
UCLA
UCLA Electronic Theses and Dissertations

Title
Plasma Structure and Behavior of Miniature Ring-Cusp Discharges

Permalink
https://escholarship.org/uc/item/26n6g056

Author
Mao, Hann-Shin

Publication Date
2013
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/26n6g056
https://escholarship.org
http://www.cdlib.org/


University of California

Los Angeles

Plasma Structure and Behavior of Miniature

Ring-Cusp Discharges

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Aerospace Engineering

by

Hann-Shin Mao

2013



c© Copyright by

Hann-Shin Mao

2013



Abstract of the Dissertation

Plasma Structure and Behavior of Miniature

Ring-Cusp Discharges

by

Hann-Shin Mao

Doctor of Philosophy in Aerospace Engineering

University of California, Los Angeles, 2013

Professor Richard E. Wirz, Chair

Miniature ring-cusp ion thrusters provide a unique blend of high efficiencies and

millinewton level thrust for future spacecraft. These thrusters are attractive

as a primary propulsion for small satellites that require a high ∆V , and as a

secondary propulsion for larger spacecraft that require precision formation fly-

ing, disturbance rejection, or attitude control. To ensure desirable performance

throughout the life of such missions, an advancement in the understanding of the

plasma structure and behavior of miniature ring-cusp discharges is required.

A research model was fabricated to provide a simplified experimental test bed

for the analysis of the plasma discharge chamber of a miniature ion thruster. The

plasma source allowed for spatially resolved measurements with a Langmuir probe

along a meridian plane. Probe measurements yielded plasma density, electron

temperature, and plasma potential data. The magnetic field strength was varied

along with the discharge current to determine the plasma behavior under various

conditions. The structure of the plasma properties were found to be independent

of the discharge power under the proper scaling. It was concluded that weaker

magnetic fields can improve the overall performance for ion thruster operation.
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To further analyze the experimental measurements, a framework was devel-

oped based on the magnetic field. A flux aligned coordinate system was developed

to decouple the perpendicular and parallel plasma motion with respect to the

magnetic field. This was done using the stream function and magnetic scalar po-

tential. Magnetic formulae provided intuition on the field profiles dependence on

magnet dimensions. The flux aligned coordinate system showed that the plasma

was isopycnic along constant stream function values. This was used to develop an

empirical relation suitable for estimating the spatial behavior and to determine

the plasma volume and loss areas.

The plasma geometry estimates were applied to a control volume analysis on

the plasma electrons. Balancing the plasma electron generation and loss yielded

nominal values used in miniature ion thrusters. This result was ultimately used

to develop a design tool for miniature discharges. This tool was used to perform

a parametric evaluation on the magnet field configuration of the research mode.

By understanding the plasma behavior, significant improvements over the base-

line configuration were obtained with relatively minor changes, thus revealing

the importance of plasma structure on the performance of miniature ring-cusp

discharges.
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CHAPTER 1

Introduction

Miniature ion thrusters are an attractive and enabling technology for a variety

of space missions. Conventionally sized ion thrusters, typically 25-30 cm in di-

ameter are highly efficient. Miniaturization to the 3 cm scale requires careful

consideration of the plasma structure and behavior of the ring-cusp discharge to

maintain desirable performance. To motivate this work, this chapter briefly intro-

duces electric propulsion an then provides a discussion of miniature ion thrusters

and relevant applications. The chapter is concluded with an overview of the

dissertation.

1.1 Electric Propulsion

Electric propulsion, or EP, is an attractive option for many space missions due to

its ability to provide high specific impulse and low disturbance, precision thrust.

Thrust is given by the product of the mass flow rate and the exhaust velocity of

the propellant as seen in Equation (1.1). Most electric propulsion schemes achieve

efficient thrust through high exit velocities, ve, and relatively low propellant mass

flow rates, ṁp, which yields a higher momentum change per unit of propellant

over chemical propulsion.

T = ṁpve (1.1)
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Unlike chemical propulsion systems which are limited by the energy density of

the propellant, electric propulsion systems can create the kinetic energy of the

propellant through external power sources such as solar arrays or nuclear reac-

tors. High powered EP devices, such as ion thrusters, date back to the 1960’s,

however, they were not widely used until the past couple of decades due to the

lack of technology in power storage and processing[4]. Among the many electric

propulsion concepts, ion thrusters have distinguished themselves by achieving the

highest efficiencies and specific impulses, Isp, of all the mainstream EP devices

(See Table 1.1). Specific impulse measures the change in momentum per unit of

propellant weight as shown in Equation (1.2).

Isp =
T = dp

dt

g dmp
dt

≈ ∆p

g∆mp

=
|ve|
g

(1.2)

The high Isp produced by ion thrusters make them ideal for long duration

missions and deep space travel to the outer regions of the solar system. The

high specific impulse, however, comes at the cost of lowered thrust. This can be

shown by combining Equations (1.1) & (1.2) to form Equation (1.3). As specific

impulse is increased, thrust must decrease for a given available power; therefore,

ion thrusters are most attractive for long duration missions.

P = g
TIsp

2
(1.3)

1.2 Miniature Electron Bombardment Ion Thrusters

Ion thrusters bring a number of benefits to spacecraft over other propulsion sys-

tems. The use of the noble gas xenon as a propellant in modern ion thrusters
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Table 1.1: Typical operating parameters for thrusters with flight heritage[1].

Thruster
Thrust

(N)

Specific
Impulse

(s)

Input
Power
(kW)

Efficiency
Range (%)

Propellant

Cold gas 0.05-200 50-75 – – Various

Chemical
(mono-
prop)

0.05-0.5 150-250 – –
N2H4

H2O2

Chemical
(biprop)

5-5×106 300-450 – – Various

Resistojet 0.005-0.5 300 0.5-1 65-90
N2H4

monoprop

Arcjet 0.05-5 500-600 0.9-2.2 25-45
N2H4

monoprop

Ion
thruster

< 0.5 2500-3600 0.4-4.3 40-80 Xenon

Hall
thruster

< 3 1500-2000 1.5-4.5 35-60 Xenon

PPT < 0.005 850-1200 < 0.2 7-30 Teflon
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make them favorable alternatives to propulsion technologies with toxic propel-

lants, such as hydrazine, which can be harmful to handle and degrade sensitive

satellite equipment such as telescope lenses. The high propellant efficiencies and

specific impulses reduce the wet mass of the spacecraft and extend the mission ca-

pabilities. Finally, ion thrusters provide smooth amplitude modulated thrust that

can be precisely controlled by changing the electrostatic potential of the thruster

bias. This unique blend of capabilities make miniature ion thrusters attractive

to a wide range of missions. Miniaturization of ion thrusters to sizes below 5 cm

brings these benefits to spacecraft requiring mN level thrust and a propulsion

system with a smaller footprint. In 2001, Wirz demonstrated successful minia-

turization of a noble gas DC ion thruster at the 3 cm scale[5]. The Miniature

Xenon Ion thruster, or MiXI thruster, has demonstrated a thrust range from

0.03 − 1.54 mN[6], and has a projected maximum thrust of 3 mN[7]. The com-

pact size makes MiXI a versatile propulsion device for a variety of applications.

A single thruster could be used for a smaller spacecraft, or several thrusters could

be used for larger thruster applications or precision orbit and attitude control[6].

This unique blend of properties represent a mission enabling technology, a few

of which are highlighted in the following sections. Ion thruster operation and

challenges associated with down-scaling are covered in Chapter 2.

Several other miniature propulsion technologies are under development[8].

Among the top prospects are miniature microwave ion thrusters and field emis-

sion electric propulsion (FEEP). The miniature microwave ion thrusters have

a higher energy cost per thrust producing ion, but remove the hollow cathode.

FEEP thrusters use strong electromagnetic fields to emit ions directly from liq-

uid propellant, typically indium or cesium. With an Isp that can be in the tens

of thousands of seconds, these thrusters are promising; however, the propellant

distribution for an array of emitters is currently under development[8].
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1.2.1 History of Miniature Electron Bombardment Ion Thrusters

In 1962, Reader performed experiments to determine the effects of scaling on

electron bombardment ion thrusters[10]. Mercury propellant was used in an di-

vergent axial magnetic field, similar to what is now known as a Kaufman thruster.

Three sizes were tested: 5 cm, 10 cm, and 20 cm. The magnetic field strength

was scaled such that the product of the field strength and the diameter were held

constant at roughly 200 G · cm. The study showed a disproportionate drop in

propellant utilization efficiency, ηud
1, and a large increase in discharge loss, εB

2,

the two main parameters used to quantify ion thruster performance are given in

Equation (1.4) & (1.5). Reader ultimately concluded that operating at higher

densities would improve the performance of smaller thrusters.

ηm ≡
IBmi

eṁd

(1.4)

εB ≡
IDVD
IB

(1.5)

Development continued with cesium thrusters in the late 1960’s. Many, in-

cluding Sohl et. al, achieved successful operation of 2.5 cm thrusters[11]. Consid-

erable effort was made by Lewis Research Center in the early 1970’s to develop

and test a 5 cm mercury thruster[12, 13, 14]. Eventually, mercury and cesium fell

out of popularity for ion thrusters since the fuel poses hazards to both technicians

handling the substance as well as the satellites that were to use the thrusters[15].

Xenon is used as an alternative due to its mass and benign nature. Unfortunately,

1Propellant utilization efficiency given in Equation (1.4), is a measure of the percentage of
neutral gas that is ionized and turned into thrust, or beam current,IB .

2Discharge loss given by Equation (1.5),is interpreted as the power consumed in the discharge
chamber, IDVD, to generate a single beam ion.
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Table 1.2: First ionization energies of propellants.

Propellant First Ionization Energy ( eV
ion

)

Mercury 10.44

Cesium 3.89

Argon 15.77

Xenon 12.13

xenon ionization energy is much higher than cesium, as seen in Table 1.2, making

it more difficult to create a plasma in a small discharge chamber.

Within the past two decades, a resurgence in miniature ion thruster devel-

opment has occurred. The rebirth occurred to fill a need for microspacecraft

propulsion as well as low disturbance missions such as interferometery[16]. Re-

search conducted by the Massachusetts Institute of Technology had numerically

determined that sub-mm diameter discharges would be highly inefficient; there-

fore, experimental design began with “mesoscale” discharges on the cm scale[17].

Wirz successfully operated a 3 cm xenon ion thruster, MiXI, demonstrating effi-

ciencies on the order of conventionally-sized thruster[5]. This was accomplished

using a 3 ring-cusp configuration. Along with developing functional hardware,

Wirz developed a computational model that showed that ionization was predomi-

nantly achieved by primary electrons and that 50% of the primary electron energy

is likely lost to the wall[18]. In contrast, he found that the larger 30 cm NSTAR

thruster loses almost no primary electrons to the wall. A combination of exper-

imental and computational results showed that the miniature thruster required

that the magnetic field needed to be sufficiently low to avoid discharge impedance

shift instabilities, thus resulting in relatively high primary electron losses. Since

higher fields are generally needed to improve the discharge efficiency, it was con-
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cluded that miniature ring-cusp ion thruster design was a balance between plasma

confinement and discharge stability.

1.2.2 MiXI Application Examples

TPF-Emma

Due to MiXI’s unique blend of capabilities, it was officially identified as the

baseline propulsion system for the Terrestrial Planet Finder Interferometry and

Emma variants (TPF-I/TPF-Emma) shown in Figure 1.1[19]. TPF-Emma is a

precision formation flying mission designed to find extrasolar planets using in-

terferometry. The spacecraft constellation utilizes four reflector spacecraft and

a combiner spacecraft separated anywhere from 20 − 1200 m, and required a

spatial accuracy of ±2.5 cm. To achieve the interferometry, the reflector con-

stellation rotates about the combiner axis, and the rotation precision must be

within 1 arcsec =
(

1
360

)◦
. To meet the propulsion requirements, each spacecraft

would be outfitted with at least 20 MiXI thrusters for a total of 100 thrusters to

provide 6 degree of freedom control and sufficient ∆V for formation rotation and

re-orientation throughout the 10 year life of the mission.

Such a mission is an excellent example of the mission enabling capabilities

of a miniature ion thruster. Beyond providing the critical characteristics of ion

thruster (benign propellant, precision control, high Isp, etc.), the small footprint

and low thrust levels of MiXI were critical to the mission’s feasibility.

CubeSat Propulsion

Recently, the possibilities of using a miniature ion thruster as a the primary

propulsion system for CubeSats has been explored. CubeSats serve a wide range
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Figure 1.1: Terrestrial Planet Finder (TPF), Emma variant, consists of five space-
craft with distances up to 1.2 km between spacecraft and an accuracy
requirement down to 2.5 cm. The spacecraft constellation will utilize 100
MiXI thrusters. Courtesy of NASA/JPL-Caltech.
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Figure 1.2: Design for a MiXI powered 3U CubeSat. Courtesy of Ryan Conversano.

of purposes from university experiments to qualification test beds for commer-

cial products[8], but have yet to be demonstrated with a propulsion systems.

Outfitting a CubeSat with a propulsion system would greatly expand the scope

of missions that it could perform. A miniature ion thruster would be ideal for

a CubeSat because of its efficient use of propellant compared to other micro-

propulsion concepts.

A study by Conversano and Wirz recently investigated the feasibility of a

Lunar mission for a CubeSat using the MiXI thruster[20]. The spacecraft, shown

in Figure 1.2 would be made of a 3-Unit, or “3U”, CubeSat and be capable of

achieving a ∆V of over 7000 m
s
. The spacecraft would utilize a spiral trajectory

to transfer to the lunar orbit. Additionally, such a high ∆V would be capable

of a minimum of 50◦ of inclination change in a 600 km low Earth orbit. The

power and mass requirements for such a mission prove to very challenging, but

the increase in capability motivate the need for thruster development.
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1.2.2.1 Other Mission Types

MiXI could prove to be beneficial for other applications such as disturbance

rejection and station keeping. In high-altitude applications, for example, a single

MiXI thruster could counteract the solar radiation pressure on a 666 m2 solar

array. It would only take five MiXI thrusters to counteract the radiation pressure

on solar panels the size of on the International Space Station. This could be

useful in future high-precision missions.

For low-altitude environmental and atmospheric missions, MiXI can also pro-

vide atmospheric drag compensation. At an altitude of 500 km, MiXI’s thrust

could counteract the atmospheric drag caused by a satellite with a cross section

of 11 m2. This is critical for missions that desire repeat orbit capabilities. In

both high and low altitude applications, use of MiXI would benefit missions with

a non-contaminating propellant; continuous, non-disturbing thrust; high efficien-

cies; and high Isp (which translates to a longer mission duration or reduced launch

vehicle cost).

1.3 Dissertation Overview

The current study simplifies the domain of the miniature ion thruster by isolating

the discharge chamber. The accelerator grids and the asymmetry of the magnetic

field configuration are replaced with symmetric features. By generalizing the

chamber geometry and magnetic field, the results provide knowledge of similarly

sized devices. Additionally, because of the smaller dimensions of the discharge, it

becomes feasible to make spatially resolved measurements on the entire domain

including the regions directly adjacent to the magnetic cusp.

While a 3 cm xenon ion thruster has already been demonstrated in a labora-
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tory environment, the internal discharge operation at that scale is still relatively

unknown. Improvements to the discharge operation would provide substantial

benefits to the overall mission applicability of a thruster of this size. Experimental

measurements made from the beam profile allowed estimates of plasma properties

immediately upstream of the extraction plane[21]; however, the plasma discharge

parameters have not been directly measured. Plasma property measurements in

larger thruster have been made by Herman and Sengupta et al.[22, 23]. While

these provided informative, spatially resolved data, they typically neglected the

cusp region due to access restrictions in the ion thruster and resolved measure-

ments were limited to a particular sub-domain or dimension.

To explore the internal structure of MiXI, Wirz developed a 2-D hybrid

particle-in-cell (PIC) model, DC-ION[24]. Plasma property measurements from

a miniature discharge provide an excellent resource to validate DC-ION. While

DC-ION can be used to explore additional physics and detailed design, its com-

plexity precludes it from being a first-order design tool. Thus the ultimate goal of

this research effort is to analyze the internal measurements and develop a rapid

design procedure for miniature discharges.

Chapter 2 provides background on electron bombardment plasmas and their

operation principles. This chapter introduces some of the physical processes

that make the miniaturization of DC discharges difficult including the increase

in surface area to volume ratio and the discharge instability. The experimen-

tal apparatus is described in Chapter 3. The design features of the device are

highlighted along with the support facilities. The current effort focuses on four

data sets that explore combinations of discharge configurations and operating

conditions. The two magnetic configurations explore the effects of field strength

on discharge stability. Plasma measurements are presented for plasma density,
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electron temperature, and plasma potential.

Chapter 4 develops a framework by which to analyze magnetic fields. Here

the stream function and scalar potential fields are calculated for the axisymmetric

configurations described in Chapter 3. These fields create an orthogonal coordi-

nate system that can be used for theoretical analysis in future work. Chapter 5

uses the stream function construct to analyze the plasma measurements. A trans-

fer function is developed for the approximate density throughout the chamber for

a given stream function field. This is used to calculate adjusted anode loss areas

and plasma volumes for the highly non-uniform miniature discharges.

A control volume analysis is implemented in Chapter 6 using the modified

plasma volumes and loss areas in the previous chapter. This analysis is imple-

mented on the test discharge chamber from Chapter 3 to examine the design space

for the magnetic field configuration. The chapter concludes with a recapitulation

of the design procedure. The final chapter summarizes the major contributions

and findings of the dissertation along with suggestions for future work.
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CHAPTER 2

Magnetically Confined Cusp Discharges

Miniature ion thrusters fall into a unique regime where efficient operation is

not easily obtained. The surface area to volume ratio of the thruster increases

as thruster size decreases. This creates a relatively large plasma area at the

thruster walls and a relatively small plasma volume where generation can occur.

It is traditionally thought that stronger magnets are necessary to mitigate this

effect; however, in cases where the magnetic field is too strong, the plasma will

develop a potential structure that is vulnerable to discharge instability.

2.1 Basic Ion Thruster Discharge Chamber Operation

An illustration of a MiXI like ion thruster is shown in Figure 2.1. There are four

main components to all ring-cusp ion thrusters: a high energy electron source, the

discharge chamber with permanent ring magnets, the extraction apparatus, and

a neutralizing electron source (not shown). The electron source is a thermionic

emitter. Typically this is provided by a hollow cathode with a barium oxide or

lanthanum hexaboride insert, but low TRL research will often use a simple fila-

ment cathode for preliminary development. The first iterations of MiXI used a

tungsten filament cathode, but has since developed and used miniature hollow

cathodes. The discharge chamber usually consists of an axisymmetric geometry

along with a series of ring magnets alternating in polarity. The chamber walls,

13



commonly referred to as the anode, are biased positively with respect to the fila-

ment. Due to thermal expansion of the chamber, the ring magnets are composed

of several block magnets arranged in a ring and held against the anode. The

extraction apparatus consists of two biased grids which give the ions their kinetic

energy. The bias also acts to keep plasma electrons and neutrals contained within

the discharge volume. Finally, the neutralizer cathode emits electrons with the

thrust ions to maintain a neutrally charged spacecraft. The bias on the extrac-

tion apparatus also prevents neutralizing electrons from entering the discharge

chamber.

The focus of this effort is limited to the first two components with a focus

on the discharge chamber responsible for generating plasma. The technique used

for producing plasma is known as a DC discharge due to the electrostatic fields.

The propellant gas is initially fed into the discharge chamber either directly or

or through the hollow cathode. High energy electrons from the electron source

travel through the chamber to the anode potential surface biased at ∼ 20− 25 V

with respect to the cathode. The magnetic field extends the residence time of

the ionizing primary electrons emitted from the cathode. The primary electrons

from the cathode follow a helical path along the magnetic field lines due to the

Lorentz force, FL given by:

FL = qsE + vs ×B. (2.1)

Here qs is the species charge, E is the electric field, vs is the species velocity, and

B is the magnetic field. Primary electrons that encounter a magnetic cusp can

be reflected through the magnetic mirroring effect provided that its trajectory

is sufficiently orthogonal to the field line[25]. While magnetic fields are used to

repel electrons at anode surfaces, cathode surface have a sufficient negative bias
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Figure 2.1: Axisymmetric cross-section of an electron bombardment ion thruster with
a ring-cusp magnetic field.
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that electrons are electrostatically reflected back into the bulk of the chamber.

