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EPIGRAPH 

 

Tis Boolean- 

Zero or 1. 

There are no other states, 

No in between states- 

Just confusion. 

 

To be there is to know. 

To be elsewhere is to wonder. 

 

It is simple, 

Yet mysteriously unknown. 

 

If there is some mystical energy in words 

It is because there is structure behind them- 

One level beyond our current awareness… 

 

And thus there are words and experiences 

Mystical to me 

That will no longer be 

Once their mechanism is revealed. 

 

To automate and to rise. 

To master the technical 

And reach the level of emergence 

Where one creates using heuristic pieces- 

This is greatness 

For artist, for scientist, 

That magic flash that moves around known  

pieces in new ways- 

Into a final product that seems too beautiful 

for the hand of man. 

 

There is only one state, 

And then, 

There is confusion. 

 

Balance. 

Imbalance. 

No in between. 

 

1-18-7 
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Professor Vincent P. Crawford, Chair 

 

 

 

My first chapter tests several hypotheses of information overload in an 

experiment where subjects estimate security prices under variable signal loads.  Peter 

Katuscak and I find that as information load increases subjects eventually stop 

assimilating further information, and they shift increasing weight towards the most salient 

information.  This combination of results leaves information receivers vulnerable to 

strategic manipulation by senders.   

My second chapter builds on the multiple attribute search experiment, and 

analysis, of Gabaix and Laibson (2006) in four ways; I provide a basic description of 

subjects’ search behavior, study behavior on the individual subject level, provide a partial 

characterization of optimality, and compare subjects’ behavior to my partial 



 xi

characterization of optimality.  I find that subjects’ search behavior violates optimality at 

high rates, but is also highly systematic, that 98% of all search behavior can be explained 

by four simple, exclusive, types, and that subjects often search conditionally too deeply 

within alternatives and exhibit strong adjacency biases in switching between alternatives.  

I also observe unambiguous evidence of memory failure by subjects. 

My third chapter tests the hypothesis that working memory limits can explain 

subjects’ main systematic deviations from optimality, as well as other fact patterns in 

search, in the Gabaix and Laibson (2006) dataset.  First I show that the most popular type 

of search pattern by subjects also requires the unique minimum amount of working 

memory load.  Second, I show that more systematic search sequences require less 

working memory load than more “random-looking” sequences.  These theoretical results 

strongly suggest that a simple model of search in which working memory is limited, but 

subjects otherwise search optimally, can explain Gabaix and Laibson’s subjects’ main 

systematic deviations from optimality as well as other fact patterns from the dataset. 
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An Experimental Study of Information 

Overload in Financial Bayesian Weighting Tasks 

of Varying Signal Loads 
 

Adam Sanjurjo and Peter Katuscak
1
 

University of California, San Diego 

3 June 2005 

 

Abstract: Information overload, here, refers to the act of assimilating less 

information in a task that contains strictly more relevant information, but is otherwise 

identical.  We test for information overload experimentally, with subjects estimating the 

expected prices of securities based on variable probabilistic signal loads.  A standard 

Bayesian updating model is used both to generate criterion expected prices, and to 

econometrically estimate the extent of subjects’ assimilation of signals.  Three 

hypotheses related to information overload, and one regarding the heuristic strategy of 

placing an excessively large amount of weight on stronger signals, and an excessively 

small amount of weight on weaker signals (Polarization), are tested.  As the Bayesian 

regression model is highly sensitive to extreme expected price estimates, two sets of 

results are reported.  The first set includes all data gathered in the experiment, including 

extreme expected price estimates, and shows that while decision error increases with 

information load there is no evidence of overload or polarization. The second set of 

results truncates the 4% most extreme expected price estimates, allowing for all subjects’ 

estimates to be weighted virtually equally in our analysis, as they should be, unlike in the 

non-truncated dataset.  In this case we show that as information load increases decision  

                                                 
1
 Department of Economics, University of California, San Diego.  9500 Gilman Drive, La Jolla, CA 92093-

0508 (Adam’s  email: asanjurjo@ucsd.edu; Peter’s email: Katuscak@cerge-ei.cz ).  Adam would like to 

thank Richard Carson, Vincent Crawford, John Conlisk, Armin Falk, Dan Houser, Andrew Schotter, 

Reinhard Selten, and Yixao Sun for helpful comments. 
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error increases, the amount of information assimilated plateaus, and subjects shift 

a disproportionately large amount of weight to the strongest signals. 

     
"A wealth of information creates a poverty of attention."  -H. Simon 
     
 

Introduction 

Traditional economic models tend to assume that decision makers have a scarcity 

of information and therefore choose to engage in costly search (Stigler, 1961; Kohn and 

Shavell, 1974) in order to acquire more, and that disposal of unwanted information is 

free.  Hand in hand with these assumptions goes the prevalent belief within economics 

that "more information is better."   

However, with the creation and vast mobilization of the internet over the last 40 

years, in today’s world information is not so much scarce as it is abundant, immediately 

available, and virtually costless.  At the same time, human information processing limits 

are an ever-present reality (Miller, 1956, Cowen, 2001).  Thus it is a non-trivial question 

to ask how human beings adapt their decision processes as information load increases. 

According to Jacoby (1977) human beings have a finite ability to assimilate and 

process information during any given unit of time.  Once these limits are surpassed, the 

human system is said to be "overloaded" and decision making “becomes confused, less 

accurate, and less effective."   

In this paper we define information overload (henceforth IOL) as the act of 

processing relatively less information when relatively more is provided, on an identical 

task.  This definition is concrete, measurable, easy to interpret, and seems to capture the 
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main essence of Jacoby’s definition, in a practical way.  We test this and other related 

hypotheses in an experimental setting. 

In our experiment subjects estimate the expected value of a financial security 

based on a prior along with probabilistic signals of varying quantities and strengths.  We 

use a within subject design in which each subject performs 24 rounds of estimates, each 

containing three, six, or nine signals of information.  Each signal can be of weak, 

moderate, or strong strength, in a way I will define clearly in Section I.  Subjects are 

compensated according to the precision of their estimates relative to computed 

(Bayesian) criterion expected prices. 

Stated informally, our hypotheses are that subjects’ estimates will stray further 

from the criterion expected price as the number of signals increases (weak IOL), that as 

the number of signals increases from six to nine subjects will assimilate the same 

(moderate IOL) to strictly less (strong IOL) information, and that as the number of 

signals increases subjects will disproportionately over-weigh high strength signals and 

disproportionately under-weigh low strength signals (polarization). 

Our results are reported in two sets.  The first set includes all subject data, without 

accounting for the Bayesian model’s extreme sensitivity to extreme expected price 

estimates (explanation in Section IV).  In this case we show that as the number of 

information signals increase subjects stray further from the criterion price, but assimilate 

more information and show no signs of polarization. 

In the second set of results we account for the Bayesian model’s extreme 

sensitivity to extreme expected price estimates by truncating the 4% most extreme 

estimates.  This truncation allows for all subjects’ estimates to be weighted virtually 
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equally in our analysis, as they should be, unlike in the non-truncated dataset.  In this 

case we show that as the number of information signals increase subjects stray further 

from the criterion price, and as they go from six to nine signals they assimilate no more 

information, and disproportionately over-weigh the strongest signals. 

The combination of subjects’ plateauing level of assimilated information and a 

shifting of disproportionate weight toward the strongest signals suggests that increases in 

information load allow information senders a clear opportunity for the strategic 

manipulation of receivers. 

While it is difficult to study IOL directly in field studies, laboratory experiments 

offer an effective alternative environment in which extraneous variables can be 

controlled, decision accuracy can be measured objectively, and signals can be made both 

relevant and independent from one another so that the effect of information load on 

subjects can be properly isolated.  This paper accomplishes these ends more fully than 

previous work in the IOL literature.  While our design borrows heavily from those of 

Tuttle & Burton (1999, 2004), it is the first in the IOL literature to use a Bayesian 

updating (supported by decision theory) rather than linear framework to model subjects' 

expected price estimates conditional on market signals.  It is also simpler than previous 

IOL experimental designs in ways that allow for a clearer isolation of the pure variable 

effects of increasing information load.   

 This paper is composed of five sections.  Section I contains the experimental 

design, while experimental hypotheses are found in Section II.  Section III describes the 

Bayesian econometric model used to measure subjects' assimilation of informative 

signals.  Section IV describes the experimental analysis, and Section V concludes.  
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Following the conclusion are two appendices; the first contains the instructions from our 

experiment and the second contains a brief literature review of IOL that serves to 

motivate our hypotheses and experimental design. 

        

I. Experimental Design 

 First we describe the subjects, then the general structure including payoffs, and 

finally the procedure used in our experiment.        

Subjects 

The subject pool consisted of 176 UCSD undergraduate students from a Financial 

Investments course.        

General Structure 

In this experiment subjects are told they will be doing the job of a securities 

analyst.  A new stock will be worth either $0 or $100 in one year from now- $0 if the 

company does poorly, $100 if it does well.  Subjects start with a given prior of a .5 

probability the company will do well and a .5 probability the company will do poorly.  

Subjects are then shown a set of probabilistic signals with which they update their prior 

in order to make an expected price estimate between $0 and $100 (any value) for the 

hypothetical security.  The signals that subjects receive must take one of the two values- 

"Strong" or "Weak."  Strong signals are more likely than Weak signals to appear when 

the security will do well, and Weak signals are more likely to appear when it will do 

poorly.  Specifically, 
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( | ) ( | ) ,

( | ) ( | )

 .

p signal Strong Well p signal Weak Poorly

p signal Weak Well p signal Strong Poorly

where

α
γ

α γ

= = = =

= = = =

>

            

           
In addition to taking one of two values, each signal must be one of three types- 

Company, Economy, or Industry (following Tuttle & Burton, 1999), where 

& c e i c e iα α α γ γ γ> > < <    

with superscripts indicating signal type; c = Company, e = Economy, i =Industry.
 1
 

For each security subjects receive either three, six, or nine signals.  If they receive 

three signals there will be one of each type, meaning one Company signal, one Economy 

signal, and one Industry signal.  If they receive six signals there will be two of each type, 

and with nine signals they will receive three of each type.  Table 1.1 shows the possible 

values each signal can take- “Strong” or “Weak.” Table 1.2 shows the varying degrees of 

information content (signal strength) for signals of each type: Company, Economy, and 

Industry.   

       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
1 Company indicators are meant to provide the most information about a company, then Economy 
indicators, and Industry indicators are meant to provide the least. 
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      Table 1.1: Each signal can take either a Strong or Weak value 

 Strong Value Weak Value 

Company Signals   

Company_1 Strong Weak 

Company_2 Strong Weak 

Company_3 Strong Weak 

   

Economy Signals   

Economy_1 Strong Weak 

Economy_2 Strong Weak 

Economy_3 Strong Weak 

   

Industry Signals   

Industry_1 Strong Weak 

Industry_2 Strong Weak 

Industry_3 Strong Weak 

 
      Table 1.2: The information content of each signal type (conditional probabilities) 

 Company 

Indicators 

Economy 

Indicators 

Industry 

Indicators 

 

 Strong Weak Strong Weak Strong Weak 

Do Well 0.65 0.35 0.60 0.40 0.55 0.45 

Do Poorly 0.35 0.65 0.40 0.60 0.45 0.55 

     
        More informative signals should influence expected price estimates more than 

less informative signals.  For example, if a subject receives one “Strong” Company 

signal, she knows that the likelihood ratio is
.65

.35

 
 
 

that the signal comes from a company 

that is doing well vs. one that is doing poorly.  That is, if the company does well the 

probability a Strong company signal will be drawn is p(Strong| Well) = .65 while the 

probability of a Weak signal being drawn is only p(Weak| Well) = .35.  Similarly, if the 

company does well the likelihood ratio of seeing a Strong vs. a Weak Industry signal 

would only be
.55

.45

 
 
 

, as the Industry signal is the weakest. 
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       The experiment consists of 33 rounds in all- nine of which are practice, and 24 of 

which are for credit.  In each practice round subjects are given 50 seconds to make an 

estimate of the expected security price, before being shown the criterion (true) expected 

price.  The criterion expected price is computed using Bayes’ rule.  In the example round 

provided in Figure 1.1, for instance, the criterion expected price is calculated by first 

computing the correct odds ratio given the informative signals, then multiplying it by 

$100: 

Signal: Value 

Industry_2 Strong 

Economy_1 Weak 

Company_2 Strong 

Company_1 Weak 

Economy_2 Strong 

Industry_1 Weak 

      Figure1.1: Example of a task 

 
( ) ( ) ( )1 1 1 1 1 1

(  ) .55 .40 .65 .35 .60 .45 .65 .60 .55
1:1

(  ) .45 .60 .35 .65 .40 .55 .35 .40 .45

p do well

p do poorly

− − −
            = = =            
            

 

       (First calculate the odds-ratio) 

From this result, p(do well | signals’ information)= 
1

2
.  

Therefore the expected stock price is equal to
1

*$100 $50
2

  = 
 

. 

Note that in this example, for each signal type, 1 Strong signal is matched by 1 Weak 

signal, so all signals offset and leave the Bayesian posterior equal to the prior of           

p(do well) = p(do poorly)= 
1

2
. 

Once the 24 credit rounds begin subjects no longer receive feedback.  The 

motivation behind giving subjects feedback in the 9 no-credit practice rounds is to allow 
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them to test their individual pricing models against the Bayesian criterion expected price 

and adjust for the type of "conservatism," or under-reaction to signals that has been 

systematically observed in the Bayesian experimental literature (Camerer, 1993).  In 

order to mitigate learning effects subjects are not given feedback during credit rounds.  

Nor are subjects explicitly given the Bayesian odds formula.  With the formula at hand 

this experiment would quickly reduce to an exercise of merely sorting signals and 

plugging them into a formula.  There would be time costs, little increase in difficulty with 

increasing signal loads, and predetermined model selection.  Without being given a 

clearly specified model, on the other hand, subjects are free to use whatever means they 

prefer to estimate the expected security price.  This feature allows the task to more 

closely resemble a real world decision environment than a highly stylized laboratory 

experiment.        

Generating Signals 

The data generating process used to create signal values involves four steps.   

1)  Randomly assign signal loads of either three, six, or nine to each of the 33 rounds of      

the experiment2 

2)  Randomly and independently draw whether the company will "do Well" or "do 

Poorly" from a binary distribution where both outcomes have probability
1

2
. 

3)  Conditioning on whether or not the company will do well, randomly draw mutually 

independent “Strong” or “Weak” values for each signal, using the appropriate probability 

distributions from Table 1.2.  

                                                 
2 The data generating process just described is run for two sets of 33 rounds rather than one in order to 
provide more variation in the signals for our sample size. 
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4)  Finally, for each round signal ordering is randomly scrambled. 

An example of the final product generated by steps 1-4 is depicted in Figure 1.1.        

Payoffs 

       The 176 Financial Analysis students were able to earn up to 2% extra credit 

toward their overall course grade by participating in the experiment.  For each round, 

payoffs were determined by the “dartboard principle.”  If the subject's estimate was 

within $1 of the perfect Bayesian expected price the subject would earn the full 20 points 

for that round.  If the subject's estimated expected price was off by more than $1 but 

weakly less than $2 she would earn 19 points, off by more than $2 but weakly less than 

$3 18 points, and so on.  If the subject was off by more than $19 but weakly less than $20 

she would earn 1 point for that round.  If she was off by more than $20 she would earn no 

points for that round.  Each subject's total payoffs for the 24 credit rounds was 

determined by the following formula: 

    24 
2% *

480

Aggregate Individual Score for rounds
Extra Credit

 =  
 

 

Subjects were required to fill in expected price estimates for each and every round in 

order to qualify for any extra credit for the experiment.  Average subjects' payoffs were 

around 1% extra credit for overall course grade.        

Procedure 

The experiment was run in the regular time slot and location of a financial 

investments class at UCSD.  Students were told about the experiment the previous week, 

both in class and via e-mail. Students were told they would be able to use calculators.  

Once students were seated instructions were projected onto a screen for all subjects to 
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see, and were read word for word by one of the experimenters while the other 

experimenter handed out answer packets.  Answer packets consisted of 5 pages.  The first 

page contained answer spaces for all credited 24 rounds, as well as a reminder table of 

the relative probability weights for the different signal types (Table 1.2).  The second and 

third sheets were scratch pages where subjects were asked to document all written work.  

Page 4 contained a short survey asking subjects to provide subjective responses to 

questions regarding the experiment.  Page 5 asked subjects to report background 

information such as major, cumulative GPA, year at UCSD (i.e.- "Junior"), gender, and 

age; and sign a non-obligatory request of authorization for the experimenters to use their 

data.  Additionally, subjects were provided a scantron sheet to which they were asked to 

transfer their expected price estimates at the end of the experiment. 

 There were two versions of the answer packets that only differed from one 

another in that one had a large "A" on the front page, while the other had a large "B."  

Versions A and B were passed out so as to alternate ABAB... within each row of subjects.  

During the instructions subjects were told that the overhead screen would be split into 

two, with signals for Version A students always on the left and signals for Version B 

students always on the right.  After the instructions were read students had an opportunity 

to ask questions.  They were also told they were free to excuse themselves from the 

experiment at any time if they did not wish to participate.   

          Next, students participated in 9 non-credit practice rounds.  For each practice 

round one version A column of signals, and one version B column of signals were 

simultaneously projected overhead for 50 seconds.  After each round the true Bayesian 

expected price estimate for that round was projected above for 5 seconds.  Subjects were 
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asked to write down their estimates before receiving the "true expected price" feedback.  

After each 5 second interval of feedback, the next round would begin by posting two 

fresh sets of signals over a 50 second span.  At the 40 second mark of each round one of 

the experimenters would announce "10 seconds left." 

After the nine practice rounds were completed subjects were told that the 24 

credit rounds would then commence.  Subjects were reminded that they would not be 

receiving feedback for any further rounds, and that they should write down an expected 

price estimate for each round before moving on to the next. 

      After the 24 credit rounds were completed subjects had time to transfer their 

expected price estimates to the provided scantron sheet (if they had not already done so) 

and fill out the short survey and data use authorization form. 

        

II. Model 

      The model used in this experiment to determine criterion expected security prices 

as well as regression coefficients assumes strict Bayesian updating on multiple signals.  

There are either three, six, or nine signals grouped into three types- each with a different 

signal strength.  For any given round the criterion expected price is calculated by the 

following formula: 

 

( ) ( ) ( )1 1 1 1 1 1
.65 .60 .55

( ) $100 * ,  where * *
1 .35 .40 .45

c c e e i iX
E P X

X

+ − + − + −− − −
       = =       +       

∑ ∑ ∑
 

 
Here, likelihood ratios for Company, Economy, and Industry, respectfully, are 

found in parentheses.  Exponential terms are summations of strong and weak signals for 
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each signal type.  1c
+  is an indicator variable for a "Strong" Company signal, while 1c

−  is 

an indicator variable for a "Weak" Company Signal.  For example, if round 1 had the 

three signals as in Figure 1.2: 

Signal Value 

Company1 Strong 

Economy1 Weak 

Industry1   Strong 

Figure 1.2: three signal example 

 
the criterion expected stock price would be: 

( ) ( ) ( )

( ) ( ) ( )

1 1 1

1 1 1

.65 .60 .55
* *

.35 .40 .45
( ) $100 * $60

.65 .60 .55
1 * *

.35 .40 .45

E P

−

−

 
      

      
      = =

           +               

 

            

The regression analysis is run using a block-diagonal construction so as to 

conduct hypothesis testing across signal load treatments for our hypotheses.  The model 

( )

( )

3 1 1,3 1 1,3 1 1,3

6 1 1,6 1 1,6 1 1,6 2 2,6 2 2,6 2 2,6

9 1 1,9 1 1,9 1 1,9

100ln

1
100

                       

                       

sr

sr c sr e sr i

sr

sr c sr e sr i sr c sr e sr i

sr c sr e sr i

y

y
T c e i

T c e i c e i

T c e i

β β β

β β β β β β

β β β

 
 
 
 
 
 

= + + +
−

+ + + + + +

+ +( )2 2,9 2 2,9 2 2,9 3 3,9 3 3,9 3 3,9
sr c sr e sr i sr c sr e sr i

src e i c e iβ β β β β β ε+ + + + + + +

                       

{ } { } { }3 6 93 6 9
 1 ,  1 ,  1

treatment treatment treatment
where T T T= = == = =             

 

y is subject s's estimate for the expected price of the security in round r.  

Subscripts on T′s correspond to the signal treatment they are indicator variables for.  Here 

c, e, and i represent conditionally independent signals for Company, Economy, and 

Industry, respectfully.  Subscripts on signals indicate whether they are signal number 1, 
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2, or 3 of type c, e, or i.  Coefficient superscripts represent signal type, while subscripts 

indicate (signal number, treatment). 

In the following hypotheses and resulting analysis, coefficient values from the 

above model are interpreted as subjects' sensitivity to, or assimilation of informational 

signals.  One point that will play a very important role in the subsequent analysis is that 

extreme expected price estimates (near $0 or $100) have a relatively huge effect on 

coefficient estimation (Figure 1.3) because of the Bayesian log-odds regression structure.  

In the analysis section we will discuss how, due to this hypersensitivity, including or not 

including extreme values makes a huge difference in our results. 

 

                       
Figure 1.3: extreme sensitivity of log-odds ratio to subjects’ expected price estimates  

  
 

III. Hypotheses 

In this section we present the four hypotheses tested in our analysis.  In addition, 

in Appendix II we provide a brief history of the IOL literature, which motivates our 

choice of these particular hypotheses. 

H1 posits that the average response error will increase with the number of signals 

shown to subjects. 
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H1:  ( ) :
t t s s n n

t s n

y price y price y price
IOL Weak

m m m

− − −
< <∑ ∑ ∑

 

Here t is the observation index for the three signal treatment, s for the six, and n 

for the nine signal treatment.  y is a subject's estimated expected price.  price is the 

computed Bayesian criterion expected price.  im  is the number of observations in 

treatment i.   

IOL(weak) predicts first that subjects are not perfect Bayesians, and second that 

they deviate further from the Bayesian benchmark, on average, the more signals they are 

given.  If subjects were perfectly reasoning all average absolute errors, of course, would 

be zero.  H1 is a necessary but insufficient condition for IOL.3     

     

3 3 3 6 6 6 9 9 9H2 :  ( ) : c e i c e i c e iIOL Moderate β β β β β β β β β+ + < + + = + +∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑
 
where subscripts denote signal treatment and superscripts denote signal type:  

c = company, e = economy, and i = industry. 

H2 is a moderately strong IOL hypothesis in that it predicts that information 

assimilation will increase between the three and six signal treatment, but then fail to 

increase from the six to nine signal treatment.  This is a fairly strong statement given that 

subjects will actually need to assimilate relatively more signals in a treatment with more 

signals in order to do equally well as in a treatment with less signals.4  That IOL is likely 

to occur between six and nine signals is an educated guess supported by (Miller, 1956).5 

     

                                                 
3 H1 is the only one of the four hypotheses that is “model-free.” 
4 For example, if a subject assimilates six signals in a six signal round her response should have zero 
decision error.  On the other hand, if she assimilates signals one through six in a nine signal round, on 
average her estimate will be off by $9.5.   
5 In retrospect, we probably should have been wimpier and included a treatment with more signals- perhaps 
12 or 15. 
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3 3 3 6 6 6 9 9 9H3 :  ( ) : c e i c e i c e iIOL Strong β β β β β β β β β+ + < + + > + +∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑  

 
H3 only differs from H2 by one inequality.  Whereas H2 predicts a plateauing of 

assimilated information between the six and nine signal treatments, H3 predicts a reversal 

effect, which is stronger. 

