UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
Capacity of Wireless Networks with Heterogeneous Traffic

Permalink
https://escholarship.org/uc/item/26n410m0Q

Author
Garcia-Luna-Aceves, J.).

Publication Date
2009-11-30

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/26n410m0
https://escholarship.org
http://www.cdlib.org/

Capacity of Wireless Networks with Heterogeneous
Traffic

Mingyue Ji, Zheng Wang Hamid R. Sadjadpoty J.J. Garcia-Luna-Acevés

Department of Electrical Engineerihgnd Computer Engineerihg
University of California, Santa Cruz, 1156 High Street, @a@ruz, CA 95064, USA
i pPalo Alto Research Center (PARC), 3333 Coyote Hill Roadp Pdio, CA 94304, USA
Email:{davidjmy, wzgold, hamid, }j@soe.ucsc.edu

Abstract—We study the scaling laws for wireless ad hoc capacity. However, their derivations did not lead to a albse
network in which the distribution of nodes in the network is form scaling laws; instead, they showed simulation resfolts

homogeneous but the traffic is heterogeneous. More speciflba  ha case in which there is a limited number of nodes in the
we consider the case in which a node is the sink t& sources network

sending different information, while the rest of the nodes &
part of unicast communications with a uniform assignment of ~ To the best of our knowledge, this is the first paper that
source-destination pairs. We prove that the capacity of thee provides the scaling laws of such network with heterogerseou
heterogeneous networks 9 (), where Tmax and n denote traffic as a function ofn and other network parameters.

the maximum traffic for a cell"and the number of nodes in Interestingly, we find out that the capacity is dominated by

the network, respectively. Equivalently, our derivations reveal . . L .
that. when 7 — ,E,) 4 co%stagt the ngtwork capacity is equal the area in which the majority of traffic in the network passes

to @( ﬁ) for k = O(y/nlogn) and equal to © () This_result is intuitive when we assume t_ha_t all the traffic
& requirement for each node should be satisfied. Clearly, the

for k = Q(y/nlogn). Furthermore, the network capacity is . . : . . .
O(1) when (n _ :)constant. These results demonstrate that Node with the highest traffic will dominate the capacity.

the capacity of a heterogeneous network is dominated by the ~The paper is organized as follows. Section Il presents the
maximum congestion in any area of the network. assumptions and definitions needed in our analysis. Selttion

provides the routing scheme and the lower bound throughput

capacity for our network model. Section IV provides the uppe
The scaling laws of wireless ad hoc networks with hom@ound. Some discussions are presented in Section V and the

geneous traffic and uniform distribution have been ext@tgiv paper is concluded in Section VI.

studies in the literature. The seminal paper by Gupta and

Kumar [1] evaluated the capacity of wireless ad hoc network Il. WIRELESSNETWORK MODEL

with uniform traffic and showed that the capacity scales as ] _ _ o )
©(—2—) under the protocol model. The information theoretic We consider a network with nodes uniformly distributed in a

Vlogn . | K f :
capacity of wireless ad hoc networks with cooperation amof§nse network, where the area of the network is a constant uni

nodes was investigated by Xie and Kumar [2], [3]. ZemliancyAuare. We assume heterogeneous traffic for the network, suc

and de Veciana [4] investigated the throughput capacitp withat & single node (called the access point) is the desimati

homogeneous traffic when some nodes are connected to f@fel sources in the network. For the rest of the- & nodes

infrastructure. in the network we assume random and uniformly distributed
Few prior works investigate heterogeneous traffic in th@Purce-destination pairs. Therefore, the source-desimpair

network. Keshavarz-Haddad et al. [5] introduced the COm(:‘.?flectlon for unicast communications is similar to thatdulsg

of transmission arena. Based on that definition, they intced SUPta and Kumar [1] for the rest ef -k nodes in the network.

a method to compute the upper bound of the capacity fPiS network model is shown in Figure 1.

different traffic patterns and different topologies of thet-n The transmission range is assumed to be the same for all the

work. However, the paper did not introduce any closed-forRPdes and the communication between nodes is point-td:poin
scaling laws for the network capacity. Krishnamurthy ef@]. A successful communication between two nodes is modeled
discussed different heterogeneous traffic requiremerttgghw according to the protocol model, which is defined below.
depend on the type of data such as audio and video. Liu et alPéfinition 2.1: Protocol Model:

[7] assumed a heterogeneous traffic for low-priority anchhig Assume that there is a single common communication range
priority data with different traffic models for them. Rodopgt 7(n) for all nodes. Nodei at location X; can successfully

al. [8], [9] consider a network with many sources selecting ansmit to node(R) at locationX; g, if [X; — Xir)| < r(n)
single node as destination. They introduce the conceptare’c and for every node: located atXy, k # i that transmits at
capacity” and derived some analytical results for capaefty the same time|.X;, — X;()| > (1 + A)r(n). The quantityA

this type of network and compared it with uniform unicastecorguarantees a guard zone around the receiver.

I. INTRODUCTION




° B. The traffic caused by access node

Let us define a traffic from nodeto node;j as commodity
[9]. Clearly, the number of commodities for access nodg is
which is also equivalent to the number of lines (paths) passi
through the cell that contains the access node. For sirplici
of the analysis, we assume that the access node is located
at the center of the network. Now we compute the number of
commodities for a cell that has a distancerdfom the access
node. From Fig. 2 and by choosing;C = v/2, the area of
—— Traffic of the triangle is

access node
Traffic of the

other nodes 2dn 2dn
Sx,ap = V2 V2 — < ——, 2
Fig. 1. The Network Model (x+dn)? —d3 z

. . d, = C“/l"% is selected to guarantee the connectivity
Definition 2.2: Fea3|b]e Throughput: . . .. between adjacent cells in the network [1] afidis a constant
A throughput of A\;(n) bits per second is said to be feas'bl?actor
for the i*" source-destination pair if there is a common trans- '
mission range-(n), and a scheme to schedule transmissions A
and there are routes between source and destination, saich th
sourcei can transmit to its destination at such rate successfully.
For heterogeneous traffic, the feasible throughput is defioe
each source-destination pair.
Definition 2.3: Order of Throughput Capacity: The total d
throughput capacity is said to be of ordex f(n)) bits per
second if there exist a constantind¢’ such that

lim,, oo Pr(A(n) = > Xi(n) = cf(n) is feasibl¢ = 1; and X

liminf, o P Z Al (n) is feasiblg < 1.

(1) Fig. 2. A geometric description of traffic by the access nadéhe network

Ill. THE LOWERBOUND OF THECAPACITY

We need to emphasize that there are two types of traffic Theorem 3.1:For any cell with a distance of; from the
in our model. One traffic is associated to tie sources access node, the upper bound for the number of commodities
transmitting packets to the access node and the other trafi@used by the traffic from the access node is
stems from the rest af — k£ nodes in the network with unicast
communications. Therefore, we need to define the routing N, < Qd_nk A3)

. . . J
protocol and scheduling under this traffic model. Ty

A. The Routing Scheme and the Scheduling Protocol

The selection of sources for the access node based on . .
the technique described in [10]. We randomly and uniforml Proof: The average number of lines passing through the
selectk locations in the network and choose the closest nod "3” (E[ ;)) whose distance from access nade z; is less
o thesek locations as sources for the access node. The routimgn 25~ - since k source nodes are uniformly distributed in
trajectory is a straight lineL; from access node to thesell® netiwork. Utlizing the Chernoff bound [11], we have

k locations. Then the packets traverse from each source to

whenk = Q(\/T).

logn

destination in a multi-hop fashion passing through all thkisc Pr (Ny; — E[N;,] > §E[N,,])

that crossL;. For the rest ofi nodes with unicast traffic where < exp [—((1+68)log(1+6) — &) E(N,,)] (4)
1 < j < n—k, both selections of source-destination pairs and

routing is similar to the above technique. and

For the scheduling scheme, we utilize a TDMA scheme
similar to [10] with some maodifications to take into account 0
the heterogeneity of the traffic. Pr(N,; — E[N,,] < =0 E[N,,]) < exp {—— E[N, ]} (5)



where() < ¢ < 1. Combining the results and consideringlestination. Define i.i.d. random variablg as