The primary electron’s residence time is terminated when:

1. An ionization collision happens with a neutral. The primary electron’s

kinetic energy ionizes the heavy species generating an election/ion pair. The

now lower energy electron is rapidly thermalized with the plasma electron

population.

2. An excitation collision happens with a neutral. The primary electron’s

kinetic energy collides with the heavy species promoting the electrons in

the atom to a higher energy state. The now lower energy primary is rapidly

thermalized with the plasma electron population.

3. The primary contacts an anode boundary of the discharge chamber

4. The primary electrons accumulates several small inelastic collisions and

thermalizes with the background plasma electrons.

Primaries that undergo successful ionization collisions will result in a single ion

and two plasma electrons (one from the neutral atom and one from the resulting

low energy primary). The bulk plasma will equilibrate such that the plasma

density remains quasi-neutral (n ≡ (np + ne ≈ ni)).

2.1.1 Ion Thruster Miniaturization

Generation of plasma, Ii, is a volumetric effect as can be seen in Equation (2.2).

Here no is the neutral density, ne & np are the plasma and primary electron

densities, Ve & Vp are the associated volumes for the species, and the bracketed

terms are the reaction rate coefficients. Note the use of I to indicate a generation

rate and not a current.
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Ii = no [(npVp) 〈σivp〉+ (neVe) 〈σive〉] (2.2)

Loss of plasma occurs at the boundaries of the discharge chamber. The goal

is to maximize the ions delivered to the extraction plane while balancing losses

to anode surfaces in an effort to maintain the discharge plasma potential. It

is beneficial to confine the electron population to increase ionization and ulti-

mately the plasma density[26]. The inherent difficulty with miniaturization lies

in the increased surface area to volume ratio, which is equivalent to saying that

there is more plasma loss and less plasma generation. In order to mitigate this,

strong magnets are used that reduce the anode loss area. If the magnets are too

strong, this can reduce the plasma potential and lead to discharge stability issues

discussed in Section 2.3.

2.2 Cusped Plasma Sources

Multipole confinement devices were first used in the 1970’s by Limpaecher and

MacKenzie[26]. The original intent was to develop a containment scheme that

would be suitable for fusion. These multipole devices were extremely stable,

but their efficiencies for fusion conditions was not comparable to other fusion

confinement techniques. Further research for other devices was carried out on

magnetic cusp devices due to their inherent stability and accessibility. Among the

contributors were Leung and Herskowitz[3] as well as Bosch and Merlino[27]. Both

groups determined that the leak width for the plasma species to the magnetic

cusp were proportional to the hybrid gyroradius, rh, given in Equation (2.4). The

gyroradius for a particular species is given in Equation (2.3) and describes the

radius of the orbit executed by a charge particle around a magnetic field line.
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Here ms, qs, & vs are the species mass, charge, and velocity perpendicular to the

magnetic field, B, respectively. The hybrid gyrodiameter is simply the geometric

mean of the ion gyroradius and the electron gyroradius. This length scale is

motivated by electrostatic attraction as the two species enter the cusp.

rs =
msvs
qsB

(2.3)

rh =
√
reri (2.4)

While the hybrid loss width length scales may still apply in miniature ion

thrusters, the sensitivity of these small discharges requires a highly resolved pic-

ture of the loss regions. Much of the previous work investigates cusp loss through

vacuum gaps. The spindle cusp and the picket fence, studied by Bosch and Her-

shkowitz respectively, considered the entrance to the cusp to be in an arbitrary

location since these experiments did not lead to conducting surfaces. Unlike in

these devices, the strongest magnetic field in ion thrusters occurs at the cusp

due to the use of permanent magnets. Efforts by Wirz et al. are focused on

determining a more detailed loss structure for permanent magnets[28].

The hybrid width provides a useful parameter to determine the reduction

of the plasma loss due to the magnetic field. This has been successfully used

in control volume analysis of cusped devices to predict performance in larger

devices[1, 29, 24, 18]. However, in miniature discharges, a strong magnetic field

can lead to a significant contraction in the plasma volume.

MacKenzie buckets are now used to create laboratory plasmas with a large

relatively unmagnetized region[2, 30, 31]. Although, the magnetic field is used to

increase the plasma density, the bulk of the volume is largely unmagnetized due

to the size of the vessel. The large field-free region allows researchers to ignore
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the complicated magnetic boundary. This configuration has a close relationship

to larger ion thruster; however, with MiXI the length scales are such that the

chamber is almost entirely made up of the magnetic boundary.

2.3 Plasma Potential Structure

Before MiXI’s demonstration, it was commonly thought that thrusters ≤ 5 cm

required magnet strengths that did not exist[17]. Wirz’s research identified that

extremely strong magnets decreased the loss area possibly creating a discharge

instability[21]. Therefore, the lower bound for magnetic fields is set by acceptable

performance while the upper bound is thought to be marked by the onset of

instability.

Plasmas typically found in cusp-confined devices have plasma electron tem-

peratures much greater than that of the ions, Te � Ti. Therefore, in the absence

of a potential gradient, the electrons are more frequently lost to the wall. This

tendency creates a charge imbalance resulting in a potential structure that acts

to equilibrate the loss of the two charge carriers. In a traditional ion attracting

sheath, the plasma potential acts to repel electrons while attracting ions. In order

for this to occur, the ions must enter the sheath at a velocity no smaller than the

ion acoustic velocity given by Equation (2.5), where MXe is the xenon ion mass.

va =

√
kTe
MXe

(2.5)

This is known as the Bohm criterion and is commonly used for an ion at-

tracting sheath[25]. A typical potential structure for this scenario is given in the

upper chart of Figure 2.2. Here the presheath is necessary to accelerate the ion

population to the ion acoustic velocity at the sheath entrance.
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There are several cases where a negative, or ion repelling sheath would occur.

This scenario is possible when the charge carriers consists of a mix of positive

and negative ions with the negative species being the heavier of the two[32]. This

could also occur in the case of a significantly reduced anode loss area which could

very likely occur in a miniature ion thrusters. The magnetic field found in ion

thrusters reduces the loss area of the plasma electrons while the unmagnetized

ions could flow freely to the wall. If the loss width is sufficiently small, a potential

structure could develop that inhibits the ions and attracts the electrons. The

potential structure for this scenario is illustrated in the bottom chart of Figure 2.2.

2.3.1 Discharge Instability

A discharge instability can develop in the case of a negative plasma potential. The

anode voltage must be made up through the plasma. Unlike the positive potential

case, the anode voltage is not guaranteed to occur through the cathode sheath.

For a DC discharge to provide an appreciable plasma density, it is required that

the plasma potential lies above the ionization energy. If instead the majority

of the anode voltage is found in the anode sheath the plasma would extinguish

or fall to an extremely low density value. The case marked “Unsustainable” is

therefore not a desired scenario for a DC discharge.

2.3.2 Sheath Modifier

The flux of plasma electrons through a sheath can be derived from integrating

over the Maxwellian electron population. This results in a piecewise continu-

ous function of the plasma potential. The random electron flux to a surface,

Equation (2.6), is modified due to the plasma sheath as seen in Equation (2.7).

The sheath modifier, f (φ), is given for positive and negative potentials by Equa-
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Figure 2.2: The top figure shows a typical sheath structure from the cathode to the
anode[1]. This represents a positive plasma potential with respect to
the anode voltage. The bottom figure shows a negative plasma potential
which can develop in the case of readily lost positive particles. The sheath
structure in a negative plasma is an area of recent discussion[2].
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tion (2.8) and is shown in Figure 2.3[1, 33, 29]. The inverse notation is used here

to be consistent with the way it is utilized in Chapter 6. The optimal value for

an efficient ion source has been estimated to be at a zero plasma potential with

respect to the anode[29]. A plasma potential slightly below the anode would

confine the low energy ions, and allow for a high primary energy through the

cathode sheath. Plasma species loss through a positive sheath takes energy out

of the plasma on the order of the plasma potential. An even plasma potential

eliminates this inefficiency.

Γ =
1

4
ne

√
8kTe
πme

(2.6)

Ia =

[
1

4
ne

√
8kTe
πme

Aa

]
f−1 (φ) (2.7)

f−1 (φ) =





exp
(
−eφ
kTe

)
, if φ > 0

exp( eφ
kTe

)

1−erf(−eφkTe
)

1
2
, if φ < 0

(2.8)

2.3.3 Negative Plasma Sheath

The negative plasma sheath, seen in Figure 2.2 as a grayed out region, is not

very well understood[2]. Previously, this region has been handled as a cathode

sheath superimposed on a background plasma[33]; however, measurements by

Oksuz and Hershkowitz show a double layer[31]. This double layer acts to reduce

the plasma population flux derived by Medicus. Investigation of this feature

is beyond the scope of this study, but must be considered for future studies of

miniature discharges.
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CHAPTER 3

Experimental Investigation of a Miniature

Discharge

Previous miniature ion thruster studies have demonstrated impressive perfor-

mance using ring-cusp discharges[21]. These studies suggest that the field must be

sufficiently strong to increase electron confinement times for ionization, but weak

enough to allow electrons to escape and maintain the plasma potential necessary

for ionization. To investigate this phenomena, this effort employs an experiment

that allows detailed measurements of the internal structure and characteristics of

a miniature ring-cusp discharge. These measurements provide spatially resolved

values for plasma density, electron temperature, and plasma potential along a

meridian plane. The magnetic field configuration is arranged as a quasi-periodic

domain in order to generalize the findings to all multi-pole discharges. The results

show that the magnetic field strength drives the plasma structure, and the de-

pendence on discharge power can be removed with proper scaling of the plasma

parameters. The stronger magnetic field results in a higher peak plasma den-

sity, but relatively poor discharge volume utilization. Additionally, the potential

measurements indicate the likely onset of discharge instability. In contrast, the

weaker magnetic field, or baseline configuration, better utilizes the volume of the

chamber. This leads to a higher and more uniform density near the downstream

extraction plane, implying a superior discharge for an ion source.
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3.1 Experimental Approach

The miniature ring-cusp discharge experiment approximates the major features

of a miniature ion thruster discharge. To make accurate measurements, there

also must be access to the internal region of the discharge chamber for plasma

diagnostics. As a result, a new device was designed with three equally spaced ring-

cusps and an access slot for a Langmuir probe. This allows the examination of the

important plasma properties of miniature discharges in a controlled environment.

3.1.1 Operating Principle and Design Features

The primary design objective for the experimental apparatus is to isolate the

plasma discharge chamber of the miniature ion thruster. This is shown in Fig-

ure 3.1. Because the device does not need to produce thrust, the grids can be

replaced with a cathode potential surface and run at a relatively low voltage

known as discharge mode. Brophy’s model for predicting discharge performance

without beam extraction can be applied to approximate performance values[34].

This model has been successfully used to predict thruster performance in a vari-

ety of efforts[35, 36]. The cathode used is a neutralizer hollow cathode typically

used for ∼ 30 cm ion thrusters. The cathode assembly is shown in Figure 3.2.

The low flow rates used in neutralizer cathodes make it an appropriate electron

source for examining miniature discharges. By running a keeper current, the

hollow cathode is able to sustain a small plasma near the cathode orifice with-

out running the discharge. This effectively removes uncertainty in the primary

electron source. Typically, the hollow cathode placement should coincide with a

diverging magnetic field to maximize the current to the discharge chamber[36];

however, in this study no hollow cathode magnet was used to maintain the sym-

metric domain. Additionally, the cathode was placed flush with the base in order
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Figure 3.1: Schematic of the miniature ring-cusp discharge experiment.

to maximize the measurement domain. An early version of the experiment used

a tungsten filament cathode along the centerline in an effort to maintain the axial

asymmetry; however, the cathode preferentially emitted on one end due to the

voltage drop across the filament. Ultimately, the filament was abandoned because

it heated the device past the maximum operating temperature of the magnets.

Additionally, removal of the filament allowed for a larger measurement domain.

The resulting device utilizes a cylindrical domain to hold the plasma. The dis-

charge chamber is then surrounded with three identical rings of magnets equally

spaced along the axis of the cylinder with machined spacers. For the baseline

magnetic field configuration, each individual ring is made up of nineteen block

magnets that outline the circumference of the exterior anode wall. The current

effort is focused on determining the effects of magnetic field strength on the

plasma properties. To increase the field strength for the strong magnetic field
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Figure 3.2: Hollow cathode installed in the miniature plasma testbed.

configuration, each block magnet in a given ring is doubled by stacking an addi-

tional magnet on the outside. This acts to bolster the magnetic field strength at

the walls while leaving the far-field region relatively untouched as is discussed in

Section 4.4.3. These two configuration are summarized in Table 3.1. The height

dimension is parallel with magnetization vector while the depth dimension is

aligned with the axial direction of the discharge domain. The individual magnets

used in both cases are identical. The resulting two-dimensional magnetic fields

are discussed in Section 3.2. The doubly-stacked configuration, or “strong” field

case, is shown in Figure 3.3. The singly-stacked configuration is referred to as

the “baseline” configuration.

The schematic shown in Figure 3.1 highlights the physical features of the

device. The permanent magnet assembly is easily accessible and allows for rela-

tively simple modification. The ring magnets are equally spaced with 6.35 mm

aluminum (non-ferrous) spacer rings. This generalized configuration closely ap-

proximates a periodic magnetic domain; therefore, the results of this effort can

be readily applied to miniature cusped discharges and is not confined to a specific
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Table 3.1: Permanent magnet specifications.

Magnet ID Material
Residual
Induction
(G), Br∗

Height
(mm)

Width
(mm)

Depth
(mm)

Baseline
(x1)

Sm2Co17 10,500 2.032 5.08 5.08

Strong
(x2)

Sm2Co17 10,500 2 x 2.032 5.08 5.08

Strong 

Con!guration

Baseline

Con!guration

Figure 3.3: Schematic of magnetic field configurations.

Figure 3.4: Slot cut into cathode surface for Langmuir probe access.
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configuration. The “Access Slot” referenced in Figure 3.1 allows diagnostics into

the plasma domain. The physical opening can be seen in Figure 3.4. The slot

is 4.76 mm wide and spans the radius of the discharge domain which makes the

area of the opening 0.86 cm2. As a control, the discharge is fed a closed loop

controlled 0.5 sccm of xenon in every test case. With the flow rate and orifice

area, the neutral density is approximately 4 × 1019 m−3 or 1.8 mTorr. These

values are based on neutral temperatures of ∼ 500 K from thermocouple mea-

surements on the device. The measurement domain samples the meridian plane

of the cylindrical domain. In this particular study, the magnet depth is much

smaller than the radius of curvature. Because of this, the applied field is assumed

axisymmetric, allowing the measurements to yield a complete description of the

discharge chamber. The complete device assembled out of vacuum can be seen

in Figure 3.5.

3.1.2 Support Facilities

The miniature ring-cusp discharge experiment was operated in a vacuum cham-

ber at NASA’s Jet Propulsion Laboratory seen in Figure 3.6. The chamber is

outfitted with two 10-inch cryogenic pumps capable of providing a base pressure

of 10−8 Torr. The pressure during operation is steady for a given test case and

is typically around 8× 10−6 Torr.

The experimental apparatus is mounted next to a two-dimensional, vacuum-

prepped, translation stage assembly. The stages are positioned to move the probe

on a rectilinear grid aligned with the plasma domain’s radial and axial directions

as shown in Figure 3.1. An attached armature carries a cylindrical Langmuir

probe with a length of 1 mm and a half mm diameter, shown in Figure 3.7, to

map out spatially resolved contours of the plasma properties. The Debye length
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Figure 3.5: Miniature discharge device.
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Figure 3.6: Vacuum chamber used for current effort.

Figure 3.7: Cylindrical Langmuir probe. Probe dimensions are 0.5 mm in diameter
and 1 mm in length and made from a tungsten wire with an alumina
sleeve.
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Figure 3.8: Example Langmuir trace.

is estimated to be 1.3×10−5 m, much smaller than the probe dimensions allowing

for the thin sheath approximation. This states that all ions that enter the sheath

are collected by the probe and do not orbit the probe.

The translation stages are capable of sub-mm step sizes, yet post-processing

consideration, along with the probe dimensions, limit the grid resolution to a

1 mm x 1 mm. The measurement grid is overlaid in Figure 3.1. The total

measurement domain is 14 mm x 35 mm, making for a total of 490 Langmuir

traces for each case. Additionally, because of the large variance in plasma den-

sities, each case must be run up to three different times due to the range of the

data acquisition system. The sets of traces are then sorted and spliced together

depending on the signal range. Finally, the individual traces are processed for

electron temperature and plasma potential. It should be noted that the plasma

density measurements are taken using a battery to bias the probe, as opposed
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Figure 3.9: Miniature discharge testbed installation with translation stages and Lang-
muir probes.

to a regulated power supply, providing a relatively noise-free signal. As can be

seen in Figure 3.8, the resulting probe sweeps are quite clean, but because the

probe physically enters the plasma, the discharge voltage for a desired discharge

current can vary throughout the measurement process. The deviation from the

undisturbed discharge voltage is at most 10% and mainly occurs on the centerline

when the probe obstructs the hollow cathode orifice. The disturbance falls off

rapidly away from the centerline, and measurements taken toward the anode wall

are true to the undisturbed plasma. The complete installation of the experiment

is shown in Figure 3.9. The device in operation is shown in Figure 3.10.
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Figure 3.10: Miniature discharge device with hollow cathode operation. The expo-
sure time has been increased to reveal the device’s silhouette.
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3.2 Magnetic Field Analysis

To facilitate the analysis of the plasma properties, it is useful to have an analytical

expression for the magnetic field. Because the magnet width is much smaller

than the chamber radius, it stands to reason that the magnetic field can be

approximated by an axisymmetric field. Based on the work of Ravaud, Babic

et al. developed an analytical formula for a radially magnetized ring magnet[37,

38]. These formulae, and the errors associated with making an axisymmetric

assumption, can be found in Chapter 4. The plasma within the chamber is not

expected to affect the magnetic field since the plasma density is relatively sparse

or in the so-called low-β regime.

The magnets relative location to the measurements are shown to scale in Fig-

ure 3.11. The application of Babic’s formulae to the magnetic field configurations

are shown in Figure 3.12 and again in Figure 3.13 focused on the measurement

domain. The values were checked using a hand-held Gauss meter. Both values

on the centerline and the wall were measured and showed good agreement. The

maximum field strength in the baseline configuration is 1877 G while the maxi-

mum field strength in the strong configuration is 2730 G agreeing with analytical

calculations. The full domain inside the chamber is shown, where the dashed box

outlines the measurement region that the probe is able to traverse. Here, it can

be seen that the Langmuir probe is unable to measure directly against the wall.

The thick lines are Stokes stream contours that represent magnetic field lines[39].

The calculation of the stream contours is discussed in Chapter 4 and provides a

useful reference when evaluating the plasma structure contours. It is important

to note the streamlines encapsulate a constant magnetic flux. The values of the

plotted fluxes lines are the same for both cases in Figures 3.12.
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Figure 3.13: Figure 3.12 rescaled to the measurement domain.
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3.3 Results and Discussion

Plasma measurements of the miniature discharge chamber are taken with both of

the previously mentioned magnetic field configurations. Each field configuration

is run at a discharge current of 0.5 A and 1.5 A. The total discharge voltage

and resulting power is given in Table 3.2. The discharge chamber was precon-

ditioned by running the discharge until thermal equilibrium was reached. This

was measured with a thermocouple in contact with the magnets. Care was taken

not to exceed 573 K, the maximum operating temperature for samarium cobalt

(Sm2Co17). At this point, permanent demagnetization begins to occur. The

equilibrium temperature range for all operating conditions was (450 K− 525 K).

For all cases, the cathode was fed a constant 0.5 sccm xenon flow and the keeper

current was maintained at 2 A to sustain the plasma in the hollow cathode.

Table 3.2: Discharge test matrix. Values represent average discharge voltage and
power during operation.