     

3 6 9

3 6 9

3 6 9

3 6 9

H4 : :

 1:

 2 :

c c c

i i i

Polarization

case

case

β β β
β β β

β β β
β β β

 
< <  

 

 
> >  

 

∑ ∑ ∑

∑ ∑ ∑

 

 
H4 predicts that as information load increases from 6 to 9 signals, subjects will 

concurrently put relatively more weight on the strongest signals and relatively less weight 

on weakest signals.  For completeness, a similar effect is predicted for increasing 

information loads from three to six signals (in parentheses), though the primary interest in 

this study is what occurs in the posited IOL range between 6 and 9 signals.6   

A subject that is prone to both overload and polarization is vulnerable to 

potentially severe forms of strategic manipulation, where an increased information load 

can result in myopic over-weighting of a relatively small number of particular signals.    

     

IV. Results 

Our results are reported in two sets.  The first set includes all subject data, without 

accounting for the Bayesian model’s great sensitivity to extreme expected price 

estimates.  In this case we show that as the number of information signals increase 

                                                 
6 H4 is an adaptation of a hypothesis taken from T & B (2004). 
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subjects stray further from the criterion price, but assimilate more information and show 

no signs of polarization. 7 

In the second set of results we account for the Bayesian model’s extreme 

sensitivity to extreme expected price estimates by truncating the 4% most extreme 

estimates.  This truncation allows for all subjects’ estimates to be weighted virtually 

equally in our analysis, as they should be, unlike in the non-truncated dataset.  In this 

case we show that as the number of information signals increase subjects stray further 

from the criterion price, and as they go from six to nine signals they assimilate no more 

information, and disproportionately over-weigh the strongest signals.  

Results for the non-truncated and truncated datasets are reported in Tables 1.3 and 

1.4, respectively. 

Table 1.3: results of experimental data with extreme responses included in the sample.  

While H1 cannot be rejected, H2-H4 are. 

Results: 

Including  

Extreme  

Values 

“Accept”/ 
Reject 

 

Values Test 

H1 

(Weak IOL): 
(Accept: 
3 → 6) 
Accept: 
6 → 9 

 

3:MeanAbs.Error=11.148 
6:MeanAbs.Error=12.617 
9:MeanAbs.Error=14.699 

 

Regress abs. error 
On treatment indicators 

3 6

6 9

:
3.15

Prob  .002

:
4.87

Prob  .000

t
t

t
t

β β

β β

<
= −

> =

<
=

> =

 

 

 

 

                                                 
7 When including all values there is one minor adjustment that needs to be made in order for all subjects' 
responses to have well defined log-odds in the Bayesian model.  We alter responses of $0 and $100 to $1 
and $99 respectively.  These changes occur for roughly 1% of all observations. 
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      Table 1.3:(continued) 

H2 

(Moderate  
IOL): 

(Accept: 
3 → 6) 

 
Reject: 
6 → 9 

 

3 3 3

6 6 6

9 9 9

3 : 1.438

6 : 1.740

9 : 2.410

c e i

c e i

c e i

β β β

β β β

β β β

+ + =

+ + =

+ + =

∑ ∑ ∑
∑ ∑ ∑

 

3 3 3

6 6 6

6 6 6

9 9 9

F(1,4203) = 19.77

Prob >  =.000

F(1,4203) = 0.65

Prob >  =.4215

c e i

c e i

c e i

c e i

F

F

β β β
β β β

β β β
β β β

+ + <
+ +

+ +

= + +

∑ ∑ ∑

∑ ∑ ∑
∑ ∑ ∑

H3 

(Strong IOL): 
(Accept: 
3 → 6) 

 
Reject: 
6 → 9 

 

3 3 3

6 6 6

9 9 9

3 : 1.438

6 : 1.740

9 : 2.410

c e i

c e i

c e i

β β β

β β β

β β β

+ + =

+ + =

+ + =

∑ ∑ ∑
∑ ∑ ∑

 

Follows from H2 test 
results 

H4 

Polarization: 
(Reject(C): 3 
→ 6) 

 
Reject(C): 
6 → 9 

 
(Reject(I): 
3 → 6) 

 
Reject(I): 
6 → 9 

 

3 3

3 3

6 6

6 6

9 9

9 9

Company            Industry

.386     .306

.397     .320

.382     .298

c i

c i

c i

β β
β β

β β
β β

β β
β β

= =

= =

= =

∑ ∑

∑ ∑

∑ ∑

 

3 6

3 6

6 9

6 9

3 6

3 6

6 9

6 9

F(1,4203) = 0.16

Prob >  =.689

F(1,4203) = 0.25

Prob >  =.619

F(1,4203) = 0.41

Prob >  =.524

F(1,4203) = 0.64

Prob >  =.424

c c

c i

i i

c i

F

F

F

F

β β
β β

β β
β β

β β
β β

β β
β β

<

<

>

>

∑ ∑

∑ ∑

∑ ∑

∑ ∑

Company :

Industry :
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In Table 1.4 we report results for the dataset after subjects’ 4% most extreme 

expected price estimates are excluded.  Because the Bayesian regression model is highly 

sensitive to extreme responses, coefficient estimates will likely be affected much more by 

their inclusion as observations, than by the selection effect that results as a result of their 

exclusion.  By excluding extreme observations the remaining observations are weighed 

roughly equally, rather than being dominated by extreme estimates.  In the histogram of 

subjects’ estimates presented in Figure 1.4, as well as the plot in Figure 1.5, all estimates 

contained between the two red lines are retained for analysis.                                                               
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Figure 1.4: histogram with truncated 4%            Figure 1.5: price cut-offs when 4% of  

extreme observations                                         extreme estimates are truncated     
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Table 1.4: results of experimental data with the 4% most extreme responses truncated 

from the sample.  While H3 is rejected, H1, H2, and an important case of H4 cannot be 

rejected. 

Results: 

Excluding  

Extreme 

Values 

“Accept”/ 
Reject 

 

Values Test 

H1 

(Weak IOL): 
(Accept: 
3 → 6) 
 
Accept: 
6 → 9 

 

3: Mean Abs.Error = 10.634 
6: Mean Abs.Error = 12.575 
9: Mean Abs.Error = 15.028 

 

Regress abs. error 
On treatment indicators 

3 6

6 9

:
4.20

Prob  .000

:
5.42

Prob  .000

t
t

t
t

β β

β β

<
= −

> =

<
= −

> =

 

H2 

(Moderate 
IOL): 

(Accept: 
3 → 6) 
 
Accept: 
6 → 9 

 

3 3 3

6 6 6

9 9 9

3 : 1.159

6 : 1.459

9 : 1.536

c e i

c e i

c e i

β β β

β β β

β β β

+ + =

+ + =

+ + =

∑ ∑ ∑
∑ ∑ ∑

 

3 3 3

6 6 6

6 6 6

9 9 9

F(1,4203) = 26.07

Prob >  =.000

F(1,4203) = 43.59

Prob >  =.000

c e i

c e i

c e i

c e i

F

F

β β β
β β β

β β β
β β β

+ + <
+ +

+ +

= + +

∑ ∑ ∑

∑ ∑ ∑
∑ ∑ ∑

H3 

(Strong IOL): 
Accept: 
3 → 6) 
 
Reject: 
6 → 9 

 

3 3 3

6 6 6

9 9 9

3 : 1.159

6 : 1.459

9 : 1.536

c e i

c e i

c e i

β β β

β β β

β β β

+ + =

+ + =

+ + =

∑ ∑ ∑
∑ ∑ ∑

 

Follows from  
H2 test results 
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Table 1.4: (Continued) 

H4 

Polarization: 
Reject(C): 
 3 → 6) 

 
Accept(C): 
6 → 9 

 
(Reject(I): 
3 → 6) 

 
Reject(I): 
6 → 9 

 

3 3

3 3

6 6

6 6

9 9

9 9

Company            Industry

.416     .274

.404     .292

.481     .243

c i

c i

c i

β β
β β

β β
β β

β β
β β

= =

= =

= =

∑ ∑

∑ ∑

∑ ∑

 

3 6

3 6

6 9

6 9

3 6

3 6

6 9

6 9

F(1,4203) = 0.17

Prob >  =.6785

F(1,4203) = 3.93

Prob >  =.0475

F(1,4203) = 0.59

Prob >  =.4422

F(1,4203) = 2.41

Prob >  =.1206

c c

c i

i i

c i

F

F

F

F

β β
β β

β β
β β

β β
β β

β β
β β

<

<

>

>

∑ ∑

∑ ∑

∑ ∑

∑ ∑

Company :

Industry :

 

 

 

The combination of subjects’ plateauing level of assimilated information and a 

shifting of disproportionate weight toward the strongest signals suggests that increases in 

information load allow information senders a clear opportunity for the strategic 

manipulation of receivers. 8 

                                                              

V. Conclusion    

                                                 
8 One can imagine a car company that dominates the competition in a critical characteristic, such as resale 
value, “overloading” people so that they place a disproportionately large amount of weight on this 
characteristic. 
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In an age of rapidly increasing information availability the non-trivial tension 

between abundant information and finite human cognitive capacity (Miller, 1956) 

becomes ever more pronounced.  We define information overload as the act of 

assimilating relatively less information in a task that contains strictly more relevant 

information, but is otherwise identical.   

While it is difficult to test for information overload (IOL) in field studies, 

laboratory experiments offer an effective alternative environment where extraneous 

variables can be controlled, decision accuracy can be measured objectively,  and signals 

can be made both relevant and independent from one another so that subjects' 

assimilation of individual information signals can be measured.   

In our experimental design subjects are asked to estimate expected security prices 

after being given priors along with variable information loads in the form of (binary) 

probabilistic signals.  In each round of a within subjects design subjects make an estimate 

after being provided with either three, six, or nine probabilistic signals- each of varying 

signal strength weak, moderate, or strong. 

We test for four overload hypotheses.  They posit that as the number of 

information signals increases subjects’ estimates will stray further from the criterion 

expected price (weak IOL), that as the number of signals increases from six to nine 

subjects will assimilate the same (moderate IOL) to strictly less (strong IOL) information, 

and that as the number of signals increases subjects will disproportionately over-weigh 

high strength signals and disproportionately under-weigh low strength signals 

(polarization). 
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Our results are reported in two sets.  The first set includes all subject data, without 

accounting for the Bayesian model’s extreme sensitivity to extreme expected price 

estimates.  In this case we show that as the number of information signals increase 

subjects stray further from the criterion price, but assimilate more information and show 

no signs of polarization. 

In the second set of results we account for the Bayesian model’s extreme 

sensitivity to extreme expected price estimates by truncating the 4% most extreme 

estimates.  This truncation allows for all subjects’ estimates to be weighted virtually 

equally in our analysis, as they should be, unlike in the non-truncated dataset.  In this 

case we show that as the number of information signals increase subjects stray further 

from the criterion price, and as they go from six to nine signals they assimilate no more 

information, and disproportionately over-weigh the strongest signals. 

The combination of subjects’ plateauing level of assimilated information and a 

shifting of disproportionate weight toward the strongest signals suggests that increases in 

information load allow information senders a clear opportunity for the strategic 

manipulation of receivers. 

In retrospect, given the observed plateau effect in information assimilation 

between the six and nine signal treatments, it would have been interesting to have 

included a twelve-plus signal treatment in the design; perhaps we would have observed a 

reversal.   

By choosing a Bayesian updating task we provided ourselves with a decision 

theory backed decision model which allowed us the ability to interpret regression 

coefficient estimates as subjects’ assimilation of information signals.  In our analysis we 
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were forced to make a difficult decision and omit a small fraction of our data, due to the 

Bayesian model’s great sensitivity to extreme responses.  In future experiments such 

difficult decisions can be avoided by the creation of designs with exclusively model-free 

hypothesis testing, like our H1, for example.  Another option is to use a revealed-

preference approach where subjects choose between different bundles of information 

with varying information loads. 9  On the other hand, neither one of these types of 

alternative designs allows for the type of rich analysis of information assimilation that we 

were able to conduct here. 

            

Appendix I 

 
Instructions 

Motivation 

Suppose you are a stock analyst and you are researching a new stock. Your task is 

to provide a price estimate for this stock before it becomes publicly traded. You know 

that in one year the stock will be worth either $100 or $0: $100 if the company does well 

and $0 if it does poorly. You do not know, however, whether the company will do well or 

poorly, and without knowing anything specific about the company you consider both 

outcomes equally likely. 

     

Then you acquire information about the Company. This information consists of a 

set of indicators (pieces of information). Each of these indicators is more likely to be 

strong when the company will do well, and more likely to be weak when the company 

will do poorly. You use these indicators to update your probability belief that the 

company will do well. Your price estimate is equal to the expected value of the stock 

based on the updated probability that the stock will be worth $100. For example, if after 

analyzing the given indicators you believe the company will do well with probability 

                                                 
9 As suggested by Vince Crawford. 
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0.75, your price estimate for the stock will be $75. If you believe that the company will 

do well with probability 0.25, your price estimate for the stock will be $25. 

 

Procedure 

 

We will now go over detailed instructions after which you will have an 

opportunity to ask questions. Then you will have 9 practice rounds. Practice rounds will 

not count towards your payoff. The main purpose of the practice rounds is for you to 

familiarize yourself with the decision task and see how your stock price estimates differ 

from the true prices. The true price will change from round to round. The 9 practice 

rounds will be followed by 24 scored rounds in which you will be able to earn credit. The 

scored rounds also differ from the practice rounds in that you will not be given true prices 

at the end of the scored rounds. That is, true prices are only reported after each practice 

round. Each of you will be assigned to either Group A or Group B for the entire exercise. 

Please note your group and use information for that group to calculate your price 

estimates. 

     

Each of the 9 practice rounds will consist of the following stages: 

 

·  Information related to the company whose stock you are going to price will appear on 

the screen. For those of you in Group A, the information will appear on the left side of 

the screen. For those of you in Group B, the information will appear on the right side of 

the screen. The number of the round will appear on top of the screen. The information 

will stay on the screen for 50 seconds. After that, the true price for that round will be 

displayed on the screen for 5 seconds. Then the experiment moves to the next round. 

·  During the 50 seconds, you need to come up with your estimate for the stock price 

which should be as close as possible to the true price based on the information available 

to you. Please record your estimate on your answer sheet. Then the true price for that 

round will be displayed for 5 seconds. Please record your estimate before you see the true 

price. Remember, you are not earning credit for the practice rounds, and therefore you do 
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not gain anything from waiting to see the true price and recording it instead of your 

estimate. Once a practice round ends, please stop working on that round and move on to 

the next one. 

 

     

Each of the 24 credit rounds will be similar to the practice rounds, except that you 

will not receive feedback on what the true price is. 

We provide you with two pages of scratch paper in the answer sheet packet. 

Please use these pages for your calculations and do not use any other scratch paper. You 

are not allowed to use any notes, but you are allowed to use a calculator. 

     

After the experiment, please record your price estimates from the 24 credit rounds 

on the scantron sheet provided with your answer sheet packet. Record your answer for 

the first round, rounded to the nearest integer, in lines 1 and 2 of the scantron sheet. 

Please mark the first of the two digits in line 1, and the second of the two digits in line 2. 

Use the "10-bubble" as zero. If you want to enter a single-digit number, for example 7, 

enter it as 07. If you want to enter 0, enter it as 00. If you want to enter 100, leave the first 

line blank, and enter 0 in the second line. For the second round, mark your estimate in the 

same way in lines 3 and 4, and so on for the following rounds. In order for you to be 

eligible for extra credit, you must provide a price estimate for each round on the scantron 

sheet. 

     

Note: no scantron answers = no extra credit.     

At the end of the experiment, you will be asked to fill out a short survey. 

     

Indicators 

 

In each round, you will receive information consisting of the combination of 

values of three types of indicators: Company Indicators, Economy Indicators, and 

Industry Indicators. Each indicator can take only one of two values: "Strong" or "Weak." 
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Here is a table that lists the three types of indicators, together with possible values they 

may take: 

 

 Strong Value Weak Value 

Company Signals   

Company_1 Strong Weak 

Company_2 Strong Weak 

Company_3 Strong Weak 

   

Economy Signals   

Economy_1 Strong Weak 

Economy_2 Strong Weak 

Economy_3 Strong Weak 

   

Industry Signals   

Industry_1 Strong Weak 

Industry_2 Strong Weak 

Industry_3 Strong Weak 

 
We generated the indicator values in each round using the following steps: 

     

Step 1: In each round, it is first randomly determined whether the company will do well 

or do poorly. The probability of each outcome is 0.5. You, however, do not know which 

of the two is the outcome in any given round. 

     

Step 2: Conditional on the outcome of the first step, the value of each indicator is 

generated randomly to be either "Strong" or "Weak" with certain probabilities. This is 

done independently for each individual indicator. These probabilities are given in the 

following table: 

 

 Company 

Indicators 

Economy 

Indicators 

 Industry 

Indicators 

 Strong Weak Strong Weak Strong Weak 

Do Well 0.65 0.35 0.60 0.40 0.55 0.45 

Do Poorly 0.35 0.65 0.40 0.60 0.45 0.55 

 
For example, conditional on the Company doing well, each individual Company 

indicator will be "Strong" with probability 0.65 and "Weak" with probability 0.35. 
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Conditional on the Company doing poorly, each individual Company indicator will be 

"Strong" with probability 0.35 and "Weak" with probability 0.65. 

     

That is, in each round, regardless of whether the company will do well or do 

poorly, each indicator may me Strong or Weak. Therefore none of the indicators is a 

perfect signal of whether the company will do well or do poorly. But each indicator is 

statistically related to how well the company will do. That is, any given indicator is more 

likely to be "Strong" when the Company will do well, and is more likely to be "Weak" 

when the company will do poorly. 

     

Your Payoff 

 

In this in-class exercise you can earn up to 2% extra credit toward the overall 

course score. You will be awarded points following the dartboard principle for your 

estimates in each round. If your estimate is within 1 unit of the stock price, you will earn 

20 points, if it is within 2 units of the stock price, you will earn 19 points, and so on, up 

until if your answer is within 20 units of the stock price, you will earn 1 point. That is, the 

closer your estimate is to the true price, the higher is your reward. If your estimate is 

more than 20 units away from the stock price, you will not earn any points in that round. 

     

Your extra credit in terms of the percentage gain for your overall class score is 

then equal to the fraction of 2% given by the ratio of the points you earn to total possible 

point earnings of 480. That is, your extra credit is 

    24 
2% *

480

Aggregate Individual Score for rounds
Extra Credit

 =  
 

    . 

You are free to form your estimates in any way you desire so as to maximize your 

credit. But please note that in order to earn your credit, you need to provide a price 

estimate on the scantron sheet in every credit round. 
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This is an independent exercise, so please do not communicate or share 

information with other participants during the experiment. Because you will be rewarded 

based on your individual participation and performance, communicating or working with 

others is strictly prohibited and will result in you being excused from the exercise, and 

thereby exempt from the extra credit opportunity. 

     

If you do not wish to participate in this experiment, you are free to leave the room 

now. In case you decided to stay, we would a 

     

Practice Rounds 

 

We will now perform 9 practice rounds in order for you to become better 

accustomed to making price estimates under limited time of 50 seconds and varying 

amounts of information. Remember, these 9 practice rounds do not count for your 

payoffs, and, unlike for the credit rounds, you will be given the true price feedback after 

each practice round. Therefore we encourage you to use these 9 practice rounds to see 

how well your estimated prices approximate corresponding true prices.     

 

Credit Rounds 

 

We are now going to start the 24 credit rounds. In each round, the indicator 

information will be displayed for 50 seconds. Remember, you will not receive any 

feedback on the true price. Once a round is over, please stop working on it and move to 

the next round. Good luck and make sure to enter your estimates on the scantron sheet. 

 

Appendix II 

In 1956 Miller ran an exhaustive list of experiments tracing out human channel 

capacities at 7 plus or minus two.  Channel capacity is the asymptotic "upper limit on the 

extent to which the observer can match his responses to the stimuli (he is given)."  In 

these experiments subjects were given variable amounts of "input information" and the 

amount of "transmitted information" was recorded.  IOL builds on Miller's work by 
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recognizing channel capacities and asking the question: What happens when people face 

sets of information that exceed their channel capacities?  Three possibilities are: 

1) no change due to perfect reasoning and/or free disposal 

2) deterioration in decision accuracy due to assimilating more information than is optimal 

(naive and inexperienced) 

3) use of simplifying rules of thumb to reduce information assimilated (naive and 

experienced)10 

In 1967 Schroder, Driver, and Streufert introduced the theory of an inverted U-

shape relationship between information load and information assimilated.  The first IOL 

studies were then conducted by Jacoby et al. in 1974.  These preliminary experiments 

found results of decreasing "decision accuracy" with greater information loads.  Malhotra 

(1984), among others, pointed out several concerns with the Jacoby et al. design.  Most 

notably Jacoby et al. used a subjective measure of decision accuracy based on comparing 

subjects' responses to their own reported "ideal responses."  Also, Jacoby et al. did not 

draw a clear distinction between the amount of information contained in the number of 

choice alternatives available and the amount of information contained in the number of 

attributes defining each of those alternatives.  Later studies showed that number of 

alternatives and number of alternatives’ attributes should be treated independently 

(Malhotra, 1980; Leckenby, 2001). 

Malhotra (1980) followed Jacoby et al. (1974, 1977) by using the benchmark of 

subjects' individually selected ideal choices.  He computed decision error by summing 

euclidean distances between ideal and selected attributes across all attributes.  This 

measure was highly problematic, as in order for it to be an accurate measure all attributes 

needed to be independent, which they clearly were not in Malhotra’s experiments.   

Building on Malhotra’s work, Tuttle & Burton (henceforth T&B; 1999, 2004) 

used statistical tests to check for absence of cross-correlations between signals in their 

designs.  Both papers belonged to a class of literature studying hypothetical financial 

decisions made by experimental subjects (Chewning & Harrell, 1990; Stocks & Harrell, 

1995; Stocks & Tuttle, 1998).  These studies were especially important in that they 

                                                 
10 Clearly, two and three are not mutually exclusive. 
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provided a means of measuring the amount of information subjects assimilate.  This was 

done by manipulating an orthogonal informational signal design, then running statistical 

regressions with subjects' responses as the dependent variable and observed informational 

signals as the independent variables. 

Although these studies have made significant contributions to the IOL literature, 

collectively they beg for a more simplified design offering an objective measure of 

decision accuracy.  Chewning & Harrell (1990) classified distance between individual 

response and group average response as error, and assessed consistency of responses.  

They provided experimental materials to students in a non-timed, take-home format, 

which enabled an unmanageable list of factors to affect subject performance.  T&B 

(1999) assumed a linear design to information updating in a stock pricing task though it is 

not clear why subjects would use this type of model (check).  There were 2 different 

signal loads for subjects, again, with no limit to decision making time.  T&B (2004) 

added a signal load treatment to the (1999) design and ran the experiment in a double 

auction market.  In both T&B experiments memory was an important determinant of 

performance as names of signals, their types, and their value designations needed to be 

recalled by subjects.  Signal usage was inferred by counting the number of significant 

signal coefficients when regressing subjects responses on informational signals. 

Our experimental design draws from economic decision theory via the standard 

model of Bayesian belief updating on informative signals.  Previous experimental 

literature shows that subjects tend systematically towards conservatism when updating 

across multiple informative signals (Camerer, 1993).  Conservatism is a general under-

adjustment in posteriors generated from a prior and informative signals.  For this reason 

informational signal coefficients are not expected to be individually significant and will 

not be focussed on.  Instead, we study relative changes in coefficient weights as 

indicative of subjects' relative assimilation of (or sensitivity towards) signals in different 

signal load conditions.  This paper offers the first experimental study of a Bayesian 

updating task with varying informative signal loads. 