E[N,,] < Qj;k, we obtain
Pr (|N,, — E[N,,]| > 6 E[N,,]) <
2
exp [—((1 +6)log(l+9) — 6)%4 + exp [—é—ﬁk]
T 2 x;

(6)

1
0,

If L; intersectS
Otherwise

)

X

wherei =1,2,--- ,n—k. Itis clear from Eq. (8) thaPr(I; =

1)=p<Cy = Z?:_f I; as the number
of lines passing through the cel. Thus for positive values

Thus, the probability that the values of the random varigblef « andm and using Chernoff Bound, we have

N,, forall j can simultaneously be arbitrarily close EON,, ]
is given by

Pr[ﬂw%— N, ]| < 0E[N, ]]

=1—-Pr

U'N%'_
>1—ZPr

[Nzl > 6 E[Ng,]

|

[Nz, ]| > 6 E[N,

>1- Z (exp [—((1 + ) log(1 4 68) — 0) 22 k}
+exp [—ﬁ%k}) | ™

Denote that ifi = (/o) andd,, = ©(y/%"), then this
probability tends to 1 when — oc. [ ]

C. The traffic caused by unicast communications

E e%Zn

eam '

Pr(Z, >m) <

(10)
Furhter,

Ee%r = (14 (e* —1)p)"~F
<exp((n—k)(e* —1)p)

<exp(Ca(n —k)(e" — 1) \/ lo%) (11)

Let's definem = Cy(n — k),/ %", then Eq. (11) becomes
1
Pr(Z, > Ca(n — k) 05”)

< exp((n — k)| 22 (Cu(e® ~ 1) — Coa)).

If we selectCsy such thatCoa — Cy(e® — 1) =€ > 0, then

Pr(Z, > Ca(n — k)\/loin) < exp(—e(n — k),/lo%).

(13)
If the area for each cell is defined a$ = © l"g") then by

(12)

In this section, we derive the number of lines passingilizing the union bound we arrive at

through each cell because of unicast traffic in the network.

Since the unicast traffic is distributed uniformly in thewetk,

this value is the same for all the cells in the network.
Lemma 3.2:For any cellS, the maximum number of lines

intersecting this cell caused by unicast traffic is given by

Pr(Maximum number of lined,; passing through

) —

logn

SSCQ(?’L—k) 1,

n

whenn — k # constant.
Proof: Our proof is similar to that of [10] except that we

account fom — k unicast pairs in the network. The probabilityn — k£ # constant.

that the destination nodgis x away from the source node is

1 .
Pr(Some cells have more thdmn — k)4 / o8n lines)
n

logn

Pr(Z, > (n—k) )
all the cells n
< L exp(—e(n — k)1 2
— 52 n

n

n logn
— —e(n —k)y/ —).
2C1 logn exp(—e(n ) n )

This probability goes to zero as tends to infinity as long as
[ |

(14)

Csm(z+d,) [10] whereCs is a constant. Thus, the probabilityD- The Lower Bound of the Capacity

p that there is a line passing through the cglvhich is with
distancex from j is

2d,

S

Pr(L; intersectsS) =

\/1>k-03

logn
n

X

m(x 4+ dy)dx < Cy

(8)

where(C} is a constant value. Each af— k£ nodes randomly

1) Case ofn — k # constant: From the previous two
sections, we deduce that the number of lines passing through
a cell with distancer from the access node is upper bounded

as 242k 4 Cy(n — k), /&2 and for the cell that contains the

access node iB+Cs(n—k) loﬁn . In the traditional analysis

of capacity with homogeneous traffic, the inverse of traffic
for a cell using a TDMA scheme provides the throughput
capacity. Given that this value varies for different celfs i

and uniformly selects any other node in the network dseterogeneous traffic, we assign a bandwidth to the celishat



proportional to the number of lines passing through a célisT  2) Case ofn — k = constant: Under this condition, clearly
assignment is based on the fact that each link in the netwalk the traffic is contributed by the access node and since
has the same bandwidth (similar to the approach by Gumach source is sending different packet to the access node,
and Kumar) but more allocation of bandwidth is given to the achivable capacity i€(1) by allowing one source at the
cell with higher traffic. Clearly, our results demonstratatt time to transmit its packet to the access node.

the cell that contains the access node has the highest traffi
If we divide the network into layers of cells starting fromf
the access point as shown in Fig. 3, the traffic for cells i

each layer is the same order. Lets assume the traffic for eacﬁl‘heorem 3.3:The achievable lower bound for a heteroge-
layer is T; wherei = 1,...,0(,/Z%). Then our bandwidth N€OUS traffic with maximum number of traffic dinax for a
¢ g

cell can be given as follows.