Baseline Magnets Strong Magnets

0.5 A (22.0 V, 10.0 W) (19.7 V, 8.96 W)
1.5 A (22.5 V, 32.8 W) (22.7 V, 33.1 W)

3.3.1 Plasma Density

As stated above, each configuration was run for two discharge currents. The

current changes the plasma density of the chamber by increasing the electrical

power run through the discharge. The one amp difference in discharge current

more than doubles the resultant plasma density throughout the chamber; how-

ever, if these data are normalized by the highest measured value, as shown in

Figures 3.14 & 3.15, the qualitative features for a given magnetic field look simi-
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lar. This suggests that the magnetic field not only determines the physical shape

of the plasma, but also the relative density found at a given location. For the

data shown, this approximation is good within 25% of the maximum density in

the entire domain of the plasma. This approximation may prove useful for deter-

mining internal properties for different operating conditions for a single magnetic

field; however, on a more detailed level, variations can still be observed between

the discharge powers such as the slight spread seen in the strong magnet, high

discharge power case. These minor variations can be used to help explain discrep-

ancies seen in the electron temperature as discussed later. It should be noted that

the irregularities within the plasma density stem from the density’s dependence

on electron temperature measurements as seen in Equation (3.1).

Isat = 0.6enAprobe

√
kTe
MXe

(3.1)

Magnetic confinement typically works on the principle that a stronger mag-

netic field should better utilize the primary electron energy by extending their

residence time and creating a denser plasma. This is reflected in the maximum

density values for the strong magnet configuration. However, it is clear that the

baseline magnetic field fills the volume of the discharge chamber. This can be

shown with an effective plasma density using

neff =

∫∫
n(z, r)rdrdz∫∫

rdrdz
(3.2)

The effective plasma densities are shown in Table 3.3. Note that although

the high power cases have similar effective densities, the baseline configuration is
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Figure 3.14: Plasma density for the baseline configuration. Plasma density measure-
ments are normalized by the max density value.
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Figure 3.15: Plasma density for the strong magnetic field configuration. Plasma den-
sity measurements are normalized by the max density value.
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more uniform and thus delivers more plasma to the extraction region. This keeps

with the thought that a field-free region is better for performance[40]. Further,

state of the art miniature ion thruster design would suggest that choosing magnet

strength is a trade-off between confinement and plasma stability. As one may an-

ticipate, Figure 3.14 shows that miniature ion thrusters must still obey the tenet

of employing a field-free region to improve discharge utilization. In fact, the den-

sity at the edge of the domain, where the extraction grids would be, shows that

the theoretical beam is flatter in the baseline case. This is a desirable property

for extraction grid utilization efficiency and thruster life. This occurs because the

magnetic field does not prevent diffusion to the radial extremes of the grids as it

does in the strong configuration. The strong configuration’s density profile is con-

centrated to the center line which signals poor volume utilization of the discharge

chamber. The magnetic field over-confines the plasma in this case. This creates

a higher maximum plasma density but lower uniformity. Figures 3.14 & 3.15 as

well as the following measurement plots have the hollow cathode located at the

origin. This explains the negative axial gradient.

Table 3.3: Effective plasma density, neff , is given by the total particle count normal-
ized by the discharge chamber volume.

Baseline Magnets (m−3) Strong Magnets (m−3)

0.5 A 1.05×1018 6.06×1017

1.5 A 2.35×1018 2.32×1018

To measure approximate thruster performance parameters, the technique sim-

ilar to that proposed by Brophy is used to account for an equivalent neutral flow

rate[34]. Brophy’s model requires grid transparencies and currents, neither of

which are present in the system; therefore, a modification of the method, similar

to that used by Goebel, must be applied[36]. Two main assumptions are made
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in order to obtain the approximations. The first is that the values measured at

the exit are azimuthally symmetric. The second assumes that the exit values

occur at the sheath entrance to the extraction plane. The plasma density can

then be integrated to approximate the beam current using Equation (3.3). This

is integrated numerically using a simple trapezoid scheme. Note that the beam is

only taken out to the measurement region and is not extrapolated to the anode

wall. This region is simply neglected and can be assumed to be similar to the

end of the gridded region. Strictly speaking, Equation (3.3) calculates the ion

current to the plane of the screen grid rather than the actual beam current, thus

the beam current is approximated by assuming an ion transparency for the ex-

traction planes. Here the Bohm velocity is assumed due to the positive potential

with respect to the cathode surface[25].

Ib = (2πe)ηtrans

∫ R

0

n(r, zmax)r


0.6

√
kTe(r, zmax)

MXe


 dr (3.3)

With an approximation for the beam current, discharge losses and mass uti-

lization can be calculated. It is important to remember that the device was not

optimized for performance. Instead, it was built to investigate the physical be-

havior in miniature discharges. In that regard, these values should not be taken

to indicate miniature ion thruster performance, but rather the floor for such a

device’s capability.

The discharge loss given in Equation (1.5) can be modified to include the

power to the keeper. This is given in Equation (3.4). Because the miniature

hollow cathode is replaced with a relatively large neutralizer cathode that is

designed for much larger thrusters, the discharge loss is unrealistically high if

the keeper power requirements are included. To account for this, the keeper
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power is assumed to be negligible to determining a ceiling in performance for

this miniature discharge. One could also assume a comparable power fraction

between the discharge and keeper given the development of a proper miniature

hollow cathode source. Conservatively, the keeper power is typically less than

5% of the discharge power, so 0%-10% is used in these calculations, where 0%

represents the idealized case of no required keeper power.

εBk =
IdVd + IkVk

Ib
(3.4)

The mass utilization from Equation (1.4) is typically a function of grid trans-

parency and other extraction assembly properties. Because there is no beam

extraction, the ions hitting the cathode surface must be treated as a virtual gas

feed. To first-order, the virtual gas feed is simply the beam current to the ex-

traction plane less the area of the access slot. This ignores the radial variance

in discharge properties. Equation (3.6) gives the formula used to calculate the

adjusted mass utilization efficiency. Because of the 3 cm scale, miniature ion

thrusters can use optics with small apertures which help keep the neutral density

high, hence the neutrals transparency due to the access slot is ∼ 10%, similar to

that found in MiXI.

The summary of the approximate discharge losses and the mass utilizations

are shown in Table 3.5. The beam currents are calculated by integrating the

density values at the screen grid plane. The reported values assume an 80%

ion transparency. The neutral temperature is assumed to be equal to that of the

chamber wall[1]. From a plasma density analysis, the baseline magnetic field out-

performs the stronger field in every way. The baseline magnetic field produces a

higher total beam current as shown in Figure 3.16 and the beam flatness param-
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eters, as given in Equation (3.5), are nearly similar. This is shown in Table 3.4.

These are poor flatness parameters; however, the magnetic field is designed for

symmetry and not for optimized plume profiles. Even though the strong field

configuration has a higher peak density, the magnetic field structure does not

allow the plasma to efficiently utilize the volume of the discharge chamber or

the extraction area. This is reflected in the discharge loss where it is postulated

that a small ionization volume in the strong, low current case is responsible for

the relatively high discharge loss. Given the conservative 0%-10% of a proper

miniature hollow cathode, the discharge loss falls well within the range of typical

ion thrusters. There is certainly strong evidence towards favorable performance

for miniature ion thrusters. Further research efforts should continue with the

development of a miniature hollow cathode[41, 6].

FB =

∫ R
0

2πrn(z=L,r)
nmax

dr

πR2
(3.5)

Table 3.4: Beam flatness parameters, FB, for operating conditions. Note that the
device is not tuned to achieve favorable beam flatness.

Baseline Magnets Strong Magnets

0.5 A 0.29 0.31
1.5 A 0.10 0.15

ηm =
MXeIb
eṁd

=
1

Iin
Ib

+ Acat−Aslot
Acat

(3.6)
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Table 3.5: Summary of calculated performance values for the ring-cusp discharge ex-
periment. Beam currents are reported with ηtrans = 80% to approximate
reduction from the extraction apparatus.

Magnet
ID

Ib
(mA)

Pd (W) Pk (W)
εBk
( eV

ion
)

w/ Pk

εBk
( eV

ion
)

Pk =
(0−10%)Pd

ηm To(K)

Baseline
0.5 A

47.9 10.0 32 876 209-230 60.5% 158

Baseline
1.5 A

109.6 32.8 26 536 299-329 81.3% 206

Strong
0.5 A

20.6 8.96 30 1888 434-478 37.7% 185

Strong
1.5 A

75.0 33.1 26 788 441-486 72.4% 238

3.3.2 Electron Temperature

The electron temperature measurements are taken from individual Langmuir

traces. Because there is a fair amount of subjective choice in the post-processing

procedure, the noise can be rather large when compared to the relatively smooth

plasma density data. The electron temperature profiles are presented in Fig-

ures 3.17 & 3.17. Qualitatively, the electron temperature does not change very

much for the different discharge powers in the baseline magnetic field configura-

tion. This is consistent with the theory that the electron temperature is primarily

dominated by neutral density where high neutral densities lead to low electron

temperatures[1]. This is keeping with the finding in the previous section that the

device is operating in a favorable discharge loss regime for the baseline magnetic

field. The figures show that the electron temperature is nearly constant along

a field line for both cases. Further, the baseline field case shows a higher tem-

perature at the centerline indicating neutral depletion. This is reflected in the

favorable mass utilization efficiencies of the baseline case.
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Figure 3.17: Electron temperature for the baseline magnetic field configuration.

In contrast, the strong magnetic field configuration cases have visibly dif-

ferent behavior. The 0.5 A case has lower overall electron temperatures. This

could be explained by a general inefficiency in ionization. The peaked plasma

density profile shown in Figure 3.15, along with the low electron temperatures in

Figure 3.18, suggest that ionization occurs in a confined region and is quickly re-

plenished by surrounding neutrals. The high discharge power case more efficiently

utilizes the mass which is supported by the relatively larger plasma density seen

in Figure 3.15.
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Figure 3.18: Electron temperature for the strong magnetic field configuration.
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3.3.3 Plasma Potential

The overall plasma potential within the chamber is governed by the discharge

voltage seen at the anode surface. The voltage is set in order to fulfill the current

demanded by the power supply. Because of this, the plasma potential mea-

surements shown in Figures 3.19 & 3.20 are scaled relative to the anode voltage.

Similar to the other plasma properties, the potential structure is a function of the

magnetic field configuration and invariant to the discharge power. In the baseline

magnet field configuration, potential valleys can be seen around r = 7 mm into

the discharge chamber. In contrast, the double stacked magnetic field configura-

tion does not have local minima apart from the centerline. From the perspective

of a newly born ion, the potential field would draw the ion to utilize the chamber

volume in the baseline field and towards the centerline in the strong field case.

The potential structure is indicative of an over-confined plasma. Typically,

a plasma establishes a positive potential with respect to the anode due to the

energetic electrons reaching the wall too quickly. The sheath acts to maintain

the quasi-neutrality by impeding the electron progress to the wall. In a case such

as MiXI, where stronger magnets may be required, the magnetic fields tend to

be stronger locally and confine the electrons. This instead would cause rapid

ion loss to the walls. To counteract this, the bulk plasma establishes a negative

potential with respect to the wall in order to maintain quasi-neutrality. From a

performance perspective, this electrostatic ion confinement reduces ions loss to

the wall; however, if the potential drops too low, there will be insufficient primary

energy for ionization as discussed in Chapter 2.

In the baseline case, there seems to be a hybrid of plasma scenarios. In the

center, the field is weak enough to establish a semblance of a bulk plasma. This

is seen at z = 15 mm on the centerline in Figure 3.19. From there, the magnetic
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Figure 3.19: Plasma potential measurements for the baseline configuration. Plasma
potentials are reported with respect to the anode voltage.
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field begins to restrict the electron flow and a negative potential is established.

This feature is seen in larger devices under certain conditions, but it is likely a

more prominent problem in miniature ion thrusters due to the larger surface to

volume ratio.

The strong magnet case’s potential structure in Figure 3.20 indicates the

higher magnetic fields are likely to approach the onset of instability at the cathode

region. The confinement of the electrons is strong enough to extend the cathode

potential, yet there is still sufficient energy for ionization.

3.4 Experimental Summary

The internal plasma measurements presented in the current effort provide insight

into the behavior of miniature ring-cusp discharges. By scaling the plasma pa-

rameters, it is shown that the plasma density, electron temperature, and plasma

potential structures are determined by the magnetic field configuration. The

plasma density, when normalized by the peak density value, appears to be inde-

pendent of discharge power. This empirical conclusion is useful in predicting, to

first-order, the normalized plasma density topography within a discharge cham-

ber for a given magnetic field configuration as discussed in subsequent chapters.

The electron temperature does not vary greatly for the different discharge pow-

ers; therefore, it does not require scaling. This occurs because of the constant

flow rate used since the neutrals act as a sink and suppress the electron tempera-

ture. The plasma potential is strongly correlated with the overall plasma density;

however, the potential structures are largely determined by the magnetic field.

The comparisons of the strong and baseline magnet cases show that the latter

configuration is better for both stability and performance. The baseline field con-
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Figure 3.20: Plasma potential measurements for the strong configuration. Plasma
potentials are reported with respect to the anode voltage.
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figuration also behaves favorably from a plasma discharge utilization perspective

as shown by the mass utilization efficiency. Although the maximum value for

the plasma density is much higher in the strong magnet case, the field strength

does not allow the plasma to spread throughout the chamber. Most importantly,

it inhibits migration to the extraction region at the downstream end of the dis-

charge. Consequently, the plasma density at the extraction plane is much lower

and peaked for the strong magnet case. This makes it less favorable from a

thruster or ion source perspective[21].

Performance values were approximated using the plasma density at the down-

stream cathode surface. The results show the baseline configuration’s superiority

and demonstrated expected performance values for both cases. Given a properly

designed miniature hollow cathode, the performance values are on par with tra-

ditional ion thrusters. This assumes a similar discharge to keeper power ratio.

While the focus of this research was the fundamental plasma structure, these

results support the overall confidence in miniature ion thruster technologies and

improves the understanding of discharge behavior and performance at this scale.
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CHAPTER 4

Magnetic Field Analysis

The measurements in Chapter 3 demonstrate a correlation between the magnetic

field configuration and the plasma behavior when scaled appropriately. Tradition-

ally, ion thrusters are designed by dictating a maximum closed contour for the

magnetic field strength[42]. This value is chosen to be strong enough to provide

good plasma confinement, yet still allow a large field-free region in the bulk of the

plasma chamber. This field-free region creates a relatively uniform plasma region

that can be investigated to first order with a bulk control volume analysis[1]. Due

to the requirement to provide a cusp field strength sufficient for mirror confine-

ment (1-3 kG), the field free region for miniature discharges is a small portion

of the discharge volume. Therefore, the magnetic field in a miniature discharge

is prominent and the plasma cannot be analyzed using uniform approximations.

While still important for an efficient discharge, as shown in Chapter 3, often the

field free region is smaller than that of the magnetically dominated region. In

these cases, it is useful to develop an alternative coordinate system that accounts

for the magnetic field complexity. Additionally, recent studies suggest that the

magnetic field geometry plays a considerable role in larger devices, further moti-

vating the need for a more detailed magnetic field analysis beyond the maximum

closed contour[43].

In order to quantitatively analyze the miniature plasma chamber, a methodol-

ogy using the magnetic field lines seen in Figure 3.12 is developed. The field lines
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are described using a Stokes stream function which has properties that are closely

related to the adiabatic invariants seen in charged particles. By definition, the

constant contours of the stream function are everywhere tangent to the magnetic

vector field. Developing a coordinate system around the stream function allows

the plasma to be analyzed in complex magnetic fields while still maintaining the

ability to decouple anisotropic behavior, namely parallel and perpendicular to

the magnetic tangents. The objective of the current chapter is to develop a gen-

eral framework for studying all axisymmetric magnetized plasmas in the low-β

regime.

4.1 Stream Function Construct

The magnetic field lines shown in Figure 3.12 show the local tangent along with

the magnitude. That is, the density of the field lines correspond to the relative

field strength of the local magnetic field. Typically, computed lines seen in plasma

literature are simply path lines traced from some initial position. These contours

typically only yield the direction of the magnetic field without any correlation to

the magnitude. This is similar to the stream function used in fluid mechanics.

In incompressible flow, constant stream function contours trace out path lines

from the velocity vector field; however, the values of the stream function contours

also give some indication of the volumetric flow rate[44]. In a two dimensional

geometry, the difference between any two stream function directly yields the

volume flow rate, or velocity flux, between the contours as shown in Figure 4.1.

In regions of acceleration, the distance between stream functions must converge in

order to maintain constant flux. Replacing the velocity vector with the magnetic

vector field gives a way to generate magnetic field lines. In order to make this

substitution, the surrogate vector field must be solenoidal just like the velocity
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Figure 4.1: In incompressible flow, the volume flow rate is given by the difference in
stream function contours.

field in incompressible flow. This condition is satisfied for the magnetic field by

Gauss’s law for magnetism in Maxwell’s equations given in Equation (4.1).

∇ ·B = 0 (4.1)

Typically a stream function can only be defined in two-dimensions; however,

if a dimension can be eliminated by symmetry, such as in spherical or cylindrical

coordinates, a Stokes stream function can be defined[39]. Note that the “Stokes”

designation simply refers to an axisymmetric domain. Equation (4.2) gives the

differential equation for the Stokes stream function contours. Much like the two-

dimensional case the stream function contours are directly related to the vector

flux, but in the case of a Stokes stream function, the zero stream function is

always the axis of the surface contour. Therefore, the stream function value at a

particular location gives the total flux through a stream tube with Equation (4.3).

The flux through an annulus can be calculated by subtracting the stream function

values of two stream tubes as illustrated in Figure 4.2.
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Br =
1

r

∂Ψ

∂z
; Bz =

−1

r

∂Ψ

∂r
(4.2)

∫ Ψa

Ψb

B · dA = 2π∆Ψ (4.3)

4.2 Charged Particle and Plasma Motion

In a low-β plasma, where the magnetic field is unchanged due to the local plasma

currents, the ambipolar plasma motion is closely tied to the vacuum magnetic

field. The Stokes stream function simplifies the magnetic domain by outlining the

the constrained motion of the plasma. This constrained motion ties features of

the stream function to the adiabatic invariants[25]. For example, as an electron

goes through it’s helical gyromotion, the guiding center of the electron remains

along a constant stream function value in the absence of collisions. Additionally,

as the electron is reflected due to the magnetic mirror effect[45], its oscillations

remain on the same stream function value. Finally, the azimuthal drifts due to
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the interactions of the charge particles and the fields act to contain a constant

magnetic flux. This property is known as the third adiabatic invariant and is

exactly the quantity described by the Stokes stream function.

From the short timescale gyromotion behavior to the relatively long timescale

processional motion, undisturbed charged particles remain on the stream tube

values described in Section 4.1. However, in a partially ionized regime, such as

those found in ion thrusters, collisions are quite frequent. Therefore, rather than

using the stream function to describe constrained motion, it is used as the basis

for a flux aligned coordinate system to decouple constrained plasma motion with

collisional diffusion across field lines.

4.3 Magnetic Field Aligned Coordinates

The stream function contours provide a convenient foundation to describe all

magnetized plasmas. The low-β regime allows for the assumption of a station-

ary magnetic field and consequently the basis for a stationary coordinate sys-

tem. Typically plasma equations of motion are separated into perpendicular

and parallel components to analyze the decoupled behavior[46]. This analysis

is largely academic and can be quite difficult to apply to complex configura-

tions such as a magnetic ring-cusp. By developing a coordinate system based

on the stream function values, the decoupled analysis can be used for any ax-

isymmetric configuration[47]. A representation of this coordinate system in seen

in Figure 4.3. The orthonormal basis chosen has three components, the stream

function, the azimuthal coordinate, and the magnetic scalar potential. Because

the basis chosen is orthonormal, the direction of the vectors can be considered to

be the gradient of the scalar field[48]. Below, the physical interpretations of these

values are described. Following the calculation of the values, the mathematical

60



Ψ∇

θ∇mΦ∇ Φ∇

B

Figure 4.3: Orthonormal basis formed by the stream function, azimuthal angle, and
the magnetic scalar potential. The sign of the magnetic scalar potential,
∇Φm, is reversed to form a right-handed coordinate system.

derivation of the coordinate system is given to conclude the chapter.

Stream Function Basis

The stream function coordinate represents the plasma motion perpendicular to

the magnetic field. This acts as the primary coordinate, and represents the direc-

tion of impeded plasma motion in the magnetic field. As stated previously, the

stream function value represents the magnetic flux through the enclosed surface.

Here, the reference line, or zero contours, are the centerline of the domain as well

as magnetic field lines that connect to the center of the magnet to the centerline.