The current design also makes strides in isolating the pure variable effect of 

information load as the independent variable affecting subjects' responses.  Relative to 
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T&B, this design's naming of signals, signal types, and signal values is made uniform and 

as intuitive as possible in order to minimize subjects’ confusion due to extraneous 

variables such as requirements on memory.               
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Abstract:  Optimal search policies have been fully characterized, and tested in the 

laboratory, for a wide variety of single-attribute search problems.  Few authors, however, 

have addressed optimality in multiple-attribute search environments, though a number of 

experiments have been conducted.  Gabaix and Laibson (2006) conduct a multiple-

attribute experiment, performing an analysis on the data that is largely aggregative, and 

sharply focused on comparing several behavioral models.  I build on their analysis in 

three ways.  First, I provide a partial characterization of optimality in the form of several 

necessary conditions for optimal search. To my knowledge, these are the first systematic 

theoretical results for multiple-alternative, multiple-attribute search with full recall.  

Second, I show that experimental subjects violate these conditions frequently; 97% of all 

search problems, and 62% of all search actions within problems, violate at least one of 

the conditions.  Third, I analyze Gabaix and Laibson’s dataset on an individual level, 

which yields a classification of four exclusive search “types” that together describe 98% 

of all search behavior.  I find that behavior varies systematically across these types, both 

in terms of violation rates of necessary conditions, as well as several other descriptors of 

search and performance.  I close by exploring possible explanations for observed  

                                                 
1
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behaviors, including deviations from optimality, based on a simple model of 

working memory load that I develop in an accompanying paper.   

 

Introduction 

 

Optimal search policies have been fully characterized for a wide variety of search 

problems in which a single attribute of an alternative, usually its price, determines its 

desirability, with varying assumptions about value distributions, search costs, number of 

searchable alternatives, and recall options (Kohn and Shavell 1974, Lippman and McCall 

1976).  Although these analyses yield substantial insights, many important applications 

have alternatives whose values are determined by multiple attributes: we consider more 

than wage when choosing a job, and more than price when purchasing a home. 

Gabaix and Laibson (2006; henceforth “GL”) study search with multiple 

attributes (ten) and alternatives (eight) experimentally, with full recall and no order 

restrictions.  Each of their subjects faces a series of search problems, either (in separate 

treatments, described below) with an explicit time limit per problem or with a fixed 

budget of time in which to do as many problems as desired. GL’s analysis is of particular 

interest because the richness of their search environment approximates human cognition 

in less structured settings more closely than most other models, and because their 

experimental interface bears a close family resemblance to the kind of information 

displays commonly used in internet commerce.1 2   

                                                 
1 Typing “compare homes” or “compare cars,” etc. into Google will yield several hits for websites that 
compile information so that several goods of the requested type can be compared across multiple 
attributes. 
2 There are other multiple attribute search experiments I could have chosen to study here, such as those in 
Payne, Bettman, and Johnson (1988), but they would not have allowed as rich an analysis of optimality. 
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Although optimal search would be a natural benchmark with which to compare 

subjects’ behavior, GL find that the high dimensionality of their problem make 

characterizing optimal search analytically and numerically intractable (p. 1066). Instead 

they focus on comparing their “Directed Cognition” model of search, which is myopic in 

that it ignores option value, but otherwise fully rational, with “naïve” heuristics taken 

from the psychology literature (Tversky, 1972).  Further, although GL’s data include 

detailed observations of behavior at the individual level, search problem by search 

problem, most of their data analysis is conducted at the aggregate level, pooling both 

subjects and problems. 

This paper builds on GL’s analysis in three ways, with the goal of advancing our 

understanding of observed multiple-attribute search and how it relates to optimal search 

with perfect recall.  First, I conduct a detailed analysis of GL’s search data on the 

individual level.  Second, although a full characterization of optimal search in GL’s 

environment does indeed appear to be intractable, I give a partial characterization in the 

form of several necessary (but not sufficient) conditions for optimality. 3  Third, I 

compare subjects’ behavior to this partial rational benchmark.  

My first necessary condition allows me to identify instances of conditional over-

search and under-search within alternatives, which include violations that occur both 

when the searcher switches alternatives, and when the searcher continues to search in the 

same alternative.  Behaviorally, these two types of violations are quite distinct, so further 

insight is gained by studying each of them separately.  In GL’s design the attributes in 

                                                 
3 Collectively, my necessary conditions assume risk neutral payoff maximization, perfect reasoning 
(including memory), and costly search. 
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each alternative have information values that vary in a simple way, which is announced 

to the subjects.  My second necessary condition for optimality identifies cases where 

subjects search an attribute that is strictly dominated in the value of information sense.  

The remaining three conditions are theoretically trivial under my assumptions.  Two of 

them identify search decisions that are strictly uninformative, but costly.  The last simply 

identifies which alternative must be chosen at the completion of search, which determines 

subjects’ payoffs.  All proofs are contained in the appendix. 

To my knowledge, these necessary conditions are the first systematic theoretical 

results on multiple-alternative, multiple-attribute search with full recall.4  They facilitate 

solving numerically for fully optimal search policies in versions of GL’s search problem 

with fewer alternatives and attributes, which will make it possible to conduct experiments 

that compare observed behavior with a complete optimal-search benchmark.  When used 

on GL’s individual-level data, they allow useful inferences about subjects’ main 

systematic deviations from optimal search. 

For example, a robust finding in single attribute experiments, as well as Bearden 

et. al.’s (2007) two-attribute experiments, is that subjects systematically search too few 

alternatives (Camerer 1995).  The multiple-attribute model poses two related questions, 

which are closely linked to the extent that search costs limit the total number of look-ups: 

whether subjects tend to search too many or two few alternatives, and too few or too 

many attributes within a given alternative.  My first necessary condition for optimality 

allows me to partially address these questions, by identifying instances where the search 

                                                 
4 The only other theoretical work on multiple attribute search that I am aware of is by Bearden et al. 
(2005), who numerically solve for the optimal policy with two attributes and ten alternatives, ruling 
out recall and imposing strong restrictions on the order of search. 
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of a particular attribute simultaneously indicates conditional over-search of the alternative 

that attribute is in, and conditional under-search in another alternative.  50% of subjects’ 

search actions violate this condition. 

The remainder of the paper is organized as follows.  In Section I I explain GL’S 

experimental design.  In Section II I describe the basic properties of GL’s subjects’ 

search behavior in a completely model-free way, finding that even an analysis at this 

basic level eliminates entire classes of candidate theories of search behavior.  Section III 

begins my analysis of GL’s data on the individual level, treating each subject and search 

problem as a separate observation, and in as model-free a way as possible, using the 

results from Section II to classify 98% of behavior into one of four mutually exclusive 

search “types.” 5  Section IV compares subjects’ behavior to my five necessary conditions 

for optimality, first in the pooled sample of all search problems, then conditional on the 

four search types classified in Section III, along with corresponding summary statistics 

reflecting other basic features of search behavior and performance for each type.  Even 

my partial characterization of optimality allows me to identify a large number of 

violations of optimal search;  97% of all problems, and 62% of all search actions within 

problems violate at least one of my five necessary conditions.  Also, violation rates of 

necessary conditions, and search behavior in general, vary systematically across search 

types.  In Section V I  explore possible explanations for subjects’ deviations from 

optimality, based on the model of working memory load in Sanjurjo 2008b (Newell and 

Simon 1972, Johnson, Bettman, and Payne 1993, Crawford 2008), which successfully 

                                                 
5 I study search on the individual problem level because search patterns vary not only across subjects but 
within subjects as well.  Sanjurjo 2008c studies whether time pressure may be an important cause of this 
within subject variation in search patterns.  
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predicts multiple seemingly unrelated search behaviors, including violations of 

optimality, observed in the GL data.  Section VI concludes the paper, and is followed by 

an appendix containing proofs for those of section IV’s necessary conditions whose 

proofs are not immediate. 

 

I. GL’s Experimental Design  

GL’s subjects face a series of problems in which they choose one of eight 

alternatives, under time pressure.  The value of each alternative is equal to the sum of its 

ten individual attribute values, nine of which are initially unknown to the subject 

(imagine comparing eight different potential employers using information collected on 

attributes such as wage, benefits, commuting distance, etc.).  Attributes are mean zero, 

normally distributed, independent, and linearly decaying in variance from attribute one 

( 2σ ) to ten (.1 2σ ).6  By imposing time pressure GL create a shadow cost of time in both 

of their experimental treatments.  In the “Endogenous” treatment subjects are given 25 

minutes to complete as many different problems as they choose to, given a 20 second 

buffer screen between problems.  In the “Exogenous” treatment subjects are allocated 

between 10 and 49 seconds, drawn from a uniform distribution, to complete each of 12 

different problems.7  The design is within subject, so each subject completes both of the 

treatments, with half of the subjects starting in the Exogenous, and the other half in the 

Endogenous, in order to control for order effects.   

                                                 
6 Sigma varies across problems.  The effects of this variation on search behavior is explored in Sanjurjo 
2008c. 
7 In all but the econometric analysis, I pool data from the first Exogenous and first Endogenous treatments, 
excluding the second treatments in order to mitigate learning effects, and pooling the first treatments 
because their results are relatively similar (except for one special case mentioned in Section V). 
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Figure 2.1:  Search Problem From GL:  Alternatives 1-8 run from top to bottom.  

Attributes 1-10  run from left to right.  Attribute one values are completely observable for 

the duration of the problem.  Of the remaining 72 attributes, only one can be observed at 

a time.  In this particular moment of search the subject is observing attribute 4 of 

alternative 5.  Choice boxes corresponding to each of the alternatives can be seen lining 

the bottom of the display.  The amount of time remaining for each problem is 

continuously represented by the decaying disc in the top right corner of the display. 

 

The experiment’s 390 Harvard undergraduate subjects are given complete 

information of the distribution of all attributes, and the amount of time allocated for each 

problem.   Subjects are paid the sum of attributes one through ten in the alternative they 

choose, regardless of how many of these attributes they searched.  The average earnings 

per problem are $0.52 and subjects average 40.8 problems completed. 

Building on work by Payne, Johnson, and Bettman (1993), GL use the MouseLab 

experimental interface in order to track the complete order and duration of all information 

acquisitions made by subjects.  MouseLab is essentially a mechanical analog to eye-

tracking, in which attribute values are contained within “boxes” on the computer screen 

that can be opened, one at a time, by clicking the left button of the computer mouse (see 
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Figure 2.1).  Each box must be closed, with a right-click of the mouse, before the next 

attribute box can then be opened.  In GL’s design attribute one values for each alternative 

are fully observable for the entirety of the search problem, whereas attributes two through 

ten are covered (unless one is opened).  At the bottom of the display are choice boxes- 

one for each alternative.  In order to choose an alternative after search is completed, one 

must left-click once on the corresponding choice box to choose it, and then again to 

confirm the choice.   

 

II. Basic Properties of Observed Search Behavior 

In this section I perform a model-free analysis that reports the basic properties of 

search behavior in the average problem.  Namely, most search transitions occur either 

within an alternative or within an attribute, and are adjacent.  This simple finding is 

enough to eliminate large classes of candidate search models (of which the GL 

environment allows an enormous amount).8   

I describe search in the average problem, first in terms of breadth, depth, and 

speed, then in terms of the types of transitions that occur from one attribute to the next.  

Because most search transitions are found to be adjacent and within an alternative or 

within an attribute, a simple, tightly fitting, classification of search “types” is made 

possible in Section III.   

On average, subjects perform one attribute look-up per second, and 30.8 look-ups 

per search problem, which on average span 4.8 different rows and 7.8 different columns. 

                                                 
8 There are 72

n
possible search paths for every n boxes searched. 
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Tables 2.1 and 2.2 together summarize the characteristics of search transitions 

from one attribute to the next.  Table 1 shows, for the “representative search problem,” 

that subjects transition within alternative (horizontal) 13 times as frequently as they 

transition within attribute (vertical).  Of the relatively small percentage of search 

transitions that occur neither within alternative nor within attribute, the majority are 

identical in one important respect- they are transitions to the first attribute of a 

transitioned to alternative as part of a “typewriter” acquisition pattern.  This “typewriter” 

search pattern performs several sequential look ups in one alternative going left-to-right, 

then switches to the left-most attribute of the next searched alternative, followed by 

another run of left-to-right look-up transitions, and so on.   

Table 2.1: Transitions: Horizontal, Vertical, and Other- in the Representative Problem 

Transition Type Mean 

Within Alternative 24.6 

Within Attribute 1.9 

Other(typewriter) 3.4 (2.9) 

  
Table 2 shows the frequency of search transitions to each of the four cardinal 

directions, along with the corresponding extent to which these transitions are spatially 

adjacent.  The majority of all transitions occur from left-to-right (87%) and are adjacent 

(96%). 
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Table 2.2: Transitions: Direction and Degree of Adjacency 

Transition Type Mean 

Right 
(adjacent) 

 22.9  
(22.5) 

Left 
(adjacent) 

 1.6  
(1.4) 

Down 
(adjacent) 

 1.2 
(1.1) 

Up 
(adjacent) 

 0.5 
(0.3) 

Stay  0.2 

  
The results of this unstructured analysis are straightforward.  In general, search 

sequences are smooth and systematic.  59 out of every 60 look-up transitions occur either 

within alternative, within attribute, or as an example of deliberate “typewriter”  

alternative switching. Thus, subjects are not “jumping” around the information matrix.  

Instead search tends to be “sweeping” and highly adjacent between transitions. 

 

III. Classification of Heterogeneous Search Types 

In this section I classify four simple and exclusive “search types,” that together 

describe 98% of all search behavior.  Because subjects’ search patterns are noisy and 

highly heterogeneous, across subjects and even to some extent across problems within 

subjects, I study search on the individual problem level. 

The “ALT” type begins search in the problem by performing at least two 

sequential within alternative transitions (three sequential look-ups in the same 

alternative).  She can then transition once, either within attribute or neither within 

alternative nor within attribute, followed immediately by at least two sequential within 

alternative transitions, and so on. 
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Figures 2.2.1 and 2.2.2 show the two most common forms of ALT search: 

typewriter, and “boustrophedon,” respectively.  Figure 2.2.1 shows an ALT type whose 

transitions between alternatives are exclusively the typewriter type first discussed in 

Section II.  82% of transitions across alternatives for all Problems containing ALT search 

are typewriter.  14% are within attribute transitions.  Of these within attribute transitions 

81% are followed by an immediate reverse in direction of within alternative transitions, 

or boustrophedon type search.9  Figure 2.2.2 shows an example of an ALT type in which 

transitions between alternatives are exclusively boustrophedon. 

The positive integers in Figures 2.2.1 and 2.2.2 correspond to the order of look-

ups in the exemplar subject’s search sequence.  Attributes 1-10 are listed from left to 

right, and alternatives 1-8 from top to bottom.  Attribute one values are always 

observable to the subject, thus cannot be “looked-up.”  A choice box for each alternative 

can be found towards the bottom of each figure (C1-C8).  After searching attributes, 

subjects choose an alternative- indicated here by the time at which the choice is made (in 

seconds, to one decimal place).  Thus, in Figure 2.2.1, for example, the subject performs 

16 attribute look-ups, then chooses alternative 4 without confirming, then chooses 

alternative 5 without confirming, before going back to choose and confirm alternative 4 

at 35.2 seconds. 

 

 

 

                                                 
9 According to Wikipedia, the etymology of boustrophedon is from the Ancient Greek βους, "ox" + 
στρεφειν, "to turn", because the hand of the writer goes back and forth like an ox drawing a plow across a 
field and turning at the end of each row to return in the opposite direction. 
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Alt\Att 1 2 3 4 5 6 7 8 9 10 

1  1 2 3 

2  8 9 10 

3   

4 4 5 6 7 

5   

6  

7 11 12 13 

8 14 15 16 

   

 C1 C2 C3 C4 C5 C6 C7 C8 
17,35.2 18 

      Figure 2.2.1: ALT type: Typewriter Transitions Across Alternatives 
 

Alt\Att 1 2 3 4 5 6 7 8 9 10 

1 1 2 3 4  

2 8 7 6 5 

3 9 10 11 12 

4   

5 17 18 19 20 

6 16 15 14 13 

7 

8 23 22  21 

C1 C2 C3 C4 C5 C6 C7 C8 
27.1 24 26 25 

      Figure 2.2.2: ALT type: Boustrophedon Transitions Across Alternatives 
 
The “ATT” type begins search in the problem by performing at least two 

sequential within attribute transitions (three sequential look-ups in the same attribute).  

She can then transition once, either within alternative or neither within alternative nor 

within attribute, followed immediately by at least two sequential within attribute 

transitions, and so on. 

 Analogous typewriter and boustrophedon transitions between attributes 

(columns) exist for ATT search problems.  31% of all transitions across attributes are 

typewriter and 56% are within alternative.  Of these within alternative transitions 69% are 
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boustrophedon.  Examples of ATT searchers with typewriter and boustrophedon  

transitions between attributes (Figures 2.3.1 and 2.3.2) are like the search patterns in 

Figures 2.2.1 and 2.2.2, rotated 90 degrees. 

Alt\Att 1 2 3 4 5 6 7 8 9 10 

1 1 9 18 

2 2 10 19 

3 3 11 20 

4 4 12 21 

5 5 13 22 

6 6 14 23 

7 7 15 24 

8 8 16 25 

 

C1 C2 C3 C4 C5 C6 C7 C8 
27 17,26,28.3 

      Figure 2.3.1: ATT type: Typewriter Transitions Across Attributes 
 

Alt\Att 1 2 3 4 5 6 7 8 9 10 

1 1 16 17 

2 2 15 18 

3 3 14 19 

4 4 13 20 

5 5 12 

6 6 11 

7 7 10 

8 8 9 

C1 C2 C3 C4 C5 C6 C7 C8 
21, 29.9 22 

Figure 2.3.2: ATT type: Boustrophedon Transitions Across Attributes 
 
The “ALT-ATT” and “ATT-ALT” types switch back and forth between ALT and 

ATT type search, within the same problem (with no restriction on how many times they 

switch back and forth).  ALT-ATT types (Figure 2.4) first perform ALT search, whereas 

ATT-ALT types (Figure 2.5) first perform ATT search. 10  

                                                 
10 The average transition frequency from ALT search to ATT search ranges from 5-14% (depending on 
how many switches back and forth precede), and the average transition frequency from ATT search to ALT 
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Alt\Att 1 2 3 4 5 6 7 8 9 10 

1 16  

2 17  

3 18  

4 19  

5 10,20 11 12 13 14 15 

6 1 2 3 4 5 6 7 8 9 

7 21  

8 22  

 

C1 C2 C3 C4 C5 C6 C7 C8 
19.6 

      Figure 2.4:  ALT-ATT Type 

 

Alt\Att 1 2 3 4 5 6 7 8 9 10 

1  8  

2 6 7 16 17 18 19 

3 5 9 15 22 21 20 

4 4 10  23 24,29 25 

5 3 11  28 27 26 

6 2 12 

7 1 13 

8  14 

 

C1 C2 C3 C4 C5 C6 C7 C8 
31.4 30 

Figure 2.5:  ATT-ALT Type 

 

96.6% of subjects’ 7552 search problems can be designated as ALT, ATT, ALT-

ATT, or ATT-ALT search, based on the following simple classification scheme.  Search 

problems are designated as ALT type if they contain at least one instance of two 

sequential within alternative transitions and no instances of two sequential within 

attribute transitions.  Search problems are designated as ATT type if they contain at least 

one instance of two sequential within attribute transitions and no instances of two 

sequential within alternative transitions.  Problems that classify as ALT type for the first 

                                                                                                                                                 
search ranges from 79-86%.  Thus,  most ALT-ATT problems are actually ALT-ATT-ALT problems, and 
most ATT-ALT problems are indeed ATT-ALT problems.   
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portion of search, then as ATT types in the immediately following portion of search are 

deemed ALT-ATT Types.  Similarly, ATT-ALT types are ATT types for the first portion 

of search in a problem, then switch to being ALT types for the immediately following 

portion of search.   

Table 2.3 shows the number of search problems selected to each search type along 

with their corresponding fits.  Together, the four search types absorb 98.2% of subjects’ 

look-ups. 

Table 2.3: Fits of Search Types 

Search Type N Fit (%) 

ALT 6089 98.5 

ATT 146 92.2 

ALT-ATT 345 95.4 

ATT-ALT 717 98.2 

 

 

IV. Analysis of Behavior Using a Partial Characterization of Optimality 

In this section I present a partial characterization of optimality in the form of five 

necessary conditions, using it as a partial rational benchmark against which I compare 

subject behavior.  Pooling the data first by problems, I show that violation rates of 

optimality are significant and substantial.  Then pooling problems by search Types, as 

classified in Section III, I show that violation rates differ significantly and substantially 

across types.  This section also includes a brief discussion of how my partial 

characterization of optimality falls short of a full characterization, and it closes with an 

econometric analysis of an important feature of search- alternative switching, as related 

to one of my necessary conditions.  Interpretations of violations to necessary conditions 

will, for the most part, be postponed until Section V. 



 50 

I demonstrate the first two necessary conditions, which are non-trivial, in the 

appendix.  All conditions assume risk neutrality, perfect reasoning (including memory), 

and costly search.11  The first necessary condition is as follows.12  (1) “If an attribute in 

alternative x is searched, it must be the case that there does not exist an alternative y that 

is both weakly less searched than x, and has a weakly higher cumulative revealed value 

than x, with at least one of these inequalities strict.”  Every violation of optimality 

identified by this condition signifies both conditional over-searching in one alternative, 

and conditional under-searching in another.  The intuition behind this necessary condition 

is that because search can only end when one alternative has sufficiently separated itself 

in value above the others, it is best to first search alternatives with relatively high 

revealed values, and relatively more remaining uncertainty; the worst thing to do is 

search an alternative with a relatively low revealed value and relatively little remaining 

uncertainty.  This necessary condition is important because violations of it partially 

address the important question of whether subjects’ search too many or too few 

alternatives, and too many or too few attributes within alternatives- which is a natural 

extension to the question of whether subjects search too many or too few alternatives in 

single attribute search.13   

Two qualitatively distinct search actions violate optimality via necessary 

condition one: transitioning within an alternative, and switching from one alternative to 

                                                 
11It is reasonable to assume GL’s subjects are risk neutral given that payoffs per search problem are small 
($0.52), along the line of Rabin (2000)’s argument.  In addition GL encourage risk neutrality by telling 
subjects to “Choose the row you think has the highest sum,” which can be seen in Figure 1, above the 
choice boxes. 
12Necessary conditions are stated more formally in Appendix A.  
13Camerer (1995) reports that a robust finding in single-attribute search problems is that subjects 
systematically search too few alternatives.  Bearden et. al. (2007) find the same result in their two-attribute 
search problem.  
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another.  In terms of payoff consequences in the data, violations that occur with 

alternative switching are particularly costly because subjects tend to search several 

attributes in the “wrong” alternative once they have switched to it, which further 

compounds the cost.  Weitzman (1979) determines which (asymmetric) alternative 

should be searched next, if one is to be searched at all, in single attribute search.  My 

condition is weaker in the sense that it does not always identify which alternative should 

be searched next, but it is related in the sense that it does identify cases where the switch 

from one alternative to another is sub-optimal. 

My second necessary condition states (2) “An attribute cannot be searched if there 

exists another unsearched attribute with greater variance in the same alternative.”  This is 

the last of two necessary conditions that I demonstrate in the appendix.  Because the 

attributes within each alternative are i.i.d., aside from a declining variance structure, 

searching the remaining unsearched attribute with highest variance provides the largest 

value of information. 

Condition three states that (3) “the same attribute must never be searched more 

than once in the same problem.”  This “no repeated look-ups” condition follows directly 

from the perfect reasoning (memory) assumption and the existence of time costs.  