CCombining the above results, we state the following theorem
or the achivable lower bound.

requirement for each layer is given by

W, Wi O(\/ 1ogw
- = Vs = c(n). (15) n
TO Tl / Q whenn — k # C.
TO( log n) Clower = (Tmax) 7& ’ (17)

. . Q(1) whenn — k = Cjs
Note thatW, = Whax, T, = Tmax@ndc(n) is a pre-determined

function of n. This assumption basically means that more
bandwidth is provided to a cell with higher traffic.

Note that Theorem 3.1 is proved only fér= Q(, /—2-).

logn
However whenk = O(, /525 ), we can still take advantage

of the upper bound fol .« because there is less traffic under
this condition and the upper bound holds.

x|

1
1| 27 43 [4
el [ j IV. THE UPPERBOUND OF THECAPACITY
logn

We first compute the capacity for the case when k #

Fig. 3. The layers around; constant. The capacity can be defined as

The average number of nodes in each cell is proportional .
9 prop the sum of capacity for all cells

to ©(logn), then the lower bound capacity is C, — )
(logn) pacly upper the average number of hops for source-destination pair
o (/) y ! .
Clower = Z 8IW; + Wo | . O(logn) maximum bandwidth expansionTDMA parameter
M Wmax Py T To ’
oY)
. - First, we consider the case whén= () ( ) It is easy
- MW, > 8le(n) +¢(n) | - Ologn), \/ Toem
max 1=0 to show thatr > (21 — )& where! varies from a constant
1 n n value up t0O(, /-5-) depending on the location of cell from
= O + ) ©(logn) - ¢(n), V s
M Wax logn logn the access node. From this lower bound fowe can derive
c(n)n n the upper bound fof;.
=0 =Q , 16
where M is the TDMA parameter that is required to separate od k oo n
cells in order to satisfy the protocol model. 7"\/% + Ca(n —k)y/ o8y #0
Note that the capacity defined in this paper is the total 7; < J (20 —1)*5™ " (18)
capacity since the traffic for each node is different and per logn
node capacity may not be meaningful. k4 Ca(n—Fk) n [=0



Then the capacity can be derived as distances betweeh sources and the access node
Second, we consider the case whes O ( . From

@(\/%) ] \ logn )

1 SIW, Wo (18), we can see that the maximum traffic in the network still
Cupper:m : Z T o) " L—o(l) satisfies this condition. Thus, we can derive the same rasult

=1 r(n) r(n) (19)
1 The case ofn — k =constant is straightforward since we
Winad (L — 0(1))T(")C(”)x can at most have one data sent to the access node when all
the communications involve the access node.
2d, k 10gn> Finally, from the analysis above, we derive a tight bound

a
<

for the capacity.
Theorem 4.1:In a random ad hoc network, under the het-
logn ) erogeneous traffic pattern with one node performing as the

O/ 1o87)
l
(21

=1

destination fork source nodes and other nodes have unicast
communications, the overall capacity is

Nor S @<‘/1Ogn), n—k+#Cs, k=0(y/nlogn)

C= 6(%), n—k#Cs k= Q(y/nlogn)’
o(1). whenn — k = Cs
" (81 +1) (20)
Proof: We know that the capacity of this network is
O(y/15=) O(7%), where Tiax = k + Ca(n — k)\/ 2. Then it is
r(n)e(n) | 2v2k Z (4 straightforward to see that for different values lafeq. (20)
1=1 can be derived. ]

(k—l—Cz(n— k)

1
 WmnaxM (L —

+k+ Ca(n — k)

1
" Wi (L — o(1))