Azimuthal Basis

The second coordinate is the azimuthal direction which is defined similarly to that

of other curvilinear coordinate systems. Typically in an axisymmetric domain this

direction can be ignored. While gradients in the azimuthal direction may indeed

61



be neglected, in the case of plasmas various drifts in the azimuthal direction

occur. Note that because of the axisymmetry assumed in the magnetic field, the

azimuthal basis is orthogonal to the stream function and scalar potential bases.

Magnetic Scalar Potential Basis

There are several choices for the final basis vector. An acceptable choice would be

the arc length of the magnetic field. This would have the convenience of having

units of length and would eliminate the need for a scale factor; However, using

arc length breaks the orthogonality of the coordinate system. A better option is

to use the magnetic scalar potential. In fluid mechanics, the appropriate analog

would be the velocity potential. This scalar field has constant contours that are

everywhere orthogonal to the stream function contours, a property that maintains

the orthogonal basis and eliminates the need for a reciprocal basis pair[48].

The magnetic scalar potential addresses the parallel motion of the plasma. It

flows freely along the field lines compared to the perpendicular motion, with the

exception of the magnetic reflection caused by the converging field lines described

by Equation (4.4). In general, the scalar potential basis describes the plasma loss

through the magnetic cusps. Magnetic reflection in this direction can be treated

with the fluid description of plasmas as shown by Comfort[49]. The magnetic

scalar potential is typically defined by Equation (4.5); however, the negative of

this quantity is used here to maintain a right handed coordinate system.

mv̇‖ = −µ∇‖B (4.4)

−∇Φm = B = ∇Φ (4.5)

The exact values do not have any direct physical meaning unlike with the stream

62



function. In fact, the zero value is arbitrary just as in the case of gravitational

and electrostatic potential. The reference values for the miniature discharge in

Chapter 3 are taken to be the center of the outside magnets.

To summarize, the permanent magnet rings essentially act as a source and

sink for the vector field. This field can be calculated using the equations given

in Section 4.4.2. The vector field components are then used to solve the PDEs

for the stream function and magnetic scalar potential. The two scalar quantities

provide the bases for the magnetically field aligned coordinate system shown

in Figure 4.3. The transformation from potential flow is further illustrated in

Table 4.1 by displaying the corresponding units in the magnetic flux analogy.

Differential operators are developed for the flux aligned coordinates (similar to

cylindrical and spherical coordinates) in Section 4.6.2 allowing for the plasma

behavior to be investigated in its natural coordinate system.

Table 4.1: Potential flow analogy for the magnetic flux aligned coordinates.

Vector Field
Stokes Stream

Function
Scalar Potential

Potential Flow v
(

m
s

)
Ψ
(

m3

s rad

)
Φ
(

m2

s

)

Magnetic Flux
Coordinats

B (T) Ψ
(

Tm2

rad

)
Φ (Tm)

4.4 Magnetic Field Formulae

In order to calculate the stream function and magnetic scalar potential fields, an-

alytical formulae are needed for the permanent magnet configurations of interest.

The following sections seek to introduce the analytical equations for rectangu-
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lar and radially magnetized ring magnets. The block magnet serves as a good

tool to develop intuition of how the magnet dimensions effect the magnet field

behavior. Additionally, ion thrusters typically use a series of block magnets to

construct ring-cusp configurations. This is done to account for the differences

in thermal expansion between the magnetic material and the discharge chamber.

The existence of a stream function, however, demands that there be at least one

axis of symmetry, a requirement that is clearly broken by the use of individual

block magnets. Because of these symmetry requirement, the block magnets used

in the true configuration of the miniature discharge are approximated as radi-

ally magnetized ring magnets. A comparison is made between the two magnetic

arrangements to quantify the error of the approximation.

4.4.1 Block Magnet

The equation for the block magnet can be derived by integrating the magne-

tization vector over the block magnet volume which is carried out by Engel-

Herbert[50]. The analytical formula for the magnetic field is given in Equa-

tions (4.6), (4.7), and (4.8) for the block magnet illustrated in Figure 4.4. The

field from individual block magnets can be superimposed to calculate the field

configuration seen in the miniature discharge experiment. The largest deviations

from the axisymmetric approximation occur on the meridian plane in between

adjacent block magnets.

To calculate a Bx or By, use Equation (4.7) bu first calculating Pr for the x

or y direction. Pr is calculated using the appropriate “[ ]” permutation for the

x or y direction. The ± in the “[ ]” permutations correspond the right and left

hand side. For example, [− + −]x would correspond to (y + d) + LB(−,+,−).

This pattern is used for all the ±s shorthand notations including the “〈 〉” terms

64



zw2 y

x

h

d2

∗rB

Figure 4.4: Definition for the block magnet dimensions. Br∗, the residual induction
is a function of the magnetic material used and its treatment process
assuming saturation.

used to find Bz.

LB (±1,±2,±3) =

√
(x±1 w)2 + (y ±2 d)2 +

([
z +

h

2

]
±3

h

2

)2

(4.6)

[±1,±2,±3]x = (y ±2 d) + LB (±1,±2,±3)

[±1,±2,±3]y = (x±1 w) + LB (±1,±2,±3)

Prx,y =
[−−−]x,y [−+ +]x,y [+−+]x,y [+ +−]x,y
[+ + +]x,y [+−−]x,y [−+−]x,y [−−+]x,y

Bx,y =

(−Br∗
4π

)
ln [Prx,y]

(4.7)

〈±1,±2,±3〉 = tan−1

(
(x±1 w)(y ±2 d)([

z + h
2

]
±3

h
2

)
LB (±1,±2,±3)

)

Prz+ = 〈+ + +〉+ 〈+−−〉+ 〈−+−〉+ 〈− −+〉

Prz− = 〈− − −〉+ 〈−+ +〉+ 〈+−+〉+ 〈+ +−〉

Bz =

(−Br∗
4π

)
[Prz+ − Prz− ]

(4.8)
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Figure 4.5: Measurement planes for “Off-face” and “On-face” regions in Figure 4.6.
The image shown is of the strong magnet configuration.

4.4.1.1 Block Magnet Configuration

The magnetic field configurations for the miniature discharge are calculated along

two meridian planes to capture the azimuthal change due to the discrete block

magnets. The extremes are located on the plane normal to the magnet face,

the “On-face” region, and the plane located in between two adjacent magnets

within a ring, the “Off-face” region. This is shown in Figure 4.5 These fields are

shown in Figure 4.6 for both the baseline and the strong magnet configurations.

The plots show that the magnetic field is only slightly weaker in the “Off-face”

locations. The local orientation of the field lines has a negligible shift between the

two locations supporting the conclusion that the current configuration approaches

the axisymmetric limit.
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Figure 4.6: Block magnet calculations for the baseline and strong magnet configu-
rations. The left plots represent the magnetic field on the plane normal
to the magnet face while the right plots represent the plane between two
adjacent magnets. Vectors are normalized and indicate field orientation
at the arrow base.
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4.4.2 Radially Magnetized Ring Magnet

The magnetic fields shown is Section 3.2 are calculated from Ravaud and Babic’s

analytical formula for a radially magnetized ring magnet[37, 38]. The analytical

formulae are given in Equations (4.9) & (4.10). Here, K(k±n ) and Π(h±, k±n ) are

the complete elliptical integrals of the first and third kind respectively. Note that

the surface magnetic pole density has been replaced by the residual induction

expressed in Tesla. This calculation is based on the sum of the inner and outer

surfaces’ contribution to the magnetic field. The surfaces used are normal to the

magnetic field alignment. Additionally, it is assumed that the magnetization, M ,

which is related to the residual induction, is constant for samarium cobalt[51].

This is a reasonable approximation due to the linearity of samarium cobalt’s

demagnetization curve[52].

∗rB ∗rB

r

z

outr
inr

h

Figure 4.7: Ring magnet geometry and nomenclature.

B+
z (r, z) =

Br∗
2π

2∑

n=1

(−1)(n−1)k+
n

√
rin
r
K(k+

n )

B+
z (r, z) = −Br∗

4π

2∑

n=1

(−1)(n−1)k−n

√
rout
r
K(k−n )

Bz = B−z (r, z) +B+
z (r, z)

(4.9)
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B+
r (r, z) = −Br∗

4π

2∑

n=1

(−1)(n−1) tnk
+
n

r

√
rin
r

[
K(k+

n ) +
r − rin
r + rin

Π(h+, k+
n )

]

B−r (r, z) =
Br∗
4π

2∑

n=1

(−1)(n−1) tnk
−
n

r

√
rout
r

[
K(k−n ) +

r − rout
r + rout

Π(h−, k−n )

]

Br(r, z) = B−r (r, z) +B+
r (r, z)

(4.10)

where,

(k+
n )2 =

4rrin
(r + rin)2 + t2n

(k−n )2 =
4rrout

(r + rout)2 + t2n

h+ =
4rrin

(r + rin)2

h− =
4rrout

(r + rout)2

t1 = z − h

t2 = z

4.4.2.1 Ring Magnet Approximation

The calculations from Equations (4.8) & (4.10) can be seen in Figure 3.12 and are

repeated in Figure 4.8. An alternative color plot is used where the extremes are

associated with the red hue. This is to highlight the subtle variations in both the

weak field region and the strong field region. Figure 4.8 and Figure 4.6 have been

plotted using identical color scales. Additionally, the markings associated with

the experimental data have been removed in favor of the magnitude contours and

arrows indicating the local magnetic field.

Because of the field configuration, there will always exists null regions equal

to the number of magnetic rings. The stronger magnetic field acts to penetrate

the center of the chamber, isolating the null regions and shrinking the so-called

“field-free” region. This is also seen in the block magnet configuration, but seems

to slightly augmented in the ring magnet approximation. Ultimately, the ability
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to sustain the field-free region affects the volume utilization of the discharge.

4.4.2.2 Error in Axisymmetric Assumption

The block magnet configuration is compared to the ring magnet approximation

to verify the assumption of axisymmetry. The relative error is taken with respect

to the block magnet values. As seen in Figure 4.9, the relative error in a large

portion of the chamber is within 5% with the largest error stemming from the null

values along the centerline and should thus be ignored. The next largest regions

of error are found at the cusps for the off-plane location. This is predictable

due to the lack of magnetic material between block magnets. It is important to

note that while the magnetic field strength in the off-face region departs from the

axisymmetric case, the field orientation is largely unaffected.

4.4.3 Dimension Sensitivity: One-Dimensional study

Much can be gleaned from the one-dimensional analysis of a single block magnet.

By examining the effects of changing the various magnet parameters on the on-

axis field strength, intuition can be developed regarding how to manipulate the

field configuration in various ways. This understanding is useful in determining

the magnetic field configuration of future miniature discharge designs which is

considered in Chapter 6. The following analysis is conducted by limiting Equa-

tion (4.8) to the (x = 0, y = 0, z) axis. An equivalent formulation is given in

Equation (4.11)[53].

B =
Br∗
π

[
tan−1

(
z + h

dw

√
d2 + w2 + (z + h)2

)
− tan−1

( z

dw

√
d2 + w2 + z2

)]

(4.11)

70



Axial Distance (mm)

R
ad

iu
s
(m

m
)

Strong Magnets (Double Stack - Ring)

0 5 10 15 20 25 30 35
0

2

4

6

8

10

12

14

16

Axial Distance (mm)

R
ad

iu
s
(m

m
)

Baseline Magnets (Single Stack - Ring)

0 5 10 15 20 25 30 35
0

2

4

6

8

10

12

14

16

M
ag
n
et
ic

F
ie
ld

(G
)

0

500

1000

1500

2000

2500

Figure 4.8: Analytical magnetic field calculations for the ring magnet approxima-
tion as seen in Figure 3.12 without the experimental overlays. Vectors
are normalized and indicate field orientation at the arrow base. Magnet
dimensions and locations can be found in Figure 3.11.
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Figure 4.9: Error associated with axisymmetric approximation. Large errors on the
centerline are caused by null magnetic field values and should be ignored.
Largest discrepancy occurs at the magnet locations of the off-face plane
as expected.
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Field Strength Effect

By increasing the magnetization or residual induction of the material, each mag-

netic dipole within the material produces a larger field strength and acts to bolster

the entire field. Figure 4.10 shows the effect of successively larger values of the

residual induction, Br∗. Because of the r3 drop-off, this effect is limited to the

near field region; however, there does not appear to be an asymptotic limit to

the field strength.
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Figure 4.10: Effect of increasing the residual induction. Because the residual induc-
tion is a material property, the limitation of this effect is based on the
availability of high Br∗ materials.

Predictably, at z = 0, the gain of the magnetic field is equivalent to α, the

multiplicative constant of the residual induction. In this way, the near-field effect
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of various residual inductions can be predicted. Physically, changing the residual

induction requires changing the permanent magnet material. Because of this, the

limitation on Br∗ lies in the availability of materials. This can be achieved with

the use of electromagnets, however, this is not commonly done in ring-cusp ion

thruster discharges due to the additional power required. Additionally, as seen

in Chapter 3, a stronger field is not always better for thruster performance.

Magnetization Height Effect

Figure 4.11 shows an asymptotic limit as the permanent magnet is increased

along the magnetization dimension. This is due to the drop-off of field strength

from the rear sections on the region directly in front of the magnet. In all of the

cases seen in Section 4.4.3, the α = 1 base magnet is a single block magnet used

in Chapter 3. Figure 4.11 shows that doubling the magnet height is within the

asymptotic limit. As can be seen by the α = 1 and α = 3 curves, an increase

in height in this region has a similar effect to increasing the residual induction .

Ultimately, altering this dimension has the effect of increasing the field strength

near the cusp to a limit while leaving the far-field region relatively untouched.

Width Effect

Increasing the permanent magnet along the dimension transverse to the magneti-

zation vector acts to decrease the field on the face while increasing the magnetic

field further into the discharge chamber. This is due to the outer dipoles field

opposing the center region on axis. In contrast, the outer dipoles have a field

orientation constructive with the field emanating from the center region in the

far-field region. Similar to the “Height Effect”, this effect approaches a limit with

increasing α. From Chapter 3, it was shown that a field-free region is still fairly
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Figure 4.11: Effect of increasing the dimension along the magnetization vector. Ma-
terial toward the rear of the block has a decreasing effect thus limiting
the α value. Change in height acts to increase the near field region while
leaving the far-field region relatively unaffected.
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important for discharge performance. Therefore, increasing the field in the center

of the discharge chamber is not a desirable effect and is taken into consideration

for miniature discharge design.
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Figure 4.12: Effect of increasing the dimension transverse to the magnetization vec-
tor. The outer edges of the magnet act to suppress the on axis field
in the near-field region while increasing the field in the far-field region.
This manipulation allows for the magnetic field to penetrate further into
to discharge volume. Like Figure 4.11, the on-axis profile asymptotes
with increasing α.
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4.5 Numerical Calculation of the Stream Function and

the Scalar Potential

The stream function and magnetic potential are dependent on the magnetic field

configuration. In general, an analytical solution cannot be found so these prop-

erties must be solved numerically. Both of the partial differential equations for

the stream function and scalar potential can be reduced to a Poisson equation

with Neumann boundary conditions. This is discretized with a finite difference

method[54, 55].

The numerical solution provides the transformation from cylindrical coordi-

nates to the stream function and the scalar potential, the complete domain is

in general not onto. Because of this, the transformation is not invertible[47]. In

larger magnetic field configurations, it may be necessary to divide the domain into

sub-domains that are locally onto. In ring-cusp configurations, each magnetic ring

has a corresponding null streamline. If there are adjacent counter-polarized rings,

the null streamlines enclose a region with the chamber boundary. In general, a

sub-domain consisting of two such regions is onto, and thus has an invertible

transformation with cylindrical coordinates. In the current configuration these

two regions are encapsulated by the three ring magnets.

4.5.1 Stream Function Formulation

The partial differential equation is given by Equation (4.2). The first-order sys-

tem can be combined by taking the divergence of the gradient of the stream

function. This is seen in Equation (4.13) where a short hand notation is defined

77



by Equation (4.12). The result is a Poisson equation

gr = rBz ; gz = −rBr (4.12)

∇ · ∇Ψ = ∇ · (grr̂ + gzẑ)

∇2Ψ =
1

r

∂

∂r
(rgr) +

∂

∂z
(gz)

(4.13)

Poisson’s equation for the stream function has mixed boundary conditions.

By definition, the magnetic flux through the centerline is zero, thus the r = 0

boundary can be expressed with Equation (4.14). The other boundary condi-

tions can be derived from the original partial differential equation as outlined in

Equations (4.15).

Ψ(0, z) = 0 (4.14)

∂Ψ

∂n
=
∂Ψ

∂r
= gr(r = R, z) ;

∂Ψ

∂n
=
∂Ψ

∂z
= gz(r, z = (0;L)) (4.15)

4.5.2 Scalar Potential Formulation

Before the calculation of the scalar potential, the existence of such a function

must be verified for the system. In order for a velocity potential to exist in

fluid mechanics, the velocity field must be irrotational[44] as prescribed by Equa-

tion (4.16).

∇× v = 0 (4.16)
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By replacing the velocity field with the magnetic field and comparing it to

Ampere’s law, Equation (4.17), it can be seen that a scalar potential exists in the

absence of external currents as well as time changing electric fields. Because of

these strict requirements, the utility of the magnetic scalar potential is usually

limited to deriving the field of permanent magnets. Although there exists charge

carriers in the plasma, the density is assumed to be low enough such that the

field is unaffected. Additionally, the DC discharge in ion thrusters operate with

little to no oscillations in the plasma.

∇×B = µ0J + µ0ε0
∂E

∂t
≈ 0 (4.17)

The PDE for the scalar potential is derived in a similar fashion to the stream

function; however, taking the divergence of Equation (4.5) yields a homogeneous

right hand side by applying Equation (4.1). The result is

∇ · ∇Φ = ∇ · (Brr̂ +Bzẑ)

∇2Φ = 0
(4.18)

Because the reference value of the potential can be arbitrarily prescribed,

Laplace’s equation for the scalar potential is given the Neumann boundary con-

ditions stated in Equation (4.19) which is based on the definition of the scalar

potential.

∂Φ

∂n
=
∂Φ

∂r
= Br(r = (0;R), z) ;

∂Φ

∂n
=
∂Φ

∂z
= Bz(r, z = (0;L)) (4.19)
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Figure 4.13: Discretization of the cylindrical domain. The physical boundary is out-
lined with the weighted black line.

4.5.3 Numerical Method

The solution to Equations (4.18) & (4.13) are found by using a finite differ-

ence method on a rectilinear discretization of the cylindrical domain similar to

Figure 4.13. Here the distinction for various node points are color-coded. The

interior nodes are shown in red. The boundary and ghost nodes, blue and white

respectively, are used to treat the Neumann boundary conditions.

After a grid resolution is chosen, the magnetic field is calculated on the node

points using the equations given in Section 4.4.2. Next, the Laplacian is ap-

proximated using a five-point stencil such as that shown in Figure 4.14. This

method is chosen for the simple structure as well as for its second-order accuracy.

The approximation of the Laplacian can be found through a Taylor expansion,

the results of which are given in Equation (4.20). The first partial in the radial
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Figure 4.14: Stencil used to approximate the derivatives.

direction has been replaced with the component of the gradient. Here the ap-

proximation is given for the scalar potential, however, the stream function takes

on an identical form with the substitution of Ψ for Φ and gr for Br. The scalar

potential is homogeneous and thus does not require discretization of the right

hand side. For the stream function, Equation (4.13) is approximated using a

central differencing scheme given in Equation (4.21).

∇2Φ =
∂2Φ

∂r2
+
∂2Φ

∂z2
+

1

r

∂Φ

∂r
=
∂2Φ

∂r2
+
∂2Φ

∂z2
+
Br

r

≈ Φi+1,j − 2Φi,j + Φi−1,j

∆z2
+

Φi,j+1 − 2Φi,j + Φi,j−1

∆r2
+
Br(i,j)

ri,j

(4.20)

∇ · g =
1

r

∂

∂r
(rgr) +

∂

∂z
(gz) =

∂gz
∂z

+
∂gr
∂r

+
gr
r

≈ gz(i+1,j) − gz(i−1,j)

2∆z
+
gr(i,j+1) − gr(i,j−1)

2∆r
+
gr(i,j)
ri,j

(4.21)

The Neumann boundary conditions are treated similarly with Equation (4.20);

however, ghost node values of (i, j), those that occur outside of the boundary,

are solved for by discretizing Equations (4.19) & (4.15). Using a second-order

method given in Equations (4.22) through (4.25), the ghost node values can be

solved as a function of interior and boundary nodes. Here, Ni & Nj are the total
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number of nodes in the z and r direction respectively. The Dirichlet boundary

condition for the stream function, Equation (4.14), is explicitly prescribed.