Condition four requires that subjects (4) “choose the alternative with highest revealed 

value,” conditional on the attributes searched in each problem.  This condition follows 

directly from the assumptions of risk neutrality and perfect reasoning (memory).  Finally, 
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condition five simply states that (5) “unconfirmed alternative choices cannot occur,” and 

follows directly from the existence of time costs.14   

Together, these five necessary conditions form a partial characterization of 

optimality.  A complete characterization, on the other hand, would ensure that each 

searched attribute yield the highest (positive) expected payoff, with search ending only 

when the search of any further attribute would yield a negative expected payoff.  Also, at 

the end of search, the alternative with the highest revealed value would be chosen.  In 

terms of an observable search pattern, the optimal policy would begin search in attribute 

2 of the alternative with the highest (observable) attribute one value.  The (ex-post) 

optimal number of attributes in that alternative would then be searched, preceding the 

transition to attribute 2 of the remaining unsearched alternative with highest attribute one 

value.  An (ex-post) optimal number of attributes would then be searched in this 

alternative before either switching to the previously unsearched alternative with highest 

attribute one value, or returning search to the highest variance unsearched attribute in  

one of the previously searched alternatives, and so on, until search ends.  As such, the 

optimal search policy will probably contain a fair amount of “jumping” back and forth 

between previously searched alternatives.  Sections II and III show that in general, 

subjects’ search is not jumpy, but highly systematic, “sweeping” through alternatives.  

The analysis contained in this section will make it evident that a large fraction of 

behavioral violations of optimality occur precisely due to this type of highly non-

                                                 
14 As stated in Section I,  in order to choose an alternative (to consume) the corresponding choice box 
for that alternative must be clicked on a first time with the computer mouse, then again a second time 
to confirm the choice. 



 53 

contingent search, that sweeps not only across the attributes within alternatives, but 

across the alternatives as well. 

Of the five necessary conditions I present, condition one identifies which 

alternative search should begin with, if it should begin at all, and condition two always 

identifies which attribute should be searched within an alternative given that the 

alternative is being searched.  Given that a transition is occurring from one alternative to 

another, condition one identifies a list of alternatives that cannot be transitioned to 

(depending on the search history, this list may or may not be exhaustive).  In addition, 

condition one identifies cases in which search should switch from one alternative to 

another.  Of course, condition four identifies the optimal alternative choice at the 

completion of search.    

That my partial characterization of optimality falls short of a complete 

characterization is primarily due to my inability to determine which alternative is better 

to search when, relative to another, one alternative has a higher cumulative revealed 

value and is more thoroughly searched.  As such, I cannot always determine when search 

should switch out of an alternative, nor can I always make a complete prediction of which 

alternative should be switched to, when a switch does occur.  Also, independent of this 

shortcoming, I do not know when search in a problem should stop.  

However, even without a full characterization of optimality, my conditions allow 

useful inferences about several, and the most obvious, of subjects’ systematic deviations 

from optimal search.  In particular, 97% of all search problems, and 62% of all search 

actions within search problems violate at least one of my five necessary conditions.  

Where Section II shows that subjects’ search patterns tend to be “smooth” and highly 
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systematic, this section shows that they also tend to violate necessary conditions for 

optimality at high rates.  Where Section III shows that 98% of all search behavior is 

explained by four tightly fitting search types, this section shows that violation rates of 

several necessary conditions (as well as other summary statistics describing search 

behavior and performance) vary significantly and substantially across the four search 

types.   

Summary statistics for all search problems (pooled), as well as by search type, can 

be found in Table 2.5.  From left to right columns contain (N)- the number of problems 

classified as each type, (Alt:Att)- the average ratio of within alternative to within attribute 

transitions, (Time)- the average end time of search in a problem, (LU’s)- the average 

number of look-ups in a problem, and, the violation rates of (1) necessary condition one, 

((1) ∩ Within)- necessary condition one violated by a within alternative transition, ((1) ∩ 

Switch)- necessary condition one violated by sub-optimal alternative switching, (Var)- 

necessary condition two (search maximum variance attribute in alternative), (RLU’s)- 

necessary condition three (repeated look-ups), (Correct)- necessary condition four 

(choose highest revealed alternative), (Uncon)- necessary condition five (unconfirmed 

alternative choices), (Union NCO’s)- search actions in which at least one necessary 

condition is violated, and (Exp. Score)- the average expected score, or the average 

revealed value of the chosen alternative.  Throughout, (%) represents the percentage of 

violations relative to all look-ups performed in problems of each search type. 

Using a two-sided Mann-Whitney U-test, frequencies (and averages) within each 

column, (Time) through (Exp. Score), are pair-wise statistically distinguishable, at the 
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five percent level, in all but two cases.  In Table 2.4 these two cases are numbered (1-2), 

in corresponding pairs.15 

Table 2.4: Summary Statistics & Violations of Necessary Conditions: Pooled & by Type 

Types 

 

N 
 

Alt:Att Time LU’s 
 

(1) 
 
(%) 

(1) 
∩ 
W/in 
(%) 

(1) ∩ 
Switch 
(%) 

(2) 
Var 
(%) 

(3) 
RLU 
(%) 

(4) 
Corr. 
(%) 

(5) 
Uncon 
(%) 

Union 
NCO’s 
(%) 

Exp. 
Score 

Pooled 
(all 4  
types) 

7297 11.8:1 34.0 31.7 49.7 38.6 11.1 5.3 11.8 67.0 4.3 61.5 51.6 

ALT 6089 1:0 33.8 31.8 48.9 40.2 8.7 4.8 10.7 68.4 4.4 60.2 53.4 

ATT 146 0:1 18.2 13.4 
 

62.6 6.6 56.0 11.0 8.2 56.8 6.1 75.8 30.4 

ALT-
ATT 

345 
 

4:1 41.2 38.5 
 

51.8 35.0 16.8 7.3 20.0 60.01 3.1 66.8 44.12 

ATT-
ALT 

717 1.8:1 35.4 31.8 
 

54.0 29.6 24.4 8.2 17.2 62.71 4.1 69.0 45.82 

    
(1) “If an attribute in alternative x is searched, it must be the case that there does not exist 
an alternative y that is both weakly less searched than x, and has a weakly higher 
cumulative revealed value than x, with at least one of these inequalities strict.” 16  

 
A violation of this condition occurs in 50% of subjects’ look-ups.  These 

violations occur in the form of either attribute transitions within an alternative, or as 

switches across alternatives.  Violations of each qualitatively distinct type of violation are 

explored below. 

Within Alternative Transitions 

The Majority of violations of necessary condition one, 77%, occur as within 

alternative transitions.  These are cases when the currently searched alternative is 

                                                 
15 Independence between search types is, of course, questionable here.   
16 Proof is in the appendix. 
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searched deeper, though the subject would have been better suited switching to a less 

searched alternative.   

Violations of condition one that occur as a within alternative transition can either 

be preceded by a violation of the same type, or a look-up that does not violate the 

condition.  It is interesting to look at violations of the latter variety, as a test of 

contingency in search.  In other words, I will look at cases where the previous look-up 

did not violate optimality, but yielded a realization that necessitated switching out of that 

alternative on the next look-up.  Specifically, this attribute realization makes the current 

alternative both weakly more searched than, and have a cumulative revealed value that is 

weakly less than, with one of these inequalities strict, another alternative.  In 73% of the 

cases in which an attribute realization necessitates switching out of an alternative, in this 

way, subjects fail to do so. 

Table 2.4 shows that as a fraction of all search transitions, ALT types violate 

condition one on within alternative transitions at a much higher rate (40%) than ATT 

types (7%).  This is simply because a much lower fraction of ATT look-up transitions  

are within alternative.  Not surprisingly ALT-ATT and ATT-ALT violation rates are 

roughly proportional to their relative amounts of embedded ALT search. 

Alternative Switching 

While only 23% of necessary condition one’s violations occur on alternative 

switching, these violations are especially important because, once an alternative is 

switched to, subjects tend to then search several of its attributes in sequence, which 

exacerbates the cost of them having switched to the “wrong” alternative.    
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For the remainder of this section I will limit my consideration of necessary 

condition one’s alternative switching violations to alternative switches that occur to 

previously unsearched alternatives.  Doing so allows me to dispel of concerns associated 

with comparing alternative switches with switched-to alternatives that have been 

searched to different extents.  In addition, this restricted sample still accounts for 85% of 

all violations of condition one that occur in alternative switching.17  Violations of this 

type are of additional interest due to the transparently sub-optimal behavior they suggest- 

when deciding which unsearched alternative to switch to, the subject need only switch to 

the alternative with the “highest number in front of it-” its fully observable attribute one 

value (see Figure 2.1). 

Despite the relative importance (and ease) of complying with necessary condition 

one in alternative switching, only 51% of subjects’ alternative switches do so.  Moreover, 

as the ex-post number of alternatives searched within a problem increases, the likelihood 

of compliance falls dramatically.   

This phenomenon can be seen clearly in Table 2.5, where the (ex-post) number of 

alternatives searched in a problem lies on the vertical axis, and the sequential order of 

alternative switches, within the problem, lies on the horizontal axis.  The table contains 

frequencies of optimal alternative switches in columns labeled 1-8, while the final two 

columns report the number (# Opt.) and fraction (% Opt.) of problems for which all 

alternative switches are optimal.  The probability of complying by chance, for each 

sequential switch, is shown in the bottom row of the table.  Using a two-sided Mann-

Whitney U-test, frequencies within each column (1-8) are pair-wise statistically 

                                                 
17 In general, 78% of all alternative switches occur to previously unsearched alternatives. 
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distinguishable, at the five percent level, in all but five cases.  In Table 2.4 these five 

cases are shown to the left of fractions, in corresponding pairs (1-5). 

Table 2.5: Frequencies of Sub-Optimal Alternative Switching. On the vertical axis are the 

total number of alternatives searched in the task, and on the vertical axis is the sequence 

those alternatives are searched in. 

 # % 

 

N 1 2 3 4 5 6 7 8 

Opt. Opt. 

1 713  0.75               537 0.75 

2 846  0.63 0.70             410 0.49 

3 976 10.57 0.54 0.65           261 0.27 

4 937 10.55 0.49 0.50 0.63         120 0.13 

5 848  0.50 0.42 40.43 50.44 0.57       29 0.03 

6 641 20.43 30.37 40.39 50.39 0.44 0.54     10 0.02 

7 575 20.43 30.35 0.29 0.30 0.37 0.44 0.65   4 0.01 

8 1905  0.22 0.19 0.21 0.22 0.30 0.37 0.57 1.0 2 0.00 

Cha-

nce 

  0.13 0.14 0.17 0.20 0.25 0.33 0.50 1.0     

 

If subjects’ alternative switches always complied with necessary condition two, 

all frequencies in Table 2.5 would be equal to one.  Clearly, this is not the case.  

Furthermore, the rate of compliance falls dramatically as the ex-post number of 

alternatives searched in a problem increases.  This result is particularly pronounced in 

that problems with only one searched alternative yield a 75% compliance rate.  However, 

when eight alternatives are searched in the problem, the first alternative transition 

complies only 22% of the time- just 9% above chance.  In addition, a remarkably low 2 

of 1905 problems maintain compliance to condition two throughout all alternative 

switches when 8 alternatives are searched.  This finding is slightly surprising, given the 

relative importance of and ease with which searching the unsearched alternative with the 

biggest number in front of it should be. 
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That compliance rates decrease systematically with the ex-post number of 

alternatives searched seems to indicate that subjects know ahead of time whether they 

will search in a more or less contingent manner.  Search may actually resemble a two-

step process, where in the first step the subject decides on searching a particular “chunk” 

of attributes across alternatives, and in the second step searches that chunk in the 

preferred manner, which is often sub-optimal (assuming perfect reasoning and 

memory).18  This type of two-step processing strategy seems particularly supported by 

problems in which subjects search all eight alternatives.  In these problems compliance 

rates of alternative switches are scarcely above chance.  It may be the case that subjects 

decide ahead of time to search all eight alternatives, so then proceed to search them in 

some manner that is (sub-optimally) preferred to transitioning to unsearched alternatives 

with highest revealed values.  In any case, that subjects are violating compliance with 

condition two at high rates is clear, but why they are doing so remains unclear.  Thus, an 

econometric analysis, reported at the end of this section, is conducted in order to gain 

insight into what factors, aside from optimality considerations, are linked to alternative 

switching behavior. 

In terms of heterogeneity in behavior across types, Table 2.5 shows that ATT 

types switch alternatives sub-optimally (56%), much more often than ALT types (9%), as 

a percentage of all performed look-ups.  This difference is mostly due to alternative 

switches being more relatively abundant in ATT search than in ALT search.  However, 

even when conditioning on alternative switches alone, ATT types still violate the 

                                                 
18 This would be a type of rational optimizer that lapses into Stiglerian (classic, pre-committed) search, 
before waking up every once in a while to re-optimize. 
GL’s behavioral ‘Directed Cognition’ model assumes that this type of non-contingent search can occur 
within but not across alternatives. (GL, p 1052) 
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condition more frequently (61% vs. 50%) than ALT types.19  ATT types often switch 

alternatives in sweeping sequentially adjacent transitions up or down attribute columns 

(ALT’s do this also, but intersperse search within alternatives along the way).  Because 

alternatives’ spatial positions are randomly ordered with respect to their attribute values, 

this type of sweeping search leads to necessary condition one being violated at high rates.  

Not surprisingly, ALT-ATT and ATT-ALT search types violate the condition at rates 

roughly proportional to their relative ratios of ATT to ALT search.  

 (2) “An attribute cannot be searched if there exists another unsearched attribute with 

greater variance in the same alternative.”   

Because attributes decline in variance from left to right, a subject should never 

search an attribute that has an unsearched attribute to its left, in the same alternative.  

This result is due to attributes with higher variance having more information value than 

attributes with lower variance. Condition two identifies sub-optimal attribute look-ups 

within an alternative, while condition one identifies that all attributes within certain 

alternatives are sub-optimal to search.  Thus a look-up can violate both necessary 

conditions one and two. 

Roughly 1.6 look-ups per problem (5% of all look-ups) violate this condition. 

Across search types this violation rate is higher in ATT search.  This is because ATT 

types sometimes search an entire dominated attribute, in sequence.  Most violations in 

ALT search, on the other hand, occur as a result of Boustrophedon search.  

 (3) “The same attribute must never be searched more than once in the same problem.”   

                                                 
19 This difference is significant at the 5% level, using the two-sided Mann-Whitney U-test. 
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Due to the scarcity of time in both experimental treatments, subjects should never 

repeat attribute look-ups20.  However, on average 3.6 look-ups per problem, or 12% of all 

look-ups are repeats.  Repeat look-ups can occur simultaneous with violations of 

necessary condition one and/or two. 

Repeat look-ups occur most often in ALT-ATT (20%) and ATT-ALT (17%) 

search, due to frequent overlapping in the ALT and ATT components of their hybrid 

search patterns.  

(4) “Choose the alternative with highest cumulative revealed value.” 

Subjects should always choose the alternative with the highest cumulative 

revealed value in order to maximize expected payoffs, but fail to do so in 33% of 

problems.   

ATT types violate this condition at a slightly higher rate than ALT types (68% vs. 

57%), and ALT-ATT and ATT-ALT types predictably violate it more than ALT’s and 

less than ATT’s.   

(5) “Unconfirmed alternative choices cannot occur.”  

In order to choose an alternative, at the end of search one must scroll to the 

unique choice box representing one’s desired choice, (see Figure 2.1) click once with the 

computer mouse to choose that alternative, then click a second time to confirm the 

choice.  However, many times during and after the course of searching attributes, subjects 

commit unconfirmed choices.  This behavior is clearly sub-optimal given that these 

actions waste time that could have been spent searching still unrevealed attribute values.  

                                                 
20 There is one rare case in which it is not sub-optimal to repeat attribute look-ups.  This is the case in 
which a subject in the Exogenous treatment has already searched every attribute and time still remains.  
This occurs in only 1 of the 7552 problems studied. 
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On average, this violation of optimality occurs in .97 look-ups per problem, or 3% of all 

look-ups.   ATT types violate this condition at a slightly higher rate than ALT types, as 

do ATT-ALT’s relative to ALT-ATT’s.  

 

Comparing Search Types Across Necessary Conditions 

In comparing behavior across search types, for all necessary conditions, it is 

reasonable to focus on ALT and ATT types as they are the primitive search types that 

synthesize into ALT-ATT and ATT-ALT types.  Accordingly, ALT and ATT are the two 

most behaviorally disparate search types, with ALT-ATT and ATT-ALT statistics 

representing a convex combination of ALT and ATT statistics in all but three cases.  

Namely, ALT-ATT and ATT-ALT types tend to commit more look-ups, take longer, and 

commit more repeats (due to overlap) than ALT and ATT types.   

Relative to ATT types, ALT’s take more time, perform more look-ups, violate 

necessary condition one less often, violate necessary condition one via within alternative 

transitions at a much higher rate, violate necessary condition one via alternative 

switching at a much lower rate, search attributes with lower relative variance less often, 

choose the correct alternative more often, score higher, and, in general, perform a higher 

rate of look-ups that violate none of the five conditions.21  

  

Econometric Analysis of Alternative Switching:  

                                                 
21 It should be noted that Table 2.5 pools data from the Exogenous and Endogenous treatments of GL’s 
experiment.  Although for the most part relative differences between types’ behavior across treatments is 
constant, there is one notable exception- which occurs for ATT types.  Relative to the Exogenous treatment, 
ATT types In the Endogenous search roughly half as many attributes in half as much time, and choose the 
correct alternative almost 30% more often.  This anomalous result will be briefly addressed in Section V. 
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The econometric analysis of this section suggests that sub-optimal (spatial) 

considerations and optimal considerations are roughly equally present in search behavior.  

I run separate conditional logit regressions for each of the first three alternative switches 

of each subject, pooling data across all subjects and problems.  Subsequent alternative 

switches are expected to yield similar results, so are omitted.   

For the first alternative searched, the eight searchable alternatives differ by only 

two characteristics.  The first difference is variation in the fully observable attribute one 

value of each alternative, which is the only information of importance for the rational 

searcher.22  The second is the relative spatial location of each alternative, which is 

irrelevant to the rational searcher.  Thus the two independent variables in the conditional 

logit model are the value of attribute one, drawn from a mean-zero normal distribution,  

and the height of the alternative, which can take any value between 1(top) and 8(bottom).  

I use this simple model in order to count the number of subjects for which the effect of 

either independent variable is statistically distinguishable from zero.  Rational subjects 

should only consider the value of attribute one for each alternative, so only its 

corresponding estimated coefficient should be statistically distinguishable from zero. 

Please see Appendix D for formal specifications of the systems of equations used 

to estimate conditional logit coefficients, here and later in this section. 

Results from the first alternative transition regression in Table 2.6 show that the 

effect of attribute one value is statistically distinguishable from zero for 290 of the 390 

                                                 
22 This statement would not always be true if searching one alternative rather than another conferred 
significant time gains, but it seems fair to assume that time gains of this type are small enough to ignore. 
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experimental subjects.  However, the spatial, or height effect, is also distinguishable from 

zero for 275 of the 390 subjects.   

Aside from the 373 subjects for whom the regression coefficients are estimated 

successfully, there are 17 subjects with a perfectly identified alternative transition for one 

of the two independent variables.  16 of these subjects always choose the first alternative 

(top), while one always searches the alternative with highest attribute one value.  These 

respective subjects are added into Table 2.6 in order to report the combination of subjects 

for which each independent variable is either statistically distinguishable from zero or 

perfectly identified.  Also reported in Table 2.6 are the number of subjects with both 

independent variable coefficients statistically distinguishable from zero, and the number 

of subjects with strictly one coefficient statistically distinguishable from zero, along with 

their respective average coefficient values.23 

By simply counting the number of subjects for which each coefficient is 

statistically distinguishable from zero we observe that the effects of attribute one value 

and spatial location of the searched alternative are virtually identical. 

 

 

 

                                                 
23 The interpretation of estimated coefficients in the conditional logit model is not entirely straightforward.  
Perhaps the easiest way of interpreting the coefficients is by using an equivalence easily derived from the 
original likelihood expressions for each alternative: 

'

log ( ) ( )m

v tm ts H tm ts
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 
= − + −  

   

where m and s are different alternatives, and t is the index identifying the search problem.  All else equal, a 
change in the log ratio of the relative probabilities of searching any 2 given alternatives corresponds to an 
equal change in the product of either of the coefficients and the relative difference in its corresponding 
independent variable across the two alternatives.  Thus, a natural way of comparing coefficients is to 
determine how much of a change in one independent variable is necessary to offset the effect of a one unit 
increase in the other.   
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Table 2.6: Conditional Logit Results: First Alternative Searched 

 # of sig. subjects (+PI)Avg. ββββV Avg. ββββH 

ββββV sig. 290+(1)=291 .112 -.378 

ββββH sig. 275+(16)=291 .0606 -.795 

ββββV  & ββββH sig. 202 .0789 -.516 

ββββV sig, ββββH not 88+(1)=89 .187 -.0632 

ββββH sig, ββββV not 73+(16)=89 .00996 -1.568 

 

In order to specify a model representing factors related to the second alternative 

transition two additional independent variables are introduced.  The first is the absolute 

distance (in rows) of the remaining 7 alternatives to the first alternative searched.  The 

second is an indicator variable for down transitions.  Thus the model for second 

alternative transition captures, for each of the remaining 7 unsearched alternatives, the 

effects of attribute one value, height of the alternative, absolute distance of the alternative 

from the first alternative searched, and whether the alternative is below or above the first 

alternative searched. 

As in the case of the regression for the first alternative transition the number of 

subjects for which each variable yields a coefficient estimate statistically distinguishable 

from zero is reported along with average coefficient values for these subjects.  The effect 

of attribute one value is statistically distinguishable from zero for 287 of the 390 subjects.  

Distance is statistically distinguishable from zero for 247 subjects, while height is for 

127, and the down dummy for 43.  However, in this regression there are also perfectly 

identified types and subjects with perfect multicollinearity and/or zero variation in the 

down indicator.  Many subjects, for example, always search alternative one first and 

alternative 2 second, thus they are always perfect height types, perfect down types, and 

perfect distance types.  Correspondingly, these coefficients are either dropped or 

estimated incorrectly in the regressions.   There are 99 subjects perfectly identified in 
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Height, Distance, or Down24.  Of the 99 cases, 83 always transition down, 51 always 

transition to an adjacent alternative, and 25 always transition to the (spatially) highest 

remaining alternative.  Table 2.7 shows the combination of subjects for which each 

independent variable is either statistically distinguishable from zero or perfectly 

identified. 

Table 2.7: Conditional Logit Results: Second Alternative Searched 

 # of sig. subjects 
(+PI) 

Avg. ββββV Avg. ββββD Avg. ββββH Avg. ββββI 

ββββV sig. 287 0.173 -1.423 0.672 -0.0166 

ββββD sig. 247+(51)=298 0.0739 -2.679 1.384 -1.471 

ββββH sig. 127+(25)=152 0.226 -4.903 2.125 -0.488 

ββββI sig. 43+(83)=126 0.0675 -1.268 0.216 0.760 

ββββV  & ββββD sig. 204 0.0868 -1.941 1.087 -1.096 

ββββV sig, ββββD not 83 0.386 -0.150 -0.348 2.636 

ββββD sig, ββββV not 43+(16)=59 0.0126 -6.182 2.794 -3.253 

 

The specification of the regression for the third alternative transition is identical to 

that used for the second.  The results are also similar.  The effect of attribute one values 

are statistically distinguishable from zero for 250 subjects, as is distance for 238, height 

for 96, and the down dummy for 44.  For the third alternative transition there are 80 

subjects with regression coefficients dropped or inestimable.  Of these 80 subjects 52 

always transition down, 52 always transition to an adjacent alternative, and 30 always 

choose the (spatially) highest remaining alternative.  These perfectly identified types are 

added into Table 2.8 to show the combination of subjects for which each independent 

variable is either statistically distinguishable from zero or perfectly identified.  