4
+_) + k+ V. DISCUSSION

20-1 Fig. 4 shows the throughput capacity of a wireless network
O(\/E) obtained from (20) as a function of the number of sources for
(n— k) —— IOgn (81+1) the access node. As the number of the sources for this access
nodek increases from 1 t®(y/nlogn), the capacity of the

network is ©(, /z25;) which is the well known result com-

r(n)e(n) (2\/_1?9 (\/ puted by Gupta and Kumar for homogeneous traffic model.
We call this region asiomogeneous Traffiegion. It is clear

+lo " 4+ k that the capacity of the network in this region is dominated
g (4/1 : _ /
ogn by the uniform unicast traffic. Once the value bfpasses
n
)

log n this threshold of9(y/nlogn), the capacity of the network is
+ Caln —k © log n ©(%) which is smaller than the capacity of thtomogeneous
Traffic region. The capacity of the network is dominated by

1 r(n)c(n) <2\/§/€@ < /L) the access node which is the bottleneck in the network and
WmaxM(L o(1)) logn we call this capacity region adeterogeneous Trafficegion.

+ Co(n—k)© / )) This result implies that for the cells near the access node, w
logn should assign more resources (bandwidth or time) to guagant
. log 1 the data rate for eac_h traffic. Finally if the number of sosrce
:WmaxM( —o1)) c(n)O( - ) for the access node is such that k = Cs, then the capacity
is ©(1) which is the same as broadcast transport capacity [12].

<2\/§k® ( /1L> + Cy(n—k)© < " >) Since the number of sources is relatively large in this case,
ogn

logn call this capacity region aéll to One Trafficregion. We can
1 hat almost all of the nodes have traffic for the access
= n) (2v2k + C. n—k) see tha ;
WinaxM (L — o(1)) ( ( 2( ) node, thus, for the extreme case that all the nodes havectraffi
0 c(n)n, o 19 to the access node, at each time, only one node can transmit.
(Wmax) N (Tmax) (19) Furthermore, the capacity we calculated is a normalized

) . . capacity by the maximum bandwidth. We can see without this
(@) is derived by replacingVi = Tic(n) and (b) is derived ,ormalization, the capacity of the network is:(n) which

by replacingr(n) with @(1/10“) L in this derivation is the is not related tok (see Egs. (16) and (19)). However, to
average length of each unicast or the average length overadhieve the same capacity for all nodes and for different



n Homogeneous
logn Traffic

(1]

A

® n
logn

(2]

Heterogeneous
Traffic

()
|

°li)
z///// k
[3]
All to One
Traffic

(4]

(5]

[6]
Fig. 4. The capacity result

.
values ofk, we need to allocate more bandwidth to the more[ ]

congested areas of the network. Fig. 5 demonstrates thia¢in t
Homogenous Trafficegion, the maximum bandwidth needed
is not related tok. However, in theHeterogenous Traffic
region, the bandwidth grows linearly with which is the price
for keeping the overall capacity the same. Finally, in &le 9]
to One Trafficregion, the order of the maximum bandwidth g
does not change.

(8]

[11]
[12]
W ALl to One
Traffic
O(n)c(n) |
®(k)c(n) 7777777777777777777777777777777
Homogeneous
Traffic
Heterogeneous
Traffic
G(Nlnlogn)c(n‘

n— Constant k

o[ friozn)

©(n)

Fig. 5. The maximum bandwidth required corresponding téecknt k&

V1. CONCLUSION

This paper presented the first closed-form scaling laws for
the capacity of wireless ad hoc networks with heterogeneous
traffic. More specifically, we assumed an access node with
k sources choosing this node as destination and the rest of
nodes in the network, having unicast communications. It was
shown that the capacity of such heterogeneous networks is
O(7= ). Equivalently, our derivations reveal that, when-

k # constant, then the capacity is equal@o(4 /&) for

k = O(y/nlogn) and equal tod (%) for k = Q(yv/nlogn).
Furthermore, whem — k = constant, then the capacity is
O(1). The results demonstrate that, as it should be expected,

the capacity of a heterogeneous network is dominated by the
maximum traffic (congestion) in any area of the network.
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