∂Φ

∂n
=
∂Φ

∂r
=

Φi,Nj+1 − Φi,Nj−1

2∆r
= Br(i,Nj)

Φi,Nj+1 = 2∆rBr(i,Nj) + Φi,Nj−1

(4.22)

∂Φ

∂n
=
∂Φ

∂z
=

ΦNi+1,j − ΦNi−1,j

2∆z
= Br(Ni,j)

ΦNi+1,j = 2∆zBz(Ni,j) + ΦNi−1,j

(4.23)

∂Φ

∂n
=
∂Φ

∂r
=

Φi,j=2 − Φi,j=−1

2∆r
= Br(i,j=1)

Φi,j=−1 = −2∆rBr(i,j=1) + Φi,j=2

(4.24)

∂Φ

∂n
=
∂Φ

∂z
=

Φi=2,j − Φi=−1,j

2∆z
= Bz(i=1,j)

Φi=−1,j = −2∆zBz(i=1,j) + Φi=2,j

(4.25)

The interior equations with the boundary conditions combined create aNi×Nj

linear system. The result is a banded tridiagonal matrix on the LHS. As an
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example, for ∆r = ∆z = 1 and a 3x3 grid, the resulting matrix is,




−4 2 0 2 0 0 0 0 0

1 −4 1 0 2 0 0 0 0

0 2 −4 0 0 2 0 0 0

1 0 0 −4 2 0 1 0 0

0 1 0 1 −4 1 0 1 0

0 0 1 0 2 −4 0 0 1

0 0 0 2 0 0 −4 2 0

0 0 0 0 2 0 1 −4 1

0 0 0 0 0 2 0 2 −4




which can be solved using standard matrix inversion techniques. Because of the

relatively fine grid needed to capture the cusp region, sparse matrix methods

are recommended. For the current study, MATLAB’s sparse matrix structure

was used in conjunction with the standard matrix inversion operator, “/”, which

choose the best solution method given the matrix structure. The resolution used

to calculate all stream functions and scalar potentials in this study is Ni ×Nj =

393× 543.

4.5.4 Solution

The numerical solution to the stream function and the scalar potential are pre-

sented for the baseline miniature discharge shown in Chapter 3. Figures 4.15,

4.16, and 4.17 give both solutions in detail along with the composite grid over-

laid on the magnetic field strength. The following figures are for the baseline

magnetic field configuration. In Figure 4.15, the sign of the stream function

value simply indicates that the direction of the magnetic field. In order to satisfy
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the onto condition for an invertible transformation, the domain is limited to the

region between the center of the outside rings. The origin is also relocated to

the center ring. Note that in general the stream function and scalar potential

can be calculated for the entire domain. Only when the transformation between

coordinates requires the sub-domain treatment.
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Figure 4.15: Stream Function Solution.
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Figure 4.16: Scalar Potential Solution.
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Figure 4.17: Equipotential and stream function contours superimposed on the mag-
netic field strength.

86



4.6 Flux Aligned Curvilinear Coordinates

Solving for the stream functions and scalar potentials automatically yields the

transformations. This section shows the mapping between the domains followed

by the derivation of the coordinate scale factors, the vector operators, and dif-

ferential elements. Although the scale factors were ultimately not used in the

current effort, they are derived here for posterity. The flux aligned coordinate

system represents a physical interpretation of the plasma behavior due to its

dependence on the magnetic field.

4.6.1 Cylindrical Coordinate Mapping

The solutions for the stream function and the scalar potential found in Sec-

tion 4.5.4 are used for the mapping. The transformation exists only because

of the truncation of the domain. This is done such that there is a one to one

mapping between the flux coordinate system and the cylindrical domain. This

mapping is shown in Figures 4.18 & 4.19. The vertical pairs demonstrate the

mapping of constant contours of one coordinate system to the other. The first

pair in Figure 4.18, shows constant radial and axial contours mapped on to the

cylindrical and the flux coordinate domains. The same is done for the stream

function contours and equipotential lines in Figure 4.19. The spacing chosen for

the Figure 4.18 is a mm2. The contours plotted in Figure 4.19 are also equally

spaced, but the spacing chosen is arbitrary.

To clarify the domain transformation in flux coordinates, markers have been

placed that translate the cylindrical coordinate locations to the flux coordinate

domain. The centerline folds about the green marker such that the edges of the

centerline, identified by a white marker and and “x” are coincident. Thus, the
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Figure 4.18: Transformation from cylindrical to flux aligned coordinates with the
constant contours of the cylindrical components. Markers placed on the
boundary are provided to help clarify the mapping.
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Figure 4.19: Transformation flux aligned to cylindrical coordinates with the constant
contours of the flux aligned components. Markers placed on the bound-
ary are provided to help clarify the mapping.
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center line is not onto. Because this occurs at a boundary, this region must be

treated with special consideration during analysis. The centerline should have

a reflective boundary condition. In the flux coordinate system, this would be

an interior boundary condition that must be enforced. The red diamond marker

demonstrates how the flux coordinate system gives more resolution to the regions

of higher magnetic field strength, a quality that is often needed in the analysis of

cusped fields.

4.6.2 Scale Factors

As with any curvilinear coordinate system, scale factors must be found for the

flux aligned coordinates in order to perform any calculus operations. As stated

previously, the choice of the scalar potential for the coordinate along the field

line forms an orthogonal coordinate system. Because of this, the covariant and

contravariant components are identical and the bases have a relationship given

by Equation (4.26)[48], where hi is the scale factor and is expressed as the inverse

magnitude of the gradient.

hi∇ri =
∇ri
|∇ri|

= êi (4.26)

Equations (4.5) & (4.2) give the gradients for the stream function and the

scalar potential, but the gradient for the azimuthal coordinate has not been

formally stated. From Clebsch coordinates, the magnetic field must follow Equa-

tion (4.27)[47]. For Equation (4.27) to be satisfied, (∇θ)r and (∇θ)z must equal

zero and (∇θ)θ = 1
r
. As expected this value is the same as in cylindrical coordi-

nates. The scale factors for the remaining coordinates can be found by applying

Equation (4.26) to Equations (4.5) & (4.2). The full set of scale factors is given
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in Equation (4.28). These scale factors can be used to derive the vector operators

which are summarized in Table 4.2. Additionally, the scale factors can be used

the generate differential elements, such as the differential volume given in (4.33).

A schematic of the differential area is shown in Figure 4.20. Here an element

of constant “area” in flux coordinates is shown in the cylindrical domain. The

elements physical area scales inversely with the magnetic field strength.

B = ∇Ψ×∇θ = Brr̂ +Bzẑ

= rBr (∇θ)θ r̂ + r (Br (∇θ)r −Bz (∇θ)z) θ̂ + rBz (∇θ)θ ẑ
(4.27)

hΨ =
1

|∇Ψ| =
1

rB

hθ =
1

|∇θ| = r

hΦ =
1

|∇Φ| =
1

B

(4.28)

Table 4.2: Vector operators in flux aligned coordinates.

∇Ξ = (rB)
∂Ξ

∂Ψ
êΨ +

(
1

r

)
∂Ξ

∂θ
êθ + (B)

∂Ξ

∂Φ
êΦ (4.29)

∇ · a =
(
B2
) [ ∂

∂Ψ

( r
B
aΨ

)
+

∂

∂θ

(
1

rB2
aθ

)
+

∂

∂Φ

(
1

B
aΦ

)]
(4.30)

∇× a =
(
B2
)
∣∣∣∣∣∣

1
rB

êΨ rêθ
1
B

êΦ
∂
∂Ψ

∂
∂θ

∂
∂Φ

1
rB
aΨ raθ

1
B
aΦ

∣∣∣∣∣∣
(4.31)

∇2Ξ =
(
B2
) [ ∂

∂Ψ

(
r2 ∂Ξ

∂Ψ

)
+

∂

∂θ

(
1

r2B2

∂Ξ

∂θ

)
+

∂

∂Φ

(
∂Ξ

∂Φ

)]
(4.32)
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Figure 4.20: Schematic illustrating how a constant area in flux coordinates scales
inversely with the magnetic field strength.

d3R = h1h2h3du1du2du3
1

B2
dΨdθdΦ (4.33)

4.7 Magnetic Field Analysis Summary

The preceding chapter has developed a framework to analyze the magnetic field’s

effect on plasma behavior. The flux aligned coordinate system is introduced as

a way to decouple the plasma motion. This requires an axisymmetric approx-

imation for the block magnets used in the miniature discharge experiment. A

comparison of the magnetic field strength between the actual and approximated

ring magnet configurations show reasonable agreement. Investigating the 1-D ax-

ial field of a block magnet revealed rules of thumb for chamber design. Ultimately,

the field was used to numerically calculate the coordinate mapping to the mag-

netically aligned coordinate system. Along with decoupling the plasma motion,

the new coordinate system gives more resolution to regions of higher magnetic

field. Although not used in this study, the scale factors and differential elements

developed should allow for a more detailed analysis of cusped configurations using

the fluid equations.
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CHAPTER 5

Bulk Plasma Structure due to Magnetic Cusp

Confinement

The flux aligned coordinate system developed in Chapter 4 serves as a natural way

to analyze the plasma structure within the magnetic cusp. The primary difficulty

in analyzing the miniature discharges is the non-uniformity within the plasma

discharge. The following chapter examines the plasma density profiles within the

magnetic field to find a relationship for an arbitrary magnetic field configuration.

This dependence allows for a prediction of the plasma density topography and is

used to develop a miniature discharge design model in Chapter 6.

5.1 Measurement Domain in Flux Aligned Coordinates

Figure 5.1 shows the measurement domain overlaid onto the entire chamber do-

main. Because the flux aligned coordinate amplifies region of high magnetic field

the measurement domain does not not appear to be sufficient in describing the

plasma behavior within the magnetic cusps; however, Figures 3.14 & 3.15 show

that the plasma density has been reduced to less than 10% of its maximum value

in the majority of the measurement boundary. This occurs mainly between the

magnetic cusps. At the magnetic cusp, the plasma is expected to stream freely

to the walls[56]. Therefore, it is assumed that the measurement domain provides
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Figure 5.1: The measurement domain is shown in red superimposed on the total
domain of the discharge chamber. The spacing of the contours shown is
1 mm× 1 mm.

sufficient information to infer the 2.5 mm of the unresolved domain. As discussed

in Chapter 3, the region adjacent to the anode wall is not resolved due to the

size of the probe.

In contrast, the high density region, or the centerline in cylindrical coor-

dinates, has been reduced to a very small section in the flux aligned coordi-

nate system. This low-field region includes the majority of the ion production,

and the hollow cathode influence, as seen in Figure 3.20. By converting to the

flux aligned coordinate system, this region becomes essentially a point source,

a paradigm which decouples the plasma generation in the unmagnetized region

from the plasma transport to the walls through the magnetized region.
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5.2 Plasma Density Dependence on Stream Function

The plasma behavior is strongly coupled to the magnetic field lines. Figure 5.2

shows the direct mapping of the baseline normalized plasma density in the flux

aligned coordinate system. The region along the center cusp (i.e. near Φ 0)

is highlighted using a red manifold. Because the length scales in this region

are smaller than the probe tip resolution, it is assumed that the features are

smeared by the measurement. The width of the plasma is smaller than the probe

diameter and is difficult to resolve using the current techniques. Because of

this, the region indicated by the red manifold in Figure 5.2 should be ignored.

It is typically assumed that the streamline connecting the cusp to the central

plasma region take on the same density[56, 1]. This is useful in determining

an appropriate replacement for the cusp region. Figure 5.3 shows Figure 5.2

from the perspective of the cyan marker. Here the unresolved region of the

measurement has been removed. From this perspective it is clear that there is

a direct correlation between the stream function value and the plasma density.

Notice that the plasma density appears to be constant along the scalar potential

coordinate. The density seems to be an even function of the stream contours

allowing the density values to be plotted against the absolute value of the stream

function.

To mitigate end effects, only the surrounding the center cusp is considered

as illustrated in Figure 5.4. Here, the plasma density measurements along the

red lines are plotted against the magnitude of the corresponding stream function

values. Figure 5.5 shows the density plotted against the stream function for every

case. The plots are separated into the baseline field configuration shown on the

left and the strong field configuration shown on the right. Within a given field

configuration, the normalized density’s dependence on the stream function shows
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Figure 5.3: The plasma density surface shown from the perspective of the cyan marker
in Figure 5.2. The unresolved measurement region has been removed.
The stream function contours are isopycnic.
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good agreement. approximate trend lines are shown for each configuration by

averaging the values.

The averaged trend lines in Figure 5.5 show similar behavior and can be

divided into three regions as shown in Figure 5.6. The first region is marked by

the sharp vertical drop near null values of the stream function. Here the density

drops irrespective of the stream function, thus it can be concluded that “Region

1” does not have a dependence on the stream function. “Region 2” is marked by

an exponential decay. This region is saved for future analysis. Finally, “Region

3” shows a very gradual fall off, however, because this region is well below the

exponential cutoff; it is ignored.

The trend lines for the two magnetic field configurations have slight disagree-

ment as seen on the left side of Figure 5.7. The reference value chosen for these

curves is based on the maximum plasma density found in the domain. This oc-

curs at the hollow cathode exit which is well within “Region 1”. In order to
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Figure 5.5: Normalized plasma density plotted against the stream function for the
center cusp region.
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main graph in the right figure shows the exponential dependence in the
straight section of the semi-log plot.

remove the effect of the hollow cathode, it is more appropriate to normalize the

data by the value at the entrance of “Region 2”, which is denoted as nReg.2. By

using this as the new reference value, the magnetic field line’s attenuation of the

plasma to the wall can be compared fairly. This re-normalization of the trend

lines is shown in the pullout of the right plot in Figure 5.7. The main plot shows

the same curves plotted on a semi-log scale. As mentioned previously, “Region

2” is observed to have features that resemble exponential decay. This is con-

firmed by the straight section seen here. Further the exponential dependence is

the same for both magnetic field configurations up to Ψ ≈ 2.5× 10−6 Tm2

rad
, which

is taken as the entrance to “Region 3”. This corresponds to roughly 4% of the

maximum density seen in Figures 3.14 & 3.15 and is considered negligible. Fit-

ting the straight section of the re-normalized plot with the original data yields a

slope of −7.6 × 105 and an empirically determined density dependence given in

Equation (5.1), where ñ represents the re-normalized density.

99



ñ =
n(Ψ)

nReg.2
≈ exp

(
−7.6× 105Ψ

)
(5.1)

5.3 Adjusted Plasma Volume and Anode Loss Area

One of the primary complications with miniature ring-cusp discharge analysis is

the pervasive magnetic field. In large devices, the magnetic field is generally con-

tained in a narrow region around the surface of the discharge chamber resulting

in a relatively large uniform area in the center allows for a simple control volume

analysis[29]. This methodology is useful for first-order discharge chamber design,

and predicting the stability of the plasma. Typically, the volume of the plasma

is taken to be the physical volume of the vessel. In the miniature plasma device,

however, the magnetic field occupies a large portion of the chamber thus making

the actual plasma volume uncertain.

Due to the complicated cathode region which led to the need for a re-normalization,

Equation (5.1) cannot be used to predict the complete density profile of a dis-

charge chamber. It can, however, be used to predict the effective plasma volume

and the loss area of the anode by developing a weighting function for the geom-

etry of the discharge chamber. Because there is not a dependence on the stream

function in “Region 1”, this region can not be predicted. The entrance to“Region

2” is taken to be the departure from linearity in the semi-log plot at 3×10−7 Tm2

rad
.

Densities below this valuel are taken to have a value of unity. This yields the

piecewise function given in Equation (5.2), where the constant has been added
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in the exponent to force a continuous function.

w(Ψ) =





1, if Ψ < 3× 10−7 Tm2

rad

exp {−7.6× 10−5 (Ψ− 3× 10−7)} , if Ψ ≥ 3× 10−7 Tm2

rad

(5.2)

5.3.1 Weighting Function for Anode Loss Area

Equation (5.2) can be applied to the vessel dimensions to account for the reduced

plasma dimensions. A similar approach is already used to determine the plasma

loss area through the cusps. Typically, the loss area for the plasma is taken to

be on the order of the hybrid gyroradius, given in Equation (2.4). This is simply

the geometric mean of the ion and electron gyroradii.

The loss width’s dependence on the hybrid gyroradius is based on measure-

ments made by various research efforts[3, 27]. Although researchers generally

agree that the loss is on the order of the hybrid gyroradius, there is some dis-

agreement on the way that the length scale is measured and reported. Most of

the experiments done to determine the leak width use current carrying wires to

generate the magnetic field. This configuration differs from those used in ion

thrusters in two ways. First, because the current source initiates at the wires,

the magnetic field strength generated at the cusp between the wires is weakest at

the loss point. In contrast, the magnetic field strength from a permanent magnet

is strongest in the loss area as illustrated in Figure 5.8; therefore, in permanent

magnet configurations the length scales are much smaller at the cusp. This can

lead to the smearing of the plasma density since the probe tip is unable to resolve

the spatial features of the cusp region. This is the case in the highlighted region

of Figure 5.2. The second difference is in the boundary itself. The boundary in
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Figure 5.8: Magnetic field of a permanent magnet and a “picket fence” wire config-
uration on the left and right respectively. The length scales in the loss
region are much smaller in the permanent magnet due to its proximity to
the source.

the wired configuration is marked by a sheath to a region of sufficiently differing

plasma density. The location of this sheath is somewhat ambiguous and brings

up the question of where the measurement should be made to capture the loss

plane. Cusp discharges that employ a magnetic field that terminates at the an-

ode surface, however, have a definitive conducting boundary that acts as the loss

surface. While this provides a definitive location for the plasma loss, measuring

in this region is difficult without significant modifications to the device. All of

these issues question the methodology of determining the length scale for plasma

loss.

Most experiments use some variant of the “full-width at half-max” in deter-

mining the length scale of the plasma loss[3]. However, Figure 5.2 shows that

the measurement of the peak value can be highly dependent on the resolution of

the measurement surface. To avoid this uncertainty, Equation (5.2) is used to

determine the plasma loss area at the anode surface. Although Equation (5.2)

does not strictly hold for the plasma density measurements, using a nominal bulk

plasma density as the reference value allows the plasma to stream freely to the

wall at the cusp[56]. The profile at the anode, shown in Figure 5.9, can then
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Figure 5.9: Weighting for the loss area along the anode wall for the baseline and
strong magnetic field configurations.

be used as a weighting function for the plasma. This is similar to designating

a loss region, however, it has the additional advantage of describing the loss to

the entire anode surface including regions where the magnetic field impinges the

boundaries at an oblique angle. Further, it takes in to account the attenuation of

the plasma as it moves through the oblique regions. In the event that the mag-

netic field between the cusp is weak enough between the cusps, the plasma loss

would be captured with this method as well, something that would be overlooked

using the traditional hybrid loss method.

A comparison of the loss area generated by Equation (5.2) to that predicted

by the hybrid gyroradii is given in Table 5.1. To calculate the total loss area,

Equation (5.3) is used. Several assumptions are made on the plasma properties

in Table 5.1, thus it is only used to illustrate an order of magnitude agreement

with the weighting function method. Here it is assumed that the ion temperature

is equivalent to the measured neutral temperature from the chamber walls. The

higher values obtained using the hybrid loss width method may be attributed to

the artificial smearing of the density profile when calculating the full-width at
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Table 5.1: Comparison of the total hybrid loss area of the three magnet rings to that
using the weighting function method of Equation 5.3. The loss width used
is 4rh as suggested by Hershkowitz[3]. For comparison, the surface of area
of the anode is 3, 632 mm2

Integrated Area
Equation (5.3)

Hybrid Loss Area,
3× (2πR4rh)

Baseline 213 mm2 242 mm2

Strong 132 mm2 196 mm2

half-max. Just as the hybrid loss width is dependent on the plasma temperature,

Equation (5.2) should only be used for plasmas with similar properties.