 
 
 

                                                 
24 As long as at least 90% of transitions comply with perfectly identified behavior I consider the subject 
perfectly identified 
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Table 2.8: Conditional Logit Results: Third Alternative Searched 

 # of sig. subjects 
(+PI) 

Avg. ββββV Avg. ββββD Avg. ββββH Avg. ββββI 

ββββV sig. 250 0.100 -0.895 0.140 0.967 

ββββD sig. 238+(52)=290 0.0530 -2.175 0.792 0.338 

ββββH sig. 95+(30)=125 0.0343 -6.504 3.236 1.122 

ββββI sig. 44+(52)=96 0.0500 -0.741 -0.561 1.808 

ββββV  & ββββD sig. 165 0.0696 -1.251 0.223 1.070 

ββββV sig, ββββD not 85 0.160 -0.203 -0.0215 0.769 

ββββD sig, ββββV not 73+(52)=125 0.0154 -4.261 2.0786 -1.315 

 

  Despite rationality dictating that subjects only consider attribute one values 

when deciding which unsearched alternative to transition search to, results of the 

conditional logit analysis show that subjects systematically incorporate specific non-

optimal considerations into their alternative switching behavior.  The first alternative 

transition analysis suggests that the spatial location (non-optimal consideration) of the 

alternative and its attribute one value are of roughly equal importance to subjects.  This 

finding corresponds to a general proclivity of subjects in the GL data to start with the 

highest alternatives, then transition downward.  78% of all alternative transitions, in fact, 

are downward.  Regressions for the second and third alternative transitions reveal that 

attribute one value and adjacency (non-optimal consideration) are the most prevalent 

transition considerations, and are roughly equally represented in subjects’ search.  The 

regressions also suggest that consideration of alternative height, as well as transitioning 

downward, are less prominent, but also present.  An interpretation of these results is 

made in the next section. 

 

V. Evidence of Working Memory Limitations  
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There is strong evidence in the GL dataset that working memory limitations play 

an important role in shaping search behavior.  This section documents several- some 

obvious, others subtle- examples of such evidence. 

The two clearest manifestations of working memory limitations in subjects’ 

behavior are found in violations of necessary conditions three and four.  Subjects, on 

average, repeat 11.8% of all look-ups, and choose the wrong alternative in 33% of 

problems.  Limitations in working memory are responsible for these two systematic  

violations of optimality.25   

Several other important search behaviors affected by working memory 

limitations, including violations necessary condition one, will be organized below as 

consistent with one of two results demonstrated in my accompanying paper.  A 

description of the basic intuition behind these results will be sufficient for the purposes of 

this section. 

  Sanjurjo 2008b builds on the work of Newell and Simon (1972), Johnson, 

Bettman, and Payne (1993), and Crawford (2008) in creating a simple model of working 

memory load (henceforth WML) in search.  The first result to be used here is that (1) 

ATT search is more WML intensive than ALT search.  The basic intuition behind this 

result is that, because alternative values are summed within alternatives, even after 

several alternatives have been searched, ALT search requires only two sums to be stored 

in memory at one time: the highest alternative sum value so far observed, and the sum 

value of the currently searched alternative.  ATT search, on the other hand, requires 

                                                 
25 I use the general term “limitations” here, which can translate into costs, or literally refer to hard-wired 
short term memory limits. 
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memory storage of running sum values for each alternative searched (in multiple-attribute 

search).  Thus,  WML in ATT search is not only larger, but it increases with the number 

of alternatives searched, whereas ALT search does not.  The second result is that (2) 

more systematic (rehearsed) search patterns are less WML intensive than unsystematic 

(non-rehearsed) search patterns.  The intuition behind this result can be gained by 

imagining a simple example in which several (ten, for example) attributes within an 

alternative can be searched in two different patterns.  The first pattern follows a simple 

(rehearsed) convention, such as left-to-right adjacent, for the entire sequence of ten look-

ups.  In the second pattern attributes are searched in a (non-rehearsed) randomly selected 

order.  WML is higher in the second pattern than in the first, because it requires not only 

that the observed attribute values be remembered, but that the searched locations of those 

values be remembered as well. 

The first search behavior to be reported relates to result (1)’s assertion that the 

difference between WML in ALT and ATT search increases with the number of 

alternatives searched.  The ratio of within alternative to within attribute search transitions 

is considerably higher in the GL dataset than in similar, but dimensionally smaller, 

experiments.  Payne, Bettman, and Johnson (1988) designed a series of MouseLab 

experiments which differed from GL in that subjects chose one of four four-outcome 

lotteries, but was otherwise virtually identical in terms of the rules of search.  In their 

experiments the average ratio of within alternative to within attribute search transitions 

ranged from roughly 1:2 to 2:1.  The average ratio in GL’s data is 13:1.  Because the 

WML for ATT doubles with a doubling in the number of alternatives, while the WML for 
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ALT remains the same, it should not be surprising that the relative presence of ALT 

search is much higher in the larger design. 

Another possible effect of working memory limits, also related to result (1), is 

found in a curious behavioral disparity between ATT types in each of GL’s two 

experimental conditions: Exogenous (explicit time limits) and Endogenous (25 minute 

problem buffet).  ATT types in the Endogenous treatment perform an average of 8.7 

(roughly one column of attributes)  look-ups and choose the highest revealed alternative 

72.6% of the time, whereas ATT types in the Exogenous treatment perform an average of 

16.9 (roughly 2 columns of attributes) and choose the highest revealed sum only 45.4% 

of the time.26  Predicted WML is much higher for multiple-attribute ATT search than for 

single-attribute ATT search (because the multiple attribute version requires storing all 

values in the first searched column of attributes), a fact that suggests that WML might be 

related to errors in alternative choice.27 

Result (2) provides a possible explanation for subjects’ high violation rates of 

necessary condition one- both in the form of alternative switching and within alternative 

transitions.  Optimal search in GL’s problem contains an a-priori unpredictable ordering 

of optimal alternative switching.   In addition, optimal search probably contains a fair 

amount of switching back and forth between alternatives on sequential look-ups; in other 

words it is probably much more contingent (spatially jumpy across alternatives) than the 

                                                 
26 Because this was the only example of truly disparate behavior between the two treatments, for my four 
search types, I refrained from posting separate summary tables for each of the treatments, in Section IV.  
27 The other obvious potential explanation is that subjects in the Endogenous treatment are searching less 
and choosing the right alternative more frequently due to a problem selection effect.  However, a simple 
analysis of spreads between best and second best alternatives before and after subjects’ search shows no 
evidence of the alternative choice in the Endogenous treatment being any easier; in fact they are slightly 
more difficult (closer in value).  Thus there appears to be no evidence of a selection effect driving this 
disparate behavior across treatments.  
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subjects’ behavior we observe.  The econometric analysis of Section IV shows that 

subjects have strong spatial search biases; they tend to start high and switch (downward) 

to adjacent alternatives.  These biases clearly lead to high violation rates of necessary 

condition one because alternatives are spatially unordered with respect to their attribute 

one values.  Although these biases are costly, they also reduce the burden of WML- due 

to the same intuition contained in the example of random vs. systematic search of ten 

attributes in an alternative.  Likewise, violations of necessary condition one that occur as 

within alternative transitions may be part of a “one-time-through” approach, where 

subjects search an alternative, move on, and never come back to that alternative.  This 

type of “one-time-through” approach severely reduces WML relative to optimal search, 

which requires the subject to remember current sums of all alternatives (because each one 

might be returned to and searched further), as well as which attributes have already been 

searched in those alternatives (so that they are not searched again and mistakenly added 

to the sum). 

Two other possible explanations for several of the search behaviors presented in 

this section are reading bias and time-saving considerations.  The standard reading bias 

(for American students) predicts that subjects search from left to right (adjacent) within 

alternatives, and top to bottom (adjacent) across alternatives, which is highly consistent 

with several of the search behaviors described above.  However, the strength of this 

argument as a primary cause of observed behaviors is severely weakened by the tendency 

of subjects not to show the same extent of reading-type search in other similar 

experiments, such as Payne, Bettman, and Johnsons’ (1988).  In addition, the 

econometric analysis of alternative transitions shows that adjacency is significant for 
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more than twice as many students as the dummy for downward transitioning across 

alternatives, which further undermines a strict reading bias interpretation.  Nevertheless, 

to the extent that working memory limitations are playing a role in the determination of 

search patterns, the standard reading-type search pattern is the most familiar and 

rehearsed WML minimizing search convention that subjects can adopt, so it is not 

surprising that it is consistent with much of subjects’ observed search, even if the search 

patterns themselves are actually being driven fundamentally by working memory 

limitations. 

Another obvious possible explanation for the over-searching of alternatives, and 

sub-optimal alternative switching, is time-saving considerations.  In fact, any tendencies 

that subjects might have to search in a more systematic and rehearsed fashion will not 

only reduce WML, but also reduce search time.  Though the time-saving effect is real, it 

is questionable how significant a role it plays in determining search patterns; given the 

physical speed with which a computer mouse can move across the computer display, the 

gains are slight. 

 

VI. Conclusion 

In this paper I build on the work of GL in two ways.  First, I study highly 

heterogeneous search behavior on an individual problem level.  Second, I provide a 

partial characterization of optimality in their multiple attribute, multiple alternative full 

recall search problem, which I use as a partial rational benchmark, against which I test 

subject behavior.  Although my characterization of optimality is only partial, it 

successfully identifies theoretically important violations of optimality in search, and 
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empirically catches significant and substantial rates of violations in subjects’ behavior.  

In demonstrating two non-trivial necessary conditions I make numerical computation of 

the optimal policy in smaller versions of the GL problem much easier.  This advance, in 

turn, allows for the design of future experiments in which subjects’ behavior can be 

compared against a fully rational benchmark- one which will include calculability of the 

exact costs of all deviations from the optimal search path.   

My analysis of GL’s data on the individual problem level reveals that nearly all 

problems fall into one of four surprisingly simple and tightly fitting search types.  

Violation rates of necessary conditions, as well as other statistics describing search, are 

shown to vary significantly and substantially across these types.   

A common explanation for violations of three of my five necessary conditions for 

optimality, as well as several other seemingly unrelated observed search behaviors, is 

working memory limitations- though reading bias and time-saving considerations likely 

also play a confounded role.  Future experimentation on multiple attribute search will 

allow for these three effects to be separated. 

My analysis yields two general findings that cannot yet be reconciled.  On the one 

hand, subjects clearly violate optimal search, assuming perfect reasoning (and memory), 

at high rates.  On the other hand the GL search problem is clearly working memory load 

intensive, and subjects show that they are seriously affected by working memory 

limitations.  Thus, the question becomes, “to what extent is the otherwise sub-optimal 

search behavior we observe an optimal response to working memory limitations?”  I hope 

to answer this question as much as possible in future work, starting with a simple model 

of working memory load (Sanjurjo 2008b), and with further related experimentation. 
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This paper follows the lead of Newell and Simon (1971), Payne, Johnson, and 

Bettman (1993), Gabaix and Laibson (2006), and Crawford (2008) in taking a procedural 

cognition approach to study decision making.  By using an experimental method that 

allows for the recording of both revealed preferences by way of choice, and the entire 

order and duration of each preceding step of information acquisition, a type of dual 

analysis is made possible that yields new insights into the cognitive processes actually 

underlying decision making in search.  In this paper, these insights are not only useful in 

and of themselves, but they also lead to a study of the effects working memory load 

(Sanjurjo 2008b) on search strategy, thus choice.  Insights gained from the procedural 

cognition approach can only serve to improve models of decision making.  At worst they 

will provide additional information about behavior that will serve to refine experimental 

designs and assist theorists in the way they think about building models.  At best, they 

will lead to the formation of general models of decision making increasingly rooted in 

well-defined cognitive primitives. 
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Appendix A: Necessary Conditions 1,2, and 4, More Formally Stated 

 

                                                 
28 Necessary conditions 4 and 6 are completely transparent, so are not included here. 
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Each realized attribute is defined as rca , where a  is equal to the attribute value, 

r  is the alternative row (1,…,8), and c  is the attribute column (1,…,10).  Note that 

) 0( rcaE =% , so unsearched attributes disappear in the summations below. 

 
(1) “If an attribute in alternative x is searched, it must be the case that there does not exist 
an alternative y that is both weakly less searched than x, and has a weakly higher 
cumulative revealed value than x, with at least one of these inequalities strict.”  

10 10

2 2
1 1       ,    y  . .   

.     ,       .

c c

xc ycx yIf an attribute in alternative x is searched then s t

and y is weakly less searched with one of these inequalities strict

a a a a
= =

∉ + ≤ +∑ ∑
 

 

 

(2) “Within any alternative, an attribute cannot be searched if there remains another 
unsearched attribute with greater variance.”   

 
    ( ) ( )   ,      ,     .  .rc rp rp rcis unsearched and Var VarIf a is searched for any r and c then p s t a a a>¬∃ % %  

 

 

(4) “Choose the alternative with highest revealed value.” 

 
10

{ }
2

1max ( ),  ( )
r

c

rcrC r where C r a a
=

= +∑  

 

 

Appendix B: Demonstration of Necessary Conditions 1 and 2 

(In Construction-have proof sketch for condition 2) 

 

In this section I demonstrate necessary condition two analytically (and will try to 

do the same for condition one).  I now have a proof sketch for necessary condition two, 

which I include below, but do not yet have a proof for necessary condition one.  If I am 

not able to demonstrate condition one analytically then I will use the method of numerical 

computation to show, that for a wide variety of simulated search problems, the condition 

holds.  Necessary condition one will be demonstrated using a 3x3 version of the GL 8x10 

search problem because it is the dimensionally smallest version of the problem that 

contains all of the fundamental features of the larger GL problem.  Namely, having at 

least three attributes in multiple alternatives allows the searcher, after searching an 

attribute in an alternative, to then decide to stop search, search again in the same 
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alternative, or switch to another alternative and search an attribute there.  Having at least 

three alternatives breaks an interesting “indifference by symmetry” result that holds in the 

two alternative problem (as demonstrated in Appendix C).  3x3 is also the maximum size 

problem I consider here because, numerically, GL’s search problem becomes intractable 

“quickly” as the dimensionality of alternatives and/or attributes increases.  The 

expressions used to estimate expected values of each relevant search strategy are greatly 

simplified by similar numerical proofs, as well as analytical proofs, on versions of the GL 

problem smaller than 3x3.  Appendix C contains several examples of these analytical 

proofs.  

For the proof of necessary condition two assume the following (slightly more 

general than above): One of N alternatives must be chosen, where N is at least two.  The 

value of any alternative is equal to the sum of an initially known cumulative revealed 

value (depending on preceding search)  iv  (alternative i)  and however many unknown 

attributes remain in that alternative.  Within each alternative, these unknown attributes 

are independent, normally distributed, mean zero, and differ in variance.  At least one of 

these alternatives contains at least two unrealized attributes.  The cost of realizing the 

value of any unknown attribute is c > 0. 

 

Theorem: Given the assumptions above, for any search policy that begins by searching a 

lower variance attribute within an alternative, there exists a search policy that begins by 

searching a higher variance attribute in the same alternative, that yields a higher expected 

payoff. 

Proof Sketch: 

First I need to prove lemma 1 (though it seems obvious), which will be used 

throughout to prove the theorem.  Lemma  1 states that for any unique alternative (i) and 

attribute (j) combination, given any history of search (H), ij N | H∃  s.t. if ij ijx N | H> then 

search stops and that attributes’ corresponding alternative is chosen. 

In the following analysis I compare the expected values of two search strategies, 

conditional on any preceding search history (identical for both strategies).   
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Consider a search policy that begins by searching a lower variance attribute in an  

alternative, call it alternative 1 (w.l.o.g.), then proceeds optimally.  Call the lower 

variance attribute %x  and the strategy %( )xxγ .     

Now consider a new strategy that begins by searching a higher variance attribute 

in alternative 1 instead.  Call this attribute %x ' .  For each realization x of %x there is a 

unique realization x' of %x ' s.t. %( ) %( )x x'p x < x  = p x' < x' .  We will denote the 

correspondence x'  to x by the function ( )h x'  = x , and because ( )h x'  is 

invertible ( )-1h x  = x'.  

The new search policy strictly follows the decision rules of %( )xxγ , using ( )h x'  in 

place of x, until it reaches x in search (if it does).  If it does reach x then %( )xxγ  would 

have reached x' .  In this case, once x is realized, the new policy switches back to the 

original strategy ( %( )xxγ ) from that point on, yielding the same expected payoffs for the 

remainder of search.  Call the new search policy %( )x 'xγ% . 

Thus, the only way the expected payoffs of %( )xxγ  and %( )x 'xγ%  differ is if the 

originally searched alternative (alternative 1) is chosen before x is reached under %( )x 'xγ% . 

Consider the differences in payoffs earned by each strategy in this case.  

If x > 0 then ( )-1h x  = x' > 0, and ( )-1h x  - x > 0  (by definition of ( )h x ).  Likewise, if 

x < 0 then ( )-1h x  = x' < 0,  and ( )-1h x  - x < 0.   These differences in payoffs are 

symmetric around x = 0, so ( ) ( ) ( )( )-1 -1h x  - x  = - h -x  - -x . Now consider the set of 

combinations of attribute realizations that lead to the original alternative being chosen.  

Ceteris paribus, this set is strictly increasing in x, so the probability of stopping search to 

choose the originally searched alternative is also strictly increasing in x.  Thus, if we 

define ( )f x  as the probability of the originally searched alternative being chosen, then 

( ) ( )( )-1

-
f x h x -x dx > 0. 

∞

∞∫ �  
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Show results of numerical estimations here (if cannot get analytical proof) 

for necessary condition one (still need a 4-5 days (of work) to finish these, but I 

already have usable expressions.  It’s just a matter of pruning them down a bit 

further so I can get the most iterations, and richest estimations (more draws from 

the distributions) for the time I’ll spend actually running them.  I’ve already run, 

and confirmed all three necessary conditions on smaller, nested search problems 

(which I am using to prune the larger 3x3 expressions)) 

 

Appendix C: Demonstration of Necessary Conditions on Smaller and/or 

Simpler Versions Than 3x3 

                                             (In Construction) 

 

This section contains several analytical results for necessary condition one, on 

versions of the GL search problem that are smaller and/or simpler than the 3x3 versions 

demonstrated in Appendix B.  Many of these results are used in order to simplify the 

numerical expressions used for proofs in Appendix B, which greatly speeds up the 

necessary computations.  (Still need to clean up language, add a couple more proofs, 

and organize better) 

As in Appendix A, Each realized attribute is defined as rca , where a  is equal to 

the attribute value, r  is the alternative row where ,r R R∈ = {1,…,N}, and c  is the 

attribute column where ,c C C∈ =  {1,…,M}.  As in GL’s problem, the first column of 

attributes are fully observable (for free).  Further, each unknown attribute is searched at a 

constant cost c>0.  Agents are risk neutral and must choose one of the offered 

alternatives.  The value of each alternative is equal to the sum of its attributes.  

Unsearched attributes are i.i.d. within columns, 

% % %( ) 0 (mean zero) , and ( ) ( )  (symmetric)rc rc rcE a E a E a= = − .  Also, without loss of 

generality, R is the set of alternatives {1,2,3,…} that one alternative is chosen from, and 

1 1  i ja a for i j> <  (alternatives are ordered by the value of attribute 1).  The variance of 

attributes within an alternative are also ordered, with ) ),   ( (ri rj for i jVar a Var a> > . 
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Finally, let )( rcaγ  be the expected value of a policy which searches rca now and then 

proceeds optimally. 

Two trivial results follow from the assumptions given above.  First, if 

{1}C = choose 11a  for any R- if the value of each alternative is fully determined by 

attribute 1, alternative 1 should be chosen immediately.  The second is that if {1}R =  no 

search should occur, for any C.  Alternative 1 should be chosen immediately. 

The simplest nontrivial search comparison occurs when there are two alternatives, 

two attributes for each alternative, and only one attribute can be searched.  Result one 

includes this case, while extending beyond it.  Results two and three allow as many 

searches as there are attributes. 

 

1 2 3 4

Result 1:  {1, 2} {1, 2} ,  {1, 2,..., }  1 ,  

) ) ) ) ... )   .( ( ( ( ( ncc c c c

If R and C where C n and only attribute canbe searched then

for any ca a a a aγ γ γ γ γ
⊂ ⊂ =

= > > > >
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29 Thanks to Patrick Fitzsimmons for suggesting this method of proof.  Integrating out each expectation, 
and comparing, also works. 
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: Result 2   {1, 2}     . . {1,2}     

,   [1, 2 ].

Proof: 

In the case of 2 alternatives, the expected value of first searching an 

Result 3 holds for R and for any C s t C whenat most d attributes

canbe searched for any d C

= ⊂ ⊂

∈

�

attribute in one alternative can

always, by construction, be identically reproduced by transforming the expected value of first searching 

the other with the same 3-step transformation used in the proof of Result 2 (symmetry result).

 

 
The proven equalities in Results one through three at first appear counterintuitive.  

Indeed the intuition behind costly search (for economic goods) is to search until one 

alternative has sufficiently separated itself above the others, so that search may be 

stopped and that alternative may be chosen.  Thus, it seems intuitive that searching 

alternative 1 first should generate a larger expected value than searching alternative 2 

first.  However, the equality results exist due to a fundamental symmetry in information 

revelation.  If a draw of x from an attribute in alternative 1 is sufficiently large as to 

induce the termination of search and a choice of alternative 1, then a draw of –x from an 

attribute in alternative 2 yields the exact same result. 

Interestingly, Result one shows that any truly myopic searcher, who treats each 

searched attribute as the last, is always indifferent between searching either the 

alternative with the highest or second highest attribute one value, given that the two 

alternatives are equally unsearched.  Thus, models such as GL’s directed cognition 

model, require a tie-breaking assumption for the many cases in which this type of search 

decision is made throughout the course of a task. 

 
 

Appendix D: Econometric Specifications 

 

This section shows the systems of equations used to estimate conditional logit 

coefficients in Section IV.  Three different sets of coefficients are estimated for each 

subject: one for each of the first three alternative transitions.  

For regressions, by individual subject, on the first alternative searched: 
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The same specified system of equations is used for regressions, by individual 

subject, for switches from the first alternative searched to the second, and for switches 

from the second to the third. 
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Can Working Memory Limits Explain the 

Fact Patterns in Multiple Attribute Search?  
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Abstract: In Sanjurjo (2008) I provide a partial characterization of optimal search 

in Gabaix and Laibson’s (2006) multiple attribute/multiple alternative search experiment.  

My analysis reveals three puzzling patterns: (1) subjects often switch to searching clearly 

less promising alternatives, (2) search too deeply within alternatives, and (3) exhibit a 

strong scale effect in relying more heavily on within alternative intensive search (as 

opposed to across) here than they do in isomorphic experiments with fewer alternatives 

and attributes.  In this paper I demonstrate that all three of these puzzles systematically 

reduce working memory load (WML), which suggests that a simple model in which 

working memory is limited but subjects otherwise behave optimally can explain all three 

patterns.  My results demonstrate that more systematic search sequences require less 

WML (explains (1) and (2)) and that a within alternative intensive search sequence is the 

unique minimum WML sequence (explains (3)).  By operationalizing WML I illustrate a 

fundamental component of information overload and complexity, provide a structural 

justification for peoples’ use of heuristic problem solving strategies, and reveal various 

forms of strategic manipulation possible through design effects.  

  

                                                 
1
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Pashler, Angel Sanjurjo, David Schkade, and Joel Sobel for helpful comments, Xavier Gabaix and David 

Laibson for generously sharing their dataset, and to Vincent Crawford for invaluable guidance throughout 

the entire process.  
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Introduction 

Optimal search policies have been fully characterized for a wide variety of search 

problems in which a single attribute of an alternative, usually its price, determines its 

desirability, with varying assumptions about value distributions, search costs, number of 

searchable alternatives, and recall options (Kohn and Shavell 1974, Lippman and McCall 

1976).  Although these analyses yield substantial insights, many important applications 

have alternatives whose values are determined by multiple attributes: we consider more 

than wage when choosing a job, and more than price when purchasing a home. 

