n

. Then it is
straightforward to see that for different values ofk, eq. (20)
can be derived.

V. D ISCUSSION

Fig. 4 shows the throughput capacity of a wireless network
obtained from (20) as a function of the number of sources for
the access node. As the number of the sources for this access
nodek increases from 1 toΘ(

√
n log n), the capacity of the

network isΘ(
√

n
log n

) which is the well known result com-

puted by Gupta and Kumar for homogeneous traffic model.
We call this region asHomogeneous Trafficregion. It is clear
that the capacity of the network in this region is dominated
by the uniform unicast traffic. Once the value ofk passes
this threshold ofΘ(

√
n log n), the capacity of the network is

Θ(n
k
) which is smaller than the capacity of theHomogeneous

Traffic region. The capacity of the network is dominated by
the access node which is the bottleneck in the network and
we call this capacity region asHeterogeneous Trafficregion.
This result implies that for the cells near the access node, we
should assign more resources (bandwidth or time) to guarantee
the data rate for each traffic. Finally if the number of sources
for the access node is such thatn−k = C5, then the capacity
is Θ(1) which is the same as broadcast transport capacity [12].
Since the number of sources is relatively large in this case,we
call this capacity region asAll to One Trafficregion. We can
see that almost all of the nodes have traffic for the access
node, thus, for the extreme case that all the nodes have traffic
to the access node, at each time, only one node can transmit.

Furthermore, the capacity we calculated is a normalized
capacity by the maximum bandwidth. We can see without this
normalization, the capacity of the network isnc(n) which
is not related tok (see Eqs. (16) and (19)). However, to
achieve the same capacity for all nodes and for different



C

n

k

log

n

n

log

n

n

1

1

logn n n n kn

Fig. 4. The capacity result

values ofk, we need to allocate more bandwidth to the more
congested areas of the network. Fig. 5 demonstrates that in the
Homogenous Trafficregion, the maximum bandwidth needed
is not related tok. However, in theHeterogenous Traffic
region, the bandwidth grows linearly withk, which is the price
for keeping the overall capacity the same. Finally, in theAll
to One Trafficregion, the order of the maximum bandwidth
does not change.

max
W

k

log ( )n n c n

( )n c n

logn n n n

( )k c n

Fig. 5. The maximum bandwidth required corresponding to different k

VI. CONCLUSION

This paper presented the first closed-form scaling laws for
the capacity of wireless ad hoc networks with heterogeneous
traffic. More specifically, we assumed an access node with
k sources choosing this node as destination and the rest of
nodes in the network, having unicast communications. It was
shown that the capacity of such heterogeneous networks is
Θ( n

Tmax
). Equivalently, our derivations reveal that, whenn −

k 6= constant, then the capacity is equal toΘ
(
√

n
log n

)

for

k = O(
√

n log n) and equal toΘ
(

n
k

)

for k = Ω(
√

n logn).
Furthermore, whenn − k = constant, then the capacity is
Θ(1). The results demonstrate that, as it should be expected,
the capacity of a heterogeneous network is dominated by the
maximum traffic (congestion) in any area of the network.
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