Aa = 2πR

∫ L

0

w (Ψ (z, r = R)) dz (5.3)

5.3.1.1 Anode Loss Area for Negative Plasma Potentials

In the case of a negative plasma potential, as is seen in Chapter 3, the sheath

potential structure repels all ions from the anode wall. The location of this

reflection is on the order of a Debye length away from the wall, which in the

present conditions are ∼ 0.01 mm. Because the ions do not reach the wall, the

loss width at the magnet face is taken to be two gyroradii of the plasma electrons

at thermal velocity[31]. Therefore, Equation (5.3) should only be used in the

case of plasma potentials greater than the anode potential. The magnetic field

strength value for the gyroradius should be taken at the null stream function

contour.
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Figure 5.10: Weighting function for the entire plasma domain shown for the baseline
magnetic field configuration.

5.3.2 Weighting Function to determine Adjusted Plasma Volume

The reduction of the loss area through the hybrid gyroradii is a common practice

in designing multi-pole devices; however, no such reduction is done for the volume.

As mentioned previously, the vessel volume is usually assumed to be equivalent

to the plasma volume. The measurements from Chapter 3 show that there is a

significant reduction in plasma volume from the magnetic confinement. Applying

Equation (5.2) to the entire volume gives an estimate of the plasma volume. The

weighting is shown in Figure 5.10. The adjusted volumes can be calculated using

Equation (5.4) and is summarized in Table 5.2. Note that by using this method,

an arbitrary cutoff is not necessary. Calculating the volume using the cutoff

stream contour, Ψ = 3 × 10−7, yields roughly a 10% reduction in volume from

Equation (5.4).

Vp = 2π

∫ R

0

∫ L

0

rw (Ψ (z, r)) dzdr (5.4)
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Table 5.2: Plasma volume estimated using Equation 5.4. The volume of the vessel is
3.0× 10−5 m3 and is used for the normalized volume.

Volume (m3) Normalized Volume

Baseline 1.4× 10−5 0.47
Strong 1.1× 10−5 0.37

5.4 Magnet Length Sensitivity Study

To demonstrate how the stream function contours affects the plasma volume and

anode loss area, a study was conducted on the plasma volume and loss area’s

dependence on the permanent magnet length. The permanent magnet length

was varied from 0 to 3 times the baseline magnet from Chapter 3. The baseline

and strong field configurations correspond to 1 and 2 times the block magnet’s

length respectively. In this study, the stream function contours were calculated

for each length factor while constraining the three rings to have the same value.

The results are shown in Figure 5.11. Typically, discharge chambers are designed

to minimize the loss area and maximize the plasma volume; therefore, the area

metric is expressed as
(

1− Aloss
Aanode

)
% such that a higher value is desired. This is

done to more readily demonstrate the trade off of plasma volume to loss area

As described in Section 4.4.3 the effect of lengthening the magnet acts to

increase the field strength near the surface of the magnet. This decreases the

loss area of the plasma. Additionally, the stream lines are forced together and

decrease the effective volume of the plasma. This behavior is reflected in Fig-

ure 5.11. While lengthening the permanent magnet decreases the loss area, there

is a diminishing return as seen by the blue curve. Further, for a marginal decrease

in anode loss area the decrease in volume can be much more significant. This

explains why poor performance was seen in the strong field case of Chapter 3.
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Figure 5.11: Anode loss area and plasma volume dependence on the permanent mag-
net length.

Although the strong field reduced the loss area, there was also a significant de-

crease in the plasma volume. Appropriate metrics must be created in evaluating

the trade-off between maximizing the plasma volume and minimizing the anode

loss area. The methodology presented here determines the plasma volume and

loss area from the magnetic field configuration and is used in Chapter 6 to develop

a design procedure for miniature ring-cusp discharges.
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CHAPTER 6

Miniature Ring-Cusp Discharge Design

In the previous chapter it was found that the plasma density showed a strong

correlation to the stream function values of the magnetic field. Because of the

highly non-uniform plasma discharge from the cathode, this technique cannot be

used to predict the plasma density for the entire chamber; however, it does yield

a useful measure for the effective plasma volume.

The current chapter investigates the use of these parameters in developing an

initial design tool for miniature discharges. Plasma potentials below the anode

voltage seen in the experimental measurements of Chapter 3 suggest the existence

of an ion repelling sheath. Therefore, the plasma is not only subject to a discharge

instability, but also running in a non-efficient regime as stated in Chapter 2.

The sheath character is nonlinear and not well understood for negative plasma

potentials[2]. The behavior of the plasma as it moves through a varying magnetic

field, such as the one currently considered, further complicates the situation and

is suggested for future studies.

The objective of this chapter is to outline the mechanisms that determine the

sign of the plasma potential as well as to develop typical values that can be used

for a miniature discharge design. To conclude, a redesign of the discharge device’s

magnetic field is examined with imposed constraints followed by a recapitulation

of the design procedure.
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6.1 Plasma Electron Particle Balance

As discussed in Chapter 2, depending on the balance of positive and negative

species, the plasma potential adjusts with respect to its boundaries to maintain

quasi-neutrality. In laboratory plasmas, the electron population is typically much

more energetic than the ion population leading to an electron repulsion sheath.

However, as seen in the plasma potential measurements in Figure 3.20, miniature

discharges appear to be susceptible to a scenario that is not commonly encoun-

tered. At this scale, the magnetic field strength at the cusp can inhibit the plasma

electron loss and drives the plasma potential below the anode voltage, leading to

an ion repelling sheath.

While the a discharge instability cannot be predicted easily, the sign of the

plasma potential with respect to the anode can be calculated with a particle

balance of the plasma electrons. This method has been used successfully for

various studies and has been modified to take into consideration the inherent

incongruence of the plasma and primary electron volumes found in small-scale

devices[29, 30, 31]. The plasma electron production, Ie, comes from four separate

collisions:

1. Post-ionization primaries thermalized with the background plasma, Iip:

Iip = no (npVp) 〈σivp〉 (6.1)

where no is the neutral density, npVp express the total number of primary

electrons, and 〈σivp〉 is the reaction rate coefficient for the ion-neutral ion-

ization collision given by Rapp and Englander[57].
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2. Post-excitation primaries thermalized with the background plasma, I∗p:

I∗p = no (npVp) 〈σ∗vp〉 (6.2)

where 〈σivp〉 is the reaction rate coefficient for the ion-neutral excitation

collision given by Hayashi[58].

3. Primaries thermalized with the background plasma in the absence of a

heavy species collision, Iτp:

Iτp =
npVp
τ

(6.3)

where τ is the time for a primary electron to thermalize with a background

population of Maxwellian electrons given by Spitzer[59].

4. Plasma electrons generated from ionization collisions, Ii:

Ii = no [(npVp) 〈σivp〉+ (neVe) 〈σive〉] (6.4)

where 〈σive〉 is the reaction rate coefficient for ionization due to the Maxwellian

population.

These terms can be combined to yield the plasma electron production,

Ie = Iip + I∗p + Iτp + Ii (6.5)

Because the ion loss surfaces are at cathode potential, it is assumed that the

majority of the plasma electron loss, Ia, occurs at the anode. The anode loss area,

Aa, for the plasma electrons is calculated using the stream function technique.
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The total particle loss can be expressed,

Ia =

[
1

4
ne

√
8kTe
πme

Aa

]
f−1 (φ) (6.6)

where the bracketed term in Equation (6.6) is the random plasma electron loss

to the anode wall and the sheath modifier, f (φ), is the attraction or repulsion of

the plasma electrons by the sheath. Values of f (φ) < 1 represent an ion repulsion

sheath and f (φ) > 1 represent electron repulsion sheaths. There is a portion of

the tail of the Maxwellian that has sufficient energy to be lost to the cathode

surfaces. The contribution from this current was calculated to have a small effect

and is neglected.

The change in current due to the sheath, f (φ), can be solved for by equating

Equations (6.6) & (6.5).

f (φ) =

1
4
ne

√
8kTe
πme

Aa

npVp
[
no (2〈σivp〉+ 〈σ∗vp〉) + 1

τ

]
+ no (neVe) 〈σive〉

(6.7)

In order to maintain quasi-neutrality, the sheath modifier, f (φ), balances

the random plasma electron loss with the electrons generated within the control

volume. The experimental measurements from Chapter 3 indicate a negative

plasma potential for both the baseline and strong field configurations, thus f (φ)

has a value less than unity.

6.1.1 Primary and Plasma Electron Particle Calculation

As stated in Section 2.3.2, the ideal value of f (φ) is unity. Because the terms in

Equation (6.7) for f (φ) are highly dependent on the operating condition of the

device, representative values must be chosen for the various plasma parameters
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before determining the optimal magnetic field configuration. The stream function

analysis can be used to calculate the various geometric properties such as the

anode area, ion loss area, and the plasma volume. These change with the magnet

dimensions. Experimental data can be used to determine typical values of the

remaining plasma parameters.

For the current discharge chamber geometry, the neutral density has been

calculated to be 4.0 × 19 m−3 for a xenon flow rate of 0.5 sccm and the probe

access slot. The electron temperature, Te, has been chosen to be ∼ 3 eV and the

reaction rate coefficients have been calculated for primary energies of ∼ 18 eV.

The plasma density is highly dependent on the operating condition; however,

using a nominal value of 1× 1018 m−3 for the plasma density, the Spitzer slowing

time, τ can be calculated for the primaries[59].

The remaining values in Equation (6.7) involve the electron species. While

densities are also a strong function of the discharge operating conditions, nominal

ratios can be calculated from experimental data. Because of the variability of the

density throughout the chamber, the order of magnitude for the ratio of species

count is solved for keeping with the control volume approach. The two unknowns

are then the plasma and the primary electron particle count. The ratio of these

can be found by rearranging Equation (6.7) as seen in Equation (6.8).

npVp
neVe

=

Aa
4Ve
ne

√
8kTe
πme
− f (φ)no〈σive〉

f (φ)
[
no (2〈σivp〉+ 〈σ∗vp〉) + 1

τ

] (6.8)

The representative plasma potentials for the sheath function are taken from

the centerline of the measurements beyond the cathode influence. This is done to

mitigate the influence of the magnetic field as the plasma travels to the bound-

aries. A summary of the plasma potentials relative to the anode voltage are given
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in Table 6.1. Because the plasma potentials are negative, the electron gyroradii

is used for the loss width as stated in Section 5.3.1.1. The magnetic field values

should be taken at the null stream function value. In the case of a positive plasma

potential, the stream function method of Equation (5.3) should be used. In both

cases, the plasma volume is estimated with Equation (5.4). The merging of these

two regions is not well understood in terms of how the loss area for the plasma

electrons merges to the loss region calculated by Equation (5.3). For the cases

measured, the plasma electron loss area is on the order of 10% of that calcu-

lated by the stream function method. The treatment of the loss area for plasma

electrons for different conditions is an unresolved issue and is closely tied to the

ambiguity of the ion repelling sheath structure[2].

Table 6.1: Representative plasma potentials relative to anode potential. Values are
taken at the centerline beyond the cathode influence.

Baseline Magnets Strong Magnets

0.5 A −3.0 −3.7
1.5 A −1.0 −2.7

Solving the system yields electron species ratios summarized in Table 6.2.

The values used for the calculation are taken from experimental measurements

rather than the assumed values stated earlier; these will be used in the following

design cases. The primary to plasma electron ratio is dependent on the discharge

power, thus as the discharge current is ramped up, the ionization level increases

producing more plasma electrons. The order of magnitude of the primary to

plasma electron ratio is 10% and is similar to that found in other studies[18].

This is used for the rough design tool in later sections. A 20% ratio was found by

Oksuz in his studies of negative plasma potentials[31]. It should be noted that

the conditions are much different than the current study.
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Table 6.2: Primary electron to plasma electron ratio,
npVp
neVe

.

Baseline Magnets Strong Magnets

0.5 A 0.33 0.47
1.5 A 0.12 0.22

6.1.1.1 Quasi-neutrality and Electron Structure

Typically, quasi-neutrality is expressed as the balance between the ion and elec-

tron density, or,

ni = ne + np (6.9)

While this could be used to solve for the electron density values and the

primary electron volume, doing so would not be representative of the plasma

structure. Due to the primaries’ confinement to the magnetic field, they typically

are kept with in a vary narrow region along the null stream function contour.

Therefore, the plasma electron structure can be thought of as having a skeleton

structure of primary electrons surrounded by plasma electrons. Local high plasma

density regions could indicate such a structure even though the high primary

currents do not show up in the Langmuir traces.

In the baseline magnetic field configuration, the primary skeleton extends to

the length of the chamber while in the strong field configuration the high densities

seem to be confined to the first set of ring-cusps. This further supports the notion

that the strong field configuration represents a general over-confinement of the

plasma. Since the optimal magnetic field configuration is expected to be weaker

than the baseline configuration, it is assumed that the primary electron structure

has sufficient penetration throughout the discharge chamber.
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6.1.1.2 Order of Magnitude Analysis

An order of magnitude analysis can be made on Equation (6.7) to yield a simpli-

fied form. Dividing Equation (6.7) through by the plasma electron particle count

yields Equation (6.10).

f (φ) =

1
4Ve

√
8kTe
πme

Aa
(
npVp
neVe

) [
no (2〈σivp〉+ 〈σ∗vp〉) + 1

τ

]
+ no〈σive〉

(6.10)

For the current conditions, the Maxwellian contribution is one to two orders

of magnitude below that of the primary contribution; therefore, this term is

dropped. As stated previously, the anode loss area is taken to be 10% of the

anode loss area based on the stream function calculations. Because the primary

to plasma density ratios are also on the order of 10% these terms are assumed to

approximately cancel out yielding the simplified form in Equation (6.11).

f (φ) ≈
1

4Ve

√
8kTe
πme

Aa(Ψ)
[
no (2〈σivp〉+ 〈σ∗vp〉) + 1

τ

] (6.11)

Typical values for ring-cusp discharges can be used for most of the parameters.

The remaining variables in Equation (6.11), Ve & Aa, are dependent on the

magnetic field and can be evaluated using the methodology outlined in Chapter 5.

Therefore, Equation (6.11) can be used to evaluate the merit of magnetic field

configurations for miniature discharges.

6.2 Discharge Design Sensitivity Analyses

As a demonstration, the above design methodology is applied to the discharge

device under constraints to reduce the design space. The guidelines for this
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exercise are:

1. Use the original discharge chamber geometry

2. Use the original ring magnet location and spacing

3. The dimensions of each ring must be the same

4. Use samarium cobalt for the magnetic material

Samarium cobalt is the only material with the combination of high operating

temperature and resistance to demagnetization[53, 51]; therefore, only the magnet

dimensions are allowed to change for this particular problem. Both the magnet

depth and the magnet width are explored creating a design space with two degrees

of freedom. The ring magnets’ outer radius and axial dimension serve as the two

variables for the optimization problem.

From the foregoing analysis of the experimental results, the optimal outer

radius, or depth, is expected to be less than that of the baseline configuration.

The one-dimensional study in Section 4.4.3 predicts a reduction in magnetic field

at the cusp. While this reduces the confinement of the plasma species, it also

allows the escape of plasma electrons, thus bringing the plasma potential closer

to that of the anode potential. The design space for this variable, the depth scale

factor, D∗, ranges from 0.1% to 250% of the baseline outer radius.

Changing the ring magnet’s axial width reduces the field strength along the

centerline, as shown in Section 4.4.3. Reduction in this parameter expands the

field free region and thus the volume utilization of the discharge chamber while

increasing the anode loss area. Since the spacing among the magnet rings is fixed,

the width factor, W ∗, varies from 0.1% to 100%. This corresponds with a very

thin magnet to the maximum width given the fixed magnet spacing. A schematic

of both design parameters is shown in Figure 6.1.
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Figure 6.1: Schematic of the design parameters for the magnet dimensions.

By iterating through the design space and calculating the stream function

contours, the approximate plasma volumes and loss areas can be found with

Equations 5.3 & 5.4. These values, along with nominal values for the intensive

properties of the plasma discharge, can be used to calculate the sheath modifier

function which yields the plasma potential. Figure 6.2 shows the sheath modifier

function versus D∗ and W ∗. The optimal contour, f(φ) = 1, is highlighted using

a red line, and the conditions for the baseline and strong field configuration are

marked with yellow and green respectively.

The configuration should be chosen from the optimal contour in Figure 6.2.

The optimal point on the contour will ultimately depend on the purpose of the

miniature discharge. These may include design objectives such as:

1. Minimizing the anode area: For the most confinement

2. Maximizing the plasma volume: For the most plasma generation

3. Minimizing the magnetic material: For the least cost/weight

4. Maximizing the extraction area: For the most ion throughput

The configurations that correspond to these design objectives are summarized in

Figure 6.3. Details for each optimization are given in Figures 6.4-6.11.

117



Designing for a minimum anode area yields the highest confinement for the

plasma species. This leads to relatively large density values, but a poor volume

utilization. In an ion thruster this translates to centerline concentrated wear, and

thus poor lifetimes. This configuration is shown in Figure 6.5.

Optimizing for a maximum plasma volume would avoid these issues at the

expense of plasma density. This occurs due to the reduction in magnetic ma-

terial. To achieve comparable density values, higher discharge powers may be

necessary. Because plasma generation is a function of volume, as seen in Equa-

tion (6.4), maximizing the plasma volume allows the discharge to be replenished

faster during high thrust operating conditions.

Reducing magnet volume may be considered to increase the thrust to weight

ratio of the device as well as reduce the cost of magnetic material if many units

Depth scale factor, D∗

W
id
th

sc
al
e
fa
ct
or
,
W

∗

0.5 1 1.5 2 2.5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Optimal contour
Baseline configuration
Strong configuration

S
h
ea
th

m
o
d
ifi
er
,
f
(φ
)

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Figure 6.2: Sheath modifier contours for the design space. The red line indicates the
boundary between the ion and electron repelling sheath conditions.
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are to be built. Reducing magnet volume and cost may be of primary consider-

ation for terrestrial applications. For space applications, this may likely not be

a concern since the primary consideration for mass is related to the overall wet

mass of the propulsion system. This may become a factor in missions that require

a large number of thrusters such as the TPF-I example discussed in Chapter 1.

The parameters for minimum magnetic material are seen in Figure 6.8.

The most important optimization parameter for ion sources is the ion flux

surface area. Maximizing the extraction area translates directly to a more efficient

thruster by better utilizing the surface area of the extraction plane. The results

for this optimization are shown in Figure 6.10.

As seen in Figure 6.3, designing for plasma volume, extraction area, and

magnetic material all occur in roughly the same design space. The ideal magnet

configuration, under the current design restrictions, would have ∼ 75% − 95%

depth scale factor and have a width scale factor of roughly 18%.
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Figure 6.5: Illustration of magnets optimized for minimum anode area. The baseline
configuration is shown in dashes.
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Figure 6.7: Illustration of magnets optimized for maximum plasma volume. The
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6.2.1 Discharge Redesign Summary

The preceding analysis examines for possible optimization parameters:

1. Minimum anode area

2. Maximum plasma volume

3. Minimum magnetic material

4. Maximum extraction area

Table 6.3 summarizes the plasma volumes, the extraction areas, and the per-

cent change from the baseline configuration. These values are estimated using

Equation (5.2) on the plasma volume and the extraction plane. The extraction

plane gives an approximation of the total beam current available for thrust. From

Table 6.3 it is clear that designing for maximum plasma volume, minimum mag-

netic material, and maximum extraction area is approximately equivalent. In

comparison to the baseline case, this approach increases the total ion through-

put and has the added benefit of reducing magnetic material. A comparison of

the estimated plasma structure is given in Figure 6.12. The increase in plasma

volume at the radial locations further form the axis have a larger contribution,

thus the improvement in volume utilization is larger than the visual impression

from a two dimensional plot of the discharge.

6.3 Miniature Ion Thruster Design Procedure

The design methodology discussed in Section 6.2 provides a means to quickly asses

the merits of different magnetic field designs for miniature discharges. The figure

of merit in this case is the plasma potential since the performance is dependent
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Table 6.3: Summary of the considered configuration for optimization. Consideration
for maximum plasma volume, minimum magnetic material, and maximum
extraction area yield the same plasma structures. In a typical ion source,
the goal is to maximize the extraction area.