Gabaix and Laibson (2006; henceforth “GL”) study search with multiple 

attributes (ten) and alternatives (eight) experimentally, with full recall and no order 

restrictions.  Each of their subjects faces a series of search problems in which search is 

selective due to exogenously imposed time limits.  GL’s analysis is of particular interest 

because the richness of their search environment approximates human cognition in less 

structured settings more closely than most other models, and because their experimental 

interface bears a close family resemblance to the kind of information displays commonly 

used in internet commerce.
1
  

Although optimal search would be a natural benchmark with which to compare 

subjects’ behavior, GL find that the high dimensionality of their problem makes 

characterizing optimal search analytically and numerically intractable (p. 1066). Instead 

they focus on comparing their “Directed Cognition” model of search, which is myopic in 

                                                 
1
 This display is similar to those found for consumer products from cellular phones, to automobiles, to 

homes, to Medicare part D, and even for information tables in academic papers. 



 

      

  87                                                                                                                                           

 

that it ignores option value, but otherwise fully rational, with “naïve” heuristics taken 

from the psychology literature (Tversky, 1972).   

In Sanjurjo (2008) I build on GL’s work in three ways.  First, I conduct a detailed 

analysis of GL’s search data on the individual level.  Second, although a full 

characterization of optimal search (assuming perfect cognitive abilities) in GL’s 

environment does indeed appear to be intractable, I give a partial characterization in the 

form of several necessary (but not sufficient) conditions for optimality.  Third, I compare 

subjects’ behavior to this partial rational benchmark. 

I find that while subjects’ search behavior is largely uncontingent (independent of 

previously revealed information) it is also highly systematic.  98% of all subjects’ search 

behavior can be described by two archetypal search patterns- within alternative (row) 

transition intensive (ALT; 92%) and within attribute (column) transition intensive (ATT; 

6%).
2
  Remarkably, the ratio of GL’s subjects’ within alternative to within attribute 

transitions is thirteen times as large as it is in isomorphic experiments with fewer 

alternatives and attributes (Payne et. all, 1988).
 3

  This surprising scale effect is puzzle #1.   

My necessary condition on the optimal tradeoff between the depth and breadth of 

search across alternatives and attributes allows me to identify instances of conditional 

over-search and under-search within alternatives, which include violations that occur 

both when the searcher switches alternatives to a wrong alternative, and when the 

searcher continues to search in the same alternative (too deeply).  I find that this 

                                                 
2
 I define both ALT and ATT clearly in Section II. 

3
 The key difference between the PBJ (four by four) and the GL (eight by ten) experiments is that the object 

of choice in PBJ is a lottery whereas it is an additive sum in GL.  If assuming risk neutrality this reduces to 

the difference between a weighted average and a rescaled weighted average.  Aside from this difference the 

design uses a virtually identical MouseLab software interface. 
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necessary condition for optimality is violated often- in 50% of all subjects’ search 

actions.  In 39% of all search actions subjects search conditionally too deeply within an 

alternative (puzzle #2), and in 49% of all alternative transitions, subjects make the costly 

error of transitioning to a “wrong” alternative (puzzle #3).  To my knowledge there is no 

existing theory that can explain these systematic deviations from optimality.  

A searcher with no cognitive limitations normally does best searching 

contingently (Kohn & Shavell, 1974; Stigler, 1961), and trades off depth of search within 

an alternative and breadth of search across alternatives optimally.  Here I explore the 

possibility of explaining both of subjects’ main systematic deviations from optimal 

search, as well as the puzzling scale effect, via the single hypothesis that they have 

limited working memory.
4
   

I demonstrate, in three theoretical results, that all three of subjects’ puzzling 

behaviors systematically reduce working memory load (WML), which suggests that a 

simple model in which working memory is limited but subjects otherwise behave 

optimally can explain all three puzzles. 

My first result demonstrates that for any rectangular information display with at 

least two alternatives and two attributes, a within alternative transition intensive (ALT) 

search sequence is the unique minimum WML sequence.  Because GL’s subjects display 

a mixture of contingent and uncontingent search behavior I demonstrate my result under 

both extreme conditions.  Under uncontingent search I show that ALT is the unique 

                                                 
4
 After two of my other necessary conditions for optimality demonstrated unambiguous working memory 

failure- 11% of all look-ups are repeated, and 33% of final alternative choices were incorrect (based on 

previously observed information)- it was natural to question whether working memory limitations, a 

fundamental bottleneck in human problem solving (Newell and Simon, 1972), might also explain the three 

empirical puzzles just described.   
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undominated WML search sequence.  My definition of WML dominance is like Pareto 

dominance; one sequence WML dominates another if it everywhere requires weakly less 

WML, and requires strictly less WML for at least one step in the search sequence.  For 

contingent search I demonstrate the slightly weaker result that for a rectangular 

information matrix with at least two alternatives and two attributes ALT is the unique 

minimum aggregate WML search sequence, where aggregate refers to all steps in the 

search sequence.  

For both contingent and uncontingent search I also show that the differences in 

the aggregate WML requirements between the ALT and ATT search sequences increase 

quadratically, while the differences in the maximum WML of the search sequences 

increase linearly, with the size of the information matrix.
5
    

Thus, my first result provides a structural explanation for the tendency of subjects 

to systematically shift to a higher ratio of within alternative to within attribute transitions 

as the dimensions of the information display increase, for subjects searching too deeply 

within alternatives (I will explain how in Section II), and is also generally consistent with 

92% of all subjects’ search behavior being ALT. 

My second result simply establishes that, under reasonable assumptions, for any 

given search sequence uncontingent search WML dominates contingent search.  This 

result provides concrete evidence of the non-trivial tradeoff between searching 

contingently, and searching uncontingently in a way that reduces WML. 

                                                 
5
 Whether the aggregate or maximum WML of a sequence has a greater affect on decision making is an 

empirical question that requires more attention.  Aggregate WML would seem to matter more if the costs of 

storing WML is the primary issue; maximum WML would seem to matter more if the primary issue is 

increased error rate due to exceeding one’s instantaneous WML threshold. 
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For my third result I enrich my model of WML to more fully capture the presence 

of systematicity in uncontingent search sequences.  I demonstrate the general and highly 

intuitive notion that more systematic search rules require less WML than less systematic 

search rules (ones that look as if they’re generated from a random process).  By more 

systematic, I specifically mean that a search rule requires comparatively fewer unique 

instructions in order to be executed correctly.  It follows from this result that a “refined” 

(specific) version of ALT is the unique undominated uncontingent search sequence- so a 

refined version of my first result still holds under this enriched model of WML.
6
   

This, my third result, provides a structural explanation for the two main 

systematic deviations from optimal search found in the GL dataset.  Subjects’ costly 

tendency to disproportionately favor adjacent alternatives when transitioning from one 

alternative to another increases the degree of systematicity in their search sequences.  

Similarly, “over-searching” in a particular alternative is part of GL subjects’ “one time 

through” approach that makes search more systematic and thus reduces WML relative to 

a sequence in which the searcher instead switches back and forth between partially 

searched alternatives.
7
  Further, this result also suggests an explanation for why ATT 

search is more common in GL subjects’ behavior than otherwise lower WML search 

sequences (ATT is weakly WML dominated by all search sequences in the non-enriched 

model of WML)- because the maximum systematicity of the sequence itself is now 

acknowledged.  This result is therefore also consistent with 98% of all search behavior in 

                                                 
6
 In section III I will explain why whether a version of the second main result still holds depends on what 

specific assumptions are made. 
7
 As mentioned, this type of “over-searching” within alternatives is also consistent with the first main 

result, which is based on the intuition that minimum WML search sequences have the fewest possible 

number of alternatives open to further search at any point in the search sequence. 
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the GL dataset being either ALT or ATT, and 96% of all within alternative or attribute 

search transitions being adjacent.  

Aside from my theoretical results themselves, I demonstrate that working memory 

load for different decision-making approaches can be clearly defined and measured.  In 

fact, I provide formulas that can be used as diagnostic tools to compute the WML 

required for different search sequences in any real world multiple alternative/multiple 

attribute information display, step by step, yielding summary statistics such as the 

maximum and aggregate WML’s of these search sequences.
8
 

This paper is motivated by the well established finding that working memory 

capacity is limited (Miller, 1956; Newell & Simon, 1972) and plays a crucial role in 

decision making (Cowen 2001), adversely affecting reasoning abilities.  Everyday events 

that corroborate with these findings are the difficulty we might experience in attempting 

to remember a ten digit number or to work out the product of two three digit numbers in 

our heads.  Notions of Complexity, Information overload, errors in decision making, and 

selection of simplifying decision heuristics all in fact seem to be closely linked to (small) 

finite WM capacity.   

This paper most closely relates to the process-tracing literature which began with 

the work of Newell and Simon (1972) and continued with the work of Payne, Bettman, 

and Johnson (PBJ; 1993), GL (2006), and Crawford (2008), among others.  

It differs fundamentally from a class of other papers in the Economics Literature 

that address memory limitations in decision making, such as Bernheim and Thomadsen 

                                                 
8
 More abstract notions such as “Cognitive costs,” on the other hand, are not well defined so they are 

difficult to measure. 
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(2005), Piccione and Rubenstein (2003), Wilson (2003), Benabou and Tirole (2002), and 

Mullainathan (2002), to name just a few, in that here I take a more primitive approach to 

memory. Whereas the models in these mentioned papers each assume some specific 

memory technology, then proceed with an analysis of optimal decision-making subject to 

that technology, my theoretical results come from simply computing and comparing the 

number of representations that, logically, must be stored in working memory as a 

function of different information search strategies.  By operationalizing a fundamental 

component of complexity and information overload, and providing a clear, measureable, 

justification for the use of heuristic problem solving strategies in general, this paper is 

also closely related to those three literatures as well.     

In Section II I present my first two results, embedded in a series of examples 

meant to provide necessary intuition.  In Section III I present my third result.  Following 

the Conclusion in Section IV is an appendix containing proofs of all Propositions 

presented in Sections II and III, formal definitions of ALT and ATT search, and formulas 

for the maximum and aggregate WML’s of ALT and ATT search. 

 

II. The WML minimizing search sequence (with illustrative example), and 

the WML benefits of uncontingent search 

In this section I prove my first main result; for any rectangular information 

display with at least two alternatives and two attributes, a within alternative transition 

intensive (ALT) search sequence is the unique minimum WML sequence.  Because GL’s 

subjects display a mixture of contingent and uncontingent search behavior I demonstrate 

my result under both extreme conditions.  Under uncontingent search I show that ALT is 
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the unique undominated WML search sequence.  My definition of WML dominance is 

like Pareto dominance; one sequence WML dominates another if it everywhere requires 

weakly less WML, and requires strictly less WML for at least one step in the search 

sequence.  For contingent search I demonstrate the slightly weaker result that ALT is the 

unique minimum aggregate WML search sequence, where aggregate refers to all steps in 

the search sequence.   If subjects use a combination of contingent and uncontingent sub-

sequences within the same sequence, the same results hold locally over-subsequences, so 

mixture models should be in line with the results reported here. 

My first main result holds under my benchmark specification of total WML, 

which is simply the computed total WML logically required for each step of any search 

sequence- the sum of all necessary value and location representations.  For example, if 

the value of each alternative is the sum of its attribute values (as in GL’s design), then 

running sums of each alternative must be held as they are being searched, as well as the 

spatial location of each running sum. 

In order to provide additional intuition for my first main result I prove the result 

for each component of total WML separately- the WML of values and the WML of 

locations.  Also, I precede each general result with a specific example- comparing the 

WML’s required for ALT and for ATT- the two archetypal search sequences, which 

together describe 98% of all search behavior in GL’s data.  In the examples I use an 

information display with four alternatives and four attributes, as in Payne et. al (1988). 

For both contingent and uncontingent search, and for the WML’s of both values 

and locations, I also show that the differences in the aggregate WML requirements 

between the ALT and ATT search sequences increase quadratically, while the differences 
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in the maximum WML of the search sequences increase linearly, with the size of the 

information matrix. 

First I define archetypal ALT and ATT search sequences, which will be used in 

examples provided throughout the section.  ALT search begins in any alternative (which I 

will assume, as in GL, will always be a row) of the information display.  It sequentially 

searches previously unsearched attributes (in any order) in that alternative until all have 

been searched once.  It then transitions to any other previously unsearched alternative and 

repeats the instructions from the previous sentence.  This process iterates until all 

alternatives have been searched exhaustively.  ATT search is the same, but with 

alternatives replaced by attribute columns in the definition of ALT (ATT is ALT rotated 

90 degrees).  Clearly, ALT and ATT are actually relatively large classes of search 

sequences.  In the following example I use the most systematic version of each, where 

ALT proceeds left-to-right adjacent within alternatives and top-to-bottom adjacent across 

alternatives- as in the way the text on this page is read.  ATT proceeds top-to-bottom 

adjacent within attribute columns and left-to-right adjacent across attribute columns.
9
 

In each example I report the WML required for each step of the search sequence 

in its corresponding position of the information display.  For each case (uncontingent or 

contingent, WML of values or locations) I also provide the appropriate formulas for 

maximum and aggregate WML’s of the search sequence, for an information display of 

any dimensions, in the appendix.  To explain a few bits of necessary notation: t is a 

counter of the step in a given search sequence, M is the number of alternatives in the 

                                                 
9
 In this section all versions of ALT search yield the same WML under the assumption that uncontingent 

search sequences are “hard-wired,” thus costless.  However, when this assumption is relaxed in Section III I 

will show that this maximally systematic version of ALT is the unique undominated search sequence- 

WML dominating all other (less systematic) versions of ALT. 
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information display, N is the number of attribute columns, vWML  is the WML of values, 

lWML  is the WML of locations, and TWML is total WML ( vWML + lWML ). 

After presenting the result for both uncontingent and contingent search I discuss 

its implications, and in particular, its ability to provide a structural explanation for two 

previously unexplained essential features of GL’s subjects’ search behavior. 

Uncontingent Search: 

Search is uncontingent if current and future search actions are independent of 

previously observed information, as in Stigler’s (1961) classic search.  Because GL’s 

subjects systematically violate contingent search, and opt for highly systematic 

uncontingent sequences while doing so, I compute the WML’s required for different 

uncontingent search sequences and compare them.  The following two sub-sections show 

that ALT is the unique undominated search sequence in terms of both the WML of values 

and locations, thus total WML- my first result for uncontingent search.   

 

WML of Values:

0 1 1 1 

1 2 2 2 

1 2 2 2 

1 2 2 2 

0 4 4 4 

1 4 4 4 

2 4 4 3 

3 4 4 2 

      Figure 3.1.1: ALT                                               Figure 3.1.2: ATT 
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For the particular ALT sequence depicted in Figure 3.1.1 search starts in the left-

most attribute of the top alternative.  Initially, zero vWML  is required because the value 

of the first searched attribute is visible.  However, once search proceeds one attribute to 

the right, now the left-most attribute value must be remembered because it is no longer 

visible.
10

  As this second attribute is being observed its value is added to the remembered 

value of the left-most attribute, then search proceeds one attribute to the right, but now 

with the single summed value of the first two searched attributes remembered; this 

process iterates to the right-most attribute in the top alternative.
 11

  When the left-most 

attribute of the second from the top alternative is next searched the summed value of the 

top alternative must be remembered.  Search then transitions one attribute to the right, 

and now the value of the attribute just searched must be remembered in addition to the 

value of the top alternative, and so on.  Crucially, regardless of how many alternatives 

have been completely searched, only one completed alternative value need be recalled- 

the highest. 

The maximum vWML  for any moment in ALT search sequence is two, and this 

result is general for arbitrarily large numbers of alternatives and attribute columns.  The 

aggregate vWML , in general, is 2MN-N-M, which in the four by four is 24. 

For the particular ATT sequence depicted in Figure 3.1.2, search also starts in the 

left-most attribute of the top alternative. Search then proceeds one attribute down.  Now 

that the first searched attribute value is no longer observed, it must be remembered.  

Search then again transitions one attribute down, and now each of the two previously 

                                                 
10

 In GL’s design only one attribute is visible at a time.  In an environment where all attributes are visible at 

once my approach models a human being that can attend to at most one attribute in any given instant. 
11

 For simplicity of exposition I stick to the GL design, but my results are general to a broader class of 

multiple alternative/multiple attribute information displays.  For example, the WML of values reported here 

would also hold for any form of within alternative attribute integration, not just summing. 
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searched attribute values must be remembered.  When the search sequence arrives to the 

top attribute of the second from the left attribute column four values must be 

remembered.  This vWML  persists until the second to last searched attribute in the ATT 

sequence, where two alternatives have now been searched completely, so the lower 

completed alternative value can be discarded, which means a vWML  of three rather than 

four, and for the last searched attribute, two rather than three. 

The key intuition for the differences in vWML  between the ALT and ATT 

sequences is that vWML is equal to the number of alternatives that have been partially, 

but not exhaustively searched.  If this is true of an alternative I say that it is “open.”  At 

each step of ALT search the least possible number of alternatives are open, and for each 

step of ATT search the maximum number of alternatives are open. 

The maximum vWML  for any step in the ATT search sequence is M, in general, 

thus four in the four by four sized information display.  The aggregate vWML  is M²(N-

1)+(M-1), in general, thus 51 in the four by four display. 

 

General result:  

Proposition UV: ALT is the unique undominated vWML  search sequence for M, N ≥ 2.
12

 

 

In the appendix I also show that the difference in maximum vWML  between the 

ATT and ALT search sequences increases linearly in M- the number of alternatives, 

while the difference in aggregate vWML  between ATT and ALT increases linearly in N 

and quadratically in M. 

                                                 
12

 Proofs for all Propositions are contained in the appendix. 
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WML of Locations:

0 0 0 0 

0 1 1 1 

1 1 1 1 

1 1 1 1 

0 3 3 3 

0 3 3 3 

1 3 3 2 

2 3 3 1 

      Figure 3.2.1: ALT                                               Figure 3.2.2: ATT 

    l

{t}
 max{WML ( | ALT)}= t 1 = 1            l

{t}
 max{WML ( | ATT)}= t M-1 = 3 

     
MN

l

1

WML ( | ALT)
t

t
=
∑ = (M-1)N-1 = 11            

MN
l

1

WML ( | ATT)
t

t
=
∑ = (N-1)(M-1)M = 36 

 

Because the search sequence is uncontingent, for ALT (Figure 3.2.1), the searcher 

need not remember any locations until there are two distinct alternative values to be 

recalled simultaneously.
13

  This occurs for the first time as she searches the sixth attribute 

in the sequence.  Remembering which alternative corresponds to one of the two values is 

sufficient for her to know which alternative the other value belongs to.
14

 

For ATT (Figure 3.2.2), The WML of locations ( lWML ) is similar to its vWML  

(see Figure 3.1.2), but systematically one unit lower due to a searcher’s ability to 

logically identify the values associated with each of four alternatives by remembering the 

locations of only three of those values, for example.  

The basic intuition regarding the lWML ’s of ALT and ATT is the same as that for 

vWML ; ALT has the lowest possible number of alternatives open for each step of the 

search sequence, while ATT has the most.   

                                                 
13

 Uncontingent search can be thought of as predetermined, thus by knowing where she is currently 

searching, the searcher knows where she has already searched. 
14

 Throughout, I assume that searchers only store necessary information. 



 

      

  99                                                                                                                                           

 

 

General result: 

Proposition UL: ALT is the unique undominated lWML  search sequence for M, N ≥ 2. 

 

In the appendix I also show that the difference in maximum lWML  between the 

ATT and ALT search sequences increases linearly in M- the number of alternatives, 

while the difference in aggregate lWML  between ATT and ALT increases linearly in N 

and quadratically in M. 

 

Total WML(
v lWML WML+ ): 

0 1 1 1 

1 3 3 3 

2 3 3 3 

2 3 3 3 

0 7 7 7 

1 7 7 7 

3 7 7 5 

5 7 7 3 

Figure 3.3.1: ALT                                               Figure 3.3.2: ATT 

     T

{t}
 max{WML ( | ALT)}= t 3 = 3                           T

{t}
 max{WML ( | ATT)}= t 2M-1 = 7 

      
MN

T

1

WML ( | ALT)
t

t
=
∑ = 3MN-2N-M-1= 35    

MN
T

1

WML ( | ATT)
t

t
=
∑ = 2M²(N-1)+M(2-N)= 87 

Here I show the total WML ( T v lWML  = WML WML+ ) for uncontingent search 

patterns ALT (Figure 3.3.1) and ATT (Figure 3.3.2) combining the WML’s required for 

both values and locations.  This is the first main result for uncontingent search. 

General result: 

Proposition 1UT: ALT is the unique undominated TWML  search sequence for M, N ≥ 2. 
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In the appendix I also show that the difference in maximum TWML  between the 

ATT and ALT search sequences increases linearly in M- the number of alternatives- with 

a slope of two, and the difference in aggregate TWML  between ATT and ALT increases 

linearly in N and quadratically in M, twice as fast as for vWML  or lWML  alone. 

 

Contingent Search: 

Contingent search is optimal, basing each current action on all previously 

observed information.  Because real searchers in the GL data use some mixture of 

contingent and uncontingent search it is important to compute the WML implications 

under both extremes.
15

  In this sub-section I show that for information matrices with at 

least two alternatives and two attribute columns ALT is the unique minimum aggregate 

TWML search sequence.  Thus the results for contingent search are qualitatively similar 

to those for uncontingent search, though slightly weaker.
16

  The results for the WML of 

values are identical under the uncontingent and contingent conditions.  This is because 

the same values must be remembered for the same sequence of search, regardless of 

whether it occurred in a contingent or uncontingent fashion.  Though it is unlikely that 

the archetypal search sequences ALT or ATT would result from contingent search, it is 

important to draw attention to the relative increases in WML that occur when one strays 

from ALT search, allowing the relative “randomness” of contingent search to dictate their 

search sequence.  By understanding these dynamics a clear explanation for subjects’ 

                                                 
15

 If subjects use a combination of contingent and uncontingent sub-sequences within the same sequence, 

the same results hold locally over-subsequences, so mixture models should provide no theoretical surprises. 
16

 That a search sequence is uniquely minimizing in aggregate WML follows logically from it being the 

unique undominated WML sequence.   



 

      

  101                                                                                                                                           

 

tendencies to stay behaviorally “close” to the uncontingent ALT search sequence 

emerges.  The analysis for the WML of locations here is different than it was in 

uncontingent search, in that in addition to remembering the locations of different running 

alternative values, one must also remember where one has searched- in order to avoid 

repeating previous searches, or missing other attributes altogether- either of which will 

bias the choice of alternative. 

WML of Values:

0 1 1 1 

1 2 2 2 

1 2 2 2 

1 2 2 2 

0 4 4 4 

1 4 4 4 

2 4 4 3 

3 4 4 2 

      Figure 3.4.1: ALT                                               Figure 3.4.2: ATT 

    v

{t}
 max{WML ( | ALT)}= t 2 = 2             v

{t}
 max{WML ( | ATT)}= t M = 4 

     
MN

v

1

WML ( | ALT)
t

t
=
∑ = 2MN-N-M = 24    

MN
v

1

WML ( | ATT)
t

t
=
∑ = M²(N-1)+(M-1) = 51 

vWML is identical under uncontingent and contingent search. 

 

General result: 

Proposition CV: ALT is the unique undominated vWML  search sequence for M, N ≥ 2. 

 

In the appendix I also show that the difference in maximum vWML  between the 

ATT and ALT search sequences increases linearly in M- the number of alternatives, and 

the difference in aggregate vWML  between ATT and ALT increases linearly in N and 

quadratically in M. 
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Locations WML: 

Now that search is contingent, a searcher must remember not only the locations of 

the running values of alternatives, but also the locations of the attributes she has already 

searched.  In order to compute precisely how much WML is required to remember the 

locations of searched attributes, an assumption must be made about the “chunking” 

(Miller, 1956) capabilities of searchers.  Zero chunking capabilities would mean that one 

unit of memory is required for each searched attribute.  Indefinite chunking capabilities 

would lead to just one memory unit being required for any pattern of previous search.  An 

additional issue to consider with contingent search is whether searchers have the ability 

to switch from remembering what they have seen to what they have not seen, when it 

reduces WML to do so.   

In this section I assume that subjects can only remember what they have seen and 

that they can chunk entire rows or columns as one memory unit, but no other 

combinations of attributes can be chunked.  Changing these two assumptions in any 

reasonable way does not qualitatively change the results that follow.
17

  It is important to 

note, however, that taking either extreme stance on chunking would allow for the 

stronger theoretical result from the uncontingent section- that ALT is the unique WML 

undominated search sequence- to go through.  In the following sub-section I discuss the 

chunking issue a bit further.

                                                 
17

 Assuming either extreme- zero chunking or perfect chunking lead to the seemingly unrealistic result that 

no previous search sequence is easier or more difficult to recall than any other (they all require the same 

amount of WML).  One would anticipate that more systematic previous search sequences are easier to 

chunk than ones that look like they occurred due to some random process.  Here I assume a chunking 

technology somewhere in between the extremes, where more systematicity in search does reduce WML. 



 

      

  103                                                                                                                                           

 

 

 

 

WML of Locations:

0 1 2 3 0 0 0 0 0 1 2 3 0 3 3 3 

1 2 3 4 0 1 1 1 1 2 3 4 0 3 3 3 

2 3 4 5 1 1 1 1 2 3 4 5 1 3 3 2 

3 4 5 6 

 

 

 

 

+ 

 

 

 
1 1 1 1 

 

3 4 5 6 

 

 

 

 

+ 

2 3 3 1 

 

0 1 2 3 0 4 5 6 

1 3 4 5 1 5 6 7 

3 4 5 6 3 6 6 7 

 

 

                = 

 

 

 
4 5 6 7 

 

 

                                                      = 

5 7 8 7 

                     Figure 3.5.1: ALT                                                           Figure 3.5.2: ATT 

    v

{t}
 max{WML ( | ALT)}= t (M-1)+(N-1)+1   v

{t}
 max{WML ( | ATT)}= t N+2M-4 = 8                                                       

                                      = 7                                        

    
MN

v

1

WML ( | ALT)
t

t
=
∑ =                                     

MN
v

1

WML ( | ATT)
t

t
=
∑ = 

     M(N-1)N/2 +N(M-1)M/2+(M-1)N-1=59, M(N-1)N/2+N(M-1)M/2+(N-1)(M-1)M=84               

 

The WML of locations under contingent search can be broken into two separate 

components- the locations of values that need to be stored in memory, and the locations 

of the attributes that have already been searched.  The location of values WML was 

shown in the uncontingent search analysis, and is reproduced here for completeness.  The 

location of searched attributes WML is specific to the contingent analysis, and is identical 

for both ALT and ATT search sequences, due to their inherent symmetry in this 

component of the memory task. 
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General result: 

Proposition CL: ALT is the unique minimum aggregate lWML  search sequence for M, N 

≥ 2 (not proven). 

 

This result is weaker than UL because it is no longer necessarily the case that 

ALT is the unique undominated lWML  sequence.  One way of seeing this is that ALT and 

ATT can each dominate each other over certain subsequences of search for l2WML - the 

component of lWML  for locations already searched.  However, it is clearly true that the 

l2WML  required for ALT and ATT (and a restricted set of combinations of ALT and 

ATT) are unique l2WML -undominated, if one has freedom to rearrange t’s.  This is why 

Proposition CL holds straightforwardly.   

In the appendix I also show that the difference in maximum lWML  between the 

ATT and ALT search sequences increases linearly in M- the number of alternatives, and 

the difference in aggregate lWML  between ATT and ALT increases linearly in N and 

quadratically in M. 

Notice that for contingent search, although ATT is a high WML search sequence, 

it is no longer weakly TWML dominated by all search sequences.  This is because in 

contingent search, ATT yields a minimum aggregate l2WML  (WML of searched 

attributes component), while it remains the maximum l1WML  (WML of the locations of 

value sums) sequence. 
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      Total WML(
v lWML WML+ ): 

0 2 3 4 

2 5 6 7 

4 6 7 8 

5 7 8 9 

0 8 9 10 

2 9 10 11 

5 10 11 10 

8 11 12 9 

      Figure 3.6.1: ALT                                               Figure 3.6.2: ATT 

    v

{t}
 max{WML ( | ALT)}= t N+M+1= 9        v

{t}
 max{WML ( | ATT)}= t 3M+N-4 = 12 

    
MN

v

1

WML ( | ALT)
t

t
=
∑ =  M(N-1)N/2 +                  

MN
v

1

WML ( | ATT)
t

t
=
∑ = M(N-1)N/2 +

      N(M-1)M/2+3MN-2N-M-1 = 83                       N(M-1)M/2+2M²(N-1)+M(2-N)= 135 
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      I now present the first main result for contingent search. 

 

General result: 

Proposition 1CT: ALT is the unique minimum aggregate TWML  search sequence for 

M,N ≥ 2. 

 

In the appendix I also show that the difference in maximum TWML  between the 

ATT and ALT search sequences increases linearly in M- the number of alternatives- with 

a slope of two, and the difference in aggregate TWML  between ATT and ALT increases 

linearly in N and quadratically in M, twice as fast as for vWML  or lWML  alone. 

One of the puzzling regularities in GL’s subjects’ search behavior is that in search 

transitions from one attribute to the next, the ratio of within alternative transitions to 

within attribute transitions is 13:1, whereas the ratio is roughly 1:1 in Payne et all’s 

(1988) isomorphic, but dimensionally smaller (four alternatives by four attributes) design.  

By showing that ALT is the unique minimum TWML  search sequence, whose TWML  

grows much slower than ATT’s as the dimensions of the information matrix increase, I 

provide a structural explanation for subjects’ tendency to systematically shift towards 

ALT search in larger information matrices, which is also generally consistent with the 

fact that roughly 92% of GL subjects’ search behavior is ALT.
18

 

My first result also provides an explanation for one of the previously unexplained 

main systematic deviations from optimality observed in GL’s subjects’ behavior 

(Sanjurjo, 2008); on 39% of all search actions subjects search conditionally too deeply 

within an alternative.  This violation is part of subjects’ “one time through” approach in 

                                                 
18

 We do not yet know exactly what optimal search looks like, but it almost surely looks something like 

ALT, but with lots of jumping back and forth between alternatives, so I do not mean to imply that the high 

frequency of ALT search in GL’s data is solely due to WML considerations. 
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which they over-search alternatives on the first pass through, then never return to search 

them further, rather than performing the WML-intensive exercise of switching back and 

forth between partially searched alternatives.  

It is important to mention that ALT’s TWML superiority should be interpreted 

slightly differently for the uncontingent and contingent conditions.  In uncontingent 

search the searcher’s ALT sequence can be thought of as deterministically chosen ex-

ante, as in classic search.  Contingent search, on the other hand, will very rarely lead to a 

pure ALT sequence.  Thus, deviating from ALT increases the TWML  under both 

uncontingent and contingent search, but in uncontingent search the searcher can choose 

ex-ante not to deviate from ALT, whereas contingent searchers have no choice but to 

deviate from ALT. 

My second result explicitly compares the TWML ’s of uncontingent and 

contingent search, holding the search sequence constant.  The result follows directly from 

my benchmark definition of total WML. 

 

Proposition 2UC: For any given search sequence, uncontingent search TWML  

dominates contingent search. 

The proof is immediate and obvious when one considers that contingent search is 

identical to uncontingent search, but with the added burden of remembering where one 

has searched.  In Section III, under an enriched model of total WML, I show that while a 

version of the first result still holds the second result need not. 

 

III. The WML benefits of systematic search 
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In this section I first motivate why it is important to enrich the benchmark model 

of WML from Section II in order to more fully reflect the WML benefits of  

systematicity.  Under this enriched model, that only affects the model of WML for 

uncontingent search, I demonstrate that a refined version of my first result still holds; the 

unique TWML  undominated uncontingent search sequence is a refined (maximally 

systematic) version of ALT.  I will then show how this result provides a structural 

explanation for both of GL’s subjects’ previously unexplained main deviations from 

optimality (Sanjurjo 2008), while validating the general (and obvious) intuition that more 

systematic uncontingent search sequences require less WML to execute correctly. 

Under Section II’s benchmark model of total WML ( TWML = vWML + lWML ) 

lies the latent assumption that uncontingent search sequences are “hard-wired,” thus 

WML-costless to execute.  One implication of this model is that the two search sequences 

in figures 3.7.1 and 3.7.2, respectively, have identical streams of total WML, where the 

numbers in each cell of the matrix here represent the order that cell is searched in: 

       

1 3 4 2 

8 5 7 6 

10 12 11 9 

14 15 13 16 

1 2 3 4 

5 6 7 8 

9 10 11 12 

13 14 15 16 

      Figure 3.7.1: ALT                                               Figure 3.7.2: ALT (refined)                                                                                                                             
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While it appears possible to likely that Figure 3.7.2’s ALT (refined) uncontingent 

sequence is WML-costless to execute correctly, the same can not be said for the 

unrefined ALT search sequence in Figure 3.7.1, which will clearly require WML in the 

form of non-trivial instructions in order to be executed correctly.   

Although the argument can be made that GL subjects’ search behavior looks more 

like ALT (refined) than ALT (96% of within alternative or attribute search transitions are 

adjacent), so it is reasonable to assume that subjects costlessly execute these more 

systematic uncontingent sequences, this way of thinking misses the point.  By 

demonstrating that Figure 3.7.1’s uncontingent ALT sequence requires more WML to 

execute than Figure 3.7.2’s ALT (refined) sequence, I provide a WML-based structural 

explanation for why subjects’ search looks more like ALT (refined) than ALT in the first 

place.
19

  

ALT (refined), from Figure 3.7.2, can be thought of as requiring memory of 

instructions (stated informally) “left-to-right, top-to-bottom” in this order.  Similarly, 

instructions for an analogous ATT (refined) could be “top-to-bottom, left-to-right.”  One 

can argue over exactly how many memory items are required for such a set of 

instructions, however, the approach here will be to first settle on a natural definition of 

USWML (the WML required to correctly execute the uncontingent sequence itself), which 

implies some level of cardinality- consistent across uncontingent search sequences, and 

                                                 
19

 I want to make it clear that this is certainly not the only reason that GL’s subjects almost always make 

adjacent transitions within alternatives or attributes.  A declining variance structure across attribute 

columns, in fact makes adjacent transitions within alternatives, in the direction of the declining variance, 

necessary for optimality.  However, this type of behavioral systematicity is similar in flavor to subjects’ 

adjacency bias in alternative switching, which occurs on 49% of all switches and is sub-optimal.  In 

addition, about 5% of the time subjects transition against the declining variance structure, violating 

optimality, but almost always making adjacent transitions while doing so, thus it may indeed be the case 

that adjacency considerations for the sake of reducing WML rival if not dominate the here-confounded 

benefits of searching optimally. 
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then to focus on the ordinal comparison of USWML  across different search sequences.  I 

demonstrate that together ALT (refined), ATT (refined), and diagonally tilted versions of 

these same sequences are the unique USWML  minimizing search sequences.  Stated 

informally- the more “random” a search sequence looks to an observer, the longer the list 

of instructions necessary to remember it, thus the higher the number of memory items 

required to execute it accurately.  

As just suggested, an uncontingent search sequence can be represented by a set of 

instructions.  The systematicity of an uncontingent sequence can be thought of as the 

degree to which it takes advantage of iterating a small number of unique instructions.  I 

assume that until necessary requirements for the next instruction are met, or in the 

absence of additional instructions, the previous instruction is iterated indefinitely.  An 

uncontingent search sequence that has no systematicity, or iterated instructions, will 

require a unique instruction for the search of each attribute in the entire information 

matrix.  A maximally systematic uncontingent search sequence can be fully 

characterized, for a two dimensional information matrix of any size, by just a starting 

point and two additional instructions. 

In order for an uncontingent search sequence to be non-redundant and exhaustive, 

I assert that it must contain 

1) a starting point 

2) an instruction for each subsequent spatial search transition, until all attributes in all 

alternatives have been searched 
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Additionally, in order to focus the analysis (in an unbiased way), I assume that the 

rule must require no memory of the locations of previous searched attributes, only 

knowledge of the location of the currently searched attribute.   

 

Proposition USWML: ALT (refined), ATT (refined), and diagonal analogues are 

together the unique minimum USWML  uncontingent search sequences for any 

information matrix larger than M=1 & N = 2 (or visa versa).  They are the non-unique 

minimum USWML  uncontingent sequences for all smaller information matrices.
20

 

 

This result has several key implications.  First, it refines the first main result in 

Section II, by acknowledging that more systematic uncontingent search sequences require 

less WML to execute accurately.  It follows immediately from Proposition USWML that 

ALT (refined) is the unique undominated TWML  search sequence.
21

  This result is 

important because it supports the finding that GL’s subjects’ search behavior is highly 

systematic- 96% of within alternative or attribute search transitions are adjacent- thus 

look more like ALT (refined) than ALT. 

Second, this result provides a structural explanation for the two previously 

unexplained main systematic deviations from optimality in GL subjects’ search behavior.  

In 49% of all transitions from one alternative to another subjects make the costly error of 

                                                 
20

 Implicitly, this result shows that for very small (i.e. 1 x 2) information matrices the penalty in 
US

WML  

for following a non-systematic search sequence is zero, but as the dimensions become at least 2 x 2 the 

difference becomes non-zero (WML of 4 items vs. 3), and then this difference continues to grow along with 

the dimensions of the information matrix.  Thus, the use of a systematic uncontingent search sequence 

becomes increasingly important with the size of the information matrix, if one wishes to keep down the 

WML required to implement it. 
21

 Where total WML now includes the WML required to correctly execute the uncontingent sequence, in 

addition to the WML’s of values and locations. 
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switching to an alternative that is less promising (in expectation) than at least one other 

available alternative.  This is particularly puzzling behavior given the presumable ease 

with which compliance to this necessary condition should occur.
22

  That it often does not, 

and that the violations of it are highly systematic, suggests strongly that subjects are 

deliberately adapting their behavior due to some underlying factor.  Indeed, an 

econometric analysis in Sanjurjo (2008) reveals that subjects exhibit a strong adjacency 

bias in their transitions from one alternative to the next.  This bias increases the 

systematicity in the search sequence, and as demonstrated in (the proof of) Proposition 

USWML, thus reduces WML. 

In 39% of all search transitions in GL’s data subjects search conditionally too 

deep within an alternative.  This violation of optimality occurs almost exclusively when 

directly preceded by other search transitions within the same alternative.  In fact, subjects 

almost never return to further search a previously partially searched alternative.  Result 

one shows that the more alternatives that subjects leave simultaneously “open” to further 

search, the higher their WML will be.  Thus, an adaptive strategy sensitive to the 

“openness” of alternatives is one that simply over-searches in the currently searched 

alternative knowing that it will never be returned to; this type of “one time through” 

approach is effective in reducing WML via increasing the systematicity of the 

uncontingent search sequence (in addition to allowing fewer open alternatives). 

Lastly, this result justifies the otherwise disproportionately large prevalence of 

ATT search relative to other possible sequences.  Without considering USWML , ATT is 

weakly dominated by all other search sequences, yet accounts for 6% of the 8% not 

                                                 
22

 In the GL design compliance with this necessary condition for optimality literally translates into 

switching to the unsearched alternative with the largest visible number displayed in front of it. 
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attributed to ALT search.  However, when USWML is included in the model of total 

WML ATT is no longer weakly TWML  dominated by all search sequences, as ATT 

(refined) is actually a minimum USWML  uncontingent search sequence.  Thus ATT 

(refined)’s maximal systematicity is now acknowledged and the refined result is more 

consistent with subjects’ behavior.  This result is therefore also consistent with 98% of all 

search behavior in the GL dataset being either ALT or ATT, and 96% of all search 

transitions being adjacent.  

  In Section II’s analysis, which assumes USWML to be zero for all search 

sequences, my second main result follows immediately: that for any given search 

sequence the uncontingent version WML dominates the contingent version.  Once the 

zero USWML assumption is relaxed, however, the theoretical comparison of total WML 

between uncontingent and contingent search becomes non-trivial.  Holding the WML of 

values and locations constant, whereas the contingent searcher must remember which 

attributes he has searched, the uncontingent searcher must remember the instructions of 

his uncontingent search sequence.  Thus, whether total WML is higher for a contingent or 

uncontingent version of the same sequence reduces to the assumption made about the 

USWML  versus the assumption made about the “chunking” ability of contingent 

searchers.  With minimal chunking ability a searcher will require one unit of WML for 

each attribute searched.  Thus the information display could always be made large 

enough dimensionally that the contingent version of the sequence eventually 

systematically requires more WML than the uncontingent.  Under maximum chunking 

ability a searcher would use one unit of WML for any preceding sequence of attribute 

look ups, thus contingent search could, in theory, WML dominate uncontingent search in 
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this case.  It is beyond the scope of this paper to go any further into this issue, but what is 

clear is that unsophisticated chunkers would clearly be better off with uncontingent 

search, and that the more sophisticated the chunker the relatively better off she will be 

with contingent search.  Relatedly, Chase and Simon (1973) find that, in a range of tasks 

including chess, degree of expertise can be almost exclusively explained by chunking 

ability. 

IV. Conclusion 

A searcher with no cognitive limitations normally does best searching 

contingently, and trades off depth of search within an alternative and breadth of search 

across alternatives optimally.  In my (Sanjurjo, 2008) analysis of Gabaix and Laibson’s 

(2006) multiple attribute/multiple alternative search experiments I found three puzzling 

patterns in subjects behavior; two were main systematic deviations from optimal search, 

and the third was a puzzling scale effect.  Inspired by two unambiguous examples of 

subjects’ working memory limitations in the dataset, as well as the well-documented 

finding (Miller 1956, Newell & Simon 1972) that WML is a fundamental bottleneck in 

decision making, I decided to explore the possibility of explaining both of subjects’ main 

systematic deviations from optimal search, as well as the puzzling scale effect, via the 

single hypothesis that they have limited working memory. 

Through three theoretical results I provide an explanation for all three puzzles.  

My first result demonstrates that ALT, a within alternative transition intensive search 

sequence, is the unique minimum WML search sequence.  Because search behavior in 

GL’s dataset is a combination of both contingent and uncontingent search I perform my 

analysis under both conditions.  For uncontingent search I demonstrate that ALT is the 
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unique undominated WML search sequence.  For contingent search I demonstrate the 

slightly weaker result that ALT is the unique minimum aggregate WML search sequence.  

In addition, I show that the difference between the WML’s required for the ATT (within 

attribute column transition intensive) and ALT search sequences increases rapidly with 

the dimensions of the information display.  Therefore, this result provides an explanation 

for why subjects in the eight alternative by ten attribute GL display perform within 

alternative to within attribute search transitions at a ratio of 13:1, whereas subjects from 

Payne et al. (1988)’s isomorphic four alternative by four attribute display search at a ratio 

of roughly 1:1. 

If the systematic shifting from ATT to ALT search in larger information matrices 

proves to be robust, then this finding has important implications regarding an ability of 

designers to strategically manipulate searchers through matrix size effects.  Tversky and 

Simonson (1993) and Hardie, Johnson, and Fader (1993) discuss loss aversion and 

reference-dependence across alternatives within attributes, in multiple 

alternative/multiple attribute search.  If it is true that increasing the size of an information 

matrix promotes ALT search, then overloaded subjects may get “attached” to the first 

alternative they search.   

My first result also provides an explanation for one of the previously unexplained 

main systematic deviations from optimality observed in GL’s subjects’ behavior 

(Sanjurjo, 2008); on 39% of all search actions subjects search conditionally too deeply 

within an alternative.  This violation is part of subjects’ “one time through” approach in 

which they over-search alternatives on the first pass through, then never return to search 
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them further, rather than performing the WML-intensive exercise of switching back and 

forth between partially searched alternatives.  

My second result follows directly from the characterization of the benchmark 

model of WML used for my first result.  It follows that for any given search sequence 

uncontingent search WML dominates contingent search.  This result demonstrates that to 

whatever extent WML is costly, limited, or increases the probability of decision error, 

there is a non-trivial tradeoff between searching contingently and uncontingently. 

For my third result I enrich my model of WML to more fully capture the presence 

of systematicity in uncontingent search sequences.  I demonstrate the general and highly 

intuitive notion that more systematic search rules require less WML than less systematic 

search rules (ones that look as if they’re generated from a random process).  It follows 

from this result that a “refined” (specific) version of ALT is the unique undominated 

uncontingent search sequence- so a refined version of my first result still holds under this 

enriched model of WML. 

My third result provides a structural explanation for the two main systematic 

deviations from optimal search found in the GL dataset.  Subjects’ costly tendency to 

disproportionately favor adjacent alternatives when transitioning from one alternative to 

another increases the degree of systematicity in their search sequences.  Similarly, “over-

searching” in a particular alternative is part of GL subjects’ “one time through” approach 

that makes search more systematic and thus reduces WML relative to a sequence in 

which the searcher instead switches back and forth between partially searched 
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alternatives.
23

  Further, this result also suggests an explanation for why ATT search is 

more common in GL subjects’ behavior than otherwise lower WML search sequences 

(ATT is weakly WML dominated by all search sequences in the non-enriched model of 

WML)- because the maximum systematicity of the sequence itself is now acknowledged.  

This result is therefore also consistent with 98% of all search behavior in the GL dataset 

being either ALT or ATT, and 96% of all within alternative or attribute search transitions 

being adjacent. 

In computing WML step-by-step through different search sequences, I create a 

diagnostic tool that can be applied to multiple alternative/multiple attribute information 

matrices of any type.  I operationalize a fundamental component of information overload, 

complexity, processing errors, and thus the meta-decision to use heuristic processes, in 

general.  My results apply to the types of information matrices found on information 

aggregating websites for virtually all consumption and investment goods including homes 

and automobiles, health care plans, 401k plans, and even to information tables in 

academic papers. 

Some key questions remain for future research in this area.  One such question is 

why people wish to avoid incurring large WML’s; is it because WML is costly, limited, 

or associated with increases in the probability of decision error?  Relatedly, whether the 

aggregate WML or the maximum WML of a search sequence has a more profound affect 

on decision making remains to be better understood.  Further, throughout my analysis I 

assume optimal discard of no longer needed information from memory.  A failure to 

                                                 
23

 As mentioned, this type of “over-searching” within alternatives is also consistent with the first main 

result, which is based on the intuition that minimum WML search sequences have the fewest possible 

number of alternatives open to further search at any point in the search sequence. 
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discard information optimally would clearly lead to higher WML’s for given search 

sequences, and could even lead to reversals in my first result.  

Possible extensions of this paper include both experimentation and further 

theoretical work.  By forcing groups of subjects to search the same sized information 

matrix by ALT or ATT, respectively, one can learn more about the relationship between 

WML and errors in decision making.  One can also directly manipulate the size of the 

information matrix, the costs of observing attribute values, making the information 

matrix “open” or “closed” in terms of the simultaneous observability of attribute values, 

provide different types of memory aids, present information verbally, written, or 

pictorially, pre-load subjects with other WM demands, and make integration of attribute 

values non-trivial.  Manipulation of these experimental control variables will allow for a 

deeper understanding of what factors stand most in the way of real people from being 

perfect-reasoning optimal searchers and choosers. 

With the characterization of necessary conditions for optimal multiple 

alternative/multiple attribute search in Sanjurjo (2008) it is possible to solve for optimal 

search policies in reasonably sized information matrices, where behavioral models that 

are optimal subject to WM limitations can be tested explicitly. 

It is my hope that by further focusing on the very composition of human bounded 

rationality we can continue to find simple structural approaches that explain existing 

puzzles in human behavior, while also promoting further new insights. 

 

Appendix- Proofs 

The appendix contains proofs of all non-trivial Propositions presented in Sections 

II and III of this paper, along with general formulas for the maximum and aggregate 
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WML of ALT and ATT search sequences (compared).  I begin by defining the sets of 

ALT and ATT search sequences along with the ALT (refined) and ATT (refined) subsets 

of these sets of sequences, which are used in my third result. 

 

Definitions: 

: value of attribute in alternative (row) i and attribute (column) j, where i M and j N.ija ∈ ∈  

 

( | ) :  the search ordering of  under search sequence ,  so {1,2,3,..., MN}.ij ijt a s a s t∈   t can 

be thought of as a “counter” of the sequential steps in a search sequence.  Thus, for each 

well-defined search sequence there is a one-to-one mapping from each unique value of t 

to a particular attribute in a particular alternative. 

 

ALT (refined): ALT is short for “within alternative search” and (refined) refers to 

this being the most obvious and systematic version of within alternative search.  In 

Section III I demonstrated that it is also the ALT (refined) (henceforth RALT ) 

uncontingent sequence that requires the minimum amount of WML to employ.  There are 

four versions of ALT (refined) search.  In one ( RALT 1) search starts in the left-most 

attribute of the top alternative and proceeds according to adjacent left-to right transitions 

until the right-most attribute of the top alternative is searched.  Search then continues on 

the left-most attribute of the 2
nd

 from the top alternative, iterating, until the entire 

information matrix has been searched.  The 4 total variations come from inverting the 

search sequence just described horizontally and/or vertically. 

 

More formally, the four search strategies can be characterized by the unique 

orders in which they visit each attribute in the information matrix: 

1) R( | ALT 1) ( 1)Nijt a i j= − +  

2) R( | ALT 2) (M )Nijt a i j= − +  

3) R( | ALT 3) ( 1)N (N 1)ijt a i j= − + − +  

4) R( | ALT 4) MN 1 (( 1)N + )ijt a i j= + − −  
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These four RALT  search strategies can be represented graphically by: 

 

R

...

...

...

ALT 1

→→ →

↓

→→ →

↓

↓

→→ →

M
                 

R

...

...

...

ALT 2

→→ →

↑

↑

→→ →

↑

→→ →

M

                   

R

...

             

...

             

              

             

...

ALT 3

← ←←

↓

← ←←

↓

↓

← ←←

M
                  

R

...

             

              

             

...

             

...

ALT 4

← ←←

↑

↑

← ←←

↑

← ←←

M

 

 

 

ALT: Like RALT  but now the search sequence within any alternative can be rearranged 

in any order and the order in which each alternative is visited can also be rearranged in 

any order.  Thus there are MN! M! different versions of ALT. 

 

ATT (refined): ATT is short for “within attribute search” and (refined) refers to this being 

the most obvious and systematic version of within attribute search.  In Section II I show 

why it is also the ATT (refined) (henceforth RATT ) uncontingent sequence that requires 

the minimum amount of WML to employ within the class of all ATT sequences.   There 

are four versions of RATT  search.  In one ( RATT 1)  search starts in the left-most 

attribute of the top alternative and proceeds according to adjacent top-to-bottom 

transitions across alternatives until the left-most attribute of the bottom alternative is 

searched.  Search then continues to the 2
nd

 from the left-most attribute in the top 

alternative, iterating, until the entire information matrix has been searched.  The 4 total 

variations come from inverting the search sequence just described horizontally and/or 

vertically. 

 

More formally, the four search strategies can be defined as: 

1) R( | ATT 1) ( 1)Mijt a j i= − +  

2) R( | ATT 2) ( 1)M (M 1)ijt a j i= − + − +  
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3) R( | ATT 3) (N )Mijt a j i= − +  

4) R( | ATT 4) MN 1 (( 1)M + ijt a j i= + − −  

 

These four RATT search strategies can be represented graphically by: 

R

...

            

                  

            

ATT 1

↓→↓→ →↓

↓ ↓ ↓

↓ ↓ ↓

M M M              

R

            

                  

            

...

ATT 2

↑ ↑ ↑

↑ ↑ ↑

↑→↑→ →↑

M M M

             

R

...

            

                  

            

ATT 3

↓← ←↓←↓

↓ ↓ ↓

↓ ↓ ↓

M M M              

R

            

            

                  

...

ATT 4

↑ ↑ ↑

↑ ↑ ↑

↑← ←↑←↑

M M M  

 

ATT: Like RATT  but now the search sequence within any attribute (column) can 

be rearranged in any order and the order in which each attribute (column) is visited can 

also be rearranged in any order.  This means there are NM! N!different versions of ATT. 

 

Result one: 

WML of values (Uncontingent) 

Proposition UV: ALT is the unique undominated vWML  search sequence for M,N ≥ 2. 

 

Proof: An alternative can said to be ‘open’ if at least one attribute in it has been searched, 

but not all attributes in it have been searched.  An alternative can be said to be ‘closed’ if 

all attributes in it have been searched. 

vWML = # of open alternatives + 1{if at least one alternative is closed} (by 

optimal disposal of unneeded information).  It is possible to generate a set of search 

sequences such that, for each sequence, at most one alternative is ever open at a time.  

This property defines the set of sequences collectively referred to as the ALT(relaxed) 

sequence which yields a vWML -stream of 011…1|122….2|122…2|…|122…2 where the 

first digit represents the vWML  required for the first search in the ALT sequence, the 

second for the second, and so on.  Vertical bars separate sequential groups of N searches. 

Call a sequence that deviates from ALT ~ALT.  ~ALT’s first deviation from ALT 

must occur in one of the M sub-sequences of N searches.  Once the first deviation occurs 

there must necessarily be two alternatives open simultaneously for at least one search.  If 
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this occurs at 0t , in the first N searches, then vWML ( 0t +1|~ALT; M,N) = 2 > 1 = 

vWML ( 0t +1|ALT; M,N).  If it occurs in any of the next M-1 groups of N searches then 

vWML ( 0t +1|~ALT; M,N) = 3 > 2 = vWML ( 0t +1|ALT), thus it is impossible for any 

~ALT sequence to be vWML -preferred to ALT. 

Further, suppose that ALT is not vWML -preferred to all other sequences.  Then it 

must be the case that some ~ALT is vWML -preferred to ALT for some search sub-

sequence.  This can clearly not occur before ~ALT deviates from ALT.  It also cannot 

occur between the 0t where the first deviation from ALT occurs, and 0t +1.  Thus it must 

occur for some sub-sequence of 0t +2 to MN.  But if at least two alternatives remain open 

under ~ALT then vWML  is at least 2, which is the maximum vWML  of ALT.  If only 

one alternative, or zero, is open, then ~ALT is now searching identically as ALT.  Thus, 

in either case vWML (t|~ALT; M,N) ≥ vWML (t|ALT; M,N) for t ε { 0t + 2,…, MN} . �  

 

Proposition UVATT: ATT is weakly vWML  dominated by all search sequences for M,N 

≥ 2. 

 

Proof: The vWML  of ATT is 0123…M-1|MM…M|…|MM…M|MM(M-1)(M-2)…2.   

The vWML  for any t in the search sequence is determined by the unique number of 

alternatives that have been searched at least once but not exhaustively, plus one that has 

been searched exhaustively (the one with the highest cumulative value), if there is at least 

one.  Thus it is impossible that the vWML  be larger than ATT’s for any of the first M 

searches, the second M searches, and so on until the last M searches.  With one attribute 

left the vWML  must be 2.  With two left it can be at most 3, with three left it can be at 

most 4, and so on.  These are precisely the vWML (t|ATT; M,N) for the last M searches (t 

ε {(N-1)M, (N-1)M +1, …, NM}) of the ATT sequence. �  
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It is easy to establish non-uniqueness by observing that any sequence with each of 

the first M searches in a different alternative, and each of the last M searches in a 

different alternative will yield an identical string of vWML ’s as ATT. 

 

It follows trivially from Proposition UV that ALT vWML  dominates ATT (In 

fact, in the appendix I also prove that ATT is weakly vWML  dominated by all search 

sequences).  

It then follows directly from this relationship that  

v v

{t} {t}
max{WML ( | ATT; M,N)} >  max{WML ( | ALT; M,N)}t t  and that  

MN MN
v v

1 1

WML ( | ATT; M,N) WML ( | ALT; M,N)
t t

t t
= =

>∑ ∑  for M,N ≥ 2. 

 

For any M, N ≥ 2 v

{t}
 max{WML ( | ALT; M,N)}= 2t , whereas           

v

{t}
 max{WML ( | ATT; M,N)}= Mt , so clearly the difference in maximum vWML  between 

the ATT and ALT search sequences increases linearly in M- the number of alternatives.   

 

With a bit of algebra it is easy to show that because 

MN
v 2

1

WML ( | ATT; M,N) M (N-1) + (M-1)
t

t
=

=∑  

and 
MN

v

1

WML ( | ALT; M,N) 2MN-N-M
t

t
=

=∑ , then  

MN MN
v v 2

1 1

WML ( | ATT; M,N) WML ( | ALT; M,N) (M-1) (N-1)
t t

t t
= =

− =∑ ∑ .  Thus, the 

difference in aggregate vWML  between ATT and ALT increases linearly in N and 

quadratically in M. 

 

WML of Locations (Uncontingent): 

Proposition UL: ALT is the unique undominated lWML  search sequence for M,N ≥ 2. 
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Proof: lWML = # of open alternatives + 1{if at least one alternative is closed} + 1{if at 

least two alternatives are closed and none are open} – 1.  (by optimal disposal of 

unnecessary information).  It is possible to generate a set of search sequences such that, 

for each sequence, at most one alternative is ever open at a time.  This property defines 

the set of sequences collectively referred to as the ALT sequence which yields a lWML -

stream of 000…0|011….1|111…1|…|111…1 where the first digit represents the lWML  

required for the first search in the ALT sequence, the second for the second, and so on.  

Vertical bars separate sequential groups of N searches. 

Call a sequence that deviates from ALT ~ALT.  ~ALT’s first deviation from ALT 

must occur in one of the M sub-sequences of N searches.  Once the first deviation occurs 

there must necessarily be two alternatives open simultaneously for at least one search.  If 

this occurs at 0t , in the first N searches then lWML  ( 0t +1|~ALT; M,N) = 1 > 0 = lWML  

( 0t +1|ALT; M,N).  If it occurs in any of the next M-1 groups of N searches then lWML  

( 0t +1|~ALT; M,N) = 2 > 1 = lWML  ( 0t +1|ALT; M,N), thus it is impossible for any 

~ALT sequence to be lWML -preferred to ALT. 

Further, suppose that ALT is not lWML -preferred to all other sequences.  Then it 

must be the case that some ~ALT is lWML -preferred to ALT for some search sub-

sequence.  This can clearly not occur before ~ALT deviates from ALT.  It also cannot 

occur between the 0t where the first deviation from ALT occurs, and 0t +1.  Thus it must 

occur for some sub-sequence of 0t +2 to MN.  But if at least two alternatives remain open 

under ~ALT then lWML  is at least 1, which is the maximum lWML  of ALT.  If only one 

alternative, or zero, is open, then ~ALT is now searching identically as ALT.  Thus, in 

either case lWML  (t|~ALT; M,N) ≥ lWML  (t|ALT; M,N) for t ε { 0t + 2,…, MN} . �  

  

Proposition ULATT: ATT is weakly lWML  dominated by all search sequences for M,N 

≥ 2. 

 

Proof: The lWML  of ATT locations is 0012…M-1|(M-1)(M-1)…(M-1)|…|(M-1)(M-

1)…(M-1)|(M-1)(M-1)(M-2)(M-3)…1.  The location lWML  at any point in the search 
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sequence is determined by the unique number of alternatives that have been searched at 

least once but not exhaustively, plus one that has been searched exhaustively (the one 

with the highest cumulative value), if there is at least one, plus one if at least two 

alternatives are closed and none are open, minus one (with an uncontingent sequence, m 

values can be matched to m alternatives with only m-1 explicit mappings made).  Thus it 

is impossible that the lWML  can be larger than ATT’s for any of the first M searches, the 

second M searches, and so on until the last M searches.  With one attribute left the 

lWML  must be 1.  With two left it can be at most 2, with three left it can be at most 3, 

and so on.  These are precisely the lWML  (t|ATT; M,N) for the last M searches (t ε {(N-

1)M, (N-1)M +1, …, NM}) of the ATT sequence. �  

 

It is easy to establish non-uniqueness by observing that any sequence with each of 

the first M searches in a different alternative, and each of the last M searches in a 

different alternative will yield an identical string of lWML ’s as ATT. 

 

It follows directly from Proposition UL that ALT lWML  dominates ATT (In the 

appendix I also prove that ATT is weakly lWML  dominated by all search sequences).  

Subsequently, 

l l

{t} {t}
max{WML ( | ATT; M,N)} >  max{WML ( | ALT; M,N)}t t  and  

MN MN
l l

1 1

WML ( | ATT; M,N) WML ( | ALT; M,N)
t t

t t
= =

>∑ ∑  for M,N ≥ 2.  

 

For any M, N ≥ 2, l

{t}
 max{WML ( | ALT; M,N)}= 1t , whereas           

l

{t}
 max{WML ( | ATT; M,N)}= M-1t , so clearly the difference in maximum lWML  between     

  the ATT and ALT search sequences increases linearly in M- the number of alternatives. 

 

With a bit of algebra it is easy to show that because 

MN
l

1

WML ( | ATT; M,N) (N-1)(M-1)M
t

t
=

=∑  
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and 
MN

l

1

WML ( | ALT; M,N) (M-1)N-1
t

t
=

=∑ , then 

MN MN
l l 2

1 1

WML ( | ATT; M,N) WML ( | ALT; M,N) (M-1) (N-1)-M+2
t t

t t
= =

− =∑ ∑ .  This result 

shows that the difference in aggregate lWML  between ATT and ALT increases linearly 

in N and quadratically in M. 

 

Total WML (Uncontingent): 

Proposition 1UT: ALT is the unique undominated TWML  search sequence for M,N ≥ 2. 

 

It follows directly from Propositions UV and UL that ALT is the unique 

undominated TWML  search sequence. 

 

        It follows directly from Propositions UV and UL that ALT is the unique 

undominated TWML  search sequence, and (less importantly) that ATT is weakly 

TWML dominated by all other search sequences, so clearly, ALT TWML dominates ATT. 

 

For any M, N ≥ 2 l

{t}
 max{WML ( | ALT; M,N)}= 3t , whereas       

l

{t}
 max{WML ( | ATT; M,N)}= 2M-1t , so clearly the difference in maximum TWML  

between the ATT and ALT search sequences increases linearly in M- the number of 

alternatives, with a slope of two.   

 

With a bit of algebra it is easy to show that  

MN MN
T T 2

1 1

WML ( | ATT; M,N) WML ( | ALT; M,N) 2(M-1) (N-1)-M+2
t t

t t
= =

− =∑ ∑ .  This result 

shows that the difference in aggregate TWML  between ATT and ALT increases linearly 

in N and quadratically in M, twice as fast as for vWML  or lWML  alone. 

 

WML of Values (Contingent): 
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Proposition CV: ALT is the unique undominated vWML  search sequence for M, N ≥ 2. 

 

Proof:  The proof is identical to that in Proposition UV because the number of values to 

be stored only depends on the sequence of search, not on whether it was anticipated or 

not. 

 

Proposition CVATT: ATT is weakly vWML  dominated by all search sequences for M,N 

≥ 2. 

 

Proof:  The proof is identical to that in Proposition UVATT because the number of values 

to be stored only depends on the sequence of search, not on whether it was anticipated or 

not. 

Analogous to the analysis of uncontingent search sequences, it follows trivially 

from Proposition CV that ALT vWML dominates ATT.  In the appendix I also prove that 

ATT is in fact weakly vWML dominated by all search sequences  

Subsequently, 

v v

{t} {t}
max{WML ( | ATT; M,N)} >  max{WML ( | ALT; M,N)}t t  and   

MN MN
v v

1 1

WML ( | ATT; M,N) WML ( | ALT; M,N)
t t

t t
= =

>∑ ∑  for M, N ≥ 2.  

 

For any M, N ≥ 2 v

{t}
 max{WML ( | ALT ; M,N)}= 2t , whereas           

v

{t}
 max{WML ( | ATT ; M,N)}= Mt , so clearly the difference in vWML , between the ATT 

and ALT search sequences increases linearly in M- the number of alternatives. 

 

With a bit of algebra it is easy to show that 

MN
v 2

R

1

WML ( | ATT ; M,N) M (N-1) + (M-1)
t

t
=

=∑  

and that 
MN

v

R

1

WML ( | ALT ; M,N) 2MN - N - M
t

t
=

=∑ , so that  
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MN MN
v v 2

R R

1 1

WML ( | ATT ; M,N) WML ( | ALT ; M,N) (M-1) (N-1)
t t

t t
= =

− =∑ ∑ .  This result shows 

that the difference in aggregate vWML  between RATT  and RALT  increases linearly in N 

and quadratically in M. 

Locations WML (Contingent): 

Proposition CL: ALT is the unique minimum aggregate lWML  search sequence for M, N 

≥ 2 (not proven). 

  

Proof:  



 

      

  129                                                                                                                                           

 

Thus, it follows from Proposition CL that 

MN MN
l l

1 1

WML ( | ATT ; M,N) WML ( | ALT ; M,N)
t t

t t
= =

>∑ ∑ .  It is also clearly true that 

l l

{t} {t}
max{WML ( | ATT ; M,N)} >  max{WML ( | ALT ; M,N)}t t  for M, N ≥ 2. 

 

Notice that for contingent search, although ATT is a high WML search sequence, 

it is no longer weakly TWML dominated by all search sequences.  This is because in 

contingent search, ATT yields a minimum aggregate l2WML  (WML of searched 

attributes component), while it remains the maximum l1WML  (WML of the locations of 

value sums) sequence. 

 

For any M, N ≥ 2 l

{t}
 max{WML ( | ALT; M,N)}= N+M-1t , whereas           

For any M, N ≥ 3 l

{t}
 max{WML ( | ATT; M,N)}= N+2M-4t , so clearly the difference in 

lWML  between the ATT and ALT search sequences increases linearly in M- the number 

of alternatives, when M, N ≥ 3. 

 

For N = 2, 2 ≤ M ≤ 4  and for M = 2, N ≥ 2 l

{t}
 max{WML ( | ATT; M,N)}= N+M-1t   

For N = 2, M ≥ 5                                          l

{t}
 max{WML ( | ATT; M,N)}= 2M-3t  

In all cases the aggregate lWML  of ATT is equal to or larger than the lWML  of ALT. 

With a bit of algebra it is easy to show that 

MN
l

1

(N-1)N (M-1)M
WML ( | ATT; M,N) M + N + (N-1)(M-1)M

2 2t

t
=

   
=    
   

∑  and that 

MN
l

1

(N-1)N (M-1)M
WML ( | ALT; M,N) M + N (M - 1)N - 1

2 2t

t
=

   
= +   
   

∑ , so that  

MN MN
l l 2

1 1

WML ( | ATT; M,N) WML ( | ALT; M,N) (M-1) (N-1) - M + 2
t t

t t
= =

− =∑ ∑ , as in the 

uncontingent search case.  This result shows that the difference in aggregate lWML  

between ATT and ALT increases linearly in N and quadratically in M. 
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Total WML (Contingent): 

Proposition 1CT: ALT is the unique minimum aggregate TWML  search sequence for 

M,N ≥ 2. 

 

It follows directly from Propositions UV and CL that ALT is the minimum 

aggregate TWML  search sequence. 

 

For any M, N ≥ 2 l

{t}
 max{WML ( | ALT; M,N)}= N+M+1t , whereas          

For any M, N ≥ 3 l

{t}
 max{WML ( | ATT; M,N)}= 3M+N-4t , so clearly the difference in 

lWML  between the ATT and ALT search sequences increases linearly in M (by a factor 

of two)- the number of alternatives, when M, N > 2. 

 

For M = 2, N ≥ 2        l

{t}
 max{WML ( | ATT; M,N)}= N+2M-1t   

For N = 2, 2 ≤ M ≤ 4  l

{t}
 max{WML ( | ATT; M,N)}= 2M+1t  

For N = 2, M ≥ 5        l

{t}
 max{WML ( | ATT; M,N)}= 3M-4t  

In all cases the aggregate TWML  of ATT is equal to or larger than the TWML  of ALT. 

 

With a bit of algebra it is easy to show that  

MN MN
T T 2

1 1

WML ( | ATT; M,N) WML ( | ALT; M,N) 2(M-1) (N-1) - M + 2
t t

t t
= =

− =∑ ∑ , just as in 

the uncontingent search case.  This result shows that the difference in aggregate TWML  

between ATT and ALT increases linearly in N and quadratically in M, twice as fast as 

vWML  or lWML  alone. 

 

Result three:  
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Proposition USWML: ALT (refined), ATT (refined), and diagonal analogues are 

together the unique minimum USWML  uncontingent search sequences for any 

information matrix larger than M=1 & N = 2 (or visa versa).  They are the non-unique 

minimum USWML  uncontingent sequences for all smaller information matrices.
24

 

 

Proof: First consider the cases where M, N ≥ 3.  W.l.o.g. I focus on ALT1(strict).  The 

uncontingent search sequence ALT(strict) can be fully represented by the search rule: 

1) search the left-most attribute of the spatially highest unsearched alternative 

2) proceed by transitioning one attribute to the right (1,0)
→

  

3) when there are no more attributes to the right, repeat step 1 

 

Suppose the starting point were not the left-most or right-most attribute in an 

alternative.  Then at least three directions would be necessary just to search all of the 

attributes in that particular alternative.  At least one additional direction would then be 

necessary to search the rest of the alternatives. 

 

By symmetry, the same argument shows that a minimum USWML  search 

sequence must not start in an alternative that is not the spatially highest or lowest.  Thus, 

search must start in a corner of the information matrix for a minimum USWML  search 

sequence.   

 

Now suppose that search transitions are systematic but not adjacent.  Then at least 

three directions (or equivalently one direction with two contingencies) are necessary in 

order to search all of the attributes in the first searched alternative (attribute, or diagonal).  

At least one direction would then be necessary to search the rest of the alternatives.   

 

                                                 
24

 Implicitly, this result shows that for very small (i.e. 1 x 2) information matrices the penalty in 
CWML  

for following a non-systematic search sequence is zero, but as the dimensions become at least 2 x 2 the 

difference becomes non-zero (WM of 4 items vs. 3), and then this difference continues to grow along with 

the dimensions of the information matrix.  Thus, the use of a systematic uncontingent search sequence 

becomes increasingly important with the size of the information matrix, if one wishes to keep down the 

WML required to implement it. 
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Suppose that a search transition is not vertical, horizontal, or diagonal.  Then the 

search rule requires at least two more directions in order to search the rest of the 

attributes in the first alternative searched. 

 

Thus any search sequence other than ALT(strict), ATT(Strict), or diagonal 

equivalents, requires strictly more directions.  

 

Now consider the cases where M or N < 3.   

If M = N = 1, then all uncontingent search sequences require just one direction. 

If M = 1 and N = 2 (or visa versa) then ALT and non-systematic require the same number 

of directions.  

If M = 1 and N > 2 (or visa versa) then ALT requires the unique minimum 

number of directions: two, using an argument similar to that used in the above proof. 

If M = N = 2 ALT or ATT or diagonal require a starting point and two directions 

whereas any other uncontingent search sequence requires a starting point and at least 

three directions.  The same is true for M = 2 and N > 2 (or visa versa). �  
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