Configuration
Plasma

Volume (m3)
Extraction
Area (m2)

% of Baseline
Volume

% of Baseline
Ext. Area

Baseline 1.44×10−5 4.60×10−4 100% 100%
Strong 1.14×10−5 3.23×10−4 79% 70%

Min. Anode 1.13×10−5 2.86×10−4 78% 62%
Max Plasma 2.06×10−5 7.21×10−4 143% 157%
Min. Magnet 2.05×10−5 7.22×10−4 142% 157%

Max Ext. 2.05×10−5 7.22×10−4 142% 157%

Maximum Extraction Area

Baseline

Figure 6.12: Comparison of the baseline plasma structure to the extraction area op-
timized structure.
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of the operating conditions. The theory has been developed around ring-cusp

discharges with a diameter of ∼ 3 cm. The design procedure is as follows:

1. Determine the chamber geometry.

2. Choose an initial magnet configuration. Note that the procedure is only

applicable to axisymmetric geometries.

3. Calculate the magnetic field using Equations (4.9) & (4.10).

4. Numerically solve for the stream function contours using the procedure

given in Section 4.5.

5. Using the stream function, calculate the weighting functions using Equa-

tion (5.2). Integrate the scalar field to obtain, Aa & Ve.

6. Using nominal values for the electron temperature, reaction rate coefficients[57,

58], and Spitzer slowing times[59], calculate the sheath modifier using Equa-

tion (6.11). Note that the optimal value of f (φ) is unity.

The procedure can be automated in an efficient manner to iterate on various

parameters. In Section 6.2, the procedure iterates to properly size the magnets.

While the procedure is built around obtaining a favorable plasma potential, the

transfer function can also be used to find the magnetic field configuration to

deliver the maximum plasma density to the extraction plane. Typically this

would be done by weakening the magnet adjacent to the extraction plane. While

detailed design tools exist with DC-ION, the current method offers a way of

quickly evaluating a high number of configurations.
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CHAPTER 7

Conclusions and Future Work

A miniature ring cusp discharge is an attractive ion source for a wide array of

propulsion applications. To investigate the internal plasma behavior and struc-

ture of such a device, a simplified miniature discharge was built using a general-

ized ring-cusp configuration with access slots for a Langmuir probe. The probe

data yielded spatially resolved measurements for plasma density, electron temper-

ature, and plasma potential. These data represent the first such measurements

of a miniature ion thruster discharge and conclusively demonstrated the plasma

confinement capabilities of a 3 cm discharge on par with plasma densities found

in larger devices.

The device was used to investigate the effects of magnetic field strength and

to test the possibilities of a discharge instability[21, 29]. It was shown experimen-

tally that the baseline magnetic field, in comparison to a stronger magnetic field

configuration, exhibited better volume utilization and more favorable discharge

loss. The plasma potential measurements for the strong magnetic field showed

the effects of a negative bulk plasma potential relative to the anode, and the likely

onset of plasma instability. Ultimately, all three measured properties showed a

clear dependence on the magnetic field configuration and were relatively invariant

to the operating discharge power.

To further investigate the magnetic field’s effect, a framework for magnetic

field analysis was developed. Stream function and velocity potential constructs
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were borrowed from fluid mechanics and applied to the axisymmetric magnetic

field[39, 47]. These constructs were used to develop a flux aligned coordinate sys-

tem by which to investigate ring-cusp plasma structure and behavior. Although

not used in the current effort, differential operators and elements were derived for

analysis of the plasma two-fluid equations. Further, the analytical formulae were

given for block and ring magnets along with an analysis on the effects of altering

magnet dimensions. This was used to develop intuition for magnetic field design.

The experimental data was plotted in the flux aligned coordinate system.

It was shown that the normalized density had a coherent relationship with the

stream function values. A curve-fit was developed and used to estimate the

plasma loss areas as well as the volume of the plasma. It was shown that the

estimated loss area was on order of the hybrid loss width[3]. Currently, there

is no equivalent technique to truncate the plasma volume based on the field

configuration. This technique is primarily applicable to small devices where the

plasma volume is commonly much smaller than the volume of the chamber.

A method for quickly evaluating the discharge performance for a large design

space of magnetic field configurations does not currently exist for miniature ring-

cusp discharges. A particle balance on the plasma electrons was used to estimate

the electron content of the discharge. This control volume approach was applied

to the experimental data and showed that the plasma electrons should be lost to

the plasma electron thermal gyroradii. Such a technique had been successful in

other studies; however, the extreme prominence of the magnetic field in miniature

discharges places a caveat on the simple control volume bulk analysis that can

be used for conventional plasma discharges[31]. The treatment of the boundary

condition as the plasma potential changes bias with respect to the anode voltage

is an unresolved issue. An assumption was made on the loss area transition that
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utilized the calculated anode loss area. This was used to examine optimized

designs for the discharge experiment’s magnetic field and ultimately yielded a

first-order design methodology for miniature discharges. The design methodology

predicts an increase of 57% in extraction area which directly correlates with an

increase in maximum thrust.

This optimization effort gave significant insight into the plasma behavior in

miniature ring-cusp discharges and several questions were raised about the op-

eration of these devices. Future measurements should attempt to resolve the

boundary of the plasma at the anode wall and are currently being investigated[28].

These measurements may give additional insight into the sheath structure and un-

der what conditions it will exhibit an electron sheath as described by Hershkowitz[2].

Emissive probe measurements are suggested to obtain better values for the plasma

potential. An investigation of the 3-D effect of large magnets should also be con-

ducted to better understand the original MiXI magnetic field configuration[21].

The primary electron content should also be explored to verify the nature

of the negative plasma potential. As stated by Wirz, the primary electrons are

almost exclusively responsible for the ionization within miniature discharges. An

investigation, given in Appendix A, on the primary electron behavior has already

begun using a theoretical derivation for the primary behavior along a single mag-

netic field line. Additionally, an effort to benchmark a new particle tracking

technique for the primaries is shown in Appendix B. Along with current experi-

mental efforts, these will shed light on the true nature of primaries in miniature

discharges[28].

The experimental results can be used as a validation and development of com-

putational models such as DC-ION, for miniature discharges[21]. Additionally,

the flux coordinate system can be used to investigate and improve the diffusion
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behavior for the model.
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APPENDIX A

Single Field Line Analysis of Charged Particles

Electron bombardment plasma devices depend on the confinement of high-energy

electrons, also known as primary electrons, to produce plasma through collisions.

This is achieved using the alternating polarity of a series of magnets to cre-

ate concentrated regions of magnetic field strength. Devices such as ring-cusp

ion thrusters and multipole discharges utilize the magnetic mirroring phenom-

ena to extend the confinement time and hence the path length of the primary

electrons[60, 26, 27, 61]. This increases the probability of the primary electron

ionizing the background neutral gas. While in larger devices a non-negligible

amount of ionization can also occur from plasma electrons, in miniature dis-

charges (≤ 5 cm), primary electrons dictate the ionization. Therefore, deter-

mining the primary electron density throughout the chamber volume becomes

especially important for efficient miniature discharge design[21].

A typical primary electron life cycle begins with an electron born at a thermionic

emitter and accelerated through the plasma potential. The electron then trav-

els through the bulk discharge where the electron undergoes inelastic and elastic

collisions or terminates at a wall. In an inelastic collision, the primary electron

imparts its kinetic energy to a neutral particle. The neutral particle either ionizes

and releases an electron creating a plasma electron and a positive ion[57], or ex-

cites an electron in the outer shell producing an electronically excited neutral[58].

The post-collision electron is quickly thermalized to the plasma electron popu-
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lation through subsequent lower energy collisions with existing particles[59] . In

the event of an elastic collision, the neutral deflects the primary electron and both

continue to travel through the discharge chamber[62]. As the electron approaches

a magnetized boundary of the domain, it will be reflected by the converging cusp

field or be lost if it is within the so-called loss cone.

Because of their discontinuous nature across field lines, primary electrons are

often treated with a particle tracking scheme[63, 64, 65, 66, 67]. Particle track-

ing allows the effects of the magnetic mirror to be clearly implemented within

the simulation. While these methods produce realistic particle trajectories and

locations, they require an inordinate amount of particles in order to accurately

predict the ensemble primary electron behavior. Inherent to these methods is the

statistical noise that stem from an insufficient number of particles used. Addi-

tionally, these methods often have prohibitively lengthy simulation times. These

limitations support the current effort’s development of a method which eliminates

the need to follow discrete particles while still explicitly preserving the magnetic

mirror phenomena.

A technique will be developed to determine the continuous, quasi one-dimensional

primary electron density along a single magnetic field line. The primary electron

population collisions with neutrals tend to induce a “leak” from the magnetic

mirror as particles enter the loss cone through velocity space diffusion. After

transient collision processes, the normalized density profile will be shown to con-

verge to a single profile. Further, the reduction factor, or the fraction of particles

lost between collision events, becomes constant due to the invariance of the nor-

malized density. In ion thrusters and other low-β devices, the collisional mixing is

facilitated by the elastic scattering of the primary electrons with the background

neutrals, the fastest collision timescale[62]. Since the primaries travel through a
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quasi-neutral plasma, Coulomb effects are assumed to be negligible. This assump-

tion is also supported by the primaries’ relatively large kinetic energy compared

to the plasma potential variation throughout the domain [68].

A.1 Methodology

Consider the magnetic field, shown in Figure (A.1), between two aligned dipoles

spaced a distance 2L apart given by Equation (A.1):

B(x) =
µ0m

2π

(
1

|x+ L|3 +
1

|x− L|3
)

(A.1)

where m is the magnetic dipole moment. The boundaries, or loss surfaces, are a

distance D from either side of the center as seen in Figure A.1. If undisturbed, a

single electron within this field oscillates between the poles assuming its velocity

vector is exterior to the loss cone. Assuming that the invariance of the magnetic

moment is applicable, the angle of the loss cone is calculated from the initial

conditions and is given by Equation (A.2), where ξ is the initial position of

the charged particle[25, 45]. As a point of clarification, the variable ξ is used

to distinguish the insertion points, but it occupies the same spatial dimension

as x. If instead of a single particle, an isotropic distribution of monoenergetic

particles were initialized at a given position, marked as the “Insertion Point”, (ξ)

in Figure A.2, the particles within the loss cone would be lost within one transit

across the field line. The mirror configuration traps the remaining particles of

the distribution. The velocity space volume confined along the the field lines can

be calculated yielding the line density profile such as that shown in Figure A.2.

sin2(θL(ξ)) =
B(ξ)

Bmax

(A.2)
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Figure A.1: 1-D test field for quasi-equilibrium analysis. Note that the distance be-
tween dipoles is 2L while the domain under consideration is 2D.

Equation (A.3) calculates the fraction of particles retained from the initial

distribution through magnetic confinement. This confinement factor, fc(ξ), is a

function of the insertion location and is calculated from the velocity space vol-

ume exterior to the loss cone. Note that the distribution of particle speeds does

not effect fc(ξ). As the particles travel toward the regions of higher magnetic

field strength, labeled “exterior” in Figure A.2, the population becomes depleted

as particles are reflected. In contrast, the entire trapped velocity space exists

within the “interior”region. Accounting for this depletion yields the density pro-

file along the field line. These conditions are graphically shown in Figure A.2 for

an arbitrary insertion point, ξ.
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fc(ξ) =
2
∫ 2π

0

∫ π/2
θL(ξ)

∫∞
0
f(v)v2sin(θ)dvdθdφ

4π
∫∞

0
f(v)v2dv

= cos (θL(ξ))

=

√
1− B(ξ)

Bmax

(A.3)

In typical electron bombardment discharge conditions, the highest frequency

collision is the elastic collision with the background neutrals by two orders of mag-

nitude. Therefore, this is the main mixing mechanism for the primaries trapped

within the field line. For this particular exercise, assume that the adjacent field

lines have a similar density, thus allowing the assumption that the elastic col-

lisions can be modeled as a redistribution of particles. This mixing process is
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Figure A.3: Graphic series depicting the thermalization process. (1) Particles within
a differential element are isolated. (2) Differential population undergoes
velocity space diffusion. Particles that enter the loss cone are lost to
the domain boundaries. (3) Remaining particles are redistributed along
the field line based on the original position of the differential element.
(4) Differential profiles are integrated to find the post-collision profile.
Profiles in (4) are not normalized.

summarized in Figure A.3. The differential length in Figure A.3 represent a pop-

ulation of primary electrons to be redistributed after a collision timescale. The

now isotropic differential population loses particles through the loss cone while

trapped particles traverse the field line producing a truncated density profile sim-

ilar to that shown in Figure A.2. Each element is summed together to yield the

post-collision profile. Note that the loss of particles from the redistribution is the

primary challenge for magnetic mirror confinement.

Since density profiles for a given ξ are geometrically similar, normalized trun-

cated profiles can be developed for all possible insertion positions. The initial

profile in Figure A.2, for example, can be expressed as `0(x) = ˜̀
0`
∗
0(x), where the

scalar ˜̀ is the scale factor or maximum density value of a given profile, and the

starred function, `∗0(x) is the normalized density profile such that {`∗(x)ε[0, 1]}.
An important normalized profile is the “insertion shape function” which yields
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the density along x for an insertion point, ξ. For a magnetic field strength profile

with a single local minimum, such as the one currently considered, the insertion

shape function, `∗(x, ξ), is given by Equation (A.4). Using this expression, the

magnetic field considered in Figure (A.1) generates the surface shown in Fig-

ure A.4. Equation (A.4) must be modified if the magnetic field strength has a

local maximum that occurs in the interior region. In such case, particles would

undergo an exclusion process allowing certain velocity vectors to pass through

the local maximum based on the insertion point.

`∗(x, ξ) =





1 if B(ξ) ≥ B(x)

1−
√

B(x)−B(ξ)

B(x)(1− B(ξ)
Bmax

)
if B(ξ) < B(x)

(A.4)

Using Equations (A.4) & (A.3) along with the initial electron density, the

resulting profile after a single thermalization event can be calculated using the

process outlined in Figure A.3. To begin, the differential element, dξ, at location
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x = ξ is taken from the previous density profile. The number of particles within

this differential element is re-released at ξ with an isotropic distribution. Of these

particles, the remaining particles trapped from dξ is:

Ndξ(ξ) = `0(ξ)fc(ξ)dξ (A.5)

This population also has an insertion shape function governed by Equation (A.4).

To find the scale factor of the shape function, the differential profile is integrated

and set equal to Equation (A.5). Because this scale factor, ˜̀dξ(ξ), is constant with

respect to the position, x, it can be easily solved for as seen in Equation (A.6).

Ndξ(ξ) = ˜̀
dξ(ξ)

∫
`∗(x, ξ)dx

˜̀
dξ(ξ) =

Ndξ(ξ)∫
`∗(x, ξ)dx

=
`0(ξ)fc(ξ)dξ∫
`∗(x, ξ)dx

(A.6)

Note that the differential scale factors, ˜̀dξ(ξ), contain the history from the

previous profile, `0(x). These differential maximum values can then be used in

conjunction with the shape function given of Equation (A.4) to determine each

differential element’s contribution to the post-collision profile (Figure A.3 (4)).

The curves are integrated using Equation (A.7) which gives the complete post-

collision profile. This is for a given magnetic field and pre-collision profile. Here,

the equations are generalized using m − 1 and m. The bracketed quantity in

the integrand is simply the differential scale factor, ˜̀dξ(ξ), calculated in Equa-

tion (A.6)

`m(x) =

∫ {
`(m−1)(ξ)fc(ξ)∫
`∗(x, ξ)dx

}
`∗(x, ξ)dξ (A.7)
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A.2 Results

Equation (A.7) does not have an analytical solution and must be solved numer-

ically. The results presented here use a simple trapezoid scheme executed in

MATLAB. By recursively solving Equation (A.7), the dynamic behavior of suc-

cessive collision steps can be seen. These give the density profiles as the magnetic

mirror loses particles. Interestingly, the normalized profiles begin to coincide to a

single function as shown in Figure A.5. This convergence of the normalized profile

to a single curve is unexpected, yet is physically representative of the expected

profile shape. That is, the maximum confinement is sustained in the region of

weakest magnetic field. Figure A.5 shows that the transient profiles are damped

within a few collision time steps. The final profile is independent of the initial

profile.

As a consequence of the normalized profile’s congruence, Equation (A.8) shows

that the decay in the maximum plasma density value also becomes constant. Here

the “m-1” and “m” profiles are expressed as the product of a scale factor and

the normalized profile. Because the normalized profile converge to a solution,

both normalized profiles are replaced by the converged profile denoted by, `∗∞(x).

By integrating both profiles along the field line, the reduction fraction between

thermalization timescales is found to be independent of time. By extension,

the reduction rate of total particles in the mirror trap is also independent of

time as seen in Equation (A.8). Figure A.6 shows that the reduction fraction

for successive collision timescales does indeed become constant. Similar to the

normalized profile, the quasi-equilibrium reduction fraction undergoes a brief

transient behavior and is then independent of the initial condition.
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˜̀
m`
∗
∞(x) =

∫ (˜̀
(m−1)`

∗
∞(ξ)fc(ξ)∫

`∗(x, ξ)dx

)
`∗(x, ξ)dξ

˜̀
m

˜̀
(m−1)

=

∫ (∫ ( `∗∞(ξ)fc(ξ)∫
`∗(x,ξ)dx

)
`∗(x, ξ)dξ

)
dx

∫
`∗∞(x)dx

=
˜̀
m

∫
`∗∞(x)dx

˜̀
(m−1)

∫
`∗∞(x)dx

=
Nm

N(m−1)

6= f(m) (A.8)

Commonly in these devices, the primary electrons are continuously injected

into the discharge chamber from an emitter. In such a case, this technique can

be employed by using an injection profile to supplement Equation (A.7). This

profile depends on the emitter’s current as well as the injection location(s). Some

particles from the emitter will be lost immediately, thus the injection profile is

calculated using Equations (A.3) & (A.4). The injection profile is then simply
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added to Equation (A.7) before integration. The equilibrium profile will look

similar to Figure A.5, but will depend on the injection location(s). The quantity

of particles lost at equilibrium will then of course match the input current from

the primary electron source.
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APPENDIX B

Comparison of Charged Particle Tracking

Methods

Five particle tracking methods are compared for their ability to accurately pre-

dict particle trajectories and conserve energy. The trajectory integrators include:

the Boris particle tracking method (a widely used method for charged parti-

cles), the classical fourth-order Runge-Kutta (a ubiquitous high-order integra-

tor), Störmer-Verlet as a partitioned Runge-Kutta (a second-order symplectic

integrator), fourth-order Gauss Runge-Kutta (a fourth-order symplectic integra-

tor), and Wirz’s modified Boris method (a new particle tracker constructed to

handle large magnetic gradients). The present study will distinguish the features

of symplectic methods with popular classical methods, as well as introduce and

benchmark Wirz’s algorithm against well-established methods. The symplectic

methods are known for their energy conservation properties while these classical

“Newtonian” methods are typically more easily implemented due to their explicit

nature. Wirz’s modified Boris method is shown to strike the balance between the

two classes with explicit implementation and total energy conservation.

144



B.1 Introduction

Particle simulations are in theory the most accurate form of simulation, but

are notoriously resource intensive. Their utility, however, lies in their extension

to developing simpler models and understanding detailed behavior and because

of these qualities, particle simulations are used in a wide array of disciplines.

For example, individual particle tracking can provide direct trajectory informa-

tion as is done in space plasmas[69, 70]. Through particle-in-cell/Monte Carlo

(PIC/MC) techniques, full plasma simulations can be developed[67, 71]. Full

PIC/MC simulations a provide an illustration of statistical behavior that can

be used to benchmark simpler theories and models such as is commonly done

in plasma sheath studies, where the physics is less well understood[72, 73, 74].

Particle simulations can also act as an input to continuum fluid simulations such

as is done in ion propulsion modeling[21], plasma processing simulations[75].

At the heart of every good particle simulation is an efficient particle tracking

algorithm. Conserving particle energy is imperative in determining the particle’s

interaction with its environment, be it boundaries in the case of sputtering or

the background gas in the case of ionization. Additionally, because of the sheer

number of particles necessary to obtain a statistical significant sample, particle

tracking methods are required to be computationally efficient.

The current effort will compare several particle tracking method’s performance

in different magnetic field configurations. The methods compared will fall into

two categories: Newtonian or Hamiltonian.

The Newtonian methods chosen are all explicit and operate on the Newtonian

equations of motion, in this particular case the Lorentz force. These methods

are the common (or classical) fourth-order Runge-Kutta integrator, the Boris
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integrator[76, 77], and a modified Boris integrator developed by Wirz[21]. Wirz’s

method has not been previously benchmarked against other more established

methods, but has been successfully implemented in ion thruster models[78]. This

method was observed to be less prone to particle loss than the Boris tracker and

will be used to investigate miniature plasma sources in future studies.

The Hamiltonian methods, also known as symplectic integrators, have the

property of controlling errors in energy and thus have gained recent popularity in

various fields [70]. These methods integrate the Hamiltonian equations of motion

and are typically implicit. The two methods chosen for this study are the Störmer-

Verlet as a partitioned Runge-Kutta[79] and the fourth-order Gauss method[79,

70, 80]. Both the Newtonian and Hamiltonian methods will be evaluated on their

ability to control errors in energy as well as their ability to adequately predict

particle trajectories.

Each integration method will be put through the same series of tests eval-

uating their ability to predict different features of charged particle motion in

magnetic fields. The first test will be a simple cyclotron motion of an electron

in a uniform magnetic field. The second test will calculate a proton’s trajec-

tory through Earth’s dipole. This test was performed by MacKay and Yugo to

compare the common fourth-order Runge-Kutta and the symplectic fourth-order

Gauss method[70, 80]. The final experiment will evaluate that integrators ability

to conserve energy and track a particle in a highly non-uniform magnetic mirror

configuration.

146



B.2 Integration Methods

The integration methods considered for this study are outlined below. The New-

tonian integrators considered here are all explicit and demonstrate the necessary

stability and accuracy to track particle trajectories in a magnetic field. These

three methods are computationally efficient, but will gradually deviate from it’s

original energy level. The symplectic integrators are constructed to preserve the

symplectic structure of phase space in Hamiltonian systems[81]. The two sym-

plectic methods presented below are both Runge-Kutta methods. Runge-Kutta

methods must be implicit in order to maintain their symplectic structure, thus

implementing a symplectic integrator comes at the cost of computation time[82].

Particle trajectories calculated with this method will still have errors in energy,

however, the error will be bounded. One should note that although, the tests

neglect electric fields, they are still included in the formulations shown below for

posterity.

B.2.1 Newtonian Integrators

dv

dt
=

q

m
(E + v ×B)

dx

dt
= v

(B.1)

The three Newtonian integrators, the classical fourth-order Runge-Kutta,

Boris particle tracking method, and Wirz’s modified Boris integrator, all op-

erate on the Newtonian equations of motion given in Equation (B.1). The time

step, ∆t, is calculated at each position location to be some percentage, ε, of the

cyclotron period, 1/ωc. This is shown in Equation (B.2).
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∆t =
ε

ωc
= ε

m

|q||B| (B.2)

B.2.1.1 Classical Fourth Order Runge-Kutta

Runge-Kutta methods are described by the Butcher tableau shown in Table B.1.

These coefficients are used with Equation (B.3) to calculate the next step. The

common fourth-order Runge-Kutta is shown in Table B.2. This is an explicit

method that requires four function evaluations per time step. This method is a

general ODE integrator and was not been developed for charged particle trajec-

tory calculations.

ki = f

(
tn + ci∆t, yn + ∆t

s∑

j=1

aijkj

)

yn+1 = yn + ∆t
s∑

i=1

biki

(B.3)

B.2.1.2 Boris Particle Tracking Method

The Boris particle tracker[76, 77] takes the velocity and displaces the calculation

by ∆t/2 to solve the position and velocity equations on a staggered grid as shown

in Figure B.1. This effectively applies a position averaged impulse and advances

Table B.1: Runge-Kutta
Butcher tableau

c1 a11 a12 . . . a1s

c2 a21 a22 . . . a2s
...

...
...

. . .
...

cs as1 as2 . . . ass
b1 b2 . . . bs

Table B.2: Common fourth-order RK

1 0 0 0 0
1/2

1/2 0 0 0
1/2 0 1/2 0 0
1 0 0 1 0

1/6
1/3

1/3
1/6
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the particle in time. The change in velocity is applied by first applying half of

the electric field impulse, going through the gyromotion from the magnetic field,

then applying the other half of the electric field impulse. This process is shown

in Equation (B.4).

v

x

t=0

Δt/2

Δt

Figure B.1: Schematic of staggered spatial and velocity grid used in the Boris particle
pushing method.

The methodology used in Boris decouples the magnetic field contribution from

the electric field effect. Further, from the cross velocity term seen in the magnetic

field portion of Equation (B.4), additional accuracy is obtained by using the aver-

age velocity for the magnetic impulse. Although, this step seems implicit, v+ can

be solved for analytically to render the Boris integrator an explicit method. This

method is second-order, however, it has been specifically developed for charged

particles and adds additional accuracy to the magnetic gyration term, the term

most likely to produce error.

v− = vn−∆t/2
+

(
q∆t

2m

)
E

v+ − v−
∆t

=
( q
m

)(v+ + v−
2

×B

)

vn+∆t/2
= v+ +

(
q∆t

2m

)
E

(B.4)

xn+1 − xn
∆t

= vn+∆t/2
(B.5)
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B.2.1.3 Wirz’s Modified Boris Method

Wirz’s method removes the staggered-grid features from Boris and carries out

the position and velocity solution on an aligned temporal grid[21]. The method

is based on obtaining better estimations for the magnetic field at each time step.

This is accomplished by using a corrected magnetic field values at the midpoint.

The schematic for this process is shown in Figure B.2. Wirz’s method use the

same partitioning of the electric field as Boris, but uses a predictor/corrector

scheme in place of the averaged velocity used in Equation (B.4).
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Figure B.2: Illustration of Wirz’s predictor/corrector method. The magnetic field
value calculated at the midpoint is used to execute the corrected gyro-
motion.

In practice, this is achieved by establishing a coordinate system per Equa-

tion (B.6). The radial unit vector, ĥr, is multiplied by the particle sign to auto-

matically prescribe the gryomotion’s direction. Changes in position are calculated

with Equation (B.7), where the change in angle and Larmor radius, ∆θ and rL,

are modified for both the predictor and corrector step.
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ĥ‖ =
B

|B| ; ĥ⊥ =
v − (v · ĥ‖)ĥ‖
|v − (v · ĥ‖)ĥ‖|

; ĥr =
q

|q|(ĥ‖ × ĥ⊥) (B.6)

∆x‖ = ∆t(v · ĥ‖)ĥ‖ ; ∆x⊥ = rLsin(∆θ)ĥ⊥ ; ∆xr = −rL[1− cos(∆θ)]ĥr
(B.7)

where:

rL =
mv⊥
|q||B| ; ∆θ = ωc

The initial velocity, vn, is used to calculate the first intermediate velocity,

v−, by applying the first electric half impulse (Equation (B.8)). v− is then

used to calculate a predicted midpoint (Equation (B.7)). By using ∆θ/2, a

spatially averaged magnetic field value can be predicted. The predicted B-field

value is then used to calculate a corrected coordinate system and ∆θ which is

used to update the velocity using Equation (B.9). The final velocity is calculated

by applying the remaining half of the electric impulse. The position vector is

updated by applying Equation (B.7) with a full time step (∆θ), the spatially

averaged magnetic field (Bcorr), and the updated velocity (vn+1).

v− = vn +

(
q∆t

2m

)
E (B.8)

v+ = (v−)‖ + |(v−)⊥|
(
cos(∆θ)ĥ⊥ − sin(∆θ)ĥr

)
(B.9)
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vn+1 = v+ +

(
q∆t

2m

)
E (B.10)

B.2.2 Symplectic Integrators

Symplectic integrators are used on Hamiltonian systems to preserve the geometric

properties of the system[79]. Numerically, this is manifested in the phase space

variables canonical momentum and the generalized coordinate, p and q respec-

tively. These state variables evolve such that the total energy or the Hamiltonian,

H , is conserved. The Hamiltonian and its equations of motion are given in Equa-

tion (B.11) and Equation (B.12) respectively. Generally speaking, symplectic

integrators are implicit requiring an iterative solution at each time step. For this

study, all implicit equations are solved using fixed point iteration. Using a non-

symplectic integrator on Equation (B.12), such as those given in Section B.2.1,

will lead to large errors in total energy[81]. It should be noted that the elec-

tromagnetic field values act on the Hamiltonian system through their potential

counterparts, the electric potential (V ) and the magnetic vector potential (A).

Additionally, time steps for these methods are calculated using Equation (B.2).

H = p · v − 1

2
m (v)2 + qV − q (v ·A)

where:

v =
p− qA
m

(B.11)
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dp

dt
= −∂H

∂q
= −q∂V

∂q
+

q

m

[
∂A

∂q

]
· (p− qA)

dq

dt
=
∂H

∂p
=

p− qA
m

(B.12)

B.2.2.1 Störmer-Verlet as a Partitioned Runge-Kutta Method

The symplectic Störmer-Verlet method takes the form of a partitioned Runge-

Kutta for an autonomous system. In a partitioned Runge-Kutta method, each

equation of motion in the Hamiltonian system is solved with a separate Runge-

Kutta method. The two methods are combined in the calculation of the Runge-

Kutta coefficients, ki and li. The general form of the partitioned Runge-Kutta is

given in Equation (B.13) and Equation (B.14).

dy

dt
= f(y, z) ;

dz

dt
= g(y, z) (B.13)

ki = f

(
yn + ∆t

s∑

j=1

aijkj , zn + ∆t
s∑

j=1

âijlj

)

li = g

(
yn + ∆t

s∑

j=1

aijkj , zn + ∆t
s∑

j=1

âijlj

)

yn+1 = yn + ∆t
s∑

j=1

biki ; zn+1 = zn + ∆t
s∑

j=1

b̂ili

(B.14)

The Butcher tableau for the two equations of motion are given in Table B.3 and

Table B.4. This method is second-order and in practice is quasi-implicit. That

is, iteration is only required on a single equation rather than the whole system.

Upon completion of the first iteration, the two Runge-Kutta methods can be
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manipulated to explicitly solve for the remaining Runge-Kutta coefficients.

Table B.3: Momentum RK (âij , b̂i)

0 0 0
1 1/2

1/2
1/2

1/2

Table B.4: Position RK (aij , bi)

1/2
1/2 0

1/2
1/2 0
1/2

1/2

B.2.2.2 Fourth Order Gauss Method

The fourth-order Runge-Kutta Gauss method’s Butcher Tableau is given in Ta-

ble B.5. This method was used by MacKay and Yugo to demonstrate the ben-

efits of symplectic methods over generic methods, namely the classical Runge-

Kutta[70, 80]. This method is fourth-order and is fully implicit. In fact, it can be

shown that any Runge-Kutta Gauss method maintains the symplectic structure

[82].

B.3 Results and Discussion

To compare the five numerical methods, three test cases will be performed high-

lighting different features of a magnetic field: a uniform field, a dipole field, and

a magnetic mirror at the centimeter scale. The uniform magnetic field gives a

simple test bed to compare the methods’ basic ability to execute a gyromotion.

The dipole field uses a proton in Earth’s magnetic field for the simulation. Two

experiments will be conducted. The first of these experiments is a proton that

Table B.5: Fourth-order Gauss Runge-Kutta method

1
2
−
√

3
6

1
4

1
4
−
√

3
6

1
2

+
√

3
6

1
4

+
√

3
6

1
4

1
2

1
2
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will have an initial velocity along the equator. The second experiment is a par-

ticle with a velocity angled toward the pole. This introduces a third dimension

into the motion. The final experiment will take two magnetic dipoles spaced 3 cm

apart. This simulates a high-gradient magnetic field that will be of interest in

future studies of small scale plasma sources.

For a given test case, each method was given the same ε time step parameter

irrespective of the methods order. ε was chosen sufficiently small such that all

methods displayed qualitatively similar solutions. Additionally, care was taken

not to allow the particle to reach high gradient regions. Particles entering this re-

gion would often experience different total times due to large changes in magnetic

field and consequently cyclotron frequency, ωc.

B.3.1 Uniform Magnetic Field

The uniform magnetic field provided a preliminary comparison for the five meth-

ods. The particles were subjected to a 1 T magnetic field and given an initial

velocity of 1 m/s. Trajectories produced by all methods showed the same quali-

tative behavior (Figure B.3(a)) and had an approximate error in Larmor radius

of 0.01%. Figure B.3(b) shows the relative error in conserving energy of the five

methods. The Störmer-Verlet shows the most stable upper bound in error, but

also the highest error while the other methods monotonically increase.

Because of the uniform magnetic field, the benefit of the spatially averaged

magnetic field in Wirz’s method is negated, thus Wirz’s method reduces essen-

tially into a first-order method. The fourth-order methods, the Gauss Runge-

Kutta and the classical Runge-Kutta in Figure B.3(b) exhibit the best energy

conservation properties.
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Figure B.3: B.3(a) An electron with an initial velocity of 1 m/s in a 1 T magnetic
field pointing out of the page. All methods display the same qualitative
behavior and roughly a 0.01% error in Larmor radius. B.3(b) Relative
error in energy for the five different methods shown in a semi-log plot.
The methods with the best performance in conserving energy are the two
fourth-order methods.

B.3.2 Earth’s Magnetic Dipole

As mentioned previously, the experiment of a proton in Earth’s magnetic dipole

field has been performed with the classical Runge-Kutta and the fourth-order

Gauss methods[70, 80]. The current study uses the same baseline parameters as

MacKay[70] and is extended to all five methods for two separate cases: equatorial

and pitched initial velocity. The equatorial velocity test will demonstrate the

gyroperiod as well as the magnetic gradient induced curvature drift, while the

pitched test will introduce a magnetic mirroring effect at the poles.

B.3.2.1 Planar Motion (Equatorial Initial Velocity)

The particles simulated in Figure B.4 have an initial position of five Earth radii

with respect to the dipole center, however the coordinate system shown in Fig-

ure B.4(a) has the particles initial position as the origin. The initial energy of
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each particle is 10 MeV along the equator. The expected trajectory is a cyclotron

motion superimposed on an azimuthal drift due to the gradient in magnetic field.

The appropriate equatorial procession is achieved by all methods.

The percent error in energy is shown in Figure B.4(b). The nature of each

of the methods begins to materialize in the non-uniform field of the dipole field.

The Gauss and the Störmer-Verlet methods begin to show an equilibrium bound

on the energy error. Naturally, the fourth-order Gauss method shows better con-

servation than the second-order S-V method. The Boris method and the classical

fourth-order Runge-Kutta both show monotonic growth in energy error; however,

the Boris method, which is of lower order than the classical RK method, displays

better performance. This is expected since the Boris method is specifically de-

veloped for charged particles in magnetic fields. Finally, the Wirz method shows

the best performance among the other five methods. While not strictly symplec-

tic, the non-uniform field allows the Wirz method to control the conservation of

energy by using the spatially averaged magnetic fields.

B.3.2.2 Mirroring Motion (Pitched Initial Velocity)

The second experiment simulates a 27 keV proton that has a 60o pitch with

respect to Earth’s equator. The additional energy towards the pole causes three-

dimensional motion. In addition to the motions seen in Section B.3.2.1, there is a

mirroring motion from the particle reflection at the poles. The resultant motion

is a gyromotion superimposed on both a magnetic mirroring oscillation and a

curvature drift along the equator. This is seen in Figure B.5(a).

The relative error shown in Figure B.5(b) reveals that the symplectic meth-

ods maintain their relative error bound while the classical Runge-Kutta and the

Boris method continue to monotonically increases. Thus, it can be concluded
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Figure B.4: Equatorial proton simulation run for 10,000 time steps (≈ 6 sec simu-
lation time). B.4(a) A 10 MeV proton with an equatorial trajectory.
Again, each method showed qualitative similarities. B.4(b) Relative er-
ror in energy for the five different methods shown in a semi-log plot. The
symplectic structure of the Gauss and the Störmer-Verlet are seen in the
upper bound of their energy error. The Boris and classical Runge-Kutta
non-symplectic methods show the same trend as in the uniform mag-
netic field case, while the Wirz methods shows superior performance to
all methods due to its spatial averaging.

that symplectic integrators are useful in long time-scale scenarios. Just as in Sec-

tion B.3.2.1, the Wirz method benefits from the non-uniformity of the magnetic

field with its spatial averaging technique.

For this test case, computation times were also compared. Table B.6 shows the

absolute time to run the 107 time steps in the mirroring experiment as well as the

relative time when compared to the Boris method. Both the classical RK4 method

and the Wirz method have a similar number of function evaluations and are fully

explicit. The implicit methods require iteration and thus take significant more

computational time. As mentioned previously, solutions for implicit equations

were made using a fixed point iteration method; therefore, the computational

time could be reduced greatly by implementing more efficient techniques.
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Figure B.5: Equatorial proton simulation run for 10,000,000 time steps (≈3, 000 sec
simulation time). B.5(a) A 27 keV proton with a pitch angle of 60◦ with
respect to the equator is shown. The trajectory has three fundamental
features: gyromotion, magnetic mirroring, and equatorial precision along
the equator. Again, each method showed qualitative similarities. B.5(b)
The symplectic methods (Gauss and SV) have bounds on the energy er-
ror, thus when the simulation is run for long timescales, the symplectic
methods show better conservation of energy. The Wirz method, how-
ever, is still superior to the other four methods in conserving energy.
Additionally, the Wirz method peak error appears to be bound below
10−12.

B.3.3 Magnetic Mirroring on a Miniature Plasma Source Scale.

The final test case is a magnetic mirroring configuration. Two dipoles are placed

a distance of 3 cm apart with a dipole strength of 0.238 Am2. This simulates two

250 mm3 samarium cobalt magnets. The trajectory for a 20 eV electron is tracked

in the confinement region of the magnetic mirror structure. For this experiment,

only the Boris method, Gauss integrator, and the Wirz method are considered

since the previous test cases showed that the Störmer-Verlet and the classical RK4

prove to have the poorest energy conservation and the longest run times among

their respective groups. A sample particle trajectory is shown in Figure B.6(a).

Here the particle trajectory is projected onto a two dimensional schematic of the

field lines. Just as in the previous cases, Wirz’s method continues to display the

159



Table B.6: Computation time for Mirroring Motion experiment (107 time steps). All
implicit equations solved with fixed point iteration.

Computational Method Calculation Time Normalized to Boris
Boris Method 2.36 sec 1.0
Classical RK4 4.82 sec 2.0
Wirz Method 3.98 sec 1.7

Gauss Symplectic 27.82 sec 11.8
Störmer-Verlet 43.24 sec 18.3

best energy conservation performance. Wirz’s method will continue to be applied

in future work to high gradient magnetic fields.
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Figure B.6: B.6(a) A 20 eV electron trajectory projected onto a schematic of the
magnetic mirror configuration. B.6(b) Among these three methods, the
Gauss and Wirz method display the best energy conservation. Due to the
explicit nature of Wirz’s modified Boris method, it is the clear favorite
for this scale of magnetic field configuration.

B.4 Conclusion

The five particle integration methods currently examined have all demonstrated

the ability to capture the qualitative features of a particle in a magnetic field;

however, when conservation of energy is critical, such as in a small scale plasma
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device, some methods perform better in a given situation. Generally speaking,

two classes of integrators have been examined: symplectic (Gauss and Störmer-

Verlet) and non-symplectic (Classical Runge-Kutta and Boris integration). For

the purposes of this discussion, Wirz’s modified Boris method will be mentioned

separately. In general, symplectic integrators are constructed using geometric

formalism to conserve the Hamiltonian or total energy. This makes them optimal

for controlling the error in energy, especially for extended simulations. However,

because symplectic integrators are implicit by nature, the computational cost can

by much greater to implement these techniques. Non-symplectic integrators, or

“Newtonian integrators”, can be explicit, thus greatly reducing computational

time. Additionally, the accumulation of artificial energy tends to be relatively

slow; therefore, for short timescale problems, explicit integrators are generally

more efficient to implement.

The new integration method created by Wirz[21] has been benchmarked

against the four classical methods mentioned above. The Wirz integrator is con-

structed to handle high gradients in magnetic cusps by using a predictor/corrector

algorithm to determine a spatially averaged field strength. Although the proce-

dure is not constructed in the same geometric formalism as the symplectic inte-

grators, the test cases shown in this study demonstrate that the Wirz integrator

is not subject to the monotonic growth in energy error of other non-symplectic

methods. In fact, in non-uniform magnetic fields, it often exhibits the best perfor-

mance among all integration methods. Therefore, Wirz’s modified Boris method

may be a suitable for high-gradient magnetic fields where conserving energy over

the duration of the particle flight is essential. This is the case in any application

where the impact energy must be known, such as plasma ionization and ion bom-

bardment. Future studies will work to conserve the magnetic moment, something

that is handled relatively poorly by most methods